KR20230119245A - 재조합 세포 표면 캡쳐 단백질 - Google Patents

재조합 세포 표면 캡쳐 단백질 Download PDF

Info

Publication number
KR20230119245A
KR20230119245A KR1020237026105A KR20237026105A KR20230119245A KR 20230119245 A KR20230119245 A KR 20230119245A KR 1020237026105 A KR1020237026105 A KR 1020237026105A KR 20237026105 A KR20237026105 A KR 20237026105A KR 20230119245 A KR20230119245 A KR 20230119245A
Authority
KR
South Korea
Prior art keywords
seq
amino acid
acid sequence
protein
binding protein
Prior art date
Application number
KR1020237026105A
Other languages
English (en)
Inventor
디팔리 데쉬판데
강 첸
다리아 부라코프
제임스 판들
토마스 알드리치
비샬 카마트
Original Assignee
리제너론 파마슈티칼스 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 리제너론 파마슈티칼스 인코포레이티드 filed Critical 리제너론 파마슈티칼스 인코포레이티드
Publication of KR20230119245A publication Critical patent/KR20230119245A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4208Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an idiotypic determinant on Ig
    • C07K16/4241Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an idiotypic determinant on Ig against anti-human or anti-animal Ig
    • C07K16/4258Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an idiotypic determinant on Ig against anti-human or anti-animal Ig against anti-receptor Ig
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/64Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a combination of variable region and constant region components
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

면역글로불린 CH3 도메인 및/또는 치환된 CH3 도메인을 갖는 분비된 헤테로다이머 원하는 단백질 (POI)을 생산하는 세포를 분리하고 검출하는데 유용한 재조합 세포 표면 캡쳐 단백질 및 검출 분자가 제공된다. 이중 특이적 항체를 분리하고 검출하는 재조합 세포 표면 캡쳐 단백질 및 검출 분자가 또한 제공된다. 본 발명은 또한 CH3 도메인 및/또는 변형된 CH3 도메인, 예를 들어, H95 및 Y96 (IMGT)에서 아미노산 치환이 있거나 또는 없는 CH3 도메인을 함유하는 원하는 단백질을 인식하고 이것에 결합할 수 있는 재조합 항원-결합 단백질을 제공한다.

Description

재조합 세포 표면 캡쳐 단백질{RECOMBINANT CELL SURFACE CAPTURE PROTEINS}
관련된 출원에 대한 교차-참조
본 출원은 2012년 11월 14일에 출원된 미국 가특허 출원 번호 제61/726,040호의 35 USC § 119(e) 하에서 이익을 주장하며, 본 출원은 그것의 전문이 본원에 명확하게 참고로 포함된다.
서열 목록
본 출원은 참고로 2013년 11월 12일에 생성된 파일 8600WO_ST25.txt (86,267 바이트)로서 컴퓨터로 판독 가능한 형태로 제출된 서열 목록을 포함한다.
본 발명의 분야
본 발명의 분야는 재조합 세포 표면 캡쳐 단백질 및 헤테로다이머인 분비된 단백질, 예를 들어, 이중 특이적 단백질을 생산하는 세포를 확인하고, 분리하고 풍부화하는 방법에 관한 것이다. 더 구체적으로, 세포 표면 캡쳐 단백질 및 방법은 특이적 히브리도마(hybridoma) 및 헤테로다이머 단백질, 예를 들어, 이중 특이적 항체를 분비하는 세포를 포함하는, 고발현 재조합 항체-생산 세포주의 신속하고 효율적인 분리를 허용하고, 이로 인해 헤테로다이머 종 (이중 특이적 분자)를 풍부화하고 우선적으로 호모다이머 종에서 헤테로다이머 종을 분리한다.
숙주 세포에서 원하는 유전자(gene of interest; GOI)를 발현하는 선행 방법이 알려져 있다. 간략히 말하면, GOI를 가지고 있는 발현 벡터가 세포로 도입된다. 안정한 통합에 따라, 고발현 세포를 분리하는 표준 방법은 세포 풀(pool)의 수거, 플레이트로부터 콜로니의 핸드-피킹(hand-picking), 제한된 희석, 또는 업계에 알려져 있는 다른 방법에 의한 단일 세포의 분리를 수반한다. 풀 또는 개개의 클론은 그때 원하는 단백질 (protein of interest; POI)의 생산을 위해서 POI 활성의 직접적인 측정에 의해, POI의 면역학적 검출에 의해, 또는 다른 적합한 기술에 의해 확장되고 스크리닝된다. 이 과정들은 힘들고, 비효율적이며, 비용이 많이 들고, 분석 될 수 있는 클론의 수는 보통 수백 개로 제한된다.
안정한 통합 후 세포에 의한 단백질 발현의 대부분의 이질성(heterogeneity)은 안정하고, 고발현 생산 세포주를 발생시키는 드문 통합 이벤트를 확인하기 위한 노력으로 많은 개개의 클론들이 스크리닝되는 것이 필요하다. 이 요구는 가장 높은 수준의 단백질 생산을 발현하는 세포의 신속한 확인 및 분리를 가능하게 하는 방법을 필요로 한다. 게다가, 클론 풀 또는 핸드-피킹된 콜로니의 수거는 더 빠르게 성장하는 저발현 세포에 비해 종종 더 느리게 성장하는 고발현 세포를 손실할 위험이 있다. 그러므로, 분비된 POI의 높은 수준의 발현을 가능하게 하는 개개의 세포의 신속한 스크리닝 및 분리를 허용하는 방법이 존재해야할 필요가 있다. POI가 하나 이상의 서브유닛을 함유하는 경우에, 호모다이머 종에 비해 원하는 헤테로다이머 종에 대하여 우선적으로 선택하는 것이 필요하다.
유동 세포 분석법의 안정한 발현 세포주의 분리에 사용된 방법으로의 통합은 다수의 개개의 클론을 스크리닝하는 능력을 개선하였지만, 현재 이용 가능한 방법은 다양한 이유로 여전히 불충분하다. 다른 특징의 세포들 사이에서 POI의 확산이 또한 문제가 있었다.
원하는 단백질 (POI)에 대하여 직접적으로 스크리닝함으로써 단백질을 분비하는 상기 세포의 신속한 분리를 위한 고속 대용량 스크리닝 방법을 설명한다. 본 발명은 또한 제조 공정 중에 단일 세포를 기반으로 하여 POI 발현의 편리한 모니터링을 허용한다. 게다가, 이 기술은 이중 특이적 항체-생산 세포, 또는 헤테로다이머 단백질을 생산하는 어떤 세포의 스크리닝에도 직접적으로 적용될 수 있다. 기술은 또한 변형된 T 세포 수용체를 생산하는 세포, 예를 들어, 가용성 형태의 T 세포 수용체를 생산하는 세포의 스크리닝에도 직접적으로 적용될 수 있다.
한 양태에서, 본 발명은 분비된 원하는 단백질 (POI)를 생산하는 세포를 검출하고 분리하는 방법을 제공하며, a) POI에 결합할 수 있는 세포 표면 캡쳐 분자를 암호화하는 핵산 분자를 구성하는 단계; b) POI를 발현하는 세포를 단계 a)의 핵산 분자로 트랜스펙션하는 단계; c) 세포를 검출 분자와 접촉시킴으로써 표면-디스플레이된(displayed) POI를 검출하는 단계이며, 검출 분자가 POI에 결합하는 단계; 및 d) 검출 분자를 기반으로 하여 세포를 분리하는 단계를 포함한다.
다양한 구체예에서, 원하는 단백질은 리간드, 가용성 수용체 단백질, 성장 인자, 융합 단백질, 항체, 이중 특이적 항체, Fab, 단일 사슬 항체 (ScFv), 또는 이것들의 단편을 포함한다. 원하는 단백질이 항체일 때, 항체는 IgM, IgG, IgA, IgD 또는 IgE, 뿐만 아니라 이것들의 다양한 서브타입 또는 변종으로 구성된 군으로부터 선택된다. 특정 구체예에서, 항체는 항-DII4 항체, 항-ErbB3 항체, 항-EGFR 항체, 이중-특이적 항-ErbB3/EGFR 이중 특이적 항체, 또는 항-IL-6 수용체 항체이다.
더 특정 구체예에서, 원하는 단백질은 인터류킨 (IL)-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-13, IL-15, IL-16, IL-17, IL-18, IL-21, 섬모 신경향성 인자 (CNTF), 에리트로포이에틴, 혈관 내피 성장 인자 (VEGF), 안지오포이에틴 1 (Ang-1), 안지오포이에틴 2 (Ang-2), TNF, 인터페론-감마, GM-CSF, TGFp, 및 TNF 수용체로 구성된 군으로부터 선택된 성장 인자이다.
다양한 구체예에서, 원하는 단백질은 T 세포 수용체의 가변 도메인을 포함한다. 특정 구체예에서, 원하는 단백질은 가용성 T 세포 수용체 (sTCR), 또는 Fc (TCR-Fc)에 융합된 T 세포 수용체 세포 외 도메인을 포함하는 단백질이다. 특정 구체예에서, Fc는 인간 Fc이다. 다양한 구체예에서, 단백질은 T 세포 수용체 세포 외 도메인의 가변 도메인을 포함한다. 다양한 구체예에서, 단백질은 T 세포 수용체 세포 외 도메인의 가변 도메인 및 불변 도메인을 포함한다.
원하는 단백질을 암호화하는 핵산은 자연 발생하거나 재조합 기술을 통해 구성된 어떤 공급원의 것일 수도 있고, DNA 라이브러리로부터 선택될 수도 있다.
다양한 구체예에서, 세포 표면 캡쳐 분자는 리간드-특이적 수용체, 수용체-특이적 리간드, 항체-결합 단백질, 항체 또는 ScFv와 같은 항체 단편, 또는 펩티드이다. 캡쳐 분자가 펩티드일 때, 펩티드는 파지 디스플레이 라이브러리(phage display library)로부터 분리될 수도 있다. 더 특정 구체예에서, 캡쳐 분자는 Ang1, Ang2, VEGF, Tie1, Tie2, VEGFRI (Flt1), VEGFRII (Flk1 또는 KDR), CNTF, CNTFR-α, 시토킨 수용체 구성요소, 둘 이상의 시토킨 수용체 구성요소의 융합체, 또는 이것들의 단편일 수도 있다. 캡쳐 분자가 항체-결합 단백질일 때, 항체-결합 단백질은 Fc 수용체, 항-면역글로불린 항체, 항-면역글로불린 (항-Ig) ScFv, 항-Fc 항체, 항-Fc* 항체, 단백질 A, 단백질 L, 단백질 G, 단백질 H 또는 이것들의 기능적 단편일 수도 있다. 이와 같이, 일부 구체예에서는, 캡쳐 분자는 항원, 단백질 A, 또는 막관통 도메인 또는 GPI 결합자에 융합된 항-Ig ScFv를 포함하는 융합 단백질이다.
다양한 구체예에서, 원하는 단백질이 T 세포 수용체 가변 도메인을 포함하는 경우에 세포 표면 캡쳐 분자는 Fc 수용체 또는 T 세포 수용체의 가변 도메인에 의해 인식될 수 있는 막-결합 항원을 포함한다.
일부 구체예에서, 원하는 단백질이 헤테로다이머 단백질, 예를 들어, 제1 서브유닛 및 제2 서브유닛을 가진 헤테로다이머 단백질인 경우에 세포 표면 캡쳐 분자는 제2 서브유닛은 아니지만 제1 서브유닛에 결합할 수 있는 항원, 단백질 A, 또는 ScFv를 포함하거나, 이러한 세포 표면 캡쳐 분자는 제2 서브유닛에 결합하지만 제1 서브유닛에는 결합하지 않는다.
다양한 구체예에서, 원하는 단백질이 IgG1, IgG2, IgG4, 또는 단백질 A에 대한 결합을 폐지하는 돌연변이를 포함하는 하나의 CH3 도메인 및 단백질 A에 결합할 수 있는 다른 CH3 도메인을 갖는 이중 특이적 항체; 또는 IgG1, IgG2, IgG4의 Fc 영역 또는 단백질 A에 대한 결합을 폐지하는 돌연변이를 포함하는 하나의 CH3 도메인 및 단백질 A에 결합할 수 있는 다른 CH3 도메인을 갖는 Fc 영역을 포함하는 융합 단백질인 다양한 구체예에서, 세포 표면 캡쳐 분자는 항-Fc 또는 항-Fc* ScFv와 같은 항-면역글로불린 ScFv를 포함한다.
여러 구체예에서, 본 발명의 방법은 POI를 세포막에 고정하기 위해 제공하며, 세포의 외부에 노출되고, 따라서 세포 표면 캡쳐 분자로서 기능하는 막 앵커(anchor)를 더 포함한다. 특정 구체예에서, 막 앵커는 막관통 앵커 또는 GPI 링크(link)이다. 특이적 막관통 앵커의 예는 Fc 수용체의 막관통 도메인, 예를 들어, 인간 FcγRI의 막관통 도메인을 포함하며, 이것의 예는 SEQ ID NO:17에서 인용된다. 막 앵커는 세포에 고유하거나, 재조합형이거나, 또는 합성형일 수도 있다.
다양한 구체예에서, 원하는 단백질은 T 세포 수용체 가변 영역을 포함하고, 세포 표면 캡쳐 분자는 막-결합 항원을 포함한다. 특정 구체예에서, 막-결합 항원은 막 앵커에 융합된 T 세포 수용체 가변 영역에 의해 인식될 수 있는 항원을 포함하는 재조합 융합 단백질이며 항원은 세포 표면에 결합된다. 특정 구체예에서, 재조합 융합 단백질은 막관통 앵커 또는 GPI 링크에 융합된 항원을 포함한다. 또 다른 특정 구체예에서, 세포 표면 캡쳐 분자는 막 앵커 및 주요 조직적합성 (MHC) 분자에 결합할 수 있는 항원을 포함하는 재조합 융합 단백질을 포함하는데, 예를 들어, 종양 항원 및 형질전환된 표현형의 자가 단백질(self protein)을 포함하지만 이에 제한되지 않는다.
추가의 구체예에서, 신호 서열은 POI의 아미노 말단에 추가되고, 이로 인해 단백질은 세포 표면으로 수송되고, 세포 표면 캡쳐 분자로서 기능한다. 신호 서열은 세포에 고유하거나, 재조합형이거나, 또는 합성형일 수도 있다.
다양한 구체예에서, 세포 표면 캡쳐 분자에 결합하는 차단 분자는 POI의 확산을 감소시키기 위해 발현 세포에서 주변 세포(neighboring cell)로 추가된다. 또 다른 구체예에서, 발현 세포에서 주변 세포로 POI의 확산 및 상기 세포에 그것의 부착은 배지의 점성을 증가시킴으로써 감소된다.
본 발명의 방법에 의해 분리된 세포는 불멸화 세포에 융합된 항체-생산 세포일 수도 있다. 더 특정 구체예에서, 항체-생산 세포는 B-세포 또는 이것의 유도체이다. B-세포 유도체는 형질세포, 히브리도마, 골수종(myeloma), 또는 재조합 세포일 수도 있다.
게다가, 본 발명의 방법은 B-세포 및 이것의 유도체, 또는 원하는 특이성, 친화도 또는 이소타입의 분비된 항체를 발현하는 히브리도마의 확인에 유용하다. 본 발명은 또한 원하는 수준의 항체 또는 항체 단편을 발현하는 세포의 분리에 사용될 수 있다.
디스플레이된 POI로 세포의 검출은 디스플레이된 POI에 직접적으로 또는 간접적으로 결합할 수 있는 어떤 분자의 사용을 통해서도 이루어질 수 있다. 이러한 검출 분자는 POI를 디스플레이하는 세포의 검출 및/또는 분리를 용이하게 할 수도 있다. 한 구체예에서, 서로 결합하며 별도로 표지된 두 개의 분자가 이용된다. 검출 및/또는 분리는 업계에 알려져 있는 표준 기술을 통해 이루어질 수도 있다.
또 다른 양태에서, 본 발명은 분비된 원하는 단백질 (POI)을 생산하는 세포를 검출하고 분리하는 방법을 특징으로 하는데, a) 세포를 세포 표면 캡쳐 분자를 암호화하는 핵산으로 트랜스펙션하는 단계이며, 세포 표면 캡쳐 분자는 POI에 결합할 수 있는 단계; b) a)의 세포를 POI를 암호화하는 제2 핵산으로 동시에 또는 순차적으로 트랜스펙션하는 단계이며, POI가 발현되고 분비되는 단계; c) 세포를 POI에 결합하는 검출 분자와 접촉시킴으로써 표면-디스플레이된 POI를 검출하는 단계; 및 d) 검출 분자에 기초하여 세포를 분리하는 단계를 포함한다.
또 다른 양태에서, 본 발명은 POI를 생산하는 세포를 검출하고 분리하는 단계를 특징으로 하는데, a) 높은 수율로 세포 표면 캡쳐 분자를 발현하는 세포를 검출하는 단계; b) (a)에서 검출된 세포를 분리하고 배양하는 단계; c) (b)의 세포를 POI를 암호화하는 핵산으로 트랜스펙션하는 단계이며 이러한 POI가 분비되는 단계; d) 세포를 POI에 결합하는 검출 분자와 접촉시킴으로써 표면-디스플레이된 POI를 검출하는 단계; 및 e) 검출 분자에 기초하여 세포를 분리하는 단계를 포함한다.
또 다른 양태에서, 본 발명은 높은 수준의 원하는 단백질 (POI)을 생산하는 세포를 검출하고 분리하는 방법을 제공하는데, a) 세포를 POI에 결합할 수 있는 이러한 세포 표면 캡쳐 분자를 암호화하는 핵산으로 트랜스펙션하는 단계이며, 세포는 POI를 발현하는 단계; b) 높은 수율로 상기 세포 표면 캡쳐 분자를 발현하는 (a)의 세포를 검출하는 단계; c) 높은 수율 세포를 분리하고 배양하는 단계; d) 세포를 POI에 결합하는 검출 분자와 접촉시킴으로써 표면-디스플레이된 POI를 검출하는 단계; 및 e) 검출된 세포를 분리하는 단계를 포함한다.
또 다른 양태에서, 본 발명은 높은 수준의 헤테로다이머 단백질을 생산하는 세포를 검출하고 분리하는 방법을 제공하는데, (a) 세포를 막 앵커 도메인을 포함하고 헤테로다이머 단백질의 제1 서브유닛에 결합할 수 있는 융합 단백질인 세포 표면 캡쳐 분자를 암호화하는 핵산으로 트랜스펙션하는 단계이며, 세포는 헤테로다이머 단백질을 발현하는 단계; (b) 높은 수율로 표면 캡쳐 분자를 발현하는 (a)의 세포를 검출하는 단계; (c) 높은 수율로 표면 캡쳐 분자를 발현하는 세포를 분리하고 배양하는 단계; (d) 단계 (c)의 분리되고 배양된 세포의 표면 상의 헤테로다이머 단백질을 헤테로다이머 단백질의 제2 서브유닛에 결합하는 검출 분자로 검출하는 단계; 및 (e) 그것의 표면 상에서 검출된 헤테로다이머 단백질을 가지고 있는, 단계 (d)에서 검출된 세포를 분리하는 단계를 포함한다.
또 다른 양태에서, 본 발명은 높은 수준의 면역글로불린을 생산하는 세포를 검출하고 분리하는 방법을 제공하는데, (a) 세포를 면역글로불린에 결합할 수 있는 세포 표면 캡쳐 분자를 암호화하는 핵산으로 트랜스펙션하는 단계이며, 세포는 면역글로불린을 발현하는 단계; (b) 높은 수율로 표면 캡쳐 분자를 발현하는 (a)의 세포를 검출하는 단계; (c) 높은 수율로 표면 캡쳐 분자를 발현하는 세포를 분리하고 배양하는 단계; (d) 단계 (c)의 분리되고 배양된 세포의 표면 상의 면역글로불린에 결합하는 검출 분자로 면역글로불린을 검출하는 단계; 및 (e) 그것의 표면에서 검출된 면역글로불린을 가지고 있는 단계 (d)에서 검출된 세포를 분리하는 단계를 포함한다.
또 다른 양태에서, 본 발명은 높은 수준의 이중 특이적 항체를 생산하는 세포를 검출하고 분리하는 방법을 제공하는데, (a) 세포를 ScFv 융합 단백질과 같이, 막 앵커 도메인을 포함하는 융합 단백질이고 이중 특이적 항체에 결합할 수 있는 세포 표면 캡쳐 분자를 암호화하는 핵산으로 트랜스펙션하는 단계이며, 세포는 이중 특이적 항체를 발현하는 단계; (b) 높은 수율로 표면 캡쳐 분자를 발현하는 (a)의 세포를 검출하는 단계; (c) 높은 수율로 표면 캡쳐 분자를 발현하는 세포를 분리하고 배양하는 단계; (d) 단계 (c)의 분리되고 배양된 세포의 표면 상의 이중 특이적 항체에 결합하는 검출 분자로 이중 특이적 항체를 검출하는 단계; 및 (e) 그것의 표면에서 이중 특이적 항체를 가지고 있는 단계 (d)에서 검출된 세포를 분리하는 단계를 포함한다.
또 다른 양태에서, T-세포 수용체 (TCR) 가변 영역을 포함하는 원하는 수준의 친화도 약제를 생산하는 세포를 검출하는 방법이 제공된다.
또 다른 양태에서, 원하는 수준의 TCR-Fc를 생산하는 세포를 검출하는 방법이 제공되는데, (a) 세포를 TCR-Fc에 결합할 수 있는 Fc 수용체를 암호화하는 핵산으로 트랜스펙션하는 단계이며, 세포는 TCR-Fc에 의해 인식된 항원을 발현하는 단계; (b) 높은 수율로 TCR-Fc를 발현하는 (a)의 세포를 검출하는 단계; (c) 높은 수율로 TCR-Fc를 발현하는 세포를 분리하고 배양하는 단계; (d) 단계 (c)의 분리되고 배양된 세포의 표면 상의 검출 분자로 항원을 검출하는 단계; 및 (e) 그것의 표면에서 검출된 항원을 가지고 있는 단계 (d)에서 검출된 세포를 분리하는 단계를 포함한다.
다양한 구체예에서, TCR은 인간 TCR 및 래트, 마우스, 또는 햄스터 TCR과 같은 설치류 TCR로부터 선택된다. 특정 구체예에서, Fc는 인간 Fc이다. 또 다른 특정 구체예에서, Fc는 인간 Fc이고 Fc 수용체는 고친화도 인간 Fc 수용체이다. 특정 구체예에서, 고친화도 인간 Fc 수용체는 인간 FcγRI이다.
다양한 구체예에서, 세포 표면 캡쳐 단백질은 표면-결합된 항원이다. 특정 구체예에서, 항원은 막관통 도메인 또는 GPI 결합자로의 융합에 의해 표면에 결합된다.
원하는 단백질을 생산하는 풍부화된 세포를 선택하는 방법의 일부 양태에서, 재조합 항원-결합 단백질은 세포 표면 캡쳐 단백질 (CSCP), 검출 분자 (DM), 및/또는 차단 분자로서 사용될 수 있다. 그러므로, 본 발명은 재조합 항원-결합 단백질을 제공한다.
한 양태에서, 본 발명은 인간 IgG1-Fc 도메인, 인간 IgG2-Fc 도메인, 또는 인간 IgG4-Fc 도메인, 또는 예를 들어, 인간 Fc를 암호화하는, SEQ ID NO:26의 아미노산 서열을 포함하는 어떤 단백질에 결합하는 재조합 항원-결합 단백질을 제공한다. 일부 구체예에서, 재조합 항원-결합 단백질은 표면 플라스몬 공명(surface plasmon resonance) 검정에서 측정된 바와 같이 약 40 nM 미만의 KD로 폴리펩티드에 결합한다.
일부 구체예에서, 재조합 항원-결합 단백질은 SEQ ID NO:15와 적어도 95% 동일한 아미노산 서열을 갖는 중쇄 가변 영역 (HCVR), 또는 SEQ ID NO:16과 적어도 95% 동일한 아미노산 서열을 갖는 경쇄 가변 영역 (LCVR)의 하나 이상의 상보성 결정 영역 (complementarity determining region; CDR)을 포함한다. 한 경우에서, 단백질은 SEQ ID NO:27의 아미노산 서열을 갖는 중쇄 CDR-1 (HCDR-1), SEQ ID NO:28의 아미노산 서열을 갖는 HCDR-2, SEQ ID NO:29의 아미노산 서열을 갖는 HCDR-3, SEQ ID NO:30의 아미노산 서열을 갖는 경쇄 CDR-1 (LCDR-1), 및 SEQ ID NO:31의 아미노산 서열을 갖는 LCDR-2를 포함한다. 일부 경우에서, 단백질은 SEQ ID NO:15와 적어도 95% 동일한 아미노산 서열을 가진 HCVR (이것들 중 일부는 SEQ ID NO:15와 동일하다) 및 SEQ ID NO: 16과 적어도 95% 동일한 아미노산 서열을 갖는 LCVR (이것들 중 일부는 SEQ ID NO:16과 동일하다)을 포함한다.
재조합 항원-결합 단백질은 항체이며, 검출 분자 (DM)로서 유용하다.
일부 구체예에서, 재조합 항원-결합 단백질은 ScFv 융합 단백질이며, 일부 경우에서 SEQ ID NO:15와 적어도 95% 동일한 (또는 동일한) 아미노산 서열을 가진 중쇄 가변 도메인, SEQ ID NO:16과 적어도 95% 동일한 (또는 동일한) 아미노산 서열을 가진 경쇄 가변 도메인, 및 막 앵커 도메인을 포함한다. 한 구체예에서, 막 앵커 도메인은 인간 FcγR1 단백질의 막관통 도메인과 같은 Fc 수용체로부터 유래되며, SEQ ID NO:17, 또는 SEQ ID NO:21에 의해 나타난 바와 같은데, 이것은 막관통 도메인, 뿐만 아니라 C-말단 세포질 도메인 (SEQ ID NO:18)을 함유한다. 한 특정 구체예에서, ScFv 융합 단백질은 SEQ ID NO:19의 아미노산 서열. 재조합 항원-결합 단백질을 갖는데, 이것은 ScFv 융합 단백질이고, CSCP 및 DM으로서 유용하다.
또 다른 양태에서, 본 발명은 이전 양태의 항원-결합 단백질을 암호화하는 폴리뉴클레오티드를 제공한다. 한 구체예에서, 항원-결합 단백질이 항체인 경우에서와 같이, 폴리뉴클레오티드는 경쇄를 암호화한다. 유사하게, 폴리뉴클레오티드는 중쇄를 암호화할 수도 있다. 항원-결합 단백질이 ScFv 융합 단백질인 경우에서, 폴리뉴클레오티드는 SEQ ID NO: 19의 ScFv-FcγRTM-cyto 융합 단백질을 암호화할 수도 있다. 예를 들어, SEQ ID NO: 20의 폴리뉴클레오티드는 SEQ ID NO:19를 암호화한다.
또 다른 양태에서, 본 발명은 이전 양태의 폴리뉴클레오티드를 포함하는 핵산 벡터를 제공한다. 한 구체예에서, 벡터는 업스트림 프로모터에 작동 가능하게 결합되고, 다운스트림 폴리아데닐화 서열로 이어지는 폴리뉴클레오티드를 포함하는데, 이것은 항원-결합 단백질을 암호화한다. 프로모터는, 예를 들어, CMV 프로모터와 같은 어떤 프로모터도 될 수 있다. 따라서, 한 경우에서, 벡터는 SEQ ID NO:25의 서열을 함유할 수도 있다. 한 구체예에서, 벡터는 예를 들어, 네오마이신 저항성과 같이, 선택 가능한 마커를 암호화하는 핵산 서열을 함유할 수도 있다. 한 구체예에서, 벡터는 녹색 형광 단백질 (GFP)과 같은 에너지 전달 단백질, 또는 황색 형광 단백질 (YFP)과 같은 이것의 유도체를 암호화하는 핵산 서열을 함유할 수도 있다. 따라서 한 경우에서, 벡터는 SEQ ID NO:24의 서열을 함유할 수도 있다.
벡터는 원형 또는 선형이거나, 숙주 세포의 게놈에 대한 에피솜이거나 숙주 세포의 게놈으로 통합될 수도 있다. 일부 구체예에서, 벡터는 원형 플라스미드인데, 이것은 한 특정 구체예에서 ScFv-FcγR-TM-cyto-암호화 폴리뉴클레오티드에 대하여 SEQ ID NO:23의 핵산 서열을 갖고, 또 다른 특정 구체예에서는 항체 중쇄-암호화 폴리뉴클레오티드의 핵산 서열을 포함하며, 또 다른 특정 구체예에서는 항체 경쇄-암호화 폴리뉴클레오티드의 핵산 서열을 포함한다. 일부 구체예에서, 벡터는 선형 구조물인데, 이것은 숙주 세포 염색체로 통합될 수도 있다. 한 특정 구체예에서, 선형 구조물은 ScFv-FcγR-TM-cyto-암호화 폴리뉴클레오티드에 대하여 SEQ ID NO:22의 핵산 서열을 갖는다. 또 다른 특정 구체예에서, 선형 구조물은 항체 중쇄-암호화 폴리뉴클레오티드의 핵산 서열을 포함한다. 또 다른 특정 구체예에서, 선형 구조물은 항체 경쇄-암호화 폴리뉴클레오티드의 핵산 서열을 포함한다.
숙주 세포는 어떤 세포, 원핵세포 또는 진핵세포도 될 수 있다. 하지만, 한 특정 구체예에서, 숙주 세포는 CHO 세포, 예를 들어, CHO-K1 세포이다.
또 다른 양태에서, 본 발명은 이전 양태의 항원-결합 단백질을 발현하고, 및/또는 이전 양태의 폴리뉴클레오티드 또는 핵산 벡터를 함유하는 숙주 세포를 제공한다. 일부 구체예에서, 숙주 세포는 CHO 세포이다. 특정 구체예에서, 숙주 세포는 CHO-K1 세포이다. 한 구체예에서, 숙주 세포는 원하는 단백질의 생산에 사용되고, 항원-결합 단백질은 본 출원에서 개시된 방법에 따라 세포 표면 캡쳐 단백질로서 사용된다.
한 양태에서, 본 발명은 원하는 단백질의 생산에 있어서 유용한 숙주 세포를 제공한다. 숙주 세포는 이전 양태의 폴리뉴클레오티드 또는 핵산 벡터를 가지고 있고, 이전 양태의 항원-결합 단백질을 생산하는데, 이것은 세포 표면 캡쳐 단백질로서 역할을 한다. 세포 표면 캡쳐 단백질은 숙주 세포 내부에서 원하는 단백질에 결합하고, 세포의 분비 기구를 통해 전달되며, 숙주 세포의 표면 상에서 발현된다. 따라서, 한 구체예에서, 숙주 세포는 숙주 세포 원형질막에 위치한 세포 표면 캡쳐 단백질을 포함하며, 캡쳐링 모이어티(capturing moiety)는 세포의 외부에 직면한다. 한 구체예에서, 세포 표면 캡쳐 분자는 원하는 단백질에 결합되는데, 이것은 원형질 막에 위치하고 세포의 외부로 배향된다.
한 구체예에서, 숙주 세포는 Fc 도메인을 함유하는 원하는 단백질에 결합하는 ScFv 융합 단백질을 생산하거나 또는 생산할 수 있는데, 이것은 IMGT 위치 95에서 히스티딘 및 IMGT 위치 96에서 티로신을 함유한다. 예는 IgG1, IgG2, 및 IgG4 단백질을 포함한다. 한 구체예에서, ScFv 융합 단백질은 SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, 및 SEQ ID NO:31에서 제시된 아미노산 서열을 함유한다. 한 특정 구체예에서, ScFv 융합 단백질은 SEQ ID NO:19의 아미노산 서열을 포함한다. 특정 구체예에서, 숙주 세포는 원형질 막에 위치하고 IgG1, IgG2 또는 IgG4, 또는 IgG1, IgG2 또는 IgG4 중 적어도 하나의 중쇄를 함유하는 이중 특이적 항체에 결합되며, 또 다른 타입이거나 하나 이상의 아미노산 치환을 함유하는 제2 중쇄를 가질 수도 있는 세포 표면 캡쳐 단백질을 포함한다.
한 양태에서, 본 발명은 IMGT 엑손 넘버링(exon numbering) 시스템에 따라 (a) 95R, 및 (b) 95R 및 96F, 또는 EU 넘버링 시스템에 따라 (a') 435R, 및 (b') 435R 및 436F로 구성된 군으로부터 선택된 하나 이상의 아미노산 치환을 포함하는 치환된 CH3 폴리펩티드에 결합하는 재조합 항원-결합 단백질, 또는 예를 들어, 치환된 인간 Fc (Fc*로도 알려져 있음)를 암호화하는, SEQ ID NO:42의 아미노산 서열을 포함하는 어떤 단백질도 제공한다. 일부 구체예에서, 재조합 항원-결합 단백질은 표면 플라스몬 공명 검정에서 측정된 바와 같이 약 60 nM 미만의 KD로 폴리펩티드에 결합한다.
일부 구체예에서, 재조합 항원-결합 단백질은 SEQ ID NO:38과 적어도 95% 동일한 아미노산 서열을 갖는 중쇄 가변 영역 (HCVR), 또는 SEQ ID NO:39과 적어도 95% 동일한 아미노산 서열을 갖는 경쇄 가변 영역 (LCVR)의 하나 이상의 상보성 결정 영역 (CDR)을 포함한다. 한 경우에서, 단백질은 SEQ ID NO:32의 아미노산을 갖는 중쇄 CDR-1 (HCDR1), SEQ ID NO:33의 아미노산 서열을 갖는 HCDR-2, SEQ ID NO:34의 아미노산 서열을 갖는 HCDR-3, SEQ ID NO:35의 아미노산 서열을 갖는 경쇄 CDR-1 (LCDR-1), 및 SEQ ID NO:36의 아미노산 서열을 갖는 LCDR-2를 포함한다. 일부 경우에서, 단백질은 SEQ ID NO:38과 적어도 95% 동일한 아미노산 서열을 갖는 HCVR (이것들 중 일부는 SEQ ID NO:38과 동일하다) 및 SEQ ID NO:39와 적어도 95% 동일한 아미노산 서열을 갖는 LCVR (이것들 중 일부는 SEQ ID NO:39와 동일하다)을 포함한다.
일부 구체예에서, 재조합 항원-결합 단백질은 항체인데, 이것은 중쇄 및 경쇄를 포함한다. 중쇄는 SEQ ID NO:40과 적어도 95% 동일한 (또는 100% 동일한) 아미노산 서열을 포함할 수도 있다. 경쇄는 SEQ ID NO:41과 적어도 95% 동일한 (또는 100% 동일한) 아미노산 서열을 포함할 수도 있다. 항체인 재조합 항원-결합 단백질은 검출 분자 (DM)로서 유용하다.
일부 구체예에서, 재조합 항원-결합 단백질은 ScFv 융합 단백질인데, 이것은 일부 경우에서 SEQ ID NO:38과 적어도 95% 동일한 (또는 동일한) 아미노산 서열을 갖는 중쇄 가변 도메인, SEQ ID NO:39와 적어도 95% 동일한 (또는 동일한) 아미노산 서열을 갖는 경쇄 가변 도메인, 및 막 앵커 도메인을 포함한다. 한 구체예에서, 막 앵커 도메인은, 인간 FcγR1 단백질의 막관통 도메인과 같이, Fc 수용체로부터 유래되며, SEQ ID NO:17, 또는 SEQ ID NO:21에 의해 나타난 바와 같은데, 이것은 막관통 도메인, 뿐만 아니라 SEQ ID NO:19의 C-말단 세포질 도메인을 함유한다. 한 특정 구체예에서, ScFv 융합 단백질은 SEQ ID NO:43의 아미노산 서열을 갖는다. 재조합 항원-결합 단백질은 ScFv 융합 단백질이며, CSCP 및 DM로서 유용하다.
또 다른 양태에서, 본 발명은 이전 양태의 항원-결합 단백질을 암호화하는 폴리뉴클레오티드를 제공한다. 한 구체예에서, 항원-결합 단백질이 항체인 경우에서와 같이, 폴리뉴클레오티드는 경쇄, 예를 들어, SEQ ID NO:41의 경쇄를 암호화한다. 유사하게, 폴리뉴클레오티드는 중쇄, 예를 들어, SEQ ID NO:40의 중쇄를 암호화할 수도 있다. 항원-결합 단백질이 ScFv 융합 단백질인 경우에서, 폴리뉴클레오티드는 SEQ ID NO:43의 ScFv-FcγR-TM-cyto 융합 단백질을 암호화할 수도 있다. 대표적인 예의 폴리뉴클레오티드는 각각 SEQ ID NO:49, 50 및 51의 상기 폴리뉴클레오티드를 포함한다.
또 다른 양태에서, 본 발명은 이전 양태의 폴리뉴클레오티드를 포함하는 핵산 벡터를 제공한다. 한 구체예에서, 벡터는 업스트림 프로모터에 작동 가능하게 결합되고, 다운스트림 폴리아데닐화 서열로 이어지는 폴리뉴클레오티드를 포함하는데, 이것은 항원-결합 단백질을 암호화한다. 프로모터는, 예를 들어, CMV 프로모터와 같은 어떤 프로모터도 될 수 있다. 따라서 한 경우에서, 벡터는 SEQ ID NO:47의 서열을 함유할 수도 있다. 한 구체예에서, 벡터는, 예를 들어, 네오마이신 저항성과 같은 선택 가능한 마커를 암호화하는 핵산 서열을 함유할 수도 있다. 한 구체예에서, 벡터는 녹색 형광 단백질 (GFP)과 같은 녹색 형광 에너지 전달 단백질, 또는 황색 형광 단백질 (YFP)과 같은 이것의 유도체를 암호화하는 핵산 서열을 함유할 수도 있다. 따라서 한 경우에서, 벡터는 SEQ ID NO:46의 서열을 함유할 수도 있다.
벡터는 원형 또는 선형이거나, 숙주 세포의 게놈에 대한 에피솜이거나 숙주 세포의 게놈에 통합될 수도 있다. 일부 구체예에서, 벡터는 원형 플라스미드인데, 이것은 한 특정 구체예에서, ScFv-FcγR-TM-cyto-암호화 폴리뉴클레오티드에 대하여 SEQ ID NO:44의 핵산 서열을 갖고, 또 다른 특정 구체예에서는 항체 중쇄-암호화 폴리뉴클레오티드의 핵산 서열을 가지며, 또 다른 특정 구체예에서는 항체 경쇄-암호화 폴리뉴클레오티드의 핵산 서열을 갖는다. 일부 구체예에서, 벡터는 선형 구조물인데, 이것은 숙주 세포 염색체로 통합될 수도 있다. 한 특정 구체예에서, 선형 구조물은 ScFv-FcγR-TM-cyto-암호화 폴리뉴클레오티드에 대하여 SEQ ID NO:51의 핵산 서열을 포함한다. 또 다른 특정 구체예에서, 선형 구조물은 항체 중쇄-암호화 폴리뉴클레오티드에 대하여 SEQ ID NO:50의 핵산 서열을 포함한다. 또 다른 특정 구체예에서, 선형 구조물은 항체 경쇄-암호화 폴리뉴클레오티드에 대하여 SEQ ID NO:49의 핵산 서열을 포함한다.
숙주 세포는 어떤 세포, 원핵세포 또는 진핵세포도 될 수 있다. 하지만, 한 특정 구체예에서, 숙주 세포는 CHO 세포, 예를 들어, CHO-K1 세포이다.
또 다른 양태에서, 본 발명은 이전 양태의 항원-결합 단백질을 발현하고, 및/또는 이전 양태의 폴리뉴클레오티드 또는 핵산 벡터를 함유하는 숙주 세포를 제공한다. 일부 구체예에서, 숙주 세포는 CHO 세포이다. 특정 구체예에서, 숙주 세포는 CHO-K1 세포이다. 한 구체예에서, 숙주 세포는 원하는 단백질의 생산에 사용되고, 항원-결합 단백질은 본 출원에서 개시된 방법에 따라 세포 표면 캡쳐 단백질로서 사용된다.
한 양태에서, 본 발명은 원하는 단백질의 생산에 있어서 유용한 숙주 세포를 제공한다. 숙주 세포는 이전 양태의 폴리뉴클레오티드 또는 핵산 벡터를 가지고 있고, 이전 양태의 항원-결합 단백질을 생산하는데, 이것은 세포 표면 캡쳐 단백질로서 역할을 한다. 세포 표면 캡쳐 단백질은 숙주 세포 내부에서 원하는 단백질에 결합하고, 세포의 분비 기구를 통해 전달되며, 숙주 세포의 표면 상에서 발현된다. 따라서, 한 구체예에서, 숙주 세포는 숙주 세포 원형질막에 위치한 세포 표면 캡쳐 단백질을 포함하며, 캡쳐링 모이어티는 세포의 외부에 직면한다. 한 구체예에서, 세포 표면 캡쳐 분자는 원하는 단백질에 결합되는데, 이것은 원형질 막에 위치하고 세포의 외부로 배향된다.
한 구체예에서, 숙주 세포는 Fc 도메인을 함유하는 원하는 단백질에 결합하는 ScFv 융합 단백질을 생산하거나 또는 생산할 수 있는데, 이것은 IMGT 위치 95에서 아르기닌 및 IMGT 위치 96에서 티로신을 함유한다 (Fc*). 예는 IgG3 및 IgG1, IgG2, 및 IgG4 단백질의 치환된 CH3 영역을 포함한다. 한 구체예에서, ScFv 융합 단백질은 SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36 및 SEQ ID NO:37에서 제시된 아미노산 서열을 함유한다. 한 특정 구체예에서, ScFv 융합 단백질은 SEQ ID NO:43의 아미노산 서열을 포함한다. 특정 구체예에서, 숙주 세포는 원형질 막에 위치하고 IgG3 또는 치환된 IgG1, IgG2 또는 IgG4에 결합된 세포 표면 캡쳐 단백질을 포함하는데, 이것은 IMGT 위치 95에서 아르기닌 및 IMGT 위치 96에서 페닐알라닌 ("Fc*"), 또는 Fc* 타입의 적어도 하나의 중쇄 및 IgG1, IgG2 또는 IgG4 야생형의 다른 중쇄를 함유하는 이중 특이적 항체를 함유한다.
또 다른 양태에서, 본 발명은 원하는 단백질 (POI)을 안정하게 발현하는 세포를 검출하거나, 분리하거나, 또는 풍부하게 하는 방법을 제공한다. 방법은 숙주 세포에서 세포 표면 캡쳐 단백질 (CSCP) 및 POI를 발현하는 단계를 포함한다. 이 방법에 따라, CSCP는 POI 상의 "제1 부위"에 결합하여 숙주 세포 내부에서 CSCP-POI 복합체를 형성한다. 이 CSCP-POI 복합체는 그때 숙주 세포의 분비 세스템을 통해 전달되고, 세포로부터 분비된다. CSCP가 막 결합 도메인 (예를 들어, SEQ ID NO:17)을 함유하기 때문에, CSCP-POI 복합체는 숙주 세포의 표면 상에서 디스플레이되며, POI는 세포 외부에 노출된다. 방법에 따라서, 숙주 세포는 그때 검출 분자 (DM)와 접촉되는데, 이것은 POI 상의 "제2 부위"에 결합한다. DM에 결합하는 상기 세포는 확인, 분리, 풀링(pooling), 및/또는 풍부화(enrichment)에 대하여 선택된다. 한 구체예에서, DM-결합된 숙주 세포는 형광 활성화된 세포 분류에 의해 선택된다.
한 구체예에서, 방법은 또한 숙주 세포를 선택하기 전에 세포를 차단 분자와 접촉시키는 단계를 포함한다. 차단 분자는 POI에 결합되지 않은 어떤 CSCP에도 결합한다. 차단 분자는 CSCP-POI 복합체에 결합하지 않는다.
일부 구체예에서, POI는 두 개의 중쇄 및 두 개의 경쇄를 포함하는 항체와 같은 다수의 서브유닛을 함유한다. 상기 경우에서, POI 상의 제1 부위는 제1 서브유닛 상에 있을 수도 있고, POI 상의 제2 부위는 제2 서브유닛 상에 있을 수도 있다. 일부 구체예에서, POI는 헤테로다이머 단백질과 같은 다수의 서브유닛을 함유한다. 헤테로다이머 단백질의 경우에서, POI 상의 제1 부위는 제1 수용체와 같은 제1 서브유닛 상에 있을 수도 있고, POI 상의 제2 부위는 제2 수용체 또는 공수용체와 같은 제2 서브유닛 상에 있을 수도 있다. 일부 구체예에서, 헤테로다이머 단백질은 상호작용하여 헤테로다이머를 형성하는 상이한 수용체이다. POI가 항체인 경우, POI 상의 제1 부위는 제1 중쇄 상에 있을 수도 있고, POI 상의 제2 부위는 제2 중쇄 상에 있을 수도 있다. 일부 구체예에서, 항체는 야생형 CH3 도메인을 갖는 적어도 하나의 중쇄 및 CH3 도메인에서 적어도 하나의 아미노산 치환을 가진 다른 중쇄를 항체와 같이, 적어도 하나의 아미노산이 다른 서브유닛을 함유한다. 이 경우에서, CSCP는 본원에서 설명된 바와 같이 항원-결합 단백질, 예를 들어, 항원 또는 항-Ig ScFv 융합 단백질일 수도 있다. 본원에서, 검출 분자 (DM)는 본원에서 설명된 바와 같이 표지된 재조합 항원-결합 단백질, 예를 들어, 표지된 항원 또는 항-Ig 항체 또는 ScFv 분자를 포함할 수도 있다.
일부 경우에서, 예를 들어 POI가 이중 특이적 항체인 경우에, 제1 부위는 IMGT 엑손 넘버링 시스템에 따라 위치 95에서 히스티딘 잔기 및 IMGT 엑손 넘버링 시스템에 따라 위치 96에서 티로신 잔기를 함유하는 CH3 도메인을 갖는 중쇄 상에 존재할 수도 있다 (Fc). 그때, 제2 부위는 IMGT 엑손 넘버링 시스템에 따라 위치 95에서 아르기닌 잔기 및 IMGT 엑손 넘버링 시스템에 따라 위치 96에서 페닐알라닌 잔기를 함유하는 CH3 도메인을 갖는 중쇄 상에 존재할 수도 있다 (Fc*). 이 경우에서, CSCP는 SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, 및 SEQ ID NO:31의 아미노산을 함유하는 ScFv 융합 단백질과 같이, 이전 양태에서 설명된 항원-결합 단백질일 수도 있는데; 이것은 특정 구체예에서 SEQ ID NO:19를 포함한다. 또한 본원에서 검출 분자 (DM)는 SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, 및 SEQ ID NO:37의 아미노산 서열을 함유하는 항체 또는 ScFv 분자와 같이, 이전 양태에서 설명된 표지된 재조합 항원-결합 단백질을 포함할 수도 있는데; 이것은 특정 구체예에서 SEQ ID NO:40 및 SEQ ID NO:41 (항-Fc* 항체), 또는 SEQ ID NO:43 (ScFv*)을 포함한다. 본원에서, 차단 분자는 hFc와 같은 Fc 폴리펩티드 (예를 들어, 단일 사슬), 또는 DM에 결합하지 않고 CSCP에 결합할 수 있는 어떤 분자도 될 수 있다. 한 구체예에서, 검출 분자는 표지된 항-인간 IgG F(ab')2일 수도 있다.
POI가 이중 특이적 항체인 경우에서, 제1 부위는 IMGT 엑손 넘버링 시스템에 따라 위치 95에서 아르기닌 잔기 및 IMGT 엑손 넘버링 시스템에 따라 위치 96에서 페닐알라닌 잔기 (Fc*)를 함유하는 CH3 도메인을 갖는 중쇄 상에 있을 수도 있다. 그때, 제2 부위는 IMGT 엑손 넘버링 시스템에 따라 위치 95에서 히스티딘 잔기 및 IMGT 엑손 넘버링 시스템에 따라 위치 96에서 티로신 잔기를 함유하는 CH3 도메인을 갖는 중쇄 상에 있을 수도 있다. 이 경우에서, CSCP는 SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, 및 SEQ ID NO:37의 아미노산 서열을 함유하는 ScFv 융합 단백질과 같이, 이전 양태에서 설명된 항원-결합 단백질일 수도 있는데; 이것은 특정 구체예에서 SEQ ID NO:43을 포함한다. 또한, 본원에서는, 검출 분자 (DM)는 SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, 및 SEQ NO:31의 아미노산 서열을 함유하는 항체 또는 ScFv 분자와 같이, 이전 양태에서 설명된 표지된 재조합 항원-결합 단백질을 포함할 수도 있는데 이것은 특정 구체예에서 중쇄 및 경쇄 (항-hFc 항체), 또는 SEQ ID NO: 19 (ScFv)를 포함한다. 여기에서, 차단 분자는 Fc* 폴리펩티드 (예를 들어, 단일 사슬), 또는 DM에 결합하지 않고 CSCP에 결합할 수 있는 어떤 분자도 될 수 있다. 한 구체예에서, 검출 분자는 표지된 항-인간 IgG F(ab')2일 수도 있다.
일부 양태에서, 본 발명은 헤테로다이머 단백질을 안정하게 발현하는 세포를 검출하거나 분리하는 방법을 제공하는데 (a) 숙주 세포에서 세포 표면 캡쳐 단백질 (CSCP) 및 헤테로다이머 단백질을 발현하는 단계이며, (i) CSCP는 헤테로다이머 단백질 상의 제1 부위에 결합하여 숙주 세포 내부에서 CSCP-헤테로다이머 단백질 복합체를 형성하고, (ii) CSCP-헤테로다이머 단백질 복합체는 숙주 세포를 통해 전달되며, (iii) 그때 숙주 세포의 표면 상에 디스플레이되는 단계; (b) 숙주 세포를 검출 분자와 접촉시키는 단계이며, 검출 분자는 헤테로다이머 단백질 상의 제2 부위에 결합하는 단계; 및 (c) 검출 분자에 결합하는 숙주 세포를 선택하는 단계를 포함한다. 일부 구체예에서, 헤테로다이머 단백질은 다수의 서브유닛을 포함하며 헤테로다이머 단백질 상의 제1 부위는 제1 서브유닛 상에 있고, 헤테로다이머 단백질 상의 제2 부위는 제2 서브유닛 상에 있다. 일부 구체예에서, 세포 표면 캡쳐 분자는 제1 서브유닛에는 결합할 수 있지만 제2 서브유닛에는 결합할 수 없는 항원, 단백질 A, 또는 ScFv를 포함한다.
한 양태에서, 본 발명은 숙주 세포에서 세포 표면 캡쳐 단백질 ("CSCP"), 항체 경쇄, IMGT 위치 95에서 히스티딘 및 IMGT 위치 96에서 티로신을 포함하는 CH3 도메인을 함유하는 제1 항체 중쇄, 및 IMGT 위치 95에서 아르기닌 및 IMGT 위치 96에서 페닐알라닌을 포함하는 CH3 도메인을 함유하는 제2 항체 중쇄를 발현하는 단계를 포함하는 이중 특이적 항체를 생산하는 방법을 제공한다. 숙주 세포 내부에서, CSCP는 제1 항체 중쇄에 결합하지만 제2 항체 중쇄에 결합하지 않는 한편, 제2 항체 중쇄는 제1 항체 중쇄에 결합하며, 경쇄는 중쇄에 결합하고, 따라서 CSCP-항체 삼중 복합체를 형성한다. 이 삼중 복합체는 숙주 세포의 표면 상으로 분비되어 제공된다. 숙주 세포는 차단 분자와 접촉될 수도 있는데, 이것은 세포 표면 상에, 하지만 CSCP가 원하는 항체에 결합하지 않는 상기 경우, 즉, "빈" CSCP에서만 CSCP에 결합한다. 숙주 세포는 그때 제2 항체 중쇄에 결합하거나 걸합할 수 있는 DM에 접촉된다. DM에 결합하는 숙주 세포가 확인되고, 선택되고, 및/또는 풀링된다. 일부 구체예에서, DM에 결합하는 숙주 세포가 선택되고, 풀링되고, 배양되고 확장되고, 그때 또 다른 라운드의 발현, 검출, 선택, 풀링 및 확장을 받는다. 이 공정은 높은 역가의 이중 특이적 항체의 생산을 풍부화하기 위해 여러 번 반복될 수도 있다.
한 구체예에서, 방법에 이용된 CSCP는 SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, 및 SEQ ID NO:31의 아미노산 서열을 함유하는 ScFv-융합 단백질이다. 한 구체예에서, CSCP는 SEQ ID NO:19의 아미노산 서열을 포함한다. 한 구체예에서, 방법에서 이용된 DM은 SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, 및 SEQ ID NO:37의 아미노산 서열을 함유하는 단백질이다. 한 구체예에서, DM은 SEQ ID NO:40의 중쇄 서열 및 SEQ ID NO:41의 경쇄 서열을 포함하는 항체이다. 또 다른 구체예에서, DM은 SEQ ID NO:43의 아미노산 서열을 함유하는 ScFv 융합 단백질이다. 표지, 예를 들어, 형광 모이어티 유사 FITC 또는 Alexa Fluor® 488이 DM에 부착될 수도 있다. 형광 활성화된 세포 분류는 검출 및 선택 수단으로서 사용될 수도 있다.
대안의 구체예에서, 이중 특이적 항체를 생산하는 방법은 숙주 세포에서 세포 표면 캡쳐 단백질 ("CSCP"), 항체 경쇄, IMGT 위치 95에서 아르기닌 및 IMGT 위치에서 페닐알라닌 96 (Fc*)를 포함하는 CH3 도메인을 함유하는 제1 항체 중쇄, 및 IMGT 위치 95에서 히스티딘 및 IMGT 위치 96에서 티로신을 포함하는 CH3 도메인을 함유하는 제2 항체 중쇄를 발현하는 단계를 포함한다. 숙주 세포 내에서, CSCP는 제1 항체 중쇄에 결합하지만 제2 항체 중쇄에 결합하지 않는 한편, 제2 항체 중쇄는 제1 항체 중쇄에 결합하고, 경쇄는 중쇄에 결합하며, 따라서 CSCP-항체 삼중 복합체를 형성한다. 이 삼중 복합체는 숙주 세포의 표면 상으로 분비되고 제공된다. 숙주 세포는 차단 분자와 접촉될 수도 있는데, 이것은 세포 표면 상에서, 하지만 CSCP가 원하는 항체에 결합하지 않는 상기 경우, 즉, "빈" CSCP에서만 CSCP에 결합한다. 숙주 세포는 그때 제2 항체 중쇄에 결합하거나 결합할 수 있는 DM과 접촉된다. DM에 결합하는 숙주 세포가 확인되고, 선택되고, 및/또는 풀링된다. 일부 구체예에서, DM에 결합하는 숙주 세포가 선택되고, 풀링되고, 배양되고 확장되고, 그때 또 다른 라운드의 발현, 검출, 선택, 풀링 및 확장을 받는다. 이 공정은 높은 역가의 이중 특이적 항체의 생산을 풍부화하기 위해 여러 번 반복될 수도 있다.
이 대안의 구체예 중 한 구체예에서, 방법에서 이용된 CSCP는 SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, 및 SEQ ID NO:37의 아미노산 서열을 함유하는 ScFv-융합 단백질이다. 한 구체예에서, CSCP는 SEQ ID NO:43의 아미노산 서열을 포함한다. 한 구체예에서, 방법에서 이용된 DM은 SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, 및 SEQ ID NO:31의 아미노산 서열을 함유하는 단백질이다. 한 구체예에서, DM은 중쇄 서열 및 경쇄 서열을 포함하는 항체이다. 또 다른 구체예에서 DM은 SEQ ID NO: 19의 아미노산 서열을 함유하는 ScFv 융합 단백질이다. 표지, 예를 들어, 형광 모이어티 유사 FITC 또는 Alexa Fluor® 488은 DM에 부착될 수도 있다. 형광 활성화된 세포 분류는 검출 및 선택 수단으로서 사용될 수도 있다.
첫 번째 구체예 및 대안의 구체예 둘 다에서, 반복적인 선택, 풀링 및 확장의 생성물인 숙주 세포는 적어도 2 g/L의 역가로 이중 특이적 항체를 생산할 수 있거나, 또는 생산하며, 이중 특이적 항체 종 (Fc/Fc*)은 숙주 세포에 의해 생산된 전체 항체 중 적어도 40 질량% (Fc/Fc + Fc Fc* + Fc/Fc*)를 나타낸다.
다른 목적 및 이점은 다음의 상세한 설명의 검토로부터 분명해질 것이다.
본 방법이 설명되기 전에, 본 발명은 특별한 방법, 및 설명된 실험 조건에 제한되지 않기 때문에, 방법 및 조건은 달라질 수도 있는 것으로 이해되어야 한다. 또한 본원에서 사용된 용어는 특별한 구체예를 설명하기 위한 목적만을 위한 것이며, 본 발명의 범위는 첨부된 청구범위에 의해서만 제한될 것이기 때문에 제한하려는 것이 아닌 것으로 이해되어야 한다.
본 명세서 및 첨부된 청구범위에서 사용된 바와 같이, 단수형 "하나의(a)", "하나의(an)", 및 "그(the)"는 문맥이 분명하게 달리 지시하지 않으면 복수의 지시대상을 포함한다. 따라서 예를 들어, "방법"에 대한 지시대상은 하나 이상의 방법들, 및/또는 본원에서 설명된 및/또는 본 개시물 등의 판독 시 당업자에게 분명해질 타입의 단계들을 포함한다.
달리 정의되지 않으면, 본원에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속한 업계의 당업자에 의해 보통 이해되는 바와 같은 의미를 갖는다. 본원에서 설명된 것들과 유사하거나 동등한 어떤 방법 및 재료도 본 발명의 실행 또는 테스트에 사용될 수 있지만, 바람직한 방법 및 재료가 지금 설명된다. 본원에서 언급된 모든 간행물은 그 전문이 본원에 참고로 포함된다.
일반적인 설명
본 발명의 방법은 단백질-분비 세포를 분리하고 확인하는 현재의 방법보다 상당한 이점을 제공한다. 예를 들어, 항체를 분비하는 세포는 원하는 특이성, 친화력, 또는 이소타입을 기반으로 하여 신속하고 편리하게 분리될 수도 있다. 게다가, 생산된 분비된 단백질의 양은 선행 업계의 많은 방법들과 달리 직접적으로 정량될 수도 있으며 분비된 단백질의 생산은 간접적으로 정량된다.
최근에, 유동 세포 분석법을 활용하는 두 가지 추가의 방법이 안정한 고발현 세포주의 고속 대용량 분리를 위해 개발되었다. 첫 번째 방법은 GOI mRNA에 대한사적 판독을 포함하기 위해 발현 플라스미드의 변형을 수반한다. 이것은 GOI의 종결 코돈과 말단 폴리 A 부위 사이에, 내부 리보솜 진입 부위 (IRES) 및 단백질 생성물이 유동 세포 분석법에 의해 쉽게 관찰되는 유전자, 가장 빈번하게 녹색 형광 단백질 (GFP)를 삽입함으로써 가장 자주 달성된다 (Meng et al. (2000) Gene 242:201). IRES의 존재는 POI 및 GFP가 같은 mRNA로부터 번역되게 한다. 그러므로, GFP 유전자의 발현 수준은 GOI에 대한 mRNA 수준에 간접적으로 관련된다. 높은 수준으로 GFP를 축적하는 클론이 유동 세포 분석법에 의해 분리되고 그때 POI 생산을 위해 스크리닝된다. 이 방법이 재조합 구조물에서 IRES의 사용에 의해 GOI 발현과 리포터 유전자의 커플링에 의존하기 때문에, 그것은 히브리도마의 분리에 적용 가능하지 않다.
발현 클론의 분리에 있어서 유동 세포 분석법의 사용은 고속 대용량 포맷에서 많은 수의 클론의 신속한 분석을 허용한다. 게다가, 유동 세포 분석법의 사용은 세포의 직접적인 핸들링(handling)을 크게 감소시킨다. 불행하게도, GFP 생산 수준이 POI의 생산 수준의 직접적인 측정값은 아니다. 다양한 메커니즘은 분비된 POI의 생산을 GFP의 축적으로부터 분리시킬 수도 있다. POI 및 GFP 리포터의 생산에 있어서 차이는 두 유전자의 번역 효율, POI의 분비 효율, 또는 폴리시스트론성 mRNA의 안정성에 있어서 차이에서 기인할 수도 있다.
발현 클론을 분리하기 위해 유동 세포 분석법을 사용하는 또 다른 방법은 아가로스 미세방울 내 세포의 캡슐화를 수반한다 (Weaver et al. (1990) Methods Enzymol. 2:234). 이 방법에서 POI에 특이적인 비오티닐화된 항체는 스트렙타비딘을 통해 비오티닐화된 아가로스에 결합되고 이로 인해 분비된 POI가 미세방울 내에 캡쳐되고 유지된다 (Gray et al., (1995) J. Immunol. Methods 182:155). 트랩핑된(trapped) POI는 POI에 특이적인 항체로의 면역-염색에 의해 검출된다. 인접한 세포로부터 분비된 흡수적 POI로부터 캡슐화된 아가로스를 감소시키기 위해서, 세포는 저-투과성 배지에 배치된다. 임베딩(embedding) 아가로스에서 POI의 최고 항체 염색된 상기 세포가 유동 세포 분석법에 의해 확인되고 분리된다. 겔 미세방울 접근법은 GOI mRNA의 발현에 대하여 간접 스크리닝하는 대신에, POI를 분비하는 능력에 대하여 세포를 직접 스크리닝하지만, 분비된 POI를 트랩핑하고 염색하는데 적합한 항체의 이용 가능성이 필요하고 과정은 아가로스 겔 미세방울을 생성하기 위해 특별한 장치가 필요하다. 게다가, 일부 세포는 캡슐화 공정에 민감할 수도 있다.
본 방법의 변형은 POI에 특이적인 항체를 세포 표면에 직접적으로 결합시킴으로써 매트릭스(matrix)에서 세포의 임베딩에 대한 필요 조건을 피한다 (Manz et al. (1995) PNAS 92:1921-1925). 본 방법에서, 비오틴-히드록시숙시니미드 에스테르로 세포 표면 단백질의 비-특이적 비오티닐화는 POI에 결합할 수 있는 스트렙타비딘-컨쥬게이션된(conjugated) 항체와 접촉으로 이어진다. POI를 분비하는 세포는 그때 적절하게 표지된 2차 항체로 검출되는 POI로 도포되었다. 하지만, 주변 세포 사이에서 POI의 확산은 문제가 있으며, 이 방법은 또한 POI의 확산을 감소시키기 위해 고점성 배지를 필요로 한다. 이 고점성 배지가 세포의 식별에 필요하기 때문에, 세포는 세척되어야 하고 필요한 경우에는 세포 분류에 적합한 배지에 배치되어야 한다.
고발현 재조합 세포주의 확인 및 분리와 관련된 문제는 특히 원하는 항체를 발현하는 히브리도마의 분리에 적용된다. 하지만, 유용한 히브리도마의 확인은 여러 추가의 문제들을 포함하는데; 그것들은 먼저 항원-결합 활성에 대하여, 그 다음에 면역글로불린 이소타입에 대하여 스크리닝되어야 한다. 게다가, GFP-기반 방법은 히브리도마의 확인 및 분리에 적용 가능하지 않는데 히브리도마의 구조가 재조합 구조를 포함하지 않고 이로 인해 항체 유전자의 발현이 GFP와 같은 전사 리포터에 결합될 수 있기 때문이다. 스크리닝되는 클론의 수가 기존의 기술에 의해 제한되는 경우에 히브리도마 스크리닝은 느리고, 힘든 노력이다.
본 발명은 분비된 단백질을 생산하는 세포를 확인하고 분리하는 새롭고 이전에 알려지지 않은 방법을 설명한다. 본 발명은 세포 표면에 위치하여, POI에 결합하는 분자를 발현하는 세포주의 생산을 기반으로 한다. 세포 표면-디스플레이된 POI는 그때 다양한 검출 분자로 표지함으로써 검출될 수 있다. 세포 표면에 디스플레이된 POI의 양은, 특이적인 조건 하에서, 분비된 POI의 총량의 직접적인 측정값이다. POI 생산자들은 그때 비-생산자들로부터 분리될 수도 있고, 생산 수준 또는 POI 특성이 구별될 수도 있다. 본 발명의 이점은 그것이 mRNA의 간접적 측정 대신에 분비된 POI를 직접적으로 정량한다는 것이다.
본 발명은 POI를 생산하는 같은 세포에서 다양한 분비된 POI에 결합하는 세포 표면 캡쳐 분자를 발현하는 구조 또는 세포의 사용에 관한 것이다. 세포가 POI를 분비하는 동안, 이 세포 표면 캡쳐 분자들이 그것에 결합하거나, 또는 POI와 세포 표면 캡쳐 분자의 복합체가 세포 내에서 형성되고 그때 분비될 수도 있다. 결합은 자가분비 방식으로 또는 분비되는 동안 발생할 수도 있다. 분비된 POI를 생산하는 세포는 그때 확인되고 분리될 수도 있다. 이러한 확인 및 분리는 POI의 특성, POI의 생산 또는 이것들의 결핍을 기반으로 할 수도 있거나, 또는 생산의 명시된 수준에 의한 것일 수도 있다. 세포 표면 캡쳐 분자 및/또는 POI는 그것의 고유한 상태에서 세포에 의해 생산될 수도 있거나, 또는 세포 표면 캡쳐 분자 및/또는 POI는 재조합에 의해 생산될 수도 있다. 구조 또는 이러한 세포의 사용을 통해서, 어떤 분비된 단백질도 제공된 세포 표면 캡쳐 분자에 의해 캡쳐될 수 있으며, 둘 사이에 해당하는 친화도가 있다는 것을 제공한다. 더 설명된 바와 같이, 어떤 분자도 그것이 세포 표면 캡쳐 분자로서 사용될 수 있도록 조작될 수 있다. 그러므로, 본 발명은 단백질을 분비하는 어떤 세포를 분리하는데 활용될 수도 있다.
대부분의 단백질은 본 발명에 의해 설명된 바와 같이 세포 표면 캡쳐 분자로서 기능하는 능력을 가지고 있다. 필요한 것은 세포막에 고정되고 세포 외 공간에 노출되는, 원하는 단백질의 능력이다. 원하는 세포가 신호 서열을 갖고 있는 경우 제한은 아니지만 막관통 앵커 또는 GPI 결합 신호를 포함하는 막 앵커만이 세포 표면 캡쳐 분자에 추가되어야 하고 이로 인해 그것은 세포의 외부에 노출된 세포막에서 고정된 채로 유지된다. 게다가, 원하는 단백질이 신호 서열이 없는 경우, 신호 서열은 원하는 단백질의 아미노 말단에 추가될 수도 있으며, 이로 인해 그것은 세포 표면으로 전달된다. 신호 서열 및 막 앵커는 세포에 고유하거나, 재조합형이거나, 또는 합성형일 수도 있다.
세포는 종종 내인성으로 또는 재조합 DNA의 도입 후에 다양한 단백질을 분비한다. 분비된 어떤 단백질도 확인될 수 있고 그것을 생산하는 세포는 본 발명의 방법에 따라 분리될 수도 있다. 이러한 분비된 단백질은 성장 인자, 성장 인자 수용체, 리간드, 가용성 수용체 구성요소, 항체, 이중 특이적 항체, 재조합 트랩(Trap) 분자, Fc-함유 융합 단백질, sTCR, TCR-Fc, 및 펩티드 호르몬을 포함하지만 이에 제한되지 않는다. 이러한 분비된 단백질은 재조합형일 수도 있거나 아닐 수도 있다. 즉, 원하는 세포로부터 일부 원하는 단백질의 분비는 추가의 뉴클레오티드 서열의 도입이 필요하지 않을 수도 있다. 예를 들어, B-세포 또는 원형질 세포로부터 항체의 분비는 재조합 뉴클레오티드 서열의 B-세포 또는 원형질 세포로의 도입의 결과는 아니다. 분비된 재조합 단백질은 당업자들에게 잘 알려져 있는 표준 분자 생물학 기술에 의해 생산될 수도 있다 (예를 들어, Sambrook, J., E. F. Fritsch And T. Maniatis. Molecular Cloning: A Laboratory Manual, Second Edition, Vols 1, 2, and 3, 1989; Current Protocols in Molecular Biology, Eds. Ausubel et al., Greene Publ. Assoc., Wiley Interscience, NY 참조). 이 분비된 단백질은 상업적 및 연구 목적에 유용하다. 본 발명은 본 발명의 방법론을 통해 이러한 분비된 단백질의 생산을 포함한다. 디스플레이된 POI로 세포의 검출은 디스플레이된 POI에 직접적으로 또는 간접적으로 결합할 수 있는 어떤 분자의 사용을 통해서도 달성될 수 있다. 이러한 검출 분자는 POI를 디스플레이하는 세포의 검출 및/또는 분리를 용이하게 할 수도 있다.
본 발명은, 그 중에서도, a) 세포 표면 캡쳐 분자로서 리간드-특이적 수용체를 사용하는 리간드-생산 세포, b) 세포 표면 캡쳐 분자로서 표면 결합된 수용체-특이적 리간드를 사용하는 가용성 수용체-생산 세포, c) 세포 표면 캡쳐 분자로서 항체-결합 단백질을 사용하는 항체-생산 세포, d) 세포 표면 캡쳐 분자로서 s-TCR-결합 단백질 (및, 예를 들어, TCR에 의해 인식된 항원)을 사용하는 sTCR, e) 세포 표면 캡쳐 분자로서 Fc-결합 단백질을 사용하는 TCR-Fc, 또는 f) FcγR 막관통 및 세포질 도메인에 융합된 ScFv 도메인을 포함하는 융합 단백질 캡쳐 분자를 사용하는, 단백질 A 결합을 폐지하는 CH3 도메인 중 하나에서 돌연변이를 가지고 있는 이중 특이적 항체의 분리에 적용 가능하다.
본 발명의 방법론에 따라, 세포는 먼저 세포 표면 캡쳐 분자가 발현되는 조건 하에서, 분비된 POI에 결합할 수 있는 세포 표면 캡쳐 분자를 암호화하는 뉴클레오티드 서열을 함유하는 벡터로 트랜스펙션된다. 이러한 세포 표면 캡쳐 분자의 적절한 생산자인 트랜스펙션된 세포가 그때 검출되고 분리되며, 이러한 세포들이 배양된다. 이 세포들은 POI를 자연적으로 생산할 수도 있거나, POI는 재조합으로 생산될 수도 있다. 세포가 POI를 자연적으로 생산하는 경우, 그것들은 검출 및 분리될 준비가 되어 있다. POI가 재조합으로 생산되면, 그때 명시된 세포 표면 캡쳐 분자를 발현하는 분리되고 배양된 세포는 분비된 POI가 발현되는 조건 하에서, POI를 암호화하는 제2 뉴클레오티드 서열로 트랜스펙션된다. 발현 시, 분비된 POI는 세포 표면 캡쳐 분자에 결합하고 결합된 POI를 나타내는 세포가 검출되고 분리된다.
POI가 세포에 의해 자연적으로 생산되는 경우, 세포는 POI를 암호화하는 뉴클레오티드 서열로 트랜스펙션되지 않을 것이다. 그러므로, 본 발명의 이 양태는 POI를 생산하는 모든 세포에 적용 가능하다. 게다가, 세포 표면 캡쳐 분자가 세포에 의해 자연적으로 생산되는 경우, 세포는 세포 표면 캡쳐 분자를 암호화하는 뉴클레오티드 서열로 트랜스펙션될 필요가 없다. 그러므로, 본 발명의 이 양태는 세포 표면 캡쳐 분자를 생산하는 모든 세포에 적용 가능하다.
다양한 숙주 세포가 트랜스펙션될 수도 있다. 이 세포들은 진핵세포 또는 원핵세포 기원의 것일 수도 있다. 세포들은 종종 불멸화된 진핵세포, 및 특히, 포유동물 세포, 예를 들어, 원숭이 신장 세포 (COS), 중국 햄스터 난소 세포 (CHO), HeLa 세포, 새끼 햄스터 신장 세포 (BHK), 인간 배아 신장 세포 (HEK293), 백혈구, 골수종, 제한은 아니지만 아데노바이러스 유전자로 트랜스펙션된 불멸화된 인간 망막 세포, 예를 들어, PER.C6™ 세포를 포함하는, 아데노바이러스 유전자로 트랜스펙션된 세포주, 예를 들어, AD5 E1, 및 배아 줄기 세포일 것이다. 세포는 또한 박테리아, 균류, 효모 및 곤충 세포를 포함하는 비포유동물 세포일 수도 있으며, 예를 들어, 에스체리키아 콜리(Escherichia coli), 바실루스 서브틸루스(Bacillus subtilus), 아스페르질루스 종(Aspergillus species), 사카로미세스 세레비시애(Saccharomyces cerevisiae), 및 피치아 파스토리스(Pichia pastoris)를 포함하지만, 이에 제한되지 않는다. 모든 세포들은 적절한 조건 하에 배양 트레이(tray) 배지에서 또는 시너지 작용하는 숙주에서 키워질 수도 있다. 가장 바람직한 세포는 배양 가능한 포유동물 세포일 것이다.
세포 표면 캡쳐 분자에 결합된 분비된 POI는 업계에 알려져 있는 다양한 기술에 의해 검출되고 분리될 수도 있다. 분비된 POI를 나타내는 배양 세포는 (a) 분비된 POI에 직접적으로 또는 간접적으로 결합할 수 있는 분자(들)과 접촉될 수도 있는데, 이러한 검출 분자(들)는, 예를 들어, 발색성, 형광원성, 착색된, 형광성, 또는 자성 표지와 같은 검출 표지를 함유할 수도 있다. 검출 분자에 결합된 표지가 검출될 수도 있고 세포는 다양한 방법을 사용하여 분리될 수도 있다. 가장 바람직하게, 세포 집단 내에서 표지가 검출될 것이고 세포는 유동 세포 분석법을 이용하여 분리될 것이다. 대안으로, 검출 분자는 POI를 디스플레이하는 세포의 직접적인 분리에 사용될 수도 있다. 이것은 검출 분자의 배양 플레이트, 상자성(paramagnetic) 분자, 또는 어떤 다른 입자 또는 고체 지지물로의 컨쥬게이션(conjugation)에 의해 달성될 수도 있다. 게다가, 디스플레이된 POI는 검출 분자 또는 POI의 속성에 의해 직접적으로 검출될 수도 있다.
한 구체예에서, 서로 결합하며 별개로 표지되는 두 개의 검출 분자는 상기 상호작용을 차단하는 디스플레이된 분비된 POI를 검출하기 위해 사용된다. 세포가 제1 검출 분자에 결합하여 제1 및 제2 검출 분자 사이의 상호작용을 차단하는 분비된 POI를 디스플레이하는 경우, 상기 세포는 그것의 표면 상에서 제1 검출 분자만의 존재를 기반으로 하여 분리될 수도 있다. 반면에, 세포가 제1 검출 분자에 결합하지만 제1 및 제2 검출 분자 사이의 상호작용을 차단하지 않는 분비된 POI를 디스플레이하는 경우, 상기 세포는 그것의 표면 상에서 두 개의 검출 분자의 존재를 기반으로 하여 분리될 수도 있다. 예를 들어, 수용체-리간드 복합체의 형성을 특이적으로 차단하거나, 차단하지 않는 항체를 발현하는 항체 생산 세포가 확인될 수도 있다. 검출 분자가 별개로 표지되는 수용체 및 그것의 리간드인 경우, 그때 수용체-리간드 복합체를 형성으로부터 차단하는 항체를 발현하는 항체 생산 세포는 그것의 표면 상에서 하나의 표지의 존재에 의해 검출될 수도 있는 반면에, 수용체-리간드 복합체를 형성으로부터 차단하지 않는 항체를 발현하는 항체 생산 세포는 그것의 표면 상의 두 개의 표지의 존재에 의해 검출될 수도 있다.
구체예 중 어떤 것에서 및 비-발현 세포 또는 덜 발현하는 세포로부터 발현 세포를 분리하는 것에 관하여, 주된 어려움 중 하나는, POI가 분비된 단백질일 때, 주변 세포 사이에서 POI의 확산이다. 그러므로, 세포 표면 상에서 분비된 POI를 캡쳐하도록 설계된 어떤 시스템도 발현 세포에서 주변 세포로의 POI 확산 및 상기 세포에 그것의 부착을 막는 것이 중요하다. 확산이 발생하게 되고, 주변 세포가 분비된 POI로 도포되는 경우, POI 도포의 정도에 기초한 세포의 분리는 고발현 세포를 낮은 발현 수준의 세포와 구별하는데 실패할 것이며, 발현 세포를 비-발현 세포로부터 효과적으로 분리하는데 실패할 수도 있다.
그러므로 본 발명의 한 구체예는 주변 세포 사이에서 분비된 POI의 확산을 차단하는 것이다. 이것은 세포 표면 캡쳐 분자 또는 POI에 결합하여 분비된 POI의 세포 표면 캡쳐 분자로의 결합을 막는 차단 분자의 추가에 의해 달성될 수도 있다. 이 양태에서, 검출 분자는 차단 분자에 결합하지 않는다. 예를 들어, 세포 표면 수용체가 hFcγRI이고 분비된 POI가 인간 IgG Fc 단편을 소유할 때, 그때 주변 세포 사이에서 분비된 POI의 확산은 외인성 래트 IgG의 배양 배지로의 추가에 의해 차단될 수도 있다. 분비된 POI를 디스플레이하고, 래트 IgG에 결합하지 않는 세포의 검출은 래트 IgG를 인식하지 않는 인간 IgG Fc에 특이적인 항체의 사용에 의해 성취된다. 또 다른 구체예에서, 주변 세포 사이에서 분비된 POI의 결합은 배지의 점성을 증가시킴으로써 감소된다.
본 발명의 한 구체예에서, 분비된 POI는 배지에서 축적할 수 없다. 이것은 POI의 짧은 발현이 세포 표면 캡쳐 분자에 결합하는데 충분한 POI 하지만 확산에 불충분한 양을 발생시키도록 분비된 POI 및/또는 세포 표면 캡쳐 분자의 발현을 조절함으로써 달성될 수도 있다. 또 다른 구체예에서, 세포는 축적된 POI를 함유하는 배지로부터 제거될 수도 있으며, 세포에 결합된 POI가 벗겨지고, POI 발현은 분비된 POI가 배지에서 축적되지 않도록 제한된 기간 동안 계속하게 된다. 단백질은 업계에 알려져 있는 방법, 예를 들어, 낮은 pH 버퍼로 세포를 세척함으로써 벗겨질 수도 있다.
본 발명에 따라, 대부분의 검출 분자에 결합하는 세포 집단에서 상기 세포들은 또한 대부분의 분비된 POI를 발현한다. 사실, 개개의 세포가 분비하는 POI가 많을 수록, 더 많은 POI가 세포 표면 상에 디스플레이된다. 표면-디스플레이된 POI의 양과 상기 세포에서 POI의 발현 수준 사이의 이 연관성은 세포의 집단에서 원하는 상대적인 발현 수준을 가진 세포를 신속하게 확인할 수 있게 한다.
한 구체예에서, DNA 라이브러리는 세포 표면 캡쳐 분자에 의해 세포 표면 상에서 디스플레이될 수도 있는 분비된 단백질을 발현하는데 사용될 수도 있다. 예를 들어, DNA의 라이브러리는 또한 면역화된 동물로부터 분리된 B-세포의 항체 가변 도메인의 암호화 영역으로부터 발생될 수도 있다. DNA 라이브러리는 그때 원하는 특이성, 이소타입, 또는 친화력의 클론이 본 발명의 방법에 의해 확인되고 분리될 수도 있도록 항체에 특이적인 세포 표면 캡쳐 분자를 발현하는 세포에서 발현될 수도 있다. 또 다른 구체예에서, DNA의 라이브러리는 T-세포의 T 세포 수용체 가변 도메인의 암호화 영역으로부터 발생되고, 예를 들어, Fc-결합 단백질에 결합할 수 있는 Fc에 융합될 수도 있다. DNA 라이브러리는 그때 원하는 특이성, 이소타입, 또는 친화력의 클론이 본원에서 설명된 바와 같이 확인되고 분리될 수도 있도록 Fc-결합 단백질을 발현하는 세포에서 발현될 수도 있다.
또 다른 구체예에서, 하나 이상의 세포 타입에서 특정 세포 표면 캡쳐 분자를 발현하는 트랜스제닉(transgenic) 포유동물이 생성될 수도 있다. 이러한 트랜스제닉 포유동물의 세포는 그때 직접적으로 POI의 생산을 위해 스크리닝될 수도 있다. 예를 들어, 원형질 세포에서 항체에 특이적인 세포 표면 캡쳐 분자를 발현하는 것이 바람직할 수도 있다. 따라서, 면역화된 마우스의 원형질 세포가 수확될 수도 있고 원하는 항원에 특이적인 상기 항체 생산 항체는 본 발명의 방법에 의해 분리될 수도 있다.
본 발명의 추가의 구체예에서, 항체 생산은 특정 항체 또는 POI인 TCR-Fc에 결합하는 인간 FcγR1 수용체 (FcγRI)를 발현하는 CHO 세포주의 사용을 통해 측정된다.
본 발명의 또 다른 양태에서, 원하는 단백질은 하나 이상의 T 세포 수용체 가변 도메인 또는 가용성 T 세포 수용체를 포함한다. 하나 이상의 T 세포 수용체 가변 도메인은 세포 표면 캡쳐 단백질에 결합할 수 있는 모이어티에 공유결합으로 결합될 수 있다. 특정 구체예에서, 하나 이상의 T 세포 수용체 가변 도메인은 Fc 서열, 예를 들어, 인간 Fc 서열에 융합되고, 세포 표면 캡쳐 단백질은 Fc 수용체, 예를 들어, FcγR이다.
TCR 가변 도메인의 일반적인 구조가 알려져 있다 (예를 들어, Lefranc and Lefranc (2001) The T Cell Receptor FactsBook, Academic Press 참고, 본원에서 참고로 포함됨; 예를 들어, pp. 17-20; 또한, Lefranc et al. (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains, Developmental and Comparative Immunology 27:55-77, 및 Lefranc et al. (2005) IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains, Developmental and Comparative Immunology 29:185-203 참고, 각각 본원에서 참고로 포함됨). 한 구체예에서, TCR-Fc의 TCR 가변 도메인은 104-125 아미노산의 가변 도메인을 가진 N-말단 영역을 포함한다. 또 다른 구체예에서, TCR-Fc는 91-129 아미노산을 포함하는 TCR 불변 도메인을 더 포함한다. 또 다른 구체예에서, TCR-Fc는 21-62 아미노산을 포함하는 연결 펩티드를 더 포함한다.
한 구체예에서, Fc 서열은 직접적으로 또는 결합자를 통해 TCR 가변 도메인에 융합된다. 또 다른 구체예에서, TCR-Fc는 TCR 가변 영역 및 TCR 불변 도메인을 포함하고, Fc 서열은 직접적으로 또는 결합자를 통해 TCR 불변 도메인에 융합된다. 또 다른 구체예에서, TCR-Fc는 TCR 가변 영역, TCR 불변 도메인, 및 연결 펩티드를 포함하고, Fc 서열은 직접적으로 또는 결합자를 통해 연결 펩티드에 융합된다.
하나 이상의 T 세포 수용체 가변 영역을 포함하는 sTCR, TCR-Fc, 또는 융합 단백질은 원하는 항원, 예를 들어, 종양 세포에 의해 생산된 기질, 예를 들어, 숙주에서 면역 반응을 생산할 수 있는 종양 세포 기질에 특이적으로 결합하기 위해 선택될 수 있다. 특정 구체예에서, 항원은 종양 세포의 표면 상에 존재하고 (즉, 종양 항원), T 세포에 의해 인식되며, 숙주에서 면역 반응을 생산하는 항원이다. 종양 항원은, 예를 들어, 알파페토단백질 (AFP), 암배아 항원 (CEA), MUC-1, 상피성 종양 항원 (ETA), 티로시나제 (예를 들어, 악성 흑색종(melanoma)에 대하여), 흑색종-관련 항원 (MAGE), 및 돌연변이된 또는 비정상 형태의 다른 단백질, 예를 들어, ras, p53, 등을 포함한다.
한 구체예에서, POI는 TCR-Fc이고, TCR-Fc는 Fc 서열에 융합된 TCR α 사슬 가변 영역 및 Fc 서열에 융합된 TCR β 사슬 (각각 직접적으로 또는 결합자를 통해)을 포함하는데, TCR α 사슬-Fc 융합체 및 TCR β 사슬-Fc 융합체는 결합하여 αβ TCR-Fc를 형성한다. 특정 구체예에서, αβ TCR-Fc는 다음 두 개의 폴리펩티드를 포함한다: (1) Fc 서열에 융합된 TCR α 사슬 불변 도메인에 융합된 TCR α 사슬 가변 영역, 및 (2) Fc 서열에 융합된 TCR β 사슬 불변 도메인에 융합된 TCR β 사슬 가변 영역.
또 다른 구체예에서, POI는 TCR α 가변 영역 및 TCR β 가변 영역 및, 선택적으로, TCR α 불변 도메인 및/또는 TCR β 불변 도메인을 가진 TCR-Fc이다. 특정 구체예에서, TCR-Fc는 (5'에서 3'으로) TCR α 가변 영역 서열, 이어서 선택적으로 TCR α 불변 도메인 서열, TCR β 가변 영역 서열, 이어서 선택적으로 TCR β 불변 도메인 서열, 선택적으로 결합자, 그 다음 Fc 서열을 포함하는 핵산에 의해 암호화된다. 특정 구체예에서, TCR-Fc는 (5'에서 3'으로) TCR β 가변 영역 서열, 이어서 선택적으로 TCR β 불변 도메인 서열, TCR α 가변 영역 서열, 이어서 선택적으로 TCR 불변 도메인 서열, 선택적으로 결합자, 그 다음 Fc 서열을 포함하는 핵산에 의해 암호화된다. 다양한 구체예에서, TCR-Fc를 암호화하는 구조는 그것들을 선택 가능하게 만들기 위해 신호 서열, 예를 들어, 분비 신호 서열을 앞세운다.
또 다른 구체예에서, POI는 TCR-Fc이고, TCR-Fc는 γδ TCR-Fc를 형성하기 위해 Fc 서열에 융합된 TCR γ 사슬 및 Fc 서열에 융합된 TCR δ 사슬 가변 영역을 포함하는 TCR-Fc를 포함한다. 특정 구체예에서, γδ TCR-Fc는 다음 두 개의 폴리펩티드를 포함한다: (1) Fc 영역에 융합된 TCR γ 사슬 불변 도메인에 융합된 TCR γ 사슬 가변 영역, 및 (2) Fc 서열에 융합된 TCR δ 사슬 불변 도메인에 융합된 TCR δ 사슬 가변 영역.
T 세포 수용체 가변 영역은 업계에 알려져 있는 어떤 방법에 의해서도 확인되고 및/또는 클로닝될 수도 있다. 원하는 단백질의 T 세포 수용체 가변 영역은, 예를 들어, 인간 Fc 서열에 융합된 세포에서 재배열된 T 세포 수용체 가변 영역 DNA를 발현함으로써 얻을 수 있다. 특정 항원에 특이적인 재배열된 T 세포 수용체 가변 영역은 업계에 알려져 있는 어떤 적합한 방법에 의해 (하기 참고문헌 참조), 예를 들어, 마우스를 항원에 노출시키고 마우스의 T 세포를 분리하고, 마우스의 T 세포의 히브리도마를 만들고, 원하는 히브리도마를 얻기 위해 히브리도마를 원하는 항원으로 스크리닝함으로써 얻어질 수 있다. 원하는 항원에 특이적인 재배열된 T 세포 가변 영역은 원하는 히브리도마(들)로부터 클로닝될 수 있다. 항원에 특이적인 T 세포 수용체 가변 영역은 또한, 예를 들어, 하기 참고문헌에서 제공된 바와 같이, 파지 디스플레이 기술을 사용하여 확인될 수 있다. 가변 영역은 그때 FcγR 인 세포 표면 캡쳐 분자에 결합할 수 있는 원하는 단백질을 만들기 위해 클로닝되고, 예를 들어, 인간 Fc에 융합될 수 있다.
T 세포 수용체 가변 영역을 확인하고 및/또는 클로닝하는 방법은, 예를 들어, 미국 특허 번호 제5,635,354호 (프라이머 및 클로닝 방법); Genevee et al. (1992) An experimentally validated panel of subfamily-specific oligonucleotide primers (Vα1-w29/Vβ1-w24) for the study of human T cell receptor variable V gene segment usage by polymerase chain reaction, Eur. J. Immunol. 22:1261-1269 (프라이머 및 클로닝 방법); Gorski et al. (1994) Circulating T cell Repertoire complexity in Normal Individuals and Bone Marrow Recipients Analyzed by CDR3 Size Spectratyping, J. Immunol. 152:5109-5119 (프라이머 및 클로닝 방법); Johnston, S. et al. (1995) A novel method for sequencing members of multi-gene families, Nucleic Acids Res. 23/15:3074-3075 (프라이머 및 클로닝 방법); Pannetier et al. (1995) T-cell repertoire diversity and clonal expansions in normal and clinical samples, Immunology Today 16/4:176-181 (클로닝 방법); Hinz, T. and Kabelitz, D. (2000) Identification of the T-cell receptor alpha variable (TRAV) gene(s) in T-cell malignancies, J. Immunol. Methods 246: 145-148 (클로닝 방법); van Dongen et al. (2002) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: 미국 특허 번호 제6,623,957호 (클로닝 방법 및 프라이머); Report of the BIOMED-2 Concerted Action BMH4-CT98-3936, Leukemia 17:2257-2317 (프라이머 및 클로닝 방법); Hodges et al. (2002) Diagnostic role of tests for T cell receptor (TCR) genes, J. Clin. Pathol. 56: 1-11 (클로닝 방법); Moysey, R. et al. (2004) Amplification and one-step expression cloning of human T cell receptor genes, Anal. Biochem. 326:284-286 (클로닝 방법); Fernandes et al. (2005) Simplified Fluorescent Multiplex PCR Method for Evaluation of the T-cell receptor νβ-Chain Repertoire, Clin. Diag. Lab. Immunol. 12/4:477-483 (프라이머 및 클로닝 방법); Li, Y. et al. (2005) Directed evolution of human T-cell receptors with picomolar affinities by phage display, Nature Biotech. 23/3:349-354 (프라이머 및 클로닝 방법); Wlodarski et al. (2005) Pathologic clonal cytotoxic T-cell responses: nonrandom nature of the T-cell receptor restriction in large granular lymphocyte leukemia, Blood 106/8:2769-2780 (클로닝 방법); Wlodarski et al. (2006) Molecular strategies for detection and quantitation of clonal cytotoxic T-cell responses in aplastic anemia and myelodysplastic syndrome, Blood 108/8:2632-2641 (프라이머 및 클로닝 방법); Boria et al. (2008) Primer sets for cloning the human repertoire of T cell receptor variable regions, BMC Immunology 9:50 (프라이머 및 클로닝 방법); Richman, S. and Kranz, D. (2007) Display, engineering, and applications of antigen-specific T cell receptors, Biomolecular Engineering 24:361-373 (클로닝 방법)에서 설명된다. sTCR의 예는, 예를 들어, 미국 특허 번호 제6,080,840호 및 제7,329,731호; 및, Laugel, B et al. (2005) Design of Soluble Recombinant T Cell Receptors for Antigen Targeting and T Cell Inhibition, J. Biol. Chem. 280:1882-1892에서 제공되며; 본원에서 참고로 포함된다. Fc 서열은 본원에서 개시되는데; Fc 서열의 예, 및 융합 단백질에서 그것들의 사용이, 예를 들어, Stahl et al의 미국 특허 번호 제6,927,044호에서 제공된다. 상기 언급된 참고문헌 모두는 본원에서 참고로 포함된다.
본 발명의 추가의 구체예에서, 세포 표면 캡쳐 분자는 FcγR 캡쳐 분자에 보통 충분한 친화도로 결합할 수 없거나 또는 낮은 친화도로 결합하는 상기 원하는 단백질에 관여하고 이것을 디스플레이하도록 설계된다. 상기 원하는 단백질은 IgG4 및 IgG2 분자를 포함한다. 따라서, 모듈러(modular) 캡쳐 분자는 FcγR 막관통 및 세포질 도메인에 융합된 ScFv 도메인을 기반으로 설계되고 만들어졌다. ScFv 도메인은 고친화도 항-인간Fc 항체로부터 유래되었고, 경쇄 가변 도메인에 융합된 중쇄 가변 도메인을 함유한다. FcγR-TM-세포질 도메인은 원형질 막에서 적절한 삽입 및 배향을 가능하게 하는데 사용되었다. ScFv-FcγR-TM-cyto 융합 단백질은 IgG4 및 다른 Fc 함유 분자, 뿐만 아니라 IgG2 및 IgG1 서브타입, 및 적어도 하나의 야생형 CH3 도메인을 포함하는 상기 헤테로다이머 (예를 들어, 이중 특이적 항체)에 결합할 수 있는데, 다른 CH3 도메인은 Fc*-타입 치환을 함유할 수도 있다.
본 발명의 추가의 구체예에서, 세포 표면 캡쳐 분자는 Fc* 폴리펩티드와 같이, H95R 및 Y96F 아미노산 치환 (넘버링은 IMGT 시스템을 기반으로 함)을 포함하는 변형된 CH3 도메인, 예를 들어, SEQ ID NO: 42를 함유하는 상기 원하는 단백질에 관여하고 이것을 디스플레이하도록 설계된다. 상기 원하는 단백질은 이중 특이적 항체의 제조 시 유용한 항체 헤테로테트라머와 같은 이적 항체를 포함하는데 2010년 12월 30일 미국 특허 출원 공개 번호 제US 2010/0331527Al호에서 보통 설명되며, 이것은 그 전문이 본원에 참고로 포함된다. 따라서, 모듈러 캡쳐 분자는 FcγR 막관통 및 세포질 도메인에 융합된 ScFv* 도메인을 기반으로 하여 설계되고 만들어졌다. ScFv* 도메인은 고친화도 항-Fc* 항체로부터 유래되었고, 경쇄 가변 도메인에 융합된 중쇄 가변 도메인을 함유한다. FcγR-TM-세포질 도메인은 원형질막에서 적절한 삽입 및 배향을 가능하게 하는데 사용되었다. ScFv*-FcγR-TM-cyto 융합 단백질은 야생형 IgG3, 및 IgG4, IgG2, 및 IgG1의 헤테로다이머와 같은 어떤 Fc*-함유 분자에도 결합하는데, 이것은 적어도 하나의 Fc* 폴리펩티드 서열을 함유한다.
실시예
다음 실시예는 당업자들에게 본 발명의 방법 및 조성물을 만들고 사용하는 법의 완벽한 개시 및 설명을 제공하기 위해 제안되며, 발명자들이 그들의 발명으로 간주하는 것의 범위를 제한하려는 것은 아니다. 사용된 숫자 (예를 들어, 양, 온도, 등)에 관한 정확성을 보장하기 위한 노력이 이루어졌지만 일부 실험적 오차 및 편차가 설명되어야 한다. 달리 지시되지 않으면, 일부는 중량의 일부이고, 분자량은 평균 분자량이며, 온도는 섭씨 온도이고, 압력은 대기압 또는 그 부근이다.
실시예 1
pTE084의 구조. pTE084를 인간 FcγRI (hFcγRI; GenBank 수납 번호 M21091)를 암호화하는 pCAE1OO의 1,436 bp Xba I 단편을 pRG821의 Xba I 부위에 결찰하여 구성하였다. 결찰에서 발생한 바람직한 플라스미드에서 hFcγRI의 방향을 Not I, Pst I, Eco Rl, 및 Stu I로 제한효소 맵핑(mapping)함으로써 검사하였다. pTE084를 hFcγRI, 인간 IgG의 Fc 도메인에 대한 고친화도 세포 표면 수용체의 높은 발현 수준을 위해 설계하였다. 그것은 두 개의 독립적인 발현 카세트를 함유한다. 한 카세트는 CMV-MIE 프로모터에 의해 구동되는 hFcγRI 유전자이고, 두 번째 카세트는 네오마이신 포스포트랜스퍼라제 II (npt) 유전자인데, 이것은 G418에 대한 저항성을 부여하고, SV40 후반 프로모터에 의해 구동된다.
hFcγRI를 발현하는 CHO K1 유도체의 구조. CHO K1 세포 (4 x 106)를 제조사의 제안에 따라 Lipofectamine™ (Life Technologies; Rockville, MD)을 사용하여 pTE084로 트랜스펙션하였다. 세포를 500 μg/ml G418 (Life Technologies)을 함유한 배양 배지 (10% 소 태아 혈청, 90% Ham's F-12, 2 mM L-글루타민; 모든 시약은 Life Technologies, Rockville, MD의 것이다)에 15일 동안 두었다. G418 선택에서 생존한 세포에 트립신을 처리하였고, 풀링하여, FITC-컨쥬게이션된 인간 IgG, Fc 단편 (FITC-hFc; Jackson ImmunoResearch Laboratories, West Grove, PA)으로 염색하였다. 간략히 말하면, 10 cm 배양 플레이트에서 키운 세포를 염화 칼슘 및 염화 마그네슘 (Life Technologies)이 없는 둘베코 인산염-완충된 식염수 (Dulbecco's phosphate-buffered saline)(PBS)로 한 번 세척하였다. 0.25% 트립신 (Life Technologies) 3 밀리리터를 각 플레이트에 추가하였다. 플레이트를 세포가 플레이트에서 분리될 때까지 휘져었다. 배양 배지 10 밀리리터를 즉시 분리된 세포의 각 플레이트에 추가하였다. 세포를 그때 1,000 x g로 4분 동안 원심분리하여 수거하였다. 상층액의 제거 후, 세포를 배양 배지에 희석된 2 μg/ml FITC-hFc 4 ml에서 재현탁하였다. 세포를 그때 플랫폼 셰이커(platform shaker)에 두고 실온에서 1시간 동안 염색하였다. 결합되지 않은 FITC-hFc를 제거하기 위해, 세포를 20 ml PBS로 두 번 세척하였다. 세포 상의 FITC-hFc 표지의 정도를 MOFLO™ 세포 분별 장치 (Cytomation; Fort Collins, CO)에서 유동 세포 분석법으로 측정하였다. FITC-hFc는 목(mock)-트랜스펙션된 모체 CHO K1 세포를 염색하지 않았지만 G418-저항성, pTE084-트랜스펙션된 풀에서 형광 발광의 분포를 발생시켰다. 선택된 풀에서 상위 1%로 가장 형광성인 세포를 세포 분석법에 의해 1 세포/웰로 96-웰 플레이트에 배치하였다. 9일 후, 96웰 플레이트에서 88개의 세포 클론을 24-웰 플레이트로 확장하였다. 3일 후, 각각의 웰에서 세포를 1 ml PBS로 한 번 세척하였고, 0.5 ml 2 μg/ml FITC-hFc로 1시간 동안 염색하였고, 1 ml PBS로 두 번 세척하였고 형광 현미경 하에서 세포 표면 염색을 검사하였다. 33번째로 가장 형광성인 클론을 선정하여, 확장하였고, 그때 유동 세포 분석법에 의해 스크리닝하였다.
세포 중에서 발현 세포 및 비-발현 세포 사이에서 분비된 단백질의 확산을 IgG를 추가함으로써 차단하였다: hFcγRI 클론 세포주의 모든 세포들이 세포 표면 hFcγRI를 발현하는 것처럼, 그것들 모두는 IgG 또는 IgG의 Fc 도메인으로 구성된 융합 단백질에 결합하는 능력을 소유한다. hFcγRI가 다양한 종의 IgG에 결합하기 때문에 (van de Winkel and Anderson, 1991), 동물 IgG의 패널을 인간 IgG1 (hIgG1) Fc 태그(tag) (4SC622)를 함유하는 단백질의 hFcγRI-발현 세포로의 결합을 차단하는 능력에 대하여 테스트하였다. 4SC622는 그때 hIgG1-Fc 도메인에 융합된 hIL-4Rγ 세포 외 도메인에 융합된 IL-2Rγ 세포 외 도메인으로 구성된 키메라 분자이다. 본 실험에서, RGC1, pTE084로 안정하게 트랜스펙션된 CHO K1 세포로부터 선택된 hFcγRI-발현 세포주의 배양물을 37℃ 조직 배양기에서 상이한 종의 1 mg/ml IgG의 존재 또는 부재 시 18시간 동안 1 μg/ml 4SC622와 함께 배양하였다.
4SC622의 세포 표면 결합을 세척된 세포를 FITC-hFc로의 세포 염색에 대하여 개요가 서술된 과정에 따라, 4SC622 (BD Pharmingen; San Diego, CA)의 hIL-2Rγ 구성요소에 특이적인 피코에리트린-컨쥬게이션된 마우스 IgG1 단클론성 AG 184 (PE-AG184)로 염색한 후 유동 세포 분석법에 의해 결정하였다.
hIgG가 4SC622를 RGC1의 표면 상에 발현된 hFcγR1으로 결합으로부터 완벽하게 차단한다는 것을 발견하였다. 래트, 토끼 및 개-유래 IgG가 또한 결합을 효과적으로 차단하는 반면에 소 및 양-유래 IgG는 차단하지 않았다. 외인성으로 추가된 Fc-태그된(tagged) 단백질 (4SC622)의 세포 표면 hFcγRI로의 결합을 차단하는 외인성으로 추가된 래트 IgG의 능력은 래트 IgG가 또한 다른 수준으로 hIgG1 Fc-태그된 단백질을 발현하는 세포 사이에서 전달을 차단할 수 있다고 제안한다. 이를 테스트하기 위해서, 녹색 형광 단백질 (EGFP)의 존재 또는 부재로 구별될 수 있는 두 개의 세포주를 RGC1로부터 발생시켰다. 간략히 말하면, EGFP로 RGC1 세포에 표시하기 위해서, 2 x 106 RGC1 세포를 포스포글리세레이트 키나제 프로모터에 의해 구동된 하이그로마이신 B 포스포트랜스퍼라제를 암호화하는 0.5 mg PTE073, 및 CMV-MIE 프로모터에 의해 구동된 EGFP 유전자를 암호화하는 5 mg pRG816-EGFP로 동시-트랜스펙션하였다. 트랜스펙션된 세포를 200 μg/ml 하이그로마이신 B (Sigma; St. Louis, MO)로 2주 동안 선택하였다. 녹색 형광 세포를 유동 세포 분석법으로 분리하였다. 한 EGFP 및 hFcγRI-발현 클론, RGC2를 세포 혼합 실험에서 사용하였다. 이 실험들에서 사용된 다른 세포주, RGC4를 RGC1의 플라스미드 pEE14.1-622로의 안정한 트랜스펙션으로 발생시켰다. pEE14.1-622는 4SC622의 발현이 CMV-MIE 프로모터에 의해 구동되는 플라스미드이고 글루타민 신테타제 꼬마 유전자를 포함하는데, 이것은 아날로그 메티오닌 술폭시민(analog methionine sulfoximine; MSX)에 대한 저항성을 부여하고, 안정한 통합 이벤트의 선택을 허용한다. RGC4 세포는 세포 표면 상에서 hFcγRI를 발현하고 hIgG1 Fc-태그된 단백질 4SC622를 분비한다. 50% RGC2 및 50% RGC4 세포를 포함하는 혼합된 세포의 한 플레이트를 PE-AG184로 염색 전에 18시간 동안 1 mg/ml 래트 IgG와 함께 배양하였고 그때 유동 세포 분석법으로 검사하였다. RGC2 세포의 EGFP 형광성은 RGC2 세포가 또한 PE-AG184 형광성의 증가에 의해 나타난 바와 같이 외인성으로 추가된 4SC622 (1 μg/ml)에 결합한다는 것을 나타낸다. RGC4는 EGFP 게이트에서 형광 발광하지 않았다. 중요하게는, 외인성으로 추가된 래트 IgG는 세포 표면 4SC622에 대하여 양성으로 염색된 RGC4 세포의 퍼센트를 감소시키지 않았는데, 4SC622의 hFcγRI로의 결합이 단백질이 세포 표면으로 이동 중인 동안 발생한다고 제안한다. RGC2 및 RGC4 세포가 혼합될 때, 4SC622 단백질은 배지에 축적된 RGC4 세포로부터 분비되었고 RGC2 세포의 대부분에 결합되었다. 하지만, 1 mg/ml 래트 IgG의 추가는 4SC622에 결합된 RGC2 세포의 퍼센트를 크게 감소시켰는데, 래트 IgG가 발현 세포에서 비-발현 세포로 분비된 hIgG1 Fc-태그된 단백질의 전달을 차단한다는 것을 입증하였다.
실시예 2: 세포 표면 형광성은 4SC622의 발현 수준과 연관성이 있다
RGC1 세포 (4 x 106)를 pEE14.1-622로 트랜스펙션하였고 안정한 트랜스펙턴트(transfectant)의 풀을 10% 투석된 소 태아 혈청, 90% 글루타민이 없는 둘베코 변형 이글 배지 (Dulbecco's Modified Eagle's Medium; DMEM), 1 x GS 보충제, 및 25 μM MSX (모든 시약은 JRH Biosciences, Lenexa, KS의 것이다)로 구성된 배지에서 2주 동안 선택 후 얻었다. 래트 IgG를 면역 염색 18시간 전에 1 mg/ml로 배양 배지에 추가하였다. 세포에 트립신을 처리하였고, PBS로 세척하였고, 실시예 1에서 FITC-hFc에 대하여 설명된 과정에 따라 실온에서 1시간 동안 다클론성 FITC-컨쥬게이션된 항-인간 IgG (H+L) F(ab')2 단편 (Jackson ImmunoResearch Laboratories) 1.5 μg/ml로 염색하였다. 세포 염색을 그때 유동 세포 분석법에 의해 분석하였다. 형광성의 분포는 선택된 풀이 넓은 범위의 4SC622 발현 수준을 갖는 세포를 함유한다고 제안한다. 면역형광법에 관하여 상위 3% (R3 bracket), 7-11% (R5 bracket), 및 15-19% (R7 bracket)의 세포를 세 개의 별개의 풀로 분류하였고 9일 동안 확장시켰다. 풀에 대하여 세포 당 평균 4SC622 생산을 제조사의 추천에 따라 면역-기반 Pandex 검정 (Idexx; Westbrook, ME)에 의해 3일 성장 후 배지의 세포 수 및 4SC622 수준을 측정함으로써 결정하였다. Pandex 검정에서, 염소 항-인간 IgG, g-사슬 특이적 항체 (Sigma)로 코팅된 플루오리콘(fluoricon) 폴리스티렌 검정 입자를 사용하여 배지로부터 4SC622를 캡쳐하였고, FITC-컨쥬게이션된 염소 항-인간 IgG, Fc 특이적 (Sigma)을 사용하여 비드(bead)-결합된 4SC622를 검출하였다. 알려진 양의 정제된 4SC622를 보정용 검정에 포함시켰다. 상위 3%, 7-11%, 및 15-19% 풀의 세포가 각각 1.42, 0.36, 및 0.22 pg/세포/일로 4SC622를 생산하는 것을 발견하였다. 따라서, 세포 표면 4SC622 염색과 특이적 단백질 생산 사이에는 연관성이 있었다. 이 결과는 높은 수준으로 4SC622를 발현하는 개개의 세포가 다클론성 FITC-컨쥬게이션된 항-인간 IgG (H+L) F(ab')2 단편에 의해 가장 밝게 염색된 세포를 분리함으로써 얻어질 수도 있다고 제안한다.
실시예 3: RGC1:IL-4 트랩에서 발현 클론의 분리
우리의 방법론에 의해 높은 수준으로 분비된 단백질을 생산하는 클론 세포주를 발생시키는데 있어서의 효율을 직접적으로 입증하기 위해, 클론 4SC622 생산 세포주를 RGC1로부터 발생시켰다. RGC1 세포 (4 x 106)를 pEE14.1-622로 트랜스펙션하였고, 안정한 트랜스펙턴트의 풀을 얻기 위해 25 μM MSX로 2주 동안 선택하였다. MSX-저항성 세포를 풀링하였고 PE-AG184로 염색 전, 18시간 동안 1 mg/ml 인간 IgG와 함께 배양하였다. 상위 5% 게이트의 6개의 세포들을, 세포 표면 4SC622 염색의 유동 세포 분석법 분석에 의해 결정된 바와 같이, 분리하고 확장하였다. 6개의 클론 세포주로부터 4SC622 생산을 결정하였고 선택된 콜로니를 핸드피킹한 후 이어서 희석 클로닝 및 증폭에 의해 얻어진 클론의 4SC622와 비교하였다. 하나의 RGC1-유래된 클론, RGC4는 4SC622를 12 pg/세포/일로 생산하였다. 이 수준은 2,700 클론을 핸드-피킹하고 분석함으로써 분리된 최고의 4SC622 생산자와 유사하다. 따라서, 핸드-피킹 콜로니와 비교하여, 본 발명에서 개요가 서술된 방법론은 높은 생산자의 스크리닝 및 클로닝에서 훨씬 더 효율적인 것으로 증명된다.
VEGF 트랩. 플라스미드 pTE080 및 pTE081은 VEGF 트랩, hVEGF-R1R2 및 hVEGF-R1R3에 대한 유전자를 암호화한다. hVEGF-R1R2는 hIg1 Fc 도메인에 융합되는 hVEGFR2의 제2 Ig 도메인에 융합된 hVEGFRI의 제1 Ig 도메인으로 구성된 키메라 분자이다. hVEGF-R1R3는 hIgG1-Fc 도메인에 융합되는 hVEGFR3의 제2 Ig 도메인에 융합된 hVEGFI의 제1 Ig 도메인으로 구성된 키메라 분자이다. 이 플라스미드에서, VEGF 트랩에 대한 유전자는 CMV-MIE 프로모터 및 글루타민 신테타제 꼬마 유전자에 의해 구동되는데, 이것은 MSX에 대한 저항성을 부여하고, 안정한 통합 이벤트의 선택을 위해 발현된다. RGC1 세포를 이 플라스미드 중 어떤 것으로 트랜스펙션하였고 플라스미드가 안정하게 통합되는 세포에 대하여 선택하기 위해 2주 동안 25 μM MSX를 함유하는 배지에서 키워졌다. MSX-저항성 세포들을 1.5 μg/ml 다클론성 FITC-컨쥬게이션된 항-인간 IgG (H+L) F(ab')2 단편으로 염색 전 18시간 동안 0.1 μg/ml IgG2a 및 마우스 IgG3과 함께 배양하였다. 세포를 1시간 동안 염색하였고 그때 유동 세포 분석법 전에 PBS로 두 번 세척하였다. 단일 세포를 형광성이 가장 높은 1% 중에 있는 세포의 풀로부터 96-웰 조직 배양 플레이트로 분류하였다. 개개의 웰의 세포를 확장시켰고 그것들의 생산성을 Pandex 검정으로 결정하였다. hVEGF-R1R2 및 hVEGF-R1R3 둘 다를 발현하는 RGC-유래된 클론은 특이적 생산성이 더 높았고 가장 높게 발현하는, 핸드-피킹된 MSX-저항성 콜로니와 비교하여 더 적은 수의 클론을 스크리닝함으로써 분리하였다. 표 1 참조.
표 I
특이적 생산성 비교
단백질 일시적
(μg/ml)
핸드-피킹된 CHO K1
안정한 세포주
RGC1-유래된
안정한 세포주
Sp. Prod.
(pg/세포/일)
스크리닝된
클론 #
Sp. Prod.
(pg/세포/일)
스크리닝된
클론 #
4SC622 1.1 12 2700 12 6
hVEGF-R1R2 33 68 190 77 62
hVEGF-R1R3 27 5 100 22.6 42
실시예4: 세포 표면-결합된 hIgG1 Fc-태그된 단백질은 RGC1에 의해 내재화된다
hFcγRI는 그것의 세포 표면-결합된 리간드의 내재화를 유발하는 것으로 알려져 있다. RGC1 세포가 세포 표면-결합된 4SC622를 내재화할 수 있는지 분석하기 위해, 1 μg/ml 4SC622를 RGC1 세포에 1시간 동안 추가하였고 그때 세포를 PE-AG184로의 4SC622 면역 염색 및 유동 세포 분석법을 위해 즉시 가공하였다. 세포 중 93 퍼센트가 세포 표면 4SC622에 대하여 양성으로 염색되었다. 대안으로, 1 μg/ml 4SC622를 RGC1 세포에 1시간 동안 추가하였고, 그때 세포를 세척하였고 4SC622가 없는 배양 배지에서 PE-AG184와 함께 18시간 동안 배양하였다. 4SC622에 대한 면역염색 후 유동 세포 분석법은 세포 중 9%가 세포 표면 상에서 4SC622를 유지한다는 것을 나타냈다. 표면-결합된 4SC622의 손실을 더 특성화하기 위해서, 정제된 4SC622 단백질을 RGC1 및 모체 CHO K1 세포의 배지에 추가하였고, 그때 배지에서 4SC622의 수준을 시간이 흐름에 따라 측정하였다. 10 cm 플레이트 중 배양 배지에 2 μg/ml으로 추가된 4SC622는 CHO K1 대조군과 비교하여 3일 배양 후 RGC1 조정된 배지에서 훨씬 더 낮았다. 이 결과들은 배양 배지에서 4SC622의 농도가 세포 표면 상에서 hFcγRI의 존재에 의해 감소된다는 것을 나타낸다. 결과는 배지에서 4SC622의 고갈이 hFcγRI-4SC622 복합체 내재화의 결과인 것으로 제안한다. 이 수용체-리간드 복합체의 내재화는 18-시간 차단 단계 중에 차단 IgG의 존재 시 비-발현 세포로부터 모든 4SC622의 효과적인 제거를 용이하게 할 수도 있다.
실시예 5: 유발성 hFcγRI 발현을 갖는 CHO K1 세포주의 구조
hFcγRI를 이용하는 유동 세포 분석법-기반 자가조직 분비 트랩은 고발현 클론의 신속한 분리를 허용한다. 하지만, hFcγRI가 Fc-태그된 단백질의 턴오버(turnover)를 매개하는 경우, 그때 발현된 hFcγRI 발현 세포에 의해 분비된 단백질의 인지된 생성물은 hFcγRI가 생산 기간 중에 제한될 수 있는 경우에 더 높다. 이 끝에서, hFcγRI의 발현이 테트라시클린, 또는 유사체 독시시클린에 의해 유발되는 CHO K1 세포주가 구성되었다. 이 시스템에서, CHO K1 세포를 먼저 테트라시클린 억제 단백질 (TetR)을 발현하도록 설계하였고 hFcγRI를 활성이 TetR에 의해 조절되는 프로모터의 전사 조절 하에 배치하였다. 두 개의 탠덤(tandem) TetR 오퍼레이터 (TetO)를 pTE158을 생성하기 위해 pTE084에서 CMV-MIE 프로모터/인핸서(enhancer)의 바로 다운스트림에 배치하였다. pTE158에서 CMV-MIE 프로모터로부터 hFcγRI의 전사를 테트라시클린 또는 어떤 다른 적합한 인듀서(inducer)의 부재시 TetR에 의해 차단하였다. 인듀서의 존재 시, TetR 단백질은 TetO에 결합할 수 없었고 hFcγRI의 전사가 발생하였다.
CHO K1 세포를 pcDNA6/TR, TetR의 발현이 CMV-MIE 프로모터 (Invitrogen; Carlsbad, CA)로부터 기원하는 블라티시딘에 대한 저항성을 부여하는 플라스미드로 트랜스펙션 하였다. 2.5 μg/ml 블라스티시딘 (Invitrogen)으로 선택 2주 후, 안정한 트랜스펙턴트를 풀링하였다. 이 풀을 그때 pTE158, hFcγRI의 발현이 CMV-MIE/TetO 하이브리드 프로모터에 의존적인 G418에 대한 저항성을 부여하는 플라스미드로 트랜스펙션하였다. pcDNA6/TR 및 pTE158로 연속으로 트랜스펙션된 세포를400 μg/ml G418 및 2.5 μg/ml 블라스티시딘으로 12일 동안 선택하였고 그때 풀링하였다. 풀을 1 μg/ml 독시시클린의 추가에 의해 2일 동안 유발하였고 그때 FITC-hFc로 염색하여 hFcγRI를 발현하는 세포를 확인하였다. hFcγRI를 발현하는 세포의 상위 5%를 풀로서 수거하였고, 독시시클린 없이 6일 동안 확장하였고, hFcγRI의 존재에 대하여 FITC-hFc로 다시 염색하였다. hFcγRI에 대하여 염색하지 않은 세포를 수거하였고 1 μg/ml의 독시시클린을 함유하는 배양 배지에서 3일 동안 확장하였다. 풀을 그때 hFcγRI의 존재에 대하여 염색하였고 유동 세포 분석법에 의해 분리하였다. 가장 높은 수준의 hFcγRI (상위 1%)를 발현한 세포를 웰 당 하나의 세포로 96 웰 플레이트로 분류하였다. 이 세포들은 아마도 낮은 비-유발된 발현 수준의 FcγR1 및 높은 유발성 수준의 FcγR1을 가진 세포를 함유할 것이다. 확장 후, 20 클론에서 독시시클린에 의한 hFcγRI의 유발을 FITC-hFc로의 면역염색 및 유동 세포 분석법에 의해 확인하였다. 하나의 클론을 추가의 특성에 대하여 선정하였고 RGC10으로 명명하였다.
독시시클린의 부재 시, RGC10은 hFcγRI의 검출 가능한 수준을 발현하지 않은 반면에, 높은 수준의 hFcγRI가 1 μg/ml의 독시시클린으로 유발된 세포에서는 3일 동안 관찰되었다. RGC10 세포의 평균 형광성은 독시시클린에 의한 유발 후 1,000배 이상 증가하였다.
실시예 6: RGC10의 4SC622-생산 세포주의 분리
RGC10 세포를 pEE14.1-622로 트랜스펙션하였고, MSX-저항성 세포를 2주 동안 25 mM MSX로 선택 후 풀링하였다. hFcγRI의 발현을 3일 동안 배양 배지에 1 μg/ml의 독시시클린의 추가에 의해 유발하였다. 1 mg/ml 래트 IgG를 다클론성 FITC-컨쥬게이션된 항-인간 IgG (H+L) F(ab')2 단편으로 염색 및 유동 세포 분석법에 의한 분석 전 18시간에 독시시클린을 함유하는 배양 배지에 추가하였다. 가장 높은 수준의 4SC622 (상위 1%)를 발현하는 세포를 웰 당 1 세포로 96 웰 플레이트로 분류하였다. 독시시클린에 의한 hFcγRI 발현을 유발하지 않으면서, 다클론성 FITC-컨쥬게이션된 항-인간 IgG (H+L) F(ab')2 단편으로의 염색은 세포 표면 결합된 4SC622를 검출하는데 실패한다. 60 클론을 독시시클린의 부재 시 확장하였다. 가장 높은 생산자 13개의 특이적 생산성을 Pandex 검정으로 결정하였다. 클론 1C2의 특이적 생산성은 17.8 pg/세포/일이며, 조절되지 않은 hFcγRI 세포주 RGC1을 사용하여 이전에 분리된 최고의 4SC622 세포주에 대하여 관찰된 12 pg/세포/일보다 훨씬 더 좋다.
실시예 7: Sp2/0 골수종 세포는 세포 표면 캡쳐 단백질을 발현하도록 조작될 수 있다
이 실시예에서, Sp2/0-Ag14 골수종 세포주를 자가 분비 트랩 방법이 CHO 이외의 세포주에 적용 가능하다는 것을 입증하기 위해 hFcγRI를 안정하게 발현하도록 조작하였다. hFcγRI에 대한 유전자를 레트로바이러스(retrovirus) 감염에 의해 골수종 세포로 도입하였다. 플라스미드 pLXRN (Clontech; Palo Alto, CA), 원하는 유전자가 업스트림 몰로니 쥐 육종 바이러스(Moloney murine sarcoma virus) 긴 말단 반복 (MoMuSV LTR) 프로모터로부터 발현될 수도 있는 레트로바이러스 DNA 벡터를 사용하여 hFcγRI 유전자를 암호화하는 레트로바이러스를 생성하였다. 인간 FcγRI 유전자를 암호화하는, pTE084의 1,363 bp Xho I 단편을 pLXRN의 Xho I 부위로 클로닝하였다. hFcγRI cDNA 발현이 MoMuSV LTR에 의존적인 플라스미드를 선택하고 pTE255로 명명하였다.
hFcγRI의 발현을 위한 범친화성(pantropic) 레트로바이러스를 본질적으로 제조사의 가이드라인에 따라 생성하였다. 포장 세포주 GP-293, 바이러스 gag 및 pol 단백질 (Clontech; Palo Alto, CA)을 안정하게 발현하는 HEK 293-기반 세포주를 각각 10 mg의 pVSV-G 및 pTE255로 동시-트랜스펙션하였다. 플라스미드 pVSV-G는 감염성 입자에 광범위한 숙주 범위를 부여하는 바이러스 외피 단백질 VSV-G의 발현을 허용한다.
Sp2-hFcγRI-4의 구조. 범친화성 hFcγRI 레트로바이러스를 사용하여 세포 당 다양한 약 10 감염성 입자로 1 x 107 Sp2/0-Ag14 골수종 세포 (American Type Culture Collection; Manassas, VA)를 감염시켰다. 감염 후 3일에, 세포를 1시간 동안 염색하였고 그때 유동 세포 분석법에 의한 분석 전 PBS로 두 번 세척하였다. hFcγRI를 발현하는 상기 세포를, 결합된 FITC-hFc로 지시된 바와 같이, 유동 세포 분석법에 의해 풀로서 수거하였다. 풀을 13일 동안 확장하였고 그때 FITC-hFc로 다시 염색하였고 hFcγRI를 발현하는 세포를 유동 세포 분석법에 의해 풀로서 수거하였다. 이 분류된 세포들을 4.5 g/l 글루코스 및 4 mM 글루타민이 들어있는 10% 소 태아 혈청 90% 둘베코 변형 이글 배지 (DMEM)에서 3주 동안 배양하였고 FITC-hFc로 염색하였고, 집단 중 상위 1%에서 평균 형광성을 가진 세포를 단일 세포 분류에 의해 클로닝하였다. 확장 후, 24개의 클론을 hFcγRI의 발현에 대하여 유동 세포 분석법에 의해 검사하였으며, 상기 설명된 부분과 같고, 하나의 클론, Sp2-hFcγRI-4를 추가의 특성에 대하여 선정하였다.
4SC622 단백질을 발현하는 Sp2-hFcγRI-4 세포의 분리. Sp2-hFcγRI-4 세포 (1 x 107)를 pTE209, CMV-MIE 프로모터의 4SC622의 구성적 발현을 허용하고, 하이그로마이신에 대한 저항성을 부여하는 플라스미드로 트랜스펙션하였다. 트랜스펙션된 세포를 10% FCS, 90% D-MEM 및 400 μg/ml 하이그로마이신을 함유하는 배지에 14일 동안 두었다. 하이그로마이신-저항성 세포를 다클론성 FITC-컨쥬게이션된 항-인간 IgG (H+L) F (ab')2 단편으로 염색 전 18시간 동안 1 mg/ml 토끼 IgG와 함께 배양하였다. 세포를 유동 세포 분석법에 의한 분석 전 1시간 동안 염색하였고 그때 PBS로 두 번 세척하였다. 표지된 세포를 상기 설명된 바와 같이 유동 세포 분석법에 의한 풀로서 수거하였고 그때 5일 동안 배양하고 분류하였다. 대부분의 다클론성 FITC-컨쥬게이션된 항-인간 IgG (H+L) F (ab')2 단편에 결합된 확장된 풀의 세포, 상위 1% 집단을 그때 단일 세포 분류에 의해 클로닝하였다. 10 클론으로부터 4SC622의 생산을 ELISA에 의해 분석하였고 10 클론 모두 4SC622를 발현하는 것으로 발견되었다; 클론 5H11은 일 당 세포 당 0.5 pg으로 4SC622를 생산하였다. 이 데이터들은 4SC622를 분비하는 클론을 Sp2-hFcγRI-4 세포의 pTE209로의 안정한 트랜스펙션에서 유래된 세포의 외래의 풀로부터 자가 분비 트랩 방법에 의해 효과적으로 분리하였다.
4SC622가 4SC622 및 hFcγRI 둘 다를 발현하는 골수종 세포의 표면 상에 자가 디스플레이된다는 것을 확인하기 위해서, 클론 5H11을 18시간 동안 1 mg/ml 토끼 IgG와 함께 배양하였고 그때 FITC-컨쥬게이션된 항-인간 IgG (H+L) F(ab')2 단편으로 염색하였으며 세포 표면 4SC622를 디스플레이한다는 것을 발견하였다. 분비된 단백질의 교차-섭취(cross-feeding)가 토끼 IgG에 의해 차단되는 조건 하에서 디스플레이하였으며, 4SC622의 자가 디스플레이를 입증한다. 이 데이터는 상기 설명된 자가 분비 트랩 방법이 CHO 세포에 제한되지 않고 골수종 뿐만 아니라 다른 세포 타입으로 연장될 수도 있다는 것을 나타낸다.
실시예 8. 단백질 G 키메라 단백질은 세포 표면 캡쳐 단백질로서 기능할 수 있다
자가 분비 트랩 방법의 hFcγRI 이외의 세포 표면 캡쳐 단백질에 적용을 입증하기 위해, 단백질 G를 발현하는 세포주를 구성하였다. 스트렙토코쿠스(Streptococcus) 균주 G148의 단백질 G는 모든 인간 및 마우스 IgG 하위분류(subclass)에 결합하고, 이와 같이 항체 또는 IgG Fc 융합 단백질을 발현하는 재조합 세포의 분리에 대한 유용성을 갖는다. 단백질 G IgG Fc 결합 도메인이 모든 인간 및 마우스 IgG 하위분류에 결합할 수 있는 세포 표면 캡쳐 단백질로서 사용될 수 있다는 것을 입증하기 위해, 발명자들은 hFcγRI 막관통 및 세포 내 도메인에 융합된 단백질 G의 Fc 결합 도메인으로 구성된 키메라 단백질을 발현하는 CHO 세포주를 구성하였다. 단백질 G의 Fc 결합 도메인은 세 개의 55 아미노산 길이의 상동성 반복 영역을 함유하고 (Guss et al., (1986) EMBO 5:1567 및 Sjobring et al., (1991) J. Biol. Chem. 266:399) 각 반복 영역은 하나의 IgG Fc에 결합할 수 있다. CHO 세포에서 이 키메라 단백질의 발현을 개선하기 위해, 발명자들은 마우스 ROR1 유전자의 신호 서열이 Fc 결합 도메인, 단백질 G의 아미노산 303 내지 497 (수납 번호 X06173) (SEQ ID NO: 1)에 융합되는 합성 DNA를 구성하였다. 이 합성 DNA를 올리고뉴클레오티드 어닐링(annealing), 갭 필링(gap filling), 및 PCR 증폭의 조합에 의해 생성하였다. 합성 DNA를 그때 PCR에 의해 막관통 및 세포 내 도메인을 암호화하는 DNA, hFcγRI의 아미노산 279 내지 374 (SEQ ID NO:2)를 암호화하는 DNA (수납 번호 M21091)에 융합하였다. 단백질 G/hFcγRI 키메라 단백질을 암호화하는 결과의 DNA를 플라스미드 pTE300을 수득하기 위해 hFcγRI를 암호화하는 유전자를 대체하는 CMV-MIE 프로모터의 다운스트림에서 pTE158에 클로닝하였으며, hFcγRI를 암호화하는 유전자를 대체한다.
혈청이 없는 배지에서 자라도록 조정된 CHO K1 세포주, RGC14를 pTE300으로 트랜스펙션하였고 3일 후 400 μg/ml G418을 pTE300의 안정한 통합을 위한 선택을 하기 위해 배양 배지에 추가하였다. 선택 시작 후 2주에, 세포를 FITC-hFc로 염색하여 hFcγRI를 발현하는 세포를 확인하였다. 이 세포를 유동 세포 분석법에 의해 분석하였고 hFcγRI를 발현하는 세포를 풀로서 수거하였다. 세포를 10일 동안 확장하였고 hFcγRI를 발현하는 세포의 집단을 다시 유동 세포 분석법에 의해 분리하였다. 세포를 다시 확장하였고, FITC-hFc로 염색하였고, 높은 수준의 단백질 G/hFcγRI 키메라 단백질을 발현하는 단일 세포를 유동 세포 분석법에 의해 분리하였다. FITC-hFc 결합에 양성으로 염색된 단일 세포를 10% 소 태아 혈청, 90% Ham's F12, 및 400 μg/ml G418로 구성된 배지로 분류하였다. 2주 배양 후, 48 클론을 FITC-컨쥬게이션된 항-소 IgG F(ab')2 단편 (Jackson ImmunoResearch Laboratories, West Grove, PA)로 염색함으로써 배양 배지에 존재하는 소 IgG로의 결합에 대하여 검사하였다. 한 클론, 이 항체로 양성으로 염색되는 RGC18을 추가의 특성에 대하여 선택하였다.
RGC18에서 발현 클론의 분리: RGC18 세포 (6 x106)를 pTE209로 트랜스펙션하였고 18일 동안 400 μg/ml 하이그로마이신에서 성장에 의해 플라스미드의 통합을 위한 선택을 하였다. 하이그로마이신-저항성 세포를 다클론성 FITC-컨쥬게이션된 항-인간 IgG (H+L) F (ab')2 단편으로 염색 전 18시간 동안 1 mg/ml 토끼 IgG와 함께 배양하였다. 세포를 유동 세포 분석법에 의한 분석 전에 1시간 동안 염색하였고 그때 PBS로 두 번 세척하였다. 가장 형광성인 세포 (상위 5%)를 단일 세포 분류에 의해 분리하였고 3주 동안 확장하였다. 10 클론을 4SC622 분비에 대하여 검사하였다. 테스트된 모든 클론은 4SC622를 높은 수준으로 분비하였고, 최고의 클론, RGC19는 6.4 pg/세포/일의 특이적 생산성을 가졌다. 이 결과는 4SC622-발현 세포가 자가 분비 트랩 방법에 의해 RGC18의 pTE209로의 안정한 트랜스펙션으로부터 유래된 세포의 외래의 풀로부터 효과적으로 분리된다는 것을 입증하였다. 게다가, 이 데이터는 단백질 G의 단편이 신호 서열 및 막관통 도메인을 포함하도록 설계되고 세포 표면 캡쳐 단백질로서 기능한다는 것을 분명하게 입증하였다.
4SC622가 단백질 G/hFcγRI 키메라 단백질 및 4SC622 둘 다를 발현하는 RGC19 세포의 표면 상에 자가 디스플레이된다는 것을 확인하기 위해, RGC19를 18시간 동안 1 mg/ml 토끼 IgG와 함께 배양하였고 그때 FITC-컨쥬게이션된 항-인간 IgG (H+L) F(ab')2 단편으로 염색하고 유동 세포 분석법에 의해 분석하였다. RGC19 세포는 교차-섭취가 토끼 IgG에 의해 차단되는 이 조건 하에서 세포 표면 4SC622를 소유한다는 것이 발견되었으며, 4SC622의 자가 디스플레이를 제안한다. 토끼 IgG는 외인성 4SC622 단백질의 RGC18 세포로의 결합을 효과적으로 차단하지만, 4SC622를 발현하는 세포의 세포 표면 상에서 4SC622의 디스플레이를 차단하지 않았다. 이 데이터는 단백질 G/hFcγRI 키메라 단백질의 속성이 세포 표면 캡쳐 단백질로서 hFcγRI와 유사하다는 것을 입증하였고, 자가 분비 트랩 방법이 세포 표면 캡쳐 단백질로서 다른 단백질을 이용할 수 있다는 것을 제안하였다.
실시예9: RGC10으로부터 항체-생산 세포의 분리
재조합 항체를 발현하는 CHO 세포주의 분리를 위한 자가 분비 트랩 방법의 활용성을 입증하기 위해 발명자들은 KD5 히브리도마의 가변 경쇄 및 가변 중쇄 유전자를 암호화하는 DNA를 클로닝하였다. KD5는 인간 Tie-2 수용체에 특이적인 단클론성 항체를 발현하는 히브리도마이다.
마우스 IgG 불변 도메인 유전자 서열을 500ng 마우스 비장 폴리A+ RNA (Clontech, Palo Alto, CA)로부터 클로닝하였다. 단일 가닥 cDNA를 RT-PCR용 Superscript First-Strand Synthesis System을 사용하여 합성하였고, 50ng 무작위 헥사머 (Invitrogen Life Technologies, Carlsbad, CA)로 프라이밍하였다(primed). 마우스 카파 경쇄 불변 DNA 서열 (수납 번호 Z37499)을 프라이머 5' mCLK1 (Z37499) (5'-CGGGCTGATG CTGCACCAAC TGTATCCATC TTC-3') (SEQ ID NO:3) 및 3' mCLK1 (Z37499) (5'-ACACTCTCCC CTGTTGAAGC TCTTGACAAT GGG-3') (SEQ ID NO:4)를 사용하는 PCR에 의해 이 cDNA로부터 증폭하였다. 마우스 IgG2불변 도메인 DNA 서열 (수납 번호 AJ294738)을 또한 프라이머 5' mCH2a(AJ294738) (5'-GCCAAAACAA CAGCCCCATC GGTCTATCCA C-3') (SEQ ID NO:5) 및 3' mCH2a(AJ294738) (5'-TCATTTACCC GGAGTCCGGG AGAAGCTCTT AGTCG-3') (SEQ ID NO:6)를 사용하는 PCR에 의해 이 cDNA로부터 증폭하였다. PCR 생성물을 TOPO TA Cloning 키트 (Invitrogen Life Technologies, Carlsbad, CA)를 사용하여 pCR2.1-TOPO로 클로닝하였고 불변 도메인의 서열을 확인하였다.
KD5 가변 영역 유전자를 KD5 히브리도마 mRNA로부터 RT-PCR에 의해 증폭하였고 Amersham-Pharmacia Biotech (Piscataway, NJ)의 중쇄 및 경쇄 가변 영역 프라이머 혼합물을 사용하여 pCR2.1-TOPO로 클로닝하였다. 가변 중쇄 유전자를 프라이머 5' BspMI/KD5VH N-말단 (5'-GAGAGTACCT GCGTCATGCA GATGTGAAAC TGCAGGAGTC TGGCCCT-3') (SEQ ID NO:7) 및 3' BspM I/KD5VH C-말단 (5'-GAGAGACCTG CGTCAGCTGA GGAGACGGTG ACCGTGGT-3') (SEQ ID NO:8)과 함께 주형으로서 pCR2.1-TOPO 클로닝된 가변 영역을 사용하여 PCR 증폭하였으며, BspMI로 분해하였고 프라이머 5' BsaI/CH2a N-말단 (5'-GAGAGGGTCT CACAGCCAAA ACAACAGCCC CATCG-3') (SEQ ID NO:9) 및 3' BsaI/ CH2a C-말단 (5'-GAGAGGGTCT CCGGCCGCTC ATTTACCCGG AGTCCGGG AGAA-3') (SEQ ID NO: 10)으로 증폭된, BsaI-분해된 IgG2a 불변 중쇄 유전자 PCR 단편에 결찰하였다. 이 단편을 그때 pRG882의 BspMI 및 NotI 부위로 결찰하였다. 결과로 얻은 플라스미드, pTE317을 mROR1 신호 서열에 융합된, CMV-MIE 프로모터의 KD5 재조합 중쇄 유전자를 발현할 수 있었다. 가변 경쇄 유전자를 프라이머 5' BsmBI/KD5VL N-말단 (5'-GAGAGCGTCT CATGCAGACA TCCAGATGAC CCAGTCTCCA-3') (SEQ ID NO:11) 및 3' BsmBI/KD5VL C-말단 (5'-GAGAGCGTCT CACAGCCCGT TTTATTTCCA GCTTGGTCCC-3') (SEQ ID NO:12)과 함께 주형으로서 pCR2.1-TOPO 클로닝된 가변 영역을 사용하여 PCR 증폭하였고, BsmBI로 분해하였고 프라이머 5' BsaI/CLK N-말단 (5'-GAGAGGGTCT CAGCTGATGC TGCACCAACT GTATCC-3') (SEQ ID NO:13) 및 3' BsaI/CLK C-말단 (5'-GAGAGGGTCT CAGGCCGCTC AACACTCTCC CCTGTTGAAG CTCTTGAC-3') (SEQ ID NO:14)으로 증폭된 BsaI-분해된 카파 불변 경쇄 유전자 PCR 단편에 결찰하였다. 이 단편을 그때 pRG882의 BspMI 및 NotI 부위에 결찰하였다. 결과의 플라스미드, pTE316은 mROR1 신호 서열에 융합된, CMV-MIE 프로모터의 KD5 재조합 경쇄 유전자를 발현할 수 있다.
KD5 중쇄 유전자를 암호화하는, pTE317의 1450 bp EcoRI-NotI 단편을 pRG980, 하이그로마이신에 대한 저항성을 부여하고 UbC 프로모터에 대한 재조합 유전자의 발현이 플라스미드 pTE322를 수득하게 하는 벡터의 EcoRI 및 NotI 부위에 클로닝하였다. 유사하게, KD5 경쇄 유전자를 암호화하는, pTE316의 750 bp EcoRI-NotI 단편을 pRG985, 퓨로마이신에 대한 저항성을 부여하고 UbC 프로모터에 대한 재조합 유전자의 발현이 플라스미드 pTE324를 수득하게 하는 벡터의 EcoRI 및 NotI 부위에 클로닝하였다. RGC10 세포 (5 x 106)를 3 μg pTE322 및 3 μg pTE322로 트랜스펙션하였고 20 μg 퓨로마이신 및 400 μg/ml 하이그로마이신과 함께 10% 태아 소 혈청이 보충된 F12 배지에서 14일 동안 성장에 의한 플라스미드의 통합을 위해 선택하였다. hFcγRI의 발현을 3일 동안 1 μg/ml 독시시클린의 배양 배지에 추가에 의해 유발하였다. 이중-저항성 세포를 염소 다클론성 FITC-컨쥬게이션된 항-마우스 IgG (Fey) F (ab')2 단편 (Jackson ImmunoResearch Laboratories, West Grove, PA)으로 염색 전 18시간 동안 1 mg/ml 토끼 IgG와 함께 배양하였다. 세포를 유동 세포 분석법에 의한 분석 전 1시간 동안 염색하였고 그때 PBS로 두 번 세척하였다. 가장 형광성인 세포 (상위 5%)를 풀로서 분리하였고 10일 동안 확장하였으며, 그 후 프로토콜을 반복하였지만 상위 1% 가장 형광성인 세포들을 풀로서 분리하였다. 이 풀을 10일 동안 확장하였고 그때 상위 0.1% 가장 형광성인 세포를 96-웰 플레이트에 단일 세포로서 분리하였다. 클론을 항체의 발현에 대하여 ELISA에 의해 분석하였고 7개의 클론을 분석된 53 클론으로부터 선정하였다. 이 클론들의 평균 특이적 생산성은 35 pg/세포/일이었고 최고의 클론은 54 pg/세포/일로 재조합 KD5 단클론성 항체를 발현하였다.
실시예10: FASTR™은 CSCP 발현 수준에 의해 영향을 받지 않고 스크리닝한다
CSCP의 발현 수준이 관련된 sPOI를 발현하는 세포를 분리하는 능력에 크게 영향을 미치지 않는다는 것을 입증하기 위해, FASTR™은 각각 같은 CSCP를 발현하지만 높은 수준 또는 낮은 수준에서 비교된 두 개의 다른 숙주 세포주에서 같은 sPOI에 대하여 스크리닝한다.
FASTR™ 숙주 세포주 RGC10를 pTE158의 안정한 통합에 의한 hFcγRI 단백질의 높은 수준 발현에 대하여 선택하였고 40 hFcγRI 통합된 유전자 콜로니를 함유하는 것을 발견하였다. 낮은 수준으로 hFcγRI 단백질을 발현하는 새로운 세포주, RS527을 안정한 트랜스펙션 및 단일 카피 유전자 통합에 대한 선택 후, CHO K1으로부터 생성하였다. RS527 세포가 FASTR™ 세포주의 전체 세포 용해물의 웨스턴 블롯 분석에 의해 결정된 바와 같이 RGC10 세포보다 훨씬 더 적은 hFcγRI 단백질을 발현하였다.
간략히 말하면, RGC10 및 RS527 세포를 pTE462, 분비된 hFc-융합 단백질 Rc1-hFc를 발현하고 하이그로마이신에 대한 저항성을 부여할 수 있는 플라스미드로 트랜스펙션하였다. 트랜스펙션된 배양물을 2주 동안 하이그로마이신으로 선택하였다. 하이그로마이신-저항성 세포를 본원에서 설명된 FASTR™ 방법에 따라, 1 μg/ml 독시시클린 (Dox)으로 유발하였고 하룻밤 동안 토끼 IgG로 차단하였다. 다음 날 RGC10/pTE462 및 RS527/pTE462 배양물을 hFc에 특이적인 FITC-컨쥬게이션된 항체에 의해 염색하였고 그때 유동 세포 분석법에 의해 분석하였다. 각각 낮은, 중간, 및 높은 형광성을 갖는 세포를 표시하는 세 개의 세포 빈(bin) R4, R5, 및 R6을 각 숙주 세포주로부터 분류하였고 조직 배양에서 확장하였다.
Rc1-hFc 단백질 생산 수준을 여섯 개의 세포 빈과 비교하기 위해, 여섯 개의 배양물을 각 빈에 대하여 같은 수의 세포를 사용하여 설정하였다. 3일 후, 조정된 배지를 수거하였다. 조정된 배지에서 Rc1-hFc 단백질 역가를 ELISA에 의해 결정하였고 각각의 세포 빈의 평균 형광성에 대하여 플롯팅하였다(plotted). RGC10 및 RS527 숙주 세포주 둘 다에 대하여, 평균 형광성 (세포 표면 상에 디스플레이된 Rc1-hFc의 양) 및 분리된 세포 풀의 sPOI 단백질 생산 수준 사이에서 유사한 연관성이 있었다. 더 중요하게는, RGC10 및 RS527으로부터 유래된 두 개의 고형광성 R6 빈에서 sPOI 역가는 유사했다. 이 데이터는 FASTR™ 숙주 세포주에서 CSCP의 발현 수준이 상기 숙주의 사용이 sPOI의 발현 수준에 기초하여 트랜스펙션된 세포를 분리하는데 크게 영향을 미치지 않았다는 것을 입증한다.
실시예11: 세포 표면 캡쳐 단백질로서 Tie2 수용체
FcγR1 이외의 세포 표면 캡쳐 단백질 (CSCP)이 본 발명에서 설명된 방법에서 사용될 수 있다. 본 실시예에서, Tie2 수용체는 CSCP로서 기능을 하며 Tie2 수용체의 세포 외 도메인에 특이적으로 결합하는 C1b 단클론성 항체로부터 만들어진 Tie-특이적 ScFvC1b-Fc 융합 단백질을 발현하는 세포를 분리하는데 사용된다. ScFvC1b-Fc에 대한 CSCP가 hFcgRI일 수 있지만, 본 실시예는 Tie2가 ScFvC1b-Fc에 대한 CSCP로서 사용될 수 있다는 것을 입증한다.
유발성 Tie2 CSCP 세포주를 구성하기 위해, CHO K1을 먼저 TetR 플라스미드 pcDNA6/TR로 안정하게 트랜스펙션하였다. 블라스티시딘-저항성 세포 풀을 그때 pTE259, Tie2의 세포 외 도메인 및 막관통 도메인으로 구성된 단백질의 유발성 발현을 허용하는 플라스미드로 안정하게 트랜스펙션하였다. 유발성 세포 클론을 Tie2에 특이적인 항체로 염색 후 유동 세포 분석법에 의해 분리하였다. RGC54 클론을 ScFvC1b-Fc의 발현에 대한 FASTR™의 실행 가능성을 연구하기 위해 선정하였다.
RGC54 세포를 분비된 hFc-융합 단백질 ScFvC1b-Fc를 발현하고 하이그로마이신에 대한 저항성을 부여할 수 있는 플라스미드로 안정하게 트랜스펙션하였다. 트랜스펙션된 배양물을 2주 동안 하이그로마이신으로 선택하였다. 하이그로마이신-저항성 세포를 Dox로 유발하였고 정제된 C1b mAb 1 mg/ml로 차단하였다. C1b 단클론성 항체는 ScFvC1b-Fc에서 가변 영역의 공급원이었다. 다음 날, 세포 풀을 hFc에 특이적인 FITC-컨쥬게이션된 항체에 의해 염색하였고 그때 유동 세포 분석법에 의해 분석하였다. 각각 높은, 중간, 및 낮은 형광성을 갖는 세포를 표시하는 세 개의 세포 빈 R6, R7, 및 R8을 분류하였고 조직 배양에서 확장하였다. 세 개의 배양물을 ELISA에 의해 결정된 바와 같이 ScFvC1b-Fc 단백질 생산을 결정하기 위해 각각의 빈에 대하여 같은 수의 세포를 사용하여 설정하였다. 분리된 세포 풀의 평균 형광성 (세포 표면 상에서 Tie2로의 ScFvC1b-Fc 결합의 양) 및 ScFvC1b-Fc 단백질 생산 수준 사이에 연관성이 있었다.
이 데이터는 hFcγRI 이외의 CSCP가 CSCP로서 역할을 할 수 있다는 것을 나타내고, 또한 어떤 수용체도 그것의 세포질 도메인의 제거에 의해 CSCP로 전환될 수 있다고 제안한다. 이 데이터는 또한 항원이 CSCP로 만들어지고 항원-특이적 항체-관련 분자를 발현하는 세포를 스크리닝하는 FASTR™에 사용될 수 있다는 것을 입증한다.
실시예 12: 효과적인 FASTR™은 낮은 친화도를 갖는 CSCP:sPOI 쌍으로 스크리닝한다
안지오포이에틴-1은 Tie2 수용체에 대한 리간드이다. 안지오포이에틴-1 수용체 결합 도메인 및 hFc를 포함하는 키메라 단백질 (FD1-hFc)은 BIAcore™에 의해 결정된 바와 같이 174 nM의 친화도 상수로 Tie2에 결합한다. FD1-hFc 및 Tie2를 CSCP 및 sPOI 사이의 최소 친화도가 FASTR™ 스크리닝에 필요한지를 결정하기 위해 각각 sPOI 및 CSCP로서 선정하였다.
세포 도포 실험에서, 외인성으로 추가된 FD1-hFc는 Tie2를 통해 RGC54 세포에 특이적으로 결합하였다. Tie2 및 FD1-hFc 사이의 친화도가 FASTR™ 스크리닝을 허용하는데 충분한지 결정하기 위해, RGC54 세포를 pTE942, 분비된 hFc-융합 단백질 FD1-hFc를 발현하고 하이그로마이신에 대한 저항성을 부여할 수 있는 플라스미드로 안정하게 트랜스펙션하였다. 트랜스펙션된 배양물을 2주 동안 하이그로마이신으로 선택하였다. 하이그로마이신-저항성 세포를 Dox로 유발하였고 마우스 IgG1 Fc를 포함하는 정제된 FD1-mFc 1 mg/ml로 차단하였다. 그 다음 날, 세포 풀을 hFc에 특이적인 FITC-컨쥬게이션된 항체로 염색하였고 그때 유동 세포 분석법에 의해 분석하였다. 각각 높은, 중간, 및 낮은 형광성을 표시하는 세 개의 세포 빈 R6, R7, 및 R8을 수거하였다. 배양물을 ELISA에 의해 결정된 바와 같이 조정된 배지에서 FD1-hFc 단백질 생산 수준을 결정하기 위해 각각의 빈에 대하여 같은 수의 세포를 사용하여 설정하였다. 분리된 세포 풀의 평균 형광성 (세포 표면-결합된 Tie2에 결합하는 FD1-Fc) 및 FD1-hFc 단백질 생산 수준 사이에 연관성이 있었다. 가장 높은 형광성을 가진 빈은 가장 많은 FD1-hFc를 생산하였다.
이 데이터는 저친화도 (174 nM KD)의 CSCP:sPOI 짝이 효과적인 FASTR™ 스크리닝에 사용될 수 있다는 것을 입증한다. 중요하게, FD1-Fc: Tie2 결합에 대한 해리 t1/2는 2분 미만이며, 측정 가능한 친화도를 가진 어떤 CSCP:sPOI 짝도 FASTR™ 스크리닝에서 작용할 수 있다고 제안한다. 게다가, 본 실험은 또한 비-FcγRI 수용체가 또한 리간드를 발현하는 세포를 분리하기 위해 CSCP로서 사용될 수도 있다는 것을 나타낸다.
실험 13: 막관통 도메인의 ScFv로의 융합이 기능적 CSCP를 만든다
CSCP는 sPOI에 대하여 측정 가능한 친화도를 갖는 어떤 세포 표면-결합된 단백질도 될 수 있다. 이것을 입증하기 위해, 전체적으로 합성의 CSCP를 PDGF 수용체의 막관통 도메인을 쥐 카파 사슬-특이적 단클론성 항체 HB58의 가변 영역을 함유하는 ScFv에 융합함으로써 구성하였다. FASTR™ 숙주를 이 키메라 단백질 (ScFvHB58-TMPDGFR)을 발현하도록 구성하였고 안지오포이에틴-2 FD 도메인-특이적 P12 항체를 발현하는 세포를 분리하는데 사용하였다.
CHO K1으로부터 유래된 RS655 세포주는 구성적으로 ScFvHB58-TMPDGFR을 발현한다. ScFvHB58-TMPDGFR을 발현하는 세포를 P12 mAb, FD2-hFc로 순차적인 배양에 의해 염색할 수 있고, HB58 ScFv에 의해 세포 표면 상에 캡쳐된 FITC-컨쥬게이션된 항-hIgG-P12를 FD2에 대한 친화도에 의해 검출하였으며, 이것은 hFc 태그의 인식에 의해 차례로 검출되었다. RS656 세포는 eYFP에 대한 유전자를 암호화하는 플라스미드로 안정한 트랜스펙션 후 RS655 세포로부터 유래되었다. 거의 100%의 RS656 세포는 eYFP-양성이었고, 대부분 (76%)은 FD2-hFc에 결합함으로써 검출된 바와 같이 ScFvHB58-TMPDGFR의 발현을 유지하였다.
RS655 세포를 pTE693, P12 항체의 중쇄 및 경쇄를 발현하고, 퓨로마이신에 대한 저항성을 부여할 수 있는 플라스미드로 안정하게 트랜스펙션하였다. 트랜스펙션된 배양물을 P12 mAb 발현에 관하여 외래의 것인 세포의 풀 (RS655/pTE693)을 수득하기 위해 2주 동안 퓨로마이신으로 선택하였다.
ScFvHB58-TMPDGFR이 CSCP로서 기능하고 비-생산자로부터 항체-생산 세포의 분리를 용이하게 할 수 있는지 결정하기 위해, 같은 수의 RS656 세포 및 RS655/pTE693 세포를 혼합하여 동시-배양하였다. RS655/pTE693 세포로부터 발현된 P12가 확산되고 RS656 세포의 표면 상의 ScFvHB58에 결합하는 것이 허용될 때, 많은 황색 세포들은 또한 FD2-hFc에 결합에 대하여 양성이었다. 하지만, RS656의 표면 상의 ScFvHB58은 과도한 쥐 IgG에 결합하였고, 그때 비-황색 세포만이 FD2-hFc에 결합에 대하여 양성이었으며, 발현 세포는 비-발현 세포로부터 효과적으로 분리된다는 것을 입증한다.
이 데이터는 ScFv가 기능적 CSCP를 세포막으로 표적화함으로써 그것으로 만들어질 수 있다는 것을 입증한다. 데이터는 또한 FASTR™이 분비된 항체를 발현하는 세포가 항체의 항원으로 검출되게 한다는 것을 나타낸다.
실시예 14: T 세포 수용체 가변 영역을 포함하는 원하는 단백질
TCR-Fc인 원하는 단백질을 발현하는 세포주의 고발현 클론을 분리하기 위한 유동 세포 분석법-기반 자가 분비 트랩 (FASTR™) 방법은 원하는 항체를 발현하는 세포주의 제조와 유사한 방식으로 제조한다. 고발현 클론을 hFcγR에 결합된 원하는 TCR-Fc를 표면 상에서 디스플레이하는 세포를 스크리닝함으로써 확인하였다.
본 실시예에서, 세포 표면 캡쳐 분자로서 유발성 FcγR1을 포함하는, CHO K1 세포주 RGC10을 이용한다. RGC10는 TCR 가변 영역을, 인 프레임(in frame), 인간 Fc 영역에, 또는 TCR 가변 영역 및 인간 Fc 영역 사이에서 직접적으로, 인 프레임 또는 결합자 서열로 클로닝함으로써 재조합 TCR-Fc를 발현하도록 만들어진다.
Fc-결합된 TCR α 가변 도메인 및 Fc-결합된 TCR β 가변 도메인을 포함하는 다이머인 원하는 단백질을 만들기 위해, RGC10은 두 개의 벡터, 인간 Fc 서열과 함께 TCR α 가변 도메인 융합 단백질을 발현할 수 있는 제1 벡터, 및 같은 인간 Fc 서열과 함께 TCR β 도메인 융합 단백질을 발현할 수 있는 제2 벡터로 트랜스펙션된다. 각 벡터는 TCR 가변 영역에 관하여 5'에 선도 서열 (예를 들어, 분비 신호 서열), 및 약물 저항 유전자인 선택 가능한 마커를 포함한다. 각각의 벡터 트랜스펙션 후, 벡터를 함유하는 세포를 적절한 약물 선택에 의해 선택하였다. 선택은 제1 및 제2 벡터 둘 다를 가진 RGC10 세포주를 초래한다. 원하는 단백질을 발현하는 세포를 β 가변 도메인에 대한 항체, 가변 도메인에 대한 항체, 및 Fc 도메인에 대한 항체 중 하나 이상에 의해 검출할 수 있다.
Fc에 융합된 α 및 β TCR 가변 도메인 둘 다를 포함하는 다이머인 원하는 단백질을 만들기 위해, RGC10을 다음과 같이 구성된 원하는 단백질을 암호화하는 단일 벡터로 트랜스펙션한다: 선도 서열 (예를 들어, 분비 신호 서열), 이어서 결합자에 융합된 TCR 가변 β 도메인, 여기에서 결합자는, 차례로, TCR 가변 도메인에 융합되며, 이것은 차례로 Fc 서열에 융합된다. 대안으로, 단일 벡터는 다음과 같이 구성될 수 있다: 선도 서열 (예를 들어, 분비 신호 서열), 이어서 결합자에 융합된 TCR 가변 α 도메인, 여기에서 결합자는, 차례로, TCR 가변 β 도메인에 융합되며, 이것은 차례로 Fc 서열에 융합된다. 원하는 단백질을 발현하는 세포는 β 가변 도메인에 대한 항체, α 가변 도메인에 대한 항체, 및 Fc 도메인에 대한 항체 중 하나 이상에 의해 검출될 수 있다.
상기와 같이, TCR α 및/또는 TCR β 불변 도메인을 또한 포함하는 원하는 단백질을 만들기 위해, TCR 가변 도메인 (α 또는 β)은 TCR 불변 도메인에 융합되고 (예를 들어, TCR 가변 도메인 α는 TCR 불변 도메인 α에 융합되고, TCR 가변 도메인 β는 TCR 불변 도메인 β에 융합된다), TCR 가변 + 불변 도메인은 Fc 도메인에 직접적으로 또는 결합자를 통해 융합된다. 원하는 단백질을 발현하는 세포는 β 가변 도메인에 대한 항체, α 가변 도메인에 대한 항체, 및 Fc 도메인에 대한 항체 중 하나 이상에 의해 검출될 수 있다.
원하는 양의 TCR-Fc를 발현하는 세포를 α 가변 도메인에 대한 항체, β 가변 도메인에 대한 항체, α 불변 도메인에 대한 항체, 및 β 불변 도메인에 대한 항체, 및 Fc 도메인에 대한 항체 중 하나 이상을 사용하는, 본원에서 설명된 4SC622-생산 세포주를 분리하는데 사용된 바와 같은 과정을 사용하여 분리한다. 가장 높은 수준의 TCR-Fc를 발현하는 세포를 TCR-Fc-생산 세포주로서 선택한다.
실시예 15: 다수의 IgG 이소타입 및 이중 특이적 항체의 분리를 위한 ScFv-기반 CSCP
게놈의 면역글로불린 중쇄 VDJ 영역 및 면역글로불린 카파 사슬 VJ 영역이 인간 오쏠로그(ortholog)로 대체된, 유전적으로 변형된 마우스 (즉, Velocimmune® 마우스; 미국 특허 번호 제7,105,348호, 이것은 전문이 본원에 참고로 포함됨)를 인간 IgG4 단백질의 Fc 단편 (hFc, 또는 간단하게 Fc; SEQ ID NO: 26), 또는 디펩티드 돌연변이를 함유하는 인간 ΔAdpFc 폴리펩티드 (IMGT에 의해 H95R, Y96F; Fc*로도 알려져 있음; SEQ ID NO: 42)로 면역화하였다. 단클론성 항체를 마우스로부터 얻었고 Fc, Fc*, 또는 Fc 및/또는 Fc*을 포함하는 항체에 결합하는 능력에 대하여 스크리닝하였다. Fc에 결합할 수 있는 세 개의 항체 (Ab1, Ab2, Ab3) 및 Fc*에 결합할 수 있는 세 개의 항체 (Ab4, Ab5, Ab6)를 다음 포맷 중 하나를 갖는 분자에 결합하는 능력에 대하여 테스트하였다: Fc/Fc, Fc/Fc* (이중 특이적 항체일 수도 있음), 및 Fc*/Fc*.
결합 친화도 및 동역학 상수를 결정하기 위한 측정이 Biacore 2000 기구에서 이루어졌다. 항체 (Ab1-Ab8 각각)를 항-마우스-Fc 센서 표면 (Mab 캡쳐 포맷)에 캡쳐하였고, 인간 Fc (SEQ ID NO:26) 호모다이머, 인간 Fc* 호모다이머 (SEQ ID NO:42), 또는 Fc/Fc* 헤테로다이머를 표면 위에 주사하였다. 동역학적 결합 (ka) 및 해리 (kd) 속도 상수를 데이터를 가공하고 그것을 Scrubber 2.0 곡선 맞춤 소프트웨어를 사용하여 1:1 결합 모델에 맞춤으로써 결정하였다. 결합 해리 평형 상수 (KD) 및해리 반감기 (t1/2)를 다음과 같은 동역학적 속도 상수로부터 계산하였다: KD (M) = kd / ka; 및 t1/2 (분) = (In2/(60*kd). 표 2에서 나타난 바와 같이 항체는 3개의 별개의 범주 중에 있다: Fc 특이적, Fc* 특이적, 및 Fc 와 Fc* 사이의 차별을 나타내지 않는 것들 (비-특이적). Fc 특이적 항체는 아미노산 His 95 및/또는 Tyr 96에 의존적이었는데, 이 항체가 디펩티드 돌연변이 (H95R, Y96F)를 가진 인간 Fc*에 결합하지 않기 때문이다 (H95R, Y96F). 반대로, Fc* 특이적 항체는 Arg 95 및/또는 Phe 96에 의존적인데, 이 항체가 야생형 인간 Fc에 결합하지 않기 때문이다.
실시예 16: Ab2 및 Ab2-유래된 ScFv-FcγR 융합 단백질을 생산하는 세포주
Fc-특이적 Ab2의 중쇄 및 경쇄를 시퀀싱하였다 (sequenced). 재조합 Ab2 항체를 제조하기 위해, 중쇄를 암호화하는 발현 벡터 플라스미드를 구성하였고, 경쇄를 암호화하는 발현 벡터 플라스미드를 구성하였다. 두 벡터는 모두 CHO 세포에서 각각의 서브유닛의 발현 및 분비를 가능하게 한다. 항체를 발현하기 위해, 두 플라스미드 모두를 CHO-K1 세포로 트랜스펙션하였고 안정한 형질전환체을 분리하였다. 항체 사슬의 발현은 구성적 CMV 프로모터에 의해 구동되었다.
항체의 친화도-표면 플라스몬 공명 연구
항체 POI-표적 ka (M-1s-1) kd (s-1) KD (M) t½ (분) 특이성
Ab1 Fc/Fc 1.07E+05 3.79E-04 3.54E-09 30 Fc
Fc/Fc* 8.16E+04 3.01E-04 3.69E-09 38
Fc*/Fc* NB NB NB NB
Ab2 Fc/Fc 7.86E+04 3.50E-05 4.45E-10 330 Fc
Fc/Fc* 5.45E+04 1.00-06 1.84E-11 11550
Fc*/Fc* NB NB NB NB
Ab3 Fc/Fc 1.77E+05 4.08E-02 2.30E-07 0.3 Fc
Fc/Fc* 4.51E+04 2.60E-02 5.77E-07 0.4
Fc*/Fc* NB NB NB NB
Ab4 Fc/Fc NB NB NB NB Fc*
Fc/Fc* 6.00E+03 1.00E-06 2.00E-10 11550
Fc*/Fc* 2.22E+04 9.56E-06 4.50E-10 1209
Ab5 Fc/Fc NB NB NB NB Fc*
Fc/Fc* 3.11E+05 1.00E-06 3.21E-12 11550
Fc*/Fc* 5.57E+05 1.00E-06 1.79E-12 11550
Ab6 Fc/Fc NB NB NB NB Fc*
Fc/Fc* 4.48E+05 7.43E-04 1.66E-09 16
Fc*/Fc* 8.73E+05 5.93E-04 6.79E-10 19
Ab7 Fc/Fc 6.02E+05 2.42E-04 4.02E-10 48 비-특이적
Fc/Fc* 4.90E+05 2.15E-04 4.39E-10 54
Fc*/Fc* 4.46E+05 3.20E-02 7.18E-08 0.4
Ab8 Fc/Fc 2.59E+05 4.88E-04 1.88E-09 24 비-특이적
Fc/Fc* 1.88E+05 4.02E-04 2.14E-09 29
Fc*/Fc* 4.10E+04 3.90E-02 9.60E-07 0.3
중쇄 및 경쇄 서열을 항-Fc ScFv 표면 캡쳐 분자를 개발하는데 사용하였다. Ab2-구동된 항-Fc ScFv-FcγR 표면 캡쳐 분자를 암호화하는 핵산을 제조하기 위해, Ab2 면역글로불린 중쇄 가변 도메인 (SEQ ID NO:15) 및 Ab2 면역글로불린 경쇄 가변 도메인 (SEQ ID NO:16) 아미노산 서열을 역번역하였고 CHO 세포 발현에 코돈 최적화하였다. 유사하게, 인간 FcγRI의 C-말단 부분을 CHO 세포 발현에 대하여 코돈 최적화하였다. 코돈 최적화된 뉴클레오티드 서열을 폴리머라제 연쇄 반응을 통해 증폭하였고 결찰하여 SEQ ID NO:19의 ScFv-FcγR 융합 단백질을 암호화하는 인접한 핵산 서열 (SEQ ID NO:20)을 형성한다.
ScFv-FcγR-TM-cyto 융합 단백질을 암호화하는 핵산을 표준 pcr 및 제한 엔도뉴클레아제 클로닝 기술을 사용하여 발현 벡터로 삽입하였다. SEQ ID NO:23에서 예시된, 결과로 얻은 원형 플라스미드는 베타-락타마제-암호화 핵산 서열, 및 두 개의 오페론을 포함한다. 제1 오페론은 네오마이신 저항성 마커와 함께, 황색 형광 단백질 (YFP), 녹색 형광 단백질의 변이체를 암호화하는 핵산 서열을 포함하며, SV40 프로모터 (예를 들어, SEQ ID NO:24)에 의해 구동된다. 제2 오페론은 본 발명의 본 양태의 목적을 위한 벡터의 "비지니스-엔드(business-end)"이며, 코돈-최적화된 ScFv-FcγR 융합 단백질을 암호화하는 핵산 서열을 포함하고, hCMV-IE 프로모터 및 hCMV 인트론 (예를 들어, SEQ ID NO:25)에 의해 구동된다.
CHO-K1 세포를 SEQ ID NO:23의 플라스미드로 트랜스펙션하였다. SEQ ID NO:22의 선형 구조를 그것들의 게놈으로 통합한 안정한 구성요소를 분리하였다.
원형 플라스미드는 제1 오페론 및 제2 오페론을 플랭킹(flanking)하는 두 개의 Lox 부위를 함유하여 선형 구조로서 상기 오페론의 숙주 세포의 게놈으로의 통합을 허용한다. 제1 Lox 부위에서 제2 Lox 부위로 스패닝(spanning)하는 선형 구조는 SEQ ID NO:22에서 예시되고 5-프라임에서 3-프라임으로 SV40 프로모터, 네오마이신-저항성을 암호화하는 핵산, IRES, eYFP를 암호화하는 핵산, SV40 폴리아데닐화 서열, hCMV-IE 프로모터, hCMV 인트론, Tet-오퍼레이터(operator) 서열 (ScFv-FcγR-TM-cyto 융합 단백질의 제어된 발현을 위한), mROR 신호 서열을 암호화하는 핵산, Ab2 ScFv를 암호화하는 핵산, FcγR 막관통 및 세포질 부분을 암호화하는 핵산 (SEQ ID NO: 21), 및 SV40 폴리아데닐화 서열을 포함한다.
실시예 17: ScFv-FcγR-TM-cyto 표면 캡쳐 표적
SEQ ID NO:22의 통합된 서열을 함유하는 CHO-K1 세포를 다양한 서브타입의 항체, 예를 들어, IgG1, IgG2, IgG4, 95R/435R-96F/436F 이중 치환을 갖는 하나의 CH3 도메인을 함유하는 한편 다른 CH3 도메인은 야생형인 IgG4 이중 특이적 항체 (IgG4 Fc/Fc*), 및 IgG1 Fc/Fc* 포맷의 IgG1 이중 특이적 항체를 암호화하는 플라스미드로 트랜스펙션하였다. 세포에 독시시클린을 처리하여 항체와 함께 캡쳐 분자의 생산을 유발하였다. 항체 및 캡쳐 분자의 동시-발현 후, 일부 경우에서 세포에 hFc 차단 단백질, 및 검출 분자 (FITC-표지된 항-hFab)를 처리하였다. 표 3은 결과를 요약하고, 일반적으로 ScFv-FcγR 표면 캡쳐 융합 단백질이 IgG4, IgG2, 및 IgG1 분자에 결합하는 한편, 야생형 FcγR 표면 캡쳐 분자가 IgG에 결합하지만, IgG4 또는 IgG2에는 결합하지 않는다는 것을 나타낸다.
차단 분자 경쟁 검정
임의의 FITC 유닛 (hFc 차단 분자가 있거나 없음)-모드 hFc
대체?
항체 hFc 없음 hFc (1시간) hFc (2시간) hFc (20시간) 코팅 안됨
캡쳐 분자 = ScFv-FcγR-TM-cyto
검출 분자 = FITC-항-hFab
IgG1 mAb-3 250 120 80 20 10
IgG4 mAb-4 250 100 55 20 10
IgG4 mAb-5 250 70 40 20 10
IgG2 mAb-6 2001 ND ND ND 122
캡쳐 분자 = hFcγR
검출 분자 = FITC-항-hFab
IgG1 mAb-3 300 80 30 9 3.5
IgG4 mAb-4 100 2 2 2 2 아니오
IgG4 mAb-5 35 5 5 5 5 아니오
1 + Dox 2 - Dox
실시예 18: Ab6 및 Ab6-유래된 ScFv*-FcγR-TM-cyto를 생산하는 세포주
Fc*-특이적 Ab6의 중쇄 및 경쇄를 시퀀싱하였다. 경쇄의 아미노산 서열을 SEQ ID NO:41인 것으로 결정하였다. 중쇄의 아미노산 서열을 SEQ ID NO:40인 것으로 결정하였다. 재조합 Ab6 항체를 제조하기 위해, 중쇄를 암호화하는 발현 벡터 플라스미드를 구성하였고 경쇄를 암호화하는 발현 벡터 플라스미드를 구성하였다. 항체를 발현하기 위해, 두 플라스미드 모두를 CHO-K1 세포로 트랜스펙션하였고, 안정한 형질전환체를 분리하였으며, 발현은 구성적 CMV 프로모터에 의해 구동되었다.
Ab6-유래된 항-Fc*-특이적 ScFv*-FcγR 표면 캡쳐 분자를 암호화하는 핵산을 제조하기 위해, Ab6 항체의 면역글로불린 중쇄 가변 도메인 (SEQ ID NO:38) 및 Ab6의 면역글로불린 경쇄 가변 도메인 (SEQ ID NO:39) 아미노산 서열을 역번역하였고 CHO 세포 발현에 대하여 코돈 최적화하였다. 유사하게, 인간 FcγRI의 C-말단 부분 (SEQ ID NO: 21)을 CHO 세포 발현에 대하여 코돈 최적화하였다. 코돈 최적화된 뉴클레오티드 서열을 폴리머라제 연쇄 반응을 통해 증폭하였고 결찰하여 항-Fc* ScFv*-FcγR 융합 단백질 (SEQ ID NO:43)을 암호화하는 인접한 핵산 서열 (SEQ ID NO:45)을 형성한다.
ScFv*-FcγR-TM-cyto 융합 단백질을 암호화하는 핵산을 표준 PCR 및 제한효소 엔도뉴클레아제 클로닝 기술을 사용하여 발현 벡터로 삽입하였다. SEQ ID NO:44에서 예시된, 결과로 얻은 원형 플라스미드는 베타-락타마제-암호화 핵산 서열, 및 두 개의 오페론을 포함한다. 제1 오페론은 네오마이신 저항성 마커와 함께, 황색 형광 단백질 (YFP), 녹색 형광 단백질의 변이체를 암호화하는 핵산 서열을 포함하며, SV40 프로모터 (예를 들어, SEQ ID NO:46)에 의해 구동된다. 제2 오페론은 본 발명의 본 양태의 목적을 위한 벡터의 "비지니스-엔드"이며, 코돈-최적화된 항-Fc* ScFv-FcγR 융합 단백질을 암호화하는 핵산 서열을 포함하고, hCMV-IE 프로모터 및 hCMV 인트론 (예를 들어, SEQ ID NO:47)에 의해 구동된다.
CHO-K1 세포를 SEQ ID NO:44의 플라스미드로 트랜스펙션하였다. SEQ ID NO:48의 선형 구조를 통합한 안정한 구성요소를 분리하였다.
원형 플라스미드는 제1 오페론 및 제2 오페론을 플랭킹하는 두 개의 Lox 부위를 함유하여 선형 구조로서 상기 오페론의 숙주 세포의 게놈으로의 통합을 허용한다. 제1 Lox 부위에서 제2 Lox 부위로 스패닝하는 선형 구조는 SEQ ID NO:48에서 예시되고 5-프라임에서 3-프라임으로 SV40 프로모터, 네오마이신-저항성을 암호화하는 핵산, IRES, eYFP를 암호화하는 핵산, SV40 폴리아데닐화 서열, hCMV-IE 프로모터, hCMV 인트론, Tet-오퍼레이터 서열 (항-Fc* ScFv*-FcγR 융합 단백질의 제어된 발현을 위한), mROR 신호 서열을 암호화하는 핵산, Ab6-유래된 항-Fc*-특이적 ScFv*를 암호화하는 핵산, FcγR 막관통 및 세포질 부분을 암호화하는 핵산 (SEQ ID NO: 21), 및 SV40 폴리아데닐화 서열을 포함한다.
실시예 19: 이중 특이적 항체 분류
항-Fc 캡쳐 & 항-Fc* 검출
Ab2-유래된 항-Fc-특이적 ScFv-FcγR 표면 캡쳐 시스템을 이중 특이적 항체를 테스트하는 세포를 검출하고 이것들을 풍부화하는 능력에 대하여 테스트하였다. CH3 도메인 중 하나에서 95R/435R-96F/436F 치환을 가지고 있는 (Fc*로 지정됨) 이중 특이적 항체를 검출하는 능력을 평가하기 위해, 다양한 항체를 차단 분자로서 hFc, 및 검출 분자로서 FITC-표지된 Ab6 항-Fc* 항체 (예를 들어, SEQ ID NO:40의 HC, SEQ ID NO:41의 LC를 가진 mAb)를 사용하여, Ab2-유래된 항-Fc-특이적 ScFv-FcγR 표면 캡쳐 세포주에서 발현시켰다. Ab2-유래된 항-Fc-특이적 ScFv-FcγR 표면 캡쳐 세포주는 검출 분자로서 Fc*-특이적 Ab6을 사용하여 어떤 Fc*/Fc* 또는 Fc/Fc 단일 특이적 항체보다 이중 특이적 항체 (Fc/Fc*)를 검출하고 구별할 수 있었다 (표 4). 야생형 FcγR 표면 캡쳐 세포주는 Fc/Fc*, Fc*/Fc*, 및 Fc/Fc IgG4 종 사이에서 구별할 수 없었는데, FcγR이 IgG4에 결합할 수 없거나, 매우 낮은 친화도로 결합하기 때문이다.
항-Fc* 캡쳐 & 항-Fc 검출
반대로, Ab6-유래된 항-Fc*-특이적 ScFv*-FcγR 표면 캡쳐 시스템을 이중 특이적 항체를 생산하는 세포를 검출하고 풍부화하는 능력에 대하여 테스트하였다. CH3 도메인 중 하나에서 95R/435R-96F/436F 치환을 가지고 있는 (Fc*로 지정됨) 이중 특이적 항체를 검출하는 능력을 평가하기 위해, 다양한 항체를 차단 분자로서 hFc, 및 검출 분자로서 비-치환된 CH3을 인식하는 Alexa 488-표지된 Ab2 항-Fc 항체를 사용하여, Ab6-유래된 항-Fc*-특이적 ScFv*-FcγR 표면 캡쳐 세포주에서 발현시켰다. Ab6-유래된 항-Fc*-특이적 ScFv*-FcγR 표면 캡쳐 세포주는 검출 분자로서 Fc-특이적 Ab2를 사용하여 어떤 Fc*/Fc* 또는 Fc/Fc 단일 특이적 항체보다 이중 특이적 항체 (Fc/Fc*)를 검출하고 구별할 수 있었다 (표 4). FcγR 표면 캡쳐 세포주는 Fc/Fc*, Fc*/Fc*, 및 Fc/Fc IgG4 종 사이에서 구별할 수 없었다.
이중 특이적 항체의 검출 - 평균 형광 강도 (MFI)
IgG1 IgG4
1 CSCP 2 DM Fc/Fc* Fc*/Fc* Fc/Fc Fc/Fc* Fc*/Fc* Fc/Fc Fc/Fc*
특이성
FcgR Ab2 500 ND 350 200 200 200 아니오
Ab6 200 200 200 ND ND ND 아니오
항-hFc 1800 ND 1000 ND ND ND 아니오
ScFv-FcγR Ab6 500 15 15 500 15 15
항-hFc ND ND ND ND ND ND ND
ScFv*-FcγR Ab2 150 10 10 ND ND ND
항-hFc 200 ND 10 ND ND ND
1 세포 표면 캡쳐 단백질 2 검출 분자
실시예 20: Fc/Fc* 이중 특이적 항체의 풍부화
이중 특이적 항체를 분류하고 풍부화하는 (Ab2-유래된) ScFv-FcγR CSCP/ (Ab6) 항-Fc* DM 및 (Ab6-유래된) ScFv*-FcγR CSCP/ (Ab2) 항-Fc DM 시스템의 능력을 평가하기 위해, 차단 분자로서 hFc 및 검출 분자로서 FITC-표지된 항-Fc* (Ab6) 항체를 사용하여, Fc/Fc* IgG4 단클론성 항체 (IgG4-mAb-2) 및 항-Fc ScFv-FcγR 융합 단백질을 동시-발현하는 세포주는 Fc/Fc* 종의 생산을 풍부화하기 위해 연속적 형광성 활성화된 세포 분류 및 풀링을 받았다. 제5 및 제7 일련의 풀로부터 Fc/Fc*을 수득하는 세포를 총 항체 역가 및 각 항체 포맷의 역가에 대하여 분석하였다: Fc/Fc*, Fc/Fc, 및 Fc*/Fc*. 세포가 전적으로 수학적인 퍼네트 제곱 분석(Punnett square analysis)에 의해 비-치환된 CH3 도메인 ("Fc", 즉, IMGT 위치 95에서 히스티딘 및 IMGT 위치 96에서 티로신 포함)을 암호화하는 중쇄 및 치환된 CH3 도메인 ("Fc*", 즉, IMGT 위치 95에서 아르기닌 및 IMGT 위치 96에서 페닐알라닌 96 포함)을 암호화하는 중쇄 둘 다를 암호화하기 때문에, 세포는 이론상으로 25% Fc/Fc, 50% Fc/Fc*, 및 25% Fc*/Fc*를 생산할 것으로 예상된다. 하지만, 생물학적으로, 생산된 항체의 (사전-풍부화) 대부분은 Fc/Fc인 것으로 예상된다.
표 5에서 나타난 바와 같이, 이중 특이적 항체 생산을 위해 선택되고, 풀링되고, 풍부화된 세포는 49% Fc/Fc* 종만큼을 생산하였으며, 적어도 약 3.2 g/L의 Fc/Fc* 이중 특이적 항체의 역가를 갖는다.
Fc/Fc* 이중 특이적 항체 IgG4-mAb-2의 풍부화
Fc/Fc* Fc/Fc Fc*/Fc*
세포주 역가(g/L) % 역가(g/L) % 역가(g/L) %
5 1 1.2 28 2.2 50 0.99 23
2 1.9 49 1.3 32 0.73 19
3 1.5 47 1.2 40 0.40 13
4 1.6 37 1.3 31 1.3 32
5 1.5 48 1.1 35 0.58 18
6 1.8 47 1.3 33 0.75 20
6 7 2.6 44 2.0 34 1.3 23
8 3.2 42 2.4 31 2.0 27
9 2.1 45 1.5 33 1.0 22
10 2.8 43 2.0 31 1.7 28
11 2.3 44 1.6 31 1.3 24
상기 언급된 발명은 예시 및 예의 방법으로도 어느 정도 상세히 설명되었지만, 특정 변화 및 변형은 첨부된 청구범위의 사상 또는 범위에서 벗어나지 않고 본 발명의 교시 내용으로 이루어질 수도 있다는 것이 당업자에게 쉽게 분명해질 것이다.
SEQUENCE LISTING <110> Regeneron Pharmaceuticals, Inc. <120> RECOMBINANT CELL SURFACE CAPTURE PROTEINS <130> 8600-WO <150> US 61/726,040 <151> 2012-11-14 <160> 51 <170> PatentIn version 3.5 <210> 1 <211> 195 <212> PRT <213> Streptococcus <400> 1 Thr Tyr Lys Leu Ile Leu Asn Gly Lys Thr Leu Lys Gly Glu Thr Thr 1 5 10 15 Thr Glu Ala Val Asp Ala Ala Thr Ala Glu Lys Val Phe Lys Gln Tyr 20 25 30 Ala Asn Asp Asn Gly Val Asp Gly Glu Trp Thr Tyr Asp Asp Ala Thr 35 40 45 Lys Thr Phe Thr Val Thr Glu Lys Pro Glu Val Ile Asp Ala Ser Glu 50 55 60 Leu Thr Pro Ala Val Thr Thr Tyr Lys Leu Val Ile Asn Gly Lys Thr 65 70 75 80 Leu Lys Gly Glu Thr Thr Thr Glu Ala Val Asp Ala Ala Thr Ala Glu 85 90 95 Lys Val Phe Lys Gln Tyr Ala Asn Asp Asn Gly Val Asp Gly Glu Trp 100 105 110 Thr Tyr Asp Asp Ala Thr Lys Thr Phe Thr Val Thr Glu Lys Pro Glu 115 120 125 Val Ile Asp Ala Ser Glu Leu Thr Pro Ala Val Thr Thr Tyr Lys Leu 130 135 140 Val Ile Asn Gly Lys Thr Leu Lys Gly Glu Thr Thr Thr Lys Ala Val 145 150 155 160 Asp Ala Glu Thr Ala Glu Lys Ala Phe Lys Gln Tyr Ala Asn Asp Asn 165 170 175 Gly Val Asp Gly Val Trp Thr Tyr Asp Asp Ala Thr Lys Thr Phe Thr 180 185 190 Val Thr Glu 195 <210> 2 <211> 96 <212> PRT <213> Homo sapiens <400> 2 Gln Val Leu Gly Leu Gln Leu Pro Thr Pro Val Trp Phe His Val Leu 1 5 10 15 Phe Tyr Leu Ala Val Gly Ile Met Phe Leu Val Asn Thr Val Leu Trp 20 25 30 Val Thr Ile Arg Lys Glu Leu Lys Arg Lys Lys Lys Trp Asp Leu Glu 35 40 45 Ile Ser Leu Asp Ser Gly His Glu Lys Lys Val Thr Ser Ser Leu Gln 50 55 60 Glu Asp Arg His Leu Glu Glu Glu Leu Lys Cys Gln Glu Gln Lys Glu 65 70 75 80 Glu Gln Leu Gln Glu Gly Val His Arg Lys Glu Pro Gln Gly Ala Thr 85 90 95 <210> 3 <211> 33 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 3 cgggctgatg ctgcaccaac tgtatccatc ttc 33 <210> 4 <211> 33 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 4 acactctccc ctgttgaagc tcttgacaat ggg 33 <210> 5 <211> 31 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 5 gccaaaacaa cagccccatc ggtctatcca c 31 <210> 6 <211> 35 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 6 tcatttaccc ggagtccggg agaagctctt agtcg 35 <210> 7 <211> 47 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 7 gagagtacct gcgtcatgca gatgtgaaac tgcaggagtc tggccct 47 <210> 8 <211> 38 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 8 gagagacctg cgtcagctga ggagacggtg accgtggt 38 <210> 9 <211> 35 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 9 gagagggtct cacagccaaa acaacagccc catcg 35 <210> 10 <211> 42 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 10 gagagggtct ccggccgctc atttacccgg agtccgggag aa 42 <210> 11 <211> 40 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 11 gagagcgtct catgcagaca tccagatgac ccagtctcca 40 <210> 12 <211> 40 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 12 gagagcgtct cacagcccgt tttatttcca gcttggtccc 40 <210> 13 <211> 36 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 13 gagagggtct cagctgatgc tgcaccaact gtatcc 36 <210> 14 <211> 48 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 14 gagagggtct caggccgctc aacactctcc cctgttgaag ctcttgac 48 <210> 15 <211> 113 <212> PRT <213> Homo sapiens <400> 15 Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Lys Pro Gly Ala Ser Val 1 5 10 15 Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr Trp Ile 20 25 30 His Trp Glu Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp Ile Gly Tyr 35 40 45 Ile Asn Pro Asn Thr Gly His Thr Glu Tyr Asn Gln Lys Phe Lys Asp 50 55 60 Lys Ala Thr Leu Thr Ala Asp Arg Ser Ser Ser Thr Ala Tyr Met Gln 65 70 75 80 Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg 85 90 95 Thr Tyr Ser Gly Ser Ser His Phe Asp Tyr Trp Gly Gln Gly Thr Thr 100 105 110 Leu <210> 16 <211> 112 <212> PRT <213> Homo sapiens <400> 16 Ser Asp Ile Val Met Thr Gln Thr Pro Val Ser Leu Pro Val Ser Leu 1 5 10 15 Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His 20 25 30 Asn Asn Gly Asp Thr Phe Leu His Trp Tyr Leu Gln Lys Pro Gly Gln 35 40 45 Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val 50 55 60 Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys 65 70 75 80 Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln 85 90 95 Thr Thr Leu Ile Pro Arg Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile 100 105 110 <210> 17 <211> 21 <212> PRT <213> Homo sapiens <400> 17 Val Leu Phe Tyr Leu Ala Val Gly Ile Met Phe Leu Val Asn Thr Val 1 5 10 15 Leu Trp Val Thr Ile 20 <210> 18 <211> 61 <212> PRT <213> Homo sapiens <400> 18 Arg Lys Glu Leu Lys Arg Lys Lys Lys Trp Asp Leu Glu Ile Ser Leu 1 5 10 15 Asp Ser Gly His Glu Lys Lys Val Thr Ser Ser Leu Gln Glu Asp Arg 20 25 30 His Leu Glu Glu Glu Leu Lys Cys Gln Glu Gln Lys Glu Glu Gln Leu 35 40 45 Gln Glu Gly Val His Arg Lys Glu Pro Gln Gly Ala Thr 50 55 60 <210> 19 <211> 334 <212> PRT <213> artificial sequence <220> <223> synthetic <400> 19 Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Lys Pro Gly Ala 1 5 10 15 Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 25 30 Trp Ile His Trp Glu Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp Ile 35 40 45 Gly Tyr Ile Asn Pro Asn Thr Gly His Thr Glu Tyr Asn Gln Lys Phe 50 55 60 Lys Asp Lys Ala Thr Leu Thr Ala Asp Arg Ser Ser Ser Thr Ala Tyr 65 70 75 80 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 85 90 95 Ala Arg Thr Tyr Ser Gly Ser Ser His Phe Asp Tyr Trp Gly Gln Gly 100 105 110 Thr Thr Leu Ile Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 115 120 125 Ser Gly Gly Gly Gly Ser Asp Ile Val Met Thr Gln Thr Pro Val Ser 130 135 140 Leu Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser 145 150 155 160 Gln Ser Leu Val His Asn Asn Gly Asp Thr Phe Leu His Trp Tyr Leu 165 170 175 Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn 180 185 190 Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr 195 200 205 Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val 210 215 220 Tyr Phe Cys Ser Gln Thr Thr Leu Ile Pro Arg Thr Phe Gly Gly Gly 225 230 235 240 Thr Lys Leu Glu Ile Lys Arg Gly Gly Gly Gly Ser Val Leu Phe Tyr 245 250 255 Leu Ala Val Gly Ile Met Phe Leu Val Asn Thr Val Leu Trp Val Thr 260 265 270 Ile Arg Lys Glu Leu Lys Arg Lys Lys Lys Trp Asp Leu Glu Ile Ser 275 280 285 Leu Asp Ser Gly His Glu Lys Lys Val Thr Ser Ser Leu Gln Glu Asp 290 295 300 Arg His Leu Glu Glu Glu Leu Lys Cys Gln Glu Gln Lys Glu Glu Gln 305 310 315 320 Leu Gln Glu Gly Val His Arg Lys Glu Pro Gln Gly Ala Thr 325 330 <210> 20 <211> 1005 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 20 caagtacaac tgcaacaaag cggagctgaa ctggccaaac caggcgcttc cgtgaagatg 60 tcttgtaaag ccagcgggta tacatttact aattactgga ttcactggga gaagcaaaga 120 cctgaacagg gattggaatg gattggatac attaatccta acaccggaca cacagagtat 180 aatcaaaaat tcaaggataa ggccaccctc acagccgaca gatcttcttc aaccgcctat 240 atgcaacttt cttccctcac ttctgaagac tccgcagttt acttttgcgc acgaacttat 300 tctggaagct cccatttcga ctactggggt caaggaacaa cactgatcgt gtctagcggc 360 ggcggagggt ccggcggggg cggtagcggt ggcggaggtt ctgatattgt catgactcaa 420 acacctgtct ctctgcctgt ttcacttgga gatcaagcta gcatttcctg ccgctctagt 480 caatctctcg tccacaacaa cggcgatact ttcttgcatt ggtatctgca gaaaccaggt 540 cagtcaccta aactgcttat atacaaagtc tctaatagat tctcaggggt gccagatcga 600 ttcagtggtt ctgggtccgg tacagatttt acactcaaga tatccagagt agaagcagaa 660 gatctgggcg tgtatttctg cagtcaaaca acacttattc ctcgtacttt tggaggcggt 720 acaaaactgg agatcaagcg tggaggcgga gggagtgttt tgttttatct ggccgttggg 780 ataatgtttc tcgtaaatac agtactttgg gtaacaataa ggaaggaact gaagagaaag 840 aaaaaatggg atctggaaat atcattggac agtggacacg aaaaaaaagt cacatcatca 900 ttgcaagaag accggcactt ggaggaggaa ctgaaatgtc aagagcaaaa agaagaacaa 960 ctgcaagaag gcgtacatag aaaagaacca cagggagcaa catag 1005 <210> 21 <211> 82 <212> PRT <213> Homo sapiens <400> 21 Val Leu Phe Tyr Leu Ala Val Gly Ile Met Phe Leu Val Asn Thr Val 1 5 10 15 Leu Trp Val Thr Ile Arg Lys Glu Leu Lys Arg Lys Lys Lys Trp Asp 20 25 30 Leu Glu Ile Ser Leu Asp Ser Gly His Glu Lys Lys Val Thr Ser Ser 35 40 45 Leu Gln Glu Asp Arg His Leu Glu Glu Glu Leu Lys Cys Gln Glu Gln 50 55 60 Lys Glu Glu Gln Leu Gln Glu Gly Val His Arg Lys Glu Pro Gln Gly 65 70 75 80 Ala Thr <210> 22 <211> 5759 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 22 acaacttcgt atagcataca ttatacgaag ttatggtacc aagcctaggc ctccaaaaaa 60 gcctcctcac tacttctgga atagctcaga ggcagaggcg gcctcggcct ctgcataaat 120 aaaaaaaatt agtcagccat ggggcggaga atgggcggaa ctgggcggag ttaggggcgg 180 gatgggcgga gttaggggcg ggactatggt tgctgactaa ttgagatgca tgctttgcat 240 acttctgcct gctggggagc ctggggactt tccacacctg gttgctgact aattgagatg 300 catgctttgc atacttctgc ctgctgggga gcctggggac tttccacacc ggatccacca 360 tgggttcagc tattgagcag gatgggttgc atgctggtag tcccgccgca tgggtcgaac 420 gactgtttgg atacgattgg gcccaacaga ctataggctg ttccgacgct gctgtctttc 480 gtctttctgc acaaggtcgt ccagttctgt tcgtgaaaac cgacttgtcc ggagccctca 540 atgagttgca agacgaagct gcacgactga gttggcttgc caccactggt gtcccatgtg 600 ccgcagtact tgacgtcgtc acagaggctg gtcgcgattg gttgctcctt ggagaagtgc 660 ccggccaaga tcttctcagt tcccaccttg cccctgccga aaaagtttca ataatggctg 720 acgctatgag aaggctgcac acccttgacc ctgccacatg tccattcgat caccaagcca 780 aacaccgaat tgaacgagct agaacccgca tggaagccgg cctcgttgat caagacgatt 840 tggatgagga acaccagggt ctcgcacccg ctgaactctt cgctcgcctc aaagcacgaa 900 tgccagacgg agatgacttg gtcgtaaccc acggagatgc ctgccttcct aacataatgg 960 tagagaatgg aagatttagc ggcttcattg attgtggacg acttggagtt gcagatcggt 1020 accaagatat cgctctcgct accagagata ttgctgaaga attgggcgga gaatgggctg 1080 atcggtttct cgtactctac ggaattgccg cacctgattc ccaacgcatt gctttttacc 1140 gtcttctgga tgagttcttc taaacgcgtc ccccctctcc ctcccccccc cctaacgtta 1200 ctggccgaag ccgcttggaa taaggccggt gtgcgtttgt ctatatgtta ttttccacca 1260 tattgccgtc ttttggcaat gtgagggccc ggaaacctgg ccctgtcttc ttgacgagca 1320 ttcctagggg tctttcccct ctcgccaaag gaatgcaagg tctgttgaat gtcgtgaagg 1380 aagcagttcc tctggaagct tcttgaagac aaacaacgtc tgtagcgacc ctttgcaggc 1440 agcggaaccc cccacctggc gacaggtgcc tctgcggcca aaagccacgt gtataagata 1500 cacctgcaaa ggcggcacaa ccccagtgcc acgttgtgag ttggatagtt gtggaaagag 1560 tcaaatggct ctcctcaagc gtattcaaca aggggctgaa ggatgcccag aaggtacccc 1620 attgtatggg atctgatctg gggcctcggt gcacatgctt tacatgtgtt tagtcgaggt 1680 taaaaaacgt ctaggccccc cgaaccacgg ggacgtggtt ttcctttgaa aaacacgatt 1740 gctcgaatca ccatggtgag caagggcgag gagctgttca ccggggtggt gcccatcctg 1800 gtcgagctgg acggcgacgt aaacggccac aagttcagcg tgtccggcga gggcgagggc 1860 gatgccacct acggcaagct gaccctgaag ttcatctgca ccaccggcaa gctgcccgtg 1920 ccctggccca ccctcgtgac caccttcggc tacggcctgc agtgcttcgc ccgctacccc 1980 gaccacatga agcagcacga cttcttcaag tccgccatgc ccgaaggcta cgtccaggag 2040 cgcaccatct tcttcaagga cgacggcaac tacaagaccc gcgccgaggt gaagttcgag 2100 ggcgacaccc tggtgaaccg catcgagctg aagggcatcg acttcaagga ggacggcaac 2160 atcctggggc acaagctgga gtacaactac aacagccaca acgtctatat catggccgac 2220 aagcagaaga acggcatcaa ggtgaacttc aagatccgcc acaacatcga ggacggcagc 2280 gtgcagctcg ccgaccacta ccagcagaac acccccatcg gcgacggccc cgtgctgctg 2340 cccgacaacc actacctgag ctaccagtcc gccctgagca aagaccccaa cgagaagcgc 2400 gatcacatgg tcctgctgga gttcgtgacc gccgccggga tcactctcgg catggacgag 2460 ctgtacaagt aatcggccgc taatcagcca taccacattt gtagaggttt tacttgcttt 2520 aaaaaacctc ccacacctcc ccctgaacct gaaacataaa atgaatgcaa ttgttgttgt 2580 taacttgttt attgcagctt ataatggtta caaataaagc aatagcatca caaatttcac 2640 aaataaagca tttttttcac tgcattctag ttgtggtttg tccaaactca tcaatgtatc 2700 ttatcatgtc ggcgcgttga cattgattat tgactagtta ttaatagtaa tcaattacgg 2760 ggtcattagt tcatagccca tatatggagt tccgcgttac ataacttacg gtaaatggcc 2820 cgcctggctg accgcccaac gacccccgcc cattgacgtc aataatgacg tatgttccca 2880 tagtaacgcc aatagggact ttccattgac gtcaatgggt ggagtattta cggtaaactg 2940 cccacttggc agtacatcaa gtgtatcata tgccaagtac gccccctatt gacgtcaatg 3000 acggtaaatg gcccgcctgg cattatgccc agtacatgac cttatgggac tttcctactt 3060 ggcagtacat ctacgtatta gtcatcgcta ttaccatggt gatgcggttt tggcagtaca 3120 tcaatgggcg tggatagcgg tttgactcac ggggatttcc aagtctccac cccattgacg 3180 tcaatgggag tttgttttgg caccaaaatc aacgggactt tccaaaatgt cgtaacaact 3240 ccgccccatt gacgcaaatg ggcggtaggc gtgtacggtg ggaggtctat ataagcagag 3300 ctctccctat cagtgataga gatctcccta tcagtgatag agatcgtcga cgtttagtga 3360 accgtcagat cgcctggaga cgccatccac gctgttttga cctccataga agacaccggg 3420 accgatccag cctccgcggc cgggaacggt gcattggaac gcggattccc cgtgccaaga 3480 gtgacgtaag taccgcctat agagtctata ggcccacccc cttggcttct tatgcatgct 3540 atactgtttt tggcttgggg tctatacacc cccgcttcct catgttatag gtgatggtat 3600 agcttagcct ataggtgtgg gttattgacc attattgacc actcccctat tggtgacgat 3660 actttccatt actaatccat aacatggctc tttgccacaa ctctctttat tggctatatg 3720 ccaatacact gtccttcaga gactgacacg gactctgtat ttttacagga tggggtctca 3780 tttattattt acaaattcac atatacaaca ccaccgtccc cagtgcccgc agtttttatt 3840 aaacataacg tgggatctcc acgcgaatct cgggtacgtg ttccggacat ggtctcttct 3900 ccggtagcgg cggagcttct acatccgagc cctgctccca tgcctccagc gactcatggt 3960 cgctcggcag ctccttgctc ctaacagtgg aggccagact taggcacagc acgatgccca 4020 ccaccaccag tgtgccgcac aaggccgtgg cggtagggta tgtgtctgaa aatgagctcg 4080 gggagcgggc ttgcaccgct gacgcatttg gaagacttaa ggcagcggca gaagaagatg 4140 caggcagctg agttgttgtg ttctgataag agtcagaggt aactcccgtt gcggtgctgt 4200 taacggtgga gggcagtgta gtctgagcag tactcgttgc tgccgcgcgc gccaccagac 4260 ataatagctg acagactaac agactgttcc tttccatggg tcttttctgc agtcaccgtc 4320 cttgacacga agcttatact cgagctctag attgggaacc cgggtctctc gaattcgaga 4380 tctccaccat gcacagacct agacgtcgtg gaactcgtcc acctccactg gcactgctcg 4440 ctgctctcct cctggctgca cgtggtgctg atgcacaagt acaactgcaa caaagcggag 4500 ctgaactggc caaaccaggc gcttccgtga agatgtcttg taaagccagc gggtatacat 4560 ttactaatta ctggattcac tgggagaagc aaagacctga acagggattg gaatggattg 4620 gatacattaa tcctaacacc ggacacacag agtataatca aaaattcaag gataaggcca 4680 ccctcacagc cgacagatct tcttcaaccg cctatatgca actttcttcc ctcacttctg 4740 aagactccgc agtttacttt tgcgcacgaa cttattctgg aagctcccat ttcgactact 4800 ggggtcaagg aacaacactg atcgtgtcta gcggcggcgg agggtccggc gggggcggta 4860 gcggtggcgg aggttctgat attgtcatga ctcaaacacc tgtctctctg cctgtttcac 4920 ttggagatca agctagcatt tcctgccgct ctagtcaatc tctcgtccac aacaacggcg 4980 atactttctt gcattggtat ctgcagaaac caggtcagtc acctaaactg cttatataca 5040 aagtctctaa tagattctca ggggtgccag atcgattcag tggttctggg tccggtacag 5100 attttacact caagatatcc agagtagaag cagaagatct gggcgtgtat ttctgcagtc 5160 aaacaacact tattcctcgt acttttggag gcggtacaaa actggagatc aagcgtggag 5220 gcggagggag tgttttgttt tatctggccg ttgggataat gtttctcgta aatacagtac 5280 tttgggtaac aataaggaag gaactgaaga gaaagaaaaa atgggatctg gaaatatcat 5340 tggacagtgg acacgaaaaa aaagtcacat catcattgca agaagaccgg cacttggagg 5400 aggaactgaa atgtcaagag caaaaagaag aacaactgca agaaggcgta catagaaaag 5460 aaccacaggg agcaacatag gcggccgcta atcagccata ccacatttgt agaggtttta 5520 cttgctttaa aaaacctccc acacctcccc ctgaacctga aacataaaat gaatgcaatt 5580 gttgttgtta acttgtttat tgcagcttat aatggttaca aataaagcaa tagcatcaca 5640 aatttcacaa ataaagcatt tttttcactg cattctagtt gtggtttgtc caaactcatc 5700 aatgtatctt atcatgtcta ccggtataac ttcgtataat gtatactata cgaagttag 5759 <210> 23 <211> 7627 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 23 aagcttatac tcgagctcta gattgggaac ccgggtctct cgaattcgag atctccacca 60 tgcacagacc tagacgtcgt ggaactcgtc cacctccact ggcactgctc gctgctctcc 120 tcctggctgc acgtggtgct gatgcacaag tacaactgca acaaagcgga gctgaactgg 180 ccaaaccagg cgcttccgtg aagatgtctt gtaaagccag cgggtataca tttactaatt 240 actggattca ctgggagaag caaagacctg aacagggatt ggaatggatt ggatacatta 300 atcctaacac cggacacaca gagtataatc aaaaattcaa ggataaggcc accctcacag 360 ccgacagatc ttcttcaacc gcctatatgc aactttcttc cctcacttct gaagactccg 420 cagtttactt ttgcgcacga acttattctg gaagctccca tttcgactac tggggtcaag 480 gaacaacact gatcgtgtct agcggcggcg gagggtccgg cgggggcggt agcggtggcg 540 gaggttctga tattgtcatg actcaaacac ctgtctctct gcctgtttca cttggagatc 600 aagctagcat ttcctgccgc tctagtcaat ctctcgtcca caacaacggc gatactttct 660 tgcattggta tctgcagaaa ccaggtcagt cacctaaact gcttatatac aaagtctcta 720 atagattctc aggggtgcca gatcgattca gtggttctgg gtccggtaca gattttacac 780 tcaagatatc cagagtagaa gcagaagatc tgggcgtgta tttctgcagt caaacaacac 840 ttattcctcg tacttttgga ggcggtacaa aactggagat caagcgtgga ggcggaggga 900 gtgttttgtt ttatctggcc gttgggataa tgtttctcgt aaatacagta ctttgggtaa 960 caataaggaa ggaactgaag agaaagaaaa aatgggatct ggaaatatca ttggacagtg 1020 gacacgaaaa aaaagtcaca tcatcattgc aagaagaccg gcacttggag gaggaactga 1080 aatgtcaaga gcaaaaagaa gaacaactgc aagaaggcgt acatagaaaa gaaccacagg 1140 gagcaacata ggcggccgct aatcagccat accacatttg tagaggtttt acttgcttta 1200 aaaaacctcc cacacctccc cctgaacctg aaacataaaa tgaatgcaat tgttgttgtt 1260 aacttgttta ttgcagctta taatggttac aaataaagca atagcatcac aaatttcaca 1320 aataaagcat ttttttcact gcattctagt tgtggtttgt ccaaactcat caatgtatct 1380 tatcatgtct accggtataa cttcgtataa tgtatactat acgaagttag ccggtagggc 1440 ccctctcttc atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa aggccgcgtt 1500 gctggcgttt ttccataggc tccgcccccc tgacgagcat cacaaaaatc gacgctcaag 1560 tcagaggtgg cgaaacccga caggactata aagataccag gcgtttcccc ctggaagctc 1620 cctcgtgcgc tctcctgttc cgaccctgcc gcttaccgga tacctgtccg cctttctccc 1680 ttcgggaagc gtggcgcttt ctcatagctc acgctgtagg tatctcagtt cggtgtaggt 1740 cgttcgctcc aagctgggct gtgtgcacga accccccgtt cagcccgacc gctgcgcctt 1800 atccggtaac tatcgtcttg agtccaaccc ggtaagacac gacttatcgc cactggcagc 1860 agccactggt aacaggatta gcagagcgag gtatgtaggc ggtgctacag agttcttgaa 1920 gtggtggcct aactacggct acactagaag aacagtattt ggtatctgcg ctctgctgaa 1980 gccagttacc ttcggaaaaa gagttggtag ctcttgatcc ggcaaacaaa ccaccgctgg 2040 tagcggtggt ttttttgttt gcaagcagca gattacgcgc agaaaaaaag gatctcaaga 2100 agatcctttg atcttttcta cggggtctga cgctcagtgg aacgaaaact cacgttaagg 2160 gattttggtc atgggcgcgc ctcatactcc tgcaggcatg agattatcaa aaaggatctt 2220 cacctagatc cttttaaatt aaaaatgaag ttttaaatca atctaaagta tatatgagta 2280 aacttggtct gacagttacc aatgcttaat cagtgaggca cctatctcag cgatctgtct 2340 atttcgttca tccatagttg cctgactccc cgtcgtgtag ataactacga tacgggaggg 2400 cttaccatct ggccccagtg ctgcaatgat accgcgagac ccacgctcac cggctccaga 2460 tttatcagca ataaaccagc cagccggaag ggccgagcgc agaagtggtc ctgcaacttt 2520 atccgcctcc atccagtcta ttaattgttg ccgggaagct agagtaagta gttcgccagt 2580 taatagtttg cgcaacgttg ttgccattgc tacaggcatc gtggtgtcac gctcgtcgtt 2640 tggtatggct tcattcagct ccggttccca acgatcaagg cgagttacat gatcccccat 2700 gttgtgcaaa aaagcggtta gctccttcgg tcctccgatc gttgtcagaa gtaagttggc 2760 cgcagtgtta tcactcatgg ttatggcagc actgcataat tctcttactg tcatgccatc 2820 cgtaagatgc ttttctgtga ctggtgagta ctcaaccaag tcattctgag aatagtgtat 2880 gcggcgaccg agttgctctt gcccggcgtc aatacgggat aatactgcgc cacatagcag 2940 aactttaaaa gtgctcatca ttggaaaacg ttcttcgggg cgaaaactct caaggatctt 3000 accgctgttg agatccagtt cgatgtaacc cactcgtgca cccaactgat cttcagcatc 3060 ttttactttc accagcgttt ctgggtgagc aaaaacagga aggcaaaatg ccgcaaaaaa 3120 gggaataagg gcgacacgga aatgttgaat actcatactc ttcctttttc aatattattg 3180 aagcatttat cagggttatt gtctcatgag cggatacata tttgaatgta tttagaaaaa 3240 taaacaaata ggggttccgc gcacatttcc ccgaaaagtg ccacctgacg tcaggtacac 3300 aacttcgtat agcatacatt atacgaagtt atggtaccaa gcctaggcct ccaaaaaagc 3360 ctcctcacta cttctggaat agctcagagg cagaggcggc ctcggcctct gcataaataa 3420 aaaaaattag tcagccatgg ggcggagaat gggcggaact gggcggagtt aggggcggga 3480 tgggcggagt taggggcggg actatggttg ctgactaatt gagatgcatg ctttgcatac 3540 ttctgcctgc tggggagcct ggggactttc cacacctggt tgctgactaa ttgagatgca 3600 tgctttgcat acttctgcct gctggggagc ctggggactt tccacaccgg atccaccatg 3660 ggttcagcta ttgagcagga tgggttgcat gctggtagtc ccgccgcatg ggtcgaacga 3720 ctgtttggat acgattgggc ccaacagact ataggctgtt ccgacgctgc tgtctttcgt 3780 ctttctgcac aaggtcgtcc agttctgttc gtgaaaaccg acttgtccgg agccctcaat 3840 gagttgcaag acgaagctgc acgactgagt tggcttgcca ccactggtgt cccatgtgcc 3900 gcagtacttg acgtcgtcac agaggctggt cgcgattggt tgctccttgg agaagtgccc 3960 ggccaagatc ttctcagttc ccaccttgcc cctgccgaaa aagtttcaat aatggctgac 4020 gctatgagaa ggctgcacac ccttgaccct gccacatgtc cattcgatca ccaagccaaa 4080 caccgaattg aacgagctag aacccgcatg gaagccggcc tcgttgatca agacgatttg 4140 gatgaggaac accagggtct cgcacccgct gaactcttcg ctcgcctcaa agcacgaatg 4200 ccagacggag atgacttggt cgtaacccac ggagatgcct gccttcctaa cataatggta 4260 gagaatggaa gatttagcgg cttcattgat tgtggacgac ttggagttgc agatcggtac 4320 caagatatcg ctctcgctac cagagatatt gctgaagaat tgggcggaga atgggctgat 4380 cggtttctcg tactctacgg aattgccgca cctgattccc aacgcattgc tttttaccgt 4440 cttctggatg agttcttcta aacgcgtccc ccctctccct cccccccccc taacgttact 4500 ggccgaagcc gcttggaata aggccggtgt gcgtttgtct atatgttatt ttccaccata 4560 ttgccgtctt ttggcaatgt gagggcccgg aaacctggcc ctgtcttctt gacgagcatt 4620 cctaggggtc tttcccctct cgccaaagga atgcaaggtc tgttgaatgt cgtgaaggaa 4680 gcagttcctc tggaagcttc ttgaagacaa acaacgtctg tagcgaccct ttgcaggcag 4740 cggaaccccc cacctggcga caggtgcctc tgcggccaaa agccacgtgt ataagataca 4800 cctgcaaagg cggcacaacc ccagtgccac gttgtgagtt ggatagttgt ggaaagagtc 4860 aaatggctct cctcaagcgt attcaacaag gggctgaagg atgcccagaa ggtaccccat 4920 tgtatgggat ctgatctggg gcctcggtgc acatgcttta catgtgttta gtcgaggtta 4980 aaaaacgtct aggccccccg aaccacgggg acgtggtttt cctttgaaaa acacgattgc 5040 tcgaatcacc atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt 5100 cgagctggac ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga 5160 tgccacctac ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc 5220 ctggcccacc ctcgtgacca ccttcggcta cggcctgcag tgcttcgccc gctaccccga 5280 ccacatgaag cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg 5340 caccatcttc ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg 5400 cgacaccctg gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat 5460 cctggggcac aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa 5520 gcagaagaac ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt 5580 gcagctcgcc gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc 5640 cgacaaccac tacctgagct accagtccgc cctgagcaaa gaccccaacg agaagcgcga 5700 tcacatggtc ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct 5760 gtacaagtaa tcggccgcta atcagccata ccacatttgt agaggtttta cttgctttaa 5820 aaaacctccc acacctcccc ctgaacctga aacataaaat gaatgcaatt gttgttgtta 5880 acttgtttat tgcagcttat aatggttaca aataaagcaa tagcatcaca aatttcacaa 5940 ataaagcatt tttttcactg cattctagtt gtggtttgtc caaactcatc aatgtatctt 6000 atcatgtcgg cgcgttgaca ttgattattg actagttatt aatagtaatc aattacgggg 6060 tcattagttc atagcccata tatggagttc cgcgttacat aacttacggt aaatggcccg 6120 cctggctgac cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata 6180 gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaactgcc 6240 cacttggcag tacatcaagt gtatcatatg ccaagtacgc cccctattga cgtcaatgac 6300 ggtaaatggc ccgcctggca ttatgcccag tacatgacct tatgggactt tcctacttgg 6360 cagtacatct acgtattagt catcgctatt accatggtga tgcggttttg gcagtacatc 6420 aatgggcgtg gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc 6480 aatgggagtt tgttttggca ccaaaatcaa cgggactttc caaaatgtcg taacaactcc 6540 gccccattga cgcaaatggg cggtaggcgt gtacggtggg aggtctatat aagcagagct 6600 ctccctatca gtgatagaga tctccctatc agtgatagag atcgtcgacg tttagtgaac 6660 cgtcagatcg cctggagacg ccatccacgc tgttttgacc tccatagaag acaccgggac 6720 cgatccagcc tccgcggccg ggaacggtgc attggaacgc ggattccccg tgccaagagt 6780 gacgtaagta ccgcctatag agtctatagg cccaccccct tggcttctta tgcatgctat 6840 actgtttttg gcttggggtc tatacacccc cgcttcctca tgttataggt gatggtatag 6900 cttagcctat aggtgtgggt tattgaccat tattgaccac tcccctattg gtgacgatac 6960 tttccattac taatccataa catggctctt tgccacaact ctctttattg gctatatgcc 7020 aatacactgt ccttcagaga ctgacacgga ctctgtattt ttacaggatg gggtctcatt 7080 tattatttac aaattcacat atacaacacc accgtcccca gtgcccgcag tttttattaa 7140 acataacgtg ggatctccac gcgaatctcg ggtacgtgtt ccggacatgg tctcttctcc 7200 ggtagcggcg gagcttctac atccgagccc tgctcccatg cctccagcga ctcatggtcg 7260 ctcggcagct ccttgctcct aacagtggag gccagactta ggcacagcac gatgcccacc 7320 accaccagtg tgccgcacaa ggccgtggcg gtagggtatg tgtctgaaaa tgagctcggg 7380 gagcgggctt gcaccgctga cgcatttgga agacttaagg cagcggcaga agaagatgca 7440 ggcagctgag ttgttgtgtt ctgataagag tcagaggtaa ctcccgttgc ggtgctgtta 7500 acggtggagg gcagtgtagt ctgagcagta ctcgttgctg ccgcgcgcgc caccagacat 7560 aatagctgac agactaacag actgttcctt tccatgggtc ttttctgcag tcaccgtcct 7620 tgacacg 7627 <210> 24 <211> 2669 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 24 agcctaggcc tccaaaaaag cctcctcact acttctggaa tagctcagag gcagaggcgg 60 cctcggcctc tgcataaata aaaaaaatta gtcagccatg gggcggagaa tgggcggaac 120 tgggcggagt taggggcggg atgggcggag ttaggggcgg gactatggtt gctgactaat 180 tgagatgcat gctttgcata cttctgcctg ctggggagcc tggggacttt ccacacctgg 240 ttgctgacta attgagatgc atgctttgca tacttctgcc tgctggggag cctggggact 300 ttccacaccg gatccaccat gggttcagct attgagcagg atgggttgca tgctggtagt 360 cccgccgcat gggtcgaacg actgtttgga tacgattggg cccaacagac tataggctgt 420 tccgacgctg ctgtctttcg tctttctgca caaggtcgtc cagttctgtt cgtgaaaacc 480 gacttgtccg gagccctcaa tgagttgcaa gacgaagctg cacgactgag ttggcttgcc 540 accactggtg tcccatgtgc cgcagtactt gacgtcgtca cagaggctgg tcgcgattgg 600 ttgctccttg gagaagtgcc cggccaagat cttctcagtt cccaccttgc ccctgccgaa 660 aaagtttcaa taatggctga cgctatgaga aggctgcaca cccttgaccc tgccacatgt 720 ccattcgatc accaagccaa acaccgaatt gaacgagcta gaacccgcat ggaagccggc 780 ctcgttgatc aagacgattt ggatgaggaa caccagggtc tcgcacccgc tgaactcttc 840 gctcgcctca aagcacgaat gccagacgga gatgacttgg tcgtaaccca cggagatgcc 900 tgccttccta acataatggt agagaatgga agatttagcg gcttcattga ttgtggacga 960 cttggagttg cagatcggta ccaagatatc gctctcgcta ccagagatat tgctgaagaa 1020 ttgggcggag aatgggctga tcggtttctc gtactctacg gaattgccgc acctgattcc 1080 caacgcattg ctttttaccg tcttctggat gagttcttct aaacgcgtcc cccctctccc 1140 tccccccccc ctaacgttac tggccgaagc cgcttggaat aaggccggtg tgcgtttgtc 1200 tatatgttat tttccaccat attgccgtct tttggcaatg tgagggcccg gaaacctggc 1260 cctgtcttct tgacgagcat tcctaggggt ctttcccctc tcgccaaagg aatgcaaggt 1320 ctgttgaatg tcgtgaagga agcagttcct ctggaagctt cttgaagaca aacaacgtct 1380 gtagcgaccc tttgcaggca gcggaacccc ccacctggcg acaggtgcct ctgcggccaa 1440 aagccacgtg tataagatac acctgcaaag gcggcacaac cccagtgcca cgttgtgagt 1500 tggatagttg tggaaagagt caaatggctc tcctcaagcg tattcaacaa ggggctgaag 1560 gatgcccaga aggtacccca ttgtatggga tctgatctgg ggcctcggtg cacatgcttt 1620 acatgtgttt agtcgaggtt aaaaaacgtc taggcccccc gaaccacggg gacgtggttt 1680 tcctttgaaa aacacgattg ctcgaatcac catggtgagc aagggcgagg agctgttcac 1740 cggggtggtg cccatcctgg tcgagctgga cggcgacgta aacggccaca agttcagcgt 1800 gtccggcgag ggcgagggcg atgccaccta cggcaagctg accctgaagt tcatctgcac 1860 caccggcaag ctgcccgtgc cctggcccac cctcgtgacc accttcggct acggcctgca 1920 gtgcttcgcc cgctaccccg accacatgaa gcagcacgac ttcttcaagt ccgccatgcc 1980 cgaaggctac gtccaggagc gcaccatctt cttcaaggac gacggcaact acaagacccg 2040 cgccgaggtg aagttcgagg gcgacaccct ggtgaaccgc atcgagctga agggcatcga 2100 cttcaaggag gacggcaaca tcctggggca caagctggag tacaactaca acagccacaa 2160 cgtctatatc atggccgaca agcagaagaa cggcatcaag gtgaacttca agatccgcca 2220 caacatcgag gacggcagcg tgcagctcgc cgaccactac cagcagaaca cccccatcgg 2280 cgacggcccc gtgctgctgc ccgacaacca ctacctgagc taccagtccg ccctgagcaa 2340 agaccccaac gagaagcgcg atcacatggt cctgctggag ttcgtgaccg ccgccgggat 2400 cactctcggc atggacgagc tgtacaagta atcggccgct aatcagccat accacatttg 2460 tagaggtttt acttgcttta aaaaacctcc cacacctccc cctgaacctg aaacataaaa 2520 tgaatgcaat tgttgttgtt aacttgttta ttgcagctta taatggttac aaataaagca 2580 atagcatcac aaatttcaca aataaagcat ttttttcact gcattctagt tgtggtttgt 2640 ccaaactcat caatgtatct tatcatgtc 2669 <210> 25 <211> 3003 <212> DNA <213> artificial sequence <220> <223> synthetic <400> 25 gttgacattg attattgact agttattaat agtaatcaat tacggggtca ttagttcata 60 gcccatatat ggagttccgc gttacataac ttacggtaaa tggcccgcct ggctgaccgc 120 ccaacgaccc ccgcccattg acgtcaataa tgacgtatgt tcccatagta acgccaatag 180 ggactttcca ttgacgtcaa tgggtggagt atttacggta aactgcccac ttggcagtac 240 atcaagtgta tcatatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg 300 cctggcatta tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg 360 tattagtcat cgctattacc atggtgatgc ggttttggca gtacatcaat gggcgtggat 420 agcggtttga ctcacgggga tttccaagtc tccaccccat tgacgtcaat gggagtttgt 480 tttggcacca aaatcaacgg gactttccaa aatgtcgtaa caactccgcc ccattgacgc 540 aaatgggcgg taggcgtgta cggtgggagg tctatataag cagagctctc cctatcagtg 600 atagagatct ccctatcagt gatagagatc gtcgacgttt agtgaaccgt cagatcgcct 660 ggagacgcca tccacgctgt tttgacctcc atagaagaca ccgggaccga tccagcctcc 720 gcggccggga acggtgcatt ggaacgcgga ttccccgtgc caagagtgac gtaagtaccg 780 cctatagagt ctataggccc acccccttgg cttcttatgc atgctatact gtttttggct 840 tggggtctat acacccccgc ttcctcatgt tataggtgat ggtatagctt agcctatagg 900 tgtgggttat tgaccattat tgaccactcc cctattggtg acgatacttt ccattactaa 960 tccataacat ggctctttgc cacaactctc tttattggct atatgccaat acactgtcct 1020 tcagagactg acacggactc tgtattttta caggatgggg tctcatttat tatttacaaa 1080 ttcacatata caacaccacc gtccccagtg cccgcagttt ttattaaaca taacgtggga 1140 tctccacgcg aatctcgggt acgtgttccg gacatggtct cttctccggt agcggcggag 1200 cttctacatc cgagccctgc tcccatgcct ccagcgactc atggtcgctc ggcagctcct 1260 tgctcctaac agtggaggcc agacttaggc acagcacgat gcccaccacc accagtgtgc 1320 cgcacaaggc cgtggcggta gggtatgtgt ctgaaaatga gctcggggag cgggcttgca 1380 ccgctgacgc atttggaaga cttaaggcag cggcagaaga agatgcaggc agctgagttg 1440 ttgtgttctg ataagagtca gaggtaactc ccgttgcggt gctgttaacg gtggagggca 1500 gtgtagtctg agcagtactc gttgctgccg cgcgcgccac cagacataat agctgacaga 1560 ctaacagact gttcctttcc atgggtcttt tctgcagtca ccgtccttga cacgaagctt 1620 atactcgagc tctagattgg gaacccgggt ctctcgaatt cgagatctcc accatgcaca 1680 gacctagacg tcgtggaact cgtccacctc cactggcact gctcgctgct ctcctcctgg 1740 ctgcacgtgg tgctgatgca caagtacaac tgcaacaaag cggagctgaa ctggccaaac 1800 caggcgcttc cgtgaagatg tcttgtaaag ccagcgggta tacatttact aattactgga 1860 ttcactggga gaagcaaaga cctgaacagg gattggaatg gattggatac attaatccta 1920 acaccggaca cacagagtat aatcaaaaat tcaaggataa ggccaccctc acagccgaca 1980 gatcttcttc aaccgcctat atgcaacttt cttccctcac ttctgaagac tccgcagttt 2040 acttttgcgc acgaacttat tctggaagct cccatttcga ctactggggt caaggaacaa 2100 cactgatcgt gtctagcggc ggcggagggt ccggcggggg cggtagcggt ggcggaggtt 2160 ctgatattgt catgactcaa acacctgtct ctctgcctgt ttcacttgga gatcaagcta 2220 gcatttcctg ccgctctagt caatctctcg tccacaacaa cggcgatact ttcttgcatt 2280 ggtatctgca gaaaccaggt cagtcaccta aactgcttat atacaaagtc tctaatagat 2340 tctcaggggt gccagatcga ttcagtggtt ctgggtccgg tacagatttt acactcaaga 2400 tatccagagt agaagcagaa gatctgggcg tgtatttctg cagtcaaaca acacttattc 2460 ctcgtacttt tggaggcggt acaaaactgg agatcaagcg tggaggcgga gggagtgttt 2520 tgttttatct ggccgttggg ataatgtttc tcgtaaatac agtactttgg gtaacaataa 2580 ggaaggaact gaagagaaag aaaaaatggg atctggaaat atcattggac agtggacacg 2640 aaaaaaaagt cacatcatca ttgcaagaag accggcactt ggaggaggaa ctgaaatgtc 2700 aagagcaaaa agaagaacaa ctgcaagaag gcgtacatag aaaagaacca cagggagcaa 2760 cataggcggc cgctaatcag ccataccaca tttgtagagg ttttacttgc tttaaaaaac 2820 ctcccacacc tccccctgaa cctgaaacat aaaatgaatg caattgttgt tgttaacttg 2880 tttattgcag cttataatgg ttacaaataa agcaatagca tcacaaattt cacaaataaa 2940 gcattttttt cactgcattc tagttgtggt ttgtccaaac tcatcaatgt atcttatcat 3000 gtc 3003 <210> 26 <211> 208 <212> PRT <213> Homo sapiens <400> 26 Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 1 5 10 15 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro 20 25 30 Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 35 40 45 Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val 50 55 60 Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 65 70 75 80 Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr 85 90 95 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 100 105 110 Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys 115 120 125 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 130 135 140 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 145 150 155 160 Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser 165 170 175 Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 180 185 190 Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 195 200 205 <210> 27 <211> 8 <212> PRT <213> Homo sapiens <400> 27 Gly Tyr Thr Phe Thr Asn Tyr Trp 1 5 <210> 28 <211> 8 <212> PRT <213> Homo sapiens <400> 28 Ile Asn Pro Asn Thr Gly His Thr 1 5 <210> 29 <211> 13 <212> PRT <213> Homo sapiens <400> 29 Cys Ala Arg Thr Tyr Ser Gly Ser Ser His Phe Asp Tyr 1 5 10 <210> 30 <211> 10 <212> PRT <213> Homo sapiens <400> 30 Ser Leu Val His Asn Asn Gly Asp Thr Phe 1 5 10 <210> 31 <211> 9 <212> PRT <213> Homo sapiens <400> 31 Ser Gln Thr Thr Leu Ile Pro Arg Thr 1 5 <210> 32 <211> 8 <212> PRT <213> Homo sapiens <400> 32 Gly Phe Thr Phe Ser Asn Ala Trp 1 5 <210> 33 <211> 10 <212> PRT <213> Homo sapiens <400> 33 Ile Leu Ser Lys Thr Asp Gly Gly Thr Thr 1 5 10 <210> 34 <211> 13 <212> PRT <213> Homo sapiens <400> 34 Thr Thr Ala Asp Phe Trp Ser Ala Tyr Ser Ser Asp Tyr 1 5 10 <210> 35 <211> 4 <212> PRT <213> Homo sapiens <400> 35 Gln Ser Leu Leu 1 <210> 36 <211> 7 <212> PRT <213> Homo sapiens <400> 36 His Ser Asn Gly Tyr Asn Tyr 1 5 <210> 37 <211> 9 <212> PRT <213> Homo sapiens <400> 37 Met Gln Gly Leu Gln Thr Pro Tyr Thr 1 5 <210> 38 <211> 122 <212> PRT <213> Homo sapiens <400> 38 Glu Val Gln Leu Val Glu Ser Gly Gly Ala Ile Val Lys Pro Gly Gly 1 5 10 15 Ser His Arg Val Ser Cys Glu Ala Ser Gly Phe Thr Phe Ser Asn Ala 20 25 30 Trp Met Ser Trp Val Arg Gln Ala Pro Gly Arg Gly Leu Glu Trp Val 35 40 45 Gly Arg Ile Leu Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala 50 55 60 Pro Val Lys Asp Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Met 65 70 75 80 Leu Phe Leu Gln Met Asp Ser Leu Lys Ile Glu Asp Thr Ala Val Tyr 85 90 95 Phe Cys Thr Thr Ala Asp Phe Trp Ser Ala Tyr Ser Ser Asp Tyr Trp 100 105 110 Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 <210> 39 <211> 112 <212> PRT <213> Homo sapiens <400> 39 Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 1 5 10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser 20 25 30 Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45 Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro 50 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80 Ser Arg Met Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Gly 85 90 95 Leu Gln Thr Pro Tyr Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 110 <210> 40 <211> 452 <212> PRT <213> Homo sapiens <400> 40 Glu Val Gln Leu Val Glu Ser Gly Gly Ala Ile Val Lys Pro Gly Gly 1 5 10 15 Ser His Arg Val Ser Cys Glu Ala Ser Gly Phe Thr Phe Ser Asn Ala 20 25 30 Trp Met Ser Trp Val Arg Gln Ala Pro Gly Arg Gly Leu Glu Trp Val 35 40 45 Gly Arg Ile Leu Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala 50 55 60 Pro Val Lys Asp Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Met 65 70 75 80 Leu Phe Leu Gln Met Asp Ser Leu Lys Ile Glu Asp Thr Ala Val Tyr 85 90 95 Phe Cys Thr Thr Ala Asp Phe Trp Ser Ala Tyr Ser Ser Asp Tyr Trp 100 105 110 Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Lys Thr Thr Ala Pro 115 120 125 Ser Val Tyr Pro Leu Ala Pro Val Cys Gly Asp Thr Thr Gly Ser Ser 130 135 140 Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr 145 150 155 160 Leu Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro 165 170 175 Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val 180 185 190 Thr Ser Ser Thr Trp Pro Ser Gln Ser Ile Thr Cys Asn Val Ala His 195 200 205 Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Glu Pro Arg Gly Pro 210 215 220 Thr Ile Lys Pro Cys Pro Pro Cys Lys Cys Pro Ala Pro Asn Leu Leu 225 230 235 240 Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Ile Lys Asp Val Leu 245 250 255 Met Ile Ser Leu Ser Pro Ile Val Thr Cys Val Val Val Asp Val Ser 260 265 270 Glu Asp Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn Asn Val Glu 275 280 285 Val His Thr Ala Gln Thr Gln Thr His Arg Glu Asp Tyr Asn Ser Thr 290 295 300 Leu Arg Val Val Ser Ala Leu Pro Ile Gln His Gln Asp Trp Met Ser 305 310 315 320 Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Lys Asp Leu Pro Ala Pro 325 330 335 Ile Glu Arg Thr Ile Ser Lys Pro Lys Gly Ser Val Arg Ala Pro Gln 340 345 350 Val Tyr Val Leu Pro Pro Pro Glu Glu Glu Met Thr Lys Lys Gln Val 355 360 365 Thr Leu Thr Cys Met Val Thr Asp Phe Met Pro Glu Asp Ile Tyr Val 370 375 380 Glu Trp Thr Asn Asn Gly Lys Thr Glu Leu Asn Tyr Lys Asn Thr Glu 385 390 395 400 Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser Lys Leu Arg 405 410 415 Val Glu Lys Lys Asn Trp Val Glu Arg Asn Ser Tyr Ser Cys Ser Val 420 425 430 Val His Glu Gly Leu His Asn His His Thr Thr Lys Ser Phe Ser Arg 435 440 445 Thr Pro Gly Lys 450 <210> 41 <211> 219 <212> PRT <213> Homo sapiens <400> 41 Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 1 5 10 15 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser 20 25 30 Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45 Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro 50 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80 Ser Arg Met Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Gly 85 90 95 Leu Gln Thr Pro Tyr Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105 110 Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu 115 120 125 Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe 130 135 140 Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg 145 150 155 160 Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser 165 170 175 Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu 180 185 190 Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser 195 200 205 Pro Ile Val Lys Ser Phe Asn Arg Gly Glu Cys 210 215 <210> 42 <211> 256 <212> PRT <213> Homo sapiens <400> 42 Met Val Ser Tyr Trp Asp Thr Gly Val Leu Leu Cys Ala Leu Leu Ser 1 5 10 15 Cys Leu Leu Leu Thr Gly Ser Ser Ser Gly Gly Pro Gly Asp Lys Thr 20 25 30 His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 35 40 45 Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 50 55 60 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 65 70 75 80 Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 85 90 95 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val 100 105 110 Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 115 120 125 Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 130 135 140 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 145 150 155 160 Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys 165 170 175 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 180 185 190 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 195 200 205 Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 210 215 220 Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 225 230 235 240 Leu His Asn Arg Phe Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 245 250 255 <210> 43 <211> 336 <212> PRT <213> Artificial sequence <220> <223> synthetic <400> 43 Glu Val Gln Leu Val Glu Ser Gly Gly Ala Ile Val Lys Pro Gly Gly 1 5 10 15 Ser His Arg Val Ser Cys Glu Ala Ser Gly Phe Thr Phe Ser Asn Ala 20 25 30 Trp Met Ser Trp Val Arg Gln Ala Pro Gly Arg Gly Leu Glu Trp Val 35 40 45 Gly Arg Ile Leu Ser Lys Thr Asp Gly Gly Thr Thr Asp Tyr Ala Ala 50 55 60 Pro Val Lys Asp Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Met 65 70 75 80 Leu Phe Leu Gln Met Asp Ser Leu Lys Ile Glu Asp Thr Ala Val Tyr 85 90 95 Phe Cys Thr Thr Ala Asp Phe Trp Ser Ala Tyr Ser Ser Asp Tyr Trp 100 105 110 Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115 120 125 Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Ile Val Met Thr Gln Ser 130 135 140 Pro Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys 145 150 155 160 Arg Ser Ser Gln Ser Leu Leu His Ser Asn Gly Tyr Asn Tyr Leu Asp 165 170 175 Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu 180 185 190 Gly Ser Asn Arg Ala Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly 195 200 205 Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Met Glu Ala Glu Asp 210 215 220 Val Gly Val Tyr Tyr Cys Met Gln Gly Leu Gln Thr Pro Tyr Thr Phe 225 230 235 240 Gly Gln Gly Thr Lys Leu Glu Ile Lys Gly Gly Gly Gly Ser Val Leu 245 250 255 Phe Tyr Leu Ala Val Gly Ile Met Phe Leu Val Asn Thr Val Leu Trp 260 265 270 Val Thr Ile Arg Lys Glu Leu Lys Arg Lys Lys Lys Trp Asp Leu Glu 275 280 285 Ile Ser Leu Asp Ser Gly His Glu Lys Lys Val Thr Ser Ser Leu Gln 290 295 300 Glu Asp Arg His Leu Glu Glu Glu Leu Lys Cys Gln Glu Gln Lys Glu 305 310 315 320 Glu Gln Leu Gln Glu Gly Val His Arg Lys Glu Pro Gln Gly Ala Thr 325 330 335 <210> 44 <211> 7633 <212> DNA <213> Artificial sequence <220> <223> synthetic <400> 44 aagcttatac tcgagctcta gattgggaac ccgggtctct cgaattcgag atctccacca 60 tgcacagacc tagacgtcgt ggaactcgtc cacctccact ggcactgctc gctgctctcc 120 tcctggctgc acgtggtgct gatgcagagg tgcagctggt ggagtctggg ggagccatag 180 taaagccggg ggggtcccat agagtctcct gtgaagcctc tggattcact ttcagtaacg 240 cctggatgag ttgggtccgc caggctccag ggagggggct ggagtgggtt ggccgtattt 300 taagcaagac tgatggtggg acgacagact acgctgcacc cgtgaaagac agattcacca 360 tttcaagaga tgattctaaa aatatgttgt ttctgcaaat ggacagcctg aaaatcgagg 420 acacagccgt gtatttctgt accacggccg atttttggag tgcttattct tctgactact 480 ggggccaggg aaccctggtc accgtctcct caggaggtgg aggttccggg ggcgggggct 540 ccggcggagg tggatcagat attgtgatga ctcagtctcc actctccctg cccgtcaccc 600 ctggagagcc ggcctccatc tcctgcaggt ctagtcagag cctcctgcat agtaatgggt 660 acaactattt ggattggtac ctacagaagc cagggcagtc tccacaactc ctgatctatt 720 tgggttctaa tcgggcctcc ggggtccctg acaggttcag tggcagtgga tcaggcacag 780 attttacact gaaaatcagc agaatggagg ctgaggatgt tggggtttat tactgcatgc 840 aaggtctaca aactccgtac acttttggcc aggggaccaa gctggagatc aaaggaggcg 900 gagggagtgt tttgttttat ctggccgttg ggataatgtt tctcgtaaat acagtacttt 960 gggtaacaat aaggaaggaa ctgaagagaa agaaaaaatg ggatctggaa atatcattgg 1020 acagtggaca cgaaaaaaaa gtcacatcat cattgcaaga agaccggcac ttggaggagg 1080 aactgaaatg tcaagagcaa aaagaagaac aactgcaaga aggcgtacat agaaaagaac 1140 cacagggagc aacataggcg gccgctaatc agccatacca catttgtaga ggttttactt 1200 gctttaaaaa acctcccaca cctccccctg aacctgaaac ataaaatgaa tgcaattgtt 1260 gttgttaact tgtttattgc agcttataat ggttacaaat aaagcaatag catcacaaat 1320 ttcacaaata aagcattttt ttcactgcat tctagttgtg gtttgtccaa actcatcaat 1380 gtatcttatc atgtctaccg gtataacttc gtataatgta tactatacga agttagccgg 1440 tagggcccct ctcttcatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc 1500 cgcgttgctg gcgtttttcc ataggctccg cccccctgac gagcatcaca aaaatcgacg 1560 ctcaagtcag aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg 1620 aagctccctc gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt 1680 tctcccttcg ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt 1740 gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg 1800 cgccttatcc ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact 1860 ggcagcagcc actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt 1920 cttgaagtgg tggcctaact acggctacac tagaagaaca gtatttggta tctgcgctct 1980 gctgaagcca gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac 2040 cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc 2100 tcaagaagat cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg 2160 ttaagggatt ttggtcatgg gcgcgcctca tactcctgca ggcatgagat tatcaaaaag 2220 gatcttcacc tagatccttt taaattaaaa atgaagtttt aaatcaatct aaagtatata 2280 tgagtaaact tggtctgaca gttaccaatg cttaatcagt gaggcaccta tctcagcgat 2340 ctgtctattt cgttcatcca tagttgcctg actccccgtc gtgtagataa ctacgatacg 2400 ggagggctta ccatctggcc ccagtgctgc aatgataccg cgagacccac gctcaccggc 2460 tccagattta tcagcaataa accagccagc cggaagggcc gagcgcagaa gtggtcctgc 2520 aactttatcc gcctccatcc agtctattaa ttgttgccgg gaagctagag taagtagttc 2580 gccagttaat agtttgcgca acgttgttgc cattgctaca ggcatcgtgg tgtcacgctc 2640 gtcgtttggt atggcttcat tcagctccgg ttcccaacga tcaaggcgag ttacatgatc 2700 ccccatgttg tgcaaaaaag cggttagctc cttcggtcct ccgatcgttg tcagaagtaa 2760 gttggccgca gtgttatcac tcatggttat ggcagcactg cataattctc ttactgtcat 2820 gccatccgta agatgctttt ctgtgactgg tgagtactca accaagtcat tctgagaata 2880 gtgtatgcgg cgaccgagtt gctcttgccc ggcgtcaata cgggataata ctgcgccaca 2940 tagcagaact ttaaaagtgc tcatcattgg aaaacgttct tcggggcgaa aactctcaag 3000 gatcttaccg ctgttgagat ccagttcgat gtaacccact cgtgcaccca actgatcttc 3060 agcatctttt actttcacca gcgtttctgg gtgagcaaaa acaggaaggc aaaatgccgc 3120 aaaaaaggga ataagggcga cacggaaatg ttgaatactc atactcttcc tttttcaata 3180 ttattgaagc atttatcagg gttattgtct catgagcgga tacatatttg aatgtattta 3240 gaaaaataaa caaatagggg ttccgcgcac atttccccga aaagtgccac ctgacgtcag 3300 gtacacaact tcgtatagca tacattatac gaagttatgg taccaagcct aggcctccaa 3360 aaaagcctcc tcactacttc tggaatagct cagaggcaga ggcggcctcg gcctctgcat 3420 aaataaaaaa aattagtcag ccatggggcg gagaatgggc ggaactgggc ggagttaggg 3480 gcgggatggg cggagttagg ggcgggacta tggttgctga ctaattgaga tgcatgcttt 3540 gcatacttct gcctgctggg gagcctgggg actttccaca cctggttgct gactaattga 3600 gatgcatgct ttgcatactt ctgcctgctg gggagcctgg ggactttcca caccggatcc 3660 accatgggtt cagctattga gcaggatggg ttgcatgctg gtagtcccgc cgcatgggtc 3720 gaacgactgt ttggatacga ttgggcccaa cagactatag gctgttccga cgctgctgtc 3780 tttcgtcttt ctgcacaagg tcgtccagtt ctgttcgtga aaaccgactt gtccggagcc 3840 ctcaatgagt tgcaagacga agctgcacga ctgagttggc ttgccaccac tggtgtccca 3900 tgtgccgcag tacttgacgt cgtcacagag gctggtcgcg attggttgct ccttggagaa 3960 gtgcccggcc aagatcttct cagttcccac cttgcccctg ccgaaaaagt ttcaataatg 4020 gctgacgcta tgagaaggct gcacaccctt gaccctgcca catgtccatt cgatcaccaa 4080 gccaaacacc gaattgaacg agctagaacc cgcatggaag ccggcctcgt tgatcaagac 4140 gatttggatg aggaacacca gggtctcgca cccgctgaac tcttcgctcg cctcaaagca 4200 cgaatgccag acggagatga cttggtcgta acccacggag atgcctgcct tcctaacata 4260 atggtagaga atggaagatt tagcggcttc attgattgtg gacgacttgg agttgcagat 4320 cggtaccaag atatcgctct cgctaccaga gatattgctg aagaattggg cggagaatgg 4380 gctgatcggt ttctcgtact ctacggaatt gccgcacctg attcccaacg cattgctttt 4440 taccgtcttc tggatgagtt cttctaaacg cgtcccccct ctccctcccc cccccctaac 4500 gttactggcc gaagccgctt ggaataaggc cggtgtgcgt ttgtctatat gttattttcc 4560 accatattgc cgtcttttgg caatgtgagg gcccggaaac ctggccctgt cttcttgacg 4620 agcattccta ggggtctttc ccctctcgcc aaaggaatgc aaggtctgtt gaatgtcgtg 4680 aaggaagcag ttcctctgga agcttcttga agacaaacaa cgtctgtagc gaccctttgc 4740 aggcagcgga accccccacc tggcgacagg tgcctctgcg gccaaaagcc acgtgtataa 4800 gatacacctg caaaggcggc acaaccccag tgccacgttg tgagttggat agttgtggaa 4860 agagtcaaat ggctctcctc aagcgtattc aacaaggggc tgaaggatgc ccagaaggta 4920 ccccattgta tgggatctga tctggggcct cggtgcacat gctttacatg tgtttagtcg 4980 aggttaaaaa acgtctaggc cccccgaacc acggggacgt ggttttcctt tgaaaaacac 5040 gattgctcga atcaccatgg tgagcaaggg cgaggagctg ttcaccgggg tggtgcccat 5100 cctggtcgag ctggacggcg acgtaaacgg ccacaagttc agcgtgtccg gcgagggcga 5160 gggcgatgcc acctacggca agctgaccct gaagttcatc tgcaccaccg gcaagctgcc 5220 cgtgccctgg cccaccctcg tgaccacctt cggctacggc ctgcagtgct tcgcccgcta 5280 ccccgaccac atgaagcagc acgacttctt caagtccgcc atgcccgaag gctacgtcca 5340 ggagcgcacc atcttcttca aggacgacgg caactacaag acccgcgccg aggtgaagtt 5400 cgagggcgac accctggtga accgcatcga gctgaagggc atcgacttca aggaggacgg 5460 caacatcctg gggcacaagc tggagtacaa ctacaacagc cacaacgtct atatcatggc 5520 cgacaagcag aagaacggca tcaaggtgaa cttcaagatc cgccacaaca tcgaggacgg 5580 cagcgtgcag ctcgccgacc actaccagca gaacaccccc atcggcgacg gccccgtgct 5640 gctgcccgac aaccactacc tgagctacca gtccgccctg agcaaagacc ccaacgagaa 5700 gcgcgatcac atggtcctgc tggagttcgt gaccgccgcc gggatcactc tcggcatgga 5760 cgagctgtac aagtaatcgg ccgctaatca gccataccac atttgtagag gttttacttg 5820 ctttaaaaaa cctcccacac ctccccctga acctgaaaca taaaatgaat gcaattgttg 5880 ttgttaactt gtttattgca gcttataatg gttacaaata aagcaatagc atcacaaatt 5940 tcacaaataa agcatttttt tcactgcatt ctagttgtgg tttgtccaaa ctcatcaatg 6000 tatcttatca tgtcggcgcg ttgacattga ttattgacta gttattaata gtaatcaatt 6060 acggggtcat tagttcatag cccatatatg gagttccgcg ttacataact tacggtaaat 6120 ggcccgcctg gctgaccgcc caacgacccc cgcccattga cgtcaataat gacgtatgtt 6180 cccatagtaa cgccaatagg gactttccat tgacgtcaat gggtggagta tttacggtaa 6240 actgcccact tggcagtaca tcaagtgtat catatgccaa gtacgccccc tattgacgtc 6300 aatgacggta aatggcccgc ctggcattat gcccagtaca tgaccttatg ggactttcct 6360 acttggcagt acatctacgt attagtcatc gctattacca tggtgatgcg gttttggcag 6420 tacatcaatg ggcgtggata gcggtttgac tcacggggat ttccaagtct ccaccccatt 6480 gacgtcaatg ggagtttgtt ttggcaccaa aatcaacggg actttccaaa atgtcgtaac 6540 aactccgccc cattgacgca aatgggcggt aggcgtgtac ggtgggaggt ctatataagc 6600 agagctctcc ctatcagtga tagagatctc cctatcagtg atagagatcg tcgacgttta 6660 gtgaaccgtc agatcgcctg gagacgccat ccacgctgtt ttgacctcca tagaagacac 6720 cgggaccgat ccagcctccg cggccgggaa cggtgcattg gaacgcggat tccccgtgcc 6780 aagagtgacg taagtaccgc ctatagagtc tataggccca cccccttggc ttcttatgca 6840 tgctatactg tttttggctt ggggtctata cacccccgct tcctcatgtt ataggtgatg 6900 gtatagctta gcctataggt gtgggttatt gaccattatt gaccactccc ctattggtga 6960 cgatactttc cattactaat ccataacatg gctctttgcc acaactctct ttattggcta 7020 tatgccaata cactgtcctt cagagactga cacggactct gtatttttac aggatggggt 7080 ctcatttatt atttacaaat tcacatatac aacaccaccg tccccagtgc ccgcagtttt 7140 tattaaacat aacgtgggat ctccacgcga atctcgggta cgtgttccgg acatggtctc 7200 ttctccggta gcggcggagc ttctacatcc gagccctgct cccatgcctc cagcgactca 7260 tggtcgctcg gcagctcctt gctcctaaca gtggaggcca gacttaggca cagcacgatg 7320 cccaccacca ccagtgtgcc gcacaaggcc gtggcggtag ggtatgtgtc tgaaaatgag 7380 ctcggggagc gggcttgcac cgctgacgca tttggaagac ttaaggcagc ggcagaagaa 7440 gatgcaggca gctgagttgt tgtgttctga taagagtcag aggtaactcc cgttgcggtg 7500 ctgttaacgg tggagggcag tgtagtctga gcagtactcg ttgctgccgc gcgcgccacc 7560 agacataata gctgacagac taacagactg ttcctttcca tgggtctttt ctgcagtcac 7620 cgtccttgac acg 7633 <210> 45 <211> 1011 <212> DNA <213> Artificial sequence <220> <223> synthetic <400> 45 gaggtgcagc tggtggagtc tgggggagcc atagtaaagc cgggggggtc ccatagagtc 60 tcctgtgaag cctctggatt cactttcagt aacgcctgga tgagttgggt ccgccaggct 120 ccagggaggg ggctggagtg ggttggccgt attttaagca agactgatgg tgggacgaca 180 gactacgctg cacccgtgaa agacagattc accatttcaa gagatgattc taaaaatatg 240 ttgtttctgc aaatggacag cctgaaaatc gaggacacag ccgtgtattt ctgtaccacg 300 gccgattttt ggagtgctta ttcttctgac tactggggcc agggaaccct ggtcaccgtc 360 tcctcaggag gtggaggttc cgggggcggg ggctccggcg gaggtggatc agatattgtg 420 atgactcagt ctccactctc cctgcccgtc acccctggag agccggcctc catctcctgc 480 aggtctagtc agagcctcct gcatagtaat gggtacaact atttggattg gtacctacag 540 aagccagggc agtctccaca actcctgatc tatttgggtt ctaatcgggc ctccggggtc 600 cctgacaggt tcagtggcag tggatcaggc acagatttta cactgaaaat cagcagaatg 660 gaggctgagg atgttggggt ttattactgc atgcaaggtc tacaaactcc gtacactttt 720 ggccagggga ccaagctgga gatcaaagga ggcggaggga gtgttttgtt ttatctggcc 780 gttgggataa tgtttctcgt aaatacagta ctttgggtaa caataaggaa ggaactgaag 840 agaaagaaaa aatgggatct ggaaatatca ttggacagtg gacacgaaaa aaaagtcaca 900 tcatcattgc aagaagaccg gcacttggag gaggaactga aatgtcaaga gcaaaaagaa 960 gaacaactgc aagaaggcgt acatagaaaa gaaccacagg gagcaacata g 1011 <210> 46 <211> 2669 <212> DNA <213> Artificial sequence <220> <223> synthetic <400> 46 agcctaggcc tccaaaaaag cctcctcact acttctggaa tagctcagag gcagaggcgg 60 cctcggcctc tgcataaata aaaaaaatta gtcagccatg gggcggagaa tgggcggaac 120 tgggcggagt taggggcggg atgggcggag ttaggggcgg gactatggtt gctgactaat 180 tgagatgcat gctttgcata cttctgcctg ctggggagcc tggggacttt ccacacctgg 240 ttgctgacta attgagatgc atgctttgca tacttctgcc tgctggggag cctggggact 300 ttccacaccg gatccaccat gggttcagct attgagcagg atgggttgca tgctggtagt 360 cccgccgcat gggtcgaacg actgtttgga tacgattggg cccaacagac tataggctgt 420 tccgacgctg ctgtctttcg tctttctgca caaggtcgtc cagttctgtt cgtgaaaacc 480 gacttgtccg gagccctcaa tgagttgcaa gacgaagctg cacgactgag ttggcttgcc 540 accactggtg tcccatgtgc cgcagtactt gacgtcgtca cagaggctgg tcgcgattgg 600 ttgctccttg gagaagtgcc cggccaagat cttctcagtt cccaccttgc ccctgccgaa 660 aaagtttcaa taatggctga cgctatgaga aggctgcaca cccttgaccc tgccacatgt 720 ccattcgatc accaagccaa acaccgaatt gaacgagcta gaacccgcat ggaagccggc 780 ctcgttgatc aagacgattt ggatgaggaa caccagggtc tcgcacccgc tgaactcttc 840 gctcgcctca aagcacgaat gccagacgga gatgacttgg tcgtaaccca cggagatgcc 900 tgccttccta acataatggt agagaatgga agatttagcg gcttcattga ttgtggacga 960 cttggagttg cagatcggta ccaagatatc gctctcgcta ccagagatat tgctgaagaa 1020 ttgggcggag aatgggctga tcggtttctc gtactctacg gaattgccgc acctgattcc 1080 caacgcattg ctttttaccg tcttctggat gagttcttct aaacgcgtcc cccctctccc 1140 tccccccccc ctaacgttac tggccgaagc cgcttggaat aaggccggtg tgcgtttgtc 1200 tatatgttat tttccaccat attgccgtct tttggcaatg tgagggcccg gaaacctggc 1260 cctgtcttct tgacgagcat tcctaggggt ctttcccctc tcgccaaagg aatgcaaggt 1320 ctgttgaatg tcgtgaagga agcagttcct ctggaagctt cttgaagaca aacaacgtct 1380 gtagcgaccc tttgcaggca gcggaacccc ccacctggcg acaggtgcct ctgcggccaa 1440 aagccacgtg tataagatac acctgcaaag gcggcacaac cccagtgcca cgttgtgagt 1500 tggatagttg tggaaagagt caaatggctc tcctcaagcg tattcaacaa ggggctgaag 1560 gatgcccaga aggtacccca ttgtatggga tctgatctgg ggcctcggtg cacatgcttt 1620 acatgtgttt agtcgaggtt aaaaaacgtc taggcccccc gaaccacggg gacgtggttt 1680 tcctttgaaa aacacgattg ctcgaatcac catggtgagc aagggcgagg agctgttcac 1740 cggggtggtg cccatcctgg tcgagctgga cggcgacgta aacggccaca agttcagcgt 1800 gtccggcgag ggcgagggcg atgccaccta cggcaagctg accctgaagt tcatctgcac 1860 caccggcaag ctgcccgtgc cctggcccac cctcgtgacc accttcggct acggcctgca 1920 gtgcttcgcc cgctaccccg accacatgaa gcagcacgac ttcttcaagt ccgccatgcc 1980 cgaaggctac gtccaggagc gcaccatctt cttcaaggac gacggcaact acaagacccg 2040 cgccgaggtg aagttcgagg gcgacaccct ggtgaaccgc atcgagctga agggcatcga 2100 cttcaaggag gacggcaaca tcctggggca caagctggag tacaactaca acagccacaa 2160 cgtctatatc atggccgaca agcagaagaa cggcatcaag gtgaacttca agatccgcca 2220 caacatcgag gacggcagcg tgcagctcgc cgaccactac cagcagaaca cccccatcgg 2280 cgacggcccc gtgctgctgc ccgacaacca ctacctgagc taccagtccg ccctgagcaa 2340 agaccccaac gagaagcgcg atcacatggt cctgctggag ttcgtgaccg ccgccgggat 2400 cactctcggc atggacgagc tgtacaagta atcggccgct aatcagccat accacatttg 2460 tagaggtttt acttgcttta aaaaacctcc cacacctccc cctgaacctg aaacataaaa 2520 tgaatgcaat tgttgttgtt aacttgttta ttgcagctta taatggttac aaataaagca 2580 atagcatcac aaatttcaca aataaagcat ttttttcact gcattctagt tgtggtttgt 2640 ccaaactcat caatgtatct tatcatgtc 2669 <210> 47 <211> 2992 <212> DNA <213> Artificial sequence <220> <223> synthetic <400> 47 gttgacattg attattgact agttattaat agtaatcaat tacggggtca ttagttcata 60 gcccatatat ggagttccgc gttacataac ttacggtaaa tggcccgcct ggctgaccgc 120 ccaacgaccc ccgcccattg acgtcaataa tgacgtatgt tcccatagta acgccaatag 180 ggactttcca ttgacgtcaa tgggtggagt atttacggta aactgcccac ttggcagtac 240 atcaagtgta tcatatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg 300 cctggcatta tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg 360 tattagtcat cgctattacc atggtgatgc ggttttggca gtacatcaat gggcgtggat 420 agcggtttga ctcacgggga tttccaagtc tccaccccat tgacgtcaat gggagtttgt 480 tttggcacca aaatcaacgg gactttccaa aatgtcgtaa caactccgcc ccattgacgc 540 aaatgggcgg taggcgtgta cggtgggagg tctatataag cagagctctc cctatcagtg 600 atagagatct ccctatcagt gatagagatc gtcgacgttt agtgaaccgt cagatcgcct 660 ggagacgcca tccacgctgt tttgacctcc atagaagaca ccgggaccga tccagcctcc 720 gcggccggga acggtgcatt ggaacgcgga ttccccgtgc caagagtgac gtaagtaccg 780 cctatagagt ctataggccc acccccttgg cttcttatgc atgctatact gtttttggct 840 tggggtctat acacccccgc ttcctcatgt tataggtgat ggtatagctt agcctatagg 900 tgtgggttat tgaccattat tgaccactcc cctattggtg acgatacttt ccattactaa 960 tccataacat ggctctttgc cacaactctc tttattggct atatgccaat acactgtcct 1020 tcagagactg acacggactc tgtattttta caggatgggg tctcatttat tatttacaaa 1080 ttcacatata caacaccacc gtccccagtg cccgcagttt ttattaaaca taacgtggga 1140 tctccacgcg aatctcgggt acgtgttccg gacatggtct cttctccggt agcggcggag 1200 cttctacatc cgagccctgc tcccatgcct ccagcgactc atggtcgctc ggcagctcct 1260 tgctcctaac agtggaggcc agacttaggc acagcacgat gcccaccacc accagtgtgc 1320 cgcacaaggc cgtggcggta gggtatgtgt ctgaaaatga gctcggggag cgggcttgca 1380 ccgctgacgc atttggaaga cttaaggcag cggcagaaga agatgcaggc agctgagttg 1440 ttgtgttctg ataagagtca gaggtaactc ccgttgcggt gctgttaacg gtggagggca 1500 gtgtagtctg agcagtactc gttgctgccg cgcgcgccac cagacataat agctgacaga 1560 ctaacagact gttcctttcc atgggtcttt tctgcagaag cttatactcg agctctagat 1620 tgggaacccg ggtctctcga attcgagatc tccaccatgc acagacctag acgtcgtgga 1680 actcgtccac ctccactggc actgctcgct gctctcctcc tggctgcacg tggtgctgat 1740 gcagaggtgc agctggtgga gtctggggga gccatagtaa agccgggggg gtcccataga 1800 gtctcctgtg aagcctctgg attcactttc agtaacgcct ggatgagttg ggtccgccag 1860 gctccaggga gggggctgga gtgggttggc cgtattttaa gcaagactga tggtgggacg 1920 acagactacg ctgcacccgt gaaagacaga ttcaccattt caagagatga ttctaaaaat 1980 atgttgtttc tgcaaatgga cagcctgaaa atcgaggaca cagccgtgta tttctgtacc 2040 acggccgatt tttggagtgc ttattcttct gactactggg gccagggaac cctggtcacc 2100 gtctcctcag gaggtggagg ttccgggggc gggggctccg gcggaggtgg atcagatatt 2160 gtgatgactc agtctccact ctccctgccc gtcacccctg gagagccggc ctccatctcc 2220 tgcaggtcta gtcagagcct cctgcatagt aatgggtaca actatttgga ttggtaccta 2280 cagaagccag ggcagtctcc acaactcctg atctatttgg gttctaatcg ggcctccggg 2340 gtccctgaca ggttcagtgg cagtggatca ggcacagatt ttacactgaa aatcagcaga 2400 atggaggctg aggatgttgg ggtttattac tgcatgcaag gtctacaaac tccgtacact 2460 tttggccagg ggaccaagct ggagatcaaa ggaggcggag ggagtgtttt gttttatctg 2520 gccgttggga taatgtttct cgtaaataca gtactttggg taacaataag gaaggaactg 2580 aagagaaaga aaaaatggga tctggaaata tcattggaca gtggacacga aaaaaaagtc 2640 acatcatcat tgcaagaaga ccggcacttg gaggaggaac tgaaatgtca agagcaaaaa 2700 gaagaacaac tgcaagaagg cgtacataga aaagaaccac agggagcaac ataggcggcc 2760 gctaatcagc cataccacat ttgtagaggt tttacttgct ttaaaaaacc tcccacacct 2820 ccccctgaac ctgaaacata aaatgaatgc aattgttgtt gttaacttgt ttattgcagc 2880 ttataatggt tacaaataaa gcaatagcat cacaaatttc acaaataaag catttttttc 2940 actgcattct agttgtggtt tgtccaaact catcaatgta tcttatcatg tc 2992 <210> 48 <211> 5765 <212> DNA <213> Artificial sequence <220> <223> synthetic <400> 48 acaacttcgt atagcataca ttatacgaag ttatggtacc aagcctaggc ctccaaaaaa 60 gcctcctcac tacttctgga atagctcaga ggcagaggcg gcctcggcct ctgcataaat 120 aaaaaaaatt agtcagccat ggggcggaga atgggcggaa ctgggcggag ttaggggcgg 180 gatgggcgga gttaggggcg ggactatggt tgctgactaa ttgagatgca tgctttgcat 240 acttctgcct gctggggagc ctggggactt tccacacctg gttgctgact aattgagatg 300 catgctttgc atacttctgc ctgctgggga gcctggggac tttccacacc ggatccacca 360 tgggttcagc tattgagcag gatgggttgc atgctggtag tcccgccgca tgggtcgaac 420 gactgtttgg atacgattgg gcccaacaga ctataggctg ttccgacgct gctgtctttc 480 gtctttctgc acaaggtcgt ccagttctgt tcgtgaaaac cgacttgtcc ggagccctca 540 atgagttgca agacgaagct gcacgactga gttggcttgc caccactggt gtcccatgtg 600 ccgcagtact tgacgtcgtc acagaggctg gtcgcgattg gttgctcctt ggagaagtgc 660 ccggccaaga tcttctcagt tcccaccttg cccctgccga aaaagtttca ataatggctg 720 acgctatgag aaggctgcac acccttgacc ctgccacatg tccattcgat caccaagcca 780 aacaccgaat tgaacgagct agaacccgca tggaagccgg cctcgttgat caagacgatt 840 tggatgagga acaccagggt ctcgcacccg ctgaactctt cgctcgcctc aaagcacgaa 900 tgccagacgg agatgacttg gtcgtaaccc acggagatgc ctgccttcct aacataatgg 960 tagagaatgg aagatttagc ggcttcattg attgtggacg acttggagtt gcagatcggt 1020 accaagatat cgctctcgct accagagata ttgctgaaga attgggcgga gaatgggctg 1080 atcggtttct cgtactctac ggaattgccg cacctgattc ccaacgcatt gctttttacc 1140 gtcttctgga tgagttcttc taaacgcgtc ccccctctcc ctcccccccc cctaacgtta 1200 ctggccgaag ccgcttggaa taaggccggt gtgcgtttgt ctatatgtta ttttccacca 1260 tattgccgtc ttttggcaat gtgagggccc ggaaacctgg ccctgtcttc ttgacgagca 1320 ttcctagggg tctttcccct ctcgccaaag gaatgcaagg tctgttgaat gtcgtgaagg 1380 aagcagttcc tctggaagct tcttgaagac aaacaacgtc tgtagcgacc ctttgcaggc 1440 agcggaaccc cccacctggc gacaggtgcc tctgcggcca aaagccacgt gtataagata 1500 cacctgcaaa ggcggcacaa ccccagtgcc acgttgtgag ttggatagtt gtggaaagag 1560 tcaaatggct ctcctcaagc gtattcaaca aggggctgaa ggatgcccag aaggtacccc 1620 attgtatggg atctgatctg gggcctcggt gcacatgctt tacatgtgtt tagtcgaggt 1680 taaaaaacgt ctaggccccc cgaaccacgg ggacgtggtt ttcctttgaa aaacacgatt 1740 gctcgaatca ccatggtgag caagggcgag gagctgttca ccggggtggt gcccatcctg 1800 gtcgagctgg acggcgacgt aaacggccac aagttcagcg tgtccggcga gggcgagggc 1860 gatgccacct acggcaagct gaccctgaag ttcatctgca ccaccggcaa gctgcccgtg 1920 ccctggccca ccctcgtgac caccttcggc tacggcctgc agtgcttcgc ccgctacccc 1980 gaccacatga agcagcacga cttcttcaag tccgccatgc ccgaaggcta cgtccaggag 2040 cgcaccatct tcttcaagga cgacggcaac tacaagaccc gcgccgaggt gaagttcgag 2100 ggcgacaccc tggtgaaccg catcgagctg aagggcatcg acttcaagga ggacggcaac 2160 atcctggggc acaagctgga gtacaactac aacagccaca acgtctatat catggccgac 2220 aagcagaaga acggcatcaa ggtgaacttc aagatccgcc acaacatcga ggacggcagc 2280 gtgcagctcg ccgaccacta ccagcagaac acccccatcg gcgacggccc cgtgctgctg 2340 cccgacaacc actacctgag ctaccagtcc gccctgagca aagaccccaa cgagaagcgc 2400 gatcacatgg tcctgctgga gttcgtgacc gccgccggga tcactctcgg catggacgag 2460 ctgtacaagt aatcggccgc taatcagcca taccacattt gtagaggttt tacttgcttt 2520 aaaaaacctc ccacacctcc ccctgaacct gaaacataaa atgaatgcaa ttgttgttgt 2580 taacttgttt attgcagctt ataatggtta caaataaagc aatagcatca caaatttcac 2640 aaataaagca tttttttcac tgcattctag ttgtggtttg tccaaactca tcaatgtatc 2700 ttatcatgtc ggcgcgttga cattgattat tgactagtta ttaatagtaa tcaattacgg 2760 ggtcattagt tcatagccca tatatggagt tccgcgttac ataacttacg gtaaatggcc 2820 cgcctggctg accgcccaac gacccccgcc cattgacgtc aataatgacg tatgttccca 2880 tagtaacgcc aatagggact ttccattgac gtcaatgggt ggagtattta cggtaaactg 2940 cccacttggc agtacatcaa gtgtatcata tgccaagtac gccccctatt gacgtcaatg 3000 acggtaaatg gcccgcctgg cattatgccc agtacatgac cttatgggac tttcctactt 3060 ggcagtacat ctacgtatta gtcatcgcta ttaccatggt gatgcggttt tggcagtaca 3120 tcaatgggcg tggatagcgg tttgactcac ggggatttcc aagtctccac cccattgacg 3180 tcaatgggag tttgttttgg caccaaaatc aacgggactt tccaaaatgt cgtaacaact 3240 ccgccccatt gacgcaaatg ggcggtaggc gtgtacggtg ggaggtctat ataagcagag 3300 ctctccctat cagtgataga gatctcccta tcagtgatag agatcgtcga cgtttagtga 3360 accgtcagat cgcctggaga cgccatccac gctgttttga cctccataga agacaccggg 3420 accgatccag cctccgcggc cgggaacggt gcattggaac gcggattccc cgtgccaaga 3480 gtgacgtaag taccgcctat agagtctata ggcccacccc cttggcttct tatgcatgct 3540 atactgtttt tggcttgggg tctatacacc cccgcttcct catgttatag gtgatggtat 3600 agcttagcct ataggtgtgg gttattgacc attattgacc actcccctat tggtgacgat 3660 actttccatt actaatccat aacatggctc tttgccacaa ctctctttat tggctatatg 3720 ccaatacact gtccttcaga gactgacacg gactctgtat ttttacagga tggggtctca 3780 tttattattt acaaattcac atatacaaca ccaccgtccc cagtgcccgc agtttttatt 3840 aaacataacg tgggatctcc acgcgaatct cgggtacgtg ttccggacat ggtctcttct 3900 ccggtagcgg cggagcttct acatccgagc cctgctccca tgcctccagc gactcatggt 3960 cgctcggcag ctccttgctc ctaacagtgg aggccagact taggcacagc acgatgccca 4020 ccaccaccag tgtgccgcac aaggccgtgg cggtagggta tgtgtctgaa aatgagctcg 4080 gggagcgggc ttgcaccgct gacgcatttg gaagacttaa ggcagcggca gaagaagatg 4140 caggcagctg agttgttgtg ttctgataag agtcagaggt aactcccgtt gcggtgctgt 4200 taacggtgga gggcagtgta gtctgagcag tactcgttgc tgccgcgcgc gccaccagac 4260 ataatagctg acagactaac agactgttcc tttccatggg tcttttctgc agtcaccgtc 4320 cttgacacga agcttatact cgagctctag attgggaacc cgggtctctc gaattcgaga 4380 tctccaccat gcacagacct agacgtcgtg gaactcgtcc acctccactg gcactgctcg 4440 ctgctctcct cctggctgca cgtggtgctg atgcagaggt gcagctggtg gagtctgggg 4500 gagccatagt aaagccgggg gggtcccata gagtctcctg tgaagcctct ggattcactt 4560 tcagtaacgc ctggatgagt tgggtccgcc aggctccagg gagggggctg gagtgggttg 4620 gccgtatttt aagcaagact gatggtggga cgacagacta cgctgcaccc gtgaaagaca 4680 gattcaccat ttcaagagat gattctaaaa atatgttgtt tctgcaaatg gacagcctga 4740 aaatcgagga cacagccgtg tatttctgta ccacggccga tttttggagt gcttattctt 4800 ctgactactg gggccaggga accctggtca ccgtctcctc aggaggtgga ggttccgggg 4860 gcgggggctc cggcggaggt ggatcagata ttgtgatgac tcagtctcca ctctccctgc 4920 ccgtcacccc tggagagccg gcctccatct cctgcaggtc tagtcagagc ctcctgcata 4980 gtaatgggta caactatttg gattggtacc tacagaagcc agggcagtct ccacaactcc 5040 tgatctattt gggttctaat cgggcctccg gggtccctga caggttcagt ggcagtggat 5100 caggcacaga ttttacactg aaaatcagca gaatggaggc tgaggatgtt ggggtttatt 5160 actgcatgca aggtctacaa actccgtaca cttttggcca ggggaccaag ctggagatca 5220 aaggaggcgg agggagtgtt ttgttttatc tggccgttgg gataatgttt ctcgtaaata 5280 cagtactttg ggtaacaata aggaaggaac tgaagagaaa gaaaaaatgg gatctggaaa 5340 tatcattgga cagtggacac gaaaaaaaag tcacatcatc attgcaagaa gaccggcact 5400 tggaggagga actgaaatgt caagagcaaa aagaagaaca actgcaagaa ggcgtacata 5460 gaaaagaacc acagggagca acataggcgg ccgctaatca gccataccac atttgtagag 5520 gttttacttg ctttaaaaaa cctcccacac ctccccctga acctgaaaca taaaatgaat 5580 gcaattgttg ttgttaactt gtttattgca gcttataatg gttacaaata aagcaatagc 5640 atcacaaatt tcacaaataa agcatttttt tcactgcatt ctagttgtgg tttgtccaaa 5700 ctcatcaatg tatcttatca tgtctaccgg tataacttcg tataatgtat actatacgaa 5760 gttag 5765 <210> 49 <211> 660 <212> DNA <213> Artificial sequence <220> <223> synthetic <400> 49 gacatcgtga tgacccagtc tccactctcc ctgcccgtca cccctggaga gccggcctcc 60 atctcctgca ggtctagtca gagcctcctg catagtaatg ggtacaacta tttggattgg 120 tacctacaga agccagggca gtctccacaa ctcctgatct atttgggttc taatcgggcc 180 tccggggtcc ctgacaggtt cagtggcagt ggatcaggca cagattttac actgaaaatc 240 agcagaatgg aggctgagga tgttggggtt tattactgca tgcaaggtct acaaactccg 300 tacacttttg gccaggggac caagctggag atcaaacgag ctgatgctgc accaactgta 360 tccatcttcc caccatccag tgagcagtta acatctggag gtgcctcagt cgtgtgcttc 420 ttgaacaact tctaccccaa agacatcaat gtcaagtgga agattgatgg cagtgaacga 480 caaaatggcg tcctgaacag ttggactgat caggacagca aagacagcac ctacagcatg 540 agcagcaccc tcacgttgac caaggacgag tatgaacgac ataacagcta tacctgtgag 600 gccactcaca agacatcaac ttcacccatt gtcaagagct tcaacagggg agagtgttga 660 <210> 50 <211> 1359 <212> DNA <213> Artificial sequence <220> <223> synthetic <400> 50 gaggtgcagc tggtggagtc tgggggagcc atagtaaagc cgggggggtc ccatagagtc 60 tcctgtgaag cctctggatt cactttcagt aacgcctgga tgagttgggt ccgccaggct 120 ccagggaggg ggctggagtg ggttggccgt attttaagca agactgatgg tgggacgaca 180 gactacgctg cacccgtgaa agacagattc accatttcaa gagatgattc taaaaatatg 240 ttgtttctgc aaatggacag cctgaaaatc gaggacacag ccgtgtattt ctgtaccacg 300 gccgattttt ggagtgctta ttcttctgac tactggggcc agggaaccct ggtcaccgtc 360 tcctcagcca aaacaacagc cccatcggtc tatccactgg cccctgtgtg tggagataca 420 actggctcct cggtgactct aggatgcctg gtcaagggtt atttccctga gccagtgacc 480 ttgacctgga actctggatc cctgtccagt ggtgtgcaca ccttcccagc tgtcctgcag 540 tctgacctct acaccctcag cagctcagtg actgtaacct cgagcacctg gcccagccag 600 tccatcacct gcaatgtggc ccacccggca agcagcacca aggtggacaa gaaaattgag 660 cccagagggc ccacaatcaa gccctgtcct ccatgcaaat gcccagcacc taacctcttg 720 ggtggaccat ccgtcttcat cttccctcca aagatcaagg atgtactcat gatctccctg 780 agccccatag tcacatgtgt ggtggtggat gtgagcgagg atgacccaga tgtccagatc 840 agctggtttg tgaacaacgt ggaagtacac acagctcaga cacaaaccca tagagaggat 900 tacaacagta ctctccgggt ggtcagtgcc ctccccatcc agcaccagga ctggatgagt 960 ggcaaggagt tcaaatgcaa ggtcaacaac aaagacctcc cagcgcccat cgagagaacc 1020 atctcaaaac ccaaagggtc agtaagagct ccacaggtat atgtcttgcc tccaccagaa 1080 gaagagatga ctaagaaaca ggtcactctg acctgcatgg tcacagactt catgcctgaa 1140 gacatttacg tggagtggac caacaacggg aaaacagagc taaactacaa gaacactgaa 1200 ccagtcctgg actctgatgg ttcttacttc atgtacagca agctgagagt ggaaaagaag 1260 aactgggtgg aaagaaatag ctactcctgt tcagtggtcc acgagggtct gcacaatcac 1320 cacacgacta agagcttctc ccggactccg ggtaaatga 1359 <210> 51 <211> 1011 <212> DNA <213> Artificial sequence <220> <223> synthetic <400> 51 gaggtgcagc tggtggagtc tgggggagcc atagtaaagc cgggggggtc ccatagagtc 60 tcctgtgaag cctctggatt cactttcagt aacgcctgga tgagttgggt ccgccaggct 120 ccagggaggg ggctggagtg ggttggccgt attttaagca agactgatgg tgggacgaca 180 gactacgctg cacccgtgaa agacagattc accatttcaa gagatgattc taaaaatatg 240 ttgtttctgc aaatggacag cctgaaaatc gaggacacag ccgtgtattt ctgtaccacg 300 gccgattttt ggagtgctta ttcttctgac tactggggcc agggaaccct ggtcaccgtc 360 tcctcaggag gtggaggttc cgggggcggg ggctccggcg gaggtggatc agatattgtg 420 atgactcagt ctccactctc cctgcccgtc acccctggag agccggcctc catctcctgc 480 aggtctagtc agagcctcct gcatagtaat gggtacaact atttggattg gtacctacag 540 aagccagggc agtctccaca actcctgatc tatttgggtt ctaatcgggc ctccggggtc 600 cctgacaggt tcagtggcag tggatcaggc acagatttta cactgaaaat cagcagaatg 660 gaggctgagg atgttggggt ttattactgc atgcaaggtc tacaaactcc gtacactttt 720 ggccagggga ccaagctgga gatcaaagga ggcggaggga gtgttttgtt ttatctggcc 780 gttgggataa tgtttctcgt aaatacagta ctttgggtaa caataaggaa ggaactgaag 840 agaaagaaaa aatgggatct ggaaatatca ttggacagtg gacacgaaaa aaaagtcaca 900 tcatcattgc aagaagaccg gcacttggag gaggaactga aatgtcaaga gcaaaaagaa 960 gaacaactgc aagaaggcgt acatagaaaa gaaccacagg gagcaacata g 1011

Claims (115)

  1. 인간 IgG1-Fc 도메인, 인간 IgG2-Fc 도메인, 또는 인간 IgG4-Fc 도메인에 결합하는 재조합 항원-결합 단백질.
  2. 제1 항에 있어서, 항원-결합 단백질은 SEQ ID NO:26의 아미노산 서열을 포함하는 폴리펩티드에 결합하는 것을 특징으로 하는 재조합 항원-결합 단백질.
  3. 제1 항 또는 제2 항에 있어서, 항원-결합 단백질은 표면 플라스몬 공명 검정에서 측정된 바와 같이 약 40 nM 미만의 KD로 폴리펩티드에 결합하는 것을 특징으로 하는 재조합 항원-결합 단백질.
  4. 제1 항 내지 제3 항 중 어느 한 항에 있어서, 항원-결합 단백질 SEQ ID NO:15와 적어도 95% 동일한 아미노산 서열을 갖는 중쇄 가변 영역 (HCVR), 또는 SEQ ID NO:16과 적어도 95% 동일한 아미노산 서열을 갖는 경쇄 가변 영역 (LCVR)의 하나 이상의 상보성 결정 영역 (CDR)을 포함하는 것을 특징으로 하는 재조합 항원-결합 단백질.
  5. 제1 항 내지 제4 항 중 어느 한 항에 있어서, 항원-결합 단백질은 SEQ ID NO:27의 아미노산 서열을 갖는 중쇄 CDR-1 (HCDR-1), SEQ ID NO:28의 아미노산 서열을 갖는 HCDR-2, SEQ ID NO:29의 아미노산 서열을 갖는 HCDR-3, SEQ ID NO:30의 아미노산 서열을 갖는 경쇄 CDR-1 (LCDR-1), 및 SEQ ID NO:31의 아미노산 서열을 갖는 LCDR-2를 포함하는 것을 특징으로 하는 재조합 항원-결합 단백질.
  6. 제1 항 내지 제5 항 중 어느 한 항에 있어서, 항원-결합 단백질은 SEQ ID NO:15와 적어도 95% 동일한 아미노산 서열을 갖는 HCVR 및 SEQ ID NO:16과 적어도 95% 동일한 아미노산 서열을 갖는 LCVR을 포함하는 것을 특징으로 하는 재조합 항원-결합 단백질.
  7. 제1 항 내지 제6 항 중 어느 한 항에 있어서, 항원-결합 단백질은 SEQ ID NO:15의 아미노산 서열을 갖는 HCVR 및 SEQ ID NO:16의 아미노산 서열을 갖는 LCVR을 포함하는 것을 특징으로 하는 재조합 항원-결합 단백질.
  8. 제1 항 내지 제7 항 중 어느 한 항에 있어서, 항원-결합 단백질은 (a) SEQ ID NO:15와 적어도 95% 동일한 아미노산 서열을 포함하는 중쇄 가변 도메인, (b) SEQ ID NO:16과 적어도 95% 동일한 아미노산 서열을 포함하는 경쇄 가변 도메인, 및 (c) SEQ ID NO:17 또는 SEQ ID NO:21과 적어도 95% 동일한 아미노산 서열을 포함하는 막 앵커 도메인을 포함하는 ScFv 융합 단백질인 것을 특징으로 하는 재조합 항원-결합 단백질.
  9. 제1 항 내지 제8 항 중 어느 한 항에 있어서, 항원-결합 단백질은 SEQ ID NO:15와 동일한 아미노산 서열을 갖는 중쇄 가변 도메인 및 SEQ ID NO:16과 동일한 아미노산 서열을 갖는 경쇄 가변 도메인을 포함하는 ScFv 융합 단백질인 것을 특징으로 하는 재조합 항원-결합 단백질.
  10. 제1 항 내지 제9 항 중 어느 한 항에 있어서, 항원-결합 단백질은 SEQ ID NO:19의 아미노산 서열을 포함하는 ScFv 융합 단백질인 것을 특징으로 하는 재조합 항원-결합 단백질.
  11. SEQ ID NO:27의 아미노산 서열을 갖는 중쇄 CDR-1 (HCDR1), SEQ ID NO:28의 아미노산 서열을 갖는 HCDR-2, SEQ ID NO:29의 아미노산 서열을 갖는 HCDR-3, SEQ ID NO:30의 아미노산 서열을 갖는 경쇄 CDR-1 (LCDR-1), SEQ ID NO:31의 아미노산 서열을 갖는 LCDR-2를 포함하는 항체로서 치환된 CH3 폴리펩티드 상의 같은 에피토프에 결합하는 재조합 항원-결합 단백질.
  12. 제1 항 내지 제11 항 중 어느 한 항의 항원 결합 단백질을 암호화하는 핵산 서열을 포함하는 분리된 폴리뉴클레오티드.
  13. 제12 항에 있어서, 핵산은 SEQ ID NO:19의 아미노산 서열을 포함하는 폴리펩티드를 암호화하는 것을 특징으로 하는 분리된 폴리뉴클레오티드.
  14. (a) 제12 항 또는 제13 항에 따르는 폴리뉴클레오티드;
    (b) 폴리뉴클레오티드에 작동 가능하게 결합되는 프로모터; 및
    (c) 폴리아데닐화 서열
    을 포함하는 핵산 벡터.
  15. 제14 항에 있어서, 프로모터는 CMV 프로모터인 것을 특징으로 하는 핵산 벡터.
  16. 제14 항 또는 제15 항에 있어서, 선택 가능한 마커를 암호화하는 핵산을 포함하는 것을 특징으로 하는 핵산 벡터.
  17. 제16 항에 있어서, 선택 가능한 마커는 네오마이신 저항성을 제공하는 것을 특징으로 하는 핵산 벡터.
  18. 제14 항 내지 제17 항 중 어느 한 항에 있어서, 에너지 전달 단백질을 암호화하는 핵산을 포함하는 것을 특징으로 하는 핵산 벡터.
  19. 제18 항에 있어서, 에너지 전달 단백질은 녹색 형광 단백질의 유도체인 것을 특징으로 하는 핵산 벡터.
  20. 제19 항에 있어서, 녹색 형광 단백질의 유도체는 황색 형광 단백질 ("YFP")인 것을 특징으로 하는 핵산 벡터.
  21. 제14 항 내지 제20 항 중 어느 한 항에 있어서, 벡터는 원형인 것을 특징으로 하는 핵산 벡터.
  22. 제14 항 내지 제20 항 중 어느 한 항에 있어서, 벡터는 선형인 것을 특징으로 하는 핵산 벡터.
  23. 제22 항에 있어서, 벡터는 숙주 세포의 게놈으로 통합되는 것을 특징으로 하는 핵산 벡터.
  24. 제14 항 내지 제23 항 중 어느 한 항에 있어서, 숙주 세포는 CHO 세포인 것을 특징으로 하는 핵산 벡터.
  25. 제1 항 내지 제11 항 중 어느 한 항의 항원-결합 단백질을 발현하는 숙주 세포.
  26. 제25 항에 있어서, 세포는 CHO 세포인 것을 특징으로 하는 숙주 세포.
  27. IMGT 엑손 넘버링 시스템에 따라 (a) 95R, 및 (b) 95R 및 96F, 또는 EU 넘버링 시스템에 따라 (a') 435R, 및 (b') 435R 및 436F로 구성된 군으로부터 선택된 하나 이상의 아미노산 치환을 포함하는 치환된 CH3 폴리펩티드에 특이적으로 결합하는 재조합 항원-결합 단백질.
  28. 제27 항에 있어서, 항원-결합 단백질은 SEQ ID NO:42의 아미노산 서열을 포함하는 폴리펩티드에 결합하는 것을 특징으로 하는 재조합 항원-결합 단백질.
  29. 제27 항 또는 제28 항에 있어서, 항원-결합 단백질은 표면 플라스몬 공명 검정에서 측정된 바와 같이 약 60 nM 미만의 KD로 폴리펩티드에 결합하는 것을 특징으로 하는 재조합 항원-결합 단백질.
  30. 제27 항 내지 제29 항 중 어느 한 항에 있어서, 항원-결합 단백질은 SEQ ID NO:38과 적어도 95% 동일한 아미노산 서열을 갖는 중쇄 가변 영역 (HCVR), 또는 SEQ ID NO:39과 적어도 95% 동일한 아미노산 서열을 갖는 경쇄 가변 영역 (LCVR)의 하나 이상의 상보성 결정 영역 (CDR)을 포함하는 것을 특징으로 하는 재조합 항원-결합 단백질.
  31. 제27 항 내지 제30 항 중 어느 한 항에 있어서, 항원-결합 단백질은 SEQ ID NO:32의 아미노산 서열을 갖는 중쇄 CDR-1 (HCDR-1), SEQ ID NO:33의 아미노산 서열을 갖는 HCDR-2, SEQ ID NO:34의 아미노산 서열을 갖는 HCDR-3, SEQ ID NO:35의 아미노산 서열을 갖는 경쇄 CDR-1 (LCDR-1), SEQ ID NO:36의 아미노산 서열을 갖는 LCDR-2, 및 SEQ ID NO:37의 아미노산 서열을 갖는 LCDR-3을 포함하는 것을 특징으로 하는 재조합 항원-결합 단백질.
  32. 제27 항 내지 제31 항 중 어느 한 항에 있어서, 항원-결합 단백질은 SEQ ID NO:38과 적어도 95% 동일한 아미노산 서열을 갖는 HCVR 및 SEQ ID NO:39와 적어도 95% 동일한 아미노산 서열을 갖는 LCVR을 포함하는 것을 특징으로 하는 재조합 항원-결합 단백질.
  33. 제27 항 내지 제32 항 중 어느 한 항에 있어서, 항원-결합 단백질은 SEQ ID NO:38의 아미노산 서열을 갖는 HCVR 및 SEQ ID NO:39의 아미노산 서열을 갖는 LCVR을 포함하는 것을 특징으로 하는 재조합 항원-결합 단백질.
  34. 제27 항 내지 제33 항 중 어느 한 항에 있어서, 항원-결합 단백질은 SEQ ID NO:40과 적어도 95% 동일한 아미노산 서열을 포함하는 중쇄 및 SEQ ID NO:41과 적어도 95% 동일한 아미노산 서열을 포함하는 경쇄를 포함하는 항체인 것을 특징으로 하는 재조합 항원-결합 단백질.
  35. 제27 항 내지 제34 항 중 어느 한 항에 있어서, 항체는 SEQ ID NO:40과 동일한 아미노산 서열을 갖는 중쇄 및 SEQ ID NO:41과 동일한 아미노산 서열을 갖는 경쇄를 포함하는 것을 특징으로 하는 재조합 항원-결합 단백질.
  36. 제27 항 내지 제33 항 중 어느 한 항에 있어서, 항원-결합 단백질은 (a) SEQ ID NO:38과 적어도 95% 동일한 아미노산 서열을 포함하는 중쇄 가변 도메인, (b) SEQ ID NO:39와 적어도 95% 동일한 아미노산 서열을 포함하는 경쇄 가변 도메인, 및 (c) 막 앵커 도메인을 포함하는 ScFv 융합 단백질인 것을 특징으로 하는 재조합 항원-결합 단백질.
  37. 제27 항 내지 제33 항 및 제36 항 중 어느 한 항에 있어서, 항원-결합 단백질은 SEQ ID NO:38과 동일한 아미노산 서열을 갖는 중쇄 가변 도메인 및 SEQ ID NO:39와 동일한 아미노산 서열을 갖는 경쇄 가변 도메인을 포함하는 ScFv 융합 단백질인 것을 특징으로 하는 재조합 항원-결합 단백질.
  38. 제27 항 내지 제33 항, 제36 항 및 제37 항에 있어서, 항원-결합 단백질은 SEQ ID NO:43의 아미노산 서열을 포함하는 ScFv 융합 단백질인 것을 특징으로 하는 재조합 항원-결합 단백질.
  39. SEQ ID NO:32의 아미노산 서열을 갖는 중쇄 CDR-1 (HCDR1), SEQ ID NO:33의 아미노산 서열을 갖는 HCDR-2, SEQ ID NO:34의 아미노산 서열을 갖는 HCDR-3, SEQ ID NO:35의 아미노산 서열을 갖는 경쇄 CDR-1 (LCDR-1), SEQ ID NO:36의 아미노산 서열을 갖는 LCDR-2, 및 SEQ ID NO:37의 아미노산 서열을 갖는 LCDR-3을 포함하는 항체로서 치환된 CH3 폴리펩티드 상의 같은 에피토프에 결합하는 재조합 항원-결합 단백질.
  40. 제27 항 내지 제39 항 중 어느 한 항의 항원 결합 단백질을 암호화하는 핵산 서열을 포함하는 분리된 폴리뉴클레오티드.
  41. 제40 항에 있어서, 핵산은 SEQ ID NO:40의 아미노산 서열을 포함하는 폴리펩티드를 암호화하는 것을 특징으로 하는 분리된 폴리뉴클레오티드.
  42. 제40 항에 있어서, 핵산은 SEQ ID NO:41의 아미노산 서열을 포함하는 폴리펩티드를 암호화하는 것을 특징으로 하는 분리된 폴리뉴클레오티드.
  43. 제40 항에 있어서, 핵산은 SEQ ID NO:43의 아미노산 서열을 포함하는 폴리펩티드를 암호화하는 것을 특징으로 하는 분리된 폴리뉴클레오티드.
  44. (a) 제40 항 내지 제43 항 중 어느 한 항에 따르는 폴리뉴클레오티드;
    (b) 폴리뉴클레오티드에 작동 가능하게 결합된 프로모터; 및
    (c) 폴리아데닐화 서열
    을 포함하는 핵산 벡터.
  45. 제44 항에 있어서, 프로모터는 CMV 프로모터인 것을 특징으로 하는 핵산 벡터.
  46. 제44 항 또는 제45 항에 있어서, 선택 가능한 마커를 암호화하는 핵산을 포함하는 것을 특징으로 하는 핵산 벡터.
  47. 제46 항에 있어서, 선택 가능한 마커는 네오마이신 저항성을 제공하는 것을 특징으로 하는 핵산 벡터.
  48. 제44 항 내지 제47 항 중 어느 한 항에 있어서, 에너지 전달 단백질을 암호화하는 핵산을 포함하는 것을 특징으로 하는 핵산 벡터.
  49. 제48 항에 있어서, 에너지 전달 단백질은 녹색 형광 단백질의 유도체인 것을 특징으로 하는 핵산 벡터.
  50. 제49 항에 있어서, 녹색 형광 단백질의 유도체는 황색 형광 단백질 ("YFP")인 것을 특징으로 하는 핵산 벡터.
  51. 제44 항 내지 제50 항 중 어느 한 항에 있어서, 벡터는 원형인 것을 특징으로 하는 핵산 벡터.
  52. 제44 항 내지 제50 항 중 어느 한 항에 있어서, 벡터는 선형인 것을 특징으로 하는 핵산 벡터.
  53. 제52 항에 있어서, 벡터는 숙주 세포의 게놈으로 통합되는 것을 특징으로 하는 핵산 벡터.
  54. 제53 항에 있어서, 숙주 세포는 CHO 세포인 것을 특징으로 하는 핵산 벡터.
  55. 제27 항 내지 제39 항 중 어느 한 항의 항원-결합 단백질을 발현하는 숙주 세포.
  56. 제55 항에 있어서, 세포는 CHO 세포인 것을 특징으로 하는 숙주 세포.
  57. 헤테로다이머 단백질을 안정하게 발현하는 세포를 검출하거나 분리하는 방법으로서,
    (a) 숙주 세포에서 세포 표면 캡쳐 단백질 (CSCP) 및 헤테로다이머 단백질을 발현하는 단계로서, (i) CSCP는 헤테로다이머 단백질 상의 제1 부위에 결합하여 숙주 세포 내부에서 CSCP-헤테로다이머 단백질 복합체를 형성하고, (ii) CSCP-헤테로다이머 단백질 복합체는 숙주 세포를 통해 전달되며, (iii) 그때 숙주 세포의 표면 상에 디스플레이되는 단계;
    (b) 숙주 세포를 검출 분자에 접촉시키는 단계로서, 검출 분자는 헤테로다이머 단백질 상의 제2 부위에 결합하는 단계; 및
    (c) 검출 분자에 결합하는 숙주 세포를 선택하는 단계
    를 포함하는 방법.
  58. 제57 항에 있어서, 단계 (c)에서 숙주 세포를 선택하기 전 세포를 차단 분자와 접촉시키는 단계를 포함하는데, 차단 분자는 헤테로다이머 단백질에 결합되지 않는 CSCP에 결합하지만, CSCP-헤테로다이머 단백질 복합체에 결합하지 않는 것을 특징으로 하는 방법.
  59. 제57 항 또는 제58 항에 있어서, 선택 단계 (c)는 형광성 활성화된 세포 분류에 의해 수행되는 것을 특징으로 하는 방법.
  60. 제57 항 내지 제59 항 중 어느 한 항에 있어서, 헤테로다이머 단백질은 다수의 서브유닛을 포함하며 헤테로다미어 단백질 상의 제1 부위는 제1 서브유닛 상에 있고, 헤테로다이머 단백질 상의 제2 부위는 제2 서브유닛 상에 있는 것을 특징으로 하는 방법.
  61. 제60 항에 있어서, 헤테로다이머 단백질은 항체를 포함하는 것을 특징으로 하는 방법.
  62. 제61 항에 있어서, 항체 상의 제1 부위는 야생형 CH3 도메인을 포함하는 중쇄 상에 있는 것을 특징으로 하는 방법.
  63. 제57 항 내지 제62 항 중 어느 한 항에 있어서, 항체 상의 제1 부위는 IMGT 엑손 넘버링 시스템에 따라 위치 95에서 히스티딘 잔기 및 IMGT 엑손 넘버링 시스템에 따라 위치 96에서 티로신 잔기를 포함하는 CH3 도메인을 포함하는 중쇄 상에 있는 것을 특징으로 하는 방법.
  64. 제57 항 내지 제63 항 중 어느 한 항에 있어서, CSCP는 인간 IgG1-Fc 도메인, 인간 IgG2-Fc 도메인, 또는 인간 IgG4-Fc 도메인에 결합하는 재조합 항원-결합 단백질을 포함하는 것을 특징으로 하는 방법.
  65. 제57 항 내지 제64 항 중 어느 한 항에 있어서, 항원-결합 단백질은 SEQ ID NO:26의 아미노산 서열을 포함하는 폴리펩티드에 결합하는 것을 특징으로 하는 방법.
  66. 제57 항 내지 제65 항 중 어느 한 항에 있어서, 항원-결합 단백질은 단백질 A 또는 단백질 A의 기능적 단편을 포함하는 것을 특징으로 하는 방법.
  67. 제66 항에 있어서, 항원-결합 단백질은 단백질 A의 Fc 결합 도메인을 포함하는 키메라 단백질인 것을 특징으로 하는 방법.
  68. 제67 항에 있어서, 키메라 단백질은 단백질 A의 Fc 결합 도메인 및 막 앵커를 포함하는 것을 특징으로 하는 방법.
  69. 제68 항에 있어서, 키메라 단백질은 단백질 A의 Fc 결합 도메인 및 Fc 수용체의 막관통 도메인을 포함하는 것을 특징으로 하는 방법.
  70. 제57 항 내지 제64 항 중 어느 한 항에 있어서, 항원-결합 단백질은 표면 플라스몬 공명 검정에서 측정된 바와 같이 약 40 nM 미만의 KD로 폴리펩티드에 결합하는 것을 특징으로 하는 방법.
  71. 제57 항 내지 제70 항 중 어느 한 항에 있어서, CSCP는 (a) SEQ ID NO:15와 적어도 95% 동일한 아미노산 서열을 포함하는 중쇄 가변 도메인, (b) SEQ ID NO:16과 적어도 95% 동일한 아미노산 서열을 포함하는 경쇄 가변 도메인, 및 (c) 막 앵커 도메인을 포함하는 ScFv 융합 단백질을 포함하는 것을 특징으로 하는 방법.
  72. 제71 항에 있어서, 검출 분자 (DM)는 SEQ ID NO:38과 적어도 95% 동일한 아미노산 서열을 포함하는 중쇄 가변 도메인, 및 SEQ ID NO:39와 적어도 95% 동일한 아미노산 서열을 포함하는 경쇄 가변 도메인을 포함하는 항원-결합 단백질을 포함하는 것을 특징으로 하는 방법.
  73. 제57 항 내지 제59 항 중 어느 한 항에 있어서, CSCP는 (a) SEQ ID NO:38과 적어도 95% 동일한 아미노산 서열을 포함하는 중쇄 가변 도메인, (b) SEQ ID NO:39와 적어도 95% 동일한 아미노산 서열을 포함하는 경쇄 가변 도메인, 및 (c) 막 앵커 도메인을 포함하는 ScFv 융합 단백질을 포함하는 항원-결합 단백질을 포함하는 것을 특징으로 하는 방법.
  74. 제73 항에 있어서, 검출 분자 (DM)는 SEQ ID NO:15와 적어도 95% 동일한 아미노산 서열을 포함하는 중쇄 가변 도메인, 및 SEQ ID NO:16과 적어도 95% 동일한 아미노산 서열을 포함하는 경쇄 가변 도메인을 포함하는 항원-결합 단백질을 포함하는 것을 특징으로 하는 방법.
  75. 제57 항 내지 제74 항 중 어느 한 항에 있어서, 차단 분자는 비-인간 IgG 또는 인간 Fc 분자인 것을 특징으로 하는 방법.
  76. 높은 수준의 헤테로다이머 단백질을 생산하는 세포를 검출하고 분리하는 방법으로서,
    (a) 세포를 막 앵커 도메인을 포함하는 융합 단백질이고 헤테로다이머 단백질의 제1 서브유닛에 결합할 수 있는 세포 표면 캡쳐 단백질 (CSCP)을 암호화하는 핵산으로 트랜스펙션하는 단계로서, 세포는 헤테로다이머 단백질을 발현하는 단계;
    (b) 높은 수율로 CSCP를 발현하는 (a)의 세포를 검출하는 단계;
    (c) 높은 수율로 CSCP를 발현하는 세포를 분리하고 배양하는 단계;
    (d) 단계 (c)의 분리되고 배양된 세포의 표면 상의 헤테로다이머 단백질을 헤테로다이머 단백질의 제2 서브유닛에 결합하는 검출 분자로 검출하는 단계; 및
    (e) 그것의 표면 상에서 검출된 헤테로다이머 단백질을 가지고 있는, 단계 (d)에서 검출된 세포를 분리하는 단계
    를 포함하는 방법.
  77. 제76 항에 있어서, 헤테로다이머 단백질은 항체를 포함하는 것을 특징으로 하는 방법.
  78. 제76 항 또는 제77 항에 있어서, 헤테로다이머 단백질의 제1 서브유닛은 야생형 CH3 도메인을 포함하는 중쇄 도메인을 포함하는 것을 특징으로 하는 방법.
  79. 제76 항 내지 제78 항 중 어느 한 항에 있어서, 헤테로다이머 단백질의 제1 서브유닛은 IMGT 엑손 넘버링 시스템에 따라 위치 95에서 히스티딘 잔기 및 IMGT 엑손 넘버링 시스템에 따라 위치 96에서 티로신 잔기를 갖는 CH3 도메인을 포함하는 중쇄를 포함하는 것을 특징으로 하는 방법.
  80. 제76 항 내지 제79 항 중 어느 한 항에 있어서, CSCP는 인간 IgG1-Fc 도메인, 인간 IgG2-Fc 도메인, 또는 인간 IgG4-Fc 도메인에 결합하는 재조합 항원-결합 단백질을 포함하는 것을 특징으로 하는 방법.
  81. 제76 항 내지 제80 항 중 어느 한 항에 있어서, 재조합 항원-결합 단백질은 SEQ ID NO:26의 아미노산 서열을 포함하는 폴리펩티드에 결합하는 것을 특징으로 하는 방법.
  82. 제76 항 내지 제81 항 중 어느 한 항에 있어서, 재조합 항원-결합 단백질은 단백질 A 또는 단백질 A의 기능적 단편을 포함하는 것을 특징으로 하는 방법.
  83. 제82 항에 있어서, 재조합 항원-결합 단백질은 단백질 A의 Fc 결합 도메인을 포함하는 융합 단백질인 것을 특징으로 하는 방법.
  84. 제82 항 또는 제83 항에 있어서, 융합 단백질은 단백질 A의 Fc 결합 도메인 및 막 앵커를 포함하는 것을 특징으로 하는 방법.
  85. 제82 항 내지 제84 항 중 어느 한 항에 있어서, 융합 단백질은 단백질 A의 Fc 결합 도메인 및 Fc 수용체의 막관통 도메인을 포함하는 것을 특징으로 하는 방법.
  86. 제76 항 내지 제81 항 중 어느 한 항에 있어서, 재조합 항원-결합 단백질은 표면 플라스몬 공명 검정에서 측정된 바와 같이 약 40 nM 미만의 KD로 폴리펩티드에 결합하는 것을 특징으로 하는 방법.
  87. 제76 항 내지 제81 항 중 어느 한 항에 있어서, 재조합 항원-결합 단백질은 SEQ ID NO:15와 적어도 95% 동일한 아미노산 서열을 갖는 중쇄 가변 영역 (HCVR), 또는 SEQ ID NO: 16과 적어도 95% 동일한 아미노산 서열을 갖는 경쇄 가변 영역 (LCVR)의 하나 이상의 상보성 결정 영역 (CDR)을 포함하는 것을 특징으로 하는 방법.
  88. 제76 항 내지 제81 항 또는 제87 항 중 어느 한 항에 있어서, 재조합 항원-결합 단백질은 SEQ ID NO:27의 아미노산 서열을 갖는 중쇄 CDR-1 (HCDR-1), SEQ ID NO:28의 아미노산 서열을 갖는 HCDR-2, SEQ ID NO:29의 아미노산 서열을 갖는 HCDR-3, SEQ ID NO:30의 아미노산 서열을 갖는 경쇄 CDR-1 (LCDR-1), 및 SEQ ID NO:31의 아미노산 서열을 갖는 LCDR-2를 포함하는 것을 특징으로 하는 방법.
  89. 제76 항 내지 제81 항, 87 항 또는 제88 항 중 어느 한 항에 있어서, 재조합 항원-결합 단백질은 SEQ ID NO:27의 아미노산 서열을 갖는 중쇄 CDR-1 (HCDR1), SEQ ID NO:28의 아미노산 서열을 갖는 HCDR-2, SEQ ID NO:29의 아미노산 서열을 갖는 HCDR-3, SEQ ID NO:30의 아미노산 서열을 갖는 경쇄 CDR-1 (LCDR-1), 및 SEQ ID NO:31의 아미노산 서열을 갖는 LCDR-2를 포함하는 항체로서 CH3 도메인 상의 같은 에피토프에 결합하는 것을 특징으로 하는 방법.
  90. 제76 항 내지 제81 항 또는 제87 항 내지 제89 항 중 어느 한 항에 있어서, 항원-결합 단백질은 SEQ ID NO: 15와 적어도 95% 동일한 아미노산 서열을 갖는 HCVR 및 SEQ ID NO:16과 적어도 95% 동일한 아미노산 서열을 갖는 LCVR을 포함하는 것을 특징으로 하는 방법.
  91. 제76 항 내지 제81 항 또는 제87 항 내지 제90 항 중 어느 한 항에 있어서, 항원-결합 단백질은 SEQ ID NO: 15의 아미노산 서열을 갖는 HCVR 및 SEQ ID NO:16의 아미노산 서열을 갖는 LCVR을 포함하는 것을 특징으로 하는 방법.
  92. 제76 항 내지 제81 항 중 어느 한 항에 있어서, CSCP는 (a) SEQ ID NO:15와 적어도 95% 동일한 아미노산 서열을 포함하는 중쇄 가변 도메인, (b) SEQ ID NO: 16과 적어도 95% 동일한 아미노산 서열을 포함하는 경쇄 가변 도메인, 및 (c) SEQ ID NO:17 또는 SEQ ID NO:21과 적어도 95% 동일한 아미노산 서열을 포함하는 막 앵커 도메인을 포함하는 ScFv 융합 단백질인 것을 특징으로 하는 방법.
  93. 제76 항 내지 제81 항 또는 제92 항 중 어느 한 항에 있어서, CSCP는 SEQ ID NO: 15와 동일한 아미노산 서열을 갖는 중쇄 가변 도메인 및 SEQ ID NO:16과 동일한 아미노산 서열을 갖는 경쇄 가변 도메인을 포함하는 ScFv 융합 단백질인 것을 특징으로 하는 방법.
  94. 제76 항 내지 제81 항, 제92 항, 또는 제93 항 중 어느 한 항에 있어서, CSCP는 SEQ ID NO:19의 아미노산 서열을 포함하는 ScFv 융합 단백질인 것을 특징으로 하는 방법.
  95. 제76 항 내지 제94 항 중 어느 한 항에 있어서, 헤테로다이머 단백질의 제2 서브유닛은 IMGT 엑손 넘버링 시스템에 따라 위치 95에서 아르기닌 잔기 및 IMGT 엑손 넘버링 시스템에 따라 위치 96에서 페닐알라닌 잔기를 포함하는 CH3 도메인을 포함하는 중쇄를 포함하는 것을 특징으로 하는 방법.
  96. 제95 항에 있어서, 검출 분자 (DM)는 인간 IgG1-Fc 도메인, 인간 IgG2-Fc 도메인, 또는 인간 IgG4-Fc 도메인에 결합하는 표지된 재조합 항원-결합 단백질을 포함하는데 Fc 도메인은 IMGT 엑손 넘버링 시스템에 따라 위치 95에서 아르기닌 잔기 및 IMGT 엑손 넘버링 시스템에 따라 위치 96에서 페닐알라닌 잔기를 포함하는 것을 특징으로 하는 방법.
  97. 제95 항 또는 제96 항에 있어서, 검출 분자는 표지된 항-인간 IgG F(ab')2를 포함하는 것을 특징으로 하는 방법.
  98. 제96 항 또는 제97 항 중 어느 한 항에 있어서, 표지된 재조합 항원-결합 단백질은 SEQ ID NO:43의 아미노산 서열을 포함하는 폴리펩티드에 결합하는 것을 특징으로 하는 방법.
  99. 제96 항 내지 제98 항 중 어느 한 항에 있어서, 표지된 재조합 항원-결합 단백질은 표면 플라스몬 공명 검정에서 측정된 바와 같이 약 60 nM 미만의 KD로 폴리펩티드에 결합하는 것을 특징으로 하는 방법.
  100. 제96 항 내지 제99 항 중 어느 한 항에 있어서, 표지된 재조합 항원-결합 단백질은 SEQ ID NO:38과 적어도 95% 동일한 아미노산 서열을 갖는 중쇄 가변 영역 (HCVR), 또는 SEQ ID NO:39와 적어도 95% 동일한 아미노산 서열을 갖는 경쇄 가변 영역 (LCVR)의 하나 이상의 상보성 결정 영역 (CDR)을 포함하는 것을 특징으로 하는 방법.
  101. 제96 항 내지 제100 항 중 어느 한 항에 있어서, 표지된 재조합 항원-결합 단백질은 SEQ ID NO:32의 아미노산 서열을 갖는 중쇄 CDR-1 (HCDR-1), SEQ ID NO:33의 아미노산 서열을 갖는 HCDR-2, SEQ ID NO:34의 아미노산 서열을 갖는 HCDR-3, SEQ ID NO:35의 아미노산 서열을 갖는 경쇄 CDR-1 (LCDR-1), SEQ ID NO:36의 아미노산 서열을 갖는 LCDR-2, 및 SEQ ID NO:37의 아미노산 서열을 갖는 LCDR-3을 포함하는 것을 특징으로 하는 방법.
  102. 제96 항 내지 제101 항 중 어느 한 항에 있어서, 표지된 재조합 항원-결합 단백질은 SEQ ID NO:38과 적어도 95% 동일한 아미노산 서열을 갖는 HCVR 및 SEQ ID NO:39와 적어도 95% 동일한 아미노산 서열을 갖는 LCVR을 포함하는 것을 특징으로 하는 방법.
  103. 제96 항 내지 제102 항 중 어느 한 항에 있어서, 표지된 재조합 항원-결합 단백질은 SEQ ID NO:38의 아미노산을 갖는 HCVR 및 SEQ ID NO:39의 아미노산을 갖는 LCVR을 포함하는 것을 특징으로 하는 방법.
  104. 제96 항 내지 제103 항 중 어느 한 항에 있어서, 표지된 재조합 항원-결합 단백질은 SEQ ID NO:40과 적어도 95% 동일한 아미노산 서열을 포함하는 중쇄 및 SEQ ID NO:41과 적어도 95% 동일한 아미노산을 포함하는 경쇄를 포함하는 표지된 항체인 것을 특징으로 하는 방법.
  105. 제104 항 중 어느 한 항에 있어서, 표지된 항체는 SEQ ID NO:40과 동일한 아미노산 서열을 갖는 중쇄 및 SEQ ID NO:41과 동일한 아미노산 서열을 갖는 경쇄를 포함하는 것을 특징으로 하는 방법.
  106. 제76 항 내지 제78 항 중 어느 한 항에 있어서, 헤테로다이머 단백질의 제1 서브유닛은 IMGT 엑손 넘버링 시스템에 따라 위치 95에서 아르기닌 잔기 및 IMGT 엑손 넘버링 시스템에 따라 위치 96에서 페닐알라닌 잔기를 갖는 CH3 도메인을 포함하는 중쇄 도메인을 포함하고, 헤테로다이머 단백질의 제2 서브유닛은 IMGT 엑손 넘버링 시스템에 따라 위치 95에서 히스티딘 잔기 및 IMGT 엑손 넘버링 시스템에 따라 위치 96에서 티로신 잔기를 갖는 CH3 도메인을 포함하는 중쇄 도메인을 포함하는 것을 특징으로 하는 방법.
  107. 제106 항에 있어서, CSCP는 (a) SEQ ID NO:38과 적어도 95% 동일한 아미노산 서열을 포함하는 중쇄 가변 도메인, (b) SEQ ID NO:39와 적어도 95% 동일한 아미노산 서열을 포함하는 경쇄 가변 도메인, 및 (c) 막 앵커 도메인을 포함하는 ScFv 융합 단백질을 포함하는 것을 특징으로 하는 방법.
  108. 제107 항에 있어서, ScFv 융합 단백질은 SEQ ID NO:38과 동일한 아미노산 서열을 갖는 중쇄 가변 도메인 및 SEQ ID NO:39와 동일한 아미노산 서열을 갖는 경쇄 가변 도메인을 포함하는 것을 특징으로 하는 방법.
  109. 제107 항 또는 제108 항에 있어서, ScFv 융합 단백질은 SEQ ID NO:43의 아미노산 서열을 포함하는 것을 특징으로 하는 방법.
  110. 제106 항 내지 제109 항 중 어느 한 항에 있어서, 검출 분자 (DM)는 SEQ ID NO:15와 적어도 95% 동일한 아미노산 서열을 갖는 중쇄 가변 영역 (HCVR), 또는 SEQ ID NO: 16과 적어도 95% 동일한 아미노산 서열을 갖는 경쇄 가변 영역 (LCVR)의 하나 이상의 상보성 결정 영역 (CDR)을 포함하는 표지된 재조합 항원-결합 단백질을 포함하는 것을 특징으로 하는 방법.
  111. 제110 항에 있어서, 표지된 재조합 항원-결합 단백질은 SEQ ID NO:27의 아미노산 서열을 갖는 중쇄 CDR-1 (HCDR-1), SEQ ID NO:28의 아미노산 서열을 갖는 HCDR-2, SEQ ID NO:29의 아미노산 서열을 갖는 HCDR-3, SEQ ID NO:30의 아미노산 서열을 갖는 경쇄 CDR-1 (LCDR-1), 및 SEQ ID NO:31의 아미노산 서열을 갖는 LCDR-2를 포함하는 것을 특징으로 하는 방법.
  112. 제106 항에 있어서, 검출 분자 (DM)는 SEQ ID NO:27의 아미노산 서열을 갖는 중쇄 CDR-1 (HCDR1), SEQ ID NO:28의 아미노산 서열을 갖는 HCDR-2, SEQ ID NO:29의 아미노산 서열을 갖는 HCDR-3, SEQ ID NO:30의 아미노산 서열을 갖는 경쇄 CDR-1 (LCDR-1), 및 SEQ ID NO:31의 아미노산 서열을 갖는 LCDR-2를 포함하는 항체로서 CH3 도메인 상의 같은 에피토프에 결합하는 표지된 재조합 항원-결합 단백질을 포함하는 것을 특징으로 하는 방법.
  113. 제112 항에 있어서, 표지된 항원-결합 단백질은 SEQ ID NO: 15와 적어도 95% 동일한 아미노산 서열을 갖는 HCVR 및 SEQ ID NO:16과 적어도 95% 동일한 아미노산 서열을 갖는 LCVR을 포함하는 것을 특징으로 하는 방법.
  114. 제112 항 또는 제113 항 중 어느 한 항에 있어서, 표지된 항원-결합 단백질은 SEQ ID NO:15의 아미노산 서열을 갖는 HCVR 및 SEQ ID NO:16의 아미노산 서열을 갖는 LCVR을 포함하는 것을 특징으로 하는 방법.
  115. 제76 항 내지 제114 항 중 어느 한 항에 있어서, 차단 분자는 비-인간 IgG 또는 인간 Fc 분자인 것을 특징으로 하는 방법.
KR1020237026105A 2012-11-14 2013-11-14 재조합 세포 표면 캡쳐 단백질 KR20230119245A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261726040P 2012-11-14 2012-11-14
US61/726,040 2012-11-14
KR1020227004696A KR102563030B1 (ko) 2012-11-14 2013-11-14 재조합 세포 표면 캡쳐 단백질
PCT/US2013/069993 WO2014078475A2 (en) 2012-11-14 2013-11-14 Recombinant cell surface capture proteins

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020227004696A Division KR102563030B1 (ko) 2012-11-14 2013-11-14 재조합 세포 표면 캡쳐 단백질

Publications (1)

Publication Number Publication Date
KR20230119245A true KR20230119245A (ko) 2023-08-16

Family

ID=49679651

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020157014594A KR20150084028A (ko) 2012-11-14 2013-11-14 재조합 세포 표면 캡쳐 단백질
KR1020227004696A KR102563030B1 (ko) 2012-11-14 2013-11-14 재조합 세포 표면 캡쳐 단백질
KR1020237026105A KR20230119245A (ko) 2012-11-14 2013-11-14 재조합 세포 표면 캡쳐 단백질
KR1020217003226A KR20210014766A (ko) 2012-11-14 2013-11-14 재조합 세포 표면 캡쳐 단백질

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020157014594A KR20150084028A (ko) 2012-11-14 2013-11-14 재조합 세포 표면 캡쳐 단백질
KR1020227004696A KR102563030B1 (ko) 2012-11-14 2013-11-14 재조합 세포 표면 캡쳐 단백질

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020217003226A KR20210014766A (ko) 2012-11-14 2013-11-14 재조합 세포 표면 캡쳐 단백질

Country Status (20)

Country Link
US (3) US9758592B2 (ko)
EP (2) EP2949667B1 (ko)
JP (2) JP6668074B2 (ko)
KR (4) KR20150084028A (ko)
CN (2) CN109485728A (ko)
AR (2) AR093491A1 (ko)
AU (3) AU2013344769B2 (ko)
BR (1) BR112015010758A2 (ko)
CA (2) CA2889541C (ko)
DK (2) DK2920208T3 (ko)
EA (2) EA037546B1 (ko)
ES (2) ES2805526T3 (ko)
HK (2) HK1211036A1 (ko)
IL (3) IL285015B1 (ko)
MX (2) MX2015006112A (ko)
PL (2) PL2920208T3 (ko)
SG (2) SG10201804124XA (ko)
TW (4) TW202423993A (ko)
WO (1) WO2014078475A2 (ko)
ZA (1) ZA201502538B (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090137416A1 (en) 2001-01-16 2009-05-28 Regeneron Pharmaceuticals, Inc. Isolating Cells Expressing Secreted Proteins
US9242014B2 (en) 2010-06-15 2016-01-26 The Regents Of The University Of California Receptor tyrosine kinase-like orphan receptor 1 (ROR1) single chain Fv antibody fragment conjugates and methods of use thereof
PT2663579T (pt) 2011-01-14 2017-07-28 Univ California Terapêutica de anticorpos contra a proteína r0r-1 e métodos para sua utilização
EP2888283B1 (en) 2012-08-24 2018-09-19 The Regents of The University of California Antibodies and vaccines for use in treating ror1 cancers and inhibiting metastasis
TW202423993A (zh) 2012-11-14 2024-06-16 美商再生元醫藥公司 重組細胞表面捕捉蛋白質
WO2016079739A2 (en) 2014-11-20 2016-05-26 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Compositions and methods for producing polypeptides with a modified glycosylation pattern in plant cells
PL3294775T3 (pl) * 2015-05-12 2021-12-13 Regeneron Pharmaceuticals, Inc. Oznaczanie czystości białka multimerycznego
CA2997673A1 (en) 2015-09-15 2017-03-23 Board Of Regents, The University Of Texas System T-cell receptor (tcr)-binding antibodies and uses thereof
CN109071633B (zh) 2016-04-20 2022-11-18 瑞泽恩制药公司 基于使用表达增强性基因座来制备抗体的组合物和方法
KR102547738B1 (ko) 2016-04-20 2023-06-26 리제너론 파마슈티칼스 인코포레이티드 발현 강화 유전자좌의 사용에 기초하여 항체를 만들기 위한 조성물 및 방법
WO2018005519A2 (en) 2016-06-27 2018-01-04 The Regents Of The University Of California Cancer treatment combinations
SG10202110530WA (en) 2017-03-24 2021-11-29 Lankenau Inst Medical Res Methods and compositions for inducible extracellular membrane capture of monoclonal immunoglobulins secreted by hybridomas
CN107177613A (zh) * 2017-07-18 2017-09-19 哈尔滨紫霞生物科技有限公司 一种提高重组猪干扰素‑γ融合蛋白抗病毒活性的方法
US20200369784A1 (en) * 2017-12-07 2020-11-26 Chugai Seiyaku Kabushiki Kaisha Antibodies, compositions for use in detecting or capturing a polypeptide in a sample, and methods for detecting or capturing a polypeptide in a sample
EP3856910A4 (en) * 2018-09-24 2022-09-28 Merck Sharp & Dohme Corp. EXPRESSION VECTORS FOR EUKARYOT EXPRESSION SYSTEMS
WO2020167957A1 (en) * 2019-02-12 2020-08-20 Board Of Regents, The University Of Texas System High affinity engineered t-cell receptors targeting cmv infected cells
CN114874333A (zh) * 2021-10-18 2022-08-09 深圳科兴药业有限公司 一种生长激素融合蛋白及其应用

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151350A (en) * 1982-10-27 1992-09-29 Repligen Corporation Cloned genes encoding recombinant protein a
US5635354A (en) 1991-01-09 1997-06-03 Institut National De La Sante Et De La Recherche Medicale (Inserm) Method for describing the repertoires of antibodies (Ab) and of T-cell receptors (TcR) of an individual's immune system
US6399368B1 (en) 1992-01-17 2002-06-04 Board Of Regents, The University Of Texas System Secretion of T cell receptor fragments from recombinant Escherichia coli cells
US6080840A (en) 1992-01-17 2000-06-27 Slanetz; Alfred E. Soluble T cell receptors
WO1994009117A1 (en) 1992-10-21 1994-04-28 Miltenyi Biotec Inc Direct selection of cells by secretion product
US6482655B1 (en) 1993-07-23 2002-11-19 University Of Utah Research Foundation Immunoassay procedure utilizing fluorogenic tracer antigens
US6287784B1 (en) 1993-11-23 2001-09-11 Genentech, Inc. Kinase receptor activation assay
US6410690B1 (en) * 1995-06-07 2002-06-25 Medarex, Inc. Therapeutic compounds comprised of anti-Fc receptor antibodies
NZ512006A (en) 1996-02-09 2005-05-27 Abbott Biotech Ltd Medical treatment with human TNF-alpha antibodies
US5916771A (en) 1996-10-11 1999-06-29 Abgenix, Inc. Production of a multimeric protein by cell fusion method
US6232066B1 (en) 1997-12-19 2001-05-15 Neogen, Inc. High throughput assay system
DE69941150D1 (de) 1998-05-11 2009-09-03 Miltenyi Biotec Gmbh Verfahren zur direkten auswahl von antigen-spezifischen t-zellen
DE69931776T2 (de) 1998-05-20 2007-05-16 Chugai Seiyaku K.K. Verfahren zur klonierung von genen
US6927044B2 (en) 1998-09-25 2005-08-09 Regeneron Pharmaceuticals, Inc. IL-1 receptor based cytokine traps
TR200504220T2 (tr) 1998-12-17 2007-04-24 Biogen Idec Ma Inc. Aktif limfotoksin-beta reseptör imunoglobülin şimeAktif limfotoksin-beta reseptör imunoglobülin şimerik proteinlerinin yüksek düzey ifadesi ve saflaştrik proteinlerinin yüksek düzey ifadesi ve saflaştırılması için bir yöntem.ırılması için bir yöntem.
DE19900635A1 (de) 1999-01-11 2000-07-13 Deutsches Krebsforsch Selektion von monoklonalen Antikörpern
US7138496B2 (en) 2002-02-08 2006-11-21 Genetastix Corporation Human monoclonal antibodies against human CXCR4
US7105348B2 (en) 2000-10-31 2006-09-12 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
DE60211329T2 (de) 2001-01-16 2007-05-24 Regeneron Pharmaceuticals, Inc. Isolierung von sezernierte proteine exprimierenden zellen
US20140072979A1 (en) 2001-01-16 2014-03-13 Regeneron Pharmaceuticals, Inc. Isolating cells expressing secreted proteins
US20140072980A1 (en) 2001-01-16 2014-03-13 Regeneron Pharmaceuticals, Inc. Isolating cells expressing secreted proteins
US20090137416A1 (en) 2001-01-16 2009-05-28 Regeneron Pharmaceuticals, Inc. Isolating Cells Expressing Secreted Proteins
WO2002069232A2 (en) 2001-02-19 2002-09-06 Merck Patent Gmbh Method for identification of t-cell epitopes and use for preparing molecules with reeduced immunogenicity
PL208712B1 (pl) 2001-08-31 2011-05-31 Avidex Ltd Rozpuszczalny receptor komórek T (sTCR), rozpuszczalna αβ-postać receptora komórek T (sTCR), wielowartościowy kompleks receptora komórek T (TCR), sposób wykrywania kompleksów MHC-peptyd, środek farmaceutyczny zawierający sTCR i/lub wielowartościowy kompleks TCR, cząsteczka kwasu nukleinowego, wektor, komórka gospodarz, sposób otrzymywania całości lub części łańcucha α TCR albo całości lub części łańcucha β TCR, sposób otrzymywania rozpuszczalnego receptora komórek T (sTCR), sposób otrzymywania rozpuszczalnej αβ-postaci receptora komórek T (sTCR) oraz sposób wykrywania kompleksów MHC-peptyd
ATE434040T1 (de) 2001-10-01 2009-07-15 Dyax Corp Mehrkettige eukaryontische display-vektoren und deren verwendungen
BRPI0611445A2 (pt) * 2005-05-09 2010-09-08 Glycart Biotechnology Ag molécula de ligação a antìgeno glicomanipulada, polinucleotìdeo, polipeptìdeo, vetor, célula hospedeira, método para produção, uso e composição farmacêutica
ES2527297T3 (es) * 2007-07-31 2015-01-22 Regeneron Pharmaceuticals, Inc. Anticuerpos humanos para CD20 humano y método para utilizar los mismos
US20090162359A1 (en) * 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
KR101747103B1 (ko) * 2009-06-26 2017-06-14 리제너론 파마슈티칼스 인코포레이티드 천연 면역글로불린 포맷을 가지는 용이하게 분리된 이중특이성 항체
BR112012017124C1 (pt) * 2009-12-25 2021-08-31 Chugai Pharmaceutical Co Ltd Método para produzir e para purificar um multímero polipeptídico
TW202423993A (zh) 2012-11-14 2024-06-16 美商再生元醫藥公司 重組細胞表面捕捉蛋白質

Also Published As

Publication number Publication date
AU2013344769A1 (en) 2015-05-21
AU2013344769B2 (en) 2018-11-15
DK2949667T3 (da) 2020-07-20
JP2015536345A (ja) 2015-12-21
TW201439121A (zh) 2014-10-16
IL238176A0 (en) 2015-05-31
EP2949667A3 (en) 2016-02-24
EA202190266A1 (ru) 2021-07-30
JP6856593B2 (ja) 2021-04-07
SG11201502629TA (en) 2015-05-28
AU2021202371A1 (en) 2021-05-13
TW201920289A (zh) 2019-06-01
BR112015010758A2 (pt) 2017-08-22
ES2805526T3 (es) 2021-02-12
CN109485728A (zh) 2019-03-19
JP6668074B2 (ja) 2020-03-18
HK1214612A1 (zh) 2016-07-29
CN104797598A (zh) 2015-07-22
TWI745610B (zh) 2021-11-11
EP2920208A2 (en) 2015-09-23
AR093491A1 (es) 2015-06-10
SG10201804124XA (en) 2018-07-30
TWI675044B (zh) 2019-10-21
JP2019023199A (ja) 2019-02-14
ES2817373T3 (es) 2021-04-07
EA037546B1 (ru) 2021-04-12
KR20210014766A (ko) 2021-02-09
WO2014078475A3 (en) 2014-11-20
US20140134719A1 (en) 2014-05-15
IL275270A (en) 2020-07-30
CA3204343A1 (en) 2014-05-22
KR102563030B1 (ko) 2023-08-03
PL2920208T3 (pl) 2021-02-08
KR20150084028A (ko) 2015-07-21
EP2949667A2 (en) 2015-12-02
US9758592B2 (en) 2017-09-12
ZA201502538B (en) 2017-09-27
IL285015A (en) 2021-08-31
AU2018253474A1 (en) 2018-11-15
DK2920208T3 (da) 2020-09-14
IL275270B (en) 2021-08-31
CN104797598B (zh) 2018-12-11
MX2019015887A (es) 2020-02-07
EP2949667B1 (en) 2020-05-13
US20210009714A1 (en) 2021-01-14
IL285015B1 (en) 2024-08-01
CA2889541A1 (en) 2014-05-22
EP2920208B1 (en) 2020-08-19
HK1211036A1 (en) 2016-05-13
KR20220025902A (ko) 2022-03-03
AU2021202371B2 (en) 2024-10-03
TW202423993A (zh) 2024-06-16
AR121002A2 (es) 2022-04-06
CA2889541C (en) 2023-07-04
TW202206465A (zh) 2022-02-16
EA201590928A1 (ru) 2015-09-30
WO2014078475A2 (en) 2014-05-22
IL238176B (en) 2020-06-30
US20180118852A1 (en) 2018-05-03
PL2949667T3 (pl) 2020-11-16
MX2015006112A (es) 2015-08-06
AU2018253474B2 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
AU2021202371B2 (en) Recombinant cell surface capture proteins
US20230340085A1 (en) Lentiviral vector expressing membrane-anchored or secreted antibody
KR20090078353A (ko) Lingo 결합 분자 및 그의 제약학적 용도
KR20140107295A (ko) 진핵 세포용 전장 항체 표시 시스템 및 그것의 용도
CN113227144A (zh) 用于生成car-t细胞的两类基因载体及其用途
CN110511286B (zh) 一种rna碱基编辑分子
SG175682A1 (en) Selection of human monoclonal antibodies by mammalian cell display
CN113896787A (zh) 表达载体元件组合、新的生产用细胞产生方法及其在重组产生多肽中的用途
JP2024063172A (ja) Sirt-1遺伝子ノックアウトを有する哺乳類細胞株
JP2021516961A (ja) 遺伝子組換え単鎖免疫グロブリン
US20170241887A1 (en) Isolating Cells Expressing Secreted Proteins
US20140072980A1 (en) Isolating cells expressing secreted proteins
TW202223092A (zh) 具有基因剔除的哺乳動物細胞株
JP2024016181A (ja) 所定の構成の複数の発現カセットの標的指向性組込みによって多価二重特異性抗体発現細胞を作製するための方法
KR20220010024A (ko) Cre mrna를 이용한 표적화된 통합에 의한 단백질 발현 세포의 산출을 위한 방법
WO2000015260A1 (en) Anti-ige gene therapy
TW202241943A (zh) Tau特異性抗體基因療法組合物、方法及其用途
CN116568814A (zh) 载体化抗体和其用途
TW202219067A (zh) 用於表現抗體多聚體融合之方法
KR20220024637A (ko) 정의된 조직의 다수 발현 카세트들의 표적화 통합에 의한 3가 항체 발현 세포의 생성 방법
KR20220010019A (ko) 정의된 조직에서 다중 발현 카세트의 표적화된 통합에 의해 2가 이중특이성 항체 발현 세포를 생성하는 방법
KR20220024636A (ko) 정의된 조직의 다수 발현 카세트들의 표적화 통합에 의한 다가, 다중특이성 항체 발현 세포의 생성 방법
KR20210134932A (ko) 정의된 조직에서 다중 발현 카세트의 표적화된 통합에 의해 FcRn 발현 세포를 생성하는 방법
KR20230082623A (ko) 벡터화된 항체 및 그 용도

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal