DE102019219825A1 - Sendeeinheit und LIDAR-Vorrichtung mit optischem Homogenisierer - Google Patents

Sendeeinheit und LIDAR-Vorrichtung mit optischem Homogenisierer Download PDF

Info

Publication number
DE102019219825A1
DE102019219825A1 DE102019219825.2A DE102019219825A DE102019219825A1 DE 102019219825 A1 DE102019219825 A1 DE 102019219825A1 DE 102019219825 A DE102019219825 A DE 102019219825A DE 102019219825 A1 DE102019219825 A1 DE 102019219825A1
Authority
DE
Germany
Prior art keywords
cylindrical microlenses
sending unit
optical homogenizer
radiation source
lens arrays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102019219825.2A
Other languages
English (en)
Inventor
Dionisio Pereira
Stefan Spiessberger
Andre Albuquerque
Anne Schumann
Albert Groening
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102019219825.2A priority Critical patent/DE102019219825A1/de
Priority to PCT/EP2020/082189 priority patent/WO2021121818A1/de
Priority to KR1020227024055A priority patent/KR20220110573A/ko
Priority to CN202080088334.2A priority patent/CN114868031A/zh
Priority to EP20808323.8A priority patent/EP4078216A1/de
Priority to JP2022536978A priority patent/JP7354451B2/ja
Priority to US17/780,870 priority patent/US20230003843A1/en
Publication of DE102019219825A1 publication Critical patent/DE102019219825A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0966Cylindrical lenses

Abstract

Offenbart ist eine Sendeeinheit einer LIDAR-Vorrichtung, aufweisend mindestens eine Strahlenquelle zum Erzeugen von elektromagnetischen Strahlen mit einem linienförmigen oder rechteckigen Querschnitt und aufweisend eine Sendeoptik, wobei die Sendeeinheit einen in einem Strahlengang der erzeugten Strahlen vor oder nach der Sendeoptik angeordneten optischen Homogenisierer mit mindestens einem Linsenarray aufweist. Des Weiteren ist eine LIDAR-Vorrichtung offenbart.

Description

  • Die Erfindung betrifft eine Sendeeinheit einer LIDAR-Vorrichtung, aufweisend mindestens eine Strahlenquelle zum Erzeugen von elektromagnetischen Strahlen mit einem linienförmigen oder rechteckigen Querschnitt. Des Weiteren betrifft die Erfindung eine LIDAR-Vorrichtung mit einer derartigen Sendeeinheit.
  • Stand der Technik
  • Zum technischen Umsetzen von automatisierten Fahrfunktionen sind Sensoren, wie beispielsweise Kamerasensoren, Radarsensoren und LIDAR-Sensoren, notwendig. LIDAR-Sensoren werden beispielsweise zum Erstellen von präzisen dreidimensionalen Karten eingesetzt. Hierzu weisen LIDAR-Sensoren einen gepulsten Laser und Optiken zum Formen der erzeugten Strahlen auf. Basierend auf einer Time-of-Flight Analyse können Distanzen zwischen dem LIDAR-Sensor und Objekten im Abtastbereich ermittelt werden.
  • Die maximale Reichweite des LIDAR-Sensors ist im Wesentlichen auf die aus dem Abtastbereich reflektierte Lichtmenge beschränkt, welche noch zuverlässig von einem Detektor empfangen und ausgewertet werden kann. Ein übliches Vorgehen zum Erhöhen der Reichweite eines LIDAR-Sensors besteht in der Verwendung stärkerer Strahlenquellen. Im Fahrzeugbereich ist die nutzbare Strahlungsleistung von Strahlenquellen, wie beispielsweise Lasern, zur Gewährleistung von Augensicherheit limitiert.
  • Es sind unterschiedliche Verfahren zur Einhaltung der Grenzwerte der Strahlungsleistung für die Augensicherheit bekannt, welche eine aktive Objekterkennung aufweisen und die emittierte Strahlungsleistung drosseln können, sobald ein Fußgänger oder ein Verkehrsteilnehmer erkannt wird. Derartige Verfahren sind jedoch von einer zuverlässigen Objekterkennung abhängig, welche fehleranfällig und somit gefährlich für Verkehrsteilnehmer sein kann. Des Weiteren sind komplexe Erkennungsalgorithmen und entsprechende Regelungsverfahren zum Einstellen der Strahlungsleistung kostenintensiv in der technischen Umsetzung.
  • Offenbarung der Erfindung
  • Die der Erfindung zugrundeliegende Aufgabe kann darin gesehen werden, eine Sendeeinheit und eine LIDAR-Vorrichtung vorzuschlagen, welche eine homogene Strahlenverteilung zum Abtasten von Abtastbereichen bereitstellen und die Grenzwerte der Strahlungsleistung hinsichtlich der Augensicherheit einhalten.
  • Diese Aufgabe wird mittels des jeweiligen Gegenstands der unabhängigen Ansprüche gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand von jeweils abhängigen Unteransprüchen.
  • Nach einem Aspekt der Erfindung wird eine Sendeeinheit einer LIDAR-Vorrichtung bereitgestellt. Die Sendeeinheit weist mindestens eine Strahlenquelle zum Erzeugen von elektromagnetischen Strahlen mit einem linienförmigen oder rechteckigen Querschnitt und eine Sendeoptik auf. Erfindungsgemäß weist die Sendeeinheit einen in einem Strahlengang der erzeugten Strahlen vor oder nach der Sendeoptik angeordneten optischen Homogenisierer mit mindestens einem Linsenarray auf.
  • Die Grenzwerte hinsichtlich der Augensicherheit sind durch eine maximal zulässige Strahlungsleistung der Strahlenquelle pro Fläche definiert. Die mindestens eine Strahlenquelle kann beispielsweise ein Laser oder eine LED sein. Üblicherweise entsteht bei den erzeugten Strahlen ein Peak bzw. ein Intensitätsmaximum, welches den Grenzwert erreichen oder überschreiten kann. Durch den Einsatz des optischen Homogenisierers werden derartige Peaks in der Verteilung der Strahlungsleistung der erzeugten Strahlen vermieden. Die erzeugten Strahlen können somit eine flache bzw. konstante Intensitätsverteilung bzw. Strahlungsleistungsverteilung aufweisen, welche keinerlei Peaks beinhaltet.
  • Die Sendeeinheit kann optional die Sendeoptik aufweisen, welche beispielsweise aus Linsen, Prismen und Filtern bestehen kann. Des Weiteren können je nach Ausgestaltung der Sendeeinheit weitere optische Elemente, Mikrospiegel, Makrospiegel und dergleichen vorgesehen sein. Beispielsweise kann die Strahlenquelle erzeugte Strahlen mit einem linienförmigen Querschnitt emittieren, welche durch ein Bewegen der Sendeeinheit oder eines Spiegels entlang einer Achse geschwenkt werden, um einen Abtastbereich zu belichten.
  • Durch den Einsatz des optischen Homogenisierers können Strahlen zum Abtasten des Abtastbereichs bereitgestellt werden, welche eine konstante bzw. plateauförmige Intensitätsverteilung im Nahbereich aufweisen. Hierdurch kann die Strahlungsleistung bei gleichzeitiger Gewährleistung der Grenzwerte für die Augensicherheit erhöht werden. Dabei können komplexe und aktiv gesteuerte Regelungsmechanismen und Erkennungsmechanismen, welche eine zusätzliche Fehlerquelle darstellen, entfallen. Trotz der optimierten Intensitätsverteilung der in den Abtastbereich emittierten Strahlen kann die Sendeeinheit technisch einfach ausgestaltet sein und beispielsweise nur ein optisches Element bzw. die Sendeoptik aufweisen.
  • Gemäß einem Ausführungsbeispiel weist der optische Homogenisierer zwei voneinander beabstandete Linsenarrays mit einer Vielzahl von zylindrischen Mikrolinsen auf, wobei die zylindrischen Mikrolinsen jeweils auf einer Fläche der Linsenarrays angeordnet sind. Vorzugsweise sind Bildebenen der zylindrischen Mikrolinsen auf einer Fokusebene innerhalb eines Abstands zwischen den Linsenarrays angeordnet.
  • Insbesondere kann die Fokusebene zentriert zwischen den beiden Linsenarrays angeordnet und parallel zu einer flächigen Ausdehnung der Linsenarrays ausgerichtet sein.
  • Die zylindrischen Mikrolinsen der beiden Linsenarrays weisen vorzugsweise eine gleiche Ausrichtung auf und verlaufen quer zu einer Ausbreitungsrichtung der erzeugten Strahlen. Insbesondere können die zylindrischen Mikrolinsen ein eindimensionales Array bilden, welches einseitig auf jedem Linsenarray angeordnet ist. Eine zweite Fläche der jeweiligen Linsenarrays kann flach geformt sein.
  • Jede zylindrische Mikrolinse des ersten Linsenarrays kann die ankommenden erzeugten Strahlen auf der Fokusebene abbilden. Jede zylindrische Mikrolinse des ersten Linsenarrays bildet somit die erzeugten Strahlen auf der Fokusebene ab, wobei die jeweiligen Abbildungen der zylindrischen Mikrolinsen sich zumindest bereichsweise überlagern.
  • Die Bildebene der zylindrischen Mikrolinsen des ersten Linsenarrays ist vorzugsweise eine Objektebene der zylindrischen Mikrolinsen des zweiten Linsenarrays. Es wird somit eine Vielzahl von optischen Abbildungen der Strahlenquelle auf der Fokusebene abgebildet, welche einen Höhenversatz zueinander aufweisen. Die zylindrischen Mikrolinsen des zweiten Linsenarrays verwenden die Abbildungen auf der Fokusebene als Objekte zur erneuten überlagernden Abbildung und gewährleisten somit eine optimale Uniformierung der Strahlen.
  • Nach einer weiteren Ausführungsform sind die Linsenarrays des optischen Homogenisierers derart angeordnet, dass die mit den zylindrischen Mikrolinsen versehenen Flächen in Richtung der mindestens einen Strahlenquelle gerichtet sind. Gemäß einer alternativen Ausführungsform sind die Linsenarrays des optischen Homogenisierers derart angeordnet sind, dass die mit den zylindrischen Mikrolinsen versehenen Flächen aufeinander zu oder voneinander weg gerichtet sind. Durch diese Maßnahmen können die Linsenarrays vielseitig angeordnet werden, um eine homogene Intensitätsverteilung der Strahlen zu erzielen.
  • Gemäß einem weiteren Ausführungsbeispiel weist der optische Homogenisierer ein Linsenarray mit einer ersten Fläche und einer zweiten Fläche auf, wobei auf der ersten Fläche und der zweiten Fläche eine Vielzahl von zylindrischen Mikrolinsen angeordnet ist. Bevorzugterweise sind die Bildebenen der zylindrischen Mikrolinsen zwischen der ersten Fläche und der zweiten Fläche angeordnet. Hierdurch kann ein einteiliger optischer Homogenisierer verwendet werden. Das Linsenarray weist an beiden Flächen jeweils eine Vielzahl von zylindrischen Mikrolinsen auf, wobei die zylindrischen Mikrolinsen der jeweiligen Fläche des Linsenarrays parallel zueinander verlaufen. Durch einen einteiligen optischen Homogenisierer kann die Sendeeinheit technisch besonders einfach ausgestaltet sein und eine minimale Anzahl an Komponenten benötigen.
  • Die jeweiligen Flächen des Linsenarrays zeigen voneinander weg. Somit zeigen auch die zylindrischen Mikrolinsen der jeweiligen Flächen voneinander weg. Die Fokusebene bzw. die Bildebenen der zylindrischen Mikrolinsen der ersten Fläche liegen vorzugsweise innerhalb des Linsenarrays, insbesondere in einem Zentrum des Linsenarrays. Die zylindrischen Mikrolinsen der zweiten Fläche sind derart ausgestaltet, dass sie die gemeinsame Bildebene der zylindrischen Mikrolinsen der ersten Fläche als Objektebene nutzen. Hierdurch kann eine besonders homogene Intensitätsverteilung für die zu emittierenden Strahlen eingestellt werden.
  • Nach einer weiteren Ausführungsform sind die Bildebenen der zylindrischen Mikrolinsen mittig zwischen der ersten Fläche und der zweiten Fläche eingestellt. Hierdurch können die zylindrischen Mikrolinsen der zweiten Fläche die verteilten bzw. überlagerten Abbildungen der Strahlenquelle verwenden, um eine homogene Intensitätsverteilung bereitzustellen. Insbesondere können die zylindrischen Mikrolinsen auf beiden Flächen den Linsenarrays gleich ausgestaltet sein, wodurch der optische Homogenisierer besonders kosteneffizient herstellbar ist.
  • Bei einer weiteren Ausgestaltung weist die Sendeeinheit eine Homogenisierungsebene auf, welche im Bereich der Sendeoptik angeordnet ist.
  • Nach einem weiteren Ausführungsbeispiel ist die Sendeoptik dazu eingerichtet, eine linienförmige Ausleuchtung auszubilden.
  • Gemäß einem weiteren Ausführungsbeispiel sind eine Anzahl der zylindrischen Mikrolinsen, eine Form der zylindrischen Mikrolinsen und/oder eine Größe der zylindrischen Mikrolinsen der Linsenarrays des optischen Homogenisierers einander gleich oder voneinander unterschiedlich ausgestaltet. Vorzugsweise sind die Form der zylindrischen Mikrolinsen und/oder die Größe der zylindrischen Mikrolinsen innerhalb einer Fläche des Linsenarrays gleichbleibend oder variierend ausgestaltet. Hierdurch kann die Anzahl der zylindrischen Mikrolinsen, ihre Größe und ihre Größenverteilung entlang einer Fläche eines Linsenarrays derart variiert werden, dass optische Eigenschaften der Sendeeinheit auf unterschiedliche Einsatzbereiche angepasst sind.
  • Insbesondere können die erzeugten Strahlen durch die zylindrischen Mikrolinsen entlang einer Richtung quer zur Ausdehnung der zylindrischen Mikrolinsen homogenisiert werden.
  • Nach einer weiteren Ausführungsform ist die mindestens eine Strahlenquelle als ein Array aus Emittern ausgestaltet, wobei die Emitter derart angeordnet sind, dass die von der Strahlenquelle erzeugten Strahlen ein rechteckiges und/oder längliches Abtastmuster bilden. Insbesondere kann die Strahlenquelle als ein eindimensionales oder zweidimensionales Array aus Emittern ausgestaltet sein. Die Emitter können hierbei Oberflächenemitter bzw. sogenannte VCSEL oder Kantenemitter sein. Insbesondere können die Emitter als LEDs oder Laser ausgebildet sein. Des Weiteren können die Emitter als Faserdiodenbarren oder als Faserlaser mit planaren Wellenleitern bzw. einer Faser-Splitter-Anordnung ausgestaltet sein.
  • Gemäß einem weiteren Aspekt der Erfindung wird eine LIDAR-Vorrichtung zum Abtasten von Abtastbereichen bereitgestellt. Die LIDAR-Vorrichtung weist eine erfindungsgemäße Sendeeinheit und eine Empfangseinheit auf. Die Sendeeinheit der LIDAR-Vorrichtung weist mindestens eine Strahlungsquelle zum Erzeugen von Strahlen auf. Die Empfangseinheit weist mindestens einen Detektor zum Detektieren von Strahlen auf.
  • Die Empfangseinheit kann eine Empfangsoptik zum Empfangen der aus dem Abtastbereich rückgestreuten und/oder reflektierten Strahlen aufweisen, welche die empfangenen Strahlen anschließend auf den mindestens einen Detektor fokussiert. Der Detektor kann hierbei in einer Brennebene der Empfangsoptik positioniert sein.
  • Der mindestens eine Detektor der Empfangseinheit kann beispielsweise als ein CCD-Sensor, CMOS-Sensor, APD-Array, SPAD-Array und dergleichen ausgestaltet sein.
  • Die LIDAR-Vorrichtung kann als ein Flash-LIDAR bzw. ein Festkörper-LIDAR ohne bewegliche Komponenten ausgestaltet sein. Alternativ kann die LIDAR-Vorrichtung oder Teile der LIDAR-Vorrichtung entlang zumindest einer Rotationsachse drehbar oder schenkbar ausgestaltet sein. Darüber hinaus kann die LIDAR-Vorrichtung optional ein Mikro-Scanner oder ein Makro-Scanner sein.
  • Im Folgenden werden anhand von stark vereinfachten schematischen Darstellungen bevorzugte Ausführungsbeispiele der Erfindung näher erläutert. Hierbei zeigen
    • 1 eine schematische Darstellung einer LIDAR-Vorrichtung gemäß einer Ausführungsform,
    • 2 eine Schnittdarstellung eines zweiteiligen optischen Homogenisierers,
    • 3 eine Schnittdarstellung eines einteiligen optischen Homogenisierers,
    • 4 eine perspektivische Darstellung des einteiligen optischen Homogenisierers mit einem beispielhaften Strahlenverlauf,
    • 5 eine schematische Intensitätsverteilung der Strahlen innerhalb der Ebene E aus 4 ohne einen optischen Homogenisierer,
    • 6 eine schematische Intensitätsverteilung der Strahlen innerhalb der Ebene E aus 4 mit einem optischen Homogenisierer und
    • 7 ein Diagramm zum Veranschaulichen einer Änderung der Intensitätsverteilung durch die Verwendung des optischen Homogenisierers.
  • In der 1 ist eine schematische Darstellung einer LIDAR-Vorrichtung 1 gemäß einer Ausführungsform gezeigt. Die LIDAR-Vorrichtung 1 weist eine Sendeeinheit 2 und eine Empfangseinheit 4 auf.
  • Die Sendeeinheit 2 weist eine Strahlenquelle 6 mit einer Vielzahl von Emittern 8 auf. Die Emitter 8 sind im dargestellten Ausführungsbeispiel als ein Array aus Oberflächenemittern ausgestaltet. Die Emitter 8 können erzeugte Strahlen 7 mit einem, beispielsweise infraroten, Wellenlängenbereich emittieren.
  • Die von der Strahlenquelle 6 erzeugten Strahlen 7 werden durch eine Sendeoptik 10 gebündelt. Die Sendeoptik 10 ist als eine Zylinderlinse geformt, welche sich in Höhenrichtung y erstreckt und die Höhenrichtung y als Rotationsachse aufweist.
  • Die Strahlenquelle 6 erzeugt Strahlen 7 mit einem linienförmigen bzw. quaderförmigen Querschnitt. Der Querschnitt der Strahlen 7 erstreckt sich länglich entlang der Höhenrichtung y. Durch die Sendeoptik 10 können die erzeugten Strahlen 7 kollimiert werden.
  • Ein weiteres optisches Element 11, welches als ein Teil der Sendeoptik 10 ausgestaltet ist, kann dazu verwendet werden, die vertikale Strahlformung zu übernehmen. Das optische Element 11 kann ebenfalls als ein Mikrolinsenarray bzw. als ein sogenannter Wabenkondenser ausgestaltet sein .
  • Im Strahlengang vor der Sendeoptik 10 und 11 ist ein optischer Homogenisierer 12 angeordnet. Der optische Homogenisierer 12 ist beispielhaft als ein einteiliges Linsenarray ausgeführt und wird in den folgenden Figuren näher beschrieben. Der optische Homogenisierer 12 erzeugt Strahlen mit einer gleichmäßigeren Intensitätsverteilung gegenüber den erzeugten Strahlen 7 und ermöglicht eine homogene Ausleuchtung in etwa im Bereich des optischen Elements 11 bzw. der Sendeoptik 10.
  • Die Empfangseinheit 4 weist einen Detektor 14 auf. Der Detektor 14 kann aus dem Abtastbereich 1 reflektierte und/oder rückgestreute Strahlen 15 empfangen und in elektrische Messdaten wandeln.
  • Des Weiteren kann die Empfangseinheit 14 optionale Empfangsoptiken aufweisen, welche die reflektierten und/oder rückgestreuten Strahlen 15 formt bzw. auf den Detektor 14 fokussiert.
  • Die 2 zeigt eine Schnittdarstellung eines zweiteiligen optischen Homogenisierers 13. Der optische Homogenisierer 13 weist ein erstes Linsenarray 16 und ein zweites Linsenarray 18 auf. Jedes Linsenarray 16, 18 weist eine Vielzahl von zylindrischen Mikrolinsen 20 auf.
  • Die zylindrischen Mikrolinsen 20 sind auf jeweils einer Fläche 22 des jeweiligen Linsenarrays 16, 18 angeordnet. Die zylindrischen Mikrolinsen 20 verlaufen in einer Querrichtung x bzw. quer zur Höhenrichtung y.
  • Eine den zylindrischen Mikrolinsen 20 entgegengesetzt angeordnete Fläche 24 ist eben bzw. ohne weitere Strukturierungen oder Konturierungen ausgeformt. Die Linsenarrays 16, 18 sind derart ausgerichtet, dass die ebenen Flächen 24 einander zugewandt sind.
  • Die erzeugten Strahlen 7 werden durch die jeweiligen zylindrischen Mikrolinsen 20 des ersten Linsenarrays 16 fokussiert und auf einer Fokusebene F abgebildet. Insbesondere erzeugt jede zylindrische Mikrolinse 20 eine auf der Fokusebene F. Die der zylindrischen Mikrolinsen 20 sind in Höhenrichtung y überlappt entlang der Fokusebene F abgebildet.
  • Die der zylindrischen Mikrolinsen 20 des ersten Linsenarrays 16 werden als Objekte von den zylindrischen Mikrolinsen 20 des zweiten Linsenarrays 18 verwendet. Somit werden die bereits überlappten erneut fokussiert und überlappt, wodurch eine homogene Intensitätsverteilung der resultierenden Strahlen 9 entsteht, welche in den Abtastbereich A emittiert werden.
  • Die Fokusebene F bildet hierbei eine Bildebene für das erste Linsenarray 16 und für das zweite Linsenarray 18. Die jeweiligen Brennpunkte der zylindrischen Mikrolinsen können vorzugsweise versetzt zu der Fokusebene F angeordnet sein.
  • Die 3 zeigt eine Schnittdarstellung eines einteiligen optischen Homogenisierers 12. Im Unterschied zum in 2 gezeigten optischen Homogenisierer 13, ist dieser einteilig ausgeführt. Der einteilige optische Homogenisierer 12 weist ein Linsenarray 28 mit einer ersten Fläche 22 und einer zweiten Fläche 24 auf.
  • Die zylindrischen Mikrolinsen 20 sind sowohl auf der ersten Fläche 22 als auch auf der zweiten Fläche 24 angeordnet. Die zylindrischen Mikrolinsen 20 der jeweiligen Flächen 22, 24 weisen eine gemeinsame Bildebene auf, welche durch die Fokusebene F verläuft.
  • Im dargestellten Ausführungsbeispiel verläuft die Fokusebene F in Ausbreitungsrichtung z der Strahlen 7 mittig bzw. zentriert durch das Linsenarray 28.
  • Die 4 zeigt eine perspektivische Darstellung des einteiligen optischen Homogenisierers 12 mit einem beispielhaften Strahlenverlauf. Des Weiteren ist eine Ebene E illustriert, welche zum Veranschaulichen der weiteren Figuren herangezogen wird. Die Ebene E ist dem optischen Homogenisierer 12 nachgelagert angeordnet und erstreckt sich in einer x-y-Ebene, welche quer zur Ausbreitungsrichtung z verläuft.
  • In der 5 ist eine schematische Intensitätsverteilung I der in den Abtastbereich A emittierten Strahlen 9 innerhalb der Ebene E aus 4 ohne den Einsatz eines optischen Homogenisierers 12 gezeigt.
  • Die Strahlen 9 weisen eine transversale Intensitätsverteilung I mit einem deutlich ausgeprägten Peak auf. Insbesondere ist die Intensitätsverteilung I im Wesentlichen Gauß-förmig ausgestaltet.
  • Die 6 zeigt eine schematische Intensitätsverteilung I der Strahlen 9 innerhalb der Ebene E aus 4 mit einem verwendeten optischen Homogenisierer 12. Hierbei ist eine deutliche Abweichung von der Gaußförmigen Intensitätsverteilung I aus 5 erkennbar. Die Strahlen 9 weisen eine homogenisierte Intensitätsverteilung I auf.
  • Der Unterschied zwischen der Intensitätsverteilung I1 aus der 5 und der Intensitätsverteilung I2 aus der 6 sind in dem in 7 gezeigten Diagramm veranschaulicht.
  • Das Diagramm zeigt eine Intensität I entlang der Höhenrichtung y und verdeutlicht den konstanten Intensitätsverlauf 12 der Strahlen 9, welcher durch den optischen Homogenisierer 12, 13 einstellbar ist.
  • In einer vorteilhaften Ausprägung der Erfindung befindet sich in der Homogenisierungsebene E eine oder mehrere Optiken 30 welche die Strahlen 7 in eine gewünschte Form bringen. Bei einer Linienausleuchtung kann die mindestens eine Optik 30 eine Kollimation zum Herstellen kleiner Divergenz in einer Raumrichtung und zum Herstellen einer Auffächerung bzw. einer großen Divergenz in der anderen Raumrichtung dienen.

Claims (11)

  1. Sendeeinheit (2) einer LIDAR-Vorrichtung (1), aufweisend mindestens eine Strahlenquelle (6) zum Erzeugen von elektromagnetischen Strahlen (7) mit einem linienförmigen oder rechteckigen Querschnitt und aufweisend eine Sendeoptik (10), dadurch gekennzeichnet, dass die Sendeeinheit (2) einen in einem Strahlengang der erzeugten Strahlen (7) vor oder nach der Sendeoptik (10) angeordneten optischen Homogenisierer (12, 13) mit mindestens einem Linsenarray (16, 18, 28) aufweist.
  2. Sendeeinheit nach Anspruch 1, wobei die Sendeeinheit (2) eine Homogenisierungsebene (E) aufweist, welche im Bereich der Sendeoptik (10) angeordnet ist.
  3. Sendeeinheit nach Anspruch 1 oder 2, wobei der optische Homogenisierer (13) zwei voneinander beabstandete Linsenarrays (16, 18) mit einer Vielzahl von zylindrischen Mikrolinsen (20) aufweist, wobei die zylindrischen Mikrolinsen (20) jeweils auf einer Fläche (22) der Linsenarrays (16, 18) angeordnet sind, wobei Bildebenen der zylindrischen Mikrolinsen (20) auf einer Fokusebene (F) innerhalb eines Abstands zwischen den Linsenarrays (16, 18) angeordnet sind.
  4. Sendeeinheit nach Anspruch 3, wobei die Linsenarrays (16, 18) des optischen Homogenisierers (13) derart angeordnet sind, dass die mit den zylindrischen Mikrolinsen (20) versehenen Flächen (22) in Richtung der mindestens einen Strahlenquelle (6) gerichtet sind.
  5. Sendeeinheit nach Anspruch 3 oder4, wobei die Linsenarrays (16, 18) des optischen Homogenisierers (13) derart angeordnet sind, dass die mit den zylindrischen Mikrolinsen (20) versehenen Flächen (22) aufeinander zu oder voneinander weg gerichtet sind.
  6. Sendeeinheit nach Anspruch 1, wobei der optische Homogenisierer (12) ein Linsenarray (28) mit einer ersten Fläche (22) und einer zweiten Fläche (24) aufweist, wobei auf der ersten Fläche (22) und der zweiten Fläche (24) eine Vielzahl von zylindrischen Mikrolinsen (20) angeordnet ist, wobei die Bildebenen der zylindrischen Mikrolinsen (20) zwischen der ersten Fläche (22) und der zweiten Fläche (24) angeordnet sind.
  7. Sendeeinheit nach Anspruch 6, wobei die Bildebenen der zylindrischen Mikrolinsen (20) mittig zwischen der ersten Fläche (22) und der zweiten Fläche (24) angeordnet sind.
  8. Sendeeinheit nach einem der Ansprüche 1 bis 7, wobei eine Anzahl der zylindrischen Mikrolinsen (20), eine Form der zylindrischen Mikrolinsen (20) und/oder eine Größe der zylindrischen Mikrolinsen (20) der zwei Linsenarrays (16, 18) einander gleich oder voneinander unterschiedlich ausgestaltet sind, wobei die Form der zylindrischen Mikrolinsen (20) und/oder die Größe der zylindrischen Mikrolinsen (20) innerhalb einer Fläche (22, 24) des Linsenarrays (16, 18) gleichbleibend oder variierend ausgestaltet sind.
  9. Sendeeinheit nach einem der Ansprüche 1 bis 8, wobei die Sendeoptik (10) dazu eingerichtet ist, eine linienförmige Ausleuchtung auszubilden.
  10. Sendeeinheit nach einem der Ansprüche 1 bis 9, wobei die mindestens eine Strahlenquelle (6) als ein Array aus Emittern (8) ausgestaltet ist, wobei die Emitter (8) derart angeordnet sind, dass die von der Strahlenquelle (6) erzeugten Strahlen (7) ein rechteckiges und/oder längliches Abtastmuster bilden.
  11. LIDAR-Vorrichtung (1) zum Abtasten von Abtastbereichen (A), aufweisend eine Sendeeinheit (2) gemäß einem der vorhergehenden Ansprüche und eine Empfangseinheit (4) mit mindestens einem Detektor (14) zum Empfangen von aus dem Abtastbereich (A) reflektieren und/oder rückgestreuten Strahlen (15).
DE102019219825.2A 2019-12-17 2019-12-17 Sendeeinheit und LIDAR-Vorrichtung mit optischem Homogenisierer Pending DE102019219825A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102019219825.2A DE102019219825A1 (de) 2019-12-17 2019-12-17 Sendeeinheit und LIDAR-Vorrichtung mit optischem Homogenisierer
PCT/EP2020/082189 WO2021121818A1 (de) 2019-12-17 2020-11-16 Sendeeinheit und lidar-vorrichtung mit optischem homogenisierer
KR1020227024055A KR20220110573A (ko) 2019-12-17 2020-11-16 광학 균질화기를 갖는 송신 유닛 및 라이다 장치
CN202080088334.2A CN114868031A (zh) 2019-12-17 2020-11-16 具有光学均化器的发送单元和激光雷达设备
EP20808323.8A EP4078216A1 (de) 2019-12-17 2020-11-16 Sendeeinheit und lidar-vorrichtung mit optischem homogenisierer
JP2022536978A JP7354451B2 (ja) 2019-12-17 2020-11-16 光学ホモジナイザを備える送信ユニットおよびlidarデバイス
US17/780,870 US20230003843A1 (en) 2019-12-17 2020-11-16 Transmission unit and lidar device with optical homogenizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019219825.2A DE102019219825A1 (de) 2019-12-17 2019-12-17 Sendeeinheit und LIDAR-Vorrichtung mit optischem Homogenisierer

Publications (1)

Publication Number Publication Date
DE102019219825A1 true DE102019219825A1 (de) 2021-06-17

Family

ID=73476097

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019219825.2A Pending DE102019219825A1 (de) 2019-12-17 2019-12-17 Sendeeinheit und LIDAR-Vorrichtung mit optischem Homogenisierer

Country Status (7)

Country Link
US (1) US20230003843A1 (de)
EP (1) EP4078216A1 (de)
JP (1) JP7354451B2 (de)
KR (1) KR20220110573A (de)
CN (1) CN114868031A (de)
DE (1) DE102019219825A1 (de)
WO (1) WO2021121818A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021208949A1 (de) 2021-08-16 2023-02-16 Robert Bosch Gesellschaft mit beschränkter Haftung LiDAR-Vorrichtung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19841040A1 (de) * 1997-09-10 1999-03-11 Alltec Angewandte Laser Licht Vorrichtung zum Markieren einer Oberfläche mittels Laserstrahlen
JP5124864B2 (ja) 2006-06-07 2013-01-23 本田技研工業株式会社 光学装置および移動装置
US9798126B2 (en) 2015-08-25 2017-10-24 Rockwell Automation Technologies, Inc. Modular illuminator for extremely wide field of view
JP6332491B1 (ja) 2017-02-13 2018-05-30 オムロン株式会社 レーザ照明装置およびこれを備えた周辺監視センサ
DE102017208052A1 (de) * 2017-05-12 2018-11-15 Robert Bosch Gmbh Senderoptik für ein LiDAR-System, optische Anordnung für ein LiDAR-System, LiDAR-System und Arbeitsvorrichtung
US11131773B2 (en) * 2017-05-15 2021-09-28 Ouster, Inc. Lidar unit with an optical link between controller and photosensor layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021208949A1 (de) 2021-08-16 2023-02-16 Robert Bosch Gesellschaft mit beschränkter Haftung LiDAR-Vorrichtung
WO2023020736A1 (de) * 2021-08-16 2023-02-23 Robert Bosch Gmbh Lidar-vorrichtung

Also Published As

Publication number Publication date
US20230003843A1 (en) 2023-01-05
JP2023506280A (ja) 2023-02-15
JP7354451B2 (ja) 2023-10-02
KR20220110573A (ko) 2022-08-08
EP4078216A1 (de) 2022-10-26
CN114868031A (zh) 2022-08-05
WO2021121818A1 (de) 2021-06-24

Similar Documents

Publication Publication Date Title
EP3182160B1 (de) Optoelektronischer sensor und verfahren zur erfassung eines objekts
EP3182153B1 (de) Optoelektronischer sensor und verfahren zur erfassung eines objektes
CH685652A5 (de) Autofokus-Anordnung für ein Stereomikroskop.
EP3640667B1 (de) Optoelektronischer sensor und verfahren zur erfassung von objekten
DE102013219567A1 (de) Verfahren zur Steuerung eines Mikrospiegelscanners und Mikrospiegelscanner
DE102018113848A1 (de) Optoelektronischer Sensor und Verfahren zur Erfassung von dreidimensionalen Bilddaten
DE102018101846A1 (de) Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten
EP3583444B1 (de) Lidar-sensor zur erfassung eines objektes
EP3438691A1 (de) Optoelektronischer sensor und verfahren zum erfassen von objekten in einem überwachungsbereich
WO2018166960A1 (de) Optische abstrahlvorrichtung für laserpulse mit selektiver optik
WO2018149708A1 (de) Lidar-sensor zur erfassung eines objektes
WO2021121818A1 (de) Sendeeinheit und lidar-vorrichtung mit optischem homogenisierer
DE102021111949A1 (de) Vorrichtung zur scannenden Messung des Abstands zu einem Objekt
WO2016207327A1 (de) Sendeeinheit für eine optische sensorvorrichtung
EP3699640A1 (de) Optoelektronischer sensor und verfahren zur erfassung eines objekts
EP3495845A1 (de) Optoelektronischer sensor und verfahren zur erfassung eines überwachungsbereichs
DE102016118481A1 (de) Abtasteinheit einer optischen Sende- und Empfangseinrichtung einer optischen Detektionsvorrichtung eines Fahrzeugs
EP3353592B1 (de) Entfernungsmessvorrichtung
WO2015071317A1 (de) Optische koppelvorrichtung und betriebsverfahren dafür
DE102005043064B4 (de) Verfahren zum Messen des Abstandes eines Objektes
WO2019081449A1 (de) Lichtaustrittsvorrichtung für einen laserscanner
DE102022129827B3 (de) Optoelektronischer sensor
DE102022124438B3 (de) Optoelektronischer sensor
DE10323336B3 (de) Anordnung zur optischen Abstandsbestimmung einer reflektierenden Oberfläche
DE102019217157A1 (de) Erzeugen von Strahlen für zeitgleiche Nahfeld- und Fernfeldabtastung

Legal Events

Date Code Title Description
R163 Identified publications notified