KR20240055836A - 휘도 향상된 광학 이미징 송신기 - Google Patents
휘도 향상된 광학 이미징 송신기 Download PDFInfo
- Publication number
- KR20240055836A KR20240055836A KR1020247011819A KR20247011819A KR20240055836A KR 20240055836 A KR20240055836 A KR 20240055836A KR 1020247011819 A KR1020247011819 A KR 1020247011819A KR 20247011819 A KR20247011819 A KR 20247011819A KR 20240055836 A KR20240055836 A KR 20240055836A
- Authority
- KR
- South Korea
- Prior art keywords
- optical
- light
- receiver
- aperture
- bulk
- Prior art date
Links
- 238000012634 optical imaging Methods 0.000 title description 2
- 230000003287 optical effect Effects 0.000 claims abstract description 818
- 238000001514 detection method Methods 0.000 claims abstract description 74
- 239000000758 substrate Substances 0.000 claims description 64
- 238000005259 measurement Methods 0.000 claims description 55
- 238000000034 method Methods 0.000 claims description 41
- 238000005286 illumination Methods 0.000 claims description 32
- 230000005540 biological transmission Effects 0.000 claims description 30
- 230000005855 radiation Effects 0.000 claims description 18
- 230000004075 alteration Effects 0.000 claims description 7
- 230000000903 blocking effect Effects 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 345
- 230000000875 corresponding effect Effects 0.000 description 55
- 125000006850 spacer group Chemical group 0.000 description 54
- 238000010586 diagram Methods 0.000 description 41
- 238000003384 imaging method Methods 0.000 description 39
- 239000000463 material Substances 0.000 description 31
- 201000009310 astigmatism Diseases 0.000 description 20
- 238000004891 communication Methods 0.000 description 16
- 229920000642 polymer Polymers 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 239000011521 glass Substances 0.000 description 13
- 238000012545 processing Methods 0.000 description 13
- 239000010703 silicon Substances 0.000 description 13
- 229910052710 silicon Inorganic materials 0.000 description 13
- 238000003491 array Methods 0.000 description 10
- 230000001976 improved effect Effects 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000003595 spectral effect Effects 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 239000012780 transparent material Substances 0.000 description 7
- 239000013598 vector Substances 0.000 description 7
- 238000012937 correction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 230000002745 absorbent Effects 0.000 description 5
- 239000002250 absorbent Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000013507 mapping Methods 0.000 description 4
- 230000000750 progressive effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 108091008695 photoreceptors Proteins 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 229930002875 chlorophyll Natural products 0.000 description 2
- 235000019804 chlorophyll Nutrition 0.000 description 2
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 206010041349 Somnolence Diseases 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000000708 deep reactive-ion etching Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4814—Constructional features, e.g. arrangements of optical elements of transmitters alone
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4811—Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
- G01S7/4813—Housing arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4814—Constructional features, e.g. arrangements of optical elements of transmitters alone
- G01S7/4815—Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4816—Constructional features, e.g. arrangements of optical elements of receivers alone
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4861—Circuits for detection, sampling, integration or read-out
- G01S7/4863—Detector arrays, e.g. charge-transfer gates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4865—Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
- G02B27/0037—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/30—Collimators
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/46—Systems using spatial filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/205—Neutral density filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/1446—Devices controlled by radiation in a repetitive configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02016—Circuit arrangements of general character for the devices
- H01L31/02019—Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02027—Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for devices working in avalanche mode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02162—Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02162—Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
- H01L31/02164—Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02162—Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
- H01L31/02165—Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors using interference filters, e.g. multilayer dielectric filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0232—Optical elements or arrangements associated with the device
- H01L31/02325—Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0232—Optical elements or arrangements associated with the device
- H01L31/02327—Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/107—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/67—Optical arrangements in the receiver
- H04B10/671—Optical arrangements in the receiver for controlling the input optical signal
- H04B10/675—Optical arrangements in the receiver for controlling the input optical signal for controlling the optical bandwidth of the input signal, e.g. spectral filtering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/69—Electrical arrangements in the receiver
- H04B10/697—Arrangements for reducing noise and distortion
- H04B10/6973—Arrangements for reducing noise and distortion using noise matching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/80—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
- H04B10/801—Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Signal Processing (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Optical Distance (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Light Receiving Elements (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
실시예들은 하나 이상의 마이크로-광학 구성요소들을 포함하는 광학 이미저들을 기술한다. 일부 이미저는 시야로부터 주변 광을 수신하기 위한 광 검출 시스템을 포함하는 수동 이미저일 수 있다. 일부 이미저는 광 검출 시스템에 더하여, 광 방출 시스템을 포함하는 능동 이미저일 수 있다. 광 방출 시스템은 방출된 광이 시야 내의 물체의 표면으로부터 반사되고 광 검출 시스템에 의해 수신되도록, 광을 시야로 방출하도록 구성될 수 있다. 일부 실시예에서, 광 검출 시스템 및/또는 광 방출 시스템은 동작 성능을 개선하기 위한 마이크로-광학 구성요소를 포함한다.
Description
관련 출원에 대한 교차 참조
본 출원은 2017년 5월 15일에 출원된 미국 특허 가출원 제62/506,449호, 2017년 5월 15일에 출원된 미국 특허 가출원 제62/506,437호, 2017년 5월 15일에 출원된 미국 특허 가출원 제62/506,445호, 및 2017년 6월 5일에 출원된 미국 특허 가출원 제62/515,291호의 우선권을 주장하며, 그 전문이 그리고 모든 목적을 위해 본원에 참고로 포함된다.
이미저(imager)는 광을 검출하고, 검출된 광에 기초하여 특정 장면의 디지털 이미지를 생성한다. 상기 이미지는 고정된 개수의 행 및 열의 픽셀들을 포함하며, 각각의 픽셀은 해당 장면 내의 서로 다른 시야(field-of-view)에 맵핑된다. 전자 이미저는 대개, 광 검출기를 이용하여 광을 전기 신호로 변환한다. 각각의 광 검출기는 초점 면 상의 서로 다른 위치에 위치되고, 보통, 이미지 내의 단일 픽셀 또는 픽셀의 성분에 대응한다. 전자 이미저는 대개, 수동-조명(passive-illumination) 이미저 및 능동-조명(active-illumination) 이미저의 2가지 유형들 중 하나로 분류될 수 있다. 수동-조명 이미저는 특정 장면 내의 물체들에 의해 반사된 태양광과 같은 주변광을 수집하는 반면, 능동-조명 이미저는 해당 장면에 빛을 비추고 능동-조명 이미저 시스템 자체에 의해 생성된 반사광을 수집한다.
협대역 이미저는 제한된 파장 범위 내에서 광을 수집한다. 이는 전체적인 가시 스펙트럼에 걸쳐, 또는 3개의 서로 다른 폭의, 각각이 100 nm 이상의 폭일 수 있는 RGB 색상 대역들에서 광을 검출하는 통상적인 카메라와 다르다. 협대역 이미저는 그것이 의존하는 광학 필터의 특성 때문에 통상적인 카메라보다 개발하기가 더 어렵다. 광학 필터는 전자기 스펙트럼의 일부가 광 검출기에 도달하는 것을 방지하는 역할을 한다. 대부분의 협대역 필터는 광을 선택적으로 투과시키거나 반사하는 박막 간섭 효과(thin-film interference effect)에 의존한다(그러한 필터는 종종, 유전체 거울 또는 브래그 거울(Bragg mirror)로 지칭됨). 협대역 필터의 스펙트럼 투과율은 필터를 형성하는 구성 층들의 개수, 두께, 순서, 및 굴절률에 좌우된다. 필터의 스펙트럼 투과율은 또한 협대역 필터에서의 광의 입사각에 의존한다.
현재의 협대역 이미저는 좁은 시야를 가지거나, 약 50 nm 보다 더 좁은 파장 대역을 필터링하는 능력이 제한된다. 광학 필터는 파장의 좁은 범위를 달성하는 것을 어렵게 하는 입사광의 각도에 민감하다. 예를 들어, 광학 필터는 940 nm 내지 945 nm의 파장을 가진 수직한 광을 수용하고, 930 nm 내지 935 nm의 파장에서의 약간 경사진 광을 수용할 수 있다. 통상적인 카메라의 대부분의 광 검출기들은 검출기에 입사하는 광의 각도 범위가 크기 때문에, 단순히 광 검출기 앞에 광학 필터를 배치하는 것은 협대역 필터링을 실제로 달성하지 못할 것이다. 광 검출기에 입사하는 광의 각도를 제한하는 것은 일반적으로 더 긴 초점 거리를 가진 렌즈의 사용을 필요로 하며, 이는 카메라의 시야를 제한한다.
넓은 시야를 가진 이미저는, 균일하게 선명한 시각적 이미지를 생성하고 특정 장면에 걸쳐 균일한 측정을 하는 데에 어려움이 있다. 예를 들어, 이미지의 중심에 있는 픽셀들은 해당 장면의 말단부에서의 픽셀들과 비교하여 더 밝은 또는 서로 다른 파장의 광을 나타낼 수 있다. 일부 적용들에 있어서는, 더 나은 상황 인식을 제공하기 때문에 넓은 시야가 바람직하다. 예를 들어, 차량 주위의 보행자를 검출하기 위한 카메라 기반의 자동차 안전 시스템은 차량 주위의 360도 시야에서의 모니터링을 필요로 할 수 있다. 좁은 시야의 센서들이 많이 요구되는 동일한 작업을 수행(즉, 전체 360도 시야의 이미지들을 생성)하기 위해, 넓은 시야의 센서들은 더 적게 필요하며, 이는 시스템 비용을 감소시킨다.
협대역 이미저는 지리적 맵핑, 천문학 및 LIDAR(Light Detection and Ranging)를 포함한 많은 적용예를 가진다. 협대역 이미저는 엽록소를 가진 식물 또는 별 내부의 원소들에 의해 생성되는 것과 같은 특징적인 광 파장을 검출할 수 있다. 협대역 이미저는 예를 들어, 식물의 건강 상태를 판단하거나 기름 침착물을 발견하기 위해 사용될 수 있다. LIDAR와 같은 광학 수신기 시스템은 물체 검출 및 거리 측정(ranging)에 사용될 수 있다. LIDAR 시스템은 레이저로부터의 펄스를 이용하여 목표물 또는 풍경에 광을 조사하고, 광자가 목표물 또는 풍경으로 이동하고 반사되어 협대역 이미저로 복귀하는 시간을 측정함으로써, 목표물 또는 풍경 내의 물체들에 대한 거리를 측정한다. 광-복조, 동조(coherent) LIDAR, 및 거리 게이트(range-gated) LIDAR와 같은 다른 LIDAR 기술들은, 레이저 광 펄스들의 비행 시간을 직접 측정하지 않을 수 있지만, 광자의 송신 및 반사에도 의존한다. 많은 LIDAR 적용예의 경우, 송신기와 수신기의 물리적 크기가 작고 압축적이며, 동시에, 상대적으로 저가인 것이 유리하다. 물체가 먼 거리에서 정확하게 감지되어야 하는 적용예의 경우, 요구되는 안전 한계 내에 레이저 에너지 방출을 유지하면서, 송신기에 의해 방출되고 수신기를 향해 다시 반사되는 광자의 개수를 증가시키거나 최대화하는 것이 유리하다.
마이크로-광학 시스템은 일반적으로 크기가 수 마이크로미터 내지 1밀리미터 사이인 소형화된 광학 구성요소들을 포함하는 시스템이다. 서로 인접하여 배열된 마이크로-광학 수신기는 크로스토크에 민감하다. 광학 표면의 거칠기, 투명 매질, 후방 반사 등에서의 결함에 의해 야기되는 미광(stray light)은 수신기 채널 내부의, 또는 수신기 채널 외부의 다양한 특징들에서 발생될 수 있다. 다수의 수신기 채널들이 서로 인접하여 배열될 때, 하나의 수신기 채널 내의 이러한 미광은, 다른 채널 내의 광센서에 의해 흡수될 수 있으며, 이에 따라 광자들에 고유한 타이밍, 위상, 또는 다른 정보를 오염시킬 수 있다. 크로스토크를 최소화하는 것은 능동-조명 시스템에서 특히 중요하다. 근처의 재귀-반사기(retro-reflector)(예를 들어, 번호판)로부터 반사된 빛은 멀고, 어두운, 확산면(lambertian surface)(예를 들어, 검정 면 의류)으로부터 반사된 빛보다 수천 또는 수백만 배 더 강렬할 수 있다. 따라서, 재귀-반사기로부터의 미광 광자들은, 크로스토크가 최소화되지 않는 경우, 근처의 광센서들의 다른 표면들로부터 반사되는 광자들의 개수를 훨씬 초과할 수 있다. 이는 LIDAR 시스템이 재귀-반사기에 의해 점유된 시야 근처의 시야들을 점유하는 어두운 물체들을 검출하지 못하는 결과를 초래할 수 있다.
본 개시의 실시예는, 크로스토크를 최소화하면서 수신기 채널 어레이에 걸쳐 맞춰진(tight) 스펙트럼 선택성을 가능하게 하는 마이크로-광학 수신기 채널 어레이를 가진, 넓은 시야의 협대역 이미징을 달성하는 광학 이미저 시스템을 제공한다. 본 개시에 따른 일부 광학 이미저 시스템은 광 감지 모듈로 복귀하는 광의 출력 레벨이 증가되는 동시에, 측정된 이미지의 공간 해상도를 향상시키도록, 향상된 스팟 조명을 제공하는 광 전송 모듈을 포함할 수 있다.
일부 실시예에서, 거리 측정을 수행하기 위한 광학 시스템은 벌크 송신기 광학부, 조명 소스, 및 상기 조명 소스와 상기 벌크 송신기 광학부 사이에 배치된 마이크로-광학 채널 어레이를 포함한다. 조명 소스는 광학 시스템 전방의 시야에 벌크 송신기 광학부를 통하여 이산적인 광의 빔들을 투사하도록 정렬된 복수의 광 방출기들을 포함한다. 마이크로-광학 채널 어레이는 복수의 마이크로-광학 채널들을 정의하고, 각각의 마이크로-광학 채널은 복수의 광 방출기들 중 하나의 광 방출기로부터 이격된 마이크로-광학 렌즈를 포함하며, 마이크로-광학 렌즈는 상기 광 방출기로부터의 광 원뿔을 수신하고 상기 방출기 및 상기 벌크 송신기 광학부 사이의 위치에서 상기 방출기로부터 변위된 초점에서 상기 방출기의 감소된 크기의 스팟 이미지를 생성하도록 구성된다. 각각의 채널에 대한 마이크로-광학 렌즈는 광 방출기로부터의 광 원뿔을 수신하고, 마이크로-광학 렌즈 및 벌크 송신기 광학부 사이의 초점에서 방출기의 감소된 크기의 실제 스팟 이미지를 생성하도록 구성될 수 있다. 광 방출기로부터의 광 원뿔의 발산은 감소된 크기의 실제 스팟 이미지를 생성하기 위한 마이크로-광학 렌즈의 제2 광학 표면으로부터의 광 원뿔의 발산보다 작을 수 있다.
일부 부가적인 실시예에서, 거리 측정을 수행하기 위한 광학 시스템은 광 방출 시스템 및 광 검출 시스템을 포함한다. 광 방출 시스템은 벌크 송신기 광학부와, 상기 벌크 송신기 광학부를 통하여 상기 광학 시스템의 전방 시야에 이산적인 광의 빔들을 투사하도록 정렬된 복수의 광 방출기들을 포함하는 조명 소스와, 그리고, 상기 조명 소스 및 상기 벌크 송신기 광학부 사이에 배치된 마이크로-광학 채널 어레이를 포함한다. 마이크로-광학 채널 어레이는 복수의 마이크로-광학 채널들을 정의하고, 각각의 마이크로-광학 채널은 복수의 광 방출기들 중 하나의 광 방출기로부터 이격된 마이크로-광학 렌즈를 포함하며, 마이크로-광학 렌즈는 상기 광 방출기로부터의 광 원뿔을 수신하고 상기 방출기 및 상기 벌크 송신기 광학부 사이의 위치에서 상기 방출기로부터 변위된 초점에서 상기 방출기의 감소된 크기의 스팟 이미지를 생성하도록 구성된다. 광 검출 시스템은 상기 시야로부터 상기 이산적인 광의 빔들을 수신하도록 구성된 벌크 수신기 광학부와, 상기 시야 내에서 복수의 이산적인 비-중첩 시야들을 정의하는 복수의 마이크로-광학 수신기 채널들을 가진 광학 어셈블리를 포함한다. 광학 어셈블리는, 상기 벌크 수신기 광학부의 초점면을 따라 배열된 복수의 이산적인 개구들을 가진 개구층과, 상기 개구층 뒤에 배치된 광센서들의 어레이와, 상기 개구층과 상기 광센서들의 어레이 사이에 위치되는 복수의 렌즈들을 포함한다.
특정 실시예에서, 거리 측정을 수행하기 위한 광학 시스템은 광학적으로 투명한 윈도우를 가진 고정식 하우징과, 하우징 내에 배치된 광 레인징 장치를 포함한다. 상기 광 레인징 장치는 플랫폼에 연결된 광학 송신기를 포함한다. 광학 송신기는 벌크 송신기 광학부, 조명 소스, 및 상기 조명 소스와 상기 벌크 송신기 광학부 사이에 배치된 마이크로-광학 채널 어레이를 포함한다. 복수의 광 방출기들을 포함하는 조명 소스는 벌크 송신기 광학부를 통해 광학 시스템 전방의 시야로 이산적인 광의 빔들을 투사하도록 정렬된다. 마이크로-광학 채널 어레이는 조명 소스와 벌크 송신기 광학부 사이에 배치될 수 있고, 마이크로-광학 채널 어레이는 복수의 마이크로-광학 채널들을 정의할 수 있으며, 각각의 마이크로-광학 채널은 복수의 광 방출기들 중 하나의 광 방출기로부터 이격된 마이크로-광학 렌즈를 포함할 수 있고, 마이크로-광학 렌즈는 상기 광 방출기로부터의 광 원뿔을 수신하고 상기 방출기 및 상기 벌크 송신기 광학부 사이의 위치에서 상기 방출기로부터 변위되는 초점에서 상기 방출기의 감소된 크기의 스팟 이미지를 생성하도록 구성된다.
일부 실시예에서, 광학 시스템은 광학 시스템 외부의 시야로부터 기원하는 광선을 수신하도록 구성된 벌크 수신기 광학부와, 시야 내의 복수의 이산적인 비-중첩 시야들을 정의하는 복수의 마이크로-광학 수신기 채널들을 가진 광학 어셈블리를 포함한다. 광학 어셈블리는 벌크 수신기 광학부의 초점면을 따라 배열된 복수의 이산적인 개구들을 가진 개구층, 개구층 뒤에 배치된 광센서들의 어레이, 및 서로 다른 마이크로-광학 채널이 서로 다른 파장 범위를 측정하게 하도록 구성되는 불균일(non-uniform) 광학 필터층을 포함한다. 불균일 광학 필터는 각각의 채널이 일정한 광학 필터층 두께를 갖도록, 그러나 서로 다른 마이크로-광학 채널들에 대한 두께들은 서로 다르도록, 두께가 1차원으로 점진적으로 증가하거나, 두께가 일 방향에서 계단 방식으로 증가하는, 점진적(graduated) 광학 필터를 포함할 수 있다.
일부 부가적인 실시예에서, 광학 시스템은 광학 시스템 외부의 시야로부터 광을 수신하도록 구성된 벌크 수신기 광학부와, 상기 벌크 광학부의 후방에 배치되고 상기 벌크 광학부의 초점면에 위치되는 복수의 개구들을 포함하는 개구층과, 초점 거리를 가지는 복수의 시준 렌즈들을 포함하되 상기 개구층 뒤에 배치되고 상기 개구층으로부터 상기 초점 거리만큼 이격되는 렌즈층과, 렌즈층 뒤의 불균일 광학 필터층과, 복수의 광센서들을 포함하는 광센서층을 포함한다. 상기 개구층, 렌즈층, 불균일 광학 필터층 및 광센서층은 상기 시야에서 복수의 이산적인 비-중첩 시야들을 정의하는 복수의 마이크로-광학 채널들을 형성하도록 배열되고, 상기 복수의 마이크로-광학 채널들의 각각의 마이크로-광학 채널은, 상기 복수의 개구들로부터의 하나의 개구, 상기 복수의 렌즈들로부터의 하나의 렌즈, 상기 필터층으로부터의 하나의 필터, 및 상기 복수의 광센서들로부터의 광센서를 포함하며, 상기 벌크 수신기 광학부로부터 입사되는 광을 상기 마이크로-광학 채널의 광센서에 전달하도록 구성된다. 불균일한 광학 필터층은 서로 다른 마이크로-광학 채널이 서로 다른 범위의 파장을 측정하게 하도록 구성된다.
특정 실시예에서, 광학 시스템은 광학 시스템 외부의 시야로부터 기원하는 광선을 수신하도록 구성된 벌크 수신기 광학부, 및 상기 시야 내의 복수의 이산적인 비-중첩 시야들을 정의하는 복수의 마이크로-광학 수신기 채널들을 가진 광학 어셈블리를 포함한다. 광학 어셈블리는, 프로세서, 메모리, 및 ASIC 내에 제조된 복수의 광센서들을 포함하는 모놀리식(monolithic) ASIC과, 상기 벌크 수신기 광학부의 초점면을 따라 배열된 복수의 이산적인 개구들을 가진 개구층 - 광센서들의 어레이는 개구층 후방에 배치됨 - 과, 개구층 및 광센서들의 어레이 사이에 위치되는 복수의 렌즈들과, 자신의 구조물에 걸쳐 적어도 2개의 서로 다른 마이크로-광학 수신기 채널이 광의 서로 다른 범위의 파장을 측정하게 하도록 서로 다른 중심 파장을 가지는 불균일 광학 필터층을 포함하고, 상기 개구층, 복수의 렌즈들, 불균일 광학 필터층은 ASIC의 모놀리식 구조물의 일부를 형성하도록 ASIC 상에 형성된다.
일부 실시예에서, 거리 측정을 수행하기 위한 광학 시스템은, 광학적으로 투명한 윈도우를 가진 고정식 하우징과, 하우징 내에 배치되는 회전 광 레인징 장치와, 하우징 내에 배치되고 하우징 내의 플랫폼, 광학 송신기 및 광학 수신기를 포함한 상기 광 레인징 장치를 회전시키도록 동작가능하게 연결되는 모터와, 하우징 내에 배치된 시스템 컨트롤러를 포함하고, 상기 시스템 컨트롤러는 상기 모터를 제어하고, 상기 광 레인징 장치의 광 검출 동작을 개시 및 정치시키도록 구성된다. 광 레인징 장치는 플랫폼, 상기 플랫폼에 연결된 광학 송신기, 및 상기 플랫폼에 연결된 광학 수신기를 포함한다. 광학 송신기는 벌크 송신기 광학부 및 복수의 송신기 채널들을 포함하고, 각각의 송신기 채널은 협대역 광을 생성하고 벌크 송신기 광학부를 통해 광학 시스템의 외부의 시야로 송신하도록 구성되는 광 방출기를 포함한다. 광학 수신기는 벌크 수신기 광학부 및 복수의 마이크로-광학 수신기 채널들을 포함하고, 각각의 마이크로-광학 채널은 벌크 수신기 광학부의 초점면과 일치하는 개구와, 벌크 수신기 광학부로부터의 광의 경로를 따라 위치되고 상기 개구와 축 방향으로 정렬되는 광학 필터와, 개구 및 광학 필터를 통과한 입사 광자에 반응하는 광센서를 포함한다.
일부 부가적인 실시예에서, 거리 측정을 수행하기 위한 광학 시스템은, 베이스, 상부, 및 상기 베이스와 상부 사이에 배치된 광학적으로 투명한 윈도우를 가지는 고정식 하우징과, 하우징 내에 배치되고 광학적으로 투명한 윈도우와 정렬되는 회전 광 레인징 장치와, 하우징 내에 배치되고 하우징 내의 플랫폼, 광학 송신기 및 광학 수신기를 포함하는 광 레인징 장치를 회전시키도록 동작가능하게 연결되는 모터와, 모터를 제어하고 상기 광 레인징 장치의 광 검출 동작을 개시 및 정지시키도록 구성되는 시스템 컨트롤러를 포함한다. 광 레인징 장치는 플랫폼, 플랫폼에 연결된 광학 송신기, 및 플랫폼에 연결된 광학 수신기를 포함한다. 이미지-공간 텔레센트릭 벌크 송신기 광학부 및 복수의 송신기 채널들을 포함하는 광학 송신기와, 각각의 채널은 벌크 송신기 광학부를 통해 협대역 광을 생성하고 광학 시스템의 외부에 있는 시야로 협대역 광을 송신하도록 구성된 광 방출기를 포함한다. 광학 수신기는, 이미지-공간 텔레센트릭(telecentric) 벌크 수신기 광학부 및 복수의 마이크로-광학 수신기 채널들을 포함하고, 각각의 마이크로-광학 수신기 채널은 상기 벌크 수신기 광학부의 초점면과 일치하는 개구, 상기 개구의 후방에 있는 시준 렌즈, 상기 시준 렌즈 뒤에 있는 광학 필터, 및 상기 개구를 통해 상기 시준 렌즈 내로 통과하는 그리고 상기 필터를 통과하는 입사 광자에 반응하는 광센서를 포함한다.
특정 실시예에서, 거리 측정을 수행하기 위한 광학 시스템은, 베이스, 상부 및 상기 베이스와 상부 사이에 배치된 광학적으로 투명한 윈도우를 가지는 고정식 하우징과, 하우징 내에 배치되고 광학적으로 투명한 윈도우와 정렬되는 광 레인징 장치와, 하우징 내에 배치되고 하우징 내에서 광 레인징 장치를 회전시키도록 동작가능하게 연결된 모터와, 하우징 내에 배치되는 시스템 컨트롤러를 포함하고, 시스템 컨트롤러는 상기 모터를 제어하고, 상기 광 레인징 장치의 광 검출 동작을 개시 및 정지시키 도록 구성된다. 상기 광 레인징 장치는 플랫폼, 어레이 내에 배열된 복수의 수직-공동 표면 방출 레이저(vertical-cavity surface emitting laser, VCSEL), 및 상기 플랫폼에 연결된 광학 수신기를 포함한다. 복수의 VCSEL 중 각각의 VCSEL은 이산적인 광 펄스들을 생성하고 광학 시스템 외부의 시야로 송신하도록 구성된다. 광학 수신기는, 벌크 수신기 광학부, 복수의 광센서들 - 각각의 광센서는 입사 광자에 반응하는 복수의 단일-광자 애벌란시 다이오드(single-photon avalanche diode, SPAD)를 포함함 - , 및 상기 벌크 수신기 광학부와 복수의 광센서들 사이에 배치되고 대역 외의 광이 복수의 광센서에 도달하는 것을 차단하는 반면 특정 대역의 광이 필터를 통과하여 복수의 광센서들에 전달되게 하도록 구성되는 광학 필터를 포함한다.
일부 실시예에서, 거리 측정을 수행하기 위한 광학 시스템은, 회전가능한 플랫폼, 상기 회전가능한 플랫폼에 연결되고 벌크 송신기 광학부 및 복수의 송신기 채널을 포함하는 광학 송신기, 상기 회전가능한 플랫폼에 연결되고 벌크 수신기 광학부 및 복수의 마이크로-광학 수신기 채널을 포함하는 광학 수신기, 하우징 내에 배치되고 상기 플랫폼, 광학 송신기 및 광학 수신기를 회전시키도록 동작가능하게 연결되는 모터, 광학 시스템의 고정식 구성요소에 장착되는 시스템 컨트롤러, 및 상기 시스템 컨트롤러가 광학 수신기에 통신할 수 있게 상기 시스템 컨트롤러 및 광학 수신기 사이에서 동작가능하게 연결되는 광학 통신 링크를 포함한다. 각각의 송신기 채널은 협대역 광을 생성하고 벌크 송신기 광학부를 통해 광학 시스템 외부의 시야로 송신하도록 구성된 광 방출기를 포함한다. 각각의 마이크로-광학 채널은 벌크 수신기 광학부의 초점면과 일치하는 개구, 벌크 수신기 광학부로부터의 광의 경로를 따라 위치되고 개구와 축방향으로 정렬되는 광학 필터, 개구를 통과하여 그리고 필터를 통과하여 전달되는 입사 광자에 반응하는 광센서를 포함한다. 광학 통신 링크는 시스템 컨트롤러를 광학 수신기와 동작가능하게 연결하기 위해, 광학 시스템의 고정식 구성요소와 회전가능한 플랫폼 사이에서 연장될 수 있다. 광학 수신기는 개구 뒤에 배치되고 광학 필터에 직접 연결되는 시준 렌즈를 더 포함할 수 있고, 광학 필터는 시준 렌즈의 후방에 위치된다.
일부 부가적인 실시예에서, 거리 측정을 수행하기 위한 광학 시스템은, 회전가능한 플랫폼과, 상기 회전가능한 플랫폼에 연결되고 이미지-공간 텔레센트릭 벌크 송신기 광학부 및 복수의 송신기 채널들을 포함하는 광학 송신기와, 상기 회전가능한 플랫폼에 연결되고 이미지-공간 텔레센트릭 벌크 수신기 광학부 및 복수의 수신기 마이크로-광학 수신기 채널들을 포함하는 광학 수신기와, 하우징 내에 배치되고 상기 플랫폼, 광학 송신기 및 광학 수신기를 회전시키도록 동작가능하게 연결되는 모터와, 광학 시스템의 고정식 구성요소에 장착되는 시스템 컨트롤러와, 상기 시스템 컨트롤러가 상기 광학 수신기와 통신할 수 있도록 상기 시스템 컨트롤러 및 광학 수신기 사이에 동작가능하게 연결되는 광학 통신 링크를 포함한다. 각각의 송신기 채널은 협대역 광을 생성하고 벌크 송신기 광학부를 통해 광학 시스템 외부의 시야로 송신하도록 구성된 광 방출기를 포함한다. 각각의 마이크로-광학 채널은, 벌크 수신기 광학부의 초점면과 일치하는 개구, 개구 후방의 시준 렌즈, 시준 렌즈 후방의 광학 필터, 및 개구를 통해 시준 렌즈로 그리고 필터를 통해 전달되는 입사 광자에 반응하는 광센서를 포함한다.
특정 실시예에서, 거리 측정을 수행하기 위한 광학 시스템은, 회전가능한 플랫폼과, 어레이 내에 배열되고 상기 회전가능한 플랫폼에 연결되는 복수의 수직 공동 표면 발광 레이저(VCSEL)와, 상기 회전가능한 플랫폼에 연결되는 광학 수신기와, 하우징 내에 배치되고 상기 플랫폼, 복수의 VCSEL 및 광학 수신기를 회전시키도록 동작가능하게 연결되는 모터와, 상기 광학 시스템의 고정식 구성요소에 장착되는 시스템 컨트롤러와, 상기 시스템 컨트롤러가 상기 광학 수신기와 통신할 수 있도록 상기 시스템 컨트롤러와 광학 수신기 사이에 동작가능하게 연결되는 광학 통신 링크를 포함한다. 복수의 VCSEL 중 각각의 VCSEL은 이산적인 광 펄스들을 생성하고 광학 시스템 외부의 시야로 송신하도록 구성된다. 광학 수신기는 벌크 수신기 광학부 및 복수의 광센서들을 포함하며, 각각의 광센서는 입사 광자에 반응하는 복수의 단일-광자 애벌란시 다이오드들(SPAD)을 포함한다.
일부 실시예에서, 거리 측정을 수행하기 위한 광학 시스템은, 벌크 수신기 광학부와, 복수의 개구들을 포함하는 개구층과, 제1 복수의 렌즈들을 포함하는 제1 렌즈층과, 벌크 수신기 광학부를 통과한 이후의 광을 수신하고, 특정 복사 대역을 통과시키되 상기 대역 외 복사를 차단하도록 구성되는 광학 필터층과, 복수의 광센서들을 포함하는 광센서층을 포함한다. 각각의 광센서는, 광자를 검출하도록 구성되는 복수의 광 검출기들과, 광센서에 수신되는 입사 광자를 복수의 광 검출기들 상에 집속하도록 구성되는 제2 복수의 렌즈들을 포함한다. 광학 시스템은, 복수의 수신기 채널들로부터의 각각의 수신기 채널이 상기 복수의 개구들 중의 하나의 개구를 포함하는, 복수의 수신기 채널들과, 복수의 제1 렌즈들 중의 하나의 렌즈와, 광학 필터층으로부터의 하나의 광학 필터와, 복수의 광센서들로부터의 하나의 광센서를 포함하고, 각각의 채널에 대한 상기 개구는 개별 채널에 대해 이산적인 비-중첩 시야를 정의한다. 상기 복수의 수신기 채널들 내의 각각의 수신기 채널에 대해, 상기 채널에 대한 광센서 내에서 상기 복수의 광 검출기들 및 제2 복수의 렌즈들 사이에 일대일 대응이 존재할 수 있으며, 여기서 제2 복수의 렌즈들 내의 각각의 렌즈는 제2 복수의 렌즈들 내의 대응하는 렌즈 상에 광자를 집속하도록 구성될 수 있다.
일부 부가적인 실시예에서, 거리 측정을 수행하기 위한 광학 시스템은 광 방출 시스템 및 광 검출 시스템을 포함한다. 광 방출 시스템은 벌크 송신기 광학부 및 조명 소스를 포함한다. 복수의 광 방출기들을 포함하는 조명 소스는 벌크 송신기 광학부를 통해 광학 시스템 전방의 시야로 이산적인 광의 빔들을 투사하도록 정렬된다. 광 검출 시스템은 벌크 수신기 광학부와, 복수의 개구들을 포함하는 개구층과, 제1 복수의 렌즈들을 포함하는 제1 렌즈층과, 상기 벌크 수신기 광학부를 통과한 이후의 광을 수신하고, 특정 복사 대역을 통과시키되 상대 대역 외 복사를 차단하도록 구성되는 광학 필터층과, 복수의 광센서들을 포함하는 광센서층을 포함한다. 각각의 광센서는 광자를 검출하도록 구성되는 복수의 광 검출기들과, 광센서에 수신된 입사 광자를 복수의 광 검출기들에 집속하도록 구성되는 제2 복수의 렌즈들을 포함한다. 광학 시스템은, 복수의 수신기 채널들의 각각의 수신기 채널이 복수의 개구들로부터의 하나의 개구를 포함하는 상기 복수의 수신기 채널들과, 복수의 제1 렌즈들로부터의 하나의 렌즈와, 상기 광학 필터층으로부터의 하나의 광학 필터와, 상기 복수의 광센서들로부터의 하나의 광센서를 포함하고, 각각의 채널에 대한 상기 개구는 개별 채널에 대한 이산적인 비-중첩 시야를 정의한다.
특정 실시예에서, 거리 측정을 수행하기 위한 광학 시스템은, 광학적으로 투명한 윈도우를 가진 고정식 하우징과, 상기 하우징 내에 배치되고 상기 광학적으로 투명한 윈도우와 정렬되는 광 레인징 장치와, 상기 하우징 내에 배치되고 상기 하우징 내에 플랫폼, 광학 송신기, 및 광학 수신기를 포함하는 광 레인징 장치를 회전시키도록 동작가능하게 연결되는 모터와, 상기 하우징 내에 배치되는 시스템 컨트롤러를 포함한다. 시스템 컨트롤러는 상기 모터를 제어하고, 상기 광 레인징 장치의 광 검출 동작을 개시 및 정지시키도록 구성된다. 광 레인징 장치는 플랫폼, 플랫폼에 연결된 광학 송신기, 플랫폼에 연결된 광학 수신기를 포함한다. 광학 송신기는, 벌크 송신기 광학부 및 복수의 송신기 채널들을 포함하고, 각각의 송신기 채널은, 협대역 광을 생성하고 상기 벌크 송신기 광학부를 통해 상기 광학 시스템의 외부의 시야로 송신하도록 구성되는 광 방출기를 포함한다. 광학 수신기는, 벌크 수신기 광학부와, 복수의 개구들을 포함하는 개구층과, 제1 복수의 렌즈들을 포함하는 제1 렌즈층과, 벌크 수신기 광학부를 통과한 이후의 광을 수신하고, 특정 복사 대역을 통과시키되 상기 대역 외 복사를 차단하도록 구성되는 광학 필터층과, 복수의 광센서들을 포함하는 광센서층을 포함한다. 각각의 광센서는 광자를 검출하도록 구성되는 복수의 광 검출기들과, 광센서에 수신된 입사 광자를 복수의 광 검출기들에 집속하도록 구성되는 제2 복수의 렌즈들을 포함한다. 광학 시스템은, 복수의 수신기 채널들의 각각의 수신기 채널이 복수의 개구들로부터의 하나의 개구를 포함하는 상기 복수의 수신기 채널들과, 복수의 제1 렌즈들로부터의 하나의 렌즈와, 상기 광학 필터층으로부터의 하나의 광학 필터와, 상기 복수의 광센서들로부터의 하나의 광센서를 포함하고, 각각의 채널에 대한 상기 개구는 개별 채널에 대한 이산적인 비-중첩 시야를 정의한다.
이하의 상세한 설명 및 첨부 도면들을 참조하여 본 개시의 실시예들의 특성 및 장점들을 더 잘 이해할 수 있을 것이다.
도 1은 본 개시의 일부 실시예에 따른 예시적인 수동 광학 이미저 시스템의 블록도이다.
도 2는 본 개시의 일부 실시예에 따른, 수동 광학 이미저 시스템을 위한 예시적인 광 검출 시스템의 개략도이다.
도 3a 및 도 3b는 본 개시의 일부 실시예에 따른, 점진적(graduated) 필터층들을 가진 마이크로-광학 수신기 층들의 서로 다른 실시예의 개략도의 사시도들이다.
도 4는 본 개시의 일부 실시예에 따른 회전하는 LIDAR 시스템의 블록도이다.
도 5a 및 도 5b는 본 개시의 일부 실시예에 따른, 고정형 LIDAR 시스템들의 예시적인 구현들의 간단한 도면들이다.
도 6a 및 도 6b는 본 개시의 일부 실시예에 따른, 스캐닝 LIDAR 시스템들의 예시적인 구현들의 간단한 도면들이다.
도 7은 본 개시의 일부 실시예에 따른, 360도 스캐닝 아키텍처를 채용하는 LIDAR 시스템의 일 실시예를 도시하는 예시적인 사시도이다.
도 8은 본 개시의 일부 실시예에 따른, 광 레인징 시스템에 대한 광 송신 및 검출 동작의 예시적인 도면이다.
도 9는 본 개시의 실시예들에 따른, 광학 측정 시스템에서의 코딩된 펄스들을 사용하는 방법을 예시하는 흐름도이다.
도 10은 본 개시의 일부 실시예에 따른, 넓은 시야를 갖고 협대역 이미징이 가능한 예시적인 능동 광학 이미저 시스템의 상세한 도면을 예시하는 개략도이다.
도 11 내지 도 14는 본 개시의 일부 실시예에 따른 다양한 예시적인 향상된 광 방출 시스템들의 개략적인 단면도들이다.
도 15a 내지 15c는 본 개시의 일부 실시예에 따른, 비점 수차(astigmatism)를 위한 교정 광학 구조물들의 서로 다른 구현들을 가진 예시적인 능동 이미저 시스템들의 개략도의 단면도들이다.
도 16a는 채널들 사이에 크로스토크가 없는 광 검출 시스템(1600)의 일부의 개략적인 단면도이다.
도 16b는 채널들 사이에 크로스토크가 존재하는 광 검출 시스템(1601)의 일부의 개략적인 단면도이다.
도 17은 본 개시의 일부 실시예에 따른 예시적인 마이크로-광학 수신기 채널 구조의 개략적인 단면도이다.
도 18a 내지 도 18d는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 다양한 개구층들의 개략적인 단면도들이다.
도 19a 내지 도 19d는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 개구층 및 광학 렌즈층 사이의 다양한 스페이서 구조들의 개략적인 단면도들이다.
도 20a 내지 도 20g는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 다양한 광학 필터층들의 개략적인 단면도들이다.
도 21a 내지 도 21k는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 확산기들을 가진 다양한 광센서층들의 개략적인 단면도들이다.
도 22a 내지 도 22i는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 다양한 반구형 수신기 구조들의 개략적인 단면 도들이다.
도 23a 내지 도 23e는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 다양한 기저 마이크로 렌즈층들의 개략적인 단면도들이다.
도 24 및 도 25는 본 개시의 일부 실시예에 따른 예시적인 수신기 채널들의 개략적인 단면도들이다.
도 26 내지 도 30은 본 개시의 일부 실시예에 따른, 예시적인 마이크로-광학 수신기 어레이들의 개략적인 평면도들이다.
도 2는 본 개시의 일부 실시예에 따른, 수동 광학 이미저 시스템을 위한 예시적인 광 검출 시스템의 개략도이다.
도 3a 및 도 3b는 본 개시의 일부 실시예에 따른, 점진적(graduated) 필터층들을 가진 마이크로-광학 수신기 층들의 서로 다른 실시예의 개략도의 사시도들이다.
도 4는 본 개시의 일부 실시예에 따른 회전하는 LIDAR 시스템의 블록도이다.
도 5a 및 도 5b는 본 개시의 일부 실시예에 따른, 고정형 LIDAR 시스템들의 예시적인 구현들의 간단한 도면들이다.
도 6a 및 도 6b는 본 개시의 일부 실시예에 따른, 스캐닝 LIDAR 시스템들의 예시적인 구현들의 간단한 도면들이다.
도 7은 본 개시의 일부 실시예에 따른, 360도 스캐닝 아키텍처를 채용하는 LIDAR 시스템의 일 실시예를 도시하는 예시적인 사시도이다.
도 8은 본 개시의 일부 실시예에 따른, 광 레인징 시스템에 대한 광 송신 및 검출 동작의 예시적인 도면이다.
도 9는 본 개시의 실시예들에 따른, 광학 측정 시스템에서의 코딩된 펄스들을 사용하는 방법을 예시하는 흐름도이다.
도 10은 본 개시의 일부 실시예에 따른, 넓은 시야를 갖고 협대역 이미징이 가능한 예시적인 능동 광학 이미저 시스템의 상세한 도면을 예시하는 개략도이다.
도 11 내지 도 14는 본 개시의 일부 실시예에 따른 다양한 예시적인 향상된 광 방출 시스템들의 개략적인 단면도들이다.
도 15a 내지 15c는 본 개시의 일부 실시예에 따른, 비점 수차(astigmatism)를 위한 교정 광학 구조물들의 서로 다른 구현들을 가진 예시적인 능동 이미저 시스템들의 개략도의 단면도들이다.
도 16a는 채널들 사이에 크로스토크가 없는 광 검출 시스템(1600)의 일부의 개략적인 단면도이다.
도 16b는 채널들 사이에 크로스토크가 존재하는 광 검출 시스템(1601)의 일부의 개략적인 단면도이다.
도 17은 본 개시의 일부 실시예에 따른 예시적인 마이크로-광학 수신기 채널 구조의 개략적인 단면도이다.
도 18a 내지 도 18d는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 다양한 개구층들의 개략적인 단면도들이다.
도 19a 내지 도 19d는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 개구층 및 광학 렌즈층 사이의 다양한 스페이서 구조들의 개략적인 단면도들이다.
도 20a 내지 도 20g는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 다양한 광학 필터층들의 개략적인 단면도들이다.
도 21a 내지 도 21k는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 확산기들을 가진 다양한 광센서층들의 개략적인 단면도들이다.
도 22a 내지 도 22i는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 다양한 반구형 수신기 구조들의 개략적인 단면 도들이다.
도 23a 내지 도 23e는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 다양한 기저 마이크로 렌즈층들의 개략적인 단면도들이다.
도 24 및 도 25는 본 개시의 일부 실시예에 따른 예시적인 수신기 채널들의 개략적인 단면도들이다.
도 26 내지 도 30은 본 개시의 일부 실시예에 따른, 예시적인 마이크로-광학 수신기 어레이들의 개략적인 평면도들이다.
본 개시의 일부 실시예는 시야 내의 주변광으로부터 그리고/또는 시야 내의 물체로부터 반사된, 광학 송신기로부터 방출된 광으로부터 이미지를 생성할 수 있는 광학 이미저 시스템에 관한 것이다. 예를 들어, 일부 실시예에서, 광학 이미저 시스템은, 특정 장면 또는 주어진 영역을 능동적으로 조명하지 않고, 그 대신에, 해당 장면 또는 영역 내의 하나 이상의 물체들로부터의 반사된 장면 또는 영역의 주변광을 검출하는 수동 시스템일 수 있다. 수동 광학 이미저 시스템은 시야에서의 주변 광을 수신하기 위한 광 감지 모듈을 포함할 수 있다. 광 감지 모듈은 이미징 정보를 수집하는 넓은 시야의, 협대역 광학 이미징 시스템(wide field-of-view, narrowband optical imaging system, WFNBI)일 수 있다. 광 감지 모듈은 하나 이상의 벌크(bulk) 수신기 광학부와, 마이크로-광학 수신기 시스템과, 상기 광 감지 모듈을 동작시키기 위한 시스템 컨트롤러를 포함할 수 있다. 본 개시의 일부 실시예에 따르면, 마이크로-광학 수신기 시스템은 하나 이상의 마이크로-광학 수신기 층 및 하나 이상의 광센서를 포함할 수 있으며, 각각의 광센서는 수신된 광을 측정할 수 있는 하나 이상의 광 검출기를 포함할 수 있다.
본원에 정의된 바와 같은 벌크 이미징 광학부는, 가능하게는 다수의 렌즈 요소들을 포함하는, 1 mm보다 큰 선명한 개구를 갖고, 마이크로-광학 송신기/수신기 층으로부터 투사되는 광을 수신하거나, 수신된 광을 마이크로-광학 송신기/수신기 층에 집속하도록 위치되는 하나 이상의 광학 표면일 수 있다. 마이크로-광학 송신기 층과 같은 광학 방출기로부터 수신된 광을 투사하는 벌크 이미징 광학부는, 종종, 본원에서 벌크 송신기 광학부 또는 출력 벌크 이미징 광학부로 지칭된다. 마이크로-광학 수신기 층과 같은, 특정 시야로부터 수신된 광을 광학 검출기 상에 집속시키는 벌크 광학 층은, 종종, 본원에서 벌크 수신기 광학부 또는 입력 벌크 이미징 광학부로 지칭된다. 입력되는, 이미지-공간 텔레센트릭(telecentric) 벌크 이미징 광학부는 시스템이 넓은 시야(field-of-view, FOV)에 걸쳐 균일하게 협대역 광을 측정하게 한다. 마이크로-광학 수신기 층은 1차원의 또는 2차원의 마이크로-광학 수신기 채널들의 어레이를 포함할 수 있는데, 여기서, 각각의 마이크로-광학 수신기 채널은 하나 이상의 개구, 시준(collimating) 마이크로-렌즈, 광학 필터, 및 광센서를 포함하는 다수의 구성요소를 가진다. 일부 경우에, 마이크로-광학 수신기 채널 구조는 흡수성 및/또는 반사성 측벽들 및/또는 집속 깔때기(funnel)를 가진 인클로저를 구비하는 원주형 배열을 가진다. 마이크로-광학 수신기 채널은, 이하 상세히 설명되는 바와 같이, 자신의 개구를 통해 들어오는 광선의 수집을 최대화하고, 광학 필터에 수직하게 되도록 광을 시준하며, 이웃하는 개구로부터의 입력의 혼합으로 인한 인접 마이크로-광학 수신기 채널과의 크로스토크를 최소화한다. 다양한 예들에서, 본 개시에 따른 벌크 이미징 광학부는 방출기들 또는 광센서들의 전체 어레이에 대한 광 또는 다른 복사선을 변경한다. 마이크로-광학 구조물은 어레이의 일부로서 포함될 수 있고, 어레이 내의 서로 다른 방출기들 및/또는 광센서들에 대해 상이하게 광을 변경할 수 있다. 일부 실시예에서, 각각의 개별 어레이 요소(광센서 및/또는 방출기)에 대해 하나 이상의 마이크로-광학 요소가 존재한다.
일부 실시예에서, 광학 이미저 시스템은 시야 내로 광을 방출하고, 이어서, 상기 시야 내의 물체의 표면으로부터 반사된 이후의 상기 방출된 광을 검출할 수 있는 능동 시스템일 수 있다. 능동 광학 이미저 시스템은, 광 감지 모듈에 부가하여 광 전송 모듈을 포함할 수 있고, 광 레인징(ranging) 장치로서 구성될 수 있다. 광 전송 모듈은, 각각의 방출기가 광 감지 모듈 내의 대응하는 마이크로-광학 수신기 채널과 쌍을 이룰 수 있는 개별 방출기들의 어레이로 구성되는 송신기 층을 포함할 수 있거나, 또는, 개별 방출기들 및 수신기 채널들 사이에 특정 쌍을 갖지 않고 해당 장면에 걸쳐 광을 고르게 분산시키는 균일한 조명기일 수 있다. 일부 경우에, 광 전송 모듈은 방출기들의 어레이로부터 출력되는 광을 향상시키기 위해 마이크로-광학 송신기 채널 어레이를 포함할 수 있다. 동작되는 동안, 방출기들의 어레이에 의해 출력된 광(예를 들어, 레이저 펄스)은 마이크로-광학 송신기 채널 어레이를 통과하고, 마이크로-광학 송신기 채널 어레이로부터의 광을 더 잘 포착(capture)하기 위해 큰 수치의 개구를 가진 벌크 송신기 광학부에 입사된다. 그 후, 상기 광은 벌크 송신기 광학부를 빠져나가고, 먼 시야에서 복수의 스팟들을 비춘다. 마이크로-광학 송신기 채널 어레이는, 본원에서 더 상세하게 설명되는 바와 같이, 향상된 스팟 조명을 제공하기 위해 벌크 송신기 광학부로부터 나오는 빔의 휘도를 개선할 수 있는 한편, 동시에, 측정된 이미지의 공간 해상도를 향상시킬 수 있다.
본 개시의 일부 실시예에 따르면, 이미저 시스템은 넓은 시야의 협대역 광학 시스템이다. 따라서, 이미저는 이미지들을 포착하고 적어도 10도의 FOV에 걸쳐 광을 검출할 수 있다. 특정 실시예에서, 이미저는 이미지들을 포착하고, 적어도 20도의 FOV에 걸쳐, 그리고 일부 실시예에서는 적어도 30도의 FOV에 걸쳐, 광을 검출할 수 있다. 또한, 이미저는 대략 10 nm 이하의 파장에서 광을 검출할 수 있다. 일부 특정 실시예에서, 광 감지 모듈은 대략 5 nm 이하의 파장에서 광을 검출할 수 있다. 일부 실시예에서, 이미저 시스템은 대략 32도의 FOV에 걸쳐 5 nm미만의 파장에서 광을 검출하고 포착할 수 있다. FOV는 수직 방향 또는 수평 방향, 또는 그 사이의 임의의 다른 각도일 수 있다.
본 개시의 실시예들에 따른 수동 및 능동 광학 이미저 시스템들의 기능 및 구성을 더 잘 이해하기 위하여, 각각이 본원에서 상세히 설명될 것이다.
I. 수동 광학 이미저 시스템
수동 광학 이미저 시스템은 이미지를 생성하기 위해 주변광을 수신한다. 도 1은 본 개시의 일부 실시예에 따른 예시적인 수동 광학 이미저 시스템(100)의 블록도이다. 수동 광학 이미저 시스템(100)은 시야 내에 존재하는 광을 포착하기 위한 수동 광 포착 장치(102)를 포함한다. 수동 광 포착 장치(102)는 시스템 컨트롤러(104) 및 광 감지 모듈(106)을 포함할 수 있다. 이미징 데이터는 수동 광학 이미저 시스템(100)이 위치된 시야에 존재하는 광을 수신함으로써 수동 광 포착 장치(102)에 의해 생성될 수 있다. 수신된 광은 시스템(100) 내의 송신기로부터 방출되는 광과 대조적으로, 시야에서 자연적으로 존재하는 광, 즉, 주변광일 수 있다.
광 감지 모듈(106)은 예를 들어, 광센서들의 1차원 또는 2차원 어레이일 수 있는, 센서 어레이(108)를 포함할 수 있다. 각각의 광센서(그냥 "센서"라고도 불리거나, 통상의 기술자에 의해 종종 "픽셀"로 지칭됨)는 광 검출기들의 모음(예를 들어, SPAD 등)을 포함할 수 있거나, 또는 센서는 단일 광자 검출기(예를 들어, APD)일 수 있다. 광 감지 모듈(106)은 광학 감지 시스템(110)을 포함하는데, 이는 센서 어레이(108)와 함께 취해질 때 광 검출 시스템(112)을 형성할 수 있다. 일부 실시예에서, 광학 감지 시스템(110)은, 벌크 수신기 광학부(114)와, 센서 어레이(108)와 조합되어 마이크로-광학 수신기 채널들의 어레이를 형성할 수 있는, 개구층, 시준 렌즈층 및 광학 필터와 같은 광학 구성요소들(116)을 포함할 수 있는데, 각각의 마이크로-광학 수신기 채널은 시스템(100)이 위치되는 주변 시야 중 구분된(distinct) 시야에서의 이미지 픽셀에 대응하는 광을 측정한다. 본 개시에 따른 마이크로-광학 수신기 채널들의 다양한 실시예의 부가적인 세부사항들은 도 17 내지 도 30과 함께 이하 상세히 설명된다.
일부 실시예에서, 광 감지 모듈(106)의 센서 어레이(108)는, 광센서들의 어레이, 프로세서(118), 및 어레이 내의 개별 광센서들(또는 광센서들의 그룹들)로부터 측정된 광을 신호 처리하기 위한 메모리(120) 모두를 포함하는 (예를 들어, CMOS 기술을 이용한) 단일 기판 상의 모놀리식 장치의 일부로서 제조된다. 센서 어레이(108), 프로세서(118) 및 메모리(120)를 포함하는 모놀리식 구조는 전용 ASIC으로 제조될 수 있다. 일부 실시예에서, 광학 구성요소들(116)은, 센서 어레이(108), 프로세서(118) 및 메모리(120)가 일 부분이 되는, 모놀리식 구조의 일 부분일 수도 있다. 이러한 경우에, 광학 구성요소들(116)은, 이하 더 설명되는 바와 같이, 예를 들어, ASIC 상에 에폭시로 (비가역적으로) 접합되어, 모놀리식 구조의 일부가 되도록 형성될 수 있다. 전술한 바와 같이, 프로세서(118)(예를 들어, 디지털 신호 프로세서(DSP), 마이크로컨트롤러, 필드 프로그래머블 게이트 어레이(FPGA) 등) 및 메모리(120)(예를 들어, SRAM)는 신호 처리를 수행할 수 있다. 신호 처리의 일 예로서, 각각의 광센서 또는 광센서들의 그룹에 대하여, 광 감지 모듈(106)의 메모리(120)는 검출된 광자를 시간에 따라 축적할 수 있고, 이들 검출된 광자는 해당 시야의 이미지를 재생성하는 데에 사용될 수 있다.
일부 실시예에서, 프로세서(118)로부터의 출력은 부가적인 처리를 위해 시스템 컨트롤러(104)로 보내지는데, 예를 들어, 데이터는 시스템 컨트롤러(104)의 하나 이상의 인코더에 의해 인코딩된 다음, 데이터 패킷들로서 사용자 인터페이스(115)에 전송될 수 있다. 시스템 컨트롤러(104)는, 예를 들어, FPGA와 같은 프로그램가능 논리 장치를 ASIC으로서 또는 ASIC의 일부로서 사용하는 것, 메모리(124)를 가진 프로세서(122)를 사용하는 것, 그리고, 이상의 특정 조합을 사용하는 것을 포함하는, 다수의 방식으로 구현될 수 있다. 시스템 컨트롤러(104)는 광 검출의 시작 및 정지와 광 검출기 파라미터들의 조정을 포함하는 명령들을 전송함으로써 광 감지 모듈(106)을 제어하기 위해, 고정된(stationary) 베이스 컨트롤러와 함께 동작할 수 있거나, 또는 (미리 프로그램된 명령들을 통해) 베이스 컨트롤러와 독립적으로 동작할 수 있다. 일부 실시예에서, 시스템 컨트롤러(104)는 데이터를 광 감지 모듈(106)과 교환하기 위한 하나 이상의 유선 인터페이스 또는 커넥터를 가진다. 다른 실시예에서, 시스템 컨트롤러(104)는 광학 통신 링크와 같은 무선 인터커넥트를 통해 광 감지 모듈(106)과 통신한다.
수동 광학 이미저 시스템(100)은 사용자 인터페이스(115)와 상호작용할 수 있는데, 사용자 인터페이스(115)는 컴퓨터 시스템과 사용자가 상호작용할 수 있게 하는 임의의 적절한 사용자 인터페이스(예를 들어, 노트북, 태블릿, 및/또는 CPU와 메모리를 포함한 핸드헬드(handheld) 장치 컴퓨터 시스템과 인터페이스하기 위한 디스플레이, 터치 스크린, 키보드, 마우스, 및/또는 트랙 패드)일 수 있다. 사용자 인터페이스(115)는, 수동 광학 이미저 시스템(100)이 장착되지만 또한 원격으로 운영되는 시스템일 수 있는, 물체에 대해 국한될 수 있다. 예를 들어, 수동 광학 이미저 시스템(100)에 대한/수동 광학 이미저 시스템(100)으로부터의, 명령들 및 데이터는, 셀룰러 네트워크(LTE 등), 근거리 개인 통신망(블루투스, 지그비 등), 근거리 통신망(WiFi, IR 등), 또는 인터넷과 같은 광역 통신망을 통해 라우팅될 수 있다.
하드웨어 및 소프트웨어의 사용자 인터페이스(115)는 해당 장치로부터 사용자에게 이미저 데이터를 제공할 수 있지만, 사용자가 하나 이상의 명령을 사용하여 수동 광학 이미저 시스템(100)을 제어하게 할 수도 있다. 예시적인 명령들은, 이미저 시스템을 활성화 또는 비활성화시키는 명령, 광 검출기 노출 수준, 바이어스, 샘플링 기간 및 다른 동작 파라미터들(예를 들어, 방출된 펄스 패턴 및 신호 처리)을 지정하는 명령, 휘도(brightness)와 같은 광 방출기 파라미터들을 지정하는 명령들을 포함한다. 또한, 명령들은 사용자가 결과를 표시하기 위한 방법을 선택하게 할 수 있다. 사용자 인터페이스는 예를 들어, 단일 프레임 스냅샷 이미지, 지속적으로 업데이트된 비디오 이미지, 및/또는 일부 픽셀이나 모든 픽셀들에 대한 다른 광 측정의 디스플레이를 포함할 수 있는, 이미저 시스템 결과를 표시할 수 있다.
본원에 언급된 바와 같이, 광학 감지 시스템(110)의 하나 이상의 구성요소는 센서 어레이(108), 프로세서(118) 및 메모리(120)를 가진 모놀리식 구조의 일부일 수 있다. 예를 들어, 광학 구성요소들(116)의 개구층, 시준 렌즈층, 및 광학 필터층이 적층될 수 있고, 다이싱 이전 또는 이후에 웨이퍼 수준에서, 다수의 ASIC이 기판 상에 제조되어 있는 반도체 기판에 대해 에폭시로 접합될 수 있다. 예를 들어, 광학 필터층은, 광센서층에 대향하게 배치된 이후, 상기 광학 필터층이 모노리식 구조의 일부를 형성하도록 광학 필터층과 광센서층을 접합하기 위해 광센서층에 접합되는, 얇은 웨이퍼일 수 있고, 개구층은 투명 기판의 상부에 불투명 기판을 적층함으로써 또는 투명 기판을 불투명 필름으로 코팅함으로써 형성될 수 있다. 또는, 광센서층이 제작되고 다이싱될 수 있고, 이어서, 광학 필터층, 시준 렌즈층, 및 개구층이 제작되고 다이싱될 수 있다. 각각의 다이싱된 광센서층 및 광학 층들은 이후, 모놀리식 구조를 형성하도록 함께 접합될 수 있는데, 각각의 모놀리식 구조는 광센서층, 광학 필터층, 시준 렌즈층 및 개구층을 포함할 수 있다. 상기 층들을 ASIC에 접합함으로써, ASIC 및 접합된 층들이 모놀리식 구조를 형성할 수 있다. 그 후, 웨이퍼는 개별 장치들로 다이싱될 수 있는데, 여기서 각각의 장치는 광 감지 모듈(106)을 형성하기 위해 각각의 벌크 수신기 광학부(114)와 쌍을 이룰 수 있다. 또 다른 실시예에서, 광 감지 모듈(106)의 하나 이상의 구성요소는 모놀리식 구조의 외부에 있을 수 있다. 예를 들어, 조리개 층은 핀홀(pin-hole)을 가진 별도의 금속 시트로서 구현될 수 있다. 본 개시의 일 실시예에 따른 광학 감지 시스템 및 센서 어레이의 보다 상세한 도면은 도 2와 관련하여 여기에 설명된다.
도 2는 본 개시의 일부 실시예에 따른 예시적인 광 검출 시스템(200)의 개략도이다. 광 검출 시스템(200)은 도 1과 관련하여 앞서 설명된 광 검출 시스템(112)을 나타낼 수 있다. 광 검출 시스템(200)은 광학 감지 시스템 및 센서 어레이를 포함할 수 있다. 광학 감지 시스템은 벌크 수신기 광학부, 개구층, 시준 렌즈층, 및 광학 필터층을 포함할 수 있고, 센서 어레이는 광센서들의 어레이를 포함할 수 있는데, 각각의 광센서는 광을 측정하기 위한 하나 이상의 광 검출기를 포함할 수 있다. 일부 실시예에 따르면, 이러한 구성요소들은 시야로부터 광을 수신하도록 함께 동작한다. 예를 들어, 광 검출 시스템(200)은 벌크 수신기 광학부(202) 및 마이크로-광학 수신기(Rx) 층(204)을 포함할 수 있다. 동작하는 동안, 광선(206)은 다수의 방향들로부터 벌크 수신기 광학부(202)로 진입하고, 벌크 수신기 광학부(202)에 의해 집속되어 광 원뿔들(208)을 형성한다. 마이크로-광학 수신기 층(204)은 개구(210)가 벌크 수신기 광학부(202)의 초점면과 일치하도록 위치된다. 일부 실시예에서, 마이크로-광학 수신기 층(204)은 마이크로-광학 수신기 채널들(212)의 1차원 또는 2차원 어레이일 수 있으며, 여기서, 각각의 마이크로-광학 수신기 채널(212)은 예를 들어, 도 2에 도시된 바와 같이 좌측에서 우측으로 수평 방향으로, 광 흐름의 방향과 동일한 축을 따라 위치되는, 개별 개구(210), 시준 렌즈(214) 및 광센서(216)로 형성된다. 또한, 각각의 마이크로-광학 수신기 채널(212)은 본원에서 더 설명되는 바와 같이, 광센서들 사이의 미광(stray light)으로부터의 간섭을 완화시키는 다양한 방식으로 구성될 수 있다. 동작하는 동안, 각각의 마이크로-광학 수신기 채널(212)은 서로 다른 픽셀(즉, 시야 내에서의 위치)에 대한 광 정보를 측정한다.
벌크 수신기 광학부(202)의 초점에서, 광선(206)은 개구층(211)의 개구(210) 및 각각의 시준 렌즈(214) 안으로 집속되고 이를 통과한다. 각각의 시준 렌즈(214)는, 광선이 모두 대략 동일한 각도로, 예를 들어 서로 평행하게 광학 필터에 진입하도록, 수신된 광을 시준(collimate)한다. 벌크 수신기 광학부(202)의 개구 및 초점 거리는, 개구(210)에서 초점이 맞춰지는 각각의 광선의 원추각(cone angle)을 결정한다. 시준 렌즈들(214)의 구경 크기 및 초점 거리는 수신된 광선이 얼마나 잘 시준될 수 있는지를 결정하고, 이는 광학 필터(218)에서 통과대역이 얼마나 좁게 구현될 수 있는지를 결정한다. 개구(210)는 광 검출 시스템(200)이 동작하는 동안 다양한 기능을 수행할 수 있다. 예를 들어, 개구(210)는 (1) 광센서 평면에서의 넓은 피치에도 불구하고, 엄격한 공간 선택도(spatial selectivity)를 갖도록 픽셀 FOV를 구속할 수 있고, (2) 필터를 통과하기 전에 광선의 엄격한 시준을 달성하도록, 시준 렌즈들의 초점면에서 작은 점과 같은 광원을 제공할 수 있으며, (3) 미광(stray light)을 거부할 수 있다.
광학 필터(218)는 원치 않는 파장의 빛을 차단한다. 간섭 기반 필터들의 성능은 각도에 대해 강한 의존성을 나타내는 경향이 있다. 예를 들어, 0도 입사각에서 900 nm의 중심 파장(center wavelength, CWL)을 가진 1 nm 폭의 대역 통과 필터는 15도 입사각에서 898 nm의 CWL을 가질 수 있다. 대개, 이미징 시스템은 이러한 효과를 수용하기 위해, CWL의 시프트가 통과 대역의 폭보다 훨씬 작도록, 수십 나노미터 폭의 필터를 사용한다. 그러나, 마이크로-광학층(204)의 사용은 모든 광선들이 대략 동일한 입사각으로 광학 필터(218)에 진입하게 하여, CWL의 시프트를 최소화하고, 매우 엄격한 필터들(예를 들어, 10 nm미만의 폭)이 사용될 수 있게 한다. 광센서(216)는 입사 광자들에 반응하여 전류 또는 전압을 발생시킨다. 일부 실시예에서, 어레이 내의 각각의 개별적인 마이크로-광학 수신기 채널(212)이 동일한 파장 범위의 광을 수신하도록, 광학 필터(218)는 마이크로-광학 수신기 채널들(212)의 전체 어레이에 걸쳐 균일하다.
일부 실시예에서, 광선(206)이 광센서(216)에 노출되기 전에 먼저 시준 렌즈(214) 및 광학 필터(218)를 통과하도록, 광센서(216)는 시준 렌즈(214)의 반대측에 배치된다. 각각의 광센서(216)는, 예를 들어, 다수의 단일-광자 애벌란시 검출기(single-photon avalanche detector, SPAD)의 미니-어레이와 같은, 복수의 광 검출기들일 수 있다. SPAD들의 미니-어레이들의 어레이는 단일 모놀리식 칩 위에 제조되어, 제조를 단순화할 수 있다. 일부 대안적인 실시예에서, 각각의 광센서(216)는 하나의 광 검출기, 예를 들어 표준 포토다이오드, 애벌란시 포토다이오드, 공진 공동(resonant cavity) 포토다이오드, 또는 다른 유형의 광 검출기일 수 있다.
일부 다른 실시예에서, 광학 필터(218)는 불균일하다. 예를 들어, 점진적 필터(graduated filter)는 서로 다른 마이크로-광학 채널이 서로 다른 범위의 파장들을 측정하게 한다. 즉, 점진적 필터는 마이크로-광학 채널들의 어레이 내의 서로 다른 마이크로-광학 채널들이 서로 다른 중심 파장들(CWL)을 갖도록 한다. 점진적 필터는 대개, 허용된 파장의 범위를 1차원으로 또는 2차원으로 점진적으로 변화시킨다. 그러나, 점진적 필터는 허용된 파장의 범위가 1차원으로 또는 2차원으로 신속하게(예를 들어, 계단 방식으로) 변화하는 필터를 포함할 수도 있다. 채널에 대한 서로 다른 CWL는 다양한 방식으로 생성될 수 있다. 예를 들어, 필터의 두께가 변할 수 있고, 또는 굴절률이 변할 수 있다. 굴절률은, 필터층의 화학적 조성을 변경시킴으로써, 예를 들어 필터층이 불균일한 도핑 농도를 갖도록 변경시킴으로써와 같이, 필터층을 변경시킴으로써 변화될 수 있다. 결과적으로, 각각의 채널(또는 채널들의 행/열)은 서로 다른 도핑 농도를 가진 광학 필터층을 가질 수 있고, 이에 의해 두께를 변형시키지 않고도 각각의 채널(또는 채널들의 행/열)에 대해 서로 다른 CWL을 발생시킬 수 있다. 점진적 광학 필터를 이용하여 마이크로-광학 채널의 1차원 어레이를 회전시키는 것은 시스템으로 하여금 각각의 광센서에 대해 서로 다른 파장에서 광을 측정하게 한다. 점진적 필터가 스캔 방향을 따라 변화하는 마이크로 광학 채널의 2차원 어레이를 스캐닝하는 것은 수동 광학 이미저 시스템으로 하여금 공간 내의 각각의 위치에 대한 여러 파장에서의 광을 측정하게 하지만, 광센서에서 다수의 광 검출기들을 사용해서도 그렇게 할 수 있다. 점진적 필터를 사용하는 이러한 광학 시스템은, 서로 다른 파장 측정이 동일한 시야를 가진 동일한 광센서에 대해 얻어지도록 광센서 샘플링의 동기화를 필요로 한다. 다수의 서로 다른 파장들을 구별하는 이미징 시스템들은 종종 초분광 이미저(hyperspectral imager)로 지칭된다. 초분광 이미저는 종종, 관심 파장으로부터의 빛이 모두 대략 동일한 평면에 집속될 것을 필요로 한다. 이는 색수차(chromatic aberration)의 영향을 제한하도록 설계된, 아크로매틱(achromatic), 아포크로매틱(apochromatic), 수퍼아크로매틱(superachromatic), 또는 유사한 렌즈를 사용함으로써 달성될 수 있다.
초분광 이미저는 전자기 스펙트럼을 가로지르는 다수의 파장 대역으로부터 정보를 수집한다. 파장 대역의 절대 또는 상대 강도는 화학 농도에 관한 정보를 제공할 수 있다. 예를 들어, 특정 작물의 엽록소 함량은 단지 몇 개의 파장 대역을 사용하여 추정될 수 있다. 유사한 기술이 유용한 광물을 찾거나 독소를 식별하는 데에 사용될 수 있다. 또한, 분광 정보는 보행자, 자동차, 및 자동차 환경에서 유사하게 마주치는 다른 물체를 분류하는 데에 도움을 주기 위해 사용될 수 있다.
점진적 중성-농도 필터는 해당 필터에 걸쳐 공간적으로 변화하는 투과율을 가지지만, 투과율은 임의의 주어진 위치에서 파장(예를 들어, 적색 광에 대한 투과도가 청색 광에 대해서와 같음)에 대체로 독립적이다. 스캐닝 이미징 시스템에서, 점진적 중성-농도 필터는 다양한 감쇄 정도를 가진 공간의 동일한 지점을 이미징하는 데에 사용될 수 있으며, 이에 의해 비-점진적 필터로 달성될 수 있는 것보다 더 높은 다이나믹 레인지(dynamic range)를 가진 복합 측정이 가능해진다. 점진적 필터를 가진 마이크로-광학 수신기 층은 도 3a 및 도 3b를 참조하여 더 잘 이해될 수 있다.
도 3a 및 도 3b는 본 개시의 일부 실시예에 따른, 점진적 필터층들을 가진 마이크로-광학 수신기 층들의 서로 다른 실시예의 개략도의 사시도들이다. 도 3a는 점진적 필터층(302)을 가진 마이크로-광학 수신기 층(300)의 개략도의 사시도이고, 도 3b는 점진적 필터층(312)을 가진 마이크로-광학 수신기 층(301)의 개략도의 사시도이다. 도 3a 및 도 3b에 도시된 바와 같이, 마이크로-광학 수신기 층(300 및 301) 각각은 2×2 어레이로서 2차원으로 배열된 4개의 마이크로-광학 수신기 채널들(304, 306, 308, 310)을 포함한다. 도 3a 및 도 3b는 단지 2×2 어레이들만을 가진 실시예를 예시하고 있지만, 통상의 기술자는 이러한 실시예가 제한적이지 않으며, 다른 실시예는 임의의 개수의 마이크로-광학 수신기 채널들을 갖도록 구성될 수 있음을 이해할 것이다. 이들 도면에서, 필터층(302 및 312)의 두께와, 주변 층들의 두께는, 축척에 맞추어 도시되지는 않았으며, 간섭 필터 내의 굴절 재료 층들의 두께로서 해석되어야 함을 이해해야 한다. 이들 두께가 변화함에 따라, 간섭 필터의 특성(예를 들어, 투과 대역 CWL)이 변경된다. 이러한 실시예는 초분광 수동 광학 이미저 시스템에서 사용될 수 있다.
도 3a 및 도 3b에 도시된 바와 같이, 점진적 필터층(302)은 마이크로-광학 수신기 채널들의 다수의 열들에 걸쳐 1차원으로 점진적으로 증가되는 두께를 가지며, 점진적 필터층(312)은 각각의 마이크로-광학 수신기 채널에 대하여 1차원으로 일정한 두께를 가지는, 계단식으로 증가하는 두께를 가진다. 마이크로-광학 수신기 채널들(304 및 308)은 동일한 필터 두께를 가지며 동일한 파장의 광을 검출한다. 마이크로-광학 수신기 채널들(306 및 310)은 동일한 필터 두께를 가지며 동일한 파장의 광을 검출한다. 마이크로-광학 수신기 채널들(304 및 308)은 마이크로-광학 수신기 채널들(306 및 310)과 서로 다른 필터 두께를 가질 수 있고, 따라서 서로 다른 파장의 광을 검출할 수 있다. 제1 시간 간격 동안, 마이크로-광학 수신기 채널들(304 및 308)은 2개의 픽셀에 대한 제1 파장의 광의 세기를 각각 측정한다. 일부 실시예에서, 초분광 수동 광학 이미저 시스템은 제2 시간 간격 동안, 마이크로-광학 수신기 채널들(306 및 310)이 동일한 2개의 픽셀들에 대해 제2 파장의 광의 세기를 각각 측정하도록, 마이크로-광학 수신기 층을 이동 또는 회전시킨다. 다른 실시예에서, 본 개시에 따른 초분광 수동 광학 이미저 시스템은 고정된 마이크로-광학 수신기 층을 포함할 수 있고 이동하는 목표물을 스캔할 수 있다.
II. 능동 광학 이미저 시스템
본원에서 설명된 바와 같이, 광학 이미저 시스템은 또한 능동 광학 이미저 시스템으로서 구성될 수 있다. 능동 광학 이미저 시스템은, 능동 광학 이미저 시스템이 자신의 광을 시야로 방출하고 그것이 시야 내의 물체의 표면(들)에서 반사된 후의 상기 방출된 광을 검출한다는 점에서 수동 광학 이미저 시스템과 상이할 수 있다. 일부 실시예에서, 능동 광학 이미저 시스템들은 방출되고 수신되는 LIDAR 장치들로서 이용될 수 있고, 반사된 광은 방출된 광이 반사되는 물체까지의 거리를 결정하기 위해 상관될 수 있다. 능동 광학 이미저 시스템에 대해서는 도 4를 참조하여 더 잘 이해될 수 있다.
도 4는 본 개시의 일부 실시예에 따른 LIDAR 시스템(400)의 블록도를 도시한다. LIDAR 시스템(400)은 광 레인징 장치(402) 및 사용자 인터페이스(415)를 포함할 수 있다. 광 레인징 장치(402)는 레인징 시스템 컨트롤러(404), 광 전송(Tx) 모듈(406), 및 광 감지(Rx) 모듈(408)을 포함할 수 있다. 레인징 데이터는 광 전송 모듈(406)로부터의 하나 이상의 광 펄스들(410)을, 광 레인징 장치(402) 주변 시야의 물체들에 전송함으로써 광 레인징 장치(402)에 의해 생성될 수 있다. 이어서, 전송된 광의 반사된 부분들(412)이 일부 지연 시간 후에 광 감지 모듈(408)에 의해 검출된다. 지연 시간에 기초하여, 반사 표면까지의 거리가 결정될 수 있다. 예를 들어, 연속파, 도플러 등과 같은 다른 레인징 방법도 사용될 수 있다.
Tx 모듈(406)은 방출기들의 1차원 또는 2차원 어레이일 수 있는 방출기 어레이(414), 및 방출기 어레이(414)와 함께 광 방출 시스템(438)을 형성할 수 있는 Tx 광학 시스템(416)을 포함한다. Tx 광학 시스템(416)은 이미지-공간 텔레센트릭(telecentric)인 벌크 송신기 광학부를 포함할 수 있다. 일부 실시예에서, Tx 광학 시스템(416)은, 도 11 내지 도 14에 관하여 본원에서 설명된 바와 같은, 그리고/또는 빔 성형, 빔 조향 등을 위한, 벌크 송신기 광학부로부터 나오는 빔의 밝기를 증가시키는 하나 이상의 마이크로-광학 구조물을 더 포함할 수 있다. 방출기 어레이(414) 또는 개별적인 방출기들은 레이저 소스일 수 있다. Tx 모듈(406)은 선택적인 프로세서(418) 및 메모리(420)를 더 포함할 수 있지만, 일부 실시예에서 이러한 컴퓨팅 자원들은 레인징 시스템 컨트롤러(404) 내에 통합될 수 있다. 일부 실시예에서, 펄스 코딩 기술, 예를 들어 바커 코드(Barker code) 등이 사용될 수 있다. 이러한 경우들에서, 메모리(420)는 광이 전송되어야 할 때를 나타내는 펄스-코드들을 저장할 수 있다. 일부 실시예에서, 펄스-코드들은 메모리에 저장된 정수들의 시퀀스로서 저장된다.
광 감지 모듈(408)은 도 1과 관련하여 본원에서 설명된 광 감지 모듈(106)과 실질적으로 유사할 수 있다. 따라서, 프로세서(422), 메모리(424), 센서 어레이(426), 및 Rx 광학 시스템(428)(센서 어레이(426)와 함께, 광 검출 시스템(436)을 형성할 수 있음)은 여기에서 도 1과 관련하여 참조될 수 있고, 간결함을 위해 이러한 구성요소들에 대한 차이만이 여기에서 설명된다. LIDAR 시스템(400)의 경우, 센서 어레이(426)의 각각의 광센서(예를 들어, SPAD들의 모음)는, 예를 들어, 광 감지 모듈(408) 및 Tx 모듈(406)의 기하학적 구성의 결과로서, 방출기 어레이(414)의 특정 방출기에 대응할 수 있다. 예를 들어, 일부 실시예에서, 방출기 어레이(414)는 벌크 송신기 광학부로부터 시스템의 전방 시야로 투사되는 각각의 조명 빔이 초기 임계 거리를 넘어 시스템으로부터 임의의 거리에서 대응하는 수신기 채널의 시야와 실질적으로 동일한 크기 및 기하학적인 형태를 갖도록, 벌크 송신기 광학부의 초점면을 따라 배열될 수 있다.
일부 실시예에서, 프로세서(418)는 어레이 내의 개별 광자 검출기들(또는 검출기들의 그룹들)로부터의 미가공 히스토그램들의 신호 프로세싱을 수행할 수 있다. 신호 처리의 일 예로서, 각각의 광자 검출기 또는 광자 검출기들의 그룹에 대하여, 메모리(424)(예를 들어, SRAM)는 연속적인 시간 빈(time bin)들에 걸쳐 검출된 광자들의 카운트들을 누산할 수 있고, 이들 시간 빈들은 반사된 광 펄스의 시계열(즉, 광자들의 카운트 대비 시간)를 재생성하는 데에 사용될 수 있다. 이러한 집합된 광자 카운트의 시계열은 본원에서 세기 히스토그램(또는 간단히 히스토그램)으로 지칭된다. 프로세서(418)는 제시간의 복귀 신호들을 식별하기 위해, 매칭된 필터들 및 피크 검출 처리를 구현할 수 있다. 또한, 프로세서(418)는 SPAD 포화 및 퀀칭(quenching)으로 인해 발생할 수 있는 펄스 형상 왜곡에 덜 민감한 광자 시계열을 복구하는 것을 돕기 위해, 다중-프로파일 매칭된 필터링과 같은, 특정한 신호 프로세싱 기술들을 (예컨대, 프로세서(422)에 의해) 달성할 수 있다. 일부 실시예에서, 이러한 필터링의 전부 또는 일부는 FPGA에서 구현될 수 있는 프로세서(458)에 의해 수행될 수 있다.
일부 실시예에서, 프로세서(418)로부터 출력된 광자 시계열은 부가적인 처리를 위해 레인징 시스템 컨트롤러(404)로 보내지는데, 예를 들어, 데이터는 레인징 시스템 컨트롤러(404)의 하나 이상의 인코더에 의해 인코딩된 다음, 데이터 패킷들로서 사용자 인터페이스(415)로 전송될 수 있다. 레인징 시스템 컨트롤러(404)는, 예를 들어, FPGA와 같은 프로그램가능 논리 장치를 ASIC으로서 또는 ASIC의 일부로서 사용하는 것, 메모리(432)를 가진 프로세서(430)를 사용하는 것, 그리고, 이상의 특정 조합을 사용하는 것을 포함하는, 다수의 방식으로 구현될 수 있다. 레인징 시스템 컨트롤러(404)는 광 검출의 시작 및 정지와 광 검출기 파라미터들의 조정을 포함하는 명령들을 전송함으로써 광 감지 모듈(408)을 제어하기 위해, 고정된 베이스 컨트롤러와 함께 동작할 수 있거나, 또는 (미리 프로그램된 명령들을 통해) 베이스 컨트롤러와 독립적으로 동작할 수 있다. 유사하게, 레인징 시스템 컨트롤러(404)는 광 방출을 개시 및 정지하는 컨트롤과, 다른 광-방출기 파라미터(예를 들어, 펄스 코드)를 조정할 수 있는 컨트롤을 포함하는 명령들을 송신하거나 베이스 컨트롤러로부터의 명령들을 중계함으로써, 광 전송 모듈(406)을 제어할 수 있다. 일부 실시예에서, 레인징 시스템 컨트롤러(404)는 광 감지 모듈(408) 및 광 전송 모듈(406)과 데이터를 교환하기 위한 하나 이상의 유선 인터페이스 또는 커넥터를 가진다. 다른 실시예에서, 레인징 시스템 컨트롤러(404)는 광학 통신 링크와 같은 무선 인터커넥트를 통해 광 감지 모듈(408) 및 광 전송 모듈(406)과 통신한다.
광 레인징 장치(402)는 고정 구조 및 스캐닝 구조 모두에서 사용될 수 있다. 전기 모터(434)는 스캐닝 LIDAR 구조의 일부로서 시스템 구성요소들, 예컨대 Tx 모듈(406) 및 Rx 모듈(408)을 회전시키는 데에 사용될 수 있는, LIDAR 시스템(400)의 선택적인 구성요소이다. 시스템 컨트롤러(404)는 전기 모터(434)를 제어할 수 있고, 스캐닝 LIDAR 시스템을 구현하기 위해 회전을 개시하고, 회전을 정지시키며, 필요에 따라 회전 속도를 변화시킬 수 있다. 예시적인 고정 LIDAR 장치들은 도 5a 및 도 5b를 참조하여 이하에서 설명되는 반면, 예시적인 스캐닝 LIDAR 장치들은 도 6a, 도 6b, 및 도 7과 관련하여 여기에서 더 설명된다.
LIDAR 시스템(400)은 사용자 인터페이스(415)의 하나 이상의 인스턴스와 상호작용할 수 있다. 서로 다른 인스턴스들은 다양할 수 있고, 모니터, 키보드, 마우스, CPU 및 메모리를 가진 컴퓨터 시스템이나, 자동차 또는 다른 차량 내의 터치스크린이나, 터치스크린을 가진 핸드헬드 장치나, 또는 임의의 다른 적절한 사용자 인터페이스를 포함할 수 있지만, 이들로 제한되지는 않는다. 사용자 인터페이스(415)는 LIDAR 시스템(400)이 장착되지만 또한 원격으로 운영되는 시스템일 수도 있는 물체에 대해 국한될 수 있다. 예를 들어, LIDAR 시스템(400)에 대한/LIDAR 시스템(400)으로부터의 명령들 및 데이터는 셀룰러 네트워크(LTE 등), 근거리 개인 통신망(블루투스, 지그비 등), 근거리 통신망(WiFi, IR 등), 또는 인터넷과 같은 광역 통신망을 통해 라우팅될 수 있다.
하드웨어 및 소프트웨어의 사용자 인터페이스(415)는 LIDAR 데이터를 장치로부터 사용자 또는 차량 제어 유닛(도시되지 않음)에 제공할 수 있지만, 사용자가 하나 이상의 명령을 사용하여 LIDAR 시스템(400)을 제어하게 할 수도 있다. 예시적인 명령들은 LIDAR 시스템을 활성화 또는 비활성화시키는 명령, 광 검출기 노출 수준, 바이어스, 샘플링 기간 및 다른 동작 파라미터들(예를 들어, 방출된 펄스 패턴 및 신호 처리)을 지정하는 명령, 휘도(brightness)와 같은 광 방출기 파라미터들을 지정하는 명령들을 포함한다. 또한, 명령들은 사용자가 결과를 표시하기 위한 방법을 선택하게 할 수 있다. 사용자 인터페이스는 예를 들어 단일 프레임 스냅샷 이미지, 지속적으로 업데이트된 비디오 이미지, 및/또는 일부 또는 모든 픽셀에 대한 다른 광 측정의 디스플레이를 포함할 수 있는 라이더 시스템 결과를 디스플레이할 수 있다. 일부 실시예에서, 사용자 인터페이스(415)는 차량으로부터의 물체들의 (근접) 거리를 추적할 수 있고, 잠재적으로 운전자에게 경보를 제공하거나 운전자의 성능 분석을 위해 이러한 추적 정보를 제공할 수 있다.
일부 실시예에서, 예를 들어, LIDAR 시스템(400)이 차량 네비게이션을 위해 사용되는 경우에, 사용자 인터페이스(415)는 위에서 설명된 유선 또는 무선 네트워크들 중 하나와 같은 네트워크를 통해 광 레인징 장치(402) 및/또는 사용자 인터페이스(415)로부터의 출력을 수신하거나 이들과 통신하는, 차량 제어 유닛의 일부일 수 있다. 차량의 제어와 연관된 하나 이상의 파라미터들은 수신된 LIDAR 데이터에 기초하여 차량 제어 유닛에 의해 수정될 수 있다. 예를 들어, 완전한 자율주행 차량에서, LIDAR 시스템(400)은 GPS 및 다른 데이터와 함께 네비게이션을 보조하기 위해 차량 주변 환경의 실시간 3D이미지를 제공할 수 있다. 다른 경우에, LIDAR 시스템(400)은 첨단 운전자-지원 시스템(advanced driver-assistance system, ADAS)의 일부로서 또는 안전 시스템의 일부로서 채용될 수 있으며, 예를 들어, 적응형 크루즈 컨트롤, 자동 주차, 운전자 졸음 모니터링, 블라인드 스팟 모니터링, 충돌 회피 시스템 등 임의의 수의 서로 다른 시스템에 3D 이미지 데이터를 제공할 수 있다. 사용자 인터페이스(415)가 차량 제어 유닛의 일부로서 구현될 때, 경보가 운전자에게 제공될 수 있거나, 물체의 근접 여부 추적이 수행될 수 있다.
A. 고정형 아키텍처
본 개시의 일부 실시예에 따르면, LIDAR 시스템들은 고정식 아키텍처를 가진 고정형(solid state) LIDAR 시스템으로서 구성될 수 있다. 이러한 LIDAR 시스템은 회전하지 않으므로, 센서 및 송신기 모듈을 회전시키기 위해 도 4의 전기 모터(434)와 같은 별도의 모터가 필요하지 않다. 예시적인 고정형 LIDAR 시스템들이 도 5a 및 도 5b에 도시되어 있다.
도 5a 및 도 5b는 고정형 LIDAR 시스템들의 예시적인 구현들의 간단한 도면들이다. 도 5a는 본 개시의 일부 실시예에 따른, 자동차와 같은 지상 차량(505)의 바깥쪽 영역에서 고정형 LIDAR 시스템들(502a 내지 502d)이 구현되는 구현예(500)를 도시하고, 도 5b는 본 개시의 일부 실시예에 따른, 지상 차량(505)의 상부에 고정형 LIDAR 시스템들(504a 내지 504b)이 구현되는 구현예(501)를 도시한다. 각각의 구현예에서, LIDAR 시스템들의 개수, LIDAR 시스템들의 배치, 및 각각의 LIDAR 시스템의 시야는, 차량 주변 환경의 360도 시야의, 전체가 아닌 경우, 대부분을 획득하도록 선택될 수 있다. LIDAR 시스템을 위한 자동차 구현예들은 단지 예시를 위한 것일 뿐, 본원에 설명된 센서들은 예를 들어, 배, 항공기, 기차 등과 같은 다른 유형의 차량들 뿐만 아니라, 예를 들어, 의료 영상, 이동 전화, 증강 현실, 측지학, 지형정보학, 고고학, 지리학, 지질학, 지형학, 지진학, 산림학, 대기 물리학, 레이저 유도, 공중 레이저 스와스 맵핑(ALSM), 및 레이저 고도측정과 같이 3D 깊이 이미지가 유 용할 수 있는 다양한 다른 응용에서도 이용될 수 있다.
도 5a를 참조하면, 고정형 LIDAR 시스템들(502a 내지 502d)은 전방 및 후방 휀더 근처에서 차량의 바깥쪽 영역들에 장착될 수 있다. LIDAR 시스템들(502a 내지 502d)은 이들이 차량(505)의 최외곽 코너들 근처에 위치되도록 차량(505)의 각각의 코너에 각각 위치될 수 있다. 이러한 방식으로, LIDAR 시스템(502a 내지 502d)은 영역들(506a 내지 506d)에 있는 시야 내의 물체로부터의 차량(505)의 거리를 더 잘 측정할 수 있다. 각각의 고정형 LIDAR 시스템은 각각의 유닛이 자체적으로 포착할 수 있는 것보다 큰 합성된 시야를 포착하도록, 서로 다른 방향(가능하게는 유닛들 사이의 시야들에 부분적으로 그리고/또는 비-중첩되게)을 향할 수 있다. 장면 내의 물체들은 LIDAR Tx 모듈(508)로부터 방출되는 광 펄스들(510)의 부분들을 반영할 수 있다. 그 후, 광 펄스들(510)의 하나 이상의 반사된 부분들(512)은 LIDAR 시스템(502a)으로 다시 이동하고, Rx 모듈(509)에 의해 수신될 수 있다. Rx 모듈(509)은 Tx 모듈(508)과 동일한 하우징 내에 배치될 수 있다.
도 5a는 차량의 4개의 코너에 장착된 4개의 고정형 LIDAR 시스템을 도시하고 있지만, 실시예들은 그러한 구성들로 제한되지 않는다. 다른 실시예는 차량의 다른 영역들 상에 설치된 더 적거나 더 많은 고정형 LIDAR 시스템들을 가질 수 있다. 예를 들어, LIDAR 시스템은 도 5b에 도시된 바와 같이 차량(505)의 지붕에 장착될 수 있다. 이러한 실시예에서, LIDAR 시스템들은 차량(505) 주위의 영역들(506a 내지 506d)을 더 잘 관찰하기 위해, 더 높은 시점을 가질 수 있다.
B. 스캐닝 아키텍처
일부 실시예에서, 본 개시에 따른 LIDAR 시스템들은 LIDAR 시스템이 360도 미만의 각도 사이에서 진동하는 스캐닝 구조를 채용할 수 있다. 예를 들어, 도 5b의 구현예(501)에서 LIDAR 시스템들(504a 내지 504b)은, 예를 들어, 시야(506a 및 506b) 사이의 영역(514) 및 시야(506c 및 506d) 사이의 영역(516)에서 차량(505) 앞 및/또는 뒤의 전체 장면을 스캔하기 위해 스캐닝 아키텍처를 각각 채용할 수 있다. 스캐닝 LIDAR 시스템에 배치된 하나 이상의 광원(도시되지 않지만, 적외선, 근적외선, 자외선, 가시광, 예컨대, 녹색 레이저 파장 스펙트럼 등과 같은, 그러나 레이저로 국한되지는 않는, LIDAR 시스템에 적절한 임의의 파장의 스펙트럼을 포함하는 복사를 방출하기 위한 다양한 종류의 적절한 소스일 수 있음)의 출력 빔(들)은 광 펄스로서 출력될 수 있고, 차량 주위의 장면에 빛을 비추기 위해 스캐닝, 예를 들어, 360도 미만의 각도 사이에서 회전될 수 있다. 일부 실시예에서, 회전 화살표들(514 및 516)에 의해 표현되는 스캐닝은 예를 들어, 회전 칼럼 또는 플랫폼에 광 방출기들을 장착시키는 것과 같은 기계적 수단에 의해, 또는 검류계와 같은 다른 기계적 수단의 사용을 통해, 구현될 수 있다. 칩-기반 빔 조향 기술들은, 예를 들어, 디지털 마이크로미러(DMD) 장치, 디지털 광 프로세싱(DLP) 장치 등과 같은, 하나 이상의 MEMS 기반 반사기를 채용하는 마이크로칩을 사용함으로써 이용될 수 있다. 일부 실시예에서, 스캐닝은, 예를 들어 하나 이상의 광학 위상 어레이를 조향하기 위해 전자 신호를 사용함으로써, 비기계적 수단을 통해 수행될 수 있다.
다른 실시예는 차량 주변 환경의 전체 360도를 통해 스캔하는 스캐닝 아키텍처를 구현할 수 있다. 이러한 스캐닝 LIDAR 시스템들은 시계 방향 또는 반시계 방향으로 360도로 연속으로 반복하여 회전할 수 있고, 따라서 센서 및 송신기 모듈들을 회전시키기 위해 도 4의 전기 모터(434)와 같은 별도의 모터를 이용할 수 있다. 예시적인 회전 LIDAR 시스템들이 도 6a 및 도 6b에 도시되어 있다.
도 6a는 본 개시의 일부 실시예에 따른, 자동차와 같은 차량(605)에 대해 구현되고 연속적인 360도 스캔이 가능한 예시적인 스캐닝 LIDAR 시스템(600)의 개략도의 평면도이다. LIDAR 시스템(600)에 위치한 하나 이상의 광원(예를 들어, 미도시된, 적외선 또는 근적외선 펄스 IR 레이저와 같은 광원)의 출력 빔(들)은, 예를 들어 회전되어 차량 주위의 연속적인 장면(620)에 빛을 비추도록 스캔될 수 있다. 일부 실시예에서, 회전 화살표(615)에 의해 표현되는 스캐닝은 예를 들어, 회전 칼럼 또는 플랫폼에 광 방출기들을 장착함으로써와 같은, 또는 검류계들 또는 칩-기반 조향 기술들을 사용하는 것과 같은 임의의 다른 기계적 수단에 의해, 도 5b와 관련하여 본원에서 설명된 임의의 적절한 기계적 수단에 의해 구현될 수 있다. 동작하는 동안, 차량(605) 주위의 임의의 방향에서의 그리고 LIDAR 시스템(600)의 시야 내에서 물체들은 LIDAR 시스템(600)의 송신 모듈(608)로부터 방출되는 광 펄스들(611)의 부분들을 반사할 수 있다. 이어서, 광 펄스(611)의 하나 이상의 반사된 부분(617)은 LIDAR 시스템(600)으로 다시 이동하고, 감지 모듈(609)에 의해 검출될 수 있다. 일부 경우들에서, 감지 모듈(609)은 송신 모듈(608)과 동일한 하우징 내에 배치될 수 있다.
도 6a는 차량(605)의 지붕에 장착된 고정형 LIDAR 시스템을 도시하고 있지만, 실시예들이 그러한 구성들로 제한되지는 않는다. 다른 실시예는 차량의 다른 영역들 상에 장착된 고정형 LIDAR 시스템들을 가질 수 있다. 예를 들어, LIDAR 시스템은 도 6b에 도시된 바와 같이 차량의 코너에 장착될 수 있다. 도 6b는 본 개시의 일부 실시예에 따라, 고정형 LIDAR 시스템들(604a 내지 604d)이 자동차와 같은 지상 차량의 바깥쪽 영역들에서 구현되는 구현예(601)를 도시한다. 이러한 구현예에서, 각각의 LIDAR 시스템(604a 내지 604d)은 전체 360도의 거리를 측정할 수 있는 회전 LIDAR 시스템일 수 있다. 그러나, 이러한 측정들 중 적어도 일부는 차량(605)에 대해 측정될 것이기 때문에, 이러한 측정들은 무시될 수 있다. 따라서, 각각의 LIDAR 시스템(605a 내지 605d)은, 예를 들어, 차량(605)을 포착하지 않는 영역들(619a 내지 619d)을 커버하는 각도들만 사용되도록, 360도 스캐닝으로부터의 측정들의 부분집합만을 이용할 수 있다.
도 7은 본 개시의 일부 실시예에 따른, 360도 스캐닝 아키텍처를 이용하는 LIDAR 시스템(700)의 개략적인 예시적인 사시도이다. 일부 실시예에서, LIDAR 시스템(700)은 차량 주위의 시야를 관찰하기 위해 시계 방향 또는 반시계 방향으로 회전하는 광 레인징 장치(701)를 포함할 수 있다. 시스템(700)은 고정식 하우징(702), 광학적으로 투명한 윈도우(704), 및 LIDAR 시스템(700)의 내부 구성요소들에 대한 보호를 제공하기 위한 고정 덮개(706)를 포함할 수 있다. 윈도우(704)는 원통형 형상을 갖도록 구성될 수 있는 고정식 하우징(702)의 둘레 주위로 완전히 연장될 수 있다. 시스템(700)의 내부 구성요소들은 회전 플랫폼(708) 및 상기 회전 플랫폼(708) 상에 장착된 감지 및 전송 모듈들(710)을 포함할 수 있는 광 레인징 장치(701)를 포함할 수 있다. 일부 실시예에서, 광 레인징 장치(701)는, 모듈들(710)이 윈도우(704)를 통해 광을 방출 및 수신하도록 위치되고, 방출된 광이 고정식 하우징(702) 또는 고정 덮개(706) 상으로 방출되지 않도록, 윈도우(704)와 정렬된다. 예를 들어, 정렬된 위치에서, 광 레인징 장치(701)의 수평 중심은 윈도우(704)의 수평 중심과 일치한다. 감지 및 전송 모듈들(710)은, 예를 들어, 광 감지 모듈(408) 및 광 전송 모듈(406)일 수 있고, 선택적으로, 마이크로-광학층을 냉각시키기 위해 열 싱크(도시되지 않음)를 포함할 수 있다. LIDAR 시스템(700)은 고정식 하우징(702) 내에 배치되는 시스템 컨트롤러(712)(예를 들어, 컨트롤러(404)) 및 전기 모터(714)(예를 들어, 모터(434))를 더 포함할 수 있다. 전기 모터(714)는 플랫폼(708)을 회전시켜, 예를 들어 시계 방향 또는 반시계 방향으로 360도로 연속적으로 회전하는 방식으로 감지 및 전송 모듈들(710)을 회전시킨다. 시스템 컨트롤러(712)는 광학 통신 링크(716)를 이용하여 감지 및 전송 모듈들(710)과 통신할 수 있다. 광학 통신 링크(716)는 감지 및 전송 모듈들(710)로 하여금, 기계적 마모 및 인열 없이 광학 통신 링크(716)를 통해, 고정식 하우징(702)에 기계적으로 연결되고 플랫폼(708)과 함께 회전하지 않는 고정 시스템 컨트롤러(712)와 통신하게 한다. 일부 실시예에서, 시스템 컨트롤러(712)는 모터를 제어하고, LIDAR 시스템(700)의 광 검출 동작들을 시작하고 정지시킬 수 있다. 시스템 컨트롤러(712)는 병렬 관계로 배열된 2개 이상의 적층된 평면형 회로기판을 포함할 수 있으며, 이는 출원인이 공통되고 동시에 출원된 "컴팩트 라이다 시스템(Compact Lidar System)"의 제목을 갖는 대리인 문서번호 103033-P010US1-1073278에서 보다 상세히 설명되며, 모든 목적을 위해 그 전체가 본원에 참조로서 포함된다.
III. 능동 이미저 시스템의 동작
도 8은 일부 실시예에 따른 광 레인징 시스템을 위한 광 전송 및 검출 동작의 예시적인 실시예이다. 도 8은 시스템 주위의 부피 또는 장면의 3차원 거리 데이터를 수집하는 광 레인징 시스템(800)(예를 들어, 고정형 및/또는 스캐닝 시스템)을 도시한다. 도 8은 방출기들과 센서들 간의 관계들을 강조하기 위한 이상적인 도면이며, 따라서 다른 구성요소들은 도시되지 않는다.
광 레인징 시스템(800)은 광 방출기 어레이(810) 및 광센서 어레이(820)를 포함한다. 광 방출기 어레이(810)는 예를 들어, 방출기(812) 및 방출기(816)와 같은 수직-공동 표면-발광 레이저들(vertical-cavity surface-emitting laser, VCSEL)의 어레이 등의 광 방출기들의 어레이를 포함한다. 광센서 어레이(820)는 광센서들 예를 들어, 센서들(822 및 826)의 어레이를 포함한다. 광센서들은 각각의 광센서에 대해, 단일 광자 애벌란시 다이오드(SPAD) 등과 같은 이산적인 광 검출기의 세트를 이용하는, 픽셀화된 광센서들일 수 있다. 그러나, 다양한 실시예들은 다른 유형의 광자 센서들을 이용할 수 있다.
각각의 방출기는 그 이웃으로부터 약간 오프셋될 수 있으며, 광 펄스들을 그 이웃한 방출기들로부터 서로 다른 시야 내로 전송하도록 구성될 수 있고, 이에 의해, 해당 방출기와 관련된 각각의 시야를 비출 수 있다. 예를 들어, 방출기(812)는 (하나 이상의 광 펄스들로부터 형성된) 조명 빔(814)을 (명확성을 위하여 크기가 과장된) 원형 시야(832)로 방출한다. 유사하게, 방출기(816)는 조명 빔(818)(방출기 채널로도 불림)을 원형 시야(834)로 방출한다. 복잡함을 피하기 위해 도 8에는 도시되지 않았지만, 각각의 방출기는 대응하는 조명 빔을 대응하는 시야로 방출하여, 조명되는 시야의 2D 어레이(본 예에서는 21개의 별개의 시야)를 생성한다.
방출기에 의해 조명되는 각각의 시야는 레인징 데이터로부터 생성되는 대응하는 3D 이미지 내의 픽셀 또는 스팟으로서 생각될 수 있다. 각각의 방출기 채널은 각각의 방출기에 특유할 수 있고 다른 방출기 채널과 중첩되지 않을 수 있다. 즉, 중첩되지 않는 시야 세트와 방출기 세트 사이에 일대일 맵핑이 존재한다. 따라서, 도 8의 예에서, 시스템은 3D 공간에서 21 개의 별개의 포인트를 샘플링할 수 있다. 하나의 방출기가 공간 내의 여러 포인트를 샘플링할 수 있도록 시간에 따라 방출기 빔의 각도 위치를 스캐닝함으로써 또는 더 고밀도의 방출기 어레이를 가짐으로써 고밀도의 포인트 샘플링이 달성될 수 있다. 전술한 바와 같이, 스캐닝은 전체 방출기/센서 어셈블리를 회전시킴으로써 달성될 수 있다.
각 센서는 그 이웃 센서로부터 약간 오프셋될 수 있으며, 전술한 방출기와 같이, 각 센서는 센서 앞 현장의 다른 시야를 볼 수 있다. 또한, 각 센서의 시야는 각각의 방출기 채널의 시야와 실질적으로 일치(예를 들어, 중첩됨)하며 또한 동일한 크기이다.
도 8에서, 대응하는 방출기-수신기 채널들 간의 거리는 시야 내의 물체들까지의 거리에 비해 과장된다. 실제로, 몇 개의 시야에서 물체들까지의 거리는 대응하는 방출기-수신기 채널들 간의 거리보다 훨씬 더 크며, 이에 따라 방출기로부터 물체까지의 광 경로는 물체로부터 센서로 다시 반사되는 광의 경로에 대략 평행하다(즉, 거의 "백반사(back reflected)"됨). 따라서, 시스템(800) 전방에는 개별 센서들 및 방출기들의 시야가 중첩되는 거리들의 범위가 있다.
방출기들의 시야는 방출기 각각의 센서들의 시야들과 중첩되기 때문에, 각각의 수신기 채널은 이상적으로, 크로스토크가 없는, 즉 다른 조명 빔으로부터 반사된 광이 검출되지 않는, 각각의 방출기 채널로부터 기원하는 반사된 조명 빔을 검출할 수 있다. 따라서, 각각의 광센서는 각각의 광원에 대응할 수 있다. 예를 들어, 방출기(812)는 조명 빔(814)을 원형 시야(832)로 방출하고, 조명 빔의 일부는 물체(830)로부터 반사된다. 이상적으로, 반사된 빔(824)은 센서(822)에 의해서만 검출된다. 따라서, 방출기(812) 및 센서(822)는 동일한 시야(예를 들어, 시야(832))를 공유하고, 방출기-센서 쌍을 형성한다. 마찬가지로, 방출기(816) 및 센서(826)는 시야(834)를 공유하는 방출기-센서 쌍을 형성한다. 도 8에서는 방출기-센서 쌍들이 각각의 어레이 내의 동일한 상대적인 위치들에 있는 것으로 도시되어 있지만, 시스템에서 사용되는 광학부의 설계에 따라 임의의 방출기가 임의의 센서와 쌍을 이룰 수 있다.
거리(ranging) 측정 동안, LIDAR 시스템 주위의 부피에 분산되어 있는 서로 다른 시야로부터의 반사광은 다양한 센서들에 의해 수집되고, 처리되어, 각각의 시야에서의 임의의 물체들에 대한 거리 정보를 제공한다. 전술한 바와 같이, 광 방출기가 정밀하게 시간이 정해진 펄스를 방출하고, 펄스의 반사는 일정 시간 경과 후에 각각의 센서에 의해 검출되는 전파시간 기술이 사용될 수 있다. 이후 방출과 검출 사이의 경과 시간 및 알려진 광의 속도가 반사 표면까지의 거리를 계산하는데 사용된다. 일부 실시예에서, 레인지에 추가하여 반사 표면의 다른 특성을 결정하기 위해 추가 정보가 센서에 의해 획득될 수 있다. 예를 들어, 펄스의 도플러 편이는 센서에 의해 측정될 수 있고 센서와 반사 표면 사이의 상대 속도를 계산하는데 사용될 수 있다. 펄스 강도는 타겟 반사도를 추정하는데 사용될 수 있고, 펄스 형상은 타겟이 단단하거나 확산성 물질(diffuse material)인지를 결정하는 데 사용될 수 있다.
일부 실시예에서, LIDAR 시스템은 방출기 및 수신기 채널들의 비교적 큰 2D 어레이로 구성될 수 있고, 고정형 LIDAR 로서 동작할 수 있는데, 즉, 방출기 및/또는 센서들의 방향을 스캔할 필요 없이 거리(range) 데이터의 프레임들을 획득할 수 있다. 다른 실시예에서, 방출기 및 센서는 스캐닝(예를 들어 축을 중심으로 회전)될 수 있어서, 센서 및 방출기 세트의 시야가 주변 볼륨의 전체 360도 영역(또는 360도 영역의 일부 유용한 부분)을 샘플링하도록 보장할 수 있다. 예를 들어, 소정의 미리 정의된 기간에 걸쳐, 스캐닝 시스템으로부터 수집된 레인지 데이터는 이후 하나 이상의 깊이 이미지 또는 3D 포인트 클라우드로 추가 처리될 수 있는 하나 이상의 데이터 프레임으로 후처리될 수 있다. 깊이 이미지 및/또는 3D 포인트 클라우드는 3D 맵핑 및 내비게이션 애플리케이션에서 사용하기 위해 맵 타일로 추가 처리될 수 있다.
일부 실시예에 따르면, 광 레인징 시스템(코드-펄스 광학 수신기 시스템이라고도 불림)은 다수의 광 펄스들을 전송할 수 있다. 일부 실시예에서, 각각의 코드-펄스(coded-pulse)는 광 강도에 의해 형성된, 내장된(embedded) 양의 값 펄스-코드를 가진다. 시스템은 서로 다른 시간 빈에서 검출된 반사 광의 세기 히스토그램을 생성함으로써 배경 광의 존재 하에서 광 펄스의 시간적 위치 및/또는 진폭을 결정할 수 있다. 각각의 시간 빈에 대해, 시스템은 검출된 광의 세기에 따라 세기 히스토그램에 가중치 값을 추가한다. 가중치 값은 양수 또는 음수일 수 있으며 다양한 크기를 가진다.
양의 펄스-코드들의 서로 다른 조합들을 선택하고 서로 다른 가중치들을 적용함으로써, 시스템은 표준 디지털 신호 처리 알고리즘들에 적절한 양의 값 및 음의 값 코드들을 검출할 수 있다. 이 방식은 반사된 광 펄스의 측정된 시간적 위치에서 낮은 불확실성을 유지하면서 높은 신호 대 노이즈비를 제공한다.
도 9는 본 개시의 실시예에 따른 광학 측정 시스템에서 코드-펄스들을 사용하는 방법(900)을 예시하는 흐름도이다. 광학 측정 시스템은 광 레인징 시스템일 수 있다. 방법(900)은 다수의 코드-펄스들을 사용하여 목표물로부터 반사된 펄스의 임시 위치를 검출할 수 있다. 실시간 3차원 적용예에서, 방법(900)은 주위 환경 내의 물체들에 대한 거리를 끊임없이 검출할 수 있다. 방법(900)은 본원에 설명된 임의의 광학 측정 시스템들에 의해 구현될 수 있다.
블록(910)에서, 코드-펄스 광학 시스템(coded-pulse optical system, CPOS)은 초기화를 수행한다. 예를 들어, CPOS는 매개 변수 시작, 정치 및 변경을 위한 사용자 인터페이스 명령에 반응할 수 있다. CPOS는 파라미터, 예를 들어 펄스 코드, 광 전력 수준, 및 (예를 들어, 검출 간격, 검출 간격 사이의 일시 정지에 대한 간격, 및 전체 측정 시간 간격에 대한) 다양한 시간 간격을 나타내기 위해 광학 전송기를 초기화할 수 있다. CPOS는 펄스 시간 간격 및 광 샘플링 간격과 같은 매개 변수를 나타내기 위해 광 감지 모듈을 초기화할 수 있다. CPOS는 히스토그램 값을 지울 수도 있다.
블록(920)에서, 펄스 트레인은 광학 측정의 일부로서 광원(예를 들어, 레이저)으로부터 전송된다. 펄스 트레인은 측정을 위해 전송된 N개의 펄스 트레인의 일부로서 전송될 수 있다. N개의 펄스 트레인은 물체로부터 반사될 수 있어서, 물체까지의 레인징 측정을 가능하게 한다. N개의 펄스 트레인 각각은 광원(예를 들어, VCSEL)으로부터의 하나 이상의 펄스를 포함할 수 있고, 시작 신호에 의해 트리거되는 서로 다른 시간 간격에 해당한다.
일부 실시예에서, CPOS는 이전의 펄스 트레인(코드-펄스 전송)이 소산되게 하는 지정된 시간 동안 대기할 수 있다. CPOS는 이후 측정의 N개의 펄스 트레인의 다음 펄스 트레인을 전송할 수 있으며, 여기서 N개의 펄스 트레인은 코드를 형성한다. 측정이 완료되면, 예를 들어, (예를 들어, 임의의 반사에 대해 예상된 소정의 시간 후에) N개의 펄스 트레인의 마지막 것이 소멸되면, CPOS는 적절한 펄스 코드를 사용하여 제1/다음 코딩 펄스 전송을 개시할 수 있다. N은 1보다 큰 정수, 예를 들어 2, 3, 4, 5 또는 그보다 큰 숫자일 수 있다.
블록(930)에서, 예를 들어, 전송될 펄스 트레인을 트리거하는 시작 신호에 반응하여 광 검출이 시작될 수 있다. 따라서 CPOS는 코딩된 펄스 전송을 시작하는 동시에 광 검출을 시작할 수 있다. 광학 검출의 일부로서, 펄스 트레인은 광학 측정 시스템의 (예를 들어, 픽셀에 해당하는) 감광자에 의해 검출될 수 있고, 이에 의해 복수의 시점들에서 데이터 값을 생성할 수 있다. 일부 실시예에서, 감광자는 광 검출기(예를 들어, SPAD)의 집합이다. 데이터 값은 다양한 형태, 예를 들어 (예를 들어, 히스토그램의 시간 빈 내의) 시점에서 트리거된 다수의 SPAD의 카운트일 수 있다. 다른 예들로서, 데이터 값들은 아날로그 광센서(예를 들어, APD)를 뒤따르는 ADC 로부터의 디지털화된 값일 수 있다. 두 예 모두가 세기에 해당할 수 있다. 총 N개의 펄스 트레인이 검출될 수 있다. 또한, 이 프로세스는 광학 측정 장치의 각각의 감광자에 대해 개별적으로 수행될 수 있다.
블록(940)에서, 펄스 트레인에 대응하는 시간 간격 내의 시점들에서의 데이터 값들에 가중치가 할당되어, 가중된 값들을 획득한다. N개의 펄스 트레인 각각에 대해 가중치가 할당될 수 있다. 서로 다른 펄스 트레인에 대한 이러한 가중치 중 일부는 다른 펄스 트레인과 동일할 수 있다. 일부 실시예에서, N개의 펄스 트레인 중 2 개 이상에 서로 다른 가중치가 할당되어 서로 다른 펄스 패턴을 가진다. 2개의 펄스 트레인은 일부 유사성(예를 들어, 펄스들의 부분들이 중첩될 수 있음)을 가질 수 있지만, 어느 하나의 펄스 트레인은 ON 상태이고 다른 펄스 트레인은 OFF 상태에 있는 적어도 특정한 시간이 존재한다. 이러한 서로 다른 펄스 패턴은 유사한 형상을 가질 수 있지만 서로 다른 지연을 가질 수 있어서, 예를 들어, {1, 0, 1, 1, 0}은 {0, 1, 0, 1, 1}과 유사한 0이 아닌 값의 형태를 가지지만 이들은 제1 신호에 대한 제2 신호의 지연에 의해 달성될 수 있는 오프셋으로 인해 서로 다른 펄스 패턴이다.
따라서, CPOS는 광을 검출하고 각각의 광-샘플링-간격에 대한 디지털화된 강도 값을 생성할 수 있다. 각각의 광 샘플링 간격에 대해, CPOS는 디지털화된 세기 값에 펄스 가중치를 적용하고 그 결과를 세기 히스토그램의 적절한 시간 빈에 추가할 수 있다.
블록(950)에서, CPOS는 필요한 개수의 코드-펄스들을 전송했는지 테스트한다. CPOS가 필요한 개수의 코드-펄스들을 전송한 경우, 블록(960)으로 이어지고, 그렇지 않으면 블록(920)으로 되돌아간다.
블록(960)에서, 복수의 시간 빈(time bin)들에서의 가중된 값들에 대응하는 히스토그램이 결정된다. 전술한 바와 같이, 특정 시간 빈에서 히스토그램의 카운터는 복수의 시간 간격들에 걸쳐 특정 시간 빈 내의 시점에서 가중치 값을 누적함으로써 결정될 수 있다.
블록(970)에서, 히스토그램은 N개의 펄스 트레인에 대응하는 신호를 검출하는 데에 사용된다. 예를 들어, CPOS는 히스토그램이 매칭 코드(필터)와 일치하는 값의 시퀀스를 갖는지 여부를 결정할 수 있다. CPOS는 매칭 코드가 발견되었는지 여부와 매칭의 진폭을 보고할 수 있다. 매칭은 다른 광원으로부터의 노이즈 또는 간섭에 대하여 원하는 신호의 검출을 허용할 수 있다.
일례로서, 필터는 히스토그램의 시간 빈들의 윈도우에 적용될 값들의 세트를 포함할 수 있다. 필터는 히스토그램에 걸쳐 슬라이딩하여, 히스토그램에 대한 프로파일 필터의 서로 다른 슬라이딩 위치에 해당하는 카운터를 가진 필터링된 히스토그램을 계산할 수 있다. 필터링된 히스토그램의 카운터 각각은 특정 슬라이딩 위치에서 프로파일 필터와 히스토그램의 중첩부에 해당할 수 있다. 필터링된 히스토그램의 카운터의 최대값이 식별될 수 있어서, 예를 들어 최대값이 임계치를 초과할 때, 검출할 수 있게 한다. 카운터의 최대값에 대한 특정 슬라이딩 위치는 레인징 측정에 사용될 수 있는 수신 시간에 해당할 수 있다.
일부 실시예에서, 상기 신호는, 예를 들어, 광학 측정 시스템이 거리 측정을 수행하도록 구성될 때, 물체로부터 반사되는 N개의 펄스 트레인에 의해 야기되는 반사된 신호일 수 있다. 다른 실시예에서, 신호는, 예를 들어 광원이 한 위치에 있고 감광자가 다른 위치에 있을 때, 통신 신호일 수 있다. 이러한 구성은 통신 목적으로 사용될 수 있다. 예를 들어, 마이크로파 전송 타워는 데이터를 수신 타워로 전송할 수 있다. 전송된 데이터는 코딩 펄스를 포함할 수 있으며, 이는 노이즈 또는 다른 소스로부터의 간섭에 의해 야기될 수 있는 데이터 수신에서의 오류를 감소시키는 것을 도울 수 있다. 수신 타워는 제1 시간 빈에 대한 시작 시간으로서 두 펄스 트레인 사이의 임의의 시간을 선택함으로써 펄스 트레인을 식별하고 히스토그램을 생성할 수 있다. (예를 들어, 히스토그램에 걸쳐 슬라이딩함으로써) 이후 매칭 필터가 적용될 수 있다; 충분한 매칭이 발견되면, 해당 통신 신호가 검출될 수 있다. 필터링된 히스토그램에서 얻은 최대값에 의해서 충분한 매칭이 측정될 수 있다. 다른 실시예로서, 시스템은 통신 신호를 검출하는데 사용된 유사한 방식으로 다른 CPOS로부터의 간섭 신호를 검출할 수 있다. 간섭이 측정되면, 일부 구현예는 예를 들어, 현재 사용중인 코드와 유사한 간섭 코드의 전송 코드를 변경시킬 수 있다.
단계(980)에서는, 물체까지의 거리가 결정될 수 있다. 예를 들어, 시작 신호에 대한 N개의 펄스 트레인에 해당하는 수신 시간이 결정될 수 있다. 수신 시간을 사용하여 물체까지의 거리를 결정할 수 있다. 수신 시간은 펄스 트레인의 전송 시간으로부터 오프셋될 수 있지만, 그러한 오프셋이 고려될 수 있다. 따라서, CPOS는 그것이 검출된 시간을 보고할 수 있다. 거리는 시작 신호의 시작 시간과 수신 시간 사이의 왕복 시간에 해당할 수 있고, 따라서 거리는 시간으로 표현될 수 있다.
검출된 신호는 거리측정이 아닌 다른 목적을 위해 사용될 수 있다. 예를 들어, 검출된 신호의 품질은 물체의 반사도를 측정하는데 사용될 수 있다. 예를 들어, 검출된 신호가 강한 세기를 가진 경우, 시스템은 물체가 높은 반사도를 가진 것으로 결정할 수 있다. 통신 및 간섭 측정을 위한 구현예가 위에서 설명되었다. 다른 광원으로부터의 간섭의 검출에 있어서, 검출된 신호는 간섭 광원에 의해 전송된 다른 펄스 트레인 세트로부터의 신호일 것이다.
일반화로서, 실시예들은 N+1개의 고유의 가중치들을 가진 N+1개의 고유한 코드들을 전송하여 N차원 벡터 공간 히스토그램을 생성할 수 있다. 예를 들어, 부호 있는 숫자를 보유하는 빈 대신에, 하나의 양의 코드와 하나의 음의 코드의 적어도 2 개의 고유 코드를 전송함으로써, (예를 들어, 부호 있는 숫자와 균등한) 1-D 벡터를 보유할 수 있다. (예를 들어, 극좌표 또는 직교 좌표의) 2-D 벡터를 저장하기 위해, 시스템은, 3 개의 서로 다른 극각(polar angle)으로 가중되어 단일의 2-D 벡터로 합산될 수 있는 적어도 3 개의 고유 코드를 전송할 수 있다. (모두 단일 "빈" 내에 유지되는 N개의 별도 숫자에 의해 정의되는) N-D 벡터는 N+1 개의 서로 다른 코드를 필요로 할 것이며, 각각은 벡터 합을 수행할 경우 서로 다른 각도에서 가중된다(즉, 다른 모든 가중치에 직교하는 그 가중치에 대한 성분을 가짐). 차원수를 증가시킴으로써, RF 통신에 사용되는 직교 위상 코딩 또는 코드 분할 다중 액세스(CDMA)와 같은 보다 진보된 코딩 기술이 사용될 수 있다. N 차원 매칭 필터가 이와 관련하여 사용될 수 있다.
동작하는 동안에 LIDAR 시스템이 방법(900)을 구현함에 따라, LIDAR 시스템은 시야 내의 물체들에 대한 거리들을 연속적으로 측정할 수 있다. 따라서, 물체에 대한 거리가 일단 결정되면, 방법(900)은 블록(920)으로 되돌아가, 펄스 트레인을 방출하고 방출된 펄스 트레인을 검출하여 시야 내의 물체까지의 거리를 결정하기 위한 히스토그램을 결정하는, 또다른 시리즈를 시작할 수 있다. LIDAR 시스템이 내비게이션을 위해 사용되고 LIDAR 시스템이 시야 내에서 이동하는 경우와 같이, LIDAR 시스템이 시야 내의 물체들에 대한 거리를 끊임없이 측정할 필요가 있을 수 있기 때문에, 방법(900)에 의해 거리들은 끊임없이 측정될 필요가 있을 수 있다.
일부 실시예에서, 블록(980)에서 물체에 대한 거리를 결정한 후, 방법(900)은 블록(990)에서 종료 명령이 CPOS에 의해 수신되었는지를 판단할 수 있다. 종료 명령이 수신된 경우, 방법(900)은 블록(999)에서 거리 측정을 중단할 수 있고, 그렇지 않으면 방법(900)은 블록(920)으로 되돌아감으로써 물체들에 대한 거리 측정을 계속할 수 있다.
전술한 바와 같이, 방법(900)은 채널들 사이의 간섭을 감소시키기 위해 사용될 수 있다. 예를 들어, 방법(900)은 복수의 광학 측정의 일부로서, 광원들 및 광센서들의 복수의 채널들에 대해 반복될 수 있다. 복수의 광학 측정은 시간 상에서 중첩될 수 있어서, 예를 들어 실질적으로 동시에 수행될 수 있다. 따라서, 각 채널은 동시에 측정을 수행할 수 있다. 간섭을 줄이기 위해 적어도 일부 채널에 대해서 코드가 다를 수 있다. 예를 들어, 복수의 채널들 중 2 개 이상의 채널의 N개의 펄스 트레인의 펄스 패턴은 상이할 수 있으며, 이에 따라 서로 다른 채널에 대해 서로 다른 히스토그램 패턴을 야기할 수 있다. 이에 추가하여 또는 대안적으로, 복수의 채널들 중 2 개 이상의 채널의 N개의 펄스 트레인에 할당된 가중치가 상이할 수 있으며, 이에 따라 서로 다른 채널에 대해 서로 다른 히스토그램 패턴을 야기할 수 있다.
IV. 능동 이미저 시스템의 구조
도 10은 본 개시의 일부 실시예에 따른, 넓은 시야를 갖고 협대역 이미징이 가능한 예시적인 능동 광학 이미저 시스템(1000)의 세부 도면을 예시하는 개략도이다. 능동 광학 이미저 시스템(1000)은 본원에서 전술된 바와 같이 고정형 또는 스캐닝 아키텍처를 채용할 수 있다. 일부 실시예에서, 능동 광학 이미저 시스템(1000)은 광 검출 시스템(1001)과, 수동 광학 이미저 시스템과는 다르게 광 방출 시스템(1002)을 포함할 수 있다. 광 방출 시스템(1002)은 시스템(1000)이 협대역 광선(1004)을 사용하여 위치되는 시야의 적어도 일부의 능동 조명을 제공한다. 광 검출 시스템(1001)은 반사된 광선(1006)으로서 시야 내의 물체에 의해 반사된 이후의, 광 방출 시스템(1002)으로부터 방출되는 협대역 광을 검출한다. 광 검출 시스템(1001)은 도 2와 관련하여 본원에서 설명된 광 검출 시스템(200)과 실질적으로 유사할 수 있다. 따라서, 벌크 수신기 광학부(1008), 광 원뿔(1010), 마이크로-광학 수신기 층(1014) 내의 마이크로-광학 수신기 채널(1012), 및 광 검출기(1016)의 세부사항은 도 2에 관해 본원에서 참조될 수 있고, 간결함을 위해 여기에서 설명되지 않는다.
일부 실시예에서, 광 방출 시스템(1002)은 벌크 송신기 광학부(1018)와, 광 방출기들(1022)의 1차원 또는 2차원 어레이로 형성된 발광층(1020)을 포함한다. 각각의 광 방출기(1022)는 협대역 광의 이산적인 빔들을 생성하도록 구성될 수 있다. 일부 실시예에서, 발광층(1020)은 광 방출 시스템(1002)으로부터의 특정 범위의 거리들에 걸쳐, 크기 및 형상이, 마이크로-광학 수신기 채널 어레이(1014) 내의 수신기 채널들의 시야들과 매칭되는 조명 패턴에 따라, 벌크 송신기 광학부(1018)를 통해 이산적인 광의 빔들을 선택적으로 투사하도록 구성된다. 광 방출기(1022)는 하나 이상의 모놀리식 칩에 집적된 수직-공동 표면-발광 레이저(VCSELS) 또는 임의의 다른 유형의 레이저 다이오드와 같은, 임의의 적절한 발광 장치일 수 있다. 광 방출기(1022)는 광의 원뿔(1024)들을 시준하고 그 후 방출되는 광선들(1004)로서 시야 내의 원거리 목표물들로 시준된 광을 출력할 수 있는, 벌크 송신기 광학부(1018)에 지향되는 협대역 광의 원뿔(1024)들을 생성할 수 있다. 일부 실시예에서, 벌크 송신기 광학부(1018)는 이미지-공간에 텔레센트릭한다.
부가적인 그리고 대안적인 실시예에서, 광 원뿔(1024)로부터의 광선(1004)은 광 방출 시스템(1002)으로부터 방출되는 광의 휘도 및 강도를 향상시키기 위해 벌크 송신기 광학부(1018)에 의해 원거리 목표물로 지향되기 전에, 마이크로-광학 송신기 층(도시되지 않음)에 의해 공간 내의 중간 평면 상에 집속된다. 그러한 실시예에서, 광 방출 시스템(1002) 및 광 검출 시스템(1001)은 각각의 마이크로-광학 송신기 채널(도시되지 않음)이, 대응하는 마이크로-광학 수신기 채널(1012)과 쌍을 이루고, 그들의 시야의 중심들이 센서로부터의 특정 거리에서 중첩되게 정렬되도록, 또는 그들의 주요 광선들이 병렬로 형성되도록, 구성된다. 부가적인 그리고 대안적인 실시예에서, 광 방출 시스템(1002)에 의해 방출되는 광의 원거리-시야의 빔들은, 각각의 마이크로-광학 수신기 채널(1012)의 원거리 시야에 대해 유사한 크기 및 발산 각도를 가진다. 출력된 광의 휘도 및 강도를 향상시키기 위한 마이크로-광학 송신기 층을 가진 광 방출 시스템(1002)의 세부사항은 이하 상세히 설명될 것이다.
도 10의 평행 광선들(1004 및 1006)의 도시로부터 명백한 바와 같이, 각각의 마이크로-광학 수신기 채널(1012)은 임계 거리를 넘어 중첩되지 않은 시야를 가진다. 도 10에 도시된 바와 같이, 각각의 마이크로-광학 수신기 채널(1012)은 복수의 개구들로부터의 하나의 개구, 복수의 렌즈들로부터의 하나의 렌즈, 및 복수의 광 검출기들로부터의 하나의 광 검출기를 포함하며, 각각의 채널의 개구는 다른 마이크로-광학 수신기 채널들의 시야 내의 임계 거리를 넘어서 중첩되지 않는 채널 내의 픽셀에 대한 이산적인 시야를 정의한다. 이러한 방식으로, 각각의 마이크로-광학 수신기 채널은 마이크로-광학 수신기 채널 층(1014) 내의 임의의 다른 마이크로-광학 수신기 채널에 의해 측정되지 않은 시야 내의 이산적인 위치에 대응하는 반사광을 수신한다.
A. 능동 이미저 시스템에서의 송신기의 휘도 및 강도 향상
본 개시의 실시예는, 다른 용도들 중에서, 자율주행 차량에서 장애물 검출 및 회피를 위해 사용될 수 있는 LIDAR 센서에 관한 것이다. 몇몇 특정 실시예들은, 센서들이 충분히 저렴하면서도 충분한 신뢰성을 가지며 매스마켓(mass-market) 자동차, 트럭 및 다른 차량에 사용하기 위해 적용될 만한 충분히 작은 크기를 가질 수 있는 설계 특징을 포함하는, LIDAR 센서들에 관한 것이다. 예를 들어, 일부 실시예는, 시야 내로 복사를 방출하는 조명 소스로서 수직 공동 표면-방출 레이저들(VCSEL)의 세트를 포함하고, 시야 내의 표면으로부터 다시 반사되는 복사를 검출하는 광센서들(검출기들)의 세트로서 단일-광자 애벌란시 다이오드(SPAD) 검출기들의 어레이들을 포함한다. 방출기들로서 VCSEL들을, 그리고 검출기들로서 SPAD들을 이용하는 것은, 다수의 측정들이 동시에 수행될 수 있게 하고(즉, VCSEL 방출기들이 동시에 발광할 수 있음), 또한, 방출기들의 세트 및 광센서들의 세트가 단일 칩 상의 표준 CMOS 프로세스들을 사용하여 제조될 수 있게 하여, 제조 및 조립 공정을 크게 간소화시킨다.
특정 실시예에서 VCSEL들 및 SPAD들을 사용하는 것은 어려울 수 있지만, 본 개시의 다양한 실시예들은 이를 극복한다. 예를 들어, VCSEL들은 기존 LIDAR 아키텍처들에서 사용되는 전형적인 레이저들보다 출력이 훨씬 약하며, SPAD들은 기존 LIDAR 아키텍처들에서 사용되는 전형적인 검출기들보다 훨씬 덜 효율적이다. 이러한 어려움뿐만 아니라, 다수의 방출기들을 동시에 발광시키는 어려움을 극복하기 위해, 본 개시의 특정 실시예들은, 여기에 설명된 바와 같이, 각각의 어레이가 서로 다른 픽셀(예를 들어, 시야 내의 위치)에 대응하는 다수의 SPAD들의 어레이들과 함께 작동할 수 있는 다양한 광학 구성요소들(예를 들어, 렌즈들, 필터들, 및 개구층)을 포함한다. 예를 들어, 도 2와 관련하여 본원에서 설명되는 바와 같이, 광 검출 시스템(200)은 광센서(216)(예를 들어, SPAD)에 의해 검출된 광을 향상시키기 위한 마이크로-광학 수신기 층(204)을 포함할 수 있다.
VCSEL들은 기존 LIDAR 아키텍처들의 전형적인 레이저들보다 출력이 약하기 때문에, 일부 실시예에서, 광 방출 시스템(1002)은 광 거리측정 기능을 수행하는 이미저 시스템(1000)의 능력을 향상시키도록 구성될 수 있다. 즉, 광 방출 시스템(1002)에 의해 방출되는 광의 품질은 광 거리측정의 정확도 및 효율을 개선하도록 향상될 수 있다. 광 거리측정 및 이미징을 위한 전송된 광의 품질은 휘도 및 강도로 정의될 수 있다. 벌크 송신기 광학부(1018)로부터 방출되는 광선들(1004)의 휘도 및 강도는, 본원에서 더 설명되는 바와 같이, 하나 이상의 광학 송신기 층들을 수정 및/또는 구현함으로써 향상될 수 있다.
전송되는 광의 휘도는 입체각(solid angle)당 광학 출력(optical power)(와트)으로 정의될 수 있다. 따라서, 엄격한 시준을 가진, 즉 낮은 발산도를 가진 광을 출력하는 광원은 휘도가 높은 광을 생성한다. 역으로, 높은 발산도를 가진 광을 출력하는 광원은 휘도가 낮은 광을 생성한다. 빛의 강도는 면적당 광학 출력으로 정의될 수 있으며, 이는 특정한 출력으로 방출된 광이, 작은 면적에서 엄격하게(tightly) 압축되는 경우 더 높은 강도를 가질 것임을 의미한다. 따라서, 엄격하게 압축된 광선으로 광을 출력하는 광원은, 모든 광원들이 낮은 발산도를 가진 광을 출력하더라도, 덜 압축된 광선으로 광을 출력하는 광원보다 더 높은 강도를 가질 것이다. 본원에서 알 수 있는 바와 같이, 본 개시의 실시예들의 LIDAR 시스템들을 위한 송신기 구성요소들은, 마이크로-광학 구성요소들이 없는 유사한 송신기에 비해, 강화된 휘도 및 강도를 가진 광을 출력하게 하는 마이크로-광학 구성요소들로 구성될 수 있다.
도 11은 본 개시의 일부 실시예에 따른, 제1 예시적인 향상된 광 방출 시스템(1100)의 개략적인 단면도이다. 광 방출 시스템(1100)은 광 방출기(1104)들(예를 들어, 광(1113)을 방출하기 위한 LED, 레이저 다이오드, VCSEL 등을 포함할 수 있지만, 이에 한정되지 않음)을 가진 광 방출기 어레이(1102)를 포함할 수 있다. VCSEL은 상부 표면에 수직하는 레이저 빔 방출을 가진 반도체 레이저 다이오드의 한 유형이다. 도 11에 도시된 선형 어레이는 원형, 직사각형, 선형, 또는 임의의 다른 기하학적 형상을 포함하고 이로 제한되지 않는, 방출기 어레이의 임의의 기하학적 형태일 수 있다.
향상된 광 방출 시스템(1100)은 개방된 공간(1118)에 의해 광 방출기 어레이(1102)와 구분되는 마이크로-광학 송신기 채널 어레이(1106)를 포함할 수 있다. 각각의 마이크로-광학 송신기 채널(1108)은 대응하는 수신기 채널(예를 들어, 도 10의 수신기 채널(1012))과 쌍을 이루고, 그들의 시야의 중심이 광학 이미저 시스템으로부터 특정 거리에서 중첩되도록 정렬된다. 마이크로-광학 송신기 채널 어레이(1106)는 광 방출기 어레이(1102)를 향하는 측면에 위치된 제1 광학 표면(1120)과, 광 방출기 어레이(1102)로부터 멀어지는 쪽을 향하는 반대 측면에 위치된 제2 광학 표면(1121) 사이에 개재된 기판(1119)으로 형성될 수 있다. 제1 및 제2 광학 표면들(1120, 1121)은 각각, 제1 광학 표면(1120)을 통해 전송되는 광이 제2 광학 표면(1121)을 통해 후속적으로 전송될 수 있도록, 제1 광학 표면(1120)의 각각의 볼록 렌즈가 제2 광학 표면(1120)의 각각의 볼록 렌즈와 광학적으로 정렬되도록 구성되는, 볼록한, 마이크로-광학 렌즈들의 어레이로서 구성될 수 있다. 제1 및 제2 광학 표면들(1120, 1121)로부터의 대응하는 볼록 렌즈들은 도 11에 도시된 바와 같이 서로로부터 멀어지는 방향을 향할 수 있다. 특정 실시예에서, 제1 광학 표면(1120)의 볼록 렌즈는 제1 광학 출력을 갖고, 제2 광학 표면(1121)의 볼록 렌즈는 제1 광학 출력과는 상이한 제2 광학 출력을 가진다. 예를 들어, 제2 광학 출력은 제1 광학 출력보다 더 커서, 제2 광학 출력의 초점 거리가 제1 광학 출력의 초점 거리보다 짧을 수 있다. 기판(1119)은 실리콘, 이산화규소, 붕규산 유리, 고분자 등과 같은, 광 방출기들(1104)의 파장 범위에서 투과성을 가진 임의의 적절한 재료로 형성될 수 있다. 제1 및 제2 광학 표면들(1120, 1121)은 기판(1119)의 각각의 반대되는 표면들 상에 인쇄(imprint)된 투명 고분자로 형성될 수 있다.
일부 실시예에서, 마이크로-광학 송신기 채널 어레이(1106)는 마이크로-광학 송신기 채널들(1108)의 모놀리식 어레이로 형성될 수 있다. 각각의 마이크로-광학 송신기 채널(1108)은 제1 광학 표면(1120)으로부터의 제1 볼록 렌즈, 제2 광학 표면(1121)으로부터의 대응하는 제2 볼록 렌즈, 및 이러한 2개의 볼록 렌즈들 사이에 위치된 기판(1119)의 대응하는 부분을 포함할 수 있다. 각각의 마이크로-광학 송신기 채널(1108)은 동작하는 동안에, 광 방출기(1104)로부터 출력된 광이 제1 볼록 렌즈를 먼저 통과하고, 기판(1119)의 대응 영역을 통과하며, 그 다음에 제2 볼록 렌즈를 통과하도록, 각각의 광 방출기(1104)와 대응할 수 있다.
일단 빛이 제2 광학 표면(1121)의 제2 볼록 렌즈로부터 배출되면, 해당 빛은 대응하는 광 방출기(1104)의 실제 이미지인, 그러나 대응하는 광 방출기(1104)의 감소된 크기인, 소형 스팟 이미지(1110)를 형성한다. 일부 실시예에서, 소형 스팟 이미지(1110)는 마이크로-광학 송신기 채널 어레이(1106)와 벌크 송신기 광학부(1114) 사이에 위치된다. 예를 들어, 소형 스팟 이미지(1110)는 개구층(1109)의 각각의 개구 내에 형성될 수 있다. 각각의 개구는 방출된 빛이 소형 스팟 이미지(1110)를 형성하도록 집속되는 반사성 또는 불투명 층의 핀홀일 수 있다. 그로부터, 광 방출기와 마이크로 광학 채널 모두로부터 멀어지면서, 상기 빛은 벌크 송신기 광학부(1114)를 향해 도달하는 광 원뿔(1112)을 형성한다.
본 개시의 일부 실시예에 따르면, 방출된 빛(1113)의 발산 정도는 광 원뿔(1112)의 발산 정도보다 작을 수 있다. 이러한 발산에서의 불일치는, 마이크로-광학 송신기 채널(1108)에 의해, 특히 제2 광학 표면(1121)의 광학 출력에 의해 생성될 수 있다. 마이크로-광학 송신기 채널(1108)으로부터의 빛의 발산은 광 방출기(1104)로부터 방출된 빛(1113)의 발산보다 더 크기 때문에, 소형 스팟 이미지(1110)는 광 방출기(1104)의 실제 이미지일 수 있지만, 광 방출기(1104)의 크기보다 훨씬 더 작으면서, 방출된 빛(1113)과 동일한 개수의 광자를 가질 수 있다. 이러한 실제 스팟 이미지들이 형성된 광 원뿔(1112)은 벌크 송신기 광학부(1114)를 통과한 후 각각의 광 방출기(1104)에 대한 이산적인 광의 빔들로서 시야에 투사된다. 광 방출 시스템(1100)으로부터 방출되는 광선들은 작은 단면적(광 방출기(1104)의 표면 면적보다 작음)을 가진 고도로 시준된 광선들이며, 이에 의해, 광 방출 시스템(1100)이 향상된 휘도와 강도를 가진 빛을 출력할 수 있게 된다.
벌크 송신기 광학부(1114)는 하나의 렌즈를 포함하거나, 또는 2개 이상의 렌즈가 함께 기능하여 벌크 송신기 광학부(1114)를 형성하는 렌즈 클러스터를 포함할 수 있음을 유의해야 한다. 벌크 송신기 광학부(1114) 내에서의 다수의 렌즈들을 사용하는 것은, 개구수를 증가시키거나, RMS 스팟 크기를 감소시키거나, 이미지 평면을 평탄화하거나, 텔레센트릭 정도를 개선시키거나, 또는 그렇지 않으면 벌크 송신기 광학부(1114)의 성능을 향상시킬 수 있다. 또한, 일부 실시예에서, 광 원뿔들(1112)은 원추형 중첩 영역(1116)과 중첩할 수 있음을 유의해야 한다.
마이크로-광학 송신기 채널 어레이(1106)의 동작 및 효과를 보다 잘 이해하기 위해, 광 방출 시스템(1100)의 동작에 대한 보다 상세한 설명이 제시된다. VCSEL 방출기들로 형성된 광 방출기 어레이를 이용하는 향상된 광 방출 시스템들(1100)의 경우, 방출기를 위한 예시적인 초기 반경은 10° 반각 원뿔에서 허용되는 빛을 가진, 12.5 μm일 수 있다. 이러한 방출기들은 대개, 활성 영역의 제곱 마이크론당 50 μW를 출력할 것이다. 각각의 방출기(1104)로부터 발산하는 광 원뿔은 마이크로-광학 송신기 채널(1108) 내로 수신되고, 그 후, 예를 들어 20°의 반각을 가진 수렴성 광 원뿔을 생성하도록, 동일한 마이크로 광학 채널에 의해 수렴성 광 원뿔이 출력된다. 따라서, 일부 실시예에서, 방출기(1104)에 의해 생성된 원추 각은 대응하는 마이크로-광학 송신기 채널(1108)에 의해 생성된 원추 각보다 더 작다. 그 후, 마이크로-광학 송신기 채널(1108)에 의해 방출되는 수렴성 광 원뿔은 방출기의 소형 스팟 이미지(1110)를 생성한다. 도 11에 따른 실시예의 경우, 소형 스팟 이미지(1110)는 실제 이미지이고, 대응하는 광 방출기(1104)의 크기보다 작은 크기를 가진다. 임의의 주어진 방출기로부터의 모든 광선들이 모두 임의의 작은 스팟 내로 모두 집속되지는 않을 수도 있음에 유의해야 한다. 소형 스팟 이미지 크기는 대개, 다음의 "광학 불변량"에 의해 제어된다:
_s * r_s >= _e * r_e
여기서, _s는 집속된 스팟의 가장자리 광선의 반각이고, r_s는 집속된 스팟의 반경이며, _e는 원래 방출기의 가장자리 광선의 반각이고, r_e는 원래 방출기의 반경이다. 따라서, 본 예시에서, (방출기로부터 모든 광선을 여전히 포착하는 동안) 형성될 수 있는 가장 작은 소형 스팟 이미지 반경은 다음과 같다:
10/20 * 12.5 μm = 6.25 μm
이러한 더 작은 스팟은 원래 방출기의 면적의 1/4을 가질 것이고, 따라서 스팟 면적의 제곱 마이크론당 200 μW의 출력 밀도를 가짐을 유의해야 한다. 각각의 마이크로-광학 송신기 채널(1108)은 대개, 예를 들어 그리고 제한적이지는 않게, 50 μm의 초점 거리 및 80 μm의 렌즈 직경을 포함할 수 있는 특성을 가지는, 하나 이상의 광학 표면을 가진다. 일부 실시예에서, 광 방출기(1104) 및 대응하는 마이크로-광학 송신기 채널(1108) 사이의 거리는, 예를 들어 그리고 제한적이지는 않게, 150 μm일 수 있다. 도 11에 도시된 바와 같은 방출기 어레이(1102) 및 마이크로-광학 송신기 채널 어레이(1106) 사이의 개방된 공간(1118)은, 예를 들어 그리고 제한적이지는 않게, MEMS 장치들을 제조하는 데에 전형적으로 사용되는 방법들에 의해 생성되는 것과 같은 에어 갭(air gap)일 수 있다. 방출기 어레이(1102) 및 마이크로-광학 송신기 채널 어레이(1106) 사이의 거리는 예를 들어, 150 μm일 수 있다.
벌크 이미징 광학부의 초점면이 소형화된 스팟 이미지(1110)와 일치하도록, 벌크 송신기 광학부(1114)는 마이크로-광학 층 및 방출 층의 전방에 위치된다. 벌크 송신기 광학부(1114)는 발산성 광 원뿔(들)(1112)을 수용하고, 시준된 빔을 출력한다. 그의 개구수(numerical aperture)는 적어도, 발산하는 광선 원추(들) 내의 전체 각도 범위를 포착하기에 충분히 클 수 있으며, 따라서, 예를 들어 그러나 제한적이지는 않게, 본 예시에서, 개구수(NA)=0.34이다. 또한, 벌크 송신기 광학부(1114)는 마이크로-광학층을 빠져나가는 광 원추(들)(1112)가 모두 (벌크 광학부의 중심을 향해 조준되는 자신의 중심 축을 가진 것이 아니라) 평행할 수 있으므로, 이미지-공간에 텔레센트릭할 수 있다. 일 실시예에서, 빛은 벌크 송신기 광학부(1114)를 빠져나가 근사적으로 시준될 수 있다. 빔 시준의 품질은 초점면에서의 "방출 물체(소형 스팟 이미지(1110))"의 크기와 관련된다는 점에 유의해야 한다. 이러한 "방출 물체" 크기는 마이크로-광학 스택을 사용함으로써 감소되었기 때문에, 방출 물체가 단순히 직접 이미징되었을 때보다 더 양호한 시준 각도가 얻어진다.
도 11은 제1 광학 표면 및 제2 광학 표면 사이에 개재된 기판으로 형성된, 그리고 광 방출 시스템에 의해 출력되는 빛의 휘도 및 강도를 개선하기 위해 개방 공간에 의해 광 방출기 어레이로부터 일정 거리로 이격되어 위치되는, 마이크로-광학 채널 어레이를 가진 향상된 광 방출 시스템을 도시하고 있지만, 실시예들이 이러한 구성으로 제한되지는 않는다. 오히려, 다른 실시예들에서는, 도 12와 관련하여 본원에서 더 설명되는 바와 같이, 개방 공간 또는 2개의 광학 표면들을 반드시 구현할 필요는 없다.
도 12는 본 개시의 일부 실시예에 따른, 제2 예시적인 향상된 광 방출 시스템(1200)의 개략적인 단면도이다. 제1 예시적인 향상된 광 방출 시스템(1100)과 유사하게, 제2 예시적 향상된 광 방출 시스템(1200)은 벌크 이미징 광학부(1214) 및 광 방출기 어레이(1202)를 포함할 수 있다. 그러나, 제1 예시적인 광 방출 시스템(1100)과 달리, 제2 예시적인 광 방출 시스템(1200)은 도 12에 도시된 바와 같이, 개방 공간/에어 갭에 의해 분리되는 대신에, 광 방출기 어레이(1202)의 방출 표면 상에 직접 배치되는, 마이크로-광학 송신기 채널 어레이(1206)를 포함할 수 있다.
이러한 실시예에서, 마이크로-광학 송신기 채널 어레이(1206)는 기판(1219) 및 광학 표면(1220)으로 형성될 수 있다. 광학 표면(1220)은 기판(1219)의 제1 면(1230) 상에 위치될 수 있다. 기판(1219)의 제2 면(1231)은 제1 면(1230)의 반대쪽에 위치될 수 있고, 광 방출기(1204)로부터 방출된 빛이 광학 표면(1220)을 통과하기 전에 기판(1219)을 먼저 통과할 수 있도록, 광 방출기 어레이(1202)에 마주하게 위치될 수 있다. 광학 표면(1220)은, 각각의 광 방출기(1204)에 의해 출력되는 빛이 광학 표면(1220)의 각각의 볼록 렌즈를 통해 투과될 수 있도록 광학 표면(1220)의 각각의 볼록 렌즈가 각각의 광 방출기(1204)와 광학적으로 정렬되도록 구성되는, 볼록 렌즈들의 어레이로서 구성될 수 있다. 광학 표면(1220)으로부터의 볼록 렌즈들은 이들의 초점이 광 방출기(1204)로부터 더 멀리 위치되도록, 도 12에 도시된 바와 같이 각각의 광 방출기(1204)로부터 멀어지는 쪽을 향할 수 있다. 특정 실시예에서, 광학 표면(1220)의 볼록 렌즈들은, 도 11의 제2 광학 표면(1121)의 볼록 렌즈들과 같이, 방출된 빛을, 대응하는 광 방출기들(1204)의 실제 이미지들인, 그러나 대응하는 광 방출기들(1204)의 감소된 크기의 이미지들인, 실제의 소형 스팟 이미지들(1210)로 수렴하기에 적절한 광학 출력을 가진다. 광학 표면(1120)은 방출된 빛이 벌크 이미징 광학부(1214)를 통해 투사되기 전에 광 원뿔들(1212)로 발산하게 한다. 기판(1219) 및 광학 표면(1220)은 도 11과 관련하여 본원에서 설명된 기판(1119) 및 광학 표면들(1120 및 1121)과 유사한 재료로 형성될 수 있다. 일부 실시예에서, 광 원뿔(1212)은 원추형 중첩 영역(1216)을 형성하며 중첩될 수 있다.
본원의 실시예들은, 볼록 렌즈들을 포함하지 않고 광 방출기들의 실제 이미지들을 생성하지 않는, 마이크로-광학 채널 어레이들을 구현할 수도 있다. 오히려, 일부 실시예는 도 13과 관련하여 본원에서 더 설명되는 바와 같이, 광 방출기들의 가상 이미지들을 생성하기 위해 오목한 표면들을 구현할 수 있다.
도 13은 본 개시의 일부 실시예에 따른, 제3 예시적인 향상된 광 방출 시스템(1300)의 개략적인 단면도이다. 제1 및 제2 예시적인 향상된 광 방출 시스템들(1100 및 1200)과 유사하게, 제3 예시적인 향상된 광 방출 시스템(1300)은 벌크 이미징 광학부(1314) 및 광 방출기 어레이(1302)를 포함할 수 있다. 그러나, 제1 및 제2 광 방출 시스템(1100 및 1200)과 달리, 제3 예시적 광 방출 시스템(1300)은 도 13에 도시된 바와 같이 볼록 렌즈들의 어레이 대신 오목한 표면들의 어레이를 포함하는 마이크로-광학 송신기 채널 어레이(1306)를 포함할 수 있다.
이러한 실시예에서, 마이크로-광학 송신기 채널 어레이(1306)는 기판(1319) 및 광학 표면(1320)으로 형성될 수 있다. 광학 표면(1320)은, 벌크 이미징 광학부(1314)를 향해 그리고 광 방출기들(1304)로부터 멀리 위치되는, 기판(1319)의 제1 면(1330)일 수 있다. 기판(1319)의 제2 면(1331)은 제1 면(1330)의 반대쪽에 위치될 수 있고, 광 방출기(1304)로부터 방출된 빛이 광학 표면(1320)을 통과하기 전에 기판(1319)을 먼저 통과할 수 있도록 광 방출기 어레이(1302)에 마주하여 위치될 수 있다. 광학 표면(1320)은, 각각의 광 방출기(1304)에 의해 출력되는 광이 광학 표면(1320)의 각각의 오목 표면을 통해 투과될 수 있도록 광학 표면(1320)의 각각의 오목 표면이 각각의 광 방출기(1304)와 광학적으로 정렬되도록 구성되는, 오목한 표면들의 어레이로서 각각 구성될 수 있다. 특정 실시예에서, 광학 표면(1320)의 오목 표면들은, 대응하는 광 방출기들(1304)의 가상의 이미지들이지만, 대응하는 광 방출기들(1304)의 감소된 크기의 이미지들인, 그리고, 방출된 빛이 벌크 이미징 광학부(1314)를 통해 투사되기 전에 광 원뿔(1312)로 발산하게 하는, 가상의 소형 스팟 이미지들(1310)을 형성하기에 적절한 광학 출력을 가진다. 일부 실시예에서, 가상의 소형 스팟 이미지들(1310)은 도 13에 도시된 바와 같이 기판(1319) 내에 형성된다. 일부 실시예에서, 광 원뿔들(1312)은 원추형 중첩 영역(1316)을 형성하며, 중첩될 수 있다. 기판(1319)은 도 11과 관련하여 본원에서 설명된 기판(1119)과 유사한 재료로 형성될 수 있다.
도 11, 도 12 및 도 13 각각에 설명된 실시예에 대한 마이크로-광학 채널들을 위한 렌즈 구성들은, 광 출력을 갖는 표면의 수와 이러한 표면들의 형상에 따라 달라진다. 도 11에 도시된 제1 실시예는 기판의 반대되는 면들 위에 2개의 광학 출력 표면들을 사용하는 장점이 있는데, 이는 각각의 표면이 더 얇게, 비구면(apherical)보다는 구형으로, 또는 그렇지 않으면 더 쉽게 제조될 수 있게 할 수 있다. 이 실시예는 마이크로-광학 채널 어레이(1106) 및 광 방출기 어레이(1102) 사이의 오프셋을 유지하기 위해 스페이서 구조(도시되지 않음)를 포함한다. 이러한 스페이서 구조의 예는, 깊은 반응성 이온 에칭을 통해 형성된 채널들을 가진 실리콘 웨이퍼일 것이다. 도 12에 도시된 제2 실시예는 광 방출기 어레이에 부착되는 기판 상에 단지 하나의 광학 출력 표면을 가지는 장점이 있다. 이러한 유형의 구성은 향상된 휘도 및 강도를 달성하면서도 제작을 단순화한다. 도 13에 도시된 제3 실시예는 도 12에 도시된 실시예의 장점을 공유하지만, 볼록 렌즈보다는 오목 표면으로 형성되는 단일 광학 표면을 가지는데, 오목한 특징부는 종종 마이크로-규모로 제조하기가 더 용이할 수 있다.
일부 실시예에서, 광 방출 시스템을 위한 벌크 이미징 광학부는 시스템에 의해 방출되는 미광(stray light)을 감소시키기 위해 하나 이상의 구경 조리개를 포함할 수 있다. 예를 들어, 도 14는 본 개시의 일부 실시예에 따른, 개구 조리개(aperture stop)를 가진 벌크 광학부로 구성된 예시적인 향상된 광 방출 시스템(1400)의 개략적인 단면도이다. 도 14는 벌크 송신기 광학부(1414)를 위한 개구 조리개 변형들(1403, 1405, 및 1406)이 부가된 도 1과 실질적으로 유사하다. 도 14에 도시된 구경 조리개(들)는 도 11 내지 도 13중 어느 하나와 함께 사용될 수 있다. 도 14에서, 구경 조리개들(1403, 1405, 및 1407)은 빛이 통과하는 원형 또는 타원형 개구들을 가질 수 있지만, 본 개시의 사상 및 범위로부터 벗어나지 않고 임의의 개구 형상이 이용될 수 있다.
일부 실시예에서, 구경 조리개(1403)는 광 방출기 어레이(1402) 및 마이크로-광학 송신기 채널 어레이(1406)로부터 멀어지는 방향을 향하는 벌크 송신기 광학부(1414)의 측면에 위치될 수 있다. 몇몇 부가적인 대안적인 실시예에서, 구경 조리개(1405)는 광 방출기 어레이(1402) 및 마이크로-광학 송신기 채널 어레이(1406)를 향하는 방향으로 마주하는 벌크 송신기 광학부(1414)의 측면에 위치될 수 있다. 벌크 수신기 광학부(114)가 함께 작동하는 복수의 렌즈들을 포함하는 몇몇 부가적인 대안적인 실시예에서, 구경 조리개(1407)는 벌크 송신기 광학부(1414)를 형성하는 복수의 렌즈들 내에 배치된 하나 이상의 구경 조리개로 형성될 수 있다.
구경 조리개들(1403, 1405, 및 1407)의 다양한 구성들 및 위치들은 광 방출 시스템에서 각각의 구경 조리개들이 동작하는 방식을 결정할 수 있다. 예를 들어, 모든 광 원뿔(1412)이 구경 조리개(1407)의 위치 근처에서 실질적으로 중첩되도록 압축되는 경우, 구경 조리개(1407)의 크기는 방출된 시준된 빔의 초기 직경뿐만 아니라 광 방출기(1404)에 의해 방출되는 가장자리 광선을 차단하도록 제어될 수 있을 것이다. 여러 유형의 레이저에 의해 방출되는 광의 파장은 각도에 따라 변하기 때문에, 특정 광선 각도를 차단하는 것은 벌크 광학부로부터 방출된 광의 스펙트럼을 효과적으로 좁힐 수 있다. 또는, 벌크 송신기 광학부(1414)의 설계에 따라, 개구 조리개에 대한 이러한 최상의 위치는 아마도 1402 또는 1403에서 발생할 것이다. 광 방출 시스템(1400)에 의해 방출되는 미광을 감소시키기 위해 다수의 구경 조리개가 동시에(예를 들어, 하나의 벌크 송신기 광학부(1414)에서 1402, 1403, 및 1404 모두) 사용될 수 있다.
B. 비점 수차에 대한 광학 교정
본원에서 도 7에 관련하여 언급된 바와 같이, 광 검출 시스템 및 광 방출 시스템은 예컨대, 도 7의 고정식 하우징(702), 광학적으로 투명한 윈도우(704), 및 고정 덮개(706)와 같은, 동일한 보호 구조 내에 봉입될 수 있다. 일부 실시예에서, 광 방출 시스템으로부터 방출된 빛은 투명 윈도우(704) 바깥으로 방출되고, 광 검출 시스템에 의해 검출되는 빛은 먼저 투명 윈도우(704)로 들어올 수 있다. 투명 윈도우(704)의 곡률은 비점 수차(astigmatism)와 같은 몇몇 광학 수차를 유발할 수 있다. 투명 윈도우는 원통형 구조를 가질 수 있고 잘 제어될 수 있기 때문에, 이는 하나 이상의 부가적인 광학 구조물을 사용하여 교정될 수 있다. 일부 실시예에서, 광 방출 및/또는 검출 시스템은, 본원에서 더 설명되는 바와 같이, 투명한 윈도우에 의해 야기되는 비점 수차를 보상하기 위해 교정(corrective) 광학 구조물과 함께 구성될 수 있다.
도 15a 내지 15c는 본 개시의 일부 실시예에 따른, 비점 수차를 위한 교정 광학 구조물들의 서로 다른 구현들을 가진 예시적인 능동 이미저 시스템들의 개략도의 단면도들이다. 구체적으로, 도 15a는 벌크 이미징 광학부의 일부로서 교정 광학 구조를 가지는 능동 이미저 시스템(1500)의 개략적인 단면도이고, 도 15b는 마이크로-광학 수신기 채널 어레이의 일부로서 교정 광학 구조를 가지는 능동 이미저 시스템(1501)의 개략적인 단면도이며, 도 15c는 마이크로-광학 송신기 채널 어레이의 일부로서 교정 광학 구조를 가지는 능동 이미저 시스템(1502)의 개략적인 단면도이다. 능동 이미저 시스템들(1500, 1501, 1502)은 각각, 광 검출 시스템(1504) 및 광 방출 시스템(1506)을 포함한다. 능동 이미저 시스템들(1500, 1501, 및 1502)의 구성요소들은 교정 광학 구조들이 부가된, 도 10의 능동 광학 이미저 시스템(1000)과 실질적으로 유사하다. 따라서, 간결함을 위해, 능동 광학 이미저 시스템(1000)과 공통되는 구성요소들은 설명되지 않는다.
도 15a에 도시된 바와 같이, 능동 이미저 시스템(1500)은 투명 윈도우(1508)를 포함하는 하우징 내에 수용될 수 있다. 투명 윈도우(1508)는 적어도, 방출기(1510)가 동작하는 광의 파장에 대해 투명하다. 투명 윈도우(1508)의 만곡된 형상은, 광선(1511)이 투명 윈도우(1508)를 통해 하우징을 빠져나갈 때 광 방출 시스템(1506)으로부터 방출되는 광선(1511)에서의 비점 수차와 같은 광학 수차를 유발할 수 있다. 이어서, 광선들(1512)은 시야 내의 물체로부터 반사된 후에 투명 윈도우(1508)를 통해 하우징 내로 다시 들어가고, 이는 수신된 광선에 부가적인 광학 수차를 유발할 수 있다. 이들 광학 수차를 교정하기 위해, 광 검출 시스템(1504)은 투명 윈도우(1508)에 의해 유도되는 예상되는 비점 수차를 보상하도록 특별히 설계된 교정 벌크 이미징 광학부(1514)를 포함할 수 있다. 예를 들어, 교정 벌크 이미징 광학부(1514)는 벌크 수신기 광학부(1518)에 부가되는 교정 렌즈(1516)를 포함할 수 있다. 교정 렌즈(1516)는 원통형 렌즈와 같은 투명 윈도우(1508)에 의해 야기된 비점 수차를 제거할 수 있는 임의의 적절한 렌즈일 수 있다. 교정 렌즈(1516)는 일부 실시예에서 투명 윈도우(1508) 및 벌크 수신기 광학부(1518) 사이에, 또는 일부 다른 실시예에서 벌크 수신기 광학부(1518) 및 마이크로-광학 수신기 채널 어레이(1505) 사이에, 위치될 수 있다. 유사하게, 광 방출 시스템(1506)의 벌크 송신기 광학부에 교정 벌크 광학부가 포함될 수 있다.
교정 광학부를 벌크 이미징 광학부에 포함시키는 대신에, 교정 광학부는 일부 실시예에서 마이크로-광학 수신기 채널 어레이 내에 구현될 수 있다. 예를 들어, 도 15b를 참조하면, 광 검출 시스템(1504)은, 개구(1522)의 전방에, 예를 들어, 광센서들(1526)이 위치되는 곳으로부터 개구(1522)의 반대쪽에, 교정 렌즈 어레이(1520)를 포함할 수 있다. 이러한 방식으로, 광 원뿔들(1524)은 광센서들(1526) 상에 투사되기 전에 투명 윈도우(1508)에 의해 야기되는 비점 수차를 보상하기 위해 각각의 교정 렌즈를 통과하여 전파될 수 있다. 일부 실시예에서, 교정 렌즈 어레이(1520)는 투명 윈도우(1508)에 의해 야기된 비점 수차를 제거할 수 있는 원통형 렌즈들의 어레이로 형성된다. 교정 렌즈 어레이(1520)의 각각의 교정 렌즈는 교정 렌즈 어레이(1520)가 각각의 광센서(1526)에 의해 수신된 광에 대해 투명 윈도우(1508)에 의해 야기된 비점 수차를 제거할 수 있도록, 각각의 개구(1522)와 정렬되게 배치될 수 있다.
도 15a 및 15b는 LIDAR 시스템의 광 검출 시스템 부분이 투명 윈도우(1508)에 의해 야기된 비점 수차를 교정하도록 교정될 수 있는 방식들을 예시하지만, 실시예들은 이러한 구성들로 제한되지 않으며, 교정 광학부는 광 방출 시스템 내에 구현될 수 있다. 예를 들어, 도 15c를 참조하면, 능동 이미저 시스템(1502)은 개구층(1530)의 전방에, 예를 들어, 광 방출기들(1510)이 위치되는 곳으로부터 개구층(1530)의 반대쪽에 교정 렌즈 어레이(1528)를 포함할 수 있다. 이러한 방식으로, 광 방출기(1510)로부터 방출된 광은 벌크 송신기 광학부(1534)로 방출되기 전에 각각의 교정 렌즈(1528)를 통과하여 전파될 수 있다. 이 경우에, 각각의 교정 렌즈(1528)는 빛이 광 방출 시스템(1506)으로부터 방출될 때 투명 윈도우(1508)에 의해 야기되는 비점 수차를 상기 방출된 빛으로부터 어느 정도 교정하고, 그리고 보상할 수 있다. 일부 실시예에서, 교정 렌즈 어레이(1528)는 투명 윈도우(1508)에 의해 야기되는 것과, 크기가 동일하지만 방향이 반대되는 비점 수차를 유도할 수 있는 양 원뿔(biconical) 렌즈들의 어레이로 형성된다. 따라서, 교정 렌즈층(1528)에 의해 유도된 비점 수차의 양은 투명 윈도우(1508)에 의해 야기된 비점 수차의 양에 의해 상쇄될 수 있고, 그에 의해 능동 이미저 시스템(1502)이 동작하는 동안에 전체적으로 비점 수차는 거의 발생하지 않게 된다. 교정 렌즈 어레이(1528)의 각각의 교정 렌즈는, 교정 렌즈 어레이(1528)가 각각의 광센서(1526)에 수신되는 광에 대한 투명 윈도우(1508)에 의해 야기된 비점 수차를 제거하기 위한 비점 수차의 교정 정도를 유도할 수 있도록, 각각의 개구(1532)와 정렬되게 배치될 수 있다. 일부 실시예에서, 교정 렌즈 어레이(1528)는 필요하지 않을 수 있다. 대신에, 광학 표면(1536)은 원통형 렌즈들의 어레이 대신에 양 원뿔 렌즈들의 어레이일 수 있다. 렌즈들의 양 원뿔 구조는 투명 윈도우(1508)에 의해 야기된 비점 수차의 정도를 상쇄하기 위한 비점 수차의 양을 유도할 수 있다. 이들 실시예에서, 광 방출 시스템(1506)에는 교정 렌즈 어레이(1528)가 구현되지 않을 수 있다. 또한, 일부 실시예에서, 교정 마이크로-광학 렌즈 어레이 대신에(또는 이와 함께) 교정 벌크 원통형 렌즈가 벌크 수신기 광학부(1534)와 함께 구현될 수 있다(광 검출 시스템(1504)에 대해 도 15a에 도시된 실시예와 유사하게). 따라서, 광 방출 시스템(1506)은 투명 윈도우(1508)에 의해 야기된 비점 수차를 제거하기 위해 벌크 수신기 광학부(1534)의 전방에 교정 벌크 이미징 광학부를 포함할 수 있다.
V. 수신기 채널 크로스토크의 완화
본 개시에 의해 이해될 수 있는 바와 같이, 마이크로-광학 수신기 내의 채널들은 서로 매우 가깝게, 종종, 서로 간에 수 마이크론 이내에 위치된다. 각각의 채널 사이의 이러한 작은 간격으로 인해 문제가 발생할 수 있다. 예를 들어, 벌크 이미징 광학부를 통해 전파되는 광은 때때로 이웃 채널들로 미광을 누설하여, 시야 내의 각각의 픽셀에 대한 반사광의 부정확한 판독을 초래할 수 있다. 이상적으로는, 도 16a에 도시된 바와 같이, 어떠한 채널에 의해서도 어떠한 미광도 수신되지 않아야 한다.
도 16a는 채널들 사이에 크로스토크가 없는 광 검출 시스템(1600)의 일부의 개략적인 단면도이다. 동작하는 동안, 수직 광선(1602) 및 주 광선(1604)은 벌크 이미징 광학부(1606)로 들어가고, 광 원뿔(1608)을 생성한다. 광선(1602, 1604)은 개구층(1610)의 개구에 입사되고, 시준 렌즈(1611)에 입사된다. 시준 렌즈(1611)는 입사광의 제한된 각도 범위를 허용한다. 예를 들어, 시준 렌즈(1611)는 수직에 대해 +25도 내지 -25도 사이의 입사각에서의 광선을 수용할 수 있다. 도 16a는 +25도 내지 -25도 사이의 입사 각도들을 가진 광 원뿔(1608)을 도시한다. 주 광선(1604)은 개구의 중심을 통과하는 광선이다. 이 예에서, 주 광선(1604)은 시준 렌즈(1611) 상에서 0도의 입사각을 가진다.
도 16b는 채널들 사이에 크로스토크가 존재하는 광 검출 시스템(1601)의 일부의 개략적인 단면도이다. 이 경우에, 동작하는 동안, 경사진 광선(1612) 및 주 광선(1614)은 벌크 수신기 광학부(1616)로 입사되고, 그 뒤 시준 렌즈(1621)에 입사된다. 이 예에서, 시준 렌즈(1621)는 이미지의 중심으로부터 멀리 있는 광센서에 대응하는 마이크로-광학 채널에 속한다. 이 예에서, 주 광선(1614)은 -12도의 입사각을 갖고, 집속된 광의 원뿔은 +12도 내지 -35도 사이의 입사각을 가진다. 시준 렌즈(1621)는 +25도 내지 -25도 사이의 입사각을 가진 빛만 수용하기 때문에, 광선의 일부를 차단한다. 또한, 시준 렌즈가 수용하는 원뿔의 외부에 있는 광선은 다른 광학 표면으로 이동하여 미광이 될 수 있다. 따라서, 비-텔레센트릭(non-telecentric) 벌크 이미징 광학부는, 잠재적으로 잘못된 광선(1622)으로 다른 채널을 오염시키면서, 광 검출기에 대해 상당히 적은 신호 광자를 전달할 것이다. 반면에, 텔레센트릭 벌크 이미징 광학부는, 경사진 광선(1612) 및 주요 광선(1614)의 각도에 상관없이, 시준 렌즈 상에서 대략 0도의 입사각을 가진, +25도 내지 -25도 사이의 입사각을 가진 광을 생성할 것이다. 텔레센트릭 벌크 이미징 광학부는, 송신기에 대해, VCSELS 또는 측면 발광 다이오드 레이저 바에 대한 경우와 같이, 레이저가 텔레센트릭(주 광선들이 모두 평행)할 때, 유사한 장점을 가진다.
일부 실시예에서, 광 감지 모듈의 광 검출 시스템은 입력 이미지-공간 텔레센트릭 벌크 이미징 광학부를 사용한다. 일부 다른 실시예에서, 예를 들어, 비용 또는 증가된 시야가 성능보다 더 중요한 경우에, 광 검출 시스템은 양-볼록(bi-convex) 렌즈와 같은 더 표준적인 입력 벌크 이미징 광학부를 사용할 수 있다. 이미지-공간 텔레센트릭 렌즈로의 임의의 주어진 입력 시야에 대해, 출력된 주 광선들은 광학 축에 평행하고, 이미지측 광 원뿔들은 모두 대략 동일한 각도들의 세트로 퍼진다. 이는 광 검출 시스템의 광학 축으로부터 멀리 있는 마이크로-광학 채널들이 축 상의 마이크로-광학 채널과 유사한 성능을 달성할 수 있게 한다. 광 검출 시스템은 이를 위해 완전한 이미지-공간 텔레센트릭을 필요로 하지는 않지만, 완전한 텔레센트릭에 더 가까운 것이 더 나을 것이다. +/-25도의 빛만 수용할 수 있는 마이크로-광학 수신기 광학 층 렌즈들의 경우, 상기 입력 벌크 이미징 광학부는 초점면의 모든 지점에 대해 각도가 25도 이하인 이미지측 광선을 생성하는 것이 바람직하다.
특정 실시예에서, 넓은 시야 및 협대역 이미징을 가진 특정한 광 검출 시스템들은, 개구수(NA)가 0.34이고 초점 거리가 20 mm인 입력 이미지-공간 텔레센트릭 벌크 이미징 광학부를 가질 수 있다. 유사하게, 일부 다른 실시예는 1 nm폭의 대역통과 필터를 가질 수 있으며, 이에 의해, 매우 특정한 파장의 광을 검출할 수 있게 한다. 상기 광 검출 시스템은 30도보다 큰 FOV들을 지원할 수 있다.
본 개시의 일부 실시예에 따르면, 마이크로-광학 수신기 채널 어레이의 각각의 채널의 설계는 각각의 광 검출기 상으로의 미광의 침입을 최소화하는 특징들을 갖도록 특히 구성될 수 있고, 이에 의해, 미광의 발생에 의해 야기되는 임의의 악영향들을 감소시키거나 제거할 수 있다. 도 17은 본원의 설명에서 마이크로-광학 수신기 채널이라고도 불리는, 예시적인 마이크로-광학 수신기 채널 구조(1700)의 개략적인 단면도이다. 수신기 채널(1700)은 도 2 및 도 10에 각각 도시된, 마이크로-광학 수신기 채널들(232 및 1032)을 나타낼 수 있고, 넓은 범위의 파장들을 포함하는 빛의 입력 원뿔을 수용하며, 동작 파장을 중심으로 하는 파장들의 좁은 대역 외의 빛을 필터링하고, 광센서(1771)가 전술한 좁은 파장 대역 내의 광자들만 또는 거의 이들만을 검출하게 하는 역할을 한다. 본 개시의 일부 실시예에 따라, 수신기 채널(1700)과 같은 마이크로-광학 수신기 채널 구조들은 다음의 층들을 포함할 수 있다:
ㆍ 광학적으로 투명한 개구(1744)와, 벌크 수신기 광학부(202 또는 1008)(도 2 및 도 10에 각각 도시되고, 도 17에는 도시되지 않음)와 같은 이미징 광학부의 초점면에 배치될 때 좁은 시야를 한정하도록 구성되는 광학적으로 불투명한 조리개 영역(1746)을 포함하는 입력 개구층(1740). 개구층(1740)은 입력 가장자리 광선들(1733)을 수용하도록 구성된다. 본원에서 "광학적으로 투명한"이란 용어는 대부분의 또는 모든 빛이 통과되도록 허용하는 것을 지칭한다. 여기서, 빛은 근자외선, 가시광선 및 근적외선 범위(예를 들어, 300 nm 내지 5000 nm)에서의 빛의 스펙트럼을 지칭한다. 여기서, 광학적으로 불투명한 것은 통과하는 빛이 없거나 거의 없이, 해당 빛을 흡수하거나 반사시키는 것을 지칭한다. 개구층(1740)은 광학적으로 불투명한 조리개 영역들에 의해 서로 분리되는, 광학적으로 투명한 개구들을 포함할 수 있다. 개구 및 조리개 영역들은 광학적으로 투명한 기판과 같은 단일 모놀리식 요소 위에 형성될 수 있다. 개구층(1740)은 선택적으로, 개구부들(1744)의 1차원 또는 2차원 어레이를 포함할 수 있다.
ㆍ 초점 거리에 의해 특징지어지되, 개구(1744) 및 조리개 영역(1746)의 평면으로부터 초점 거리로 오프셋되고, 개구(1744)와 축방향으로 정렬되며, 수신기 채널(1700)의 광학 축과 정렬되는 시준 렌즈(1751)의 축에 대해 대략 평행하게 이동하도록 통과되는 광자들을 개구에 의해 시준하도록 구성되는, 시준 렌즈(1751)를 포함하는 광학 렌즈층(1750). 광학 렌즈층(1750)은 크로스토크를 감소시키기 위해 선택적으로, 개구들, 광학적으로 불투명한 영역들 및 튜브 구조를 포함할 수 있다.
ㆍ 시준 렌즈(1751)에 인접하고 개구(1744)의 반대쪽에 있는, 대개, 브래그 반사기 유형의 필터인 광학 필터(1761)를 포함하는 광학 필터층(1760). 광학 필터층(1760)은 특정한 동작 파장 및 통과대역에서, 수직으로 입사된 광자들을 통과시키도록 구성될 수 있다. 광학 필터층(1760)은 임의의 개수의 광학 필터들(1761)을 포함할 수 있다. 광학 필터층(1760)은 크로스토크를 감소시키기 위해 선택적으로, 개구들, 광학적으로 불투명한 영역들 및 튜브 구조를 포함할 수 있다.
ㆍ 광학 필터층(1760)에 인접한 광센서(1771)를 포함하고, 광센서(1771)에 입사되는 광자를 검출하도록 구성되는 광센서층(1770). 여기서, 광센서(1771)는 광자를 검출할 수 있는 단일 광 검출기(예를 들어, 애벌란시 포토다이오드, 단일 광자 애벌란시 검출기(single photon avalanche detector, SPAD), 공진 공동 포토다이오드(resonant cavity photo-diode, RCP), 등), 또는 단일 광센서로서 동작하도록 함께 동작하는, 종종, 하나의 큰 광자 검출 영역에 비해 더 높은 다이나믹 레인지, 더 낮은 암계수율, 또는 다른 이점의 속성들을 가지는, SPAD들의 어레이와 같은, 다수의 광 검출기들을 지칭한다. 각각의 광 검출기는 광자, 즉, 빛을 감지할 수 있는 활성 영역일 수 있다. 광센서층(1770)은 광 검출기(들)로 만들어진 층을 지칭하며, 검출 효율성을 개선하고 이웃하는 수신기 구조들과의 크로스토크를 감소시키기 위한 선택적인 구조들을 포함한다. 광센서층(1770)은 선택적으로, 확산기, 수렴 렌즈, 개구, 광학적으로 불투명한 튜브 스페이서 구조물, 광학적으로 불투명한 원뿔형 스페이서 구조물 등을 포함할 수 있다.
미광은 광학 표면의 거칠기, 투명 매질의 불완전성, 후방 반사 등에서의 결함에 의해 야기될 수 있고, 수신기 채널(1700) 내부 또는 외부의 여러 특징부에서 발생될 수 있다. 미광은 시준 렌즈(1751)의 광학 축에 평행하지 않은 경로를 따라 필터 영역(1761)을 통과하게 지향되고, 개구(1744) 및 시준 렌즈(1751) 사이에서 반사되며, 일반적으로 여러 반사 및 굴절을 포함하는 임의의 다른 경로 또는 궤적을 포함할 수 있다. 다수의 수신기 채널들이 서로 인접하여 배열되는 경우, 하나의 수신기 채널 내의 미광은 다른 채널 내의 광센서에 의해 흡수될 수 있으며, 이에 의해, 광자들에 고유한 타이밍, 위상, 또는 다른 정보를 오염시킬 수 있다. 따라서, 수신기 채널(1700)은 수신기 채널들 사이의 크로스토크를 감소시키기 위해 몇몇 구조물들을 특징으로 할 수 있다.
본원에서 더 이해되는 바와 같이, 마이크로-광학 채널 층 구조의 각각의 층은 미광의 악영향을 완화시키기 위해 특정한 방식으로 설계될 수 있다. 각각의 층에 대한 다양한 서로 다른 설계들이 이하에서 더 상세히 설명될 것이다.
A. 개구층
도 17에 도시된 바와 같이, 개구층(1740)을 가진 실시예에서, 광학적으로 투명한 개구(1744) 및 광학적으로 불투명한 조리개 영역(1746)은 예를 들어, 핀홀을 구비한 금속 호일과 같은 하나의 모놀리식 요소로 형성되거나, 또는 관통하게 에칭된 개구를 구비한 증착된 불투명 또는 반사성 재료의 단일층으로 형성될 수 있다.
도 18a는 개구층(1840)이 2개의 개구(1844)를 가진 다른 실시예(1800)의 개략적인 단면도이다. 광학적으로 투명한 개구들(1844) 및 대응하는 광학적으로 불투명한 광학 조리개 영역들(1846) 모두는 광학적으로 투명한 기판(1845) 상에 지지된다. 하부 개구(1844)는 더 작을 수 있고, 벌크 광학부의 초점면에 위치될 수 있다. 개구층(1840) 뒤에는 개구(1844) 및 수신기 채널의 시준 렌즈(1851) 사이에 위치된 광학적으로 투명한 스페이서 구조물(1856)이 후속될 수 있다. 광학적으로 투명한 스페이서 구조물(1856)은 시준 렌즈(1851)와 실질적으로 유사한 또는 더 큰 직경의 튜브를 형성한다.
도 18b는 개구층(1840)의 다른 실시예(1801)의 개략적인 단면도이다. 광학적으로 투명한 개구(1844) 및 광학적으로 불투명한 조리개 영역(1846)은 광학적으로 투명한 기판(1845) 상에 지지된다. 개구층(1840)을 뒤따르고, 개구(1844) 및 시준 렌즈(1851) 사이에 위치되는 광학적으로 투명한 스페이서 구조물(1856)은 시준 렌즈(1851)와 실질적으로 유사하거나 더 큰 직경의 튜브를 형성한다.
도 18c는 광학적으로 투명한 기판(1845) 상에 지지되는 다수의 광학적으로 불투명한 조리개 영역들(1846)로 구성되는 개구 층(1840)의 실시예(1802)의 개략적인 단면도이다. 이러한 층들(조리개 영역들(1846))은, 수신기 채널 내로 미광이 들어오는 것을 감소시키기 위해, 가장자리 광선들(도시되지 않았지만, 도 17의 광선(1733)과 유사함)의 윤곽을 따른다. 개구층(1840) 아래의 광학적으로 투명한 스페이서 구조물(1856)은 시준 렌즈(1851)와 실질적으로 유사한 또는 더 큰 직경의 튜브를 형성한다.
도 18d는 다수의 광학적으로 투명한 기판(1845) 상에 지지된 다수의 광학적으로 불투명한 조리개 층들(1846)을 가진 개구층(1840)의 실시예(1803)의 개략적인 단면도이다. 개구층(1840)은, 수신기 채널 내로 미광이 들어오는 것을 감소시키기 위해, 가장자리 광선(도시되지 않았지만, 도 17의 광선(1733)과 유사함)의 윤곽을 따른다. 개구층(1840) 아래의 광학적으로 투명한 스페이서 구조물(1856)은 시준 렌즈(1851)와 실질적으로 유사한 또는 더 큰 직경의 튜브를 형성한다.
본 개시의 일부 다른 실시예에서, 도 18a 내지 도18d에 도시된 스페이서 구조물(1856)은 광학적으로 불투명할 수 있다. 이러한 경우에, 광학적으로 불투명한 스페이서 구조물은 실리콘 또는 유리 웨이퍼를 에칭함으로써 형성될 수 있고, 광학적으로 불투명한 물질(예를 들어, 흑색 크롬)로 코팅될 수 있다. 또한, 이 경우에, 스페이서 구조물은 스페이서 영역 내에 임의의 빛이 수신기 채널 외부로 이동하는 것을 방지할 것이다.
B. 개구층 및 광학 렌즈층 사이의 스페이서 구조
도 19a는 개구층 및 렌즈층 사이에 광학적으로 불투명한 스페이서 구조물을 가진 본 개시의 실시예(1900)의 개략적인 단면도이다. 도 19a는 개구(1944) 및 수신기 채널의 시준 렌즈(1951) 사이에 위치된 광학적으로 불투명한 스페이서 구조물(1956)을 도시한다. 광학적으로 불투명한 스페이서 구조물(1956)은 시준 렌즈(1951)와 실질적으로 유사한 또는 더 큰 직경의 튜브를 형성하고, 임의의 빛이 개구(1944) 및 시준 렌즈(1951) 사이의 영역에서 수신기 채널 외부로 이동하는 것을 방지한다. 광학적으로 불투명한 스페이서 구조물(1956)은 실리콘 또는 유리 웨이퍼를 에칭함으로써 형성될 수 있고, 광학적으로 불투명한 물질(예를 들어, 흑색 크롬)로 코팅될 수 있다. 대안적으로, 광학적으로 불투명한 스페이서 구조물(1956)은 몰딩된 고분자 또는 임의의 다른 적절한 방법으로 제조되는 고체의 불투명 구조물일 수 있다. 도 19a는 상부에 광학적으로 투명한 기판(1945)을 갖고, 이어서 광학적으로 불투명한 조리개 영역(1946) 및 개구(1944)와, 이어서 광학적으로 불투명한 스페이서 구조물(1956)을 가진 개구층을 도시한다.
도 19b는 개구층 및 렌즈층 사이에 광학적으로 불투명한 구조물을 가진 본 개시의 실시예(1901)의 개략적인 단면도이다. 도 1901은 개구(1944) 및 시준 렌즈(1951) 사이에 위치된 광학적으로 불투명한 스페이서 구조물(1956)을 도시한다. 광학적으로 불투명한 스페이서 구조물(1956)은, 시준 렌즈(1951)와 실질적으로 유사한 또는 더 큰 직경의 튜브를 형성하고, 임의의 빛이 개구(1944) 및 시준 렌즈(1951) 사이의 영역에서 수신기 채널 외부로 이동하는 것을 방지한다. 도 19b는 광학적으로 투명한 기판(1945) 상에 지지된 다수의 광학적으로 불투명한 조리개 영역(1946)을 도시한다.
도 19c는 개구(1944)가 원뿔형으로 정렬되고, 광학적으로 투명한 재료 상에 코팅된 광학적으로 불투명한 층으로서 원뿔형 구조물을 나타내는, 개구층(1940)의 실시예(1902)의 개략적인 단면도이다.
도 19d는 개구(1944)가 원뿔형으로 정렬되고, 원뿔형 구조물이 광학적으로 불투명한 재료로 형성된 고체 구조물인 개구층(1940)의 실시예(1903)의 개략적인 단면도이다. 도 19c 및 도 19d에 도시된 바와 같이, 광학적으로 투명한 개구(1944) 및 광학적으로 불투명한 조리개 영역(1946)은, 수신기 채널의 광학 축과 정렬되고 가장자리 광선(도시되지 않았지만, 도 17의 광선(1733)과 유사함)의 형상에 일치하도록 구성된, 원뿔형 공동(cavity)을 가진 모놀리식 층으로 조합된다.
C. 광학 필터층
도 20a는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 필터층(2060)의 일 실시예(2000)의 개략적인 단면도이다. 광학 필터층(2060)은 광학적으로 투명한 기판(2065) 상에 지지된 단일 광학 필터(2061)를 포함할 수 있다. 광학 필터층(2060)은 광학적으로 투명한 기판(2065)의 상부에 또는 광학적으로 투명한 기판(2065)의 하부에 배치될 수 있다. 광학 필터(2061)는 정의된 파장들의 세트(예를 들어, 945 nm 내지 950 nm)를 벗어난 입사광을 차단하는 대역통과 필터일 수 있다. 그러나, 일부 다른 실시예에서, 광학 필터(2061)는 엣지(edge) 통과 필터이거나, 파장 범위 내의 광이 선택적으로 통과되게 하는 임의의 다른 적절한 유형의 필터일 수 있다.
도 20b는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 필터층(2060)의 실시예(2001)의 개략적인 단면도이다. 광학 필터층(2060)은 광학적으로 투명한 기판(2065)을 사이에 두고 그에 의해 지지되는, 2개의 광학 필터(2061)를 포함할 수 있다. 광학 필터층(2060)은 임의의 개수의 기판(2065) 상에 임의의 개수의 광학 필터(2061)를 포함할 수 있다. 도 20b에 도시된 바와 같은 광학 필터들(2061) 중 하나는 대역통과 필터일 수 있고, 정의된 파장들의 세트(예를 들어, 900 nm 내지 945 nm, 및 950 nm 내지 995 nm)에 대한 입사광을 모두 차단하는 광학적으로 투명한 기판(2065)의 상부 또는 하부에 직접 위치될 수 있다. 광학 기판(2065)의 반대쪽에 배치된 다른 광학 필터(2061)는 예를 들어 200 nm 내지 915 nm, 및 980 nm 내지 1600 nm를 커버하는, 광역 스펙트럼 차단 필터(대역통과 필터에 의해 커버되는 영역을 제외함)일 수 있다. 대역통과 필터 및 차단 필터는 2개의 필터들 사이의 전이 영역에서 누설이 없도록 설계된다. 그러나, 필터들은 대역통과 필터 또는 임의의 다른 유형의 필터들과 함께 작동하도록 설계된 2개의 엣지 통과 필터들일 수 있다.
본 개시의 일부 다른 실시예에서, 대역통과 필터 및 광역 스펙트럼 차단 필터는 단일 광학 필터(2061)로 병합되고, 광학적으로 투명한 기판(2065)의 상부 또는 하부에 배치된다.
1. 개구를 가진 필터층
도 20c는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 필터층(2060)의 실시예(2002)의 개략적인 단면도이다. 광학 필터층(2060)은 대응하는 광학적으로 불투명한 조리개 영역들(2063 및 2055)과 함께, 광학 필터층(2060)의 상부에 부가적인 개구(2049)를 그리고 하부에 부가적인 개구(2054)를 가질 수 있다. 개구(2049)는 광학 필터(2061)에 의해 광학 필터층(2060)을 통과하고자 하는 빛의 최대 실린더를 한정하고, 조리개 영역(2063)은 개구(2049)의 직경 외부의 임의의 입사되는 미광을 흡수하거나 반사한다. 개구(2054)는 광학 필터층(2060)으로부터 통과되고자 하는 빛의 최대 실린더를 한정하고, 조리개 영역(2055)은 개구(2054)의 직경 외부의 임의의 입사되는 미광을 흡수하거나 반사한다. 광학 필터(2061)는 광학적으로 투명한 기판(2065) 상에 지지될 수 있다.
본 개시의 일부 실시예에서, 필터층(2060)은 광학 필터층(2060)의 상부에 배치된 단일 개구(2049)를 가질 수 있다. 본 개시의 일부 부가적인 대안적인 실시예에서, 필터층(2060)은 광학 필터층(2060)의 하부에 배치된 단일 개구(2054)를 가질 수 있다.
도 20d는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 필터층(2060)의 실시예(2003)의 개략적인 단면도이다. 광학 필터층(2060)은 다수의 광학적으로 투명한 기판(2065), 및 이들 사이에 교호하는 순서로 다수의 광학적으로 불투명한 개구층을 포함할 수 있다. 도 20d는 부가적인 개구(2049)와, 광학 필터(2061)의 상부에 위치하고 광학적으로 투명한 기판(2065)에 의해 지지되는 대응하는 광학적으로 불투명한 조리개 영역(2063)을 도시한다. 개구(2049)는 광학 필터(2061)에 의해 광학 필터층(2060)을 통과하기 원하는 빛의 최대 실린더를 한정할 수 있고, 조리개 영역(2063)은 개구(2049)의 직경 외부의 임의의 입사되는 미광을 흡수하거나 반사한다. 도 20d는 부가적인 개구(2054)와, 광학 필터층(2060) 및 광센서층(도시되지 않았지만, 도 17의 광센서층(1770)과 유사함) 사이에 위치된 대응하는 광학적으로 불투명한 조리개 영역(2055)을 도시한다. 개구(2054)는 광센서를 향해 광학 필터층(2060)을 통과하기 원하는 빛의 최대 실린더를 한정할 수 있고, 조리개 영역(2055)은 개구(2054)의 직경 외부에 임의의 입사되는 미광을 흡수하거나 반사할 수 있다. 집합적으로, 이들 인터리빙(interleave)된 층들은 하나의 광학 필터층(2060) 내의 미광이 다수의 수신기 채널 시스템 내의 인접한 수신기 채널의 광학 필터 영역으로 이동하는 것을 방지한다.
2. 튜브 구조를 가진 필터층
도 20e는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 필터층(2060)의 실시예(2004)의 개략적인 단면도이다. 광학 필터층(2060)은 광학 필터(2061) 및 광학적으로 투명한 기판(2065)을 포함할 수 있고, 하나의 광학 필터층(2060) 내의 미광이 다수의 수신기 채널 시스템 내의 인접한 수신기 채널의 광학 필터 영역으로 이동하는 것을 방지하는 광학적으로 불투명한 튜브 구조물(2111)에 의해 둘러싸인다. 튜브 구조물(2111)은 실리콘, 금속, 고분자 또는 유리를 포함하지만 이에 한정되지 않는 다양한 재료로 형성될 수 있다.
도 20f는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 필터층(2060)의 실시예(2005)의 개략적인 단면도이다. 광학 필터층(2060)은 광학 필터(2061) 및 광학적으로 투명한 기판(2065)을 포함할 수 있으며, 하나의 광학 필터층(2060) 내의 미광이 다수의 수신기 채널 시스템 내의 인접한 수신기 채널의 광학 필터 영역으로 이동하는 것을 방지하는 광학적으로 불투명한 튜브 구조물(2111)에 의해 둘러싸인다. 튜브 구조물(2111)은 실리콘, 금속, 고분자 또는 유리를 포함하지만 이에 한정되지 않는 다양한 재료로 형성될 수 있다. 도 20f에 도시된 바와 같이, 튜브 구조물(2111)은 부분적으로만 광학 필터층(2060)을 통과할 수 있다. 이러한 유형의 구조는 필터 기판(2065)의 각각의 측면 상에서 이방성 에칭을 수행하고 이후에 금속 또는 고분자를 선택적으로 증착시킴으로써 형성될 수 있다.
도 20g는 본 개시의 일부 실시예에 따른, 수신기 채널을 위한 필터층(2060)의 실시예(2006)의 개략적인 단면도이다. 광학 필터층(2060)은 광학적으로 투명한 기판(2065) 상에 지지되되, 하나의 광학 필터층(2060) 내의 미광이 다수의 수신기 채널 시스템 내의 인접한 수신기 채널의 광학 필터 영역으로 이동하는 것을 방지하는 광학적으로 불투명한 튜브 구조물(2111)에 의해 둘러싸인, 2개의 광학 필터(2061)를 포함할 수 있다. 그러나, 광학 필터 영역은 광학 필터층(2060) 내의 임의의 개수의 기판(2065) 상에 임의의 개수의 광학 필터(2061)를 포함할 수 있다. 도 20g는 부가적인 개구(2049)와, 광학 필터(2061)의 상부에 위치되고 광학적으로 투명한 기판(2065)에 의해 지지되는 대응하는 광학적으로 불투명한 조리개 영역(2063)을 도시한다. 개구(2049)는 광학 필터층(2060)을 통과하기 원하는 빛의 최대 실린더를 한정할 수 있고, 조리개 영역(2063)은 개구(2049)의 직경 외부의 임의의 입사되는 미광을 흡수하거나 반사할 수 있다.
도 20g에서의 광학 필터층(2060)의 실시예(2006)는 부가적인 개구(2054)와, 광학 필터층(2060) 및 광센서층(도시되지 않았지만, 도 17의 광센서층(1770)과 유사함) 사이에 위치될 수 있는 대응하는 광학적으로 불투명한 조리개 영역(2055)을 가질 수 있다. 개구(2054)는 광센서를 향해 광학 필터층(2060)을 통과하기 원하는 빛의 최대 실린더를 한정할 수 있고, 조리개 영역(2055)은 개구(2054)의 직경 외부에 임의의 입사되는 미광을 흡수하거나 반사할 수 있다. 튜브 구조물(2111)은 실리콘, 금속, 고분자 또는 유리를 포함하지만 이에 한정되지 않는 다양한 재료로 형성될 수 있다.
D. 광센서층
본원에서 이해될 수 있는 바와 같이, 다양한 서로 다른 광센서층 설계가 마이크로-광학 수신기 채널에서 구현될 수 있다.
1. 확산기를 가진 광센서층
도 21a는 본 개시의 일부 실시예에 따른, 광학 필터(2161) 및 광센서(2173) 사이의 광센서층(2170)에 위치된 선택적 확산기(2181)를 포함하는 수신기 채널(2132)의 실시예(2100)의 개략적인 단면도이다. 확산기(2181)는 시준 렌즈(2151)로부터 출력되고 광학 필터 영역(2160)에 의해 통과되는 시준된 광자를, 대응하는 광센서(2173)의 전체 폭에 걸쳐 확산하도록 구성될 수 있다. 광센서(2173)는, 광센서(2173)의 감지 영역을 수신기 채널(2132)의 다른 구성요소들의 폭 또는 높이보다 더 넓게 또는 더 높게 확장시키기 위해 기하학적 형태(예를 들어, 짧고 넓은)의 비-사각형 또는 비-원형일 수 있다.
확산기(2181)는 광센서(2173)가 그 전체 폭 및 높이에 걸쳐 입사 광자를 검출할 수 있고, 그에 따라 수신기 채널(2132)의 전체 높이가 실제적인 고려를 위해 제한되어야 하는 경우에도 수신기 채널(2132)의 다이나믹 레인지를 증가시키도록, 광센서(2173)의 영역에 걸쳐 광선을 확산시키도록 구성된다. 특히, 이 실시예에서, 수신기 채널(2132)은, 더 큰 광 검출기(2171)(즉, 입사 광자에 민감한 영역)를 나타내는 넓은 광센서와, 광센서(2173)의 전체 면적에 걸쳐 광학 필터(2161)에 의해 통과된 광을 확산하여 다이나믹 레인지를 증가시키는, 광센서(2173) 상에 배열된 확산기(2181)를 포함할 수 있다.
일부 실시예에서, 광센서(2173)는 단일-광자 애벌란시 다이오드 검출기들(2171)의 어레이(이하, "SPAD")를 포함한다. (일반적으로, 시준 렌즈(2151)의 직경에 의해 한정되는) 수신기 채널의 높이 및 폭은 비교적 적은 수의(예를 들어, 2개의) 수직-적층된 SPAD만을 수용할 수 있다. 따라서, 광센서(2173)는 1:1 보다 큰 종횡비를 한정할 수 있고, 확산기(2181)는 광센서마다 더 큰 감지 영역을 수용하기 위해 광학 필터 영역(2160)을 통과한 광선을 광센서(2173)의 형상에 따라 확산시킬 수 있다. 광센서마다 더 많은 SPAD를 포함시킴으로써, 모든 SPAD가 동시에 광자를 검출하지 못할 가능성(즉, "죽을" 가능성)을 감소시키므로, 광센서의 다이나믹 레인지가 증가될 수 있다.
일부 다른 실시예에서, 광센서(2173)는 광 검출기들(2171)의 어레이를 포함한다. (일반적으로 시준 렌즈(2151)의 직경에 의해 한정되는) 수신기 채널의 높이 및 폭은 비교적 적은 수의(예를 들어, 2개의) 수직-적층된 포토다이오드만을 수용할 수 있다. 따라서, 광센서(2173)는 1:1 보다 큰 종횡비를 한정할 수 있고, 확산기(2181)는 광센서마다 더 큰 감지 영역을 수용하기 위해 광학 필터 영역(2160)을 통과한 광선을 광센서(2173)의 형상에 따라 확산시킬 수 있다. 광센서마다 더 많은 포토다이오드를 포함시킴으로써, 모든 포토다이오드가 동시에 포화될 가능성을 감소시키므로, 광센서의 다이나믹 레인지가 증가될 수 있다.
수신기 채널(2132)은 부가적으로 또는 대안적으로 광학 필터 영역(2160) 및 확산기(2181) 사이에, 또는 광학 필터 영역(2160) 및 광센서 영역(2173) 사이에 삽입되는 개구층을 포함할 수 있고, 개구(2144)는 대응하는 시준 렌즈(2151)와 정렬될 수 있다. 이러한 변형예에서, 개구(2144)는 수신기 채널들 사이의 크로스토크를 더 감소시키기 위해, 광학 필터를 통과하거나 또는 광센서에 의해 반사된 오류 광선을 흡수하거나 반사하고, 그에 의해 시스템의 SNR(신호 대 잡음비)을 더 증가시킬 수 있다.
2. 수렴 렌즈 세트를 가진 광센서층
도 21b는 본 개시의 일부 실시예에 따른 수신기 채널(2132)의 실시예(2101)의 개략적인 단면도이다. 실시예(2100)의 광센서층(2170)은 이산적인 광 검출기들(2171)(예를 들어, SPAD)의 세트 및 상기 광 검출기들의 세트를 둘러싸는 비활성 영역들(2172)(예를 들어, 집적된 로직)의 세트로 형성된 광센서(2173)를 포함할 수 있으며, 각각의 광 검출기는 입사 광자를 검출하도록 구성될 수 있다. 광센서층(2170)은 또한, 광검출기(2171)를 가진 광 센서(2173) 및 광학 필터 영역(2160) 사이에 개재되고, 광센서(2173) 내의 이산적인 광 검출기(2171)마다 하나의 수렴 렌즈(2191)를 포함하는 수렴 렌즈 세트(2191)를 포함할 수 있는데, 수렴 렌즈 세트(2191)의 각각의 렌즈는 광학 필터 영역(2160)을 통과한 입사 광자들을 대응하는 이산적인 광 검출기(2171) 상으로 집속하도록 구성된다. 각각의 수렴 렌즈는 공통의 초점 거리를 나타낼 수 있고, 수렴 렌즈 세트(2191)는 이러한 공통 초점 거리에 의해(또는 이 공통 초점 거리와 실질적으로 유사한 거리에 의해) 광센서(2173) 위에 오프셋될 수 있으며, 각각의 수렴 렌즈는 광학 렌즈층(2150) 내에 시준되고 광학 필터 영역(2160)을 통과한 입사광을 광센서(2173)의 대응하는 광 검출기(2171) 상으로 수렴시킬 수 있다.
일부 실시예에서, 광 검출기(2171)를 가진 광센서(2173) 및 광학 필터 영역(2160) 사이에 개재된 수렴 렌즈 세트(2191)는 굴절 요소에 더하여 또는 이를 대체하여 회절 요소를 채용한다.
3. 수렴 렌즈 세트 및 부가적인 개구를 가진 광센서층
도 21c는 본 개시의 일부 실시예에 따른 광센서층(2170)의 실시예(2102)의 개략적인 단면도이다. 광센서층(2170)은 수렴 렌즈 세트(2191), 및 개구들(2157)의 세트를 포함할 수 있고, 각각의 개구(2157)는 대응하는 수렴 렌즈(2191)와 정렬된다. 이러한 변형예에서, 각각의 개구(2157)는, 수신기 채널들 사이의 크로스토크를 더 감소시키고, 따라서 시스템의 SNR을 더욱 증가시키기 위해, 광학 필터에 의해 통과되거나 또는 광센서에 의해 반사되는 오류 광선을 흡수하거나 반사할 수 있다. 개구들(2157) 및 대응하는 광학적으로 불투명한 조리개 영역들(2159)의 세트는 광학적으로 투명한 기판(2158) 상에 형성된다.
도 21d는 본 개시의 일부 실시예에 따른 광센서층(2170)의 실시예(2103)의 개략적인 단면도이다. 광센서층(2170)은 수렴 렌즈 세트(2191), 및 개구부들(2157)의 세트를 포함할 수 있고, 각각의 개구(2157)는 대응하는 수렴 렌즈(2191)와 정렬된다. 개구(2157) 및 대응하는 광학적으로 불투명한 조리개 영역(2159)은 광학적으로 투명한 기판(2158) 상에 형성된다. 이러한 변형예에서, 개구(2157)는 광 검출기(2171)를 통해 모두 통과하지는 않는다.
도 21e는 본 개시의 일부 실시예에 따른 광센서층(2170)의 실시예(2104)의 개략적인 단면도이다. 원하는 최대 광 원뿔을 한정하는 개구들(2157) 및 대응하는 광학적으로 불투명한 조리개 영역들(2159)의 부가적인 세트는 렌즈 세트(2191) 및 광 검출기(2171) 사이에 위치될 수 있다. 개구들(2157) 및 대응하는 불투명한 조리개 영역들(2159)의 세트는 렌즈 세트(2191) 내의 모든 렌즈에 대한 광 원뿔을 한정하고, 원하는 광 원뿔에 포함되지 않는 경로를 따라 이동하는 임의의 미광을 흡수하거나 반사하도록 기능한다. 개구들은 표준 반도체 공정을 사용하여 제작될 수 있다.
4. 렌즈 세트 및 광센서 사이에 수렴 렌즈 세트 및 스페이서 구조물을 가진 광센서층
도 21f는 본 개시의 일부 실시예에 따른 광센서 층(2170)의 실시예(2105)의 개략적인 단면도이다. 여기서, 광학적으로 불투명한 스페이서 구조물(2163)은 수신기 채널(2132) 내의 광 검출기(2171)를 가진 광센서(2173) 및 렌즈 세트(2191) 사이에 위치된다. 광학적으로 불투명한 스페이서 구조물(2163)은 시준 렌즈(예를 들어, 도 17에 도시된 시준 렌즈(1751))와 실질적으로 유사한 또는 더 큰 직경의 튜브를 형성하고, 임의의 빛이 렌즈 세트(2191) 및 광센서(2173) 사이의 영역에서 수신기 채널(2132)의 외부로 이동하는 것을 방지한다. 광학적으로 불투명한 스페이서 구조물(2163)은 광학적으로 불투명한 벌크 매질(예를 들어, 실리콘 또는 고분자)로 제조될 수 있다.
도 21g는 본 개시의 일부 실시예에 따른 광센서층(2170)의 실시예(2106)의 개략적인 단면도이다. 여기서, 광학적으로 불투명한 스페이서 구조물(2163)은 렌즈 세트(2191) 및 광센서(2173) 사이에 위치되고, 광학적으로 투명한 기판 상의 광학적으로 불투명한 코팅(예를 들어, 유리 상에 흑색 크롬)으로 제조된다. 광학적으로 불투명한 스페이서 구조물(2163)은 시준 렌즈(2151)와 실질적으로 유사한 또는 더 큰 직경의 튜브를 형성하고, 임의의 빛이 렌즈 세트(2191) 및 광 검출기(2171) 사이의 영역에서 수신기 채널(2132)의 외부로 이동하는 것을 방지한다.
5. 필터층 및 광센서층 사이의 광센서층 스페이서 구조물
도 21h는 본 개시의 일부 실시예에 따른 광센서층(2170)의 실시예(2107)의 개략적인 단면도이다. 광학적으로 불투명한 스페이서 구조물(2163)은 광학 필터층(예를 들어, 전술한 광학 필터층들 중 임의의 층)과 광센서층(2170) 사이에 위치될 수 있다. 광학적으로 불투명한 스페이서 구조물(2163)은 시준 렌즈(예를 들어, 도 17의 시준 렌즈(1751))와 실질적으로 유사한 또는 더 큰 직경의 튜브를 형성하고, 임의의 빛이 광학 필터층과 광센서층(2170) 사이의 영역에서의 수신기 채널(예를 들어, 도 17의 채널(1700)) 외부로 이동하는 것을 방지한다. 광학적으로 불투명한 스페이서 구조물(2163)은 실리콘 또는 유리 웨이퍼를 에칭함으로써 형성될 수 있고, 광학적으로 불투명한 물질(예를 들어, 흑색 크롬)로 코팅될 수 있다. 대안적으로, 광학적으로 불투명한 스페이서 구조물(2163)은 몰딩된 고분자로 제조될 수 있다. 이 실시예에서, 렌즈 세트(2191)는 광센서(2173)에 직접 접합된다. 이전의 실시예에서의 그 기능과 유사하게, 렌즈 세트(2191)는 비활성 영역보다는 광센서(2173)의 광 검출기(2171) 상에 빛을 집중시키는 역할을 한다. 이들 렌즈는 웨이퍼 제조 공정에서 광센서(2173)를 포함하는 ASIC의 상부에 직접 집적될 수 있어, 생산을 용이하게 할 수 있다.
6. 원추형 스페이서 구조물을 가진 광센서층
도 21i는 본 개시의 일부 실시예에 따른 광센서층(2170)의 실시예(2108)의 개략적인 단면도이다. 이 실시예에서, 광센서층(2170)은 렌즈 세트(도시되지 않지만, 예를 들어, 도 21f 및 도 21g의 렌즈 세트(2191)임) 및 광센서(2173) 사이에 위치된 원뿔 형상의 광학적으로 불투명한 스페이서 구조물들(2164)의 세트를 포함한다. 원뿔 형상의 광학적으로 불투명한 스페이서 구조물들(2164)의 세트는 폭이 점점 가늘어지는 튜브를 형성할 수 있는데, 이들 각각은 렌즈 세트 내의 개별 렌즈와 실질적으로 유사한 입구 직경을 갖고, 광센서(2173)의 개별 광 검출기(2171)와 실질적으로 유사한 출구 직경을 가질 수 있다. 원뿔 형상의 광학적으로 불투명 스페이서 구조물들(2164)의 세트는 임의의 빛이 렌즈 세트 및 광센서(2173) 사이의 영역들에서 수신기 채널 외부로 이동하는 것을 방지하고, 또한 광센서(2173)의 광 검출기들(2171)을 향해 빛을 안내한다. 원뿔 형상의 광학적으로 불투명한 스페이서 구조물들(2164)의 세트는 실리콘 또는 유리 웨이퍼를 에칭함으로써 형성될 수 있고, 광학적으로 불투명한 물질(예를 들어, 흑색 크롬)로 코팅될 수 있다. 대안적으로, 원뿔 형상의 광학적으로 불투명한 스페이서 구조물들(2164)은 몰딩된 고분자로부터 제조될 수 있다.
도 21j는 본 개시의 일부 실시예에 따른 광센서층(2173)의 실시예(2109)의 개략적인 단면도이다. 이 실시예에서, 광센서층(2173)은 렌즈 세트(도시되지 않지만, 예를 들어, 도 21f 및 21g의 렌즈 세트(2191)임) 및 광 검출기(2171) 사이에 위치되는 원뿔 형상의 광학적으로 불투명한 스페이서 구조물들(2164)의 세트를 포함한다. 원뿔 형상의 광학적으로 불투명한 스페이서 구조물들(2164)의 세트의 내벽은 광 파이프로서 작용하는 구조물들의 능력을 더욱 향상시키기 위해 반사성 재료(예를 들어, 크롬)로 코팅된다. 원뿔 형상의 광학적으로 불투명한 스페이서 구조물들(2164)의 세트는 폭이 점점 가늘어지는 튜브를 형성하고, 이들 각각은 렌즈 세트 내의 개별 렌즈와 실질적으로 유사한 입구 직경을 갖고, 광센서(2173)의 개별 광 검출기(2171)와 실질적으로 유사한 출구 직경을 가진다. 원뿔 형상의 광학적으로 불투명한 스페이서 구조물들(2164)의 세트는 임의의 빛이 렌즈 세트 및 광센서(2171) 사이의 영역들에서 수신기 채널 외부로 이동하는 것을 방지하고, 광센서(2173)의 광 검출기들(2171)을 향해 빛을 안내한다.
7. 공진 포토-공동 다이오드를 가진 광센서층
도 21k는 본 개시의 일부 실시예에 따른 광센서층(2170)의 실시예(2110)를 포함하는 수신기 채널(2132)의 개략적인 단면도이다. 이 실시예에서, 광센서층(2170)은 광자 검출 효율을 개선하기 위해 광 감지 다이오드 주위의 공진 공동(resonant cavity)과 함께 구성된다. 각각의 광센서(2173)는 하나 이상의 공진 포토-공동 다이오드(resonant photo-cavity diode)들을 포함한다. 각각의 광센서(2173)는 영역(공진 공동)의 상부 및 하부를 향하는 고반사성(예를 들어, 부분적으로 거울면인) 표면과 함께 하나 이상의 포토-다이오드(2174)(광 검출기)를 포함한다. 일반적으로, 비-공진 공동 다이오드의 광 검출기는 비교적 낮은 양자 효율을 가질 수 있다. 광 검출기에 의해 검출되는 광자의 백분율을 향상시키기 위해, 도 21k에 도시된 바와 같은 공동으로 빛이 들어오게 하고, 다음을 포함하는 공진 포토-공동 다이오드(2174)가 사용된다: 광 검출기 아래에서 광 검출기를 향하는 제1 거울면(2175), 및 광 검출기 위에서 광 검출기를 향하는 제2 거울면(2176). 따라서, 광자가 공진 포토-공동 다이오드(2174)의 광 검출기를 통과하고 이에 의해 검출되지 않을 때, 공진 포토-공동 다이오드(2174)의 광 검출기를 둘러싸는 제1 거울면(2175)은 광자를 공동의 상부 반사면(2176)을 향해 다시 반사시키고, 광 검출기를 다시 통과시키는데, 이에 따라 광 검출기를 통과하는 제2 전이 시의 광자를 검출할 수 있다. 그러나, 광 검출기가 이러한 제2 충돌 시의 광자를 검출하지 못하는 경우, 제2 거울면이 광 검출기를 향해 광자를 다시 반사시키는 반사 프로세스가 반복되고, 이는 다시 광 검출기와의 제3 충돌 시의 광자를 검출할 수 있다. 이러한 프로세스는 광자가 광센서의 광 검출기에 의해 검출될 때까지 또는 광자가 공동을 벗어나거나 공동에 의해 흡수될 때까지 반복될 수 있다. 따라서, 공진 포토-공동 다이오드(2174)는 비교적 높은 광자 검출률(즉, 100%에 근접함)을 달성할 수 있다. 전술한 설명에서는 광의 입자 해석이 사용되었지만, 공진 공동 포토다이오드의 완전한 설명을 위해서는 파형 간섭 효과를 고려하는 것이 중요함을 유의해야 한다. 또한, 공진 포토-공동 다이오드(2174)의 활성 영역은 표준 포토다이오드, 애벌란시 포토다이오드, SPAD, 또는 임의의 다른 광센서로 구성될 수 있다.
도 21k는 하나 이상의 공진 공동 포토다이오드(또는 "RCP")(2174)가 개구(2144)와, 시준 렌즈(2151)와, 광학 필터 영역(2160)과, 전술한 확산기들, 수렴 렌즈 세트, 또는 수신기 채널(2132)의 변형을 형성하기 위한 크로스토크 완화 구조물의 임의의 조합과, 조합될 수 있음을 더 나타낸다. 통상적인 RCP는 광학 필터 영역(2160)과 유사한 파장 민감도를 가지며, 광학 필터 영역(2160)과 유사한 파장들의 빛의 세트에 민감하도록 설계될 수 있다. 그러나, 제조 또는 다른 한정으로 인해, RCP는 RCP의 동작 스펙트럼의 중심 파장의 더 많은 부분-대-부분 가변성(part-to-part variability)을 가질 수 있고, 따라서 모든 광센서가 시스템의 동작 파장에서 광자를 검출할 수 있도록 더 넓은 동작 파장 대역을 필요로 할 수 있다. 또는, 단순히, 필터 통과대역만큼 협소한 동작 파장 대역을 가진 RCP를 신뢰성 있게 제조하는 것이 불가능할 수 있다. 예를 들어, 광학 필터 영역(2160)은 0.1 nm 만큼 좁은 통과대역을 가질 수 있는 반면, RCP는 10 nm의 동작 대역을 가질 수 있다. RCP(2174) 상부의 광학 필터 영역(2160)과 함께, 조합된 필터 및 RCP 시스템은 광학 필터 영역(2160)과 실질적으로 유사한 유효 동작 파장 대역을 가진다. 또한, 도 21k에 도시된 바와 같이, 시준 렌즈(2151)의 결과로서 제공되는 시준된 빛을 감지할 때, 집속된 빛과는 대조적으로, RCP 성능이 개선된다. 이런 식으로, 개구(2144), 시준 렌즈(2151), 광학 필터 영역(2160), 및 RCP(2174)를 채용하는 시스템은 수신기 채널(2132) 내의 SNR을 최대화하기 위해 높은 광자 검출 효율 및 좁은 파장 선택도를 달성할 수 있다.
E. 반구형 수신기 구조
도 22a는 본 개시의 일부 실시예에 따른, 수신기 채널(2232)의 실시예(2200)의 개략적인 단면도이다. 실시예(2200)의 수신기 채널(2232)은 광학적으로 불투명한 물질 상에 지지된 볼록한 반구를 포함할 수 있다. 이 실시예에서, 개구층(2240)은 볼록한 반구(2267) 상에 코팅된 광학 필터(2261)와 조합되고, 반구(2267)의 중심은 입사광(가장자리 광선(2233))의 초점에 또는 그 부근에 위치된다. 반구(2267)의 중심은 또한, 개구(2244)의 중심에 대응하거나 거의 그 중심에 대응한다. 일부 실시예에서, 반구(2267)는 도 22a에 도시된 바와 같이 개구(2244) 아래에 있을 수 있다. 본 실시예의 이점은, 충분히 초점이 잘 맞춰진 광선의 경우, 임의의 광선(2233)이 필터의 표면에 수직인 광학 필터(2261)를 통과하여, 광학 필터(2261) 상에서 입사광(예를 들어, 광선(2233))의 입사각의 변화로 인한 CWL(중심 파장 거리)의 이동을 제거함으로써, 매우 좁은 대역통과(예를 들어, 850 nm 내지 852 nm) 필터가 사용되게 한다는 점이다.
이는 도 22b에 더 예시되는데, 도 22b는 본 개시의 일부 실시예에 따른 수신기 채널(2232)의 실시예(2201)의 개략적인 단면도이다. 도 22a에 도시된 실시예(2200)와 달리, 도 2b의 실시예(2201)는 유사한 기능을 달성하도록 그러나 덜 압축된 크기를 갖도록, 반구(2267)가 개구(2244) 위에 위치되도록 구성될 수 있다. 도 22b에 도시된 바와 같이, 광학 필터(2261) 상의 입사각은, 반구(2267)의 중심을 통과하는 가장자리 광선(2233)(및 도 22b에 명시적으로 도시되지 않은 모든 다른 광선)에 대해 수직이다. 도 22b 또는 도 22c에 도시되지는 않았지만, 광선은 편평한 출구면에 대해 수직이지는 않기 때문에, 반구 구조물로부터 빠져나갈 때, 광선이 굴절될 것임에 유의해야 한다. 유사하게, 도 22a에서, 광선이 반구 구조물의 편평한 면으로 진입할 때 일정한 양의 굴절이 있을 것이다.
도 22a 내지 도 22b에 도시된 바와 같이, 수신기 채널(2232)은 크로스토크를 감소시키기 위해, 광학적으로 불투명한 조리개 영역(2246)과, 광 검출기(2271)를 가진 광센서층(2270) 사이에 측벽(2263)을 포함한다. 측벽(2263)은 광학적으로 불투명한 재료로 구성되거나 광학적으로 투명한 재료로 구성될 수 있다. 또한, 측벽(2263)은 반사성 또는 흡수성 재료로 코팅될 수 있다.
도 22c에는 볼록한 반구 표면의 확대도가 도시되어 있으며, 이는 도 22a 및 도 22b의 볼록 반구(2267)의 개략적인 단면도이다. 볼록 반구(2267)는 광학 필터(2261)로 코팅될 수 있고, 금속, 실리콘, 고분자 등과 같은 자체적으로 지지되는(self-supporting), 광학적으로 불투명한 조리개 영역(2246) 상에 위치될 수 있다. 마이크로-광학 채널의 볼록한 반구 표면이 초분광 이미저에 사용되는 일부 실시예에서, 광학 필터(2261)는 불균일하게 구성될 수 있다. 예를 들어, 광학 필터(2261)는 서로 다른 마이크로-광학 채널이 서로 다른 두께를 가진 서로 다른 광학 필터층을 가지고, 일 방향(예를 들어, 두께 방향)으로 점진적으로 증가하거나 또는 계단식으로 증가하는 점진적(graduated) 필터일 수 있다. 이는 서로 다른 마이크로-광학 채널들이 도 3a 및 도 3b에 관해 본원에서 설명된 바와 같이 서로 다른 범위의 파장들을 측정하게 한다.
도 22d는 본 개시의 일부 실시예에 따른 수신기 채널(2232)의 실시예(2202)의 개략적인 단면도이다. 실시예(2202)의 수신기 채널(2232)은 단단하고 광학적으로 투명한 층 상에 지지되는 볼록한 반구(2267)를 포함할 수 있다. 이 실시예에서, 개구층(2240)은 광학 필터(2261)와 조합되고, 볼록 반구(2267) 상에 코팅되며, 반구(2267)의 중심은 입사광(광선(2233))의 초점에 또는 그 부근에 위치한다. 반구(2267)의 중심은 또한, 개구(2244)의 중심에 대응하거나 그 중심에 거의 대응한다. 도 22d에 도시된 바와 같이, 반구(2267)는 개구층(2240) 아래에 있을 수 있다. 일부 다른 실시예에서, 반구(2267)는 도 22e에 도시된 바와 같이, 개구층(2240) 위에 있을 수 있다.
도 22e는 본 개시의 일부 실시예에 따른 수신기 채널(2232)의 실시예(2203)의 개략적인 단면도이다. 도 22d의 실시예(2202)와 달리, 도 2e의 실시예(2215)는, 실시예(2202)와 유사한 기능을 달성하도록, 그러나 보다 더 압축된 크기를 갖도록, 반구(2267)가 개구(2244) 위에 배치되게 구성될 수 있다.
도 22d 및 도 22e는 광학 필터(2261)로 코팅되되, 대응하는 광학적으로 불투명한 조리개 영역(2246)과 함께 개구(2244)를 가진 단단하고 광학적으로 투명한 층(2245)(예를 들어, 유리, 고분자) 상에 지지되는, 개구층(2240) 상에 인쇄되는 볼록 반구(2267)를 도시한다. 도 22d 및 도 22e에 도시된 바와 같이, 수신기 채널(2232)은 크로스토크를 감소시키기 위해, 광 검출기(2271)를 가진 광센서층(2270)과 광학적으로 투명한 층(2245) 사이에 측벽(2263)을 포함한다. 측벽(2263)은 광학적으로 불투명한 재료로 구성되거나 광학적으로 투명한 재료로 구성될 수 있다. 또한, 측벽(2263)은 반사성 또는 흡수성 재료로 코팅될 수 있다. 도 22d 및 22e에는 도시되지 않았지만, 단단하고 광학적으로 투명한 층(2245)에 진입하고 빠져나가는 광선(2233)의 굴절이 있을 수 있다.
도 22f는 본 개시의 일부 실시예에 따른 수신기 채널(2232)의 실시예(2204)의 개략적인 단면도이다. 실시예(2204)는 코팅된 광학 필터(2261)를 가진 광학적으로 투명한 물질(예를 들어, 유리, 고분자)로 제조된 오목한 반구(2267)를 포함할 수 있다. 자체적으로-지지되는 개구층(2240)은 오목한 반구(2267) 위에 돌출될 수 있고, 광학적으로 불투명한 조리개 영역(2246)을 형성하기 위해 광학적으로 불투명한 단단한 재료(예를 들어, 금속 필름)로 천공되거나 에칭될 수 있다. 도 22f에 도시된 바와 같이, 반구(2267)는 개구층(2240) 아래에 위치될 수 있다. 개구(2244)의 중심은 입사광(광선(2233))의 초점에 또는 그 근처에 위치될 수 있다. 또한, 반구(2267)의 중심은 입사광(광선(2233))의 초점에 또는 그 부근에 위치될 수 있다. 도 22f에 도시된 바와 같이, 수신기 채널(2232)은 크로스토크를 감소시키기 위해 광 검출기(2271)를 가진 광센서층(2270)과 광학적으로 투명한 층(2245) 사이에 측벽(2263)을 포함한다. 측벽(2263)은 광학적으로 불투명한 재료로 구성되거나 광학적으로 투명한 재료로 구성될 수 있다. 또한, 측벽(2263)은 반사성 또는 흡수성 재료로 코팅될 수 있다.
도 22g는 본 개시의 일부 실시예에 따른 수신기 채널(2232)의 실시예(2205)의 개략적인 단면도이다. 도 22f의 실시예(2204)와 달리, 도 2g의 실시예(2205)는 반구(2267)가 실시예(2204)와 유사한 기능을 달성하도록 그러나 실시예(2204)가 보다 더 압축된 크기를 가질 수 있도록, 개구(2244) 위에 위치되게 구성될 수 있다.
도 22h는 본 개시의 일부 실시예에 따른 수신기 채널(2232)의 실시예(2206)의 개략적인 단면도이다. 실시예(2206)의 수신기 채널(2232)은 단단하고 광학적으로 투명한 층(2245)에 의해 지지되는 오목한 반구(2267) 및 개구층(2240)을 포함할 수 있다. 일부 실시예에서, 오목한 반구(2267)는 도 22h에 도시된 바와 같이 개구층(2240) 아래에 있을 수 있다. 오목한 반구(267)는 코팅된 광학 필터(2261)를 가진 광학적으로 투명한 물질(예를 들어, 유리, 고분자)로 제조될 수 있다. 광학적으로 투명한 개구(2244) 및 대응하는 광학적으로 불투명한 조리개 영역(244)을 가진 개구층(2240)은, 개구층(2240)의 위쪽 및 아래쪽 모두에서 광학적으로 투명한 층(2245)에 의해 지지된다. 개구(2244)의 중심은 입사광(광선(2233))의 초점에 또는 그 근방에 위치된다. 또한, 오목한 반구(2267)의 중심은 입사광(광선(2233))의 초점에 또는 그 근처에 위치된다. 도 22h에 도시된 바와 같이, 수신기 채널(2232)은 크로스토크를 감소시키기 위해 광 검출기(2271)를 가진 광센서층(2270)과 광학적으로 투명한 층(2245) 사이에 측벽(2263)을 포함한다. 측벽(2263)은 광학적으로 불투명한 재료로 구성되거나 광학적으로 투명한 재료로 구성될 수 있다. 또한, 측벽(2263)은 반사성 또는 흡수성 재료로 코팅될 수 있다.
도 22i는 본 개시의 일부 실시예에 따른 수신기 채널(2232)의 실시예(2207)의 개략적인 단면도이다. 도 22h의 실시예(2206)와 달리, 도 2i의 실시예(2207)는 반구(2267)가 실시예(2206)와 유사한 기능을 달성하도록 개구(2244) 위에 배치되게 구성될 수 있다.
F. 하부 마이크로-렌즈층
도 23a는 본 개시의 일부 실시예에 따른 수신기 채널(2332)의 실시예(2300)의 개략적인 단면도이다. 실시예(2300)의 수신기 채널(2332)은, 발산하는 광선을 광센서의 활성 부분으로 안내하도록 구성된 하나 이상의 마이크로-렌즈(2391)로 구성되는 하부 마이크로-렌즈층(Bottom Micro-Lens Layr, BMLL)을 포함할 수 있다. BMLL은 비유사한 각도로부터의 빛을 균일하게 이격된 광센서로 안내하기 위해, 광선 각도 교정을 수행한다. 광선 각도 교정은, 렌즈 중심 및 광센서 중심 사이의 측면 오프셋을 제어하거나, 렌즈를 기울이거나, 또는 렌즈의 형태를 조절함으로써, 달성될 수 있다. 이러한 동작의 더 양호한 예시는 도 23b에서 확인될 수 있다.
도 23b는 본 개시의 일부 실시예에 따른, BMLL에 의한 광선 각도 교정 동안의 빛이 전파되는 확대도의 개략적인 단면도이다. 도시된 바와 같이, 마이크로-광학부의 피치(pitch)는, 발산하는 광선(2333)을 광센서층 내의 광 검출기(2371)의 활성 부분으로 조향하기 위해, 일정하지 않거나, 또는 렌즈(2391)의 피치와 동일하지 않다. 도 23a를 다시 참조하면, 각각의 마이크로-렌즈(2391)는 각각의 광 검출기(2371)와 대응하도록 위치될 수 있다.
도 23c는 본 개시의 일부 실시예에 따른 수신기 채널(2332)의 실시예(2301)의 개략적인 단면도이다. 실시예(2301)의 수신기 채널(2332)은 도 23a에 도시된 바와 같은 복수의 마이크로-렌즈들 대신에, 단일 마이크로-렌즈(2391)를 포함할 수 있다. 단일 마이크로-렌즈(2391)는 단일 광 검출기(2371) 위에 위치되고 그에 중심이 위치될 수 있다. 마이크로-렌즈(2391)는 빛을 단일 광 검출기(2371)로 안내하도록 구성될 수 있다.
도 23d 및 23e는 각각, 본 개시의 일부 실시예에 따른 수신기 채널(2332)의 실시예(2302, 2303)의 개략적인 단면도이다. 실시예(2302)의 수신기 채널(2332)은 개구층(2340)을 지지하는 광학적으로 투명한 층(2345) 아래쪽에 위치된 BMLL과, 광학 필터(2361)가 코팅된 반구(2367)를 포함할 수 있다. 도 23d에 도시된 바와 같이, BMLL은 발산하는 광을 다수의 광 검출기(2371)에 안내하기 위한 다수의 렌즈(2393)로 형성될 수 있다. 도 23e에 도시된 바와 같이, BMLL은 발산하는 광을 광 검출기(2371)로 안내하기 위한 단일 마이크로-렌즈(2391)로 형성될 수 있다.
도 23d 및 23E에 도시된 실시예(2302, 2303)는 각각, 단단하고 광학적으로 투명한 층(2345) 상에 지지되는 볼록한 반구(2367)를 포함한다. 이들 도면에서, 개구층(2340)은 반구(2367) 상에 코팅된 광학 필터(2361)와 조합되고, 반구(2367)의 중심은 입사광(가장자리 광선(2333))의 초점에 또는 그 부근에 위치한다. 반구(2367)의 중심은 또한 개구(2344)의 중심에 대응하거나 거의 그 중심에 대응할 수 있다. 볼록 반구(2367)는 광학 필터(2361)로 코팅될 수 있되, 단단하고 광학적으로 투명한 층(2345)(예를 들어, 유리, 고분자로 형성된 층) 상에 지지되는 개구층(2340) 및 대응하는 광학적으로 불투명한 조리개 영역(2346) 상에 인쇄될 수 있다. 도 23d 및 23e에 도시된 바와 같이, 수신기 채널(2332)은 크로스토크를 감소시키기 위해 광학적으로 투명한 층(2345)과 광센서층(2370) 사이에 측벽(2363)을 포함한다. 측벽(2363)은 광학적으로 불투명한 재료로 구성되거나 광학적으로 투명한 재료로 구성될 수 있다. 또한, 측벽(2363)은 반사성 또는 흡수성 재료로 코팅될 수도 있다.
G. 부가적인 예시적인 수신기 채널
수신기 채널은, 예를 들어, 하나 이상의 개구층, 개구층 아래의 광학 렌즈층, 개구 및 광학 렌즈층 아래의 광학 필터층, 및 모든 다른 층 아래의 광센서층을 포함하는 다수의 층들로 형성될 수 있는, 마이크로-광학 수준(예를 들어, 위에서 설명된 마이크로-광학 수신기 채널)의 구조물인 것으로 이해해야 한다. 각각의 이러한 층은, 인접한 수신기 채널에 미광을 노출시키는 크로스토크를 완화시키기 위해 도 17 내지 도 23e와 관련하여 본원에서 설명된 바와 같이 다양한 방식으로 구성될 수 있다. 수신기 채널들의 다양한 예들은 도 17, 도 22a 내지 도 22i, 및 도 23a 내지 도 23e에 관하여 위에 설명되어 있다. 본 개시에 따른 수신기 채널의 2개의 다른 예가 도 24 및 도 25에 도시되어 있다. 본 개시의 실시예들은 본원에 설명된 특정한 수신기 채널들로 제한되지 않는다. 그 대신에, 본 개시에 기초하여, 통상의 기술자는, 다른 실시예에서, 본 개시에 따른 수신기 채널이, 다른 옵션들 중에서, 도 18a 내지 도 18d, 또는 도 19a 내지 도 19d 중 임의의 것에 관하여 앞서 설명된 바와 같은 개구층과, 도 20a 내지 도 20g 중 임의의 것에 관하여 앞서 설명된 바와 같은 필터층과, 그리고/또는 도 21a 내지 도 21k 중 임의의 것에 관하여 앞서 설명된 바와 같은 광센서층을 포함할 수 있음을 이해할 것이다.
도 24는 본 개시의 일부 실시예에 따른 수신기 채널(2400)의 예시적인 실시예의 개략적인 단면도이다. 수신기 채널(2400)은 각각의 광학적으로 불투명한 층들(2446a 및 2446b) 안에 각각 형성된 제1 및 제2 개구(2444)로 구성된 개구층(2440)을 포함할 수 있다. 일부 실시예에서는, 제1 및/또는 제2 개구(2444)가 층들(2446a 및 2446b) 안의 개구들에 의해 정의된 빈 공간들로 형성될 수 있는 반면에, 일부 다른 실시예에서는 제1 및/또는 제2 개구(2444)가 광학적으로 투명한 물질들에 의해 형성될 수 있다. 제1 및 제2 광학적으로 불투명한 층(2446a 및 2446b)은 제1 및 제2 광학적으로 불투명한 층(2446a 및 2446b) 사이에 개재된 광학적으로 투명한 기판(2445)에 의해 지지될 수 있다.
또한, 수신기 채널(2400)은 개구층(2440) 아래에 배치된 광학 렌즈층(2450)을 포함할 수 있다. 광학 렌즈층(2450)은 시준 렌즈(2451) 및 광학적으로 불투명한 스페이서 구조물(2456)을 포함할 수 있다. 시준 렌즈(2451)는 광학적으로 불투명한 스페이서 구조물(2456)에 의해 개구층(2440)으로부터 분리될 수 있다. 일부 실시예에서, 광학적으로 불투명한 스페이서 구조물(2456)은, 시준 렌즈(2451)를 둘러싸고 개구층(2440)을 향해 연장되는 원주를 가진 튜브를 형성한다. 광학적으로 불투명한 스페이서 구조물(2456)은 임의의 빛이 개구층(2440)과 시준 렌즈(2451) 사이의 영역에서 수신기 채널(2400)의 외부로 이동하는 것을 방지하는, 광학적으로 반사성인 또는 흡수성의 재료로 형성될 수 있다.
개구층(2440) 및 광학 렌즈층(2450)에 부가하여, 수신기 채널(2400)은 광학 렌즈층(2450) 바로 아래에 위치된 광학 필터층(2460)을 더 포함할 수 있다. 광학 필터층(2460)은 광학 필터(2461)를 구조적으로 지지하는 광학적으로 투명한 기판(2465)이 사이에 개재하는 2개의 광학 필터(2461)를 포함할 수 있다. 광학 필터층(2460)은 임의의 개수의 기판(2065) 상에 임의의 개수 및 유형의 광학 필터(2461)를 포함할 수 있다. 예를 들어, 광학 필터들(2461) 중 하나는 대역통과 필터일 수 있고, 정의된 파장들의 세트(예를 들어, 900 nm 내지 945 nm, 및 950 nm 내지 995 nm)에 대해 입사광의 전부를 차단하는 광학적으로 투명한 기판(2465)의 상부 또는 하부에 직접 위치될 수 있다. 광학적으로 투명한 기판(2465)의 반대쪽에 배치된 다른 광학 필터(2461)는, 예를 들어 200 nm 내지 915 nm, 및 980 nm 내지 1600 nm를 커버하는 광대역 스펙트럼 차단 필터(대역통과 필터에 의해 커버되는 영역을 제외함)와 같은 상이한 필터일 수 있다. 대역통과 필터 및 차단 필터는 2개의 필터들 사이의 전이 영역에서 누설이 없도록 설계된다. 그러나, 필터는 대역통과 필터 또는 임의의 다른 유형의 필터와 함께 작동하도록 설계된 2개의 엣지 통과 필터일 수 있다.
광학 필터층(2460) 바로 아래에는 광센서층(2470)이 있을 수 있다. 일부 실시예에서, 실시예(2400)의 광센서층(2470)은 수렴 렌즈 세트(2491)와 광센서(2473) 사이에 위치한 광학적으로 불투명한 스페이서 구조물(2463)을 포함할 수 있다. 광센서(2473)는 교번하는 배열로 비활성 영역(2172)(예를 들어, 집적된 로직)의 세트 사이에 위치된 이산적인 광 검출기(2471)(예를 들어, SPAD)의 세트로 형성될 수 있으며, 여기서, 각각의 이산적인 광 검출기는 입사 광자를 검출하도록 구성된다. 수렴 렌즈 세트(2491)는 광 검출기(2471)를 가진 광센서(2473)와 광학 필터층(2460) 사이에 개재될 수 있고, 광센서(2173) 내에 이산적인 광 검출기(2471) 마다 하나의 수렴 렌즈(2491)를 포함하고, 수렴 렌즈 세트(2491)의 각각의 렌즈는 광학 필터층(2460)에 의해 통과된 입사 광자들을 대응하는 이산적인 광 검출기(2471) 상에 집속하도록 구성된다. 각각의 수렴 렌즈는 공통의 초점 거리를 나타낼 수 있고, 수렴 렌즈 세트(2491)는 이 공통 초점 거리에 의해(또는 이러한 공통 초점 거리와 실질적으로 유사한 거리에 의해) 광센서의 감지 평면 위로 오프셋될 수 있으며, 각각의 수렴 렌즈는 광학 필터층(2450) 내에 시준되고 광학 필터층(2460)에 의해 통과되는 입사광을 광센서(2473) 내의 하나의 대응하는 광 검출기(2471) 상에 수렴시킬 수 있다. 광학적으로 불투명한 스페이서 구조물(2463)은 시준 렌즈(2451)와 실질적으로 유사한 또는 더 큰 직경의 튜브를 형성하고, 임의의 빛이 렌즈 세트(2491)와 광센서(2473) 사이의 영역에서 수신기 채널(2400)의 외부로 이동하는 것을 방지한다. 광학적으로 불투명한 스페이서 구조물(2163)은 광학적으로 불투명한 벌크 매질(예를 들어, 실리콘 또는 고분자)로 제조될 수 있다.
수신기 채널의 다른 예시적인 실시예가 도 25에 도시되어 있다. 도 25는 본 개시의 일부 실시예에 따른 예시적인 수신기 채널(2500)의 개략적인 단면도이다. 수신기 채널(2500)은 개구층(2540)과, 개구층(2540) 아래에 배치된 광학 렌즈층(2550)과, 개구층(2540) 및 광학 렌즈층(2550) 모두의 아래에 있는 광학 필터층(2560)을 포함할 수 있다. 개구층(2540), 광학 렌즈층(2550), 및 광학 필터층(2560)은 도 24의 대응하는 구성요소와 동일한 구성 및 기능을 가질 수 있다.
수신기 채널(2500)은 또한, 광학 필터층(2560) 바로 아래에 위치된 광센서층(2570)을 포함할 수 있다. 일부 실시예에서, 실시예(2400)의 광센서층(2570)은 광학적으로 불투명한 스페이서 구조물(2563), 수렴 렌즈 세트(2591), 및 광센서(2573)를 포함할 수 있다. 도 24의 수신기 채널(2400)의 수렴 렌즈 세트(2491)와 달리, 수신기 채널(2500)의 수렴 렌즈 세트(2591)는 광학 필터층(2560)의 하부에 직접 위치되는 대신에 광센서(2573)의 상부 표면 상에 직접 위치될 수 있다. 또한, 광학적으로 불투명한 스페이서 구조물(2563)은 광학적으로 불투명한 하나의 구조물(예를 들어, 도 24의 수신기 채널(2400)의 광학적으로 불투명한 스페이서 구조물(2463))이 아니라, 실리콘이나 유리 기판과 같은 광학적으로 투명한 층에 코팅된 광학적으로 불투명한 재료(예를 들어, 흑색 크롬)으로 형성될 수 있다. 렌즈 세트(2591)는 비활성 영역(2572)보다 광센서(2573)의 광 검출기(2571) 상에 빛을 집중시키는 역할을 한다.
실시예들(2400 및 2500) 중 임의의 것에 따라 수신기 채널을 구현함으로써, 잘못된 빛이 인접한 수신기 채널들 상에 노출되는 것이 방지되어, 이미징을 위해 광자를 포획하는 각각의 광센서의 능력의 정확도를 개선할 수 있다.
VI. 마이크로 광학 수신기 채널 어레이 변형
본 개시의 일부 실시예에 따르면, 마이크로-광학 수신기 채널들은 어레이로 구성될 수 있다. 어레이는 설계에 따라 다양한 크기를 가질 수 있다. 예를 들어, 마이크로-광학 수신기 채널들의 어레이는 M×N 어레이로 배열될 수 있는데, 여기서 M 및 N은 1이상이다. 따라서, 마이크로-광학 수신기 채널들은, 각각의 도트(dot)가 마이크로-광학 수신기 채널을 나타내는 마이크로-광학 수신기 채널 어레이의 서로 다른 실시예들을 예시하는 도 26 내지 도 30에 관하여 본원에서 더 설명되는 바와 같이, 1차원 및 2차원 어레이일 수 있다. 본원에 상술된 바와 같이, 각각의 수신기 채널은 서로 적층된 복수의 층들을 포함할 수 있다. 따라서, 어레이로 배열될 때, 각각의 마이크로-광학 수신기 채널은 M×N 배열로(예를 들어, M×N의 개구층 어레이, M×N의 마이크로 렌즈층 어레이, 및 M×N 광센서층 어레이로), 여러 번 재생성되는 개별적인 요소들로 구성된, 모놀리식 층의 일부임을 이해할 수 있을 것이다. 함께 접합되는 경우, 이들 어레이 층들은 모놀리식 다중-채널 마이크로 광학 수신기 어레이를 생성한다.
도 26은 본 개시의 일부 실시예에 따른 예시적인 마이크로-광학 수신기 어레이(2600)의 개략적인 도면이다. 마이크로-광학 수신기 어레이(2600)는 선형(M×1) 어레이, 구체적으로는 16×1 어레이로서 구성된다. 이러한 레이아웃은 해당 구현이 1차원으로 어레이를 스캔할 수 있기 때문에 높은 해상도(예를 들어, 16×1024)를 달성할 수 있다. 일 예로서, 500 마이크론의 수신기 채널 피치의 경우, 도시된 레이아웃은 약 500 마이크론 × 8000 마이크론인 크기의 칩으로 구현될 수 있다.
도 27은 본 개시의 일부 실시예에 따른 예시적인 마이크로-광학 수신기 어레이(2700)의 개략적인 도면이다. 마이크로-광학 수신기 어레이(2700)는 직사각형(MxN) 어레이, 구체적으로는 16×32 어레이로서 구성된다. 따라서, 500 마이크론의 수신기 채널 피치의 경우, 도시된 레이아웃은 8,000 마이크론 × 12000 마이크론인 크기의 칩으로 구현될 수 있다.
도 28은 본 개시의 일부 실시예에 따른 예시적인 마이크로-광학 수신기 어레이(2800)의 개략적인 도면이다. 마이크로-광학 수신기 어레이(2800)는 MxN의 비스듬한 어레이로서 구성된다. 이러한 예시에서, 수신기 채널들(2832)은 16x4의 비스듬한 어레이 내에 배치된다. 이러한 레이아웃은 해당 구현이 스위핑(sweep)될 수 있기 때문에 높은 해상도(예를 들어, 64×1024)를 달성할 수 있다. 500 마이크론의 수신기 채널 피치의 경우, 도 28에 도시된 레이아웃은 약 2000 마이크론 × 8375 마이크론인 크기의 칩으로 구현될 수 있다.
도 29는 본 개시의 일부 실시예에 따른 예시적인 마이크로-광학 수신기 어레이(2900)의 개략적인 도면이다. 마이크로-광학 수신기 어레이(2900)는 뒤틀린(warped) 선형(M×1) 어레이로서 구성된다. 이 실시예에서, 수신기 채널들(2932) 사이의 간격은 고르지 않다. 2932-01로 도시된 중심 근처의 수신기 채널들은 서로 근접하게(예를 들어, 400 마이크론으로 이격되게) 배치되는 반면, 2932-02로 도시된 외부 채널들은 더 멀리 배치되거나(예를 들어, 400 마이크론보다 크게), 또는 그 반대이다. 이러한 레이아웃은 렌즈의 왜곡 곡선을 교정하게 할 수 있는 장점을 가진다(즉, 수신기 채널 시야들 사이의 각도가 물체 공간 내에 균일하게 이격되어 있음). 도 29에 도시된 배열은 해당 구현이 스위핑될 수 있기 때문에 높은 해상도(예를 들어, 16×1024)를 달성하기 위해 사용될 수 있다. 500 마이크론의 평균적인 수신기 채널 피치의 경우, 도시된 레이아웃은 약 500 마이크론 × 8000 마이크론인 크기의 칩으로 구현될 수 있다.
일부 실시예에서, 수신기 채널들은 M×N의 뒤틀린 어레이(여기서, N≥1)로 구성될 수 있다. 이러한 실시예에서, 중심의 수신기 채널들은 그 외부의 수신기 채널들보다 x 및 y 방향 모두에서 더 멀리 위치된다. 이는 다른 가능한 렌즈 왜곡의 형태를 교정한다.
도 29는 본 개시의 일부 실시예에 따른 예시적인 마이크로-광학 수신기 어레이(2900)의 개략적인 도면이다. 마이크로-광학 수신기 어레이(2900)는 임의의 패턴으로 구성된다. 이러한 레이아웃 배열은, 렌즈 왜곡을 수용하고, 임의의 타이밍 또는 라우팅 변형을 보상하도록 조정하며, 또한 조명 소스로부터 임의의 패턴을 매칭시킬 수 있는 장점을 가진다.
본 개시는 특정 실시예들에 관하여 기술되었지만, 본 개시는 이하의 청구범위 내에서 모든 수정 및 균등물을 커버하도록 의도됨을 이해할 것이다.
Claims (34)
- 거리 측정을 수행하기 위한 광학 시스템으로서,
상기 광학 시스템은,
광학적으로 투명한 윈도우를 가진 고정식 하우징;
상기 하우징 내에 배치되는 회전 광 레인징 장치 - 상기 광 레인징 장치는,
플랫폼;
상기 플랫폼에 연결된 광학 송신기 - 상기 광학 송신기는 벌크 송신기 광학부 및 복수의 송신기 채널들을 포함하고, 각각의 송신기 채널은 협대역 광을 생성하여 상기 벌크 송신기 광학부를 통해 상기 광학 시스템 외부의 시야로 전송하도록 구성된 광 방출기를 포함함 -; 및
상기 플랫폼에 연결된 광학 수신기 - 상기 광학 수신기는 벌크 수신기 광학부, 상기 벌크 수신기 광학부의 초점면과 일치하고 조리개 영역(stop region)에 의해 분리되는 복수의 개구들을 포함하는 개구층, 및 복수의 마이크로-광학 수신기 채널들을 포함하고, 각각의 마이크로-광학 채널은 상기 복수의 개구들로부터의 개구, 상기 벌크 수신기 광학부로부터의 광의 경로를 따라 위치되고 상기 개구와 축방향으로 정렬되는 광학 필터, 및 상기 개구 및 상기 광학 필터를 통과하는 입사 광자들에 반응하는 광센서를 포함함 - 를 포함함-;
상기 하우징 내에 배치되고, 상기 하우징 내의 상기 플랫폼, 광학 송신기 및 광학 수신기를 포함하는 상기 광 레인징 장치를 회전시키도록 동작가능하게 연결되는 모터; 및
상기 하우징 내에 배치되고, 상기 모터를 제어하고 상기 광 레인징 장치의 광 검출 동작들을 개시 및 정지시키도록 구성되는 시스템 컨트롤러
를 포함하는, 거리 측정을 수행하기 위한 광학 시스템. - 제1항에 있어서, 상기 광학 수신기는 상기 개구 뒤에 있고 상기 광학 필터에 직접 연결되는 시준 렌즈를 더 포함하고, 상기 광학 필터는 상기 시준 렌즈의 뒤에 위치되는, 거리 측정을 수행하기 위한 광학 시스템.
- 제1항에 있어서, 상기 광학 필터는 상기 개구의 상부 또는 하부측에 직접 위치된 반구형 렌즈 상의 필터층인, 거리 측정을 수행하기 위한 광학 시스템.
- 제1항에 있어서, 상기 고정식 하우징은 원통 형상이고, 상기 광학적으로 투명한 윈도우는 상기 고정식 하우징의 둘레로 완전히 연장되는, 거리 측정을 수행하기 위한 광학 시스템.
- 제4항에 있어서, 상기 투명 윈도우에 의해 야기되는 광학 수차를 교정(correct)하기 위한 교정 광학 구조물을 더 포함하는, 거리 측정을 수행하기 위한 광학 시스템.
- 제1항에 있어서, 상기 광학 송신기 및 광학 수신기는 각각의 송신기 채널이 수신기 채널과 쌍을 이루고 이들의 시야의 중심들이 상기 광학 시스템으로부터 특정 거리에서 비-중첩되게 정렬되도록 구성되는, 거리 측정을 수행하기 위한 광학 시스템.
- 제1항에 있어서, 상기 복수의 마이크로-광학 수신기 채널들은 상기 광센서들이 제조되는, 공통 기판 상에 구성된 모놀리식 ASIC의 일부이고, 상기 개구층을 위한 개별 층들 및 상기 광학 필터는 그들이 상기 ASIC의 모놀리식 구조의 일부가 되도록 상기 모놀리식 ASIC 상에 형성되는, 거리 측정을 수행하기 위한 광학 시스템.
- 거리 측정을 수행하기 위한 광학 시스템으로서,
상기 광학 시스템은,
베이스, 상부, 및 상기 베이스와 상기 상부 사이에 배치된 광학적으로 투명한 윈도우를 가진 고정식 하우징;
상기 하우징 내에 배치되고 상기 광학적으로 투명한 윈도우와 정렬되는 회전 광 레인징 장치 - 상기 광 레인징 장치는,
플랫폼;
상기 플랫폼에 연결된 광학 송신기 - 상기 광학 송신기는 이미지-공간 텔레센트릭(telecentric) 벌크 송신기 광학부 및 복수의 송신기 채널들을 포함하고, 각각의 채널은 협대역 광을 생성하여 상기 벌크 송신기 광학부를 통해 상기 광학 시스템 외부의 시야로 전송하도록 구성되는 광 방출기를 포함함 -; 및
상기 플랫폼에 연결된 광학 수신기 - 상기 광학 수신기는 이미지-공간 텔레센트릭 벌크 수신기 광학부, 조리개 영역에 의해 분리된 복수의 개구들을 포함하는 개구층, 및 복수의 마이크로-광학 수신기 채널들을 포함하고, 각각의 마이크로-광학 채널은 상기 벌크 수신기 광학부의 초점면과 일치하는 상기 복수의 개구들로부터의 개구, 상기 개구의 뒤의 시준 렌즈, 상기 시준 렌즈 뒤의 광학 필터, 및 상기 개구를 통해 상기 시준 렌즈로 내로 통과하는 그리고 상기 필터를 통과하는 입사 광자들에 반응하는 광센서를 포함함 - 를 포함함-;
상기 하우징 내에 배치되고, 상기 하우징 내에 상기 플랫폼, 광학 송신기 및 광학 수신기를 포함하는 상기 광 레인징 장치를 회전시키도록 동작가능하게 연결되는 모터; 및
상기 하우징 내에 배치되고, 상기 모터를 제어하며 상기 광 레인징 장치의 광 검출 동작들을 개시 및 정지시키도록 구성되는 시스템 컨트롤러
를 포함하는, 거리 측정을 수행하기 위한 광학 시스템. - 제8항에 있어서, 상기 고정식 하우징은 원통 형상이고, 상기 광학적으로 투명한 윈도우는 상기 고정식 하우징의 둘레로 완전히 연장되는, 거리 측정을 수행하기 위한 광학 시스템.
- 제8항에 있어서, 상기 광학 송신기 및 광학 수신기는 각각의 송신기 채널이 수신기 채널과 쌍을 이루고, 이들 시야의 중심들이 상기 광학 시스템으로부터 특정 거리에서 비-중첩되게 정렬되도록 구성되는, 거리 측정을 수행하기 위한 광학 시스템.
- 제8항에 있어서, 상기 복수의 마이크로-광학 수신기 채널들은 상기 광 센서들이 제조되는, 공통 기판 상에 구성된 모놀리식 ASIC의 일부이고, 상기 개구층을 위한 개별 층들 및 상기 광학 필터는 그들이 상기 ASIC의 모놀리식 구조의 일부가 되도록 상기 모놀리식 ASIC 상에 형성되는, 거리 측정을 수행하기 위한 광학 시스템.
- 거리 측정을 수행하기 위한 광학 시스템으로서,
상기 광학 시스템은,
베이스, 상부, 상기 베이스와 상기 상부 사이에 배치된 광학적으로 투명한 윈도우를 가진 고정식 하우징;
상기 하우징 내에 배치되고, 상기 광학적으로 투명한 윈도우와 정렬되는 광 레인징 장치 - 상기 광 레인징 장치는,
플랫폼;
어레이로 배열된 복수의 수직-공동 표면 방출 레이저(VCSEL)들 - 상기 복수의 VCSEL들 중 각각의 VCSEL은 이산적인 광의 펄스들을 생성하여 상기 광학 시스템 외부의 시야로 전송하도록 구성됨 - ; 및
상기 플랫폼에 연결되는 광학 수신기 - 상기 광학 수신기는 벌크 수신기 광학부, 조리개 영역에 의해 분리되는 복수의 개구들을 포함하는 개구층, 복수의 광센서들을 포함하고, 각각의 광센서는 입사 광자들에 반응하는 복수의 단일-광자 애벌란시 다이오드(SPAD)들, 및 상기 벌크 수신기 광학부와 상기 복수의 광센서들 사이에 배치되고 특정 대역의 광이 상기 복수의 광센서들에 대해 광학 필터를 통과하는 것을 허용하되 상기 대역 외의 광이 상기 복수의 광센서들에 도달하는 것을 차단하도록 구성되는 광학 필터를 포함함 - 를 포함하고;
상기 복수의 개구들은 적어도 제1 및 제2 개구들을 포함하고, 상기 복수의 광센서들은 적어도 제1 및 제2 광센서들을 포함하고, 상기 광학 수신기는 상기 제1 개구를 통하여 상기 벌크 수신기 광학부와 상기 제1 광센서 사이에서 연장되는 제1 광학 경로 및 상기 제2 개구를 통하여 상기 벌크 수신기 광학부와 상기 제2 광센서 사이에서 연장되는 제2 광학 경로를 포함함 -;
상기 하우징 내에 배치되고, 상기 하우징 내의 상기 광 레인징 장치를 회전시키도록 동작가능하게 연결되는 모터; 및
상기 하우징 내에 배치되고, 상기 모터를 제어하며 상기 광 레인징 장치의 광 검출 동작들을 개시 및 정지시키도록 구성되는 시스템 컨트롤러
를 포함하는, 거리 측정을 수행하기 위한 광학 시스템. - 제12항에 있어서, 상기 고정식 하우징은 원통 형상이고, 상기 광학적으로 투명한 윈도우는 상기 고정식 하우징의 둘레로 완전히 연장되는, 거리 측정을 수행하기 위한 광학 시스템.
- 제12항에 있어서, 상기 복수의 VCSEL들은 상기 광학 시스템으로부터 특정 거리에서 비-중첩 시야들을 갖는 복수의 방출기 채널들을 형성하도록 배열되고, 상기 복수의 광센서들은 상기 광학 시스템으로부터 특정 거리에서 비-중첩 시야들을 갖는 복수의 수신기 채널을 형성하도록 배열되고, 각각의 송신기 채널은 상기 수신기 채널들 중 개별 수신기 채널과 쌍을 이루는, 거리 측정을 수행하기 위한 광학 시스템.
- 제12항에 있어서, 상기 복수의 광센서들은 공통 기판 상에 구성된 모놀리식 ASIC 내에 제조되어 그 일부를 형성하는, 거리 측정을 수행하기 위한 광학 시스템.
- 제12항에 있어서, 상기 제1 및 제2 개구들은 핀홀(pinhole) 개구들인, 거리 측정을 수행하기 위한 광학 시스템.
- 제12항에 있어서, 상기 광의 이산 펄스들은 그것의 각자의 광의 펄스의 강도에 의해 형성된 내장된 양의 값 펄스-코드로 각각 코딩되는, 거리 측정을 수행하기 위한 광학 시스템.
- 제12항에 있어서, 상기 복수의 개구들은 제3 및 제4 개구들을 더 포함하고, 상기 복수의 광센서들은 제3 및 제4 광센서들을 더 포함하고, 상기 광학 수신기는 상기 제3 개구를 통하여 상기 벌크 수신기 광학부와 상기 제3 광센서 사이에서 연장하는 제3 광학 경로 및 상기 제4 개구를 통하여 상기 벌크 수신기 광학부와 상기 제4 광센서 사이에서 연장하는 제4 광학 경로를 포함하는, 거리 측정을 수행하기 위한 광학 시스템.
- 제14항에 있어서, 상기 시스템은 상기 복수의 방출기 채널들로부터의 광의 펄스들의 전송과 상기 복수의 광센서들에 의한 상기 광의 펄스들로부터의 광자들의 검출 사이의 시간들에 기초하여 거리 데이터를 생성하는, 거리 측정을 수행하기 위한 광학 시스템.
- 제14항에 있어서, 벌크 송신기 광학부를 더 포함하고,
상기 벌크 송신기 광학부 및 상기 벌크 수신기 광학부는 각각의 이미지-공간 텔레센트릭 광학부들이고;
상기 복수의 방출기 채널들은 상기 시스템으로부터의 거리들의 범위에 걸쳐서 크기 및 기하학적 형상이 상기 복수의 광센서들의 복수의 비-중첩 시야들과 실질적으로 매칭되는 조명 패턴에 따라 상기 광학 시스템의 외부의 시야에서 복수의 조명 빔들을 투사하도록 구성되는, 거리 측정을 수행하기 위한 광학 시스템. - 거리 측정을 수행하기 위한 광학 시스템으로서,
상기 광학 시스템은,
베이스, 상부, 및 상기 베이스와 상기 상부 사이에 배치되고 고정식 하우징의 둘레로 완전히 연장하는 광학적으로 투명한 윈도우를 갖는 상기 고정식 하우징;
상기 하우징 내에 배치된 광 레인징 장치 - 상기 광 레인징 장치는,
플랫폼;
상기 플랫폼에 연결되고 벌크 송신기 광학부 및 복수의 광학 방출기들을 포함하는 광 전송 모듈 - 상기 복수의 광학 방출기들 내의 각각의 광학 방출기는 복사의 펄스들을 생성하여 상기 벌크 송신기 광학부를 통해 그리고 상기 광학적으로 투명한 윈도우를 통해 상기 광학 시스템 외부의 시야 내로 송신하도록 구성됨 -; 및
상기 플랫폼에 연결되고, 벌크 수신기 광학부, 조리개 영역에 의해 분리된 복수의 개구부들을 포함하는 개구층, 상기 복수의 광학 방출기들로부터 방출되고 상기 시야 내의 표면들로부터 반사된 후에 상기 벌크 수신기 광학부를 통해 수신된 광자들을 검출하도록 동작가능한 복수의 광센서들, 및 상기 벌크 수신기 광학부와 상기 복수의 광센서들 사이에 배치되고 상기 복수의 광학 방출기의 동작 파장을 포함하는 대역의 복사가 광학 필터를 통해 상기 복수의 광센서들로 통과하는 것을 허용하되 상기 대역 외의 복사가 상기 복수의 광센서들에 도달하는 것을 차단하도록 구성된 광학 필터를 포함하는 광 감지 모듈을 포함함 -; 및
상기 하우징 내에 배치되고, 상기 하우징 내에서 상기 플랫폼 및 상기 광 레인징 장치를 회전시키도록 동작 가능하게 연결되는 모터
를 포함하고,
상기 복수의 광센서들 내의 각각의 광센서는 복수의 단일 광자 애벌란시 다이오드(SPAD)들을 포함하고;
상기 복수의 개구들은 적어도 제1, 제2, 제3 및 제4 개구들을 포함하고,
상기 복수의 광센서들은 적어도 제1, 제2, 제3 및 제4 광센서들을 포함하고,
상기 광 감지 모듈은 상기 제1 개구를 통한 상기 제1 광센서로의 제1 광학 경로, 상기 제2 개구를 통한 상기 제2 광센서로의 제2 광학 경로, 상기 제3 개구를 통한 상기 제3 광센서로의 제3 광학 경로, 및 상기 제4 개구를 통한 상기 제4 광센서로의 제4 광학 경로를 포함하는, 거리 측정을 수행하기 위한 광학 시스템. - 제21항에 있어서, 상기 벌크 송신기 광학부 및 상기 벌크 수신기 광학부는 각각 이미지-공간 텔레센트릭 광학부들인, 거리 측정을 수행하기 위한 광학 시스템.
- 제21항에 있어서, 상기 시스템은 상기 복수의 광학 방출기들로부터의 광의 펄스들의 전송과 상기 복수의 광센서들에 의한 상기 광의 펄스들로부터의 광자들의 검출 사이의 시간들에 기초하여 거리 데이터를 생성하는, 거리 측정을 수행하기 위한 광학 시스템.
- 제21항에 있어서, 상기 복수의 광학 방출기들은 비-중첩 시야들을 갖는 복수의 방출기 채널들을 형성하도록 배열되고, 상기 복수의 광센서들은 비-중첩 시야들을 갖고 상기 복수의 방출기 채널들과 일대일 관계를 갖는 복수의 수신기 채널들을 형성하도록 배열되어 각각의 수신기 채널에 대한 시야가 대응하는 방출기 채널의 시야와 일치하게 되는, 거리 측정을 수행하기 위한 광학 시스템.
- 제21항에 있어서, 상기 복수의 방출기들은 상기 시스템으로부터의 거리들의 범위에 걸쳐서 크기 및 기하학적 형상이 상기 복수의 광센서들의 복수의 비-중첩 시야들과 실질적으로 매칭되는 조명 패턴에 따라 상기 광학 시스템 외부의 시야 내에 복수의 조명 빔들을 투사하도록 구성되는, 거리 측정을 수행하기 위한 광학 시스템.
- 거리 측정을 수행하기 위한 광학 시스템으로서,
상기 광학 시스템은,
베이스, 상부, 및 상기 베이스와 상기 상부 사이에 배치되고 고정식 하우징의 둘레로 완전히 연장하는 광학적으로 투명한 윈도우를 갖는 고정식 하우징;
상기 하우징 내에 배치된 광 레인징 장치 - 상기 광 레인징 장치는,
플랫폼;
상기 플랫폼에 연결되고 벌크 송신기 광학부 및 복수의 광학 방출기들을 포함하는 광 전송 모듈 - 상기 복수의 광학 방출기들 내의 각각의 광학 방출기는 복사의 펄스들을 생성하여 상기 벌크 송신기 광학부를 통해 그리고 상기 광학적으로 투명한 윈도우를 통해 상기 광학 시스템 외부의 시야로 송신하도록 구성됨 -; 및
상기 플랫폼에 연결되고, 벌크 수신기 광학부, 조리개 영역에 의해 분리된 복수의 개구부들을 포함하는 개구층, 상기 복수의 광학 방출기들로부터 방출되고 상기 시야 내의 표면들로부터 반사된 후에 상기 벌크 수신기 광학부를 통해 수신된 광자들을 검출하도록 동작가능한 복수의 광센서들, 및 상기 벌크 수신기 광학부와 상기 복수의 광센서들 사이에 배치되는 하나 이상의 광학 필터들을 포함하는 광 감지 모듈 - 상기 하나 이상의 광학 필터들 각각은, 상기 복수의 광학 방출기들의 동작 파장을 포함하는, 복사의 파장들의 셋트가 상기 하나 이상의 광학 필터들을 통과하는 것을 허용하되 그 세트 외의 복사를 차단하도록 구성됨 - 을 포함함 -;
상기 하우징 내에 배치되고, 상기 하우징 내에서 상기 플랫폼 및 상기 광 레인징 장치를 회전시키도록 동작 가능하게 연결되는 모터
를 포함하고,
상기 복수의 광센서들 내의 각각의 광센서는 복수의 단일 광자 애벌란시 다이오드(SPAD)들을 포함하고;
상기 복수의 개구들은 적어도 제1, 제2, 제3 및 제4 개구들을 포함하고,
상기 복수의 광센서들은 적어도 제1, 제2, 제3 및 제4 광센서들을 포함하고,
상기 광 감지 모듈은 상기 제1 개구를 통한 상기 제1 광센서로의 제1 광학 경로, 상기 제2 개구를 통한 상기 제2 광센서로의 제2 광학 경로, 상기 제3 개구를 통한 상기 제3 광센서로의 제3 광학 경로, 및 상기 제4 개구를 통한 상기 제4 광센서로의 제4 광학 경로를 포함하는, 거리 측정을 수행하기 위한 광학 시스템. - 제26항에 있어서, 상기 하나 이상의 광학 필터들은 대역통과 필터를 포함하는, 거리 측정을 수행하기 위한 광학 시스템.
- 제26항에 있어서, 상기 하나 이상의 광학 필터들은 복수의 광학 필터들을 포함하는, 거리 측정을 수행하기 위한 광학 시스템.
- 제28항에 있어서, 상기 복수의 광학 필터들 각각은 광학적으로 투명한 기판에 의해 지지되는, 거리 측정을 수행하기 위한 광학 시스템.
- 제29항에 있어서, 상기 복수의 광학 필터들은 상기 제1 광학 경로에 배치되는, 거리 측정을 수행하기 위한 광학 시스템.
- 제26항에 있어서, 상기 시스템은 상기 복수의 광학 방출기들로부터의 광의 펄스들의 전송과 상기 복수의 광센서들에 의한 상기 광의 펄스들로부터의 광자들의 검출 사이의 시간들에 기초하여 거리 데이터를 생성하는, 거리 측정을 수행하기 위한 광학 시스템.
- 제26항에 있어서, 상기 복수의 광학 방출기들은 비-중첩 시야들을 갖는 복수의 방출기 채널들을 형성하도록 배열되고, 상기 복수의 광센서들은 비-중첩 시야들을 갖고 상기 복수의 방출기 채널들과 일대일 관계를 갖는 복수의 수신기 채널들을 형성하도록 배열되어 각각의 수신기 채널에 대한 시야가 대응하는 방출기 채널의 시야와 일치하게 되는, 거리 측정을 수행하기 위한 광학 시스템.
- 제26항에 있어서, 상기 복수의 방출기들은 상기 시스템으로부터의 거리들의 범위에 걸쳐서 크기 및 기하학적 형상이 상기 복수의 광센서들의 복수의 비-중첩 시야들과 실질적으로 매칭되는 조명 패턴에 따라 상기 광학 시스템 외부의 시야 내에 복수의 조명 빔들을 투사하도록 구성되는, 거리 측정을 수행하기 위한 광학 시스템.
- 제26항에 있어서, 상기 하나 이상의 광학 필터들은 상기 제1 광센서와 상기 제1 개구 사이의 제1 광학 경로에 배치된 제1 광학 필터, 상기 제2 광센서와 상기 제2 개구 사이의 제2 광학 경로에 배치된 제2 광학 필터, 상기 제3 광센서와 상기 제3 개구 사이의 제3 광학 경로에 배치된 제3 광학 필터, 및 상기 제4 광센서와 상기 제4 개구 사이의 제4 광학 경로에 배치된 제4 광학 필터를 포함하는, 거리 측정을 수행하기 위한 광학 시스템.
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762506437P | 2017-05-15 | 2017-05-15 | |
US201762506449P | 2017-05-15 | 2017-05-15 | |
US201762506445P | 2017-05-15 | 2017-05-15 | |
US62/506,437 | 2017-05-15 | ||
US62/506,449 | 2017-05-15 | ||
US62/506,445 | 2017-05-15 | ||
US201762515291P | 2017-06-05 | 2017-06-05 | |
US62/515,291 | 2017-06-05 | ||
KR1020197036956A KR102657365B1 (ko) | 2017-05-15 | 2018-05-14 | 휘도 향상된 광학 이미징 송신기 |
PCT/US2018/032601 WO2018213200A1 (en) | 2017-05-15 | 2018-05-14 | Optical imaging transmitter with brightness enhancement |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020197036956A Division KR102657365B1 (ko) | 2017-05-15 | 2018-05-14 | 휘도 향상된 광학 이미징 송신기 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20240055836A true KR20240055836A (ko) | 2024-04-29 |
KR102706360B1 KR102706360B1 (ko) | 2024-09-12 |
Family
ID=64096629
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020247011819A KR102706360B1 (ko) | 2017-05-15 | 2018-05-14 | 휘도 향상된 광학 이미징 송신기 |
KR1020197036956A KR102657365B1 (ko) | 2017-05-15 | 2018-05-14 | 휘도 향상된 광학 이미징 송신기 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020197036956A KR102657365B1 (ko) | 2017-05-15 | 2018-05-14 | 휘도 향상된 광학 이미징 송신기 |
Country Status (10)
Country | Link |
---|---|
US (7) | US11150347B2 (ko) |
EP (1) | EP3615901A4 (ko) |
JP (2) | JP7154230B2 (ko) |
KR (2) | KR102706360B1 (ko) |
CN (2) | CN111273256B (ko) |
AU (1) | AU2018269000B2 (ko) |
CA (1) | CA3063605A1 (ko) |
DE (2) | DE202018006696U1 (ko) |
TW (1) | TW201907140A (ko) |
WO (1) | WO2018213200A1 (ko) |
Families Citing this family (181)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11609336B1 (en) | 2018-08-21 | 2023-03-21 | Innovusion, Inc. | Refraction compensation for use in LiDAR systems |
WO2015159692A1 (ja) * | 2014-04-14 | 2015-10-22 | 株式会社村田製作所 | 脈波伝播時間計測装置および生体状態推定装置 |
GB201511551D0 (en) | 2015-07-01 | 2015-08-12 | St Microelectronics Res & Dev | Photonics device |
US9992477B2 (en) * | 2015-09-24 | 2018-06-05 | Ouster, Inc. | Optical system for collecting distance information within a field |
US10948572B2 (en) | 2016-08-24 | 2021-03-16 | Ouster, Inc. | Optical system for collecting distance information within a field |
US10502574B2 (en) * | 2016-09-20 | 2019-12-10 | Waymo Llc | Devices and methods for a sensor platform of a vehicle |
USD871412S1 (en) * | 2016-11-21 | 2019-12-31 | Datalogic Ip Tech S.R.L. | Optical scanner |
CN110087452B (zh) * | 2016-12-27 | 2023-02-03 | 亚拉国际有限公司 | 用于确定植物状态的系统和方法 |
JP7088937B2 (ja) | 2016-12-30 | 2022-06-21 | イノビュージョン インコーポレイテッド | 多波長ライダー設計 |
US10942257B2 (en) | 2016-12-31 | 2021-03-09 | Innovusion Ireland Limited | 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices |
CN110573900A (zh) | 2017-01-05 | 2019-12-13 | 图达通爱尔兰有限公司 | 用于编码和译码LiDAR的方法和系统 |
US11054508B2 (en) | 2017-01-05 | 2021-07-06 | Innovusion Ireland Limited | High resolution LiDAR using high frequency pulse firing |
US11009605B2 (en) | 2017-01-05 | 2021-05-18 | Innovusion Ireland Limited | MEMS beam steering and fisheye receiving lens for LiDAR system |
DE102017101945A1 (de) * | 2017-02-01 | 2018-08-02 | Osram Opto Semiconductors Gmbh | Messanordnung mit einem optischen Sender und einem optischen Empfänger |
US11150347B2 (en) * | 2017-05-15 | 2021-10-19 | Ouster, Inc. | Micro-optics for optical imager with non-uniform filter |
CA3068943A1 (en) | 2017-07-05 | 2019-01-10 | Ouster, Inc. | Light ranging device with electronically scanned emitter array and synchronized sensor array |
CN107218920B (zh) * | 2017-08-04 | 2020-07-10 | 美国西北仪器公司 | 距离测定方法及距离测定系统 |
CN109387845A (zh) * | 2017-08-07 | 2019-02-26 | 信泰光学(深圳)有限公司 | 测距模块 |
US10785400B2 (en) * | 2017-10-09 | 2020-09-22 | Stmicroelectronics (Research & Development) Limited | Multiple fields of view time of flight sensor |
JP2019070586A (ja) * | 2017-10-10 | 2019-05-09 | オリンパス株式会社 | 分光検出装置、及び、検出波長域の調整方法 |
WO2019079642A1 (en) | 2017-10-19 | 2019-04-25 | Innovusion Ireland Limited | LIDAR WITH EXTENDED DYNAMIC RANGE |
US11353556B2 (en) | 2017-12-07 | 2022-06-07 | Ouster, Inc. | Light ranging device with a multi-element bulk lens system |
US11346952B2 (en) | 2017-12-08 | 2022-05-31 | Hesai Technology Co., Ltd. | Systems and methods for light detection and ranging |
US11493601B2 (en) | 2017-12-22 | 2022-11-08 | Innovusion, Inc. | High density LIDAR scanning |
US11977184B2 (en) | 2018-01-09 | 2024-05-07 | Seyond, Inc. | LiDAR detection systems and methods that use multi-plane mirrors |
US11675050B2 (en) | 2018-01-09 | 2023-06-13 | Innovusion, Inc. | LiDAR detection systems and methods |
US10627487B2 (en) * | 2018-02-10 | 2020-04-21 | Delphi Technologies, Llc | Enclosure |
US11927696B2 (en) | 2018-02-21 | 2024-03-12 | Innovusion, Inc. | LiDAR systems with fiber optic coupling |
US11391823B2 (en) | 2018-02-21 | 2022-07-19 | Innovusion, Inc. | LiDAR detection systems and methods with high repetition rate to observe far objects |
US11422234B2 (en) | 2018-02-23 | 2022-08-23 | Innovusion, Inc. | Distributed lidar systems |
WO2020013890A2 (en) | 2018-02-23 | 2020-01-16 | Innovusion Ireland Limited | Multi-wavelength pulse steering in lidar systems |
WO2019165294A1 (en) | 2018-02-23 | 2019-08-29 | Innovusion Ireland Limited | 2-dimensional steering system for lidar systems |
WO2019245614A2 (en) | 2018-03-09 | 2019-12-26 | Innovusion Ireland Limited | Lidar safety systems and methods |
DE202019006068U1 (de) * | 2018-03-20 | 2024-08-13 | Mobileye Vision Technologies Ltd. | Systeme zur Fahrzeugnavigation |
WO2019199775A1 (en) | 2018-04-09 | 2019-10-17 | Innovusion Ireland Limited | Lidar systems and methods for exercising precise control of a fiber laser |
WO2019199796A1 (en) | 2018-04-09 | 2019-10-17 | Innovusion Ireland Limited | Compensation circuitry for lidar receiver systems and method of use thereof |
US11303355B2 (en) * | 2018-05-30 | 2022-04-12 | Apple Inc. | Optical structures in directional free-space optical communication systems for portable electronic devices |
US10700780B2 (en) | 2018-05-30 | 2020-06-30 | Apple Inc. | Systems and methods for adjusting movable lenses in directional free-space optical communication systems for portable electronic devices |
US11099579B2 (en) * | 2018-05-31 | 2021-08-24 | Nissan North America, Inc. | System for determining the number of remote vehicles following a host vehicle |
US11675053B2 (en) | 2018-06-15 | 2023-06-13 | Innovusion, Inc. | LiDAR systems and methods for focusing on ranges of interest |
DE102018118653B4 (de) * | 2018-08-01 | 2020-07-30 | Sick Ag | Optoelektronischer Sensor und Verfahren zum Erfassen eines Objekts |
US10739189B2 (en) | 2018-08-09 | 2020-08-11 | Ouster, Inc. | Multispectral ranging/imaging sensor arrays and systems |
US10760957B2 (en) | 2018-08-09 | 2020-09-01 | Ouster, Inc. | Bulk optics for a scanning array |
EP3787947A2 (en) | 2018-08-14 | 2021-03-10 | Mobileye Vision Technologies Ltd. | Systems and methods for navigating with safe distances |
US11860316B1 (en) | 2018-08-21 | 2024-01-02 | Innovusion, Inc. | Systems and method for debris and water obfuscation compensation for use in LiDAR systems |
US11579300B1 (en) | 2018-08-21 | 2023-02-14 | Innovusion, Inc. | Dual lens receive path for LiDAR system |
US11796645B1 (en) | 2018-08-24 | 2023-10-24 | Innovusion, Inc. | Systems and methods for tuning filters for use in lidar systems |
US11614526B1 (en) | 2018-08-24 | 2023-03-28 | Innovusion, Inc. | Virtual windows for LIDAR safety systems and methods |
US11579258B1 (en) | 2018-08-30 | 2023-02-14 | Innovusion, Inc. | Solid state pulse steering in lidar systems |
US11333748B2 (en) * | 2018-09-17 | 2022-05-17 | Waymo Llc | Array of light detectors with corresponding array of optical elements |
US20210349193A1 (en) * | 2018-10-08 | 2021-11-11 | Sony Semiconductor Solutions Corporation | Time of flight apparatus and method |
US11561284B2 (en) * | 2018-11-02 | 2023-01-24 | Waymo Llc | Parallax compensating spatial filters |
US11275146B2 (en) * | 2018-11-08 | 2022-03-15 | Infineon Technologies Ag | LIDAR system with non-uniform sensitivity response |
CN109188401A (zh) * | 2018-11-09 | 2019-01-11 | 深圳市速腾聚创科技有限公司 | 激光雷达光学系统及激光雷达 |
CN113167866B (zh) | 2018-11-14 | 2024-08-13 | 图达通智能美国有限公司 | 使用多面镜的lidar系统和方法 |
DE102018219481A1 (de) | 2018-11-15 | 2020-05-20 | Robert Bosch Gmbh | Baugruppe für einen LiDAR-Sensor und LiDAR-Sensor |
US20200182974A1 (en) * | 2018-12-08 | 2020-06-11 | Magik Eye Inc. | Vertical cavity surface emitting laser-based projector |
US11067884B2 (en) * | 2018-12-26 | 2021-07-20 | Apple Inc. | Through-display optical transmission, reception, or sensing through micro-optic elements |
US11585906B2 (en) * | 2018-12-26 | 2023-02-21 | Ouster, Inc. | Solid-state electronic scanning laser array with high-side and low-side switches for increased channels |
CN113302515B (zh) | 2019-01-10 | 2024-09-24 | 图达通智能美国有限公司 | 具有光束转向和广角信号检测的lidar系统和方法 |
US11493633B2 (en) * | 2019-02-05 | 2022-11-08 | United States Of America As Represented By The Secretary Of The Air Force | Range-enabled three-dimensional imaging system and associated methods |
US11486970B1 (en) | 2019-02-11 | 2022-11-01 | Innovusion, Inc. | Multiple beam generation from a single source beam for use with a LiDAR system |
US11076098B2 (en) * | 2019-02-12 | 2021-07-27 | VIAVI Solutions he. | Panoramic image capture for multispectral sensor |
KR20210126624A (ko) * | 2019-02-22 | 2021-10-20 | 프로페시 | 동적 비전 센서 및 패턴 투사를 사용하는 3차원 이미징 및 감지 |
DE102019202766C5 (de) * | 2019-02-28 | 2024-04-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Optische Sende/Empfangs-Einheit und Vorrichtung zur Signalübertragung |
US20220357451A1 (en) * | 2019-03-05 | 2022-11-10 | Waymo Llc | Lidar transmitter/receiver alignment |
CN114942453A (zh) * | 2019-03-08 | 2022-08-26 | 欧司朗股份有限公司 | Lidar传感器系统、用于该系统的光学部件、传感器和方法 |
US11289524B2 (en) * | 2019-03-13 | 2022-03-29 | Semiconductor Components Industries, Llc | Microlenses for semiconductor device with single-photon avalanche diode pixels |
WO2020190920A1 (en) * | 2019-03-18 | 2020-09-24 | Sense Photonics, Inc. | Dynamic range improvements in lidar applications |
CN109901184B (zh) * | 2019-03-25 | 2021-12-24 | Oppo广东移动通信有限公司 | 飞行时间组件、终端及飞行时间组件的控制方法 |
DE102019107957A1 (de) * | 2019-03-27 | 2020-10-01 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronische vorrichtung und lidar-system |
JP7213466B2 (ja) * | 2019-03-28 | 2023-01-27 | パナソニックIpマネジメント株式会社 | カメラシステム、搭乗者監視システム、移動装置、撮像方法及びプログラム |
CN111751838A (zh) * | 2019-03-28 | 2020-10-09 | 上海小瞳智能科技有限公司 | 一种微型固态激光雷达及其数据处理方法 |
US11977185B1 (en) | 2019-04-04 | 2024-05-07 | Seyond, Inc. | Variable angle polygon for use with a LiDAR system |
US10838556B2 (en) | 2019-04-05 | 2020-11-17 | Apple Inc. | Sensing system for detection of light incident to a light emitting layer of an electronic device display |
CN110007291B (zh) * | 2019-04-16 | 2021-07-02 | 深圳市速腾聚创科技有限公司 | 一种接收系统和激光雷达 |
US12031915B2 (en) * | 2019-04-30 | 2024-07-09 | Hewlett-Packard Development Company, L.P. | Modular and tiled optical sensors |
US10950743B2 (en) | 2019-05-02 | 2021-03-16 | Stmicroelectronics (Research & Development) Limited | Time of flight (TOF) sensor with transmit optic providing for reduced parallax effect |
DE102019206316A1 (de) * | 2019-05-03 | 2020-11-05 | Robert Bosch Gmbh | Optisches System, insbesondere LiDAR-System, und Fahrzeug |
CN110678780B (zh) * | 2019-05-16 | 2022-04-12 | 深圳市速腾聚创科技有限公司 | 激光接收阵列、激光雷达和智能感应设备 |
US11307415B1 (en) | 2019-05-29 | 2022-04-19 | Facebook Technologies, Llc | Head mounted display with active optics feedback and calibration |
US11848542B1 (en) * | 2019-05-29 | 2023-12-19 | Meta Platforms Technologies, Llc | Active optics feedback and calibration |
JP7079753B2 (ja) | 2019-06-11 | 2022-06-02 | 株式会社東芝 | 光検出装置、電子装置及び光検出方法 |
JP2021002541A (ja) * | 2019-06-19 | 2021-01-07 | 株式会社リコー | 光学装置、光源装置、検出装置及び電子機器 |
US11525892B2 (en) * | 2019-06-28 | 2022-12-13 | Waymo Llc | Beam homogenization for occlusion resistance |
US11549799B2 (en) | 2019-07-01 | 2023-01-10 | Apple Inc. | Self-mixing interference device for sensing applications |
FR3098603B1 (fr) * | 2019-07-09 | 2021-07-16 | Commissariat Energie Atomique | Dispositif pour réaliser une série de mesures optiques sur des points voisins par multiplexage en longueur d’onde. |
TWI845693B (zh) * | 2019-07-11 | 2024-06-21 | 以色列商奧寶科技有限公司 | 用於檢驗之光學設備及方法 |
CN110441754B (zh) * | 2019-07-22 | 2022-08-30 | 中国科学院上海光学精密机械研究所 | 细分视场光学效率可控制的光学接收装置 |
DE102019211277A1 (de) * | 2019-07-30 | 2021-02-04 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronische Messvorrichtung zur frequenzaufgelösten Messung einer Intensität einer elektromagnetischen Strahlung |
CN113866784B (zh) * | 2019-08-08 | 2023-02-03 | 上海禾赛科技有限公司 | 激光雷达及其控制方法 |
DE102019212611A1 (de) * | 2019-08-22 | 2021-02-25 | Robert Bosch Gmbh | Empfangseinheit für eine LIDAR-Vorrichtung |
JP7133523B2 (ja) | 2019-09-05 | 2022-09-08 | 株式会社東芝 | 光検出装置及び電子装置 |
US11145778B2 (en) * | 2019-09-20 | 2021-10-12 | Waymo Llc | Monolithic silicon photomultiplier array |
US11611058B2 (en) | 2019-09-24 | 2023-03-21 | Apple Inc. | Devices and systems for under display image sensor |
US11527582B1 (en) | 2019-09-24 | 2022-12-13 | Apple Inc. | Display stack with integrated photodetectors |
CN112955778B (zh) * | 2019-09-26 | 2023-08-04 | 深圳市速腾聚创科技有限公司 | 校正方法、装置、存储介质及多通道激光雷达 |
CN112584133B (zh) * | 2019-09-27 | 2024-08-02 | 苹果公司 | 用于处理图像的系统和方法 |
US11150348B2 (en) * | 2019-10-02 | 2021-10-19 | Cepton Technologies, Inc. | Techniques for detecting cross-talk interferences in lidar imaging sensors |
DE102019126982A1 (de) * | 2019-10-08 | 2021-04-08 | Sick Ag | Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten |
KR102684228B1 (ko) | 2019-10-21 | 2024-07-11 | 삼성전자주식회사 | 복수-입력 폴디드 카메라 및 이를 포함하는 모바일 장치 |
WO2021081947A1 (zh) * | 2019-10-31 | 2021-05-06 | 华为技术有限公司 | 一种雷达系统、滤波器和移动平台 |
US20210140764A1 (en) * | 2019-11-07 | 2021-05-13 | Spectricity | Collimating array for an optical sensing device |
US10797698B1 (en) | 2019-11-29 | 2020-10-06 | Waymo Llc | Systems and methods for selecting light emitters for emitting light |
US11862749B2 (en) * | 2019-12-06 | 2024-01-02 | Adesto Technologies Corporation | Integrated module assembly for optical integrated circuits |
DE102019219825A1 (de) * | 2019-12-17 | 2021-06-17 | Robert Bosch Gmbh | Sendeeinheit und LIDAR-Vorrichtung mit optischem Homogenisierer |
CN114868032A (zh) | 2019-12-27 | 2022-08-05 | 伟摩有限责任公司 | 光学重定向器器件 |
CN113126064B (zh) | 2019-12-28 | 2024-06-11 | 华为技术有限公司 | 一种信号处理方法及相关装置 |
KR20210088987A (ko) * | 2020-01-07 | 2021-07-15 | 삼성전자주식회사 | 라이다 장치 및 그 동작 방법 |
US11646335B2 (en) * | 2020-01-30 | 2023-05-09 | Semiconductor Components Industries, Llc | Semiconductor devices with single-photon avalanche diodes and rectangular microlenses |
JP7452044B2 (ja) * | 2020-01-31 | 2024-03-19 | 株式会社デンソー | 光検出装置 |
DE102020201636A1 (de) * | 2020-02-11 | 2021-08-12 | Ibeo Automotive Systems GmbH | Einrichtung zur Erzeugung von Rückstreuungs-Histogrammdaten für die Bestimmung einer diffusen Rückstreuung bei einer optischen Laufzeitmessung und Verfahren |
WO2021163731A1 (en) * | 2020-02-12 | 2021-08-19 | Continental Automotive Systems, Inc. | Blockage detection of high-resolution lidar sensor |
US11561345B2 (en) * | 2020-02-14 | 2023-01-24 | Google Llc | Apertures for reduced dynamic crosstalk and stray light control |
US11592873B2 (en) | 2020-02-14 | 2023-02-28 | Apple Inc. | Display stack topologies for under-display optical transceivers |
KR102147279B1 (ko) * | 2020-02-20 | 2020-08-24 | 국방과학연구소 | 물체 이동 탐지 장치, 방법, 컴퓨터 판독 가능한 기록 매체 및 컴퓨터 프로그램 |
CN113419247A (zh) * | 2020-03-03 | 2021-09-21 | 华为技术有限公司 | 激光探测系统 |
US11295664B2 (en) | 2020-03-11 | 2022-04-05 | Apple Inc. | Display-synchronized optical emitters and transceivers |
US11695911B2 (en) | 2020-04-27 | 2023-07-04 | Ouster, Inc. | Stereoscopic image capturing systems |
WO2021219412A1 (en) * | 2020-04-28 | 2021-11-04 | Signify Holding B.V. | An optical directional detector |
US20210349192A1 (en) * | 2020-05-07 | 2021-11-11 | Beijing Voyager Technology Co., Ltd. | Hybrid detectors for various detection range in lidar |
US11619717B2 (en) * | 2020-05-15 | 2023-04-04 | Beijing Voyager Technology Co., Ltd. | LiDAR receiver with movable detector |
US11327237B2 (en) | 2020-06-18 | 2022-05-10 | Apple Inc. | Display-adjacent optical emission or reception using optical fibers |
CN111796339B (zh) * | 2020-07-16 | 2021-03-19 | 长春工程学院 | 一种智能传感器的设计方法、智能设备 |
US11487859B2 (en) | 2020-07-31 | 2022-11-01 | Apple Inc. | Behind display polarized optical transceiver |
US20220050183A1 (en) * | 2020-08-12 | 2022-02-17 | Beijing Voyager Technology Co., Ltd. | Intertwined detector array for an optical sensing system |
DE102020125023A1 (de) * | 2020-09-25 | 2022-03-31 | Marelli Automotive Lighting Reutlingen (Germany) GmbH | Sensoreinrichtung, Scheinwerfer, Verfahren und Steuergerät |
US20220113405A1 (en) * | 2020-10-14 | 2022-04-14 | Argo AI, LLC | Multi-Detector Lidar Systems and Methods |
CN112260766B (zh) * | 2020-10-19 | 2022-01-18 | 中国核动力研究设计院 | 一种射线偏转通信系统及通信方法 |
CN116324335A (zh) * | 2020-10-20 | 2023-06-23 | 索尼半导体解决方案公司 | 距离测量装置和距离测量方法 |
CN114488176A (zh) * | 2020-10-23 | 2022-05-13 | 睿镞科技(北京)有限责任公司 | 3d图像传感器测距系统及使用该系统进行测距的方法 |
WO2022102856A1 (ko) * | 2020-11-12 | 2022-05-19 | 주식회사 에스오에스랩 | 라이다 장치 |
CN114577341A (zh) * | 2020-11-30 | 2022-06-03 | 华为技术有限公司 | 一种探测器及移动终端 |
US11789466B2 (en) * | 2020-12-18 | 2023-10-17 | Microsoft Technology Licensing, Llc | Event camera based navigation control |
US11892572B1 (en) | 2020-12-30 | 2024-02-06 | Waymo Llc | Spatial light modulator retroreflector mitigation |
TWI755252B (zh) * | 2021-01-13 | 2022-02-11 | 宇瞻科技股份有限公司 | 輝度計 |
US20220236382A1 (en) * | 2021-01-27 | 2022-07-28 | Ford Global Technologies, Llc | Rotating sensor assembly |
US12061289B2 (en) | 2021-02-16 | 2024-08-13 | Innovusion, Inc. | Attaching a glass mirror to a rotating metal motor frame |
US11422267B1 (en) | 2021-02-18 | 2022-08-23 | Innovusion, Inc. | Dual shaft axial flux motor for optical scanners |
EP4260086A1 (en) | 2021-03-01 | 2023-10-18 | Innovusion, Inc. | Fiber-based transmitter and receiver channels of light detection and ranging systems |
CN112965243B (zh) * | 2021-03-10 | 2022-10-04 | 北京航空航天大学 | 一种紧凑型眼纹(巩膜血管)成像装置 |
US11839133B2 (en) | 2021-03-12 | 2023-12-05 | Apple Inc. | Organic photodetectors for in-cell optical sensing |
CN216054731U (zh) * | 2021-03-18 | 2022-03-15 | 神盾股份有限公司 | 光感测模块 |
US12125865B2 (en) | 2021-03-31 | 2024-10-22 | Apple Inc. | Electromagnetic radiation detectors integrated with immersion lenses |
JP2024513908A (ja) * | 2021-04-08 | 2024-03-27 | シグニファイ ホールディング ビー ヴィ | オプティカルディテクタ |
US11555895B2 (en) | 2021-04-20 | 2023-01-17 | Innovusion, Inc. | Dynamic compensation to polygon and motor tolerance using galvo control profile |
US11614521B2 (en) | 2021-04-21 | 2023-03-28 | Innovusion, Inc. | LiDAR scanner with pivot prism and mirror |
WO2022225859A1 (en) | 2021-04-22 | 2022-10-27 | Innovusion, Inc. | A compact lidar design with high resolution and ultra-wide field of view |
US11662439B2 (en) | 2021-04-22 | 2023-05-30 | Innovusion, Inc. | Compact LiDAR design with high resolution and ultra-wide field of view |
US20240219527A1 (en) * | 2021-04-26 | 2024-07-04 | Neural Propulsion Systems, Inc. | LONG-RANGE LiDAR |
CN115267801A (zh) * | 2021-04-30 | 2022-11-01 | 上海禾赛科技有限公司 | 光探测装置及探测方法 |
US11624806B2 (en) | 2021-05-12 | 2023-04-11 | Innovusion, Inc. | Systems and apparatuses for mitigating LiDAR noise, vibration, and harshness |
US11662440B2 (en) | 2021-05-21 | 2023-05-30 | Innovusion, Inc. | Movement profiles for smart scanning using galvonometer mirror inside LiDAR scanner |
US20220390274A1 (en) * | 2021-06-02 | 2022-12-08 | Luminar, Llc | Protective mask for an optical receiver |
US11953722B2 (en) * | 2021-06-02 | 2024-04-09 | Luminar Technologies, Inc. | Protective mask for an optical receiver |
US11527562B1 (en) * | 2021-06-23 | 2022-12-13 | Aeluma, Inc. | Photodetector module comprising emitter and receiver |
DE102021207227A1 (de) * | 2021-07-08 | 2023-01-12 | Robert Bosch Gesellschaft mit beschränkter Haftung | Lidar-Sensor und Umfelderkennungssystem |
US11768294B2 (en) | 2021-07-09 | 2023-09-26 | Innovusion, Inc. | Compact lidar systems for vehicle contour fitting |
FR3125920B1 (fr) * | 2021-07-27 | 2023-11-24 | St Microelectronics Grenoble 2 | Capteur optique |
US20240340518A1 (en) * | 2021-08-06 | 2024-10-10 | Koito Manufacturing Co., Ltd. | Light emitting device, range-image capturing device, and monitoring device |
WO2023018945A1 (en) * | 2021-08-12 | 2023-02-16 | Ouster, Inc. | Coaxial lidar system using a diffractive waveguide |
US12094986B1 (en) | 2021-08-25 | 2024-09-17 | Apple Inc. | Quantum-efficiency enhanced optical detector pixel having one or more optical scattering structures |
US12124002B2 (en) | 2021-09-03 | 2024-10-22 | Apple Inc. | Beam deflector metasurface |
CN114217447B (zh) * | 2021-11-22 | 2023-07-07 | 中国工程物理研究院应用电子学研究所 | 一种激光束整形变换装置 |
CN216356147U (zh) | 2021-11-24 | 2022-04-19 | 图达通智能科技(苏州)有限公司 | 一种车载激光雷达电机、车载激光雷达及车辆 |
EP4194890A1 (de) * | 2021-12-09 | 2023-06-14 | Pepperl+Fuchs SE | Optischer sensor |
DE102021132724A1 (de) | 2021-12-10 | 2023-06-15 | Valeo Schalter Und Sensoren Gmbh | Optischer fahrzeug-umgebungssensor, fahrzeug und herstellungsverfahren |
CN114200469A (zh) * | 2021-12-10 | 2022-03-18 | 湖北久之洋信息科技有限公司 | 一种基于角锥阵列的激光探测系统 |
US20240210526A1 (en) * | 2022-01-07 | 2024-06-27 | Ouster, Inc. | Optical system for full frame flash solid state lidar system |
US11867562B2 (en) | 2022-01-25 | 2024-01-09 | Visera Technologies Company Limited | Optical devices |
US20230243928A1 (en) * | 2022-01-30 | 2023-08-03 | Ouster, Inc. | Overlapping sub-ranges with power stepping |
CN114647158B (zh) * | 2022-03-23 | 2023-07-21 | 无锡环亚微电子有限公司 | 一种显影机的智能导料装置及其工作方法 |
US11871130B2 (en) | 2022-03-25 | 2024-01-09 | Innovusion, Inc. | Compact perception device |
EP4279948A1 (de) * | 2022-05-17 | 2023-11-22 | ZKW Group GmbH | Sensorvorrichtung für einen kraftfahrzeugscheinwerfer |
US20230384425A1 (en) * | 2022-05-24 | 2023-11-30 | Lg Innotek Co., Ltd. | Lidar unit with stray light reduction system |
JP2024011627A (ja) * | 2022-07-15 | 2024-01-25 | キヤノン株式会社 | 光学装置、車載システム、および移動装置 |
US20240061087A1 (en) * | 2022-08-19 | 2024-02-22 | Ouster, Inc. | Lidar system with fly's eye lens arrays |
US12044846B2 (en) * | 2022-09-14 | 2024-07-23 | Valve Corporation | Position tracking systems and methods for head-mounted display systems |
DE102022127849A1 (de) | 2022-10-21 | 2024-05-02 | Valeo Detection Systems GmbH | Optischer expander eines lidarsystems und lidarsystem |
US20240142728A1 (en) * | 2022-10-27 | 2024-05-02 | Sensirion Ag | Optical component, optoelectronic module and method of manufacture |
JP2024081358A (ja) * | 2022-12-06 | 2024-06-18 | ソニーセミコンダクタソリューションズ株式会社 | 照明装置及び測距装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7433042B1 (en) * | 2003-12-05 | 2008-10-07 | Surface Optics Corporation | Spatially corrected full-cubed hyperspectral imager |
WO2011030578A1 (ja) * | 2009-09-11 | 2011-03-17 | Kataoka Shoei | Led照明装置 |
JP2013083663A (ja) * | 2009-03-31 | 2013-05-09 | Pepperl & Fuchs Gmbh | トランジットタイム原理に基づいて動作する光学センサ |
JP2015514965A (ja) * | 2012-02-15 | 2015-05-21 | アップル インコーポレイテッド | 走査深度エンジン |
Family Cites Families (217)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4003660A (en) | 1975-12-03 | 1977-01-18 | Hunter Associates Laboratory, Inc. | Sensing head assembly for multi-color printing press on-line densitometer |
US4275950A (en) | 1980-02-04 | 1981-06-30 | Meyer Stanley A | Light-guide lens |
US4358851A (en) | 1980-02-28 | 1982-11-09 | Xerox Corporation | Fiber optic laser device and light emitter utilizing the device |
JPS58211677A (ja) | 1982-06-02 | 1983-12-09 | Nissan Motor Co Ltd | 光レ−ダ装置 |
DE3426868A1 (de) | 1984-07-20 | 1986-01-30 | LITEF Litton Technische Werke der Hellige GmbH, 7800 Freiburg | Verfahren und einrichtung zur drehratenauslesung mittels eines passiven optischen resonators |
JPS6137911U (ja) | 1984-08-10 | 1986-03-10 | 内山工業株式会社 | 材料注入成形金型 |
US4676599A (en) | 1985-08-14 | 1987-06-30 | The United States Of America As Represented By The Secretary Of The Air Force | Micro-optical lens holder |
US4744667A (en) | 1986-02-11 | 1988-05-17 | University Of Massachusetts | Microspectrofluorimeter |
US4851664A (en) | 1988-06-27 | 1989-07-25 | United States Of America As Represented By The Secretary Of The Navy | Narrow band and wide angle hemispherical interference optical filter |
JPH036407A (ja) | 1989-06-03 | 1991-01-11 | Daido Steel Co Ltd | 外周形状測定装置 |
US5084596A (en) | 1990-06-04 | 1992-01-28 | The Lamson & Sessions Co. | Electrical box |
JPH0749417Y2 (ja) | 1990-09-28 | 1995-11-13 | 三菱重工業株式会社 | 電気抵抗探傷用探触子 |
US5267016A (en) | 1991-11-27 | 1993-11-30 | United Technologies Corporation | Laser diode distance measurement |
US5745153A (en) | 1992-12-07 | 1998-04-28 | Eastman Kodak Company | Optical means for using diode laser arrays in laser multibeam printers and recorders |
US5288992A (en) | 1992-12-15 | 1994-02-22 | Gte Laboratories Incorporated | Wide angle, narrow band optical filter |
US6133989A (en) | 1993-02-09 | 2000-10-17 | Advanced Scientific Concepts, Inc. | 3D imaging laser radar |
JPH0749417A (ja) | 1993-08-06 | 1995-02-21 | Fujitsu Ltd | 干渉フィルタアセンブリ |
DE4331203A1 (de) * | 1993-09-14 | 1995-03-16 | Hoefelmayr Bio Melktech | Verfahren und Vorrichtung zur Entnahme einer mengenproportionalen Analyseprobe aus einem Melkfluß |
JP3251150B2 (ja) | 1994-12-29 | 2002-01-28 | 日本板硝子株式会社 | 平板マイクロレンズアレイおよびその製造方法 |
GB9618720D0 (en) | 1996-09-07 | 1996-10-16 | Philips Electronics Nv | Electrical device comprising an array of pixels |
US6362482B1 (en) | 1997-09-16 | 2002-03-26 | Advanced Scientific Concepts, Inc. | High data rate smart sensor technology |
US6721262B1 (en) | 1997-09-22 | 2004-04-13 | Seagate Technology Llc | Aperture stop for a flying optical head |
JP3835016B2 (ja) | 1998-10-16 | 2006-10-18 | 三菱電機株式会社 | レーザレーダ装置 |
JP2000138792A (ja) | 1998-10-30 | 2000-05-16 | Sharp Corp | イメージセンサ及びその製造方法 |
US6201293B1 (en) | 1998-11-19 | 2001-03-13 | Xerox Corporation | Electro optical devices with reduced filter thinning on the edge pixel photosites and method of producing same |
US6564168B1 (en) | 1999-09-14 | 2003-05-13 | Immersion Corporation | High-resolution optical encoder with phased-array photodetectors |
US6414746B1 (en) | 1999-11-24 | 2002-07-02 | Advanced Scientific Concepts, Inc. | 3-D imaging multiple target laser radar |
TW527518B (en) | 2000-07-14 | 2003-04-11 | Massachusetts Inst Technology | Method and system for high resolution, ultra fast, 3-D imaging |
US6433934B1 (en) | 2000-08-11 | 2002-08-13 | Yakov Reznichenko | Illumination system for use in imaging systems |
US7045833B2 (en) | 2000-09-29 | 2006-05-16 | Board Of Regents, The University Of Texas System | Avalanche photodiodes with an impact-ionization-engineered multiplication region |
US6814901B2 (en) | 2001-04-20 | 2004-11-09 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing microlens array and microlens array |
US6707230B2 (en) | 2001-05-29 | 2004-03-16 | University Of North Carolina At Charlotte | Closed loop control systems employing relaxor ferroelectric actuators |
DE10127204A1 (de) | 2001-06-05 | 2003-03-20 | Ibeo Automobile Sensor Gmbh | Erfassungsverfahren und - vorrichtung |
US7091462B2 (en) | 2002-08-26 | 2006-08-15 | Jds Uniphase Corporation | Transmitter with laser monitoring and wavelength stabilization circuit |
DE10244641A1 (de) | 2002-09-25 | 2004-04-08 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
JP2006517340A (ja) | 2003-01-23 | 2006-07-20 | オーボテック リミテッド | 高輝度照明を提供するためのシステムおよび方法 |
GB0304568D0 (en) * | 2003-02-27 | 2003-04-02 | Isis Innovation | Microscopic imaging device |
US20040223071A1 (en) | 2003-05-08 | 2004-11-11 | David Wells | Multiple microlens system for image sensors or display units |
US7196301B2 (en) | 2003-07-18 | 2007-03-27 | Honeywell International, Inc. | System for detecting incoming light from a remote laser source |
US7266248B2 (en) | 2003-08-08 | 2007-09-04 | Hewlett-Packard Development Company, L.P. | Method and apparatus for generating data representative of an image |
DE10345555A1 (de) | 2003-09-30 | 2005-05-04 | Osram Opto Semiconductors Gmbh | Strahlungsemittierendes und -empfangendes Halbleiterbauelement und Verfahren zu dessen Herstellung |
DE10361121A1 (de) | 2003-12-22 | 2005-07-21 | Schott Ag | Optische Anordnung mit Stufenlinse |
US7808706B2 (en) | 2004-02-12 | 2010-10-05 | Tredegar Newco, Inc. | Light management films for displays |
US7738026B2 (en) | 2005-05-02 | 2010-06-15 | Andrew G. Cartlidge | Increasing fill-factor on pixelated sensors |
US7279764B2 (en) | 2004-06-01 | 2007-10-09 | Micron Technology, Inc. | Silicon-based resonant cavity photodiode for image sensors |
USD531525S1 (en) | 2004-11-02 | 2006-11-07 | Sick Ag | Optoelectronic sensor |
US20090295910A1 (en) | 2005-03-24 | 2009-12-03 | Jose Mir | Hyperspectral Imaging System and Methods Thereof |
WO2006116637A2 (en) | 2005-04-27 | 2006-11-02 | Massachusetts Institute Of Technology | Raman spectroscopy for non-invasive glucose measurements |
US8294809B2 (en) | 2005-05-10 | 2012-10-23 | Advanced Scientific Concepts, Inc. | Dimensioning system |
JP2006337117A (ja) | 2005-05-31 | 2006-12-14 | Sunx Ltd | 光学測定装置 |
JP2007049417A (ja) | 2005-08-10 | 2007-02-22 | Canon Inc | 撮像装置および焦点調節装置 |
US7559703B2 (en) | 2005-09-14 | 2009-07-14 | Ibiden Co., Ltd. | Optical module and data communication system including the optical module |
KR101321303B1 (ko) | 2005-12-08 | 2013-10-25 | 어드밴스트 사이언티픽 컨셉츠 인크. | 3d 초점면을 사용하는 레이저 범위측정과 추적 및 지정 |
US7421159B2 (en) | 2005-12-13 | 2008-09-02 | Board of Supervisor of Louisiana State University and Agricultural and Mechanical College | Integral pre-aligned micro-optical systems |
CN101356450B (zh) | 2005-12-19 | 2015-08-05 | 莱达科技股份有限公司 | 物体检测发光系统和方法 |
DE102006004802B4 (de) | 2006-01-23 | 2008-09-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Bilderfassungssystem und Verfahren zur Herstellung mindestens eines Bilderfassungssystems |
US7423821B2 (en) | 2006-03-24 | 2008-09-09 | Gentex Corporation | Vision system |
CN101688774A (zh) * | 2006-07-13 | 2010-03-31 | 威力登音响公司 | 高精确度激光雷达系统 |
JP5092159B2 (ja) * | 2006-12-04 | 2012-12-05 | 独立行政法人 宇宙航空研究開発機構 | 光学装置及び光学設計方法 |
WO2008120217A2 (en) | 2007-04-02 | 2008-10-09 | Prime Sense Ltd. | Depth mapping using projected patterns |
EP1978394A1 (en) | 2007-04-06 | 2008-10-08 | Global Bionic Optics Pty Ltd. | Optical system for increasing depth of field |
CA2635155C (en) | 2007-06-18 | 2015-11-24 | Institut National D'optique | Method for detecting objects with visible light |
US8494252B2 (en) | 2007-06-19 | 2013-07-23 | Primesense Ltd. | Depth mapping using optical elements having non-uniform focal characteristics |
JP5671345B2 (ja) | 2007-12-21 | 2015-02-18 | レッダーテック インコーポレイテッド | 検出及び測距方法 |
TWI358606B (en) | 2007-12-28 | 2012-02-21 | Ind Tech Res Inst | Method for three-dimension (3d) measurement and an |
US8384997B2 (en) | 2008-01-21 | 2013-02-26 | Primesense Ltd | Optical pattern projection |
ATE543105T1 (de) | 2008-03-20 | 2012-02-15 | Sick Ag | Omnidirektionales lidar system |
EP2283383B1 (en) | 2008-04-11 | 2013-07-17 | École Polytechnique Fédérale de Lausanne (EPFL) | Time-of-flight based imaging system using a display as illumination source |
DE102008019850A1 (de) | 2008-04-19 | 2009-10-22 | Diehl Bgt Defence Gmbh & Co. Kg | Vorrichtung und Verfahren zum Beleuchten einer Objektszene |
US9041915B2 (en) | 2008-05-09 | 2015-05-26 | Ball Aerospace & Technologies Corp. | Systems and methods of scene and action capture using imaging system incorporating 3D LIDAR |
US8531650B2 (en) | 2008-07-08 | 2013-09-10 | Chiaro Technologies LLC | Multiple channel locating |
US8456517B2 (en) | 2008-07-09 | 2013-06-04 | Primesense Ltd. | Integrated processor for 3D mapping |
US7935886B2 (en) | 2008-10-07 | 2011-05-03 | Orbit Industries, Inc. | Adjustable variable ring for electrical junction boxes |
CN101413905B (zh) | 2008-10-10 | 2011-03-16 | 深圳大学 | X射线微分干涉相衬成像系统 |
CN201298079Y (zh) | 2008-11-17 | 2009-08-26 | 南京德朔实业有限公司 | 激光测距装置 |
JP2010128122A (ja) | 2008-11-27 | 2010-06-10 | Olympus Corp | 撮像装置 |
US20100204964A1 (en) | 2009-02-09 | 2010-08-12 | Utah State University | Lidar-assisted multi-image matching for 3-d model and sensor pose refinement |
US8717417B2 (en) | 2009-04-16 | 2014-05-06 | Primesense Ltd. | Three-dimensional mapping and imaging |
US8743176B2 (en) | 2009-05-20 | 2014-06-03 | Advanced Scientific Concepts, Inc. | 3-dimensional hybrid camera and production system |
US8172403B2 (en) | 2009-05-21 | 2012-05-08 | Eastman Kodak Company | Projection with curved speckle reduction element surface |
WO2010141631A1 (en) | 2009-06-02 | 2010-12-09 | Velodyne Acoustics, Inc. | Color lidar scanner |
US8803967B2 (en) | 2009-07-31 | 2014-08-12 | Mesa Imaging Ag | Time of flight camera with rectangular field of illumination |
US8330840B2 (en) | 2009-08-06 | 2012-12-11 | Aptina Imaging Corporation | Image sensor with multilayer interference filters |
CN102006402B (zh) | 2009-08-28 | 2014-02-19 | 鸿富锦精密工业(深圳)有限公司 | 摄像装置及其身份识别方法 |
US20120170029A1 (en) | 2009-09-22 | 2012-07-05 | ISC8 Inc. | LIDAR System Comprising Large Area Micro-Channel Plate Focal Plane Array |
US8633384B1 (en) | 2009-10-20 | 2014-01-21 | Hubbell Incorporated | Extending electrical box |
US20110116262A1 (en) | 2009-11-13 | 2011-05-19 | Phoseon Technology, Inc. | Economical partially collimating reflective micro optical array |
JP5588310B2 (ja) | 2009-11-15 | 2014-09-10 | プライムセンス リミテッド | ビームモニタ付き光学プロジェクタ |
US20150358601A1 (en) | 2009-12-23 | 2015-12-10 | Mesa Imaging Ag | Optical Filter on Objective Lens for 3D Cameras |
US8786757B2 (en) | 2010-02-23 | 2014-07-22 | Primesense Ltd. | Wideband ambient light rejection |
EP3901653A3 (en) | 2010-05-17 | 2022-03-02 | Velodyne Lidar USA, Inc. | High definition lidar system |
NL2004996C2 (nl) | 2010-06-29 | 2011-12-30 | Cyclomedia Technology B V | Werkwijze voor het vervaardigen van een digitale foto, waarbij ten minste een deel van de beeldelementen positieinformatie omvatten en een dergelijke digitale foto. |
USD659030S1 (en) | 2010-07-30 | 2012-05-08 | Sick Ag | Optoelectronic sensor |
US9167138B2 (en) | 2010-12-06 | 2015-10-20 | Apple Inc. | Pattern projection and imaging using lens arrays |
JP5721069B2 (ja) | 2010-12-10 | 2015-05-20 | 国立大学法人 千葉大学 | Ledライダー装置 |
JP2012128270A (ja) | 2010-12-16 | 2012-07-05 | Denso Corp | 干渉フィルタアセンブリ |
EP2469295A1 (en) | 2010-12-23 | 2012-06-27 | André Borowski | 3D landscape real-time imager and corresponding imaging methods |
US8717488B2 (en) | 2011-01-18 | 2014-05-06 | Primesense Ltd. | Objective optics with interference filter |
DE102011002936A1 (de) | 2011-01-20 | 2012-07-26 | Ford Global Technologies, Llc | Partikelsensor, Abgassystem und Verfahren zum Bestimmen von Partikeln im Abgas |
US8908159B2 (en) | 2011-05-11 | 2014-12-09 | Leddartech Inc. | Multiple-field-of-view scannerless optical rangefinder in high ambient background light |
WO2012174401A2 (en) | 2011-06-16 | 2012-12-20 | Lenny Lipton | Stereoscopic camera with polarizing apertures |
DE102011107360A1 (de) | 2011-06-29 | 2013-01-03 | Karlsruher Institut für Technologie | Mikrooptisches Element, mikrooptisches Array und optisches Sensorensystem |
US8797512B2 (en) | 2011-09-15 | 2014-08-05 | Advanced Scientific Concepts, Inc. | Automatic range corrected flash ladar camera |
US20160150963A1 (en) | 2011-09-26 | 2016-06-02 | Michael Lee Roukes | One-photon integrated neurophotonic systems |
US11073278B2 (en) | 2011-10-13 | 2021-07-27 | Tinman Inc | Vaporization apparatus |
WO2013064507A1 (en) | 2011-11-04 | 2013-05-10 | Imec | Spectral camera with overlapping segments of image copies interleaved onto sensor array |
US8743923B2 (en) | 2012-01-31 | 2014-06-03 | Flir Systems Inc. | Multi-wavelength VCSEL array to reduce speckle |
JP6309459B2 (ja) | 2012-02-15 | 2018-04-11 | ヘプタゴン・マイクロ・オプティクス・ピーティーイー・エルティーディーHeptagon Micro Optics Pte.Ltd. | ストライプ照明の飛行時間型カメラ |
US9335220B2 (en) | 2012-03-22 | 2016-05-10 | Apple Inc. | Calibration of time-of-flight measurement using stray reflections |
EP2828833B1 (en) | 2012-03-22 | 2017-03-08 | Apple Inc. | Gimbaled scanning mirror array |
US20130258099A1 (en) | 2012-03-29 | 2013-10-03 | Samsung Electronics Co., Ltd. | Depth Estimation Device And Operating Method Using The Depth Estimation Device |
US9091535B2 (en) | 2012-05-22 | 2015-07-28 | Korea Institute Of Industrial Technology | 3D scanning system and method of obtaining 3D image |
US8793046B2 (en) | 2012-06-01 | 2014-07-29 | Google Inc. | Inferring state of traffic signal and other aspects of a vehicle's environment based on surrogate data |
US9195914B2 (en) | 2012-09-05 | 2015-11-24 | Google Inc. | Construction zone sign detection |
US9383753B1 (en) | 2012-09-26 | 2016-07-05 | Google Inc. | Wide-view LIDAR with areas of special attention |
US9071763B1 (en) | 2012-09-26 | 2015-06-30 | Google Inc. | Uniform illumination image capture |
US9019267B2 (en) | 2012-10-30 | 2015-04-28 | Apple Inc. | Depth mapping with enhanced resolution |
US9111444B2 (en) | 2012-10-31 | 2015-08-18 | Raytheon Company | Video and lidar target detection and tracking system and method for segmenting moving targets |
KR102004987B1 (ko) | 2012-12-11 | 2019-07-29 | 삼성전자주식회사 | 광자 계수 검출 장치 및 독출 회로 |
US9823351B2 (en) | 2012-12-18 | 2017-11-21 | Uber Technologies, Inc. | Multi-clad fiber based optical apparatus and methods for light detection and ranging sensors |
US20160047901A1 (en) | 2012-12-25 | 2016-02-18 | Quanergy Systems, Inc. | Robust lidar sensor for broad weather, shock and vibration conditions |
US10048504B2 (en) | 2012-12-31 | 2018-08-14 | Iee International Electronics & Engineering S.A. | Optical system generating a structured light field from an array of light sources by means of a refracting or reflecting light structuring element |
US9285477B1 (en) | 2013-01-25 | 2016-03-15 | Apple Inc. | 3D depth point cloud from timing flight of 2D scanned light beam pulses |
US20140211194A1 (en) | 2013-01-27 | 2014-07-31 | Quanergy Systems, Inc. | Cost-effective lidar sensor for multi-signal detection, weak signal detection and signal disambiguation and method of using same |
US20140224792A1 (en) | 2013-02-12 | 2014-08-14 | Jurgen K. Beneke | Adjustable wall enclosure for electrical devices and the like |
US9063549B1 (en) | 2013-03-06 | 2015-06-23 | Google Inc. | Light detection and ranging device with oscillating mirror driven by magnetically interactive coil |
US9086273B1 (en) | 2013-03-08 | 2015-07-21 | Google Inc. | Microrod compression of laser beam in combination with transmit lens |
US9470520B2 (en) | 2013-03-14 | 2016-10-18 | Apparate International C.V. | LiDAR scanner |
CN105143820B (zh) | 2013-03-15 | 2017-06-09 | 苹果公司 | 利用多个发射器进行深度扫描 |
US20140293263A1 (en) | 2013-03-28 | 2014-10-02 | James Justice | LIDAR Comprising Polyhedron Transmission and Receiving Scanning Element |
US9164511B1 (en) | 2013-04-17 | 2015-10-20 | Google Inc. | Use of detected objects for image processing |
US9488444B2 (en) * | 2013-04-29 | 2016-11-08 | Raytheon Company | Time-multiplexed broadband and multi-filtered electro-optic sensor |
US10132928B2 (en) | 2013-05-09 | 2018-11-20 | Quanergy Systems, Inc. | Solid state optical phased array lidar and method of using same |
KR101827180B1 (ko) | 2013-06-19 | 2018-02-07 | 애플 인크. | 통합 구조화된 광 프로젝터 |
US10078137B2 (en) | 2013-06-21 | 2018-09-18 | Irvine Sensors Corp. | LIDAR device and method for clear and degraded environmental viewing conditions |
US20150002636A1 (en) | 2013-06-28 | 2015-01-01 | Cable Television Laboratories, Inc. | Capturing Full Motion Live Events Using Spatially Distributed Depth Sensing Cameras |
BE1021971B1 (nl) | 2013-07-09 | 2016-01-29 | Xenomatix Nv | Omgevingssensorsysteem |
US20150260830A1 (en) | 2013-07-12 | 2015-09-17 | Princeton Optronics Inc. | 2-D Planar VCSEL Source for 3-D Imaging |
US9268012B2 (en) | 2013-07-12 | 2016-02-23 | Princeton Optronics Inc. | 2-D planar VCSEL source for 3-D imaging |
US8742325B1 (en) | 2013-07-31 | 2014-06-03 | Google Inc. | Photodetector array on curved substrate |
EP4006542A1 (en) | 2013-08-02 | 2022-06-01 | Verifood Ltd. | Spectrometer comprising sample illuminator |
US10126412B2 (en) | 2013-08-19 | 2018-11-13 | Quanergy Systems, Inc. | Optical phased array lidar system and method of using same |
US8836922B1 (en) * | 2013-08-20 | 2014-09-16 | Google Inc. | Devices and methods for a rotating LIDAR platform with a shared transmit/receive path |
JP6459069B2 (ja) | 2013-08-23 | 2019-01-30 | パナソニックIpマネジメント株式会社 | 測距システム |
US9299731B1 (en) | 2013-09-30 | 2016-03-29 | Google Inc. | Systems and methods for selectable photodiode circuits |
US9368936B1 (en) | 2013-09-30 | 2016-06-14 | Google Inc. | Laser diode firing system |
US9425654B2 (en) | 2013-09-30 | 2016-08-23 | Google Inc. | Contactless electrical coupling for a rotatable LIDAR device |
WO2015052616A1 (en) | 2013-10-09 | 2015-04-16 | Koninklijke Philips N.V. | Monolithic led arrays for uniform and high-brightness light sources |
US10203399B2 (en) | 2013-11-12 | 2019-02-12 | Big Sky Financial Corporation | Methods and apparatus for array based LiDAR systems with reduced interference |
CN106463565B (zh) | 2013-11-22 | 2018-06-01 | 优步技术公司 | 激光雷达扫描仪校准 |
KR101582572B1 (ko) | 2013-12-24 | 2016-01-11 | 엘지전자 주식회사 | 차량 운전 보조 장치 및 이를 구비한 차량 |
US20150192677A1 (en) | 2014-01-03 | 2015-07-09 | Quanergy Systems, Inc. | Distributed lidar sensing system for wide field of view three dimensional mapping and method of using same |
US10061111B2 (en) | 2014-01-17 | 2018-08-28 | The Trustees Of Columbia University In The City Of New York | Systems and methods for three dimensional imaging |
JP2015137987A (ja) | 2014-01-24 | 2015-07-30 | アズビル株式会社 | 距離センサおよび距離計測方法 |
US9756263B2 (en) | 2014-05-01 | 2017-09-05 | Rebellion Photonics, Inc. | Mobile gas and chemical imaging camera |
US9935514B1 (en) | 2014-06-14 | 2018-04-03 | Waymo Llc | Printed circuit board layout |
US9753351B2 (en) | 2014-06-30 | 2017-09-05 | Quanergy Systems, Inc. | Planar beam forming and steering optical phased array chip and method of using same |
US9754192B2 (en) | 2014-06-30 | 2017-09-05 | Microsoft Technology Licensing, Llc | Object detection utilizing geometric information fused with image data |
US9575184B2 (en) | 2014-07-03 | 2017-02-21 | Continental Advanced Lidar Solutions Us, Inc. | LADAR sensor for a dense environment |
US9869753B2 (en) | 2014-08-15 | 2018-01-16 | Quanergy Systems, Inc. | Three-dimensional-mapping two-dimensional-scanning lidar based on one-dimensional-steering optical phased arrays and method of using same |
US10078133B2 (en) | 2014-08-15 | 2018-09-18 | Aeye, Inc. | Method and system for ladar transmission with closed loop feedback control of dynamic scan patterns |
EP3002548B1 (de) | 2014-10-02 | 2016-09-14 | Sick Ag | Beleuchtungseinrichtung und Verfahren zum Erzeugen eines Beleuchtungsfeldes |
US9772405B2 (en) | 2014-10-06 | 2017-09-26 | The Boeing Company | Backfilling clouds of 3D coordinates |
JP2016092146A (ja) | 2014-10-31 | 2016-05-23 | セイコーエプソン株式会社 | 量子干渉装置、原子発振器、電子機器および移動体 |
EP3045935A1 (en) | 2015-01-13 | 2016-07-20 | XenomatiX BVBA | Surround sensing system with dome-filter assembly |
EP3045936A1 (en) | 2015-01-13 | 2016-07-20 | XenomatiX BVBA | Surround sensing system with telecentric optics |
US10966614B2 (en) * | 2015-01-18 | 2021-04-06 | Dentlytec G.P.L. Ltd. | Intraoral scanner |
CN107533137A (zh) | 2015-01-20 | 2018-01-02 | 迪吉伦斯公司 | 全息波导激光雷达 |
US10147757B2 (en) | 2015-02-02 | 2018-12-04 | Synaptics Incorporated | Image sensor structures for fingerprint sensing |
WO2016125165A2 (en) | 2015-02-05 | 2016-08-11 | Verifood, Ltd. | Spectrometry system with visible aiming beam |
EP3054313B1 (en) * | 2015-02-06 | 2018-01-31 | Conti Temic microelectronic GmbH | Transmitter lens for a lidar based sensor |
US9369689B1 (en) | 2015-02-24 | 2016-06-14 | HypeVR | Lidar stereo fusion live action 3D model video reconstruction for six degrees of freedom 360° volumetric virtual reality video |
US10215553B2 (en) | 2015-03-12 | 2019-02-26 | Apple Inc. | Thin PSD for laser-scanning systems |
TWM506280U (zh) | 2015-03-20 | 2015-08-01 | Arima Lasers Corp | 旋轉光學測距裝置 |
US9625582B2 (en) | 2015-03-25 | 2017-04-18 | Google Inc. | Vehicle with multiple light detection and ranging devices (LIDARs) |
US9529079B1 (en) | 2015-03-26 | 2016-12-27 | Google Inc. | Multiplexed multichannel photodetector |
US9651658B2 (en) | 2015-03-27 | 2017-05-16 | Google Inc. | Methods and systems for LIDAR optics alignment |
JP6421935B2 (ja) | 2015-03-31 | 2018-11-14 | パナソニックIpマネジメント株式会社 | 車両移動推定装置および車両移動推定方法 |
US9880263B2 (en) | 2015-04-06 | 2018-01-30 | Waymo Llc | Long range steerable LIDAR system |
US9525863B2 (en) | 2015-04-29 | 2016-12-20 | Apple Inc. | Time-of-flight depth mapping with flexible scan pattern |
KR20170001466A (ko) * | 2015-06-26 | 2017-01-04 | 한국전자통신연구원 | 레이저 빔 결합 시스템 |
US10066990B2 (en) | 2015-07-09 | 2018-09-04 | Verifood, Ltd. | Spatially variable filter systems and methods |
CN111225057B (zh) * | 2015-07-21 | 2022-09-20 | 华为终端有限公司 | 终端及其同步的方法 |
JP6479260B2 (ja) | 2015-09-10 | 2019-03-06 | フィリップス ライティング ホールディング ビー ヴィ | 符号化光におけるシンボル間干渉の緩和 |
DE102015217908A1 (de) | 2015-09-18 | 2017-03-23 | Robert Bosch Gmbh | Lidarsensor |
US10063849B2 (en) | 2015-09-24 | 2018-08-28 | Ouster, Inc. | Optical system for collecting distance information within a field |
US9992477B2 (en) | 2015-09-24 | 2018-06-05 | Ouster, Inc. | Optical system for collecting distance information within a field |
EP3159711A1 (en) | 2015-10-23 | 2017-04-26 | Xenomatix NV | System and method for determining a distance to an object |
US10539661B2 (en) | 2015-11-25 | 2020-01-21 | Velodyne Lidar, Inc. | Three dimensional LIDAR system with targeted field of view |
JP6763971B2 (ja) | 2016-01-29 | 2020-09-30 | アウスター インコーポレイテッド | 光学距離センサを較正するためのシステム及び方法 |
EP3408684A4 (en) | 2016-01-31 | 2019-10-02 | Velodyne LiDAR, Inc. | LIDAR-BASED 3-D IMAGERY WITH FAR-FIELD FIELD LIGHTING OVERLAPPING |
US10627490B2 (en) | 2016-01-31 | 2020-04-21 | Velodyne Lidar, Inc. | Multiple pulse, LIDAR based 3-D imaging |
CA3017735C (en) * | 2016-03-19 | 2023-03-14 | Velodyne Lidar, Inc. | Integrated illumination and detection for lidar based 3-d imaging |
EP3433634B8 (en) | 2016-03-21 | 2021-07-21 | Velodyne Lidar USA, Inc. | Lidar based 3-d imaging with varying illumination field density |
JP7183046B2 (ja) | 2016-03-21 | 2022-12-05 | ベロダイン ライダー ユーエスエー,インコーポレイテッド | 可変照射強度を有するlidarに基づく三次元撮像 |
US10048374B2 (en) | 2016-03-21 | 2018-08-14 | Velodyne Lidar, Inc. | LIDAR based 3-D imaging with varying pulse repetition |
WO2017210418A1 (en) | 2016-06-01 | 2017-12-07 | Velodyne Lidar, Inc. | Multiple pixel scanning lidar |
US20180003823A1 (en) | 2016-06-30 | 2018-01-04 | Jason Yan | Rotary type distance sensing device |
US10948572B2 (en) | 2016-08-24 | 2021-03-16 | Ouster, Inc. | Optical system for collecting distance information within a field |
EP3301478A1 (en) | 2016-10-03 | 2018-04-04 | Xenomatix NV | System for determining a distance to an object |
EP3301480A1 (en) | 2016-10-03 | 2018-04-04 | Xenomatix NV | System and method for determining a distance to an object |
EP3301477A1 (en) | 2016-10-03 | 2018-04-04 | Xenomatix NV | System for determining a distance to an object |
EP3301479A1 (en) | 2016-10-03 | 2018-04-04 | Xenomatix NV | Method for subtracting background light from an exposure value of a pixel in an imaging array, and pixel for use in same |
US10502830B2 (en) | 2016-10-13 | 2019-12-10 | Waymo Llc | Limitation of noise on light detectors using an aperture |
US10749308B2 (en) | 2016-10-17 | 2020-08-18 | Waymo Llc | Thermal rotary link |
US10375327B2 (en) | 2016-10-21 | 2019-08-06 | Rebellion Photonics, Inc. | Mobile gas and chemical imaging camera |
EP3316000A1 (en) | 2016-10-28 | 2018-05-02 | Xenomatix NV | Vehicular system for measuring a distance to an object and method of installing same |
US10530209B2 (en) | 2016-10-28 | 2020-01-07 | Waymo Llc | Devices and methods for driving a rotary platform |
US10845470B2 (en) * | 2016-11-16 | 2020-11-24 | Waymo Llc | Methods and systems for protecting a light detection and ranging (LIDAR) device |
US10690754B2 (en) | 2016-12-23 | 2020-06-23 | Cepton Technologies, Inc. | Scanning apparatuses and methods for a lidar system |
EP3343246A1 (en) | 2016-12-30 | 2018-07-04 | Xenomatix NV | System for characterizing surroundings of a vehicle |
US10121813B2 (en) | 2017-03-28 | 2018-11-06 | Luminar Technologies, Inc. | Optical detector having a bandpass filter in a lidar system |
US9989629B1 (en) * | 2017-03-30 | 2018-06-05 | Luminar Technologies, Inc. | Cross-talk mitigation using wavelength switching |
EP3392674A1 (en) | 2017-04-23 | 2018-10-24 | Xenomatix NV | A pixel structure |
US11150347B2 (en) | 2017-05-15 | 2021-10-19 | Ouster, Inc. | Micro-optics for optical imager with non-uniform filter |
CA3068943A1 (en) | 2017-07-05 | 2019-01-10 | Ouster, Inc. | Light ranging device with electronically scanned emitter array and synchronized sensor array |
US10698088B2 (en) | 2017-08-01 | 2020-06-30 | Waymo Llc | LIDAR receiver using a waveguide and an aperture |
-
2018
- 2018-05-14 US US15/979,253 patent/US11150347B2/en active Active
- 2018-05-14 AU AU2018269000A patent/AU2018269000B2/en active Active
- 2018-05-14 EP EP18802192.7A patent/EP3615901A4/en active Pending
- 2018-05-14 WO PCT/US2018/032601 patent/WO2018213200A1/en unknown
- 2018-05-14 CN CN202010078057.9A patent/CN111273256B/zh active Active
- 2018-05-14 US US15/979,266 patent/US11175405B2/en active Active
- 2018-05-14 US US15/979,277 patent/US11131773B2/en active Active
- 2018-05-14 CA CA3063605A patent/CA3063605A1/en active Pending
- 2018-05-14 DE DE202018006696.6U patent/DE202018006696U1/de active Active
- 2018-05-14 KR KR1020247011819A patent/KR102706360B1/ko active IP Right Grant
- 2018-05-14 US US15/979,295 patent/US11086013B2/en active Active
- 2018-05-14 KR KR1020197036956A patent/KR102657365B1/ko active IP Right Grant
- 2018-05-14 US US15/979,235 patent/US10222475B2/en active Active
- 2018-05-14 JP JP2019563187A patent/JP7154230B2/ja active Active
- 2018-05-14 CN CN201880045266.4A patent/CN110914652B/zh active Active
- 2018-05-14 DE DE202018006695.8U patent/DE202018006695U1/de active Active
- 2018-05-15 TW TW107116497A patent/TW201907140A/zh unknown
-
2019
- 2019-01-11 US US16/245,909 patent/US10663586B2/en active Active
-
2021
- 2021-11-12 US US17/525,501 patent/US20220214454A1/en active Pending
-
2022
- 2022-10-04 JP JP2022159976A patent/JP7429274B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7433042B1 (en) * | 2003-12-05 | 2008-10-07 | Surface Optics Corporation | Spatially corrected full-cubed hyperspectral imager |
JP2013083663A (ja) * | 2009-03-31 | 2013-05-09 | Pepperl & Fuchs Gmbh | トランジットタイム原理に基づいて動作する光学センサ |
WO2011030578A1 (ja) * | 2009-09-11 | 2011-03-17 | Kataoka Shoei | Led照明装置 |
JP2015514965A (ja) * | 2012-02-15 | 2015-05-21 | アップル インコーポレイテッド | 走査深度エンジン |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102657365B1 (ko) | 휘도 향상된 광학 이미징 송신기 | |
US11726205B2 (en) | Light ranging device having an electronically scanned emitter array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
GRNT | Written decision to grant |