KR880000894B1 - 밀폐된 구조의 결함에 대한 음파 탐지기 - Google Patents

밀폐된 구조의 결함에 대한 음파 탐지기 Download PDF

Info

Publication number
KR880000894B1
KR880000894B1 KR1019810004288A KR810004288A KR880000894B1 KR 880000894 B1 KR880000894 B1 KR 880000894B1 KR 1019810004288 A KR1019810004288 A KR 1019810004288A KR 810004288 A KR810004288 A KR 810004288A KR 880000894 B1 KR880000894 B1 KR 880000894B1
Authority
KR
South Korea
Prior art keywords
generator
detector
signal
sensor
pulse
Prior art date
Application number
KR1019810004288A
Other languages
English (en)
Other versions
KR830008173A (ko
Inventor
마리니 쟝
오드나르 베르나르
Original Assignee
프라 마톰
챨스 브루넨고
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 프라 마톰, 챨스 브루넨고 filed Critical 프라 마톰
Publication of KR830008173A publication Critical patent/KR830008173A/ko
Application granted granted Critical
Publication of KR880000894B1 publication Critical patent/KR880000894B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • G01N29/0627Cathode-ray tube displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

내용 없음.

Description

밀폐된 구조의 결함에 대한 음파 탐지기
제 1a도와 제 1b도는 관의 원형부와 표시장치의 영상도.
제 2 도는 본 발명에 의한 탐지기의 실시예에 대한 단순한 다이아그램.
제 3도 제 4도는 상술된 제 2 도의 상세도.
제 5 도는 웨넬트 제어발생기의 상세도.
제 6 도는 작동의 한 실시예의 다이아그램.
제 7 도는 본 발명에 의한 탐지기의 다른 실시예의 다이아그램.
제 8 도는 제 7 도에 기술된 탐지기에 의해 얻어진 영상도.
제 9 도는 제 7 도의 상세도.
* 도면의 주요부분에 대한 부호의 설명
1, 2, 10 : 기록장치 3, 4, 5, 30, 40 : 표시장치
16 : 펄스 발생기 20 : 위상 발생기
19 : 웨넬트 제어 발생기 35 : 스케일 제어 발생기
엠.오우데나드(씨이 지이 알 회사)와 엠.마리니(프라마톰회사)의 작업으로 부터 나온 본 발명은 폐회로속의 음파에 의한 결함의 탐지기에 관한 것이다.
산업 플랜트에는 많은 도관, 파이프, 관등이 있다. 이들 요소는 보통 유체의 전달기, 열교환기 등으로서 제공한다. 그들은 보통 고온이나 압력 스트레스, 열의 큰 교환, 열원의 팽창, 밸브의 개구로 부터 녹킹 등에 예속된다. 특히 형성하는 경우는 전자현미경 하에서 감지할 수 있는 미세한 결함을 발생할 수 있다. 이들 결함은 또한 진취적인 환경에서 근무중에 증가한다. 이런 증가는 음파를 일으킨다. 그러므로 위험 경고를 제공한다. 본 발명의 목적은 산업에서 사용될 수 있는 방법으로 이들준 미시 결함의 유효한 감시를 허용하는 것이다.
부가적으로, 매우 긴 도관은 양끝에 놓인 관의 집합체에 의해 구성된다. V자형 용접비드는 예를 들면 각 접합부에서 이루어진다. 용접중, 결함이 일어난다. 즉, 용재의 함유물, 가스동공, 침투의 결핍 등이 일어난다. 이들 결함은 X선 사진술, 감사선 사진, 초음파 점검에 의한 전달때에 조사된다.
음파 감시기술은 소위 종전기술에 제안되었다. 실제로 여러 영향하에서 나타난 결함은 틈이나 결함형태이다. 그들이 일어날때 음파를 방출한다. 그들은 매우 작으므로 음파점원으로서 취급된다. 음파는 여러 형태로 여러 방향에 전파된다.
그들이 한번 음파 탐지기에 의해 수진되면, 계산기에 의해 분석된 신호를 발생하며, 후자는 주어진 위험의 트레쉬홀드가 그 현상의 완성한 표시에 초과될 때 단순경고 범위인 다소의 정확한 데이타의 수를 제공할 수 있다.
이런 계산된 시스템의 주장점중의 하나는 큰 조립체의 일정한 감시용으로 사용될 때 구성하는 비싼값이다.
본 발명의 장점은 컴퓨터의 도움없이 음파에 의한 점검에 해결책을 제공한다.
실제로, 본 발명에 의해 기록장치에 의해 표시장치에 표시된 폐회로구조에서 결함의 음파 탐지기는 음파감지기, 표시장치의 제어장치와 기록장치의 제어장치를 작동 시키는 음향신호의 도달 순서를 인 코우드 하기 위한 논리회로를 포함한다.
본 발명은 부수된 도면과 설명으로 도시된 장점을 분명히 이해할 것이다.
기술된 양호한 실시예는 점검된관 단부의 주변에 규칙적으로 위치된 세 감지기 A, B, C를 구성한다.
각 감지기 A, B, C는 압전이나 자왜 형태나 엘렉트레트 감지기 등이 될 수 있다. 가끔 0-1 MHZ 인 주파수 대역의 전기 신호속에 짝지어진 표면에 수신된 음파를 변형한다. 제 1 도에서, 점검된 관의 단부 1은 원형이다.
다른 밀폐된 형태는 또한 적합하다. Ω은 두께없이 라인에 의해 나타난 단면의 대칭 중앙을 표시한다. 세 감지기 A, B, C 는 120°로 위치된다. 축 Ω0은 극 기준축으로서 임의적으로 선정된다. 원형단면의 반경은 R이다. 결함이 점 S에 나타나면, 이것은 음파소스가 된다. 음파의 전파 모양은 관 재료가 매우 두껍지 않으면 대부분 경우에 표면파이며 역이 사실이라면 압축파이다. 이들 각 형태는 단면의 모양, 재료의 성질 및 여러 음력의 함수로서 본 단면에서 파의 전파에 대한 상호 속도 C를 가지고 있다. 이런 속도 C는 측정되며 후기에 기술된 본 발명에 의한 배렬로 교정된다.
음파 S는 감지기 S의 우측에 나타나서 반경 백터 ΩS와 은 각α을 형성한다. 이런 구조에서, 감지기 A는 먼저로 부터 음파에 의해 접촉되며 감지기 β는 둘째로 접촉된다. 도달 시간의 차이는
Figure kpo00002
이며, 여기에서 As와 Bs는 그들에 대하는 각의 함수로서 쉽게 나타난 단부의 호이다.
즉 : As=(π/3-α)R
여기에서 α은 벡터 ΩS와 Ω0사이의 각이며 R은 단면의 반경이다. 비원형이나 분석적으로 나타날 수 있는 단면을 가지고 길이(AS)는 곡선형 적분이다.
마지막으로, BS=(π/3+α)R
그로부터 :
Figure kpo00003
조절가능한 주파수, 제어가능한 초기 위상 및 조절가능한 출력전압레벨을 가진 사인파 발생기가 있다. 플레이트 3, 4의 하나나 혹은 다른것에 각각 연결되어 있고 상호관에 관해 π/2로 위상에, 동일 주파수에서 두개의 사인파 발생기를 가지고, 한원이 관례적으로 얻어진다. 원의 반경은 플레이트에 적용된 최대전압 V0에 의해 부착된다.
그러므로 시간의 함수로서 적용된다. 즉
VX1=V0coswt(플레이트 3의 쌍에서)
Vy1=V0sinwt(플레이트 4의 쌍에서)
V1는 스크린 5에 추적된 원의 반경 r을 나타낸다. 정상작동에서, 본 발명에 사용된 오 실로 스코프는 다만 음향펄스가 제 1 센서 A, B 혹은 C에 의해 수신될 때 작동한다. ‘먼저 수신된’성질의 검출은 센서 A, B 혹은 C의 위치에 대해 영상 A', B' 혹은 C'의 각 측면 π/3에서 두 비임의 배치를 산란시킨다. 제 1a도와 제 2b도에 기술된 실시예에서, 오실로스코프 상의 점 A'는 단면의 점 A에 상응한다. 비임은 제 1 센서가 도달된 A의 O'와 O"의 측면에 위치된다.
실제로, 제 1 센서가 도달된 A의 검출은 분명히 틈인 음향센서 S가 단면의 셋째에 위치되며 조직적으로 A의 각 측면에 분배된다는 것을 지시한다.
그러므로 오실로코프의 산란은 매우 밀접한 두개의 연속적인 작동을 구성한다. 즉 도달된 제 1 센서의 영상에 대한 각 측면에 두비임을 위치시키며, 여러 사인파 발생기의 출력을 가능하게 하는것 등이다.
본 발명의 뚜렷한 특성은 먼저 도달된 센서의 영상을 통해 먼저 통과하는 상호간에 반대 방향으로 회전한다.
제 2 도는 제 2 전자 비임에 관한 평판 30, 40의 두쌍을 도시한다. 이들 두쌍은 물리적으로 존재하지 않으나 두개의 분명한 비임의 평판 3, 4의 스위칭에 의해 제때에 존재한다.
시간 t의 함수로서 출력전압이 VX1=V0sin(wt+P×1)인 사인파 발생기 6은 수직 방향에 대해 평판 4의 쌍과 관련된다.
동일한 방법으로, 유사한 발생기 7은 평판 4의 쌍에 연결되며 VX2=V0sin(wt+Px2)를 수신한다.
수평 회절 평판 34와 30에 대해 발생기에 의해 제공된 Vy1=V0cos(wt + Py1)와 Vy2=-Vcos(wt + Py2)가 같다.
인자 w는 스크린 5상의 비임에 대한 충돌점의 회전율이나 맥동이다. 비임은 상호간에 반대방향으로 회전하도록 도시되었다.
본 발명의 이런 세목은 음향점원 S가 더 빠르게 주사되게 한다. r을 v1값의 함수로서 비임의 각개에 의해 기술된 원의 반경이라 하자, 제1b도는 각 배치α후 0'로 남은 비음 음향점원 S의 영상인 점 S'에 도달한다. 본점 S'는 이탈 후 시간의 끝에서 제 1 비임에 의해 도달된다. 본 비임은 속도 V로 점O'에서 점 S'까지 거리 O'S'=V
Figure kpo00004
t=r를 이동한다.
Figure kpo00005
는 이미 계산된
Figure kpo00006
T의 값으로 부터 유래될 수 있다.
감소된 영상에 가는 득분에 r/R에 가까운 환산인자를 가지고, 점의 직선속도는 비임의 절반보다 더 작다. 속도 C는 본 발명에 의해 탐지기를 교정해서 쉽게 측정될 수 있다. 센서 22-24는 수신된 신호를 성형하기 위한 수단에 의해 수반된다. 그들은 단일 신호A에 의해 제 6 도에 도시된 신호A, B 및 C를 각각 전달하는 증폭 채널 220-240에 각각 연결된다. 신호 A, B, 혹은 C의 각개는 비교기 2200-2400속에 주사되며, 이는 제 6 도의 31과 같이 직류 전압을 수신한다. 최대 전압 17과 본 발명에 의한 장치의 그라운드 18사이에 공급된 전위차계 25개에 의해 공급된 전압은 논리신호 EA, EB 및 EC가 제 6 도에 의해 도시된 A, B 혹은 C로 나온 출력으로서 얻어지게 한다.
세 신호 EA, EB 및 EC는 한편으로 도달된 제 1 센세의 검출기 26에 의해 음파에 의해 먼저 도달된 센서 A, B 혹은 C의 어느것이 도달되게 하며, 다른 한편으로 제 2 센서가 도달된 제 2 센서의 검출기 27에 의해 결정되게 하며, 이때 도달된 제 1 센서는 알려진다.
본 발명에 의한 음파 검출 탐지기의 본 단계에서, 음파원의 위치는 원단부상의 각 길이 π/3에 대해 센서와 그들 각개의 각 측면에 의해 결합된 영역에서 공지되었다. 검출기 26의 출력신호 S1A, S1B, S1C의 유일한 하나가 음향 방출중 먼저 도달된 센서 A, B 혹은 C의 어느것을 지시하기 위해 실제 레벨에 있다.
유사하게 검출기 27의 출력신호의 하나는 실제 레벨이 있다. 부가적으로, 직각축 X, Y의 시스템이 그려진 제 2 도의 스크린 5에서, 제 1 굴절장치 3, 4 및 제 2 굴절장치 30, 40 및 웨넬트 1과 웨넬트 2와 같이 두 비임을 가진 오실로스코프의 확대된 개략도에 도시되었다. 조립체 10은 제 2 도의 참고없이 나타난 축을 따라 방출된 미세한 전자 비임이 물리적으로 발생되게 한다.
수평 평판 4와 40의 쌍에 연결된 두 발생기 6과 8은 cos wt에 비례하는 전압을 전달하고, 반면에 수직평판 30과 30의 쌍에 연결된 발생기 7과 9는 Sinwt에 비례하는 전압을 전달한다. 바이아스(도시안됨)에 부가하여, 교류 전압의 각 발생기 6-9는 위상제어, 펄스제어, 출력레벨제어인 세 교류제어를 수신한다. 후자제어는 표준 오실로스코스의 각 굴절단자에 위치된 조정용 이득 증폭기에 의해 직접 구성될 수 있다. 감시된 부분이 원인 실시예에서, 4출력 레벨은 같고 스크린 5에 감시된 단부의 영상에 대한 반경 r이 결정되게 한다.
부가적으로, 비원형 영상과 더불어, 계획된 출력레벨 제어는 밀폐된 곡선이 무엇이든지, 반대 방향으로 이동하는 두 비임을 가지고, 구조의 A, B 혹은 C의 어느것을 지시하기 위해 실제 레벨에 있다.
유사하게 검출기 27의 출력신호의 하나는 실제 레벨에 있다.
부가적으로, 직각축 X, Y의 시스템이 그려진 제 2 도의 스크린 5에서, 제 1 굴절장치 3, 4 및 제 2 굴절장치 30, 40 및 웨넬트 1과 웨넬트 2와 같이 두 비임을 가진 오실로스코프의 확대된 개략도에 도시되었다. 조립체 10은 제 2 도의 참고없이 나타난 축을 따라 방출된 미세한 전자 비임이 물리적으로 발생되게 한다.
수평 평판 4와 40의 쌍에 연결된 두 발생기 6과 8은 cos wt에 비례하는 전압을 전달하고, 반면에 수직평판 30과 30의 쌍에 연결된 발생기 7과 9는 sin wt에 비례하는 전압을 전달한다. 바이아스(도시안됨)에 부가하여, 교류 전압의 각 발생기 6-9는 위상제어, 펄스제어, 출력레벨제어인 세 교류 제어를 수신한다. 후자제어는 표준 오실로스코프의 각 굴절단자에 위치된 조정용 이득 증폭기에 의해 직접 구성될 수 있다. 감시된 부분이 원인 실시예에서, 4출력 레벨은 같고 스크린 5에 감시된 단부의 영상에 대한 반경 r이 결정되게 한다.
부가적으로, 비 원형 영상과 더불어, 계획된 출력레벨 제어는 밀폐된 곡선이 무엇이든지, 반대방향으로 이동하는 두 비임을 가지고, 구조의 공지된 부분의 영상을 나타내기 위해 증가 될 수 있다. 비임의 이동 속도는 그때 구조에 있어서 파의 전파속도에 비례한다.
여기에서, 통상 발생기 펄스 제어가 있다. 그들은 웨넬트 1과 2로 부터 나오는 비임의 스크린상에 이동의 직선속도 V가 영상의 반경r, 단부의 반경 R 및 매체에서 음파의 속도 C의 함수로서 적합하게 한다. 원을 얻기 위해 일치하는 펄스 제어 전압은 펄스 발생기 16에 의해 공급된다. 다른 실시예에서 곡선 발생기 6-9와 직접 될 수 있는 펄스 발생기 16은 조정용 주파수의 제어 오실 레이터, 곡선 발생기 6-9에 일치하는 회로, 주파수의 자동 공정용 장치를 포함한다.
도면에 도시되지 않은 공정 장치는 음파수신 채널이 어떤 센서에 의해 방출된 음향 시험파를 수신하도록 사용되게 한다. 이것을 하기 위해, 센서는 예를 들면 압전 감지기와 같은 역형태가 되어야 한다. 적어도 그들중의 하나는 두 위치 스위치에 연결되어야 한다. 제 1 위치는 센서를 공정 장치에 연결한다. 제 2 위치는 탐지기의 정상사용에 반응하여 이미 기술된 종래의 수신 채널에 연결한다.
공정 장치는 또한 점검 펄스 발생기를 포함한다. 이것이 점검 센서-에미터는 감시된 결함의 구조와 형태의 함수로서 예정된 바이아스와 특성을 가지고 음파로 그것을 변환한다.
램프 전압 발생기는 시험펄스 발생기와 동시에 일어난다. 본 램프 전압발생기는 전파속도의 공정용 시험을 감시하기 위해 재위치에 연결된 센서에서 음파의 수신으로 작동된 출력 레벨을 블록킹하기 위해 회로를 포함한다. 발생기의 출력전압은 그때 사인파 발생기 6-9의 펄스 제어 입력에 공급된다. 이는 한편으로 두 센서 사이의 음파의 이동 시간에 비례하며, 다른 한편으론, 그들의 거리가 공지된 것같이, 감시된 구조의 음파의 전파속도에 비례한다.
발생기 6-9의 위상 제어는 단자 P가 순간위상에 증가되게 한다. 이것은 비임이 펄스 W와 반경 r로 적합된 영상원의 어떤 점에 위치되게 한다. 각 단자 P는 발생기 6, 8 혹은 7, 9의 쌍에 공급되어져야 한다. P와 P'를 두 위상갓이라 하자, 기술된 실시예에0서, 여러 출력전압은 웨넬트 1로 부터 비임
VX1=V0cos(wt + P)
Vy1=V0sin(wt + P)
웨넬트 2로 부터 비임
Vx2=V0con(wt + P')
Vy2=-V0sin(wt + P')이다.
P혹은 P'의 값은 예정된다. 실제로, 두 비임은 도달된 제 1 센서의 영상점의 각 측면에 π/3각으로 배치되도록 요구된다. 발생기 6-9의 여러 위상 제어는 쌍으로 취해진 두값 P혹은 P'를 선정하는 신호 S1A, S1B 및 S1C에 의해 공급된다는 관찰로 부터 나오며, 이는
Figure kpo00007
다음 가정과 더불어, 즉 웨넬트 1로 부터 온 비임은 초기 순간에 P에 의해 위상에 배치되며, 그때 삼각 방향으로 회전하며, 웨넬트 2로 부터 온 비임은 초기 순간에서, P'로 위상에 배치되며, 반 삼격형 방향으로 회전한다.
각은 제 16도의 반경 Ω'O'로 부터 측정되며, 점 A', B' C'는 제 1 b도에 묘사된 순서에 있다.
본 시작은 소자가 반응하는 시간에 순간적으로 실행된다.
본 시작은 동시에 비임의 회전을 야기시키며 즉시 교류전압은 발생기의 출력에서 나타난다. 모든 작동은 위상 발생기 20에 의해 실행된다.
빠른 스위치 작동에 의해 그런 발생기는 세개의 공지된 것으로부터 두께의 교류전압을 제공해야 하며, 각 개는 세입력 S1를 디코우딩할때 비임의 위치에서 특수한 위상을 나타낸다. S1의 어떤 것도 작동하지 않으며, 어떤 전압도 위상 발생기 20에 의해 공급된다. 굴절(3, 4 : 30, 40)은 그래 작동하지 않으며 두 비임의 어느것도 위치되거나 축적하지 않는다. 위상발생기 20은 물리적으로 예선으로 공급된 두 전압을 연결하기 위해 접촉이 위치된 스위치를 구성한다. 이들은 전원을 포함한다. 양호한 실시예에서, 각 전원은 직류 출력수준이 공정된 증폭기에 의해 구성될 수 있다. 각 증폭기는 신호 S1의 하나를 수신한다. 이는 이미 기술된 예정된 초기 위상에서 상응하는 두 전압을 전달하는 전압분류기 장치에 연결된다.
본 증폭기는 신호 S1의 하나에 연결된 그들 베이스의 명령에 따라, 상기에 기술된 전압 분류기 장치의 하나에 연결된 스위치 직, 교류 공급에 배치된 단순한 트랜시스터를 포함할 수 있다.
센서의 수는 감시된 부분이 요면상의 변화로 밀폐된 곡선일때 증가될 수 있다.
비임 충격용 제어는 기술된 것으로 부터 분리한다는 것을 알수 있다. 실제로, 전자로 구성된 비임이 물리적으로 평판 3, 4혹은 30, 40내의 공간을 횡단할 때, 발생기 6-9로 발생된 전기 분야는 주어진 순간에 스크린 5상의 특수한 점을 향해 그것을 굴절시킨다. 스크린 5를 구성하는 재료에 전자 프락스의 충격은 빛의 방출을 일으킨다. 비임이 전자, 즉, 충격점이 조명되기에 충분하지 않은 전자를 구성하지 않을때, 플레이드 3, 4, 30, 40에 적용된 전압은 이런 실제 비임이 스크린 5에 웨넬트 2가 제어를 수신하는 순간 부터 웨넬트 1혹은 2의 제어에서 다만 조명된다.
본 웨넬트 제어는 입력으로서 검출기 27, 52의 출력신호를 수신하는 웨넬트 제어 발생기 19에 의해 발생된다. 그것은 조명용 웨넬트를 선정하며 제 2 센서가 작동될 때 조명용 명령을 준다. 조명은 T초를 계속하며, 본 시간은 선정의 영상용 이동 주기도에서 매우 작다. 본 발생기는 음파인 S의 검출을 수반하는 각 주기에서 조명용 명령을 주는 시간 지연을 포함한다. 조명시간 T의 값은 음파원 S의 영상점 의 추적크기를 결정한다. 스크린 5는 충격의 추적을 유지하는 기억형태가 될 수 있다.
제 5 도는 간단한 웨넬트 제어 발생기 19를 도시한다. 도달된 제 2 센서의 검출기 27의 출력신호 S2는 짝으로 짝지어져 있다. A혹은 C가 감지된 제 1 센서인 것에 의해 B가 감지된 제 2 센서인 것을 지시하는 두 출력신호 S2가 있다. 이것은 신호 S1의 사용을, 간단히 하도록 피해지게 한다. 제어발생기 19는 출력이 두 펄스 발생기 192와 194를 제어하고 출력 W1혹은 W2과 관련된 웨넬트의 하나나 혹은 다른 하나를 구동하는 두 OR논리 게이트 191과 193을 포함한다.
제 3 도는 도달된 제 1 센서의 검출기 26의 특수한 실시예를 도시한다. 이런 검출기 26은 입력으로서 논리신호 EA, EB 및 EC를 수신한다. 그들 각개는 마지막 신호 EA, EB 혹은 EC가 수신된 후 출력 수준만이 수동 수준에 떨어지도록 수신된 제 1 신호를 늘이는 모노스레이블(261, 262, 263)을 제어하기 위해 적용된다.
이런 시간 지연은, 지속시간, 즉 비임의 하나가 선저의 전 영상 주위를 이동하는데 걸리는 신간으로서 활동주기의 값을 장점으로 가진다. 시간지연은 상기 발생기 6-9의 펄스를 계산하기 위한 회로로 부터 신호를 수신하는 유니트 264에 의해 이행된다.
단일 스테이블의 각 정격 출력 Q는 다른 두 모노스테이블의 각각에 대해 무반응 수준으로 재 설치하기 위한 입력인 CLR입력 (모노스테이블 261의 28과 같이)에 각각 신호를 전달한다. 따라서 모노스테이블 261로 부터 S1A는 다른 두개의 모노스테이블 262와 263의 CLR입력에 적용된다. 이것은 EA가 고수준에 있다면 입력 EB와 EC에서 일어나는 것은 무엇이든지 무반응 수준으로 262와 263의 출력 Q를 유지하는 효과를 가진다. 따라서 신호 S1의 하나는 실제 수준에 있을 수 있으며 적절하게 도달된 제 1 센서를 표시한다.
265, 266과 같은 다이오드는 불필요한 모엔트에서 CLR입력의 여기를 피하도록 비귀환 장치로 의도된다. 부가적으로, S1A, S1B 및 S1C인 S1의 보충 신호인 S1는 26이 출력때 배치된다.
제 4 도는 음파에 도달된 제 2 센서의 검출기 27을 도시한다. 이런 검출기는 출력단자 Q에서 출력상태가 그의 입력때에 여러 천이로 바뀌는 세 멀타 바이브 레이터를 구성한다. 검출기 27은 세개의 일치하는 장치를 포함한다. 각 장치는 OR논리 271로 결합된 EB와 EC와 같은 두 입력을 가진다. 출력상태는 입력때 한 작동상태가 있자 곧 한 작동상태이다. OR 게이트 27의 출력은 멀티바이브레이터 272의 입력으로 적용한다.
멀티 바이브레이터 272는 센서 A가 신호를 검출하지 않는한 작동하는 신호 S1A를 설정할 때 수신한다. A가 음향 신호를 감지하자, SLA는 비작동 수준으로 바뀌며, 재설정 CLR입력을 중성이며 멀티바이브레이터 272는 그때 일어날 수 있으며 정상적으로 작동한다.
입력에 적용된 두 작동 상태 사이에서 비작동 상태인 보충 출력 Q가 이때 사용된다. 본 출력
Figure kpo00008
는 상태가 배제한 S2B/A와 S2C/A인 두 출력신호를 주기 위해 EB와 EC로 구성된 것, 즉 상호 논리적인 보충인 두 AND 논리회로 273, 274에 연결된다.
6개 신호 S2가 얻어지며, 이는 즉 S2B/A, S2C/B, S2A/C, S2B/C이며, S2는 도달된 제 2 센서인 검출신호를 표시하며, 수반하는 첫째문자는 관련된 센서와 도달된 제 1 센서를 충격으로 격리한 제 2 문자를 나타낸다.
도달된 제 1 센서에 상응하는 출력신호의 보충 S1은 이미 기술된 CLR 출력에서 검출기의 각 멀티 바이브레이터에 적용된다. 본 장치는 상호 신호 S1에 관련된 것을 제외하고 멀타 바이브레이터가 하나씩 가능하게 한다. 작동의 예는 본 발명의 항목이 더잘 이해되게 한다.
제 2도에 기술된 지시자는 스케닝 인자 발생기 25를 포함한다. 후자는 펄스발생기 16으로 의도된 신호 161의 개발과 발생기 6-9의 출력수준 V0를 허용한다. 이는 관 부분의 반경 R과 스크린에서 원의 반경 r을 조절하기 위한 전위차계를 포함한다. 실제로, 더 간단히 이득 제어는 수동으로 조절할 수 있게 포함되며, 각 발생기 6-9에서 사용된다.
지시자의 작동예가 지금 기술된다. 음파원 S는 제 1a도에서와 같이 물리적으로 위치되도록 가정된다. 제6도에서, 실제 시간으로 탐지기의 반응을 지시하는 여러 기년명은 하부에서 상부까지 된다. 센서 A, B, C는 음파신호인 신호를 수신한다. 센서 A로 부터 신호 A는 표시된다. 신호는 다양하게 처리될 수 있다. 특히, 기술된 예에서, 신호 A는 기준치 31과 비교된다. 기술된 수단에 의해 영향을 받은 이들 두 신호의 비교는 논리 형태의 신호 EA를 수신한다. 이는 음과 A의 상전에 산란된 시간지연 모노스테이블과 성형하는 것이 요구되며 모노스테이블의 시간 상수에 의해 결정된 지속시간의 끝에 이른다.
제 1 a도의 경우에, 센서는 A, B, 및 C차수에 음파를 수신한다. 논리 신호 EA, EB, EC가 도시되었다.
본 발명은 또한 그들 각개가 먼저 작동된 후 센서를 작동시키는 음파의 마스킹을 허용한다. 실제로, 주어진 센서는 방출원과 그 자체 사이에 존재하는 가장 직접적인 루우틴에 의해 도달하는 제 1 펄스를 수신하며 그후 다른것의 얼마는 제 2 방출이나 더 길경로로 부터 일어난다. 탐지기가 산란되지 않게 남겨 두도록 제 1 방사화 후 수신된 신호에 대해 충분히 높은 주어진 수준으로 수신된 신호의 비교에 의해 여기에서 도달된다.
도달된 제 1 센서의 검출기 26은 EA로 먼저 작용된다. 모노스테이블 261은 그러므로 실제 수준으로 제일 먼저 바꿀 것이다. 그의 출력 단자는 S1A가 실제 수준에 있는 동안 마스크된 모든 펄스가 일어나도록 시간이 끝날 무렵 무반응수준으로 후퇴하는 신호 S1A를 전달한다. 실제로, 제3도에 도시된 이런 신호는 그들의 두 신호 입력이 작동하지 않게 해서 검출기 26의 다른 두 모노스테이블 262와 263의 CLR입력에 적용된다. 따라서 S1A가 모노스테이블의 지연시간 T에 의해 유지되는 작동 수준에 있는 동안 어떤 새 신호 EA가 또한 작동하지 않는다는 것을 알 수 있다.
이 단계에서, 본 발명에 의한 탐지기는 도달된 제 1 센서를 인식한다. 신호 S1A는 그때 두 비임을 배치시키고 상기 비임에 대한 원의 추적을 돌출시키는 효과를 가진 위상발생기 20에 적용된다. 이순간에 작용상항은 펄스 발생기 16이 그 부분에서 파상의 속도 데이타를 수신한다는 것이다.
동시에, 제6도에서, 신호 S1의 보충신호 S1이 제 1 게이트 272를 제외하고 검출기 27의 멀티 바이브 레이터를 블록시키는 것일 알려졌다. 이것은 OR게이트 271을 경유하여 그의 입력에서 연속적으로 두 신호 EB와 EC를 수신한다. 멀티 바이브레이터 272는 EC의 표시후 다시 실제 수준으로 올라가는 신호 Q와 그의 보충단자 Q를 공급한다.
이것은 AND게이트 274에서 EC를 마스크하며 결과적으로 신호 S2B/A를 공급하는 AND게이트 273이 신호 EB에 일치하는 게이트의 상승시간에 가깝도록 할 수 있는 효과를 가진다.
신호 S2B/A는 그때 S2B에서 작동수준을 수신할 유일한 하나인 OR게이트 191이 펄스 W1을 공급하는 펄스 발생기 192를 산란시키는 웨넬트 제어 발생기 19에 공급되며, 이것은 오실로스코프상의 S에 대한 영상점 S'를 통과할때 삼각 방향으로 회전하는 비임을 끌어 올린다. 스크린 5가 영상 기억장치로 준비될 때 관찰자는 기대하지 않게 일어나는 음파원의 위치를 배치할 수 있다.
본 발명에 의한 다른 실시예가 제안될 수 있다. 특히, 곡선 발생기 6-9의 야기가 수반하는 것에 대해 발생기 6-9를 금하도록 먼저 도달하기 위해 신호 EA, EB, EC에 의해 직접 얻어질 수 있다.
다른 가능한 변수는 전 회로용 디지탈 회로를 사용한다. 제7도는 이것에 대한 그런 변수의 다이아 그램을 표시한다. 선술한 것 같이, 세센서 22-24, 도달순서의 인코우딩용 논리의 검출기 26, 27 및 웨넬트 제어 발생기 19 및 이중 비임 오실로 스코우프 26을 구성한다. 이는 또한 펄스 발생기 33, 34, 클록 30, X와 Y발생기 33, 34 및 스케일 인자 발생기 35를 포함한다. 마지막으로 ROM형태의 계획된 기억 32는 곡선 발생기 제어를 구성한다. 원단부의 경우에, ROM기억 32는 사인 표에 실려 있다. 결함이나 틈이 없이 부품을 절점검할때, 센서 22-24는 중요한 음파로 인해 비 방사성을 수신한다. 오실로 스코프 36의 스크린 5는 비어있다. 상기에 도시된 것 같이 적절하게 시동된 퍼스 발생기 31은 클록 30을 제어하며, 실제로 이런 클록은 ROM기억 32용 어드레스와 판독명령의 발생기이다.
환언해서, 펄스 W발생기 31에 의해 제어된 순간 t에서 클록 30은 점검된 관의 단부에 대한 영상원의 삼각 주사에 순간 위상이나 각 위치 wt를 공급한다. 따라서 판독 명령은 ROM 32의 입력선 320에 대해 웨넥트 W1로 부터 나온 비임의 각 위치에 상응하는 어드레스로 보내진다.
웨넬트 W2에서 나온 비임을 안내하기 위해 반 삼각방향으로 경로를 발생시키기 위해, n이 클록 39으로 공급된 어드레스 n, N이 ROM 32의 테이블 능력인 어드레스 N-n이 간단하게 판독된다. N은 실제로 스크린 5상에 요구된 영상의 해결로 적합하다. 실제로 N=360을 가지고, 360 각 위치는 한원에 대해 주사될 수 있으며, 단부의 영상에 대해 호의 θ=1의 결과를 수신한다.
그러므로, ROM 32의 출력라인 321은 2π/NW인 시간주기에 대해 반삼각 방향으로 경로에 값 sinwt=sin(N-n)θ를 공급하기 위해 사용되며, 값 sinnθ와 sin(N-n)θ의 각개는 시간 절반중 동일선 321에 공급된다.
클록 31로 일어난 스위치 322는 두 전류치 sinnθ와 sin(N-n)θ의 스위칭이 실행되게 하며, 첫째는 제 1 발생기 33과 둘째 제 2 발생기 34로 실행된다. 이들 발생기 33, 34는 굴절 플레이트 3, 30 및 4, 40용 여러 제어 전압이 상기에 도시된 것 같이 값 sin nθ와 sin(N-n)θ로 부터 얻어지게 한다.
스크린 상의 원의 직경은 스케일 인자 발생기 35에 의해 조정된다. 그의 출력에서, 이것은 발생기 33, 34에 대해 증폭 이득제어 전압을 준다. 이런 제어 전압은 점검된 관과 요구된 영상의 크기 함수로서 관찰자에 의해 요구되도록 조절할 수 있다. 이득제어 전압은 또한 비임 펄스용 펄스 발생기 31에 공급된다.
제 8 도에서, 영상원은 본 발명의 본 변수에 제안된 디지탈 모드에 나타난다. 그러므로 각 공간이나 각 단계 θ를 가지고 스크린 5의 중심으로 부터 적절한 거리로 37과 같이 그런점으로 실행할 수 있게 구성된다.
틈이 형성할때, 음파원이 구성되어 위치가 알려지도록 요구된다. 검출기 26, 27로 구성된 인코우딩 논리는 이미 본 출원에 기술된 것 같이 작동한다. 신호 S1은 클록 30이 센서의 각 영상점의 π/3측면에서 위치에 상응하는 값에 재 시동되게 한다. 따라서 신호 S1A가 작동할 때, 클록 30은 제 1b의 O에 있는 극축에 따라 값 nθ=O°에서 시동된다. 비임 W1은 그러므로 기술된 제 1 실시에서와 같이 점 O'에 위치된다.
값 nθ=O은 그러므로 ROM 32의 제 1 어드레스에 상용한다. 이는 π/W초동안 출력에서 존재하며 그후 제 2 비임의 시작용 새어드레스가 공급된다. 이런 어드레스는 제 1 b의 점 9'에 대해 Pθ=120°에 반응하며, 이는 제 2 비임이 O"에서 적절하게 배치되게 한다.
ROM32의 어드레스는 삼각 방향으로 원주위를 이동하기 위해 각 제 1 반주기에서 1유니트씩 증가되며 각 다른 반주기에서 1유니트씩 감소된다. 이들 두 작동은 모듈 N에 가깝도록 실행되며, 삼각원의 사상한에 대해서도 실행된다.
신호 S2의 하나가 처음 시간동안 작동 수준으로 변화할때 웨넬트 제어 발생기 19는 웨넬트 W1이나 W2의 하나나 다른 것을 선정한다. 두 와이어 350과 351은 OR게이트 191과 193의 출력에 연결된다.
스케일 인자 발생기 35는 제9도에 도시된 것 같이 RAM기엄 353, 일시기억 354, 애더 355 및 V0전압제어 356을 포함한다. 정상작동에서, 이런 발생기의 기능은 영상스케일 감소인자를 제공하는 것이다. 작업중 틈이 나타날때, 동일원으로 부터 나오는 음파의 수가 설명되도록 제8도의 영상점 S'의 반경에서 급격한 증가를 얻어야 한다. 제9도의 경우에, 점 S'는 새 조명된 점 38, 39, 40을 포함한다는 것이 알려졌다.
그들은 본 발명에 의하면 검출기의 세 반응에 일치한다. 이것은 틈의 크기가 형성될 때 알려지게 한다.
제9도는 스케일 인자 발생기 35의 특수한 실시예를 도시한다. 스크린 5상에서 영상원의 각점은 라인 320에서 이용할 수 있는 비임 W1혹은 W2의 하나 이상의 디지탈 위치에 일치하는 어드레스를 가지고 있다.
본 라인 320은 세점의 각각에 대한 어드레스를 공급하며 따라서 RAM 353은 원의 모든 점에 대한 목록을 나타낸다. 그의 함유물은 메코우와 원의 각점에 대해 본 발명에 의하면 장치로 선정된 음향 펄스의 수이다. 어드레스가 라린 320상의 발생기 35에 도달할때, 단일 어드레스 버퍼 354에 잠시동안 기억된다. 이는 RAM의 예정된 위치를 선택한다. OR게이트 353에 의해 발생된 함수 W1, W2가 작동하면, RAM 기억 353은 선정된 어드레스에서 판독된다. 그의 함유물은 DOUT를 경유하여 유니트 인 크리멘터 354의 입력 3540에 보내진다.
부가적인 결과는 인크리멘터의 출력 3541을 경유하여 한편으로 기억 353의 D1N에 전송되며 반면에 V0전압제어 회로 353인 반경 발생기의 제어에 전송된다.
비어있을때 스크린 5상의 영상에 대한 반경 r과 스케일 인자r/2R을 결정하는 후자는 RAM기억 353의 함유물이 지시하는것 같이 어드레스된 점의 반경을 따라 단면의 영상원 외부의 많은 추적을 결정한다. 따라서, 제8도에서, 어드레스 수 1이 어드레스 수 2에서 영상점 37에 기인되면, 거기에서 3개의 연속적인 에코우 38-40은 표시되며, RAM기억 353은 값 3을 포함한다. 이런 값은 단부가 표시된 순간에 어드레스 점 2가 38-40에 표시된 세 음향펄스를 전송했다는 것을 지시한다.
W1혹은 W2를 선정한 웨넬트 제어 발생기 19는 발생기 35로 부터 마지막점을 기록한 명령을 수신한다.
제 8 도의 실시예에서, 본 발생기 19는 인크리멘터 354에 의해 실행된 계산의 끝에서 점 40을 기록할 명령을 수신한다.
다른 실시예가 제안되어 있는데 이는 본 발명의 범위내에 있다.
특히, ROM 32와 RAM 33으로 제조된 작은 마이크로 프로세서 시스템을 가지고 기술된 작동을 실행하는 것은 가능하다. 기술된 회로의 형태는 단부의 선택으로 변화할 수 있다. 예를들면, 폐삼각법으로 형성된 금속 뼈대에 대해, 삼각형이 시험된 단부이면, 본 발명에 의한 장티는 이중의 추적 오실로스코우프의 스크린상에 기하학적인 삼각법의 발생기를 포함한다. 감시는 단면당 3 센서로 실행된다.
단면은 단면의 유일한 음파가 공간 분리에 의해 설명되게 하는 장치에 의해 감시된다. 감시 센서는 감시된 단면의 각 측면에서 그 구조에 위치된다. 이것의 두께는 조절될 수 있다.

Claims (20)

  1. 음파가 폐루우트 주위를 이동하는 구조의 결함에 대한 음파 탐지기에 있어서, 루우트가 기록장치(1, 2, 10)에 의해 표시장치(3, 4, 5, 30, 40)에 표시되고, 탐지기가 음향센서(22-24), 수신된 신호를 성형하기 위한 장치, 및 표시장치를 제어하는 장치(16, 20, 35)와 기록장치를 제어하는 장치( 9)를 작동하는 신호의 도달순서를 인코우딩하는 논리(26-27)를 포함하며, 결함의 흔적이 결함의 검출시에 표시장치에 나타난 루우트의 영상에 기록되는 것을 특징으로 하는 음파탐지기.
  2. 제 1 항에 있어서, 감시된 구조의 표면에 분포되어 있으며, 수신된 신호를 성형하는 정치에 접속된 적어도 3개의 센서(22-24)를 포함하며, 재성형후 신호의 도달순서를 인코우딩하는 논리는 도달된 제 1 센서의 검출기(26)를 포함하며, 이 검출기는 표시장치를 제어하는 장치(16, 20, 35)를 작동시키며, 도달된 제 2 센서의 검출기(27)은 기록장치를 제어하는 수단(19)를 작동시키는 것을 특징으로 하는 탐지기.
  3. 제 2 항에 있어서, 상기 표시장치가 스크린(5)를 가진 음극선관을 포함하고 굴절장치(3, 4) 또는 (30, 40)에 의해 제어된 2개의 비임과 2개의 동일한 곡선발생기(6-9), 즉 제 1 굴절장치(3, 4)에 접속된 제 1 곡선발생기(6, 7)과 제 2 굴절장치(30, 40)에 접속된 제 2 곡선발생기(8, 9)를 가지며, 곡선발생기(6-9)는 표시장치(3, 4, 5, 30, 40)을 제어하는 장치(16, 20, 35)를 구성하는 펄스발생기(16), 위상발생기(20) 및 스케일인자발생기(35)에 의해 제어되는 것을 특징으로 하는 탐지기.
  4. 제 3 항에 있어서, 표시장치의 기록장치가 웨넬트 제어(W1, W2)를 포함하며 기록장치 제어용장치가 웨넬트 제어 발생기(19)를 포함하는 것을 특징으로 하는 탐지기.
  5. 제 2 항에 있어서, 도달된 제 1 센서의 검출기(26)가 조절가능한 시간 상수를 가진 3개의 모노스테이블형 멀티바이브레이터(261-263)를 포함하며, 각 입력(EA-EC)은 센서중 하나에 의해 수신된 신호를 수신하고, 각 초기치설정 입력(267)은 비 귀환장치(265, 266)를 통해 블록킹신호를 수신하며, 검출기(26)는 각 수신시에 단일신호(S1A-S1C)와 도달된 제 1 센서를 나타내는 논리 보충(S1A-S1C)를 공급하는 것을 특징으로 하는 탐지기.
  6. 제 5 항에 있어서, 멀티바이브레이터(261-263)중 하나에 대한 초기치설정 입력을 제어하는 비귀환장치는 다른 두 멀티바이브레이터중 하나에 대한 출력(S1A-S1C)에 각각 접속된 두 다이오드(265, 266)를 포함하는 것을 특징으로 하는 탐지기.
  7. 제 5 항에 있어서, 도달된 제 2 센서의 검출기(27)이 3개의 모노스테이블형 멀티바이브레이터(272)를 포함하며, 이들 각각은 신호입력을 통해 OR게이트(271)에 의해서 수신된 2개의 신호(EA-EC)로 부터 발생된 신호와, 재설정입력(CLR)을 통해 잔존신호(EA-EC)에 대한 멀티바이브레이터(261-263)의 보충출력에 대응하는 신호(S1A-S1C)와, 두 신호(EA-EC)중 하나를 멀티 바이브레이터(272)의 입력과 합산하는 2개의 AND게이트(273, 274)에 접속되는 보충출력(
    Figure kpo00009
    ) 및 한쌍으로 취해진 신호(S2A-S2C)를 합성하는 검출기(27)의 출력을 수신하는 것을 특징으로 하는 탐지기.
  8. 제 3 항에 있어서, 동일한 곡선발생기(6-9)는 사이파 전압의 발생기(6 또는 8)와 코사인파 전압의 발생기(7 또는 9)로 구성되는 2개의 등심원발생기인 것을 특징으로 하는 탐지기.
  9. 제 3 항 또는 8항에 있어서, 펄스발생기(169가 폐회로 구조에서 음파의 전파속도를 공정하는 장치를 포함하는 것을 특징으로 하는 탐지기.
  10. 제 9 항에 있어서, 공정장치가 사용자에 의해 조정되며 음파의 전파속도에 비례하는 아날로그 전압을 공급하는 전위차계를 포함하는 것을 특징으로 하는 탐지기.
  11. 제 9 항에 있어서, 공정장치가 센서(22-24)중 하나를 방사모우드에 입력하는 스위치와, 상기 센서에 접속된 펄스발생기와, 점검펄스와 동시적인 램프전압 발생기와, 램프전압을 블록시키는 센서중 하나를 통해 수신된 에코우, 즉 램프 발생기의 출력전압을 수신한 후 두 센서간의 음파의 전파시간과 음파의 전파속도를 표시하고 각 동심원 발생기(6-9)의 펄스입력을 제어하는 신호의 검출기로 구성되는 것을 특징으로 하는 탐지기.
  12. 제 5 항에 있어서, 위상 발생기(20)가 곡선발생기(6-9)의 초기위상에 대한 프리셀렉션과 도달된 제 1 감지기의 검출기(26)에 의해 공급된 신호(S1)의 함수에 따라 그들을 선택하는 스위치를 포함하는 것을 특징으로 하는 탐지기.
  13. 제12항에 있어서, 프리셀렉션이 도달된 제 1 센서(A)의 스크린(5)상의 영상(A')일측에 있는 두 비임의 초기위치에 해당하는 소기의 값을 가진 전원을 포함하는 것을 특징으로 하는 탐지기.
  14. 제12항에 있어서, 전원이 베이스의 명령에 따라 소기의 전압을 전달하는 바이어스스위칭 트랜지스터를 포함하는 것을 특징으로 하는 탐지기.
  15. 제13항에 있어서, 전원이 소기의 비를 가진 분할점으로서 배열된 저항을 포함하는 것을 특징으로 하는 탐지기.
  16. 제 5 항에 있어서, 스케일인자 발생기(35)가 곡선발생기(6-9)의 출력레벨을 제어하는 전원을 포함하는 것으로 특징된 탐지기.
  17. 제16항에 있어서, 스케일 인자 발생기의 전원은 감지된 구조와 스크린(5)의 영상에 대해 각각의 차원을 표시하는 전위차계에 의해 조정되는 것을 특징으로 하는 탐지기.
  18. 제 4 항 또는 제 7 항에 있어서, 웨넬트 제어발생기(19)가 제 1 센서가 3각 방향으로 도달되어 소정주기의 휘도펄스(W1)을 발생하는 제 1 증폭기(192)에 접속된 후에 도달된 제 2 센서에 대응하는 신호(S2)의 적을 형성하는 제 1 OR게이트(191)과, 제 1 센서가 3각 방향으로 도달되어 소정주기의 휘도펄스(W2)를 발생하는 제 2 증폭기(194)에 접속된 후에 도달된 제 2 센서에 대응하는 신호(S2)의 적을 형성하는 제 2 OR게이트(193)을 포함하는 것을 특징으로 하는 탐지기.
  19. 제 2 항에 있어서, 표시장치 제어용장치가 펄스발생기(31)와, 펄스발생기(30)로부터 수신된 각 펄스에서 한 단위씩 증가하는 클록(30)와, 파의 루우트에서 기하적인 위치에 관한 각 어드레스가 스크린(5)의 구조의 영상점위치에 관한 디지탈 값을 포함하는 ROM (32)와, 두 출력을 가지고 펄스발생기(31)의 출력(310)에 의해 제어된 스위치(322)와, 적합한 제어 전압을 표시장치의 굴절장치(3, 4, 30, 40)에 공급하도록된 기억장치(32)의 디지탈 값을 스위치(322)를 통해 수신하는 두개의 동일한 곡선 발생기(33, 34)로 구성되는 것을 특징으로 하는 탐지기.
  20. 제18항에 있어서, ROM 기억장치(32)가 클록(30)의 각 주기에서 삼각방향으로 회전하는 비임에 대응하는 어드레스 판독을 증가시킨후, 삼각방향으로 회전하는 비임에 대응하는 어드레스 판독을 감소시키는 것을 특징으로 하는 탐지기.
KR1019810004288A 1980-11-07 1981-11-07 밀폐된 구조의 결함에 대한 음파 탐지기 KR880000894B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8023800A FR2493992A1 (fr) 1980-11-07 1980-11-07 Localisateur d'emission acoustique de defauts dans une structure fermee
FR23800 1980-11-07

Publications (2)

Publication Number Publication Date
KR830008173A KR830008173A (ko) 1983-11-16
KR880000894B1 true KR880000894B1 (ko) 1988-05-30

Family

ID=9247774

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019810004288A KR880000894B1 (ko) 1980-11-07 1981-11-07 밀폐된 구조의 결함에 대한 음파 탐지기

Country Status (9)

Country Link
US (1) US4472971A (ko)
EP (1) EP0052550B1 (ko)
KR (1) KR880000894B1 (ko)
CA (1) CA1193354A (ko)
DE (1) DE3169093D1 (ko)
ES (1) ES8300200A1 (ko)
FR (1) FR2493992A1 (ko)
YU (1) YU44200B (ko)
ZA (1) ZA817394B (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225374A (ja) * 1983-06-06 1984-12-18 Hitachi Ltd 音源位置標定方法とその装置
US4811605A (en) * 1988-02-29 1989-03-14 Canadian Patents And Development Limited/Societe Canadienne Des Brevets Et D'exploitation Limitee Apparatus and method for inspecting the degradation of a gas nozzle
US5031456A (en) * 1989-08-04 1991-07-16 H.A.F.A. International, Inc. Method for the detection of voids and corrosion damage by thermal treatment
US5337611A (en) * 1992-12-02 1994-08-16 Electric Power Research Institute Method of simulating ultrasonic inspection of flaws
US6857553B1 (en) * 2002-04-17 2005-02-22 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for in-process sensing of manufacturing quality
DE102008023863A1 (de) * 2008-05-16 2009-11-26 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Überwachung einer Anlage

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1132714A (fr) * 1955-10-06 1957-03-14 Télémètre oscillographique à balayage circulaire
FR1193044A (fr) * 1958-02-14 1959-10-29 Realisations Ultrasoniques Sa Procédé et dispositifs d'examen de corps solides par les ultra-sons
GB1391175A (en) * 1971-08-04 1975-04-16 Cambridge Consultants Lttd Electrical circuit means for use in acoustic emission detecting and or recording apparatus
FR2164031A5 (en) * 1971-12-10 1973-07-27 Commissariat Energie Atomique Locating device - for source of strain waves eg in stressed pressure vessels
CA1004313A (en) * 1972-08-09 1977-01-25 George J. Mckenzie Sonar display
JPS5623110B2 (ko) * 1975-02-18 1981-05-29
US3985024A (en) * 1975-02-28 1976-10-12 Grumman Corporation Acoustic emission process and system for improved flaw source location
US4033179A (en) * 1975-03-07 1977-07-05 Westinghouse Electric Corporation Acoustic emission monitoring system
US4009463A (en) * 1975-03-13 1977-02-22 Westinghouse Electric Corporation Acoustic emission monitoring system

Also Published As

Publication number Publication date
CA1193354A (fr) 1985-09-10
FR2493992B1 (ko) 1984-05-11
US4472971A (en) 1984-09-25
ES506918A0 (es) 1982-10-01
ES8300200A1 (es) 1982-10-01
EP0052550A1 (fr) 1982-05-26
EP0052550B1 (fr) 1985-02-20
FR2493992A1 (fr) 1982-05-14
YU44200B (en) 1990-04-30
DE3169093D1 (en) 1985-03-28
YU260981A (en) 1984-06-30
ZA817394B (en) 1982-09-29
KR830008173A (ko) 1983-11-16

Similar Documents

Publication Publication Date Title
US3981184A (en) Ultrasonic diagnostic inspection systems
US5952577A (en) Ultrasonic imaging system
US6532820B1 (en) Combined ultrasonic techniques for evaluations (CUTE)
JP2005106654A (ja) 自動検査システム
KR880000894B1 (ko) 밀폐된 구조의 결함에 대한 음파 탐지기
US5426978A (en) Non-destructive axle flaw detecting apparatus
US3955405A (en) Ultrasonic NDT system with flashing display alarm
US6775625B2 (en) System and method for nondestructive testing simulation
JPH03122563A (ja) 超音波探傷装置
JPH1137982A (ja) 手動式超音波探傷装置の位置検出装置
JP6183890B2 (ja) 超音波診断装置
JP6420676B2 (ja) 超音波診断装置
JPH0419558A (ja) 超音波探傷試験における画像処理方法
JPS60102553A (ja) 電子走査型超音波探傷装置
JPH09229909A (ja) 移動被検体の検査方法および検査装置
JP2859659B2 (ja) 超音波探傷装置
US4321830A (en) Optical bichromatic position finder
JP2019158367A (ja) 超音波検査システム
JPH0249156A (ja) 超音波断層検出方法および装置
JPH0373846A (ja) 超音波測定装置
JPH02154144A (ja) 超音波探傷画像処理装置
JPH01237443A (ja) 格子板検査装置
WO2000040960A1 (en) Combined ultrasonic techniques for evaluations (cute)
WO2000040960A9 (en) Combined ultrasonic techniques for evaluations (cute)
JPH0678924A (ja) 超音波診断装置