KR920004911B1 - 반도체 웨이퍼의 열처리 장치 및 열처리 방법 - Google Patents

반도체 웨이퍼의 열처리 장치 및 열처리 방법 Download PDF

Info

Publication number
KR920004911B1
KR920004911B1 KR1019880011652A KR880011652A KR920004911B1 KR 920004911 B1 KR920004911 B1 KR 920004911B1 KR 1019880011652 A KR1019880011652 A KR 1019880011652A KR 880011652 A KR880011652 A KR 880011652A KR 920004911 B1 KR920004911 B1 KR 920004911B1
Authority
KR
South Korea
Prior art keywords
semiconductor wafer
wafer
heat treatment
temperature
heating space
Prior art date
Application number
KR1019880011652A
Other languages
English (en)
Other versions
KR890005826A (ko
Inventor
시게끼 히라사와
다꾸시 도리이
도모지 와따나베
도시히로 고마쯔
가즈오 혼마
아끼히꼬 사까이
데쯔야 다까가끼
도시유끼 우찌노
히로또 나가또모
Original Assignee
가부시기가이샤 히다찌세이사꾸쇼
미다 가쓰시게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP62226389A external-priority patent/JPH0744159B2/ja
Priority claimed from JP63188477A external-priority patent/JPH0239525A/ja
Application filed by 가부시기가이샤 히다찌세이사꾸쇼, 미다 가쓰시게 filed Critical 가부시기가이샤 히다찌세이사꾸쇼
Publication of KR890005826A publication Critical patent/KR890005826A/ko
Application granted granted Critical
Publication of KR920004911B1 publication Critical patent/KR920004911B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

내용 없음.

Description

반도체 웨이퍼의 열처리 장치 및 열처리 방법
제 1 도는 본 발명의 1실시예인 확산장치의 전체 구성도.
제 2 도는 고온로의 종단면도와 온도 제어계를 도시한 도면.
제 3 도는 고온로의 종단면도.
제 4 도는 웨이퍼 삽입기구의 외관도.
제 5 도는 제 4 도의 종단면도.
제 6 도는 제 2 도의 직각방향의 단면에 있어서의 고온로의 종단면도와 제어계를 도시한 도면.
제 7 도는 반응관의 외관도.
제 8 도는 히터 분할을 나타낸 고온로의 일예의 투시도.
제 9 도는 열처리실 온도 제어기의 연산 처리의 흐름도.
제 10 도는 히터 분할을 나타낸 고온로의 다른 예의 투시도.
제 11 도는 웨이퍼 공급기구의 주요한 부품의 사시도.
제 12 도는 로드기구 및 언로드 기구의 선단부의 사시도.
제 13 도는 균일 가열관의 외관도.
제 14 도는 고온로 하부의 부품 부착 방법을 도시한 종단면도.
제 15 도는 삽입 횟수마다 실효 열처리 온도, 히터 설정온도의 변화를 나타낸 실험결과를 도시한 그래프.
제 16 도는 열처리실 내부온도, 웨이퍼 온도의 시간 변화를 나타낸 실험 결과를 도시한 그래프.
제 17 도는 웨이퍼 냉각 특성의 실험 결과를 도시한 그래프.
제 18 도는 웨이퍼면내의 온도차의 계산 결과를 도시한 그래프.
제 19 도는 가스유량과 외부 공기 혼입량의 관계를 나타낸 실험 결과를 도시한 그래프.
제 20 도는 웨이퍼 삽입 속도와 외부공기 혼입량의 관계를 나타낸 실험 결과를 도시한 그래프.
제 21 도는 본 발명의 다른 실시예의 반응관의 외관도.
제 22 도는 본 발명의 다른 실시예의 고온로의 종단면도.
제 23 도는 본 발명의 다른 실시예의 열처리 온도 제어기의 연산 처리의 흐름도.
제 24 도는 본 발명의 다른 실시예의 확산장치의 고온로의 종단면도와 제어계를 도시한 도면.
제 25 도 및 제 26 도는 본 발명은 다른 실시예의 웨이퍼 열처리 제어기의 연산 처리의 흐름도.
제 27 도 ~ 제 31 도는 본 발명의 다른 실시예의 웨이퍼 삽입기구의 웨이퍼 장착부분의 종단면도.
제 32 도는 본 발명의 다른 실시예의 웨이퍼 삽입기구의 외관도.
제 33 도 ~ 제 35 도는 본 발명의 다른 실시예의 웨이퍼 삽입기구의 웨이퍼 장착부분의 종단면도.
제 36 도는 본 발명의 다른 실시예의 웨이퍼 삽입기구의 외관도.
제 37 도는 제 36 도의 종단면도.
제 38 도 ~ 제 40 도는 본 발명의 다른 실시예의 웨이퍼 삽입기구의 종단면도.
제 41 도 ~ 제 44 도는 본 발명의 다른 실시예의 고온로의 종단면도.
본 발명은 확산장치, 기상 박막 형성장치(CVD장치) 등의 반도체 웨이퍼의 열처리 장치에 관한 것으로써, 특히 2매의 웨이퍼를 동시에 균일하게 단시간 열처리하는데 적합한 열처리 장치 및 열처리 방법에 관한 것이다.
반도체 소자는 실리콘 등의 고순도 고체 기판에 붕소, 인, 비소 등의 원자를 불순물로써 미량 도입하는 것에 의해 소위 반도체로써의 기능을 발휘한다. 그 때문에 반도체 제조과정중, 불순물의 도입, 확산 공정에서는 이온 주입장치에 의해 불순물을 기판에 도입하고, 확산장치에 의해 기판을 질소 가스, 아르곤 가스, 수소가스 분위기중에서 800~1200℃로 소정시간 가열하여 불순물을 소정 깊이만큼 허용 산란 범위내로 억제하여 확산시키고, 또한 이온주입에 의해 생긴 결정 결함을 회복시키는 처리를 행하고 있었다.
또, MOS 트랜지스터의 게이트 산화막, 소자간 결연막등의 산화막을 기판에 형성하는 경우에도 확산장치에 의해 기판을 산소가스, 수증기 분위기중에서 가열하여 막두께를 허용 산란 범위내로 억제하여 열산화막을 형성하고 있다.
종래의 확산처리에 사용되는 열처리장치는 수평방향으로 배치한 회로내에 다수의 반도체기판을 1개의 기구를 사용하여 삽입하고, 화로 바깥둘레에 마련한 원통형의 히터의 가열에 의해서 열처리를 행하고 있었다.
한편, 최근에는 패턴의 미세화에 대응해서 단시간 가열에 의해 웨이퍼 전면에 걸쳐서 얕은 확산, 얇은 산화막을 균일하게 형성하는 것이 요구되고 있다. 이러한 요구를 만족시키기 위한 열처리 장치로써, 일본국 특허공개공보 소화 60-171723호에 기재되어 있는 바와같이 세로형의 원통형 고온로의 아래쪽을 개방하고, 아래쪽에서 수평으로 지지한 웨이퍼를 1매마다 고온로내에 삽입하여 웨이퍼를 가열하는 구조의 것이 있다.
그러나, 상기의 종래 기술에서는 웨이퍼 2매를 동시에 단시간에 균일하게 가열하는 것에 대해서는 고려되어 있지 않고, 1매마다의 가열에서는 생산성이 나쁘고, 만약 웨이퍼 2매를 동시에 가열하는 경우에는 웨이퍼가 수평방향으로 2매 배치되기 때문에 웨이퍼마다 온도차 및 웨이퍼면내의 온도차가 대단히 크게 되는 문제가 있으며, 또 단시간 가열한 후 고온의 웨이퍼를 급속히 외부로 꺼낼 경우에는 고온의 웨이퍼가 외부공기에 직접 접촉하게 되어 웨이퍼가 오염되어 버린다는 문제가 있다. 또 상술한 패턴의 미세화의 요구와 함께 최근, 웨이퍼의 대형화가 진행되고 있지만, 대형 웨이퍼를 균일하게 가열하는 것에 관해서도 고려되어 있지 않다는 문제도 있다.
본 발명의 목적은 연속적으로 반도체 웨이퍼를 단시간에 균일하게 가열할 수 있고, 또 외부공기에 접촉하는 일없이 급속히 균일한 냉각을 가능하게하여 웨이퍼에 열응력 결함이 발생하지 않는 고품질, 고효율의 열처리가 가능한 반도체의 열처리 장치 및 열처리 방법을 제공하는 것이다.
본 발명은 상기의 목적을 달성하기 위하여 고온로 내부에 마련한 히터에 의해서 화로내에 가열공간을 형성하고, 그 가열공간에 반도체 웨이퍼를 수납해서 열처리하는 반도체 웨이퍼의 열처리 장치에 있어서, 상기 가열공간이 1~여러개 마련되어 그 가열공간의 아래쪽에 상기 반도체 웨이퍼의 삽입, 인출구를 가지며, 그 가열공간마다 해당 웨이퍼를 1~2매를 동시에 수납해서 열처리하는 것을 특징으로 하는 것이며, 또 상기가열공간에 수납된 각 반도체 웨이퍼의 적어도 한쪽 표면을 여러개의 영역으로 나누어서 가열처리하는 것을 특징으로 하고, 상기 가열공간에 수납된 반도체 웨이퍼의 각부에 대응해서 상기 히터가 여러개의 발열부로 분할되어 있는 것을 특징으로 하고, 상기 가열공간에 마련된 반응관의 하부를 상기 고온로의 아래쪽에 돌출시키고, 그 하부에 상기 반도체 웨이퍼의 삽입, 인출구가 마련되어 있는 것을 특징으로 하고, 상기 가열공간에 마련된 반응관의 상부에 예열된 처리가스가 공급되고, 그 처리가스가 그 반응관내를 아래쪽으로 유동하는 구조인 것을 특징으로 하고, 상기 가열공간에 마련된 반응관의 하부 돌출부, 또는 반응관의 아래쪽에 상기 반도체 웨이퍼를 외부공기와 비접촉 상태로써 냉각하는 냉각영역이 마련되어 있는 것을 특징으로 하고, 상기 반도체 웨이퍼를 1매 또는 2매 동시에 조금 간격을 두고 평행으로 지지하여 상기 가열공간에 도입하고 꺼내는 지지수단이 마련되어 있는 것을 특징으로 하고, 상기 지지수단은 상기 2매의 반도체 웨이퍼사이에 원판을 마련한 것이며, 그 원판의 바깥둘레부 근방에 따라서 두께부를 갖는 것을 특징으로 하고, 상기 지지수단은 웨이퍼 바깥둘레부 근방에 링을 마련한 것을 특징으로 하고, 상기 반도체 웨이퍼는 면방향이 수직 또는 경사진 상태로 지지되는 것을 특징으로 하고, 상기 지지수단은 상기 반도체 웨이퍼를 지지하는 지지부와 한쪽 끝에 상기 지지부를 갖는 지지기둥을 구비하고 있으며, 상기 지지기둥이 중공형상 등의 얇은 구조로 되어 있으며, 상기 중공형상의 지지기둥은 상기 가열공간에 삽입되지 않은 부분에 구멍이 마련되어 있는 것을 특징으로 하고, 상기 히터의 발열부의 온도를 소정의 값으로 제어하는 히터발열 제어수단을 갖는 것과 동시에, 그 제어값을 상기 가열 공간 온도에 따라서 보정하는 보정수단을 구비한 것을 특징으로 하고, 상기 히터의 발열부의 온도를 소정의 값으로 제어하는 히터 발열제어수단을 갖는 것과 동시에, 그 제어장치를 상기 반도체 웨이퍼의 표면온도에 따라서 보정하는 보정수단을 구비한 것을 특징으로 하고, 상기 반도체 웨이퍼를 연속적으로 상기 가열공간에 공급하고 그 가열공간에서 인출하는 이동수단, 그 이동수단에 의한 공급 횟수마다 그 웨이퍼의 수납직전에 그 가열공간의 온도를 측정하는 측정수단, 그 측정수단에 의한 측정값에 따라서 상기 히터의 발열온도를 수정하는 수정수단을 구비한 것을 특징으로하고, 상기 반도체 웨이퍼를 연속적으로 상기 가열 공간에 공급하여 그 가열공간에서 인출하는 이동수단, 그 이동수단에 의해서 그 웨이퍼를 인출하기 직전의 그 웨이퍼의 표면온도를 측정하는 측정수단, 그 측정수단에 의한 측정값에 따라서 상기 히터의 발열온도를 수정하는 수정 수단을 구비한 것을 특징으로 하고, 상기 열처리시의 반도체 웨이퍼의 표면 온도를 측정하는 측정수단, 그 측정수단에 의한 측정값에 따라서 상기 가열공간에 웨이퍼가 공급되고 나서의 열처리량을 계산하는 계산수단, 그 계산수단에 의한 계산값에 따라서 해당 웨이퍼를 가열공간에서 인출하는 이동 제어수단을 구비한 것을 특징으로하고, 또 상기 반도체 웨이퍼의 수납시에 공급되는 처리가스의 공급량을 상기 반도체 웨이퍼를 삽입할 때에는 많이, 그 이외일때에는 적게하는 가스량 제어수단을 구비한 것을 특징으로 한 것이다.
이상의 구성에 의하면, 1~2매의 반도체 웨이퍼를 동시에 아래쪽에서 삽입하고 인출할 수 있어 웨이퍼 표면의 영역에 따라서 히터의 가열이 가능하며, 연속적으로 공급하는 반도체 웨이퍼의 전면에 걸친 온도 분포저감에 의한 열응력 결함발생 방지, 단시간 균일가열이 가능하게 되며, 또 반응관 아래쪽을 돌출하여 처리가스를 아래쪽으로 유동시키고, 외부공기의 침입을 방지함과 동시에 그곳에서 냉각시킬 수 있다. 또 웨이퍼2매를 동시에 지지해서 수납하고, 가열 공간온도 또는 웨이퍼 표면온도에 의한 히터 발열제어가 가능하게 될 뿐만아니라, 웨이퍼의 연속적인 공급의 공급 횟수 또는 인출마다 온도제어가 가능하게 되며, 또 열처리 시간의 타이밍 또는 열처리 가스의 유량제어가 가능하게 된다.
다음에 본 발명의 1실시예를 도면을 사용해서 설명한다.
제 1 도는 본 발명을 적용한 확산장치의 전체 구성도이다. 제 2 도 및 제 3 도는 고온로(2)의 종단면도와 제어계이다. 고온로(2)는 직육면체형을 하고 있으며, 여러개의발열 구역으로 분할된 좌우 2매의 평판형 히터(4a), (4b), (4c) (칸탈제 저항 발열지를 꼬깃꼬깃하여 알루미나 단열재로 매입한 것 등)의 주위에 단열재(6)이 마련되어 있으며, 히터의 안쪽에는 균일 가열관(8) (실리콘 카바이드제 등)과 반응관(10) (석영 유리제 등)이 마련되어 있고, 그것이 플랜지(12) (스텐레스제 등)에 지지되어 고온로(2)를 구성하고 있다.
고온로(2)의 아래쪽에서 반응관(10)의 안쪽에 웨이퍼 삽입기구(14)에 탑재되어 2매의 웨이퍼(16)이 대략 수직상태로 삽입된다. 반응관(10)의 하부(18)은 고온로(2)보다 아래쪽으로 연장하고 있으며, 냉각기(20)(내부에 냉각유체를 흐르게 하는 판등)으로 둘러싸여져 있다.
제 4 도는 웨이퍼 삽입기구의 외관도이다. 제 5 도는 제 4 도에 도시한 웨이퍼 삽입기구의 종단면도이다.
웨이퍼 삽입기구(14)는 2매의 웨이퍼사이에 들어있는 원판(22), 원판(22) 및 웨이퍼(16)을 탑재하기 위한 홈(24)를 갖는 선단부(26), 얇은 파이프형의 지지기둥(28), 상하 반송대(30)에 부착하기 위한 플랜지(32)로 구성되어 있다. 원판(22)는 하부를 제외하고 주변부(34)의 두께가 중앙부(36)보다 두껍게 되어 있으며, 직경은 웨이퍼(16)의 직경과 같다. 선단부(26)은 얇은 판으로 형성되어 홈(24)를 갖는 부분이 원형봉(roundbar)으로 되어 있다. 지지기둥(28)의 아래쪽에 통기구멍(38)을 가지며, 그 이외는 밀폐구조로 되어 있다.
웨이퍼 삽입기구(14)는 석영 유리, 폴리실리콘, 실리콘 카바이드 등으로 제작한다. 원판(22)와 지지기둥(28)은 다른 재질인 경우도 있다. 또 석영 유리재에 폴리실리콘막, 질화실리콘막 등을 코팅한 복합재료인 경우도 있다.
웨이퍼 삽입기구(14)의 대표적인 치수를 다음에 나타낸다. 직경 150mm, 두께 0.6mm인 웨이퍼 2매를 열처리한 경우, 원판(22)의 발깥지름 150mm, 중앙부(36)의 두께는 1mm, 주변부(34)의 두께는 2mm로써, 주변에서 폭 8mm가 두께부로 되어 있다. 웨이퍼와 원판 두께부와의 틈은 2.5mm로 한다. 홈(24)를 갖는 기구선단은 직경 5mm의 원형봉, 홈(24)중 웨이퍼를 탑재하는 홈의 폭은 0.7mm, 깊이는 2.5mm, 홈의 코너부에는 둥근 형상을 하고 있는 것이 있으며, 선단부(26)의 판재료와 지지기둥(28)의 파이프의 두께는 1.5mm로 한다.
2매의 웨이퍼(16)과 원판(22)는 수직상태에서 5도 기울어져 그들이 탑재되었을때에 수평으로 되도록 홈(24)의 가공이 행하여진다. 웨이퍼를 경사지게 하는 삽입기구(14)가 상하로 이동할 때 웨이퍼가 전후로 요동하는 것을 방지하기 위한 것이다. 약간 경사지게 하였으므로 기울어지더라도 고온로내의 가열이나 냉각영역에서의 냉각에 있어서 2매의 웨이퍼의 열전도 특성은 거의 차이가 없다.
상하 반송대(30)은 볼 나사등이 내장된 상하구동기구(40)에 부착되어 있다. 주 제어기(42)에서 상하 구동기구(40)에 제어신호가 부여된다. 여러개로 분할된 히터(4a), (4b), (4c)마다 발열부 온도 측정센서(44a), (44b), (44c)가 삽입되어 있으며, PID 사이리스터 제어방식의 히터 온도조절기(46a), (46b), (46c), 히터전원(48a), (48b), (48c)에 의해 각 대역마다 발열부 온도가 부여된 설정온도에 가깝게 되도록 발열량이 제어된다.
반응관(10)과 균일 가열관(8)사이의 웨이퍼 삽입위치에 열처리실 내부 온도센서(50)이 삽입되어 있으며, 열처리실 온도 제어기(52)에 연결되어 있고, 열처리실 온도 제어기(52)의 내부에서 다음에 기술하는 연산처리를 행하여 히터 온도 조절기(46a), (46b), (45c)에 대하여 설정 온도의 값을 부여한다. 열처리실 온도 제어기(52)는 주제어기(42)에서 웨이퍼 삽입 개시 등의 상태 신호를 받고 있다.
제 6 도는 제 2 도에 직각방향의 단면에 있어서 고온로의 종단면도와 제어계이다. 제7도는 반응관(10)의 외관도이다. 반응관 내부에는 확산장치의 사용 목적에 따라서 질소, 아르곤, 산소, 수증기 등의 가스가 예열되어 공급되고, 위에서 아래로 흐르고 있다. 반응관(10)의 좌우에는 가스공급관(54a), (54b)가 있으며, 가스원(56)에서 공급되는 가스가 소유량 배관계(58)과 제어밸브(60) 또는 대유량 배관계(62)와 제어 밸브(64)의 어느 하나를 통해서 가스 공급관(54a), (54b)로 유도되어 가스 공급관내에 반응관(10)의 바깥쪽을 상승시키는 동안에 가스가 예열되어 반응관(10)의 상부에서 반응관(10)의 안쪽에 가스를 도입하고 있다. 제어밸브(60), (64)는 주 제어기(42)에서의 신호에 의해서 개폐되고 가스유량을 대소로 전환시킨다.
제 8 도는 히터의 분할을 나타낸 고온로(2)의 투시도이다. 히터는 2매의 평행 평판으로 되어 있으며, 각각이 5개의 영역(4a)~(4j) ((4j)는 도시하지 않음)로 분할되어 있다. 표면과 이면의 대칭성, 좌우의 대칭성에서 발열량은 중앙((4b)와 (4g)) 위쪽((4a)와 (4f)), 아래쪽((4c)와 (4h)), 측면((4d), (4e), (4i), (4j))의 4개가 독립적으로 제어된다.
히터 온도 조절기(46), 히터전원(48), 발열부 온도 측정센서(44)도 4계통으로 되어 있다. 표면과 이면 또는 좌우의 대칭성을 유지하기 위하여 표면 및 이면과 좌우의 히터 분할 영역은 항상 같은 발열량으로 되도록 조정한다.
히터 제작시에 대칭위치의 대역의 저항값이 약간 불균형하게 되는 일이 있지만, 이것에 대해서는 외부의 배선계에 조정용 저항을 부착하는 것에 의해 조정한다.
제 9 도는 열처리실 온도 제어기(52)의 내부에 있어서 연산처리의 흐름도이다. 중앙영역의 히터(4b), (4g)에 관해서 웨이퍼 삽입 횟수 ⅰ번째의 히터온도 조절기의 설정 온도를 H1, 그 이전의 설정온도를 H1-1웨이퍼 삽입이 없는 정상상태의 설정온도를 H0, 정상 상태의 열처리실 내부온도를 W1, 웨이퍼 삽입횟수 I번째의 삽입 직전에 있어서 열처리실 내부 온도를 W1, 2번째의 삽입직전에 있어서 열처리실 내부 온도를 W₂로한다.
제 9 도에 있어서, ① 히터를 상승시켰을 때 주 제어기 H0,W1,W2,및 각 히터 온도 조절기의 설정온도의 값을 입력하고, 중앙영역의 히터 온도 조절기(46b)에 설정온도 H1=H0의 신호를 출력한다. 그것과 동시에 그이외의 영역의 히터 온도 조절기에 설정온도를 출력한다. 또한 열처리 조건마다 H0,W1,W2, 각 히터 설정 온도는 사전에 실험에 의해 구하여 주 제어기에 기억시켜둔다. 웨이퍼의 연속 공급이 개시되었을때, ⑤ 웨이퍼 삽입 직전의 열처리실 내부 온도 W1를 측정한다. ⑥ 연속 삽입의 첫 번째와 2번째일때는 ⑦ 웨이퍼 삽입 중단시간에 따라서 중앙영역의 히터에 설정온도 H₁를 출력한다. ⑧ 연속삽입의 3번째이후에서는 웨이퍼 삽입 직전의 열처리실 내부온도 W₁를 2번째 삽입직전의 값 W2에 가깝게 되도록 중앙영역의 히터 설정온도를 △W= W2- W1만큼 수정한다. ② 웨이퍼의 삽입의 중단되었을때에는, ③중단후 3분간은 중앙영역의 히터 설정온도를 H0+2℃로 한다. 단, 그때까지의 설정온도 H1-1이 H0+2 이하이면, 설정온도를 H0로한다. ④ 중단후 3분이후는 중영역의 히터 설정 온도를 H0로 하고, 그 상태에서 웨이퍼 공급재개를 기다린다.
제 9 도의 ③에서 웨이퍼 삽입이 중단되고 나서 3분간은 중앙영역의 히터설정온도를 H0+2로 하는 것은 히터설정온도의 급속한 변화를 방지하기 위함이다. 또 ⑧ 연속삽입에서 히터 설정 온도의 수정량 △W를 0~1℃의 범위로 하는 것은 열처리실 내부 온도 센서(50)이 노이즈에 의해서 이상값을 나타내었을때의 수정량을 대단히 크게 하는 것을 방지하기 위함이다.
제 9 도의 히터 설정온도의 제어는 중앙의 히터 영역(4b), (4g)에 대해서만 행하고, 그 이외의 히터영역(4a), (4c)~(4f), (4h)~(4j)는 일정한 설정온도로써 해둔다. 그 이유는 실온의 웨이퍼가 삽입되는 것에 의해서 히터의 중앙영역이 냉각되지만, 그 이외의 히터 영역은 냉각되지 않기 때문이다.
제 10 도는 히터의 분할을 나타낸 고온로(2)이 다른 예를 도시한 것으로, 히터는 웨이퍼의 면과 대략 평행으로 배치되는 위쪽의 히터(4k)와 아래쪽의 히터(4e)와 측면 히터(4m), (4n) 및 상면 히터(4o)로 분할되어 독립적으로 제어된다. 이 실시예는 제8도에 도시한 실시예에 비해서 분할 수가 적지만, 같은 정도로 균일한 열처리를 할 수 있다.
제 11 도는 웨이퍼 공급기구의 주요한 부품의 사시도이다. 전부품은 제 1 도에 도시되어 있다.
열처리전의 웨이퍼를 수납한 카세트(66), 인출기구(68), 로드기구(70), 삽입기구(14), 언로드 기구(72), 냉각 보트(74), 수납기구(76), 열처리후의 웨이퍼를 수납하는 카세트(78)등으로 구성되어 있다. 제11도중의 화살표는 각 기구의 이동방향을 나타낸다. 언로드기구(72)는 로드기구(70)과 같은 구조이며, 삽입기구(14)에 대해서 좌우의 반대위치에 마련되어 있다. 수납기구(76)은 인출기구(68)과 같은 구조이다.
제 12 도는 로드기구(70) 및 언로드기구(72)의 선단 부분의 외관도이다. 웨이퍼를 탑재하기 위한 홈(80)을 갖는 원형봉(석영 유리제 등)에 의해서 구성되어 있다. 삽입기구(14)의 원판(22)를 갖지 않기 위하여 2매의 웨이퍼는 별도로 각각 지지되어 있다.
제 1 도에 도시한 바와같이 인출기구(68)의 구동부(82), 로드기구(70)의 구동부(84), 언로드기구(72)의 구동부(86), 수납기구(76)의 구동부(88) 등을 가지며, 그들의 전원이 히터 전원 트랜스등과 함께 대(90)의 내부에 수납되어 있다.
주 제어기(42) 등의 제어기기(92)는 장치 앞면에 표시패널과 스위치류의 제어판(94)를 갖는다. 또 도면에 도시하지 않았지만, 카세트(66), (78), 냉각보트(74)에 웨이퍼가 있는가 어떤가의 검출센서, 각 기구(14), (68), (70), (72), (76)에 웨이퍼를 유지하고 있는가 어떤가의 검출센서를 갖는다. 또 각 기구(68), (70), (72), (76)의 위치 검출 센서를 갖는다. 삽입기구(14)에 웨이퍼가 약간 기울어서 탑재되어 있기 때문에, 카세트(66), (78), 냉각보트(74), 각 기구(68), (70), (72), (76)도 수직상태에 약간 기울어져 있다.
제 13 도에 균일 가열관(8)의 외관도를 도시한다. 커버(96)과 본체(98)로 분할되어 있으며, 본체(98)은 코너가 둥글게 되어 있다. 이것은 강도를 갖게 하기 위함이다.
제 14 도는 고온로(2)의 하부에서 반응관(10), 균일 가열관(8), 히터(4), 단열재(6)을 플랜지(12)에 부착하는 부품의 상세한 단면도이다. 반응관(10)은 번번히 세척하기 위해 떼어내기가 용이하도록 나사 및 고정금구(100)에 의해서 플랜지(12)에 부착되어 있다. 균일 가열관(8)도 보수를 위해 고온로(2)에서 떼어내게 되어 있다. 고온로(2)의 하부는 스캔빈저(102)에 둘러싸여 있으며, 스캐빈저(102)가 냉각기의 작용을 함과 동시에 반응관(10)에서 뿜어나오는 처리가스 및 먼지를 흡수하여 배기계에 유도하고 있다. 균일 가열관(8)과 나사 및 고정금그(104) 사이에 단열재(세라믹제 등)(106)이 마련되어 방열량의 저감도를 도모하고 있다.
이상과 같이 구성된 확산장치를 사용하여 웨이퍼에 열처리를 행하는 경우의 동작을 다음에 도시한다. 작업자는 열처리조건(열처리 온도, 시간, 가스의 종류등)을 주 제어기(42)에 입력한다. 예를들면, 1000℃, 3분간 질소로 입력한다. 주 제어기(42)에서 열처리실온도 제어기(52)에 상기 조건의 신호가 전해지고, 열처리 실온도 제어기(52)에서 각 대역마다 히터 온도 조절기(46a)~(46c)에 히터설정온도를 부여한다. 중앙의 히터 영역의 히터 온도 조절기(46b)에는 열처리실 내부온도가 열처리 온도와 같게되는 설정 온도가 부여된다. 아래쪽의 히터영역(4c), (4h)의 설정온도는 고온로(2)의 아래쪽 삽입구에서의 방열이나 삽입기구(14)의 영향을 받지 않기 위하여 중앙의 히터영역(4b), (4g)에 비해서 높은 온도로 설정된다. 예를들면, 중앙의 히터영역(4b), (4g)의 설정온도를 1000℃로 하였을때, 아래쪽의 히터영역(4c), (4h)의 설정온도는 1060℃)로 설정된다. 위쪽 및 측면의 히터 영역(4a), (4d), (4e), (4f), (4i), (4j)의 설정온도는 웨이퍼 열처리가 균일하게 되는 온도가 설정된다. 예를들면, 위쪽의 히터영역(4a), (4f)의 설정온도는 990℃, 측면의 히터영역(4d), (4e), (4i), (4j)의 설정온도는 980℃로 설정된다. 이 예로써 위쪽 및 측면의 히터설정온도를 중앙보다 약간 낮게한 이유는 웨이퍼 2매를 동시에 열처리실에 삽입한 경우, 웨이퍼 주변부는 측면에서의 가열에 의해서 웨이퍼 중앙부보다도 많이 가열되므로, 웨이퍼를 균일하게 열처리하기 위해서는 열처리실 내부온도가 정상으로 된 후에 웨이퍼 공급을 개시한다. 또한, 웨이퍼 공급이 시작될때가지 삽입기구(14)는 열처리실내에 수납되어 예열되어 있다.
작업자가 웨이퍼를 넣은 카세트(66)과 빈 카세트(78)을 장치에 세트하고, 제어판(94)에서 주 제어기(42)에 웨이퍼 열처리 개시신호를 입력하였을 때 주 제어기(42)에서의 신호가 인출기구(68)에 작용하여 웨이퍼를 1매마다 카세트(66)에서 인출하고, 로드기구(70)에 2매의 웨이퍼를 운반한다. 다음에 주 제어기(42)에서의 신호가 상하 구동기구(40)에 전해져 삽입기구(14)가 고온로(2)의 아래쪽으로 이동하고, 로드기구(14)에 탑재한다. 웨이퍼를 탑재하는 것을 끝낸 로드기구(70)은 선단부가 열려 원위치로 이동하고, 다음의 웨이퍼가 인출기구(68)에 의해서 탑재되어 대기한다.
삽입기구(14)는 위쪽으로 이동하여 웨이퍼(16)을 열처리실 내부에 수납한다(제2도). 삽입시에 웨이퍼면내에 온도분포가 발생하는 것을 방지하기 위하여 삽입속도는, 예를들면 150mm/s 이상으로 고속으로 한다. 삽입시에 웨이퍼에 따라서 외부공기가 열처리실내에 들어오는 것을 방지하기 위하여 주 제어기(42)에서의 신호가 제어 밸브(60), (64)에 작용하여 가스의 유량이 크게 된다. 웨이퍼(16)은 열처리실내에 수납되어 소정시간 가열되지만, 열처리중의 가스유량이 작더라도 충분하기 때문에 주 제어기(42)에서의 신호가 제어 밸브(60), (64)에 작용하여 소유량으로 된다. 또한 열처리조건에 의해서 삽입 인출할때와 열처리할때에서 가스의 종류를 변경시키는 경우도 있다. 예를들면, 삽입, 인출시에 질소가스, 열처리시에 산소가스인 경우도 있다.
열처리가 종료하였으면, 주 제어기의 신호에 의해서 삽입기구(14)가 아래쪽으로 이동하여 웨이퍼를 고온로 아래쪽의 냉각기(20)사이로 이동한다(제3도). 냉각기(20)사이에 웨이퍼를 소정시간 냉각한 후, 삽입기구(14)가 더욱 아래쪽으로 이동하여 웨이퍼를 인출한다.
기구를 아래쪽으로 이동할때에 웨이퍼면내에 온도분포가 발생하는 것을 방지하기 위하여, 이동속도는 삽입속도와 같은 정도로 고속으로 한다. 인출시에 외부공기가 열처리실내에 들어오는 것을 방지하기 위하여 가스의 유량은 작은 상태 그대로 한다(상세한 설명은 다음에 설명한다). 고온로 바로 아래로 인출된 웨이퍼는 삽입기구위에서 소정시간 냉각된 후 언로드 기구(72)에 의해서 떼어져서 수납기구(76)에 의해서 냉각보트(74)로 운반되어 냉각된다. 그 동안에 로드기구(70)에 의해서 새로운 웨이퍼가 삽입기구(14)에 탑재되어 상기 동작이 반복된다. 냉각보트(74)에서 충분히 냉각된 웨이퍼는 다시 수납기구(76)에 의해서 카세트(78)에 수납된다.
냉각시간은 삽입기구(14)가 언로드, 로드시에 너무 지나치게 냉각되는 것을 방지하기 위하여 냉각기(20)사이에서의 웨이퍼의 냉각시간을, 예를들면 10초, 고온로 바로 아래에서의 삽입기구위의 웨이퍼의 냉각시간을, 예를들면 10초, 언로드와 로드시간을, 예를들면 20초로 한다.
새로운 웨이퍼가 삽입될때마다 제 9 도에 도시한 흐름도에 따라서 중앙의 히터영역의 설정온도가 변경되어 웨이퍼의 열처리가 균일하게 행하여진다. 웨이퍼 공급이 중단된 경우에는 로드기구에 새로운 웨이퍼가 공급되지 않은 것을 센서(도시하지 않음)에서 감지하여 웨이퍼를 탑재하지 않은 상태로 삽입기구가 열처리실내로 수납되어 대기한다.
제 9 도에 도시한 흐름도에 따라서 히터의 설정온도의 제어가 행하여졌을 때의 삽입횟수마다 실효 열처리온도와 중앙영역의 히터설정온도 H1의 변화의 실험결과를 제15 도에 도시한다. 실효 열처리 온도라함은 웨이퍼 온도의 과도 변화를 측정하여(측정기로써 다음에 기술하는 방사온도계를 사용), 실리콘 기판중을 불순물(제 15 도에서는 비소)이 확산하는 속도에 중량을 가해서 웨이퍼 온도를 적분하고, 가열시간에서의 평균 웨이퍼 온도를 구한 것이다. 참고로써, 히터 설정온도의 제어를 행하지 않고 일정하게 하였을때의 실효 열처리 온도의 변화도 제 15 도에서 점선으로 표시한다. 히터 설정온도를 일정하게 하였을때의 실효 열처리 온도의 변화도 제 15 도에서 점선으로 표시한다. 히터 설정온도를 일정하게 하는 웨이퍼 삽입 횟수마다 열처리실 내부 온도가 저하하여 웨이퍼의 실효 열처리 온도가 저하하지만, 히터 설정온도를 제어하는 것에 의해 웨이퍼의 실효 열처리 온도는 삽입 횟수마다 대략 일정하게 유지된다.
제 16 도는 열처리실 내부온도 W와 웨이퍼온도 U의 시간변화에 대해서 실험 결과를 나타낸다. 열처리실 온도는 저온의 웨이퍼가 삽입되었을때에 일단 하강하고 서서히 높게 된다. 웨이퍼 온도는 3분 정도의 가열에서는 정상으로 되지 않은 것을 알 수 있다.
제 17 도에 웨이퍼의 냉각 특성의 실험결과를 나타낸다. 열전자쌍을 웨이퍼에 부착하여 측정한 것이다. 반응관의 하부의 냉각영역에서 약 10초 냉각하는 것에 의해 웨이퍼는 약 700℃로 되고, 냉각보트에서 약 3분 냉각하는 것에 의해 웨이퍼는 약 100℃로 된다.
본 실시예에서는 평판형의 냉각기(20)에 2매의 웨이퍼의 각각의 한쪽면을 마주보게 하였기 때문에 2매의 웨이퍼를 동일 속도에서 급속히 냉각할 수 있다. 또 고온로(2)의 화로의 입구폭이 작기 때문에 고온로 내부의 고온공간에서 외부로의 방열량을 작게할 수 있다.
삽입기구(14)는 고온로(2)를 출입시키는 것에 의해서 온도변동하지만, 선단부(26)이나 지지기둥(28)이 얇은 구조이기 때문에 그 열용량이 가열중의 웨이퍼 온도분포에 미치는 영향은 작다.
2매의 웨이퍼(16) 및 원판(22)가 각각 틈을 가지고 나란히 고온로(2)에 삽입된 경우, 2매의 웨이퍼(16)의 바깥쪽의 면은 대략 동일하게 가열되지만, 안쪽의 면은 틈에서의 가열에 있어서 바깥둘레부만큼 크게 된다. 그런데 원판(22)의 바깥둘레부(34)가 두껍게 되어 있으므로 원판(22)의 중앙부(36)보다도 열용량이 크게 온도 변화해버린다. 그 결과, 웨이퍼(16)의 바깥둘레부는 틈에서의 가열과 원판의 열용량의 양쪽의 작용에 의해서 웨이퍼 중앙부와 거의 동일한 온도 상승으로 되어 웨이퍼면내가 균일한 온도로 된다. 또, 원판(22)의 하부에 두께부를 마련하지 않는 이유는 하부에 삽입기구의 선단부(26)과 지지기둥(28)이 있기 때문에 그들이 두께부와 동일한 작용을 하기 때문이다.
수치 계산에 의해 실온의 웨이퍼를 500℃의 삽입기구에 탑재하여 고온로에 삽입하였때의 과도 온도 변화를 계산하였다. 상기 대표적인 예의 치수의 원판을 사이에 둔 경우의 웨이퍼내 온도차(바깥둘레부와 중앙부의 차)와 원판이 없는 경우의 웨이퍼면내 온도차의 계산 결과를 제 18 도에 도시한다. 가로축은 과도시에 웨이퍼 바깥둘레부의 온도이다. 계산에서는 원판을 불투명한 석영 유리로 하고, 고온로를 1000℃의 균일한 온도로하여 웨이퍼 삽입기구의 지지기둥의 영향을 무시하는 등의 비슷한 경우를 행하였다. 원판에 의해 과도시의 웨이퍼면내 온도차를 대략 절반정도 줄일 수 있는 것을 알 수 있다.
원판(22)의 중앙부(36)과 바깥둘레부(34)의 두께의 비를 더욱 크게 하면, 웨이퍼 온도가 700℃ 정도에서의 최대 온도차는 작게 되지만, 1000℃ 근방에서의 온도차는 크게 된다.
본 실시예에서는 반응관(10)의 아래쪽은 항상 개방하고 있지만, 내부의 가스가 고온에서 아래쪽으로 유출되고 있으므로 정상상태에서의 외부공기가 반응관(10)의 내부에 대류나 확산으로 침입하는 일은 없다.
제 19 도는 가스유량과 웨이퍼 삽입, 인출시의 외부공기 혼입량의 관계를 나타낸 실험 결과이다. 가스로써 고순도 질소가스를 사용하여 열처리실 중앙의 산소농도를 측정하였다. 열처리실 온도를 1000℃로 하고, 삽입, 인출시의 웨이퍼 이동속도를 200mm/s로 하고, 삽입시의 산소농도의 순간 최대 증가량을 실선으로 표시하고, 인출시의 순간 최대 증가량을 점선으로 표시하였다.
가스유량을 20N1/분 이상으로 하면 삽입시의 외부공기 혼입량을 작게할 수 있지만, 한편 가스 유량을 20N1/분 이하로 하면 인출시의 외부공기 혼입량을 작게 할 수 있다. 삽입시에서 가스유량이 클수록 외부공기 혼입량이 작게 되는 이유는, 웨이퍼에 따라서 들어오는 외부공기를 불어 날려버리는 작용이 크게 되기 때문이다. 또, 인출시에서 가스유량이 클수록 외부공기 혼입량이 크게 되는 것은 다음과 같은 이유이다. 가스유량이 클수록 가스의 예열이 불충분하게 되어 열처리실에 유입되는 가스온도가 열처리실 온도까지 예열되지 않고 열처리실내에 대류가 생긴다. 그 상태에서 웨이퍼를 인출하면, 열처리실에서 웨이퍼 및 삽입기구가 빠져나온 체적분만큼 회로에서 외부공기를 흡입하지만, 그것이 열처리실내의 대류에 열처리실의 구석까지 들어가버리기 때문이다.
이상의 것에서 삽입시의 가스유량을 크게 하고, 열처리도중 및 인출시의 가스유량을 작게하는 것에 의해 외부 공기 흡입량을 작게할 수 있다. 제19도의 예에서는 가스유량을 20N1/분으로 일정하게 하고 있어도 항상 외부공기 혼입량을 작게할 수 있지만, 열처리시 및 인출시의 가스유량을 더욱 작게하는 것에 의해 가스 소비량을 저감할 수 있는 효과가 있다. 열처리실 온도가 제 19 도의 예보다 저온인 경우에는 웨이퍼 인출시의 외부공기 혼입량이 증가하는 한계가 제 19 도보다 작은 가스유량으로 이동하기 때문에(제 19 도의 점선이 좌로이동), 삽입시와 인출시의 가스유량을 일정하게 한 상태에서는 외부공기 혼입량을 작게할 수 없다.
제 20 도는 웨이퍼 삽입시의 웨이퍼 이동속도와 외부공기 혼입량의 관계를 나타낸 것으로, 웨이퍼 이동속도를 150mm/s 이하로 하면 삽입시의 외부공기 혼입량이 크게 된다.
이상의 설명에서는 히터 온도 조절기(46a), (46b), (46c)로써 PID 제어를 생각할 수 있지만, 피드 포워드제어등이어도 좋다.
또 처리가스의 유량을 대소로 전환하는 데 2개의 제어밸브(60), (64)의 ON, OFF제어로 하였지만, 1개의 유량전환기로 하여도 좋다.
또, 삽입 횟수마다 열처리실 온도를 측정하고, 그때마다 열처실 온도 제어기(52)에서 연산 처리하여 히터 온도 조절기에 출력하고 있지만, 사전에 모든 조건에 대해서 실험을 행하여 시간에 대한 히터 온도 조절기 설정온도의 데이터를 취득하여 주 제어기에 그 데이터 베이스를 기억하고, 동작 상태에 따라서 연산처리하는 일없이 히터 설정 온도를 출력할 수 있다. 그 경우에도 실험시에는 본 발명을 이용하게 된다.
주 제어기에 사전에 W1과 W2의 데이터를 입력해두는 일없이 연속 삽입을 행할때마다 정상 상태의 열처리실 내부온도 W1과 2번째의 삽입직전의 열처리실 내부온도 W2를 측정하고, 3번째이후의 삽입시에 히터의 설정온도의 연산처리를 사용하여도 좋다.
또, 가스 공급관(54)와는 다르게 반응관에 제 2 의 가스공급관을 마련하여 웨이퍼 삽입시에 제 2 의 가스 공급관에서 대유량 가스를 흐르게 하여도 좋다.
또, 열처리실 내부온도 센서(50)을 여러개로하여 열처리실 내부온도의 제어를 극히 미세하게 하면 균일성이 더욱 좋게 된다.
상기 실시예의 경우, 원판(22)와 지지기둥(28)을 분리할 수 있기 때문에 보수가 용이하다. 그러나 원판(22)와 지지기둥(28)이 일체로 되어 있어도 좋다.
또, 웨이퍼 직경과 원판 직경이 같기 때문에 고온로의 크기를 웨이퍼 하나만일 경우와 거의 같게 할 수 있다는 이점이 있다. 그러나, 원판의 바깥지름을 웨이퍼 직경보다 약간 크게 하여도 좋다. 이 경우에서도 원판의 두께부(34)의 안지름은 웨이퍼 직경보다 약간 작게한다.
상기 실시예에서는 냉각기(20)을 사용하고 있지만, 냉각기 없이 외부공간에 직접 방사 냉각시켜도 된다.
또 제 21 도에 도시한 바와 같이 반응관(10)의 하부(18)에 가스 공급관(54)를 조밀하게 배합해서 처리가스에 의해서 냉각영역을 형성함과 동시에 처리 가스의 예열을 행하는 것은 경제적이다.
또, 제 22 도에 도시한 바와같이 고온로 하부에 가스송출구(108)을 마련하여 반응관(10)의 하부(18)에 냉각 가스를 내뿜어서 냉각하여도 좋다.
또, 열처리후 웨이퍼를 반응관(10)의 하부(18)에서 냉각할 때 삽입기구(14)에서 다른 냉각기구(도시하지 않음)에 웨이퍼를 이동하여 삽입기구(14)는 다음의 웨이퍼를 탑재하여 고온로(2)의 내부에 삽입하는 것에 의해 열처리의 주기를 짧게하여 생산성을 높일 수 있다.
또, 반응관의 하부를 연장하는 일없이 반응관과는 다른 구조물로써 냉각영역을 외부공기와 차단시켜도 효과는 동일하다.
또, 고온로 내부에 2개이상의 온도 영역을 형성하고, 열처리전에 웨이퍼를 예열하는 방식으로 하여도 좋다. 그 경우, 가스대류의 현상 때문에 고온의 영역만큼 위쪽에 형성하는 것이 좋다.
또, 고온로의 내부에서 열처리중의 웨이퍼를 회전하면, 더욱 균일하게 가열하는 것이 가능하게 된다. 그때, 웨이퍼를 원판에 부착하고, 웨이퍼를 원판과 함께 회전하여도 좋다. 또 2 매의 반도체웨이퍼를 밀착하여 동시에 열처리하여도 좋다. 그 경우, 웨이퍼사이에 원판 등을 사이에 둘 필요는 없지만, 웨이퍼를 밀착하고 약간의 사이를 두는 구조가 필요하게 된다.
또, 고온로, 웨이퍼, 기구 전부를 크게 경사(예를들면 45도)시켜도 좋다.
본 발명의 다른 실시예에서 열처리 실온도 제어기(52)의 내부의 연산처리의 흐름도를 제23도에 도시한다. 본 예에서는, ⑧ 연속삽입의 2번째 이후부터 웨이퍼 삽입직전의 열처리 내부온도 W1에 가깝게 되도록 중앙영역의 히터 설정온도를 수정하는 것이다.
본 발명의 다른 실시예의 확산장치의 고온로(2)의 종단면도와 제어계를 제24도에 도시한다. 균일 가열관(8)과 반응관(10) 사이에서 웨이퍼 삽입 위치에 프리즘(110) (석영 유리제 등)이 삽입되어 있으며, 프리즘(110)의 바로 아래에서 고온로의 외부에 미러(112)가 마련되고, 또 방사 온도계(114)가 마련되어 있다. 웨이퍼(16)에서 사출되는 방사 에너지는 프리즘(110), 미러(11)에 의해서 방사온도계(114)까지 유도되어 열처리중의 웨이퍼 온도를 측정할 수 있다. 방사온도계(114)의 웨이퍼 온도 데이터는 웨이퍼 열처리 제어기(116)에 보내진다. 웨이퍼 열처리 제어기(116)의 내부에서 다음에 기술하는 연산 처리를 행하고, 각 히터온도 조절기 (46a), (46b), (46c)에 대하여 설정온도를 출력한다.
제 25 도에 웨이퍼 열처리 제어기(116)의 내부의 연산처리의 흐름도를 도시한다. 본 도면에서는 ⑤ 연속삽입의 2번째 이후부터 앞서의 웨이퍼 인출직전의 웨이퍼 온도 U1-1을 첫 번째 인출직전의 값 U₁에 가깝게 되도록 중앙영역의 히터 설정온도를 수정하는 것이다. 본 실시예에 의하면, 웨이퍼 온도를 직접 측정하여 히터온도를 제어하기 때문에 웨이퍼 열처리를 정밀도 좋게 균일하게 행할 수가 있다.
본 발명의 다른 실시예의 웨이퍼 열처리 제어기(116)의 내부의 연산처리의 흐름도를 제 26 도에 도시한다. 본 도면에서는, ② 웨이퍼를 삽입하고 나서, ④ 방사온도계(114)에 의해 연속적으로 웨이퍼 온도 U₁를 측정하고, ⑤ 열처리량 X의 계산을 행하여, ⑥ 목표 열처리 Xe에 도달하면, ⑦ 주 제어기(42)에 웨이퍼 인출을 지시하는 것이다. 제 26 도에서는 열처리량 X의 계산식으로써 비소 원자가 실리콘 웨이퍼내에서 확산하는 거리의 계산식의 예를 나타냈지만, 열처리 조건에 따라서 계산식을 변경시키는 것이 바람직하다. 전체 히터 모두 삽입 횟수마다 히터 설정온도는 변화시키지 않는다. 본 실시예에 의하면, 열처리실 온도가 변동하여도 웨이퍼 열처리를 균일하게 할 수 있다.
본 발명의 다른 실시예의 웨이퍼 삽입기구의 웨이퍼 장착 부근의 종단면도를 제27~제 31 도에 도시한다. 제 27 도는 원판(22)의 하부에도 두께부(34)를 마련한 것이다. 제 28 도는 링판(118)을 2매의 웨이퍼(16)의 사이에 둔 것이다. 삽입시의 웨이퍼면내 온도 분포를 저감하기 위해서는 링판(118)의 두께를 웨이퍼(16)의 두께와 같은 정도로 하는 것이 좋다.
제 29 도는 2매의 웨이퍼(160사이에 둔 원판(22)를 3층 적층 구조로 하고, 링판(118)의 양측에 원판(22)를 붙인 것이다.
제 30 도는 2매의 웨이퍼(16)사이에 둔 원판(22)를 2층 적층 구조로 하고, 링판(118)과 원판(22)를 겹친 것이다.
제 31 도는 2매의 웨이퍼(16)사이에 둔 원판(22)의 두께를 반경 방향으로 연속적으로 변화시킨 것이다.
본 발명의 다른 실시예의 웨이퍼 삽입기구의 외관도를 제 32 도에 도시한다. 2매의 웨이퍼의 바깥둘레에 웨이퍼 직경보다도 약간 큰 링(120)을 가지며, 그 안쪽에 홈(24)를 갖는 원형봉과 얇은 판으로 형성된 선단부(26)을 갖는다. 링(120)의 안쪽과 웨이퍼의 바깥지름의 간격은 10mm 이하로 하는 것이 좋고, 링(120)의 폭은 웨이퍼 간격의 3배 정도가 좋다. 본 실시예에 의하면, 웨이퍼 2매를 탑재하여 삽입기구를 고온로(2)의 내부에 삽입할때에 2매의 웨이퍼의 틈에서 2매의 웨이퍼의 안쪽으로 방사되는 열을 링(120)이 차단하므로, 2매의 웨이퍼 모두 바깥쪽의 표면만의 가열로 균일하게 가열된다.
링(120)의 표면을 샌드블래스팅(sand blasting) 가공등으로 거칠게 하거나 코팅등으로 불투명하게 하면 더욱 효과가 크다.
본 발명의 다른 실시예의 웨이퍼 삽입기구의 웨이퍼 장착부분의 종단면도를 제33~제35도에 도시한다. 제 33 도는 링(120)을 원호형 단면으로써 웨이퍼(16)의 바깥둘레에 마련한 것이다.
제 34 도는 링(120)을 V자형 단면으로써 웨이퍼(16)의 바깥둘레에 마련한 것이다. 본 실시예에서는 링(120)이 바깥쪽만 개방하고 있어 웨이퍼 로드, 언로드가 용이하다.
제 35 도는 링(120)을 자형 단면으로써 웨이퍼(16)의 바깥둘레에 마련한 것이다.
본 발명의 다른 실시예의 웨이퍼 삽입기구의 외관도를 제 36 도에, 제 36 도의 종단면도를 제 37 도에 도시한다. 2매의 웨이퍼(16)의 바깥둘레부 안쪽에 웨이퍼 직경과 거의 동일한 링(120)을 마련한다. 링(120)의 단면은 원형이며, 그 직경은 웨이퍼 간격보다도 약간 작다. 제 12 도에 도시한 로드기구, 언로드기구에 의해서 웨이퍼를 탑재되도록 하므로, 웨이퍼 하부에는 링을 마련하지 않는다.
제 38 도는 링(120)의 단면이 직사각형으로 된 것이다. 링(120)의 안지름이 웨이퍼 직경과 거의 동일하다.
또한, 제 39 도, 제 40 도에 도시한 바와같이 원판에 링 또는 링과 링을 중복시켜서 웨이퍼에 대한 열전도를 보다 미세하게 할 수도 있다.
본 발명의 다른 실시예의 고온로의 종단면도를 제 41 도에 도시한다. 세로형의 원통형의 고온로(2)의 안쪽에 원통형의 균일 가열관(8)과 사각형의 파이프형의 반응관(10)이 마련되어 있다. 반응관(10)의 하부(18)은 고온로(2)에 의해 아래쪽으로 연장하고 있으며, 냉각기(20)에 둘러싸여져 있다. 반응관(10)과 균일 가열관(8)사이에서 고온로(2)의 하부에 방사 방지판(122)가 마련되어 있다. 본 실시예에서는 고온로(2)가 원통형이기 때문에 제작이 용이하고 강도가 크다. 방사 방지판(122)에 의해 고온로(2)의 내부에 고온공간에서 냉각기(20) 및 외부로의 방열량을 작게 할 수 있다.
본 발명의 다른 실시예의 확산장치의 고온로의 종단면도를 제 42 도에 도시한다. 하나의 고온로(2)의 내부에 2개의 가열공간이 있으며, 각각 평행 평판형의 히터 (4a), (4b), (4c)로 가열되어 있다. 각 가열 공간에 2매의 웨이퍼(16)이 삽입된다. 상하 반송대(30)은 공통으로 하고 있다. 본 실시예에 의하면 동시에 4매의 웨이퍼를 열처리할 수 있다.
본 실시예의 다른 실시예의 고온로의 종단면도를 제 43 도에 도시한다. 1매의 평판형의 히터 (4a), (4b), (4c)에 의해 1매의 웨이퍼(16)을 가열하는 고온로(2)가 3대 연결된 것이다. 상하 반송대(30)은 공통으로 하고 있다. 본 실시예에 의하면, 동시에 3매의 웨이퍼를 열처리 할 수 있다.
본 발명의 다른 실시예의 고온로의 종단면도를 제 44 도에 도시한다. 고온로(2)는 평행 평판형의 히터(4a), (4b), (4c)에 의해 형성된다. 3매의 웨이퍼(16)이 삽입된다. 다른 하나의 삽입기구는 히터외부로 인출되어 웨이퍼의 탑재의 전환을 행하고 있다. 열처리가 종료한 1매의 웨이퍼를 히터 외부에 인출함과 동시에 새로운 1매의 웨이퍼가 히터 내부에 삽입된다. 본 실시예에 의하면, 고온로(2)를 유효하게 이용할 수가 있어 시스템 효율을 향상시킬 수 있다.
이들 실시예의 작용 및 효과를 요약하면 다음과 같다.
먼저 작용으로써는, (1) 고온로의 내부에서 각 웨이퍼의 적어도 한쪽면이 고온로의 내벽에 대향하여 고온로의 히터가 웨이퍼의 면방향으로 여러 구역으로 분할되어 발열량이 제어되기 때문에, 과도시를 포함해서 웨이퍼 전면을 균일하게 열처리할 수 있다. 또 2매의 웨이퍼가 같은 조건에서 가열되므로 2매의 웨이퍼의 가열이 동일하게 된다. 웨이퍼의 삽입, 인출이 고속이기 때문에 먼저 삽입되는 부분과 나중에 삽입되는 부분과의 가열시간차가 거의 생기지 않는다. (2) 반응관의 하부의 냉각영역에서 열처리후의 고온의 웨이퍼를 냉각하는 것에 의해 반응관내에 들어간 상태에서 웨이퍼를 냉각하는 것에 의해 반응관내에 들어간 상태에서 웨이퍼를 냉각할 수 있어 고온의 웨이퍼를 외부 공기에 접촉시키는 일은 없다. 또, 냉각영역에서 2매의 웨이퍼는 모두 그 한쪽면이 냉각기 또는 외부에 면하고 있기 때문에 냉각속도가 동일하고 동시에 신속하다. (3) 2매를 어느 정도의 간격을 두고 있기 때문에 웨이퍼를 삽입기구에 탑재하거나 떼어내는 것이 용이하다. 웨이퍼는 작은 홈으로 유지되어 있기 때문에 웨이퍼와 기구와의 접촉면적이 작고, 기구 접촉으로 인해 생기는 웨이퍼의 불균일한 열처리부분을 작게할 수 있다. 2매의 웨이퍼는 어느정도의 간격을 두고 있기 때문에 그 상태에서는 웨이퍼 틈에서 안쪽으로의 가열은 웨이퍼 주변만큼 크게 되지만, 웨이퍼사이에 주변이 두꺼운 원판을 사이에 두는 것에 의해 원판의 열용량에 의해서 웨이퍼 주변부와 중심부와의 온도 상승속도를 같게 할 수 있다. (4) 웨이퍼 삽입 횟수마다 열처리실 내부 온도를 일정하게 하도록 히터 발열부 온도를 제어하는 것에 의해 웨이퍼 삽입횟수마다 열처리실 내부 온도를 일정하게 하도록 히터 발열부 온도를 제어하는 것에 의해 웨이퍼 삽입횟수마다 웨이퍼 열처리를 균일하게 할 수 있다. 또 웨이퍼 공급을 중단 하였을때에는 히터 발열부 온도를 소정값으로 되돌리는 것에 의해서 열처리실 내부온도를 정상값으로 되돌릴 수 있다. (5) 웨이퍼 삽입시의 가스 공급량을 크게 하는 것에 의해 웨이퍼에 따라서 들어온 외부공기를 불어 날리기 때문에 공기 혼입량을 작게 할 수 있다.
한편, 웨이퍼를 인출할때의 가스 공급량을 작게 하는 것에 의해 열처리실 내부의 대류를 방지할 수 있어 외부 공기 혼입량을 작게할 수 있다.
또, 본 발명은 다음과 같은 효과를 얻을 수 있다. 즉(1) 고온로를 사용해서 2매의 웨이퍼를 동시에 열처리할 때 2매의 웨이퍼가 같게 가열되어 웨이퍼면 방향으로 히터 발열량을 제어하기 때문에, 과도시에도 포함해서 웨이퍼면내를 균일한 온도로 유지할 수 있어 균일하게 단시간에서의 열처리가 가능하게 된다. (2) 열처리를 종료한 고온 웨이퍼를 외부공기에 직접 접촉시키는 일이없어 열처리의 효율이 향상한다. (3) 2매의 웨이퍼를 탑재하거나 떼어내기가 용이하게 된다. 도, 반경방향으로 두께가 다른 원판을 웨이퍼사이에 두는 것에 의해, 과도시의 웨이퍼면내 온도 분포가 저감하고 열응력 결함이 발생하는 일이없어 균일하게 단시간에서 열처리가 가능하게 된다. 제18도에 도시한 예에서는 삽입시의 웨이퍼면내 온도차를 약 1/2로 저감할수 있어 열처리의 효율이 향상한다. (4) 웨이퍼 삽입 횟수마다 웨이퍼 열처리량을 균일하게할 수 있다. 예를들면, 제 15 도에 도시한 예에서는 본 발명을 사용하지 않아 10번째의 삽입까지 실효 열처리 온도가 4℃ 저하하지만, 본 실시예를 사용하는 것에 의해 온도의 변화를 2℃ 이내로 할 수 있다. (5) 삽입, 인출시를 포함해서 항상외부 공기 혼입량을 작게할 수 있으므로, 반응관내에 먼지를 포함한 산소가 들어오는 일이없이 열처리의 효울이 향상한다.
본 발명에 의하면, 반도체웨이퍼를 고속으로 단시간에 균일하게 가열하는 것이 가능하며, 외부공기를 접촉시키는 일없이 급속한 균일한 냉각이 가능하게 되므로, 고품질로 고효율인 반도체의 열처리 창치를 얻을 수가 있다.

Claims (21)

  1. 고온로(2) 내부에 마련한 히터(4a~4j)에 의해서 노내에 가열공간을 형성하고, 이 가열공간에 반도체웨이퍼(16)을 수납해서 열처리하는 반도체웨이퍼의 열처리장치에 있어서, 적어도 1개 마련된 상기 가열공간, 상기 가열공간의 아래쪽에 마련한 상기 반도체웨이퍼의 삽입 인출구, 상기 가열공간에 수납된 반도체웨이퍼의 각부에 대응해서 여러개의 발열부로 분할된 상기 히터와 상기 반도체웨이퍼를 1매 또는 2매 동시에 지지해서 상기 가열공간에 도입해서 인출하는 지지수단(14)를 포함하는 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  2. 특허청구의 범위 제 1 항에 있어서, 상기 히터(4a~4j)는 평판형상이며, 상기 히터가 상기 반도체웨이퍼의 양측에 웨이퍼표면과 평행하게 마련되고, 상기 히터가 면방향으로 여러개로 분할되어 있는 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  3. 특허청구의 범위 제 1 항 또는 제 2 항에 있어서, 상기 가열공간에 마련된 반응관(10)의 하부(18)을 상기 고온로(2)의 아래쪽으로 돌출시키고, 상기 하부에 반도체웨이퍼의 삽입인출구가 마련되어 있는 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  4. 특허청구의 범위 제 1 항 또는 제 2 항에 있어서, 상기 가열공간에 마련된 반응관(10)의 상부에 예열된 처리가스가 공급되고, 상기 처리가스가 상기 반응관내를 아래쪽으로 유동하는 구조인 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  5. 특허청구의 범위 제 1 항 또는 제 2 항에 있어서, 상기 가열공간에 마련된 반응관(10)의 아래쪽에는 반도체웨이퍼를 외부공기에 접촉시키지 않은 상태에서 냉각하는 냉각영역이 마련되어 있는 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  6. 특허청구의 범위 제 1 항에 있어서, 상기 지지수단(14)는 반도체웨이퍼(16)을 연직방향으로 평행하게 지지하는 것인 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  7. 특허청구의 범위 제 6 항에 있어서, 상기 지지수단(14)는 반도체웨이퍼(16)에 인접하는 위치에 판재(22)를 마련한 것인 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  8. 특허청구의 범위 제 1 항에 있어서, 상기 지지수단은 상기 반도체웨이퍼를 지지하는 지지부(26), 중공형상의 엷은 두께구조로 상기 가열공간에 삽입되지 않는 부분에 구멍을 뚫어 마련하고, 한쪽끝측에 상기 지지부를 갖는 지지기둥(28)을 갖고 있는 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  9. 특허청구의 범위 제 7 항에 있어서, 상기 판재(22)는 상기 반도체웨이퍼의 바깥둘레측에 두께가 두꺼운 부분을 갖는 원판형상체인 것을 특징으로 하는 반도체웨이퍼 열처리장치.
  10. 특허청구의 범위 제 1 항에 있어서, 상기 지지수단(14)는 상기 반도체웨이퍼(16)의 바깥둘레에 간극을 두고 마련한 링(120)인 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  11. 특허청구의 범위 제 10 항에 있어서, 상기 링(120)은 띠판을 둥굴게 한 구조이며, 띠판의 폭이 상기 반도체웨이퍼의 간극보다 큰 것인 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  12. 고온로(2)내부에 마련한 히터(4a~4j)에 의해서 노내에 가열공간을 형성하고, 이 가열공간에 반도체웨이퍼(16)을 수납해서 열처리하는 반도체웨이퍼의 열처리장치에 있어서, 상기 히터의 발열부의 온도를 검출하는 제1의 온도검출수단(44a~44c), 상기 제1의 온도검출수단의 출력을 소정값으로 제어하는 히터발열제어수단(46a~46c,48a~48c), 상기 가열공간온도를 검출하는 제2의 온도검출수단(50), 상기 제2의 온도검출수단의 출력에 따라서 상기 제어값을 보정하는 보정수단(52)를 구비한 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  13. 특허청구의 범위 제 12 항에 있어서, 상기 히터발열제어수단은 상기 제1의 온도검출수단의 검출값에 따라서 상기 히터발열부의 온도를 설정값으로 조절하는 PID 사이리스터제어기(46a~46c)와 상기 PID사이 리스터제어기의 제어값에 따라서 히터를 발열시키는 히터전원(48a~48c)를 구비한 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  14. 고온로(2)내부에 마련한 히터(4a~4j)에 의해서 노내에 가열공간을 형성하고, 이 가열공간에 반도체웨이퍼(16)을 수납해서 열처리하는 반도체웨이퍼의 열처리장치에 있어서, 상기 히터의 발열부의 온도를 검출하는 제1의 온도검출수단(44a~44c),상기 제1의 온도검출수단의 출력을 소정값으로 제어하는 히터발열제어수단(46a~46c,48a~48c),상기 반도체웨이퍼의 표면온도를 검출하는 표면온도검출수단(114), 상기 제어수단의 출력을 상기 반도체웨이퍼의 표면온도검출수단의 출력에 따라서 보정하는 보정수단(116)을 구비한 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  15. 특허청구의 범위 제 14 항에 있어서, 고온로(2)의 외부에 마련한 비접촉식 방사온도계(114), 가열공간 내의 반도체웨이퍼에서 사출되는 방사열을 상기 방사온도계로 유도하는 프리즘(110) 및 미러(112)를 마련한 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  16. 고온로(2)내부에 마련한 히터(4a~4j)에 의해서 노내에 가열공간을 형성하고, 이 가열공간에 반도체웨이퍼(16)을 수납해서 열처리하는 반도체웨이퍼의 열처리장치에 있어서, 상기 반도체웨이퍼를 연속적으로 상기 가열공간에 공급하고, 이 가열공간에서 인출하는 이동수단(14), 상기 가열공간의 온도를 측정하는 측정수단(50), 상기 이동수단에 의해 상기 반도체웨이퍼가 상기 가열공간에 공급되는 공급횟수마다에서 상기 가열공간에 수납되기 전에 상기 측정수단에 의해 측정하는 명령을 발하는 온도제어수단(42), 상기 측정수단에 의한 측정값에 따라서 상기 히터의 발열온도를 수정하는 수정수단(52)를 구비한 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  17. 고온로(2)내부에 마련한 히터(4a~4j)에 의해서 노내에 가열공간을 형성하고, 이 가열공간에 반도체웨이퍼(16)을 수납해서 열처리하는 반도체웨이퍼의 열처리장치에 있어서, 상기 웨이퍼를 연속적으로 상기 가열공간에 공급하고, 이 가열공간에서 인출하는 이동수단(14), 상기 웨이퍼의 표면온도를 측정하는 측정수단(114), 상기 이동수단에 의해 상기 반도체웨이퍼를 상기 가열공간에서 인출하기 전에 상기 측정수단에 의해 측정하는 명령을 발하는 온도제어수단(42,52), 상기 측정수단에 의한 측정값에 따라서 상기 히터의 발열온도를 수정하는 수정수단(116)을 구비한 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  18. 고온로(2) 내부에 마련한 히터(4a~4j)에 의해서 노내에 가열공간을 형성하고, 이 가열공간에 반도체웨이퍼(16)을 수납해서 열처리하는 반도체웨이퍼의 열처리장치에 있어서, 상기 반도체웨이퍼의 표면온도를 측정하는 측정수단(114), 상기 측정수단에 의한 측정값에 따라서 상기 가열공간에 웨이퍼가 공급되고 나서의 열처리량을 계산하는 계산수단(116), 상기 계산수단에 의한 계산값에 따라서 상기 웨이퍼를 상기 가열 공간에서 인출하는 이동제어수단(42)를 구비한 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  19. 특허청구의 범위 제 1 항에 있어서, 상기 반도체웨이퍼(16)의 수납부에 공급되는 처리가스의 공급량을 상기 반도체웨이퍼의 삽입시에 많게하는 가스량제어수단(60,64)를 구비한 것을 특징으로 하는 반도체웨이퍼의 열처리장치.
  20. 고온로의 내부에 마련한 히터에 의해서 노내에 소정값으로 온도관리된 가열공간을 형성하고, 이 가열공간에 반도체웨이퍼를 수납해서 열처리하고, 열처리후에 인출하는 열처리사이클을 갖는 반도체웨이퍼의 열처리방법에 있어서, 반도체웨이퍼를 가열공간으로 새롭게 공급해서 열처리할때에 반도체웨이퍼를 삽입하기 직전의 상기 가열공간의 온도를 측정하는 스텝, 상기 측정온도를 사용해서 동시에 히터의 온도제어값을 상기 소정값에 가깝게 하도록 수정하는 스텝을 포함하는 것을 특징으로 하는 반도체웨이퍼의 열처리방법.
  21. 특허청구의 범위 제 20 항에 있어서, 상기 반도체웨이퍼의 공급이 중단하였을때에는 히터의 온도제어값을 소정값으로 되돌리는 스텝을 포함하는 것을 특징으로 하는 반도체웨이퍼의 열처리방법.
KR1019880011652A 1987-09-11 1988-09-09 반도체 웨이퍼의 열처리 장치 및 열처리 방법 KR920004911B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP62226389A JPH0744159B2 (ja) 1987-09-11 1987-09-11 半導体ウエハの熱処理装置および熱処理方法
JP62-226389 1987-09-11
JP87-226389 1987-09-11
JP88-188477 1988-07-29
JP63-188477 1988-07-29
JP63188477A JPH0239525A (ja) 1988-07-29 1988-07-29 半導体熱処理装置

Publications (2)

Publication Number Publication Date
KR890005826A KR890005826A (ko) 1989-05-17
KR920004911B1 true KR920004911B1 (ko) 1992-06-22

Family

ID=26504952

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019880011652A KR920004911B1 (ko) 1987-09-11 1988-09-09 반도체 웨이퍼의 열처리 장치 및 열처리 방법

Country Status (1)

Country Link
KR (1) KR920004911B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6217663B1 (en) * 1996-06-21 2001-04-17 Kokusai Electric Co., Ltd. Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
KR890005826A (ko) 1989-05-17

Similar Documents

Publication Publication Date Title
US5001327A (en) Apparatus and method for performing heat treatment on semiconductor wafers
JP2935474B2 (ja) 平坦な基板を処理する装置及び方法
US6461439B1 (en) Apparatus for supporting a semiconductor wafer during processing
US5429498A (en) Heat treatment method and apparatus thereof
US8658951B2 (en) Heat treatment apparatus
KR101528138B1 (ko) 기판 처리 장치, 기판 지지구 및 반도체 장치의 제조 방법
JP5054275B2 (ja) 枚葉式半導体基板処理リアクタの温度制御
KR20070090117A (ko) 횡단-흐름 라이너를 갖는 열처리 시스템
TWI473191B (zh) 基板處理設備、製造半導體裝置之方法及基板處理方法
WO2005064254A1 (ja) 縦型熱処理装置及びその制御方法
US20110207339A1 (en) Heat treatment apparatus and method of manufacturing semiconductor device
US3842794A (en) Apparatus for high temperature semiconductor processing
JPH09232297A (ja) 熱処理装置
KR920004911B1 (ko) 반도체 웨이퍼의 열처리 장치 및 열처리 방법
JPH088220B2 (ja) 半導体ウェハの熱処理装置、及び熱処理方法
JP6998347B2 (ja) 基板処理装置、半導体装置の製造方法、及びプログラム
JPH0744159B2 (ja) 半導体ウエハの熱処理装置および熱処理方法
JP3916040B2 (ja) 反応管及び熱処理装置
JP2001007035A (ja) 縦型加熱装置
KR100239405B1 (ko) 반도체 제조장치
JP2728488B2 (ja) 半導体ウエハの熱処理装置
JPH0637025A (ja) 熱処理装置
JP2001006853A (ja) 縦型加熱炉用円板状ヒータ
JP2000012478A (ja) 基板熱処理装置
JP2003037109A (ja) 熱処理装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030612

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee