KR20230078384A - 복합양극활물질, 이를 채용한 양극과 리튬전지 및 이의 제조방법 - Google Patents

복합양극활물질, 이를 채용한 양극과 리튬전지 및 이의 제조방법 Download PDF

Info

Publication number
KR20230078384A
KR20230078384A KR1020210166116A KR20210166116A KR20230078384A KR 20230078384 A KR20230078384 A KR 20230078384A KR 1020210166116 A KR1020210166116 A KR 1020210166116A KR 20210166116 A KR20210166116 A KR 20210166116A KR 20230078384 A KR20230078384 A KR 20230078384A
Authority
KR
South Korea
Prior art keywords
carbon
metal oxide
active material
cathode active
composite
Prior art date
Application number
KR1020210166116A
Other languages
English (en)
Inventor
손인혁
마상국
안드레이 카필로
김규성
심규은
조성님
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020210166116A priority Critical patent/KR20230078384A/ko
Priority to US17/993,714 priority patent/US20230170470A1/en
Priority to EP22209747.9A priority patent/EP4187635A1/en
Priority to CN202211503214.1A priority patent/CN116190589A/zh
Priority to JP2022189323A priority patent/JP2023079218A/ja
Publication of KR20230078384A publication Critical patent/KR20230078384A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

리튬전이금속산화물을 포함하는 코어; 상기 코어의 표면을 따라 배치되는 쉘(shell);을 포함하며, 상기 쉘이 화학식 MaOb (0<a≤3, 0<b<4, a가 1, 2, 또는 3 이면, b는 정수가 아님)로 표시되는 1종 이상의 제1 금속산화물; 제1 탄소계 재료; 및 제2 탄소계 재료를 포함하며, 상기 제1 금속산화물이 제1 탄소계 재료 매트릭스 내에 배치되며, 상기 M은 원소주기율표 2족 내지 13족, 제15족 및 16족 중에서 선택된 하나 이상의 금속이며, 상기 제2 탄소계 재료가 종횡비 10 이상의 섬유상 탄소를 포함하는, 복합양극활물질, 이를 포함하는 양극과 리튬전지 및 복합양극활물질 제조방법이 제공된다.

Description

복합양극활물질, 이를 채용한 양극과 리튬전지 및 이의 제조방법{Composite cathode active material, Cathode and Lithium battery containing composite cathode active material, and Preparation method of composite cathode active material}
복합양극활물질, 이를 채용한 양극과 리튬전지, 및 복합양극활물질 제조방법에 관한 것이다.
각종 기기의 소형화, 고성능화에 부합하기 위하여 리튬전지의 소형화, 경량화 외에 고에너지밀도화가 중요해지고 있다. 즉, 고용량의 리튬전지가 중요해지고 있다.
상기 용도에 부합하는 리튬 전지를 구현하기 위하여 고용량을 가지는 양극활물질이 검토되고 있다.
종래의 양극활물질은 부반응에 의하여 수명특성이 저하되고 열안정성도 부진하였다.
따라서, 양극활물질을 포함하면서 전지 성능의 열화를 방지할 수 있는 방법이 요구된다.
한 측면은 복합양극활물질의 부반응을 억제하고 전극반응의 가역성을 향상시켜 리튬전지 성능의 열화를 방지할 수 있는 새로운 복합양극활물질을 제공하는 것이다.
다른 한 측면은 상기 복합양극활물질을 포함하는 양극을 제공하는 것이다.
또 다른 한 측면은 상기 양극을 채용한 리튬전지를 제공하는 것이다.
또 다른 한 측면은 복합양극활물질의 제조방법을 제공하는 것이다.
한 측면에 따라
리튬전이금속산화물을 포함하는 코어;
상기 코어의 표면을 따라 배치되는 쉘(shell);을 포함하며,
상기 쉘이 화학식 MaOb (0<a≤3, 0<b<4, a가 1, 2, 또는 3 이면, b는 정수가 아님)로 표시되는 1종 이상의 제1 금속산화물; 제1 탄소계 재료; 및 제2 탄소계 재료를 포함하며,
상기 제1 금속산화물이 제1 탄소계 재료 매트릭스 내에 배치되며, 상기 M은 원소주기율표 2족 내지 13족, 제15족 및 16족 중에서 선택된 하나 이상의 금속이며,
상기 제2 탄소계 재료가 종횡비 10 이상의 섬유상 탄소를 포함하는, 복합양극활물질이 제공된다.
다른 한 측면에 따라
상기 복합양극활물질을 포함하는 양극이 제공된다.
또 다른 한 측면에 따라,
상기 양극을 포함하는 리튬전지가 제공된다.
또 다른 한 측면에 따라,
리튬전이금속산화물을 제공하는 단계;
복합체를 제공하는 단계;
제2 탄소계 재료를 제공하는 단계; 및
상기 리튬전이금속산화물과 복합체와 제2 탄소계 재료를 기계적으로 밀링하는 단계;를 포함하며,
상기 복합체가 화학식 MaOb (0<a≤3, 0<b<4, a가 1, 2, 또는 3 이면, b는 정수가 아님)로 표시되는 1종 이상의 제1 금속산화물; 및 제1 탄소계 재료를 포함하며,
상기 제1 금속산화물이 제1 탄소계 재료 매트릭스 내에 배치되며, 상기 M은 원소주기율표 2족 내지 13족, 제15족 및 16족 중에서 선택된 하나 이상의 금속이며,
상기 제2 탄소계 재료가 종횡비 10 이상의 섬유상 탄소를 포함하는, 복합양극활물질 제조방법이 제공된다.
한 측면에 따르면 복합양극활물질이, 제1 금속산화물과 제1 탄소계 재료와 제2 탄소계 재료를 포함하는 쉘을 구비함에 의하여 리튬전지의 고온 사이클 특성이 향상되며 내부 저항의 증가가 억제되며 고율 특성이 향상된다.
도 1은 일 구현예에 따른 복합양극활물질 입자의 단면 모식도이다.
도 2는 실시예 1에서 사용된 복합양극활물질 입자 표면의 주사전자현미경 이미지이다.
도 3은 비교예 1에서 준비된 bare NCA91, 제조예 1에서 제조된 복합체, 및 실시예 1에서 제조된 복합양극활물질에 대한 XPS 이미지이다.
도 4는 제조예 1에서 제조된 복합체 및 실시예 1에서 제조된 복합양극활물질에 대한 라만 스펙트럼 이미지이다.
도 5는 일구현예에 따른 리튬전지의 개략도이다.
도 6은 일구현예에 따른 리튬전지의 개략도이다.
도 7은 일구현예에 따른 리튬전지의 개략도이다.
<도면의 주요 부분에 대한 부호의 설명>
1 리튬전지 2 음극
3 양극 4 세퍼레이터
5 전지케이스 6 캡 어셈블리
7 전지구조체 8 전극 탭
10 코어 20 쉘
21 제1 금속산화물 22 제1 탄소계 재료
22 제2 탄소계 재료 100 복합양극활물질
이하에서 설명되는 본 창의적 사상(present inventive concept)은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고, 상세한 설명에 상세하게 설명한다. 그러나, 이는 본 창의적 사상을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 창의적 사상의 기술 범위에 포함되는 모든 변환, 균등물 또는 대체물을 포함하는 것으로 이해되어야 한다.
이하에서 사용되는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 창의적 사상을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 이하에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품, 성분, 재료 또는 이들을 조합한 것이 존재함을 나타내려는 것이지, 하나 또는 그 이상의 다른 특징들이나, 숫자, 단계, 동작, 구성 요소, 부품, 성분, 재료 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 이하에서 사용되는 "/"는 상황에 따라 "및"으로 해석될 수도 있고 "또는"으로 해석될 수도 있다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하거나 축소하여 나타내었다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다. 명세서 전체에서 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 또는 "위에" 있다고 할 때, 이는 다른 부분의 바로 위에 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 명세서 전체에서 제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 구성 요소들은 용어들에 의하여 한정되어서는 안 된다. 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
본 명세서에서 입자의 "입경"는 입자가 구형인 경우 평균 직경을 나타내며 입자가 비구형인 경우에는 평균 장축 길이를 나타낸다. 입자의 입경은 입자 크기 분석기(particle size analyzer(PSA))를 이용하여 측정할 수 있다. 입자의 "입경"은 평균 입경이다. 평균 입경은, 예를 들어 메디안 입자 직경(D50)이다. 메디안 입자 직경(D50)은 가장 작은 입자로부터 가장 큰 입자까지의 입자 크기의 순서로 입자가 축적되는 입자 크기의 누적 분포 곡선에서 가장 작은 입자 크기를 가지는 입자 측으로부터 계산하여 50%의 누적 값(cumulative value)에 해당하는 입자의 크기이다. 누적 값은 예를 들어 누적 부피일 수 있다. 메디안 입자 직경(D50)은 예를 들어 레이저 회절법으로 측정될 수 있다.
이하에서 예시적인 구현예들에 따른 복합양극활물질, 이를 포함하는 양극과 리튬전지 및 그 제조방법에 관하여 더욱 상세히 설명한다.
복합양극활물질은, 리튬전이금속산화물을 포함하는 코어; 상기 코어의 표면을 따라 배치되는 쉘(shell);을 포함하며, 상기 쉘이 화학식 MaOb (0<a≤3, 0<b<4, a가 1, 2, 또는 3 이면, b는 정수가 아님)로 표시되는 1종 이상의 제1 금속산화물; 제1 탄소계 재료; 및 제2 탄소계 재료를 포함하며, 상기 제1 금속산화물이 제1 탄소계 재료 매트릭스 내에 배치되며, 상기 M은 원소주기율표 2족 내지 13족, 제15족 및 16족 중에서 선택된 하나 이상의 금속이며, 상기 제2 탄소계 재료가 종횡비 10 이상의 섬유상 탄소를 포함한다.
이하에서 일구현예에 따른 복합양극활물질이 우수한 효과를 제공하는 이론적인 근거에 대하여 설명하나 이는 본 창의적 사상에 대한 이해를 돕기 위한 것으로서 어떠한 방식으로도 본 창의적 사상을 한정하려는 의도가 아니다.
도 1을 참조하면, 복합양극활물질(100)은 코어(10) 및 코어(10)의 표면을 따라 연속적으로 또는 불연속적으로 배치되는 쉘(20)을 포함한다. 쉘(20)은 코어(10)의 전부 또는 일부를 피복할 수 있다. 코어(10)는 리튬전이금속산화물을 포함하며, 쉘(20)은 제1 금속산화물(21), 제1 탄소계 재료(22) 및 제2 탄소계 재료(23)를 포함한다. 제2 탄소계 재료(23)는 종횡비 10 이상의 섬유상 탄소를 포함한다. 복합양극활물질(100)의 제조 시에, 제1 탄소계 재료(22) 매트릭스에 배치된 복수의 제1 금속산화물(21)을 포함하는 복합체를 사용하여 리튬전이금속산화물 코어(10) 상에 쉘(20)이 배치될 수 있다. 따라서, 제1 탄소계 재료(22)의 응집을 방지하면서 코어(10) 상에 쉘(20)이 균일하게 배치될 수 있다. 코어(10) 상에 배치된 쉘(20)은 코어(10)와 전해액의 접촉을 효과적으로 차단할 수 있다. 쉘(20)이 코어(10)와 전해액의 접촉을 효과적으로 차단함에 의하여 코어(10)와 전해질의 접촉에 의한 부반응을 방지할 수 있다. 또한, 코어(10) 상에 쉘(20)이 배치됨에 의하여, 코어(10)와 전해액의 접촉에 의한 양이온 믹싱(cation mixing)이 억제될 수 있다. 코어(10)와 전해액의 접촉에 의한 양이온 믹싱(cation mixing)이 억제됨에 의하여 복합양극활물질(100) 내부 및/또는 표면에서 저항층의 생성이 억제될 수 있다. 또한, 코어(10) 상에 쉘(20)이 배치됨에 의하여, 리튬전이금속산화물 코어(10)로부터 전이금속 이온의 용출도 억제될 수 있다. 제1 탄소계 재료는 예를 들어 결정성 탄소계 재료일 수 있다. 제1 탄소계 재료는 예를 들어 탄소계 나노구조체일 수 있다. 제1 탄소계 재료는 예를 들어 탄소계 2차원 나노구조체일 수 있다. 제1 탄소계 재료는 일 예로, 그래핀일 수 있다. 이 경우, 그래핀 및/또는 이의 매트릭스를 포함하는 쉘(shell)은 유연성을 가지므로 충방전시 복합양극활물질의 부피 변화를 용이하게 수용함에 의하여 복합양극활물질 내부의 크랙(crack) 발생이 억제될 수 있다. 그래핀은 높은 전자전도성을 가지므로, 복합양극활물질과 전해액 사이의 계면 저항을 감소시킬 수 있다. 따라서, 그래핀을 포함하는 쉘(shell)이 도입됨에도 불구하고 리튬전지의 내부 저항이 유지되거나 감소될 수 있다. 이에 반해, 종래의 탄소계 재료는 쉽게 응집됨에 의하여 리튬전이금속산화물 코어 상에 균일한 코팅이 어렵다.
쉘은 종횡비 10 이상의 섬유상 탄소인 제2 탄소계 재료를 포함한다. 따라서, 복합양극활물질의 전도성 경로(conducting path)가 더욱 길어질 수 있다. 제2 탄소계 재료는 복수의 복합양극활물질 사이에 3차원 전도성 네크워크를 형성하여 복합양극활물질을 포함하는 양극의 내부 저항을 감소시킬 수 있다. 복합양극활물질 상에 섬유상 탄소가 고정됨에 의하여, 복수의 복합양극활물질 사이에 균일하고 안정한 3차원 전도성 네트워크를 형성할 수 있다. 따라서, 복합양극활물질이 제2 탄소계 재료를 포함함에 의하여 복합양극활물질을 구비한 리튬전지의 고율 특성이 향상될 수 있다. 이에 반해, 리튬전이금속산화물 코어와 제2 탄소계 재료인 섬유상 탄소의 단순 혼합물은 섬유상 탄소의 응집 등에 의하여 복수의 리튬전이금속산화물 입자 사이에 균일한 3차원 전도성 네크워크를 형성하기 어렵다. 도 1 및 도 2에 보여지는 바와 같이, 제2 탄소계 재료(23)는 복합양극활물질(100) 표면에 배치될 수 있다. 또한, 도 1에 보여지는 바와 같이, 제2 탄소계 재료(23)는 복합양극활물질(100) 표면으로부터 돌출될 수 있다. 따라서, 제2 탄소계 재료(23)가 복수의 복합양극활물질(100) 사이에 전도성 네트워크를 효과적으로 제공할 수 있다. 제2 탄소계 재료(23)가 제1 탄소계 재료(22) 매트릭스 내에 배치됨에 의하여 코어(10) 상에 용이하게 코팅될 수 있다. 제1 탄소계 재료(22) 매트릭스가 코어와 제2 탄소계 재료(23)를 결착하는 결착제로 작용할 수 있다. 따라서, 제1 탄소계 재료(22) 매트릭스가 없는 경우, 제2 탄소계 재료(23)가 코어(10) 상에 용이하게 부착되기 어렵거나 제2 탄소계 재료(23)가 양극용 슬러리 제조 과정에서 코어(10)로부터 쉽게 탈리될 수 있다. 리튬전이금속산화물 코어(20)와 제2 탄소계 재료(23)의 결착을 위하여 바인더를 추가하는 경우, 코어(10)가 절연성 바인더에 의하여 피복됨에 의하여 복합양극활물질(100)의 내부 저항이 증가할 수 있다. 바인더를 탄화시키기 위하여, 제2 탄소계 재료 및 바인더로 피복된 코어를 고온 열처리하는 경우, 열처리 과정에서 코어(10) 및 제2 탄소계 재료(23)가 열화될 수 있다.
제2 탄소계 재료의 종횡비는 10 이상 또는 20 이상일 수 있다. 제2 탄소계 재료의 종횡비는 예를 들어 10 내지 100,000, 10 내지 80,000, 10 내지 50,000, 10 내지 10,000, 10 내지 5000, 10 내지 1000, 10 내지 500, 10 내지 100, 또는 10 내지 50 일 수 있다. 제2 탄소계 재료의 종횡비는 예를 들어 제2 탄소계 재료의 중심을 지나는 장축의 길이, 즉 제2 탄소계 재료와 제2 탄소계 재료의 중심을 지나며, 상기 장축에 수직인 단축의 길이, 즉, 제2 탄소계 재료의 직경의 비율이다.
제2 탄소계 재료의 직경은 예를 들어 50 nm 이하, 30 nm 이하, 20 nm 이하 또는 10 nm 이하일 수 있다. 제2 탄소계 재료의 직경은 예를 들어 1 nm 내지 50 nm, 1 nm 내지 30 nm, 또는 1 nm 내지 10 nm 일 수 있다. 제2 탄소계 재료의 직경이 지나치게 크면, 부피당 절대 가닥수가 감소하게 되어 내부 저항 감소 효과가 미미할 수 있다. 제2 탄소계 재료의 직경이 지나치게 작으면, 균일한 분산이 어려울 수 있다.
제2 탄소계 재료의 길이는 예를 들어 1000 ㎛ 이하, 100 ㎛ 이하, 50 ㎛ 이하, 10 ㎛ 이하, 5 ㎛ 이하, 2 ㎛ 이하, 1 ㎛ 이하, 500 nm 이하, 또는 300 nm 이하일 수 있다. 제2 탄소계 재료의 길이는 예를 들어 100 nm 내지 1000 ㎛, 100 nm 내지 500 ㎛, 100 nm 내지 100 ㎛, 100 nm 내지 50 ㎛, 100 nm 내지 10 ㎛, 100 nm 내지 5 ㎛, 100 nm 내지 2 ㎛, 100 nm 내지 1 ㎛, 100 nm 내지 500 nm, 또는 100 nm 내지 300 nm 일 수 있다. 제2 탄소계 재료의 길이는 예를 들어 500 nm 내지 1000 ㎛, 500 nm 내지 500 ㎛, 500 nm 내지 100 ㎛, 500 nm 내지 50 ㎛, 500 nm 내지 10 ㎛, 500 nm 내지 5 ㎛, 또는 500 nm 내지 2 ㎛ 일 수 있다. 제2 탄소계 재료의 길이가 증가할수록 전극의 내부저항이 감소할 수 있다. 제2 탄소계 재료의 길이가 지나치게 짧으면 효과적인 도전 경로를 제공하기 어려울 수 있다.
제2 탄소계 재료는 예를 들어 탄소나노섬유, 탄소나노튜브 또는 이들의 조합을 포함할 수 있다.
탄소나노튜브는 예를 들어 탄소나노튜브 1차 구조체, 복수의 탄소나노튜브 1차 입자가 응집되어 형성되는 탄소나노튜브 2차 구조체, 또는 이들의 조합을 포함할 수 있다.
탄소나노튜브 1차 구조체는 하나의 탄소나노튜브 단위체이다. 탄소나노튜브 단위체는 흑연면(graphite sheet)이 나노 크기 직경의 실린더 형태를 가지며, sp2 결합 구조를 갖는다. 흑연면이 휘어지는 각도 및 구조에 따라서 도체의 특성 또는 반도체의 특성을 나타낼 수 있다. 탄소나노튜브 단위체는 벽을 이루고 있는 결합 수에 따라 단일벽 탄소나노튜브(SWCNT, single-walled carbon nanotube), 이중벽 탄소나노튜브(DWCNT, double-walled carbon nanotube) 및 다중벽 탄소나노튜브(MWCNT, multi-walled carbon nanotube) 등으로 분류될 수 있다. 탄소나노튜브 단위체의 벽 두께가 얇을수록 저항이 낮아진다.
탄소나노튜브 1차 구조체는 예를 들어 단일벽 탄소나노튜브(SWCNT, single-walled carbon nanotube), 이중벽 탄소나노튜브(DWCNT, double-walled carbon nanotube) 및 다중벽 탄소나노튜브(MWCNT, multi-walled carbon nanotube), 또는 이들의 조합을 포함할 수 있다. 탄소나노튜브 1차 구조체의 직경은 예를 들어 1 nm 이상 또는 2 nm 이상일 수 있다. 탄소나노튜브 1차 구조체의 직경은 예를 들어 20 nm 이하 또는 10 nm 이하일 수 있다. 탄소나노튜브 1차 구조체의 직경은 예를 들어 1 nm 내지 20 nm, 1 nm 내지 15 nm, 또는 1 nm 내지 10 nm 일 수 있다. 탄소나노튜브 1차 구조체의 길이는 예를 들어, 100 nm 이상 또는 200 nm 이상일 수 있다. 탄소나노튜브 1차 구조체의 길이는 예를 들어, 2 ㎛ 이하, 1 ㎛ 이하, 500 nm 이하, 또는 300 nm 이하일 수 있다. 탄소나노튜브 1차 구조체의 길이는 예를 들어 100 nm 내지 2 ㎛, 100 nm 내지 1 ㎛, 100 nm 내지 500 nm, 100 nm 내지 400 nm, 100 nm 내지 300 nm, 또는 200 nm 내지 300 nm 일 수 있다. 탄소나노튜브 1차 구조체의 직경 및 길이는 주사전자현미경(SEM) 또는 투과전자현미경(TEM) 이미지로부터 측정될 수 있다. 다르게는, 탄소나노튜브 1차 구조체의 직경 및/또는 길이는 레이저 회절법으로 측정될 수 있다.
탄소나노튜브 2차 구조체는 탄소나노튜브 1차 구조체가 전체적으로 또는 부분적으로 번들형 또는 다발형을 이루도록 집합되어 형성된 구조체이다. 탄소나노튜브 2차 구조체는 예를 들어 번들형 탄소나노튜브(bundle-type carbon nanotube), 다발형 탄소나노튜브(rope-type carbon nanotube) 또는 이들의 조합을 포함할 수 있다. 탄소나노튜브 2차 구조체의 직경은 예를 들어, 2 nm 이상 또는 3 nm 이상일 수 있다. 탄소나노튜브 2차 구조체의 직경은 예를 들어, 50 nm 이하, 30 nm 이하, 20 nm 이하 또는 10 nm 이하일 수 있다. 탄소나노튜브 2차 구조체의 직경은 예를 들어 2 nm 내지 50 nm, 2 nm 내지 30 nm, 또는 2 nm 내지 20 nm 일 수 있다. 탄소나노튜브 2차 구조체의 길이는 예를 들어 500 nm 이상, 700 nm 이상, 1 ㎛ 이상 또는 10 ㎛ 이상일 수 있다. 탄소나노튜브 2차 구조체의 길이는 예를 들어 1000 ㎛ 이하, 500 ㎛ 이하, 또는 100 ㎛ 이하일 수 있다. 탄소나노튜브 2차 구조체의 길이는 예를 들어 500 nm 내지 1000 ㎛, 500 nm 내지 500 ㎛, 500 nm 내지 200 ㎛, 500 nm 내지 100 ㎛, 또는 500 nm 내지 50 ㎛ 일 수 있다. 탄소나노튜브 2차 구조체의 직경 및 길이는 주사전자현미경(SEM) 이미지 또는 광학현미경으로부터 측정될 수 있다. 다르게는, 탄소나노튜브 2차 구조체의 직경 및/또는 길이는 레이저 회절법으로 측정될 수 있다.
탄소나노튜브 2차 구조체는 예를 들어 용매 등에 분산시켜 탄소나노튜브 1차 구조체로 전환시킨 후 복합양극활물질 제조에 사용할 수 있다.
제2 탄소계 재료의 함량은 예를 들어 제1 탄소계 재료와 상기 제2 탄소계 재료의 전체 중량에 대하여 0.1 wt% 내지 50 wt%, 1 wt% 내지 40 wt%, 또는 5 wt% 내지 30 wt% 일 수 있다. 복합양극활물질이 이러한 범위의 제1 탄소계 재료 및 제2 탄소계 재료를 포함함에 의하여 복합양극활물질 내에서 전도성 경로(conduction path)가 보다 효과적으로 확보되어 복합양극활물질의 내부 저항이 더욱 감소할 수 있다. 결과적으로, 복합양극활물질을 포함하는 리튬전지의 사이클 특성이 더욱 향상될 수 있다. 제2 탄소계 재료의 함량은 예를 들어 복합양극활물질 전체 중량의 0.001 wt% 내지 5 wt%, 0.01 wt% 내지 3 wt%, 0.01 wt% 내지 1 wt%, 0.01 wt% 내지 0.5 wt% 또는 0.01 wt% 내지 0.1 wt% 일 수 있다. 복합양극활물질이 이러한 범위의 제2 탄소계 재료를 포함함에 의하여 복합양극활물질 내에서 전도성 경로(conduction path)가 확보되어 복합양극활물질의 내부 저항이 더욱 감소할 수 있다. 결과적으로, 복합양극활물질을 포함하는 리튬전지의 사이클 특성이 더욱 향상될 수 있다.
쉘은 또한 제1 금속산화물 및 제1 탄소계 재료를 포함한다. 제1 탄소계 재료는 예를 들어 그래핀 매트릭스에서 유래하므로, 흑연계 재료에서 유래한 종래의 탄소계 재료에 비하여 상대적으로 밀도가 낮으며, 기공율이 높다. 제1 탄소계 재료의 d002 면간 거리(interplanar distance)는 예를 들어 3.38 Å 이상, 3.40 Å 이상, 3.45 Å 이상, 3.50 Å 이상, 3.60 Å 이상, 3.80 Å 이상, 또는 4.00 Å 이상일 수 있다. 쉘이 포함하는 제1 탄소계 재료의 d002 면간 거리(interplanar distance)는 예를 들어 3.38 내지 4.0 Å, 3.38 내지 3.8 Å, 3.38 내지 3.6 Å, 3.38 내지 3.5 Å, 또는 3.38 내지 3.45 Å일 수 있다. 이에 반해, 흑연계 재료에서 유래한 종래의 탄소계 재료의 d002 면간 거리는 예를 들어 3.38 Å 이하, 또는 3.35 내지 3.38 Å 일 수 있다. 제1 금속산화물은 내전압성을 가지므로 고전압에서의 충방전 시에 코어가 포함하는 리튬전이금속산화물의 열화를 방지할 수 있다. 쉘은 예를 들어 1종의 제1 금속산화물 또는 2종 이상의 서로 다른 제1 금속산화물을 포함할 수 있다. 결과적으로, 상술한 복합양극활물질을 포함하는 리튬전지의 고온 사이클 특성이 향상된다. 쉘의 함량은 예를 들어 상기 복합양극활물질 전체 중량의 0.1 wt% 내지 5 wt%, 0.1 wt% 내지 4 wt%, 0.1 wt% 내지 3 wt%, 0.1 wt% 내지 2.5 wt%, 0.1 wt% 내지 2 wt%, 또는 0.1 wt% 내지 1.5 wt% 일 수 있다. 제1금속산화물의 함량은 예를 들어 복합양극활물질 전체 중량의 0.06 wt% 내지 3 wt%, 0.06 wt% 내지 2.4 wt%, 0.06 wt% 내지 1.8 wt%, 0.06 wt% 내지 1.5 wt%, 0.06 wt% 내지 1.2 wt%, 또는 0.06 wt% 내지 0.9 wt% 일 수 있다. 복합양극활물질이 이러한 함량 범위의 쉘 및 제1 금속산화물을 각각 포함함에 의하여 리튬전지의 사이클 특성이 더욱 향상된다.
제1 금속산화물은 제1 금속을 포함하며, 제1 금속은 예를 들어, Al, Nb, Mg, Sc, Ti, Zr, V, W, Mn, Fe, Co, Pd, Cu, Ag, Zn, Sb, 및 Se 중에서 선택된 하나 이상일 수 있다. 제1 금속산화물은 예를 들어 Al2Oz(0<z<3), NbOx(0<x<2.5), MgOx(0<x<1), Sc2Oz(0<z<3), TiOy(0<y<2), ZrOy(0<y<2), V2Oz(0<z<3), WOy(0<y<2), MnOy(0<y<2), Fe2Oz(0<z<3), Co3Ow(0<w<4), PdOx(0<x<1), CuOx(0<x<1), AgOx(0<x<1), ZnOx(0<x<1), Sb2Oz(0<z<3), 및 SeOy(0<y<2) 중에서 선택된 하나 이상일 수 있다. 제1 탄소계 재료 매트릭스 내에 이러한 제1 금속산화물이 배치됨에 의하여 코어 상에 배치된 쉘의 균일성이 향상되고, 복합양극활물질의 내전압성이 더욱 향상된다. 예를 들어, 쉘은 제1 금속산화물로서 Al2Ox(0<x<3)를 포함한다.
쉘은 화학식 MaOc (0<a≤3, 0<c≤4, a가 1, 2, 또는 3이면, c는 정수임)로 표시되는 1종 이상의 제2 금속산화물을 더 포함할 수 있다. 상기 M은 원소주기율표 2족 내지 13족, 제15족 및 16족 중에서 선택된 하나 이상의 금속이다. 예를 들어, 제2 금속산화물은 상기 제1 금속산화물과 동일한 금속을 포함하며, 제2 금속산화물의 a 와 c의 비율인 c/a가 상기 제1 금속산화물의 a 와 b의 비율인 b/a에 비하여 더 큰 값을 가진다. 예를 들어, c/a >b/a 이다. 제2 금속산화물은 예를 들어 Al2O3, NbO, NbO2, Nb2O5, MgO, Sc2O3, TiO2, ZrO2, V2O3, WO2, MnO2, Fe2O3, Co3O4, PdO, CuO, AgO, ZnO, Sb2O3, 및 SeO2 중에서 선택된다. 제1 금속산화물은 예를 들어 제2 금속산화물의 환원 생성물이다. 제2 금속산화물의 일부 또는 전부가 환원됨에 의하여 제1 금속산화물이 얻어진다. 따라서, 제1 금속산화물은 제2 금속산화물에 비하여 산소 함량이 낮고, 금속의 산화수도 낮다. 쉘은 예를 들어 제1 금속산화물인 Al2Ox (0<x<3) 및 제2 금속산화물인 Al2O3를 포함할 수 있다.
쉘은 예를 들어 제1 탄소계 재료를 포함하고 코어는 예를 들어 리튬전이금속산화물을 포함할 수 있다. 그리고, 제1 탄소계 재료와 리튬전이금속산화물의 전이금속은 예를 들어 화학 결합을 통하여 화학적으로 결합될(bound) 수 있다. 제1 탄소계 재료의 탄소 원자(C)와 상기 리튬전이금속산화물의 전이금속(Me)은 예를 들어 산소 원자를 매개로 C-O-Me 결합(예를 들어, C-O-Ni 결합, 또는 C-O-Co 결합)을 통하여 화학적으로 결합된다(bound). 쉘에 배치된 제1 탄소계 재료와 코어에 배치된 리튬전이금속산화물이 화학 결합을 통하여 화학적으로 결합됨에 의하여 코어와 쉘이 복합화된다. 따라서, 복합양극활물질은 제1 탄소계 재료와 리튬전이금속산화물의 단순한 물리적 혼합물과 구별된다. 또한, 제1 금속산화물과 제1 탄소계 재료도 화학 결합을 통하여 화학적으로 결합될(bound) 수 있다. 여기서, 화학결합은 예를 들어 공유결합 또는 이온결합이다.
쉘은 예를 들어 제1 금속산화물 및 제2 금속산화물 중에서 선택된 하나 이상을 포함하며, 제1 금속산화물 및 제2 금속산화물 중에서 선택된 하나 이상의 입경은 예를 들어 1 nm 내지 100 nm, 1 nm 내지 50 nm, 1 nm 내지 30 nm, 5 nm 내지 30 nm, 또는 10 nm 내지 30 nm 일 수 있다. 제1 금속산화물 및/또는 제2 금속산화물이 이러한 나노 범위의 입경을 가짐에 의하여 제1 탄소계 재료 매트릭스 내에 보다 균일하게 분포될 수 있다. 제1 금속산화물 및 제2 금속산화물 중 하나 이상의 입경이 지나치게 증가하면 쉘의 두께가 증가함에 의하여 복합음극활물질의 내부 저항이 증가할 수 있다. 제1 금속산화물 및 제2 금속산화물 중 하나 이상의 입경이 지나치게 감소하면 균일한 분산이 어려울 수 있다.
쉘은 제1 금속산화물 및/또는 제2 금속산화물을 포함하고, 제1 탄소계 재료를 포함할 수 있다. 제1 탄소계 재료는 제1 금속산화물 및/또는 제2 금속산화물 표면으로부터 돌출하는 방향으로 배치될 수 있다. 제1 탄소계 재료는 제1 금속산화물 및/또는 제2 금속산화물의 표면으로부터 직성장 함에 의하여 제1 금속산화물 및/또는 제2 금속산화물 표면으로부터 돌출하는 방향으로 배치될 수 있다. 제1 금속산화물 및/또는 제2 금속산화물 표면으로부터 돌출하는 방향으로 배치되는 제1 탄소계 재료는 예를 들어 탄소계 2차원 나노구조체, 탄소계 플레이크(flake) 또는 그래핀이다.
쉘의 두께는 예를 들어 1 nm 내지 5 ㎛, 1 nm 내지 1 ㎛, 1 nm 내지 500 nm, 1 nm 내지 200 nm, 1 nm 내지 100 nm, 1 nm 내지 90 nm, 1 nm 내지 80 nm, 1 nm 내지 70 nm, 1 nm 내지 60 nm, 1 nm 내지 50 nm, 1 nm 내지 40 nm, 1 nm 내지 30 nm, 또는 1 nm 내지 20 nm이다. 쉘이 이러한 범위의 두께를 가짐에 의하여 복합양극활물질을 포함하는 양극의 전자전도도가 더욱 향상될 수 있다.
복합양극활물질은 예를 들어 코어 상에 도핑되는 제3 금속 및/또는 상기 코어 상에 코팅되는 제3 금속산화물을 더 포함할 수 있다. 그리고, 코어 상에 도핑된 제3 금속 및/또는 코어 상에 코팅된 제3 금속산화물 상에 쉘이 배치될 수 있다. 예를 들어, 리튬전이금속산화물 코어의 표면에 제3 금속이 도핑되거나 리튬전이금속산화물의 표면 상에 제3 금속산화물이 코팅된 후, 상기 제3 금속 및/또는 제3 금속산화물 상에 쉘에 배치될 수 있다. 예를 들어, 복합양극활물질은 코어; 코어 상에 배치되는 중간층; 및 중간층 상에 배치되는 쉘을 포함하며, 중간층이 제3 금속 또는 제3 금속산화물을 포함할 수 있다. 제3 금속은 Al, Zr, W, 및 Co 중에서 선택되는 하나 이상의 금속이며, 제3 금속산화물은 Al2O3, Li2O-ZrO2, WO2, CoO, Co2O3, Co3O4 또는 이들의 조합일 수 있다.
코어의 표면을 따라 배치되는 쉘은, 예를 들어 제1 금속산화물, 및 제1 탄소계 재료 예를 들어 그래핀을 포함하는 복합체 및/또는 상기 복합체의 밀링(milling) 결과물 중에서 선택된 하나 이상을 포함할 수 있다. 제1 금속산화물은 탄소계 재료의 매트릭스 예를 들어 그래핀 매트릭스 내에 배치된다. 쉘은, 예를 들어, 제1 금속산화물, 및 제1 탄소계 재료 예를 들어 그래핀을 포함하는 복합체로부터 제조될 수 있다. 복합체는 제1 금속산화물 외에 제2 금속산화물을 더 포함할 수 있다. 복합체는 예를 들어 2종 이상의 제1 금속산화물을 포함할 수 있다. 복합체는 예를 들어 2종 이상의 제1 금속산화물 및 2종 이상의 제2 금속산화물을 포함할 수 있다.
복합체 및 이의 밀링 결과물 중 하나 이상의 함량은 예를 들어 복합양극활물질 전체 중량의 5 wt% 이하, 3 wt% 이하, 2 wt% 이하, 2.5 wt% 이하, 또는 1.5 wt% 이하일 수 있다. 복합체 및 이의 밀링 결과물 중 하나 이상의 함량은 복합양극활물질 전체 중량의 0.01 wt% 내지 5 wt%, 0.01 wt% 내지 4 wt%, 0.01 wt% 내지 3 wt%, 0.01 wt% 내지 2.5 wt%, 0.01 wt% 내지 2 wt%, 또는 0.01 wt% 내지 1.5 wt% 일 수 있다. 복합양극활물질이 이러한 범위의 복합체 및 이의 밀링 결과물 중 하나 이상을 포함함에 의하여 복합양극활물질을 포함하는 리튬전지의 사이클 특성이 더욱 향상된다.
복합체는 제1 금속산화물 및 제2 금속산화물 중에서 선택된 하나 이상을 포함할 수 있다. 제1 금속산화물 및 제2 금속산화물 중에서 선택된 하나 이상의 입경은 1 nm 내지 100 nm, 1 nm 내지 50 nm, 1 nm 내지 30 nm, 5 nm 내지 30 nm, 또는 10 nm 내지 30 nm 일 수 있다. 제1 금속산화물 및/또는 제2 금속산화물이 이러한 나노 범위의 입경을 가짐에 의하여 복합체의 제1 탄소계 재료 매트릭스 내에 보다 균일하게 분포될 수 있다. 따라서, 이러한 복합체가 응집 없이 코어 상에 균일하게 코팅되어 쉘을 형성할 수 있다. 또한, 제1 금속산화물 및/또는 제2 금속산화물이 이러한 범위의 입경을 가짐에 의하여 코어 상에 보다 균일하게 배치될 수 있다. 따라서, 코어 상에 제1 금속산화물 및/또는 제2 금속산화물이 균일하게 배치됨에 의하여 내전압 특성을 보다 효과적으로 발휘할 수 있다. 제1 금속산화물 및/또는 제2 금속산화물의 입경은 예를 들어 레이저 회절 방식이나 동적 광산란 방식의 측정 장치를 사용하여 측정한다. 입경은 예를 들어 레이저 산란 입도 분포계(예를 들어, 호리바사 LA-920)를 이용하여 측정하고, 부피 환산에서의 소입자 측에서부터 50% 누적되었을 때의 메디안 입자경(D50)의 값이다. 제1 금속산화물 및/또는 제2 금속산화물 중에서 선택된 하나 이상의 균일도 편차가 3% 이하, 2% 이하, 또는 1% 이하일 수 있다. 균일도는 예를 들어 XPS에 의하여 구할 수 있다. 따라서, 제1 금속산화물 및 제2 금속산화물 중에서 선택된 하나 이상이 3% 이하, 2% 이하, 또는 1% 이하의 편차를 가지며 균일하게 복합체 내에 분포될 수 있다.
복합체는 제1 탄소계 재료를 포함한다. 제1 탄소계 재료는 예를 들어 분지된 구조(branched structure)를 가지며, 제1 금속산화물 및 제2 금속산화물 중에서 선택된 하나 이상의 금속산화물이 제1 탄소계 재료의 분지된 구조 내에 분포될 수 있다. 제1 탄소계 재료의 분지된 구조는 예를 들어 서로 접촉하는 복수의 제1 탄소계 재료 입자를 포함한다. 제1 탄소계 재료가 분지된 구조를 가짐에 의하여 다양한 전도성 경로를 제공할 수 있다. 제1 탄소계 재료는 예를 들어, 그래핀일 수 있다. 그래핀은 예를 들어 분지된 구조(branched structure)를 가지며, 제1 금속산화물 및 제2 금속산화물 중에서 선택된 하나 이상의 금속산화물이 그래핀의 분지된 구조 내에 분포될 수 있다. 그래핀의 분지된 구조는 예를 들어 서로 접촉하는 복수의 그래핀 입자를 포함한다. 그래핀이 분지된 구조를 가짐에 의하여 다양한 전도성 경로를 제공할 수 있다.
제1 탄소계 재료는 예를 들어 구형 구조(spherical structure)를 가지며, 제1 금속산화물 및 제2 금속산화물 중에서 선택된 하나 이상의 금속산화물은 상기 구형 구조 내에 분포될 수 있다. 제1 탄소계 재료의 구형 구조의 크기가 50 nm 내지 300 nm 일 수 있다. 구형 구조를 가지는 제1 탄소계 재료가 복수 개일 수 있다. 제1 탄소계 재료가 구형 구조를 가짐에 의하여 복합체가 견고한 구조를 가질 수 있다. 제1 탄소계 재료는 예를 들어, 그래핀일 수 있다. 그래핀은 예를 들어 구형 구조(spherical structure)를 가지며, 제1 금속산화물 및 제2 금속산화물 중에서 선택된 하나 이상의 금속산화물은 상기 구형 구조 내에 분포될 수 있다. 그래핀의 구형 구조의 크기가 50 nm 내지 300 nm일 수 있다. 구형 구조를 가지는 그래핀이 복수 개일 수 있다. 그래핀이 구형 구조를 가짐에 의하여 복합체가 견고한 구조를 가질 수 있다.
제1 탄소계 재료는 예를 들어 복수의 구형 구조(spherical structure)가 연결된 나선형 구조(spiral structure)를 가지며, 제1 금속산화물 및 제2 금속산화물 중에서 선택된 하나 이상의 금속산화물은 상기 나선형 구조의 구형 구조 내에 분포될 수 있다. 제1 탄소계 재료의 나선형 구조의 크기가 500 nm 내지 100 ㎛일 수 있다. 제1 탄소계 재료가 나선형 구조를 가짐에 의하여 복합체가 견고한 구조를 가질 수 있다. 제1 탄소계 재료는 예를 들어, 그래핀일 수 있다. 그래핀은 예를 들어 복수의 구형 구조(spherical structure)가 연결된 나선형 구조(spiral structure)를 가지며, 제1 금속산화물 및 제2 금속산화물 중에서 선택된 하나 이상의 금속산화물은 상기 나선형 구조의 구형 구조 내에 분포될 수 있다. 그래핀의 나선형 구조의 크기가 500 nm 내지 100 ㎛일 수 있다. 그래핀이 나선형 구조를 가짐에 의하여 복합체가 견고한 구조를 가질 수 있다.
제1 탄소계 재료는 예를 들어 복수의 구형 구조(spherical structure)가 응집된 클러스터 구조(cluster structure)를 가지며, 제1 금속산화물 및 제2 금속산화물 중에서 선택된 하나 이상의 금속산화물은 상기 클러스터 구조의 구형 구조 내에 분포될 수 있다. 제1 탄소계 재료의 클러스터 구조의 크기가 0.5 mm 내지 10 cm일 수 있다. 제1 탄소계 재료가 클러스터 구조를 가짐에 의하여 복합체가 견고한 구조를 가질 수 있다. 제1 탄소계 재료는 예를 들어, 그래핀일 수 있다. 그래핀은 예를 들어 복수의 구형 구조(spherical structure)가 응집된 클러스터 구조(cluster structure)를 가지며, 제1 금속산화물 및 제2 금속산화물 중에서 선택된 하나 이상의 금속산화물은 상기 클러스터 구조의 구형 구조 내에 분포될 수 있다. 그래핀의 클러스터 구조의 크기가 0.5 mm 내지 10 cm일 수 있다. 그래핀이 클러스터 구조를 가짐에 의하여 복합체가 견고한 구조를 가질 수 있다.
복합체는 예를 들어 구겨진 다면체-볼 구조체(faceted-ball structure)이며, 구조체 내부 또는 표면에 제1 금속산화물 및 제2 금속산화물 중에서 선택된 하나 이상이 분포될 수 있다. 복합체가 이러한 다면체-볼 구조체임에 의하여 복합체가 코어의 불규칙적인 표면요철에 상에 용이하게 피복될 수 있다.
복합체는 예를 들어 평면 구조체(planar structure)이며, 구조체 내부 또는 표면에 제1 금속산화물 및 제2 금속산화물 중에서 선택된 하나 이상이 분포될 수 있다. 복합체가 이러한 2차원 평면 구조체임에 의하여 복합체가 코어의 불규칙적인 표면요철에 상에 용이하게 피복될 수 있다.
제1 탄소계 재료는 제1 금속산화물에서 10 nm 이하의 거리만큼 연장되고, 적어도 1 내지 20개의 탄소계 재료층을 포함할 수 있다. 예를 들어, 복수의 제1 탄소계 재료층이 적층됨에 의하여 제1 금속산화물 상에 12 nm 이하의 총 두께를 가지는 제1 탄소계 재료가 배치될 수 있다. 예를 들어, 제1 탄소계 재료의 총 두께는 0.6 nm 내지 12 nm일 수 있다. 제1 탄소계 재료는 예를 들어 그래핀일 수 있다. 그래핀은 제1 금속산화물에서 10 nm 이하의 거리만큼 연장되고, 적어도 1 내지 20 개의 그래핀층을 포함할 수 있다. 예를 들어, 복수의 그래핀층이 적층됨에 의하여 제1 금속산화물 상에 12 nm 이하의 총 두께를 가지는 그래핀이 배치될 수 있다. 예를 들어, 그래핀의 총 두께는 0.6 nm 내지 12 nm 일 수 있다.
복합양극활물질이 코어를 포함하며, 코어는 예를 들어 하기 화학식 1 내지 8로 표시되는 리튬전이금속산화물을 포함할 수 있다:
<화학식 1>
LiaNixCoyMzO2-bAb
상기 화학식 1에서,
1.0≤a≤1.2, 0≤b≤0.2, 0.8≤x<1, 0<y≤0.3, 0<z≤0.3, 및 x+y+z=1이고,
M은 망간(Mn), 니오븀(Nb), 바나듐(V), 마그네슘(Mg), 갈륨(Ga), 실리콘(Si), 텅스텐(W), 몰리브덴(Mo), 철(Fe), 크롬(Cr), 구리(Cu), 아연(Zn), 티타늄(Ti), 알루미늄(Al), 보론(B) 또는 이들의 조합이고, A는 F, S, Cl, Br 또는 이들의 조합이다.
<화학식 2>
LiNixCoyMnzO2
<화학식 3>
LiNixCoyAlzO2
상기 화학식 2 내지 3에서, 0.8≤x≤0.95, 0≤y≤0.2, 0<z≤0.2 및 x+y+z=1이다.
<화학식 4>
LiNixCoyMnzAlwO2
상기 화학식 4에서, 0.8≤x≤0.95, 0≤y≤0.2, 0<z≤0.2, 0<w≤0.2, 및 x+y+z+w=1이다.
화학식 1 내지 4의 리튬전이금속산화물은 전체 전이금속 몰수에 대하여 80 mol% 이상, 85 mol% 이상, 90 mol% 이상 또는 90 mol% 이상의 높은 니켈 함량을 가지면서도, 우수한 초기 용량, 상온 수명 특성 및 고온 수명 특성을 제공할 수 있다. 예를 들어, 화학식 1 내지 4의 리튬전이금속산화물에서 니켈 함량은 전체 전이금속 몰수에 대하여 80 mol% 내지 99 mol%, 85 mol% 내지 99 mol%, 또는 90 mol% 내지 97 mol% 일 수 있다.
<화학식 5>
LiaCoxMyO2-bAb
상기 화학식 5에서,
1.0≤a≤1.2, 0≤b≤0.2, 0.9≤x≤1, 0≤y≤0.1, 및 x+y=1이고,
M은 망간(Mn), 니오븀(Nb), 바나듐(V), 마그네슘(Mg), 갈륨(Ga), 실리콘(Si), 텅스텐(W), 몰리브덴(Mo), 철(Fe), 크롬(Cr), 구리(Cu), 아연(Zn), 티타늄(Ti), 알루미늄(Al), 보론(B) 또는 이들의 조합이고, A는 F, S, Cl, Br 또는 이들의 조합이다.
<화학식 6>
LiaNixMnyM'zO2-bAb
상기 화학식 6에서,
1.0≤a≤1.2, 0≤b≤0.2, 0<x≤0.3, 0.5≤y<1, 0<z≤0.3, 및 x+y+z=1이고,
M'는 코발트(Co), 니오븀(Nb), 바나듐(V), 마그네슘(Mg), 갈륨(Ga), 실리콘(Si), 텅스텐(W), 몰리브덴(Mo), 철(Fe), 크롬(Cr), 구리(Cu), 아연(Zn), 티타늄(Ti), 알루미늄(Al), 보론(B) 또는 이들의 조합이고, A는 F, S, Cl, Br 또는 이들의 조합이다.
<화학식 7>
LiaM1xM2yPO4-bXb
상기 화학식 7에서, 0.90≤a≤1.1, 0≤x≤0.9, 0≤y≤0.5, 0.9<x+y<1.1, 0≤b≤2 이며,
M1이 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 지르코늄(Zr) 또는 이들의 조합이며,
M2가 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 티탄(Ti), 아연(Zn), 보론(B), 니오븀(Nb), 갈륨(Ga), 인듐(In), 몰리브덴(Mo), 텅스텐(W), 알루미늄(Al), 실리콘(Si), 크롬(Cr), 바나듐(V), 스칸듐(Sc), 이트륨(Y) 또는 이들의 조합이며, X가 O, F, S, P 또는 이들의 조합이다.
<화학식 8>
LiaM3zPO4
상기 화학식 8에서, 0.90≤a≤1.1, 0.9≤z≤1.1 이며,
M3가 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 지르코늄(Zr) 또는 이들의 조합이다.
다른 일구현예에 따른 양극은 상술한 복합양극활물질을 포함한다. 양극이 상술한 복합양극활물질을 포함함에 의하여 향상된 에너지 밀도, 향상된 사이클 특성 및 증가된 전도도를 제공한다.
복합양극활물질의 쉘이 제2 탄소계 재료를 포함함에 의하여 복합양극활물질이 도전재의 역할을 추가적으로 수행할 수 있다. 따라서, 양극 내에 사용되는 도전재 함량이 감소될 수 있다. 도전재는 전지의 전도성 향상을 위하여 필요하나, 도전재의 함량이 증가할 경우 양극의 합제 밀도가 저하되므로, 결과적으로 리튬전지의 에너지 밀도가 저하된다. 이에 반해, 본원발명의 양극은 상술한 복합양극활물질을 사용함에 의하여 내부 저항의 증가 없이 도전재의 함량을 감소시킬 수 있다. 따라서, 양극의 합제 밀도가 증가하므로, 결과적으로 리튬전지의 에너지 밀도가 향상될 수 있다. 특히, 고용량의 리튬전지에서 도전재의 함량을 감소시키면서 복합양극활물질의 함량을 증가시킴에 의하여 리튬전지의 에너지 밀도 증가가 현저해 질 수 있다.
양극은 예를 들어 습식으로 제조될 수 있다. 양극은 예를 들어 하기의 예시적인 방법으로 제조되나, 반드시 이러한 방법으로 한정되지 않으며 요구되는 조건에 따라 조절된다.
먼저, 상술한 복합양극활물질, 도전재, 바인더 및 용매를 혼합하여 양극활물질 조성물을 준비한다. 준비된 양극활물질 조성물을 알루미늄 집전체상에 직접 코팅 및 건조하여 양극활물질층이 형성된 양극 극판을 제조한다. 다르게는, 상기 양극활물질 조성물을 별도의 지지체상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 상기 알루미늄 집전체 상에 라미네이션하여 양극활물질층이 형성된 양극 극판을 제조한다.
도전재로는 카본 블랙, 흑연 미립자, 천연 흑연, 인조 흑연, 아세틸렌 블랙, 케첸 블랙, 탄소섬유; 탄소나노튜브; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 또는 금속 튜브; 폴리페닐렌 유도체와 같은 전도성 고분자 등이 사용되으나 이들로 한정되지 않으며 당해 기술 분야에서 도전재로 사용하는 것이라면 모두 가능하다. 다르게는, 양극은 예를 들어 별도의 도전재를 포함하지 않을 수 있다.
바인더로는 비닐리덴 플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌(PTFE), 전술한 고분자들의 혼합물, 스티렌 부타디엔 고무계 폴리머 등이 사용되며, 용매로는 N-메틸피롤리돈(NMP), 아세톤, 물 등이 사용되나 반드시 이들로 한정되지 않으며 당해기술 분야에서 사용하는 것이라면 모두 가능하다.
양극활물질 조성물에 가소제 또는 기공 형성제를 더 부가하여 전극판 내부에 기공을 형성하는 것도 가능하다.
양극에 사용되는 복합양극활물질, 도전재, 바인더 및 용매의 함량은 리튬 전지에서 통상적으로 사용하는 수준이다. 리튬전지의 용도 및 구성에 따라 상기 도전재, 바인더 및 용매 중 하나 이상의 생략이 가능하다.
양극에 사용되는 바인더 함량은 양극활물질층 전체 중량의 0.1 wt% 내지 10 wt% 또는 0.1 wt% 내지 5 wt% 일 수 있다. 양극에 사용되는 복합양극활물질 함량은 양극활물질층 전체 중량의 80 wt% 내지 99 wt%, 90 wt% 내지 99 wt% 또는 95 wt% 내지 99 wt%일 수 있다. 양극에 사용되는 도전재 함량은 양극활물질층 전체 중량의 0.01 wt% 내지 10 wt%, 0.01 wt% 내지 5 wt%, 0.01 wt% 내지 3 wt%, 0.01 wt% 내지 1 wt%, 0.01 wt% 내지 0.5 wt%, 0.01 wt% 내지 0.1 wt% 일 수 있다. 도전재는 생략될 수 있다.
또한, 양극은 상술한 복합양극활물질 외에 다른 일반적인 양극활물질을 추가적으로 포함하는 것이 가능하다.
일반적인 양극활물질은 리튬함유 금속산화물로서, 당업계에서 통상적으로 사용되는 것이면 제한 없이 모두 사용될 수 있다. 예를 들어, 코발트, 망간, 니켈, 및 이들의 조합에서 선택되는 금속과 리튬과의 복합 산화물 중 1종 이상의 것을 사용할 수 있으며, 그 구체적인 예로는, LiaA1-bBbD2(상기 식에서, 0.90 ≤ a ≤ 1, 및 0 ≤ b ≤ 0.5이다); LiaE1-bBbO2-cDc(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiE2-bBbO4-cDc(상기 식에서, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiaNi1-b-cCobBcDα(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1-b-cCobBcO2-αFα(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cCobBcO2-αF2(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cMnbBcDα(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1-b-cMnbBcO2-αFα(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cMnbBcO2-αF2(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNibEcGdO2(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1이다.); LiaNibCocMndGeO2(상기 식에서, 0.90 ≤ a ≤ 1, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5, 0.001 ≤ e ≤ 0.1이다.); LiaNiGbO2(상기 식에서, 0.90 ≤ a ≤ 1, 0.001 ≤ b ≤ 0.1이다.); LiaCoGbO2(상기 식에서, 0.90 ≤ a ≤ 1, 0.001 ≤ b ≤ 0.1이다.); LiaMnGbO2(상기 식에서, 0.90 ≤ a ≤ 1, 0.001 ≤ b ≤ 0.1이다.); LiaMn2GbO4(상기 식에서, 0.90 ≤ a ≤ 1, 0.001 ≤ b ≤ 0.1이다.); QO2; QS2; LiQS2; V2O5; LiV2O5; LiIO2; LiNiVO4; Li(3-f)J2(PO4)3(0 ≤ f ≤ 2); Li(3-f)Fe2(PO4)3(0 ≤ f ≤ 2); LiFePO4의 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다.
상술한 화합물을 표현하는 화학식에서, A는 Ni, Co, Mn, 또는 이들의 조합이고; B는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 O, F, S, P, 또는 이들의 조합이고; E는 Co, Mn, 또는 이들의 조합이고; F는 F, S, P, 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 또는 이들의 조합이고; Q는 Ti, Mo, Mn, 또는 이들의 조합이고; I는 Cr, V, Fe, Sc, Y, 또는 이들의 조합이며; J는 V, Cr, Mn, Co, Ni, Cu, 또는 이들의 조합이다. 상술한 화합물 표면에 코팅층이 부가된 화합물의 사용도 가능하며, 상술한 화합물과 코팅층이 부가된 화합물의 혼합물의 사용도 가능하다. 상술한 화합물의 표면에 부가되는 코팅층은 예를 들어 코팅 원소의 옥사이드, 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트, 또는 코팅 원소의 하이드록시카보네이트의 코팅 원소 화합물을 포함한다. 이러한 코팅층을 이루는 화합물은 비정질 또는 결정질이다. 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물이다. 코팅층 형성 방법은 양극활물질의 물성에 악영향을 주지 않는 범위 내에서 선택된다. 코팅 방법은 예를 들어 스프레이 코팅, 침지법 등이다. 구체적인 코팅 방법은 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
다르게는, 양극은 건식으로 제조되는 건식 양극일 수 있다.
건식 음극은, 건조 복합양극활물질, 건조 도전재 및 건조 바인더를 포함하며, 상기 건조 복합양극활물질이, 리튬전이금속산화물을 포함하는 코어(core); 및 상기 코어의 표면을 따라 배치되는 쉘(shell);을 포함하며, 상기 쉘이 화학식 MaOb (0<a≤3, 0<b<4, a가 1, 2, 또는 3 이면, b는 정수가 아님)로 표시되는 1종 이상의 제1 금속산화물; 제1 탄소계 재료; 및 제2 탄소계 재료를 포함하며, 상기 제1 금속산화물이 제1 탄소계 재료 매트릭스 내에 배치되며, 상기 M은 원소주기율표 2족 내지 13족, 제15족 및 16족 중에서 선택된 하나 이상의 금속이며, 상기 제2 탄소계 재료가 종횡비 10 이상의 섬유상 탄소이다.
건식 양극의 제조방법은 예를 들어 건조 복합양극활물질, 건조 도전재 및 건조 바인더를 건식 혼합하여 건조 혼합물을 준비하는 단계; 양극집전체를 제공하는 단계; 양극집전체의 일면 상에 중간층을 배치하는 단계; 및 상기 중간층 상에 상기 건조 혼합물을 배치하고 압연하여 상기 양극집전체의 일면 상에 양극활물질층이 배치된 양극을 제조하는 단계;를 포함한다.
먼저, 복합음극활물질, 건조 도전재 및 건조 바인더를 건식 혼합하여 건조 혼합물을 준비한다. 건식 혼합은 공정 용매를 포함하지 않는 상태에서 혼합하는 것을 의미한다. 공정 용매는 예를 들어 전극 슬러리의 제조에 사용되는 용매이다. 공정 용매는 예를 들어, 물, NMP 등이나, 이들로 한정되지 않으며 전극 슬러리의 제조 시에 사용되는 공정 용매라면 한정되지 않는다. 건식 혼합은 교반기를 이용하여 예를 들어 25 내지 65℃의 온도에서 수행될 수 있다. 건식 혼합은 교반기를 사용하여 예를 들어 10 내지 10000 rpm, 또는 100 내지 10000 rpm의 회전 속도로 수행될 수 있다. 건식 혼합은 교반기를 사용하여 예를 들어 1 내지 200분, 또는 1 내지 150 분 동안 수행될 수 있다. 복합음극활물질은 건조 복합음극활물질이다.
건식 혼합은 예를 들어 1회 이상 수행될 수 있다. 먼저 복합양극활물질, 건조 도전재 및 건조 바인더를 1차 건식 혼합하여 제1 혼합물을 준비할 수 있다. 1차 건식 혼합은 예를 들어 25 내지 65 ℃의 온도에서, 2000 rpm 이하의 회전 속도로, 15분 이하의 시간 동안 수행될 수 있다. 1차 건식 혼합은 예를 들어 25 내지 65℃의 온도에서, 500 내지 2000 rpm의 회전 속도로, 5 내지 15분 동안 수행될 수 있다. 1차 건식 혼합에 의하여 복합양극활물질, 건조 도전재 및 건조 바인더가 균일하게 혼합될 수 있다. 이어서, 복합양극활물질, 건조 도전재 및 건조 바인더를 2차 건식 혼합하여 제2 혼합물을 준비할 수 있다. 2차 건식 혼합은 예를 들어 25 내지 65℃의 온도에서, 4000 rpm 이상의 회전 속도로, 10 분 이상의 시간 동안 수행될 수 있다. 2차 건식 혼합은 예를 들어 25 내지 65 ℃의 온도에서, 4000 내지 9000 rpm의 회전 속도로, 10 내지 60분 동안 수행될 수 있다. 2차 건식 혼합에 의하여 섬유화된(fibrillated) 건조 바인더를 포함하는 건조 혼합물이 얻어질 수 있다.
교반기는 예를 들어 니더(kneader)이다. 교반기는 예를 들어 챔버; 챔버 내부에 배치되어 회전하는 하나 이상의 회전축; 및 회전축에 회전 가능하도록 결합되고, 회전축의 길이 방향으로 배치되는 블레이드를 포함한다. 블레이드는 예를 들어 블레이드는 리본 블레이드, 시그마 블레이드, 제트(Z) 블레이드, 분산 블레이드, 및 스크류 블레이드 중에서 선택되는 하나 이상일 수 있다. 블레이드를 포함함에 의하여 용매 없이도 건조 복합양극활물질, 건조 도전재 및 건조 바입더를 효과적으로 혼합하여 도우(dough-like) 형태의 혼합물을 제조할 수 있다.
제조된 건조 혼합물은 압출 장치로 투입하여 시트 형태로 압출될 수 있다. 압출 시의 압력은 예를 들어 4 MPa 내지 100 MPa, 또는 10 MPa 내지 90 MPa 이다. 얻어진 시트 형태의 압출물이 양극활물질층용 시트일 수 있다.
건조 도전재로는 카본 블랙, 흑연 미립자, 천연 흑연, 인조 흑연, 아세틸렌 블랙, 케첸 블랙, 탄소섬유; 탄소나노튜브; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 또는 금속 튜브; 폴리페닐렌 유도체와 같은 전도성 고분자 등이 사용되나 이들로 한정되지 않으며 당해 기술 분야에서 도전재로 사용하는 것이라면 모두 가능하다. 도전재는 예를 들어 탄소계 도전재이다. 건조 도전재는 공정 용매와 접촉하지 않은 도전재이다.
건조 바인더로는 비닐리덴 플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌(PTFE), 전술한 고분자들의 혼합물, 스티렌 부타디엔 고무계 폴리머 등이 사용되나 반드시 이들로 한정되지 않으며 당해 기술 분야에서 사용하는 것이라면 모두 가능하다. 건조바인더는 예를 들어 폴리테트라플루오로에틸렌(PTFE)이다. 건조 바인더는 공정 용매와 접촉하지 않은 바인더이다.
건조혼합물에 가소제 또는 기공 형성제를 더 부가하여 양극활물질층 내부에 기공을 형성하는 것도 가능하다.
건조 양극에 사용되는 건조 복합양극활물질, 건조 도전재, 건조 바인더의 함량은 습식 양극에 사용되는 복합양극활물질, 도전재 및 바인더의 함량과 각각 동일한 범위일 수 있다.
다음으로, 양극집전체가 제공된다. 양극집전체는 예를 들어 알루미늄 호일이다.
다음으로, 양극집전체의 적어도 일면 상에 중간층을 배치한다. 중간층은 탄소계 도전재와 바인더를 포함할 수 있다. 중간층은 생략될 수 있다.
다음으로, 중간층 상에 준비된 양극활물질층용 시트를 배치하고 압연하여 양극집전체의 일면 상에 양극활물질층이 배치된 양극을 제조한다. 양극집전체와 양극활물질층 사이에 중간층이 배치된다. 압연은 예를 들어 롤 프레스, 평판 프레스 등일 수 있으나 반드시 이들로 한정되지 않는다. 압연 시의 압력은 예를 들어 0.1 ton/cm2 내지 10.0 ton/cm2 이나 이러한 범위로 한정되지 않는다. 압연 시의 압력이 지나치게 증가하면 양극집전체에 균열을 야기할 수 있다. 압연 시의 압력이 지나치게 낮으면 양극집전체와 양극활물질층의 결착력이 저하될 수 있다.
또 다른 구현예에 따른 리튬전지는 상술한 복합양극활물질을 포함하는 양극을 채용한다.
리튬전지가 상술한 복합양극활물질을 포함하는 양극을 채용함에 의하여 향상된 에너지 밀도, 사이클 특성과 열 안정성을 제공한다.
리튬전지는 예를 들어 하기의 예시적인 방법으로 제조되나, 반드시 이러한 방법으로 한정되지 않으며 요구되는 조건에 따라 조절된다.
먼저, 상술한 양극 제조방법에 따라 양극이 제조된다.
다음으로, 음극이 다음과 같이 제조된다. 음극은 예를 들어 복합양극활물질 대신에 음극활물질을 사용하는 것을 제외하고는 양극과 실질적으로 동일한 방법으로 제조된다. 또한, 음극활물질 조성물에서 도전재, 바인더 및 용매는 양극에서와 실질적으로 동일한 것을 사용하는 것이 가능한다.
예를 들어, 음극활물질, 도전재, 바인더 및 용매를 혼합하여 음극활물질 조성물을 제조하며, 이를 구리 집전체에 직접 코팅하여 음극 극판을 제조한다. 다르게는, 제조된 음극활물질 조성물을 별도의 지지체상에 캐스팅하고 이 지지체로부터 박리시킨 음극활물질 필름을 구리 집전체에 라미네이션하여 음극 극판을 제조한다.
음극활물질은 당해 기술분야에서 리튬전지의 음극활물질로 사용하는 것이라면 모두 가능하다. 예를 들어, 리튬 금속, 리튬과 합금 가능한 금속, 전이금속 산화물, 비전이금속산화물 및 탄소계 재료로 이루어진 군에서 선택된 하나 이상을 포함한다. 리튬과 합금가능한 금속은 예를 들어 Si, Sn, Al, Ge, Pb, Bi, Sb Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Si는 아님), Sn-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Sn은 아님) 등이다. 원소 Y는 예를 들어 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 또는 이들의 조합이다. 상기 전이금속 산화물은 예를 들어 리튬 티탄 산화물, 바나듐 산화물, 리튬 바나듐 산화물 등이다. 비전이금속 산화물은 예를 들어 SnO2, SiOx(0<x<2) 등이다. 탄소계 재료는 예를 들어 결정질 탄소, 비정질 탄소 또는 이들의 혼합물이다. 결정질 탄소는 예를 들어 무정형, 판상, 린편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연이다. 비정질 탄소는 예를 들어 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치(mesophase pitch) 탄화물, 소성된 코크스 등이다.
음극활물질, 도전재, 바인더 및 용매의 함량은 리튬 전지에서 통상적으로 사용하는 수준이다. 리튬전지의 용도 및 구성에 따라 상기 도전재, 바인더 및 용매 중 하나 이상의 생략이 가능하다.
음극에 사용되는 바인더 함량은 예를 들어 음극활물질층 전체 중량의 0.1 wt% 내지 10 wt% 또는 0.1 wt% 내지 5 wt%일 수 있다. 음극에 사용되는 도전재 함량은 예를 들어 음극활물질층 전체 중량의 0.1 wt% 내지 10 wt% 또는 0.1 wt% 내지 5 wt%일 수 있다. 음극에 사용되는 음극활물질 함량은 예를 들어 음극활물질층 전체 중량의 80 wt% 내지 99 wt%, 90 wt% 내지 99 wt% 또는 95 wt% 내지 99 wt%일 수 있다. 음극활물질이 리튬 금속일 경우 음극은 바인더 및 도전재를 포함하지 않을 수 있다.
다음으로, 상기 양극과 음극 사이에 삽입될 세퍼레이터가 준비된다.
세퍼레이터는 리튬 전지에서 통상적으로 사용되는 것이라면 모두 가능하다. 세퍼레이터는 예를 들어 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 사용된다. 세퍼레이터는 예를 들어, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE) 또는 이들의 조합물 중에서 선택된 것으로서, 부직포 또는 직포 형태이다. 리튬이온전지에는 예를 들어 폴리에틸렌, 폴리프로필렌 등과 같은 권취 가능한 세퍼레이터가 사용되며, 리튬이온폴리머전지에는 유기전해액 함침 능력이 우수한 세퍼레이터가 사용된다.
세퍼레이터는 하기의 예시적인 방법으로 제조되나, 반드시 이러한 방법으로 한정되지 않으며 요구되는 조건에 따라 조절된다.
먼저, 고분자 수지, 충진제 및 용매를 혼합하여 세퍼레이터 조성물이 준비된다. 세퍼레이터 조성물이 전극 상부에 직접 코팅 및 건조되어 세퍼레이터가 형성된다. 다르게는, 세퍼레이터 조성물이 지지체상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리시킨 세퍼레이터 필름이 전극 상부에 라미네이션되어 세퍼레이터가 형성된다.
세퍼레이터 제조에 사용되는 고분자는 특별히 한정되지 않으며, 전극판의 결합재에 사용되는 고분자라면 모두 가능하다. 예를 들어, 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 또는 이들의 혼합물 등이 사용된다.
다음으로 전해질이 준비된다.
전해질은 예를 들어 유기전해액이다. 유기전해액은 예를 들어 유기용매에 리튬염이 용해되어 제조된다.
유기용매는 당해 기술분야에서 유기 용매로 사용하는 것이라면 모두 가능하다. 유기용매는 예를 들어, 프로필렌카보네이트, 에틸렌카보네이트, 플루오로에틸렌카보네이트, 부틸렌카보네이트, 디메틸카보네이트, 디에틸카보네이트, 메틸에틸카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트, 메틸이소프로필카보네이트, 디프로필카보네이트, 디부틸카보네이트, 벤조니트릴, 아세토니트릴, 테트라히드로퓨란, 2-메틸테트라히드로퓨란, γ-부티로락톤, 디옥소란, 4-메틸디옥소란, N,N-디메틸포름아미드, 디메틸아세트아미드, 디메틸설폭사이드, 디옥산, 1,2-디메톡시에탄, 설포란, 디클로로에탄, 클로로벤젠, 니트로벤젠, 디에틸렌글리콜, 디메틸에테르 또는 이들의 혼합물 등이다.
리튬염도 당해 기술분야에서 리튬염으로 사용하는 것이라면 모두 가능하다. 리튬염은 예를 들어, LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(단 x, y는 각각 1 내지 20의 자연수), LiCl, LiI 또는 이들의 혼합물 등이다.
다르게는, 전해질은 고체전해질이다. 고체전해질은 예를 들어, 보론산화물, 리튬옥시나이트라이드 등이나 이들로 한정되지 않으며 당해 기술분야에서 고체전해질로 사용하는 것이라면 모두 가능하다. 고체전해질은 예를 들어 스퍼터링 등의 방법으로 상기 음극상에 형성되거나 별도의 고체전해질 시트가 음극 상에 적층된다.
고체전해질은 예를 들어 산화물계 고체전해질 또는 황화물계 고체전해질이다.
고체전해질은 예를 들어 산화물계 고체전해질이다. 산화물계 고체전해질은 Li1+x+yAlxTi2-xSiyP3-yO12 (0<x<2, 0≤y<3), BaTiO3, Pb(Zr,Ti)O3(PZT), Pb1-xLaxZr1-y TiyO3(PLZT)(O≤x<1, O≤y<1), PB(Mg3Nb2/3)O3-PbTiO3(PMN-PT), HfO2, SrTiO3, SnO2, CeO2, Na2O, MgO, NiO, CaO, BaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiO2, Li3PO4, LixTiy(PO4)3(0<x<2, 0<y<3), LixAlyTiz(PO4)3 (0<x<2, 0<y<1, 0<z<3), Li1+x+y(Al, Ga)x(Ti, Ge)2-xSiyP3-yO12(0≤x≤1 0≤y≤1), LixLayTiO3 (0<x<2, 0<y<3), Li2O, LiOH, Li2CO3, LiAlO2, Li2O-Al2O3-SiO2-P2O5-TiO2-GeO2, Li3+xLa3M2O12(M = Te, Nb, 또는 Zr, x는 1 내지 10의 정수)중에서 선택된 하나 이상이다. 고체전해질은 소결법 등에 의하여 제작된다. 예를 들어, 산화물계 고체전해질은 Li7La3Zr2O12(LLZO) 및 Li3+xLa3Zr2-aMaO12(M doped LLZO, M=Ga, W, Nb, Ta, 또는 Al, x는 1 내지 10의 정수) 중에서 선택된 가넷계(Garnet-type) 고체전해질이다.
황화물(sulfide)계 고체전해질은, 예컨대 황화 리튬, 황화 규소, 황화 인, 황화 붕소 또는 이들의 조합을 포함할 수 있다. 황화물계 고체전해질 입자는 Li2S, P2S5, SiS2, GeS2, B2S3 또는 이들의 조합을 포함할 수 있다. 황화물계 고체전해질 입자는 Li2S 또는 P2S5일 수 있다. 황화물계 고체전해질 입자는 다른 무기 화합물에 비해 높은 리튬 이온 전도도를 갖는 것으로 알려져있다. 예를 들어, 황화물계 고체전해질은 Li2S 및 P2S5를 포함한다. 황화물계 고체전해질을 구성하는 황화물 고체전해질 재료가 Li2S-P2S5를 포함하는 경우, Li2S 대 P2S5 의 혼합 몰비는 예를 들면 약 50:50 내지 약 90:10의 범위일 수 있다. 또한, Li3PO4, 할로겐, 할로겐 화합물, Li2+2xZn1??xGeO4("LISICON", 0≤x<1), Li3+yPO4-xNx("LIPON", 0<x<4, 0<y<3), Li3.25Ge0.25P0.75S4("ThioLISICON"), Li2O-Al2O3-TiO2-P2O5("LATP") 등을 Li2S-P2S5, SiS2, GeS2, B2S3, 또는 이들의 조합의 무기 고체전해질에 첨가하여 제조된 무기 고체전해질이 황화물 고체전해질로서 사용될 수 있다. 황화물 고체전해질 재료의 비제한적인 예들은 Li2S-P2S5; Li2S-P2S5-LiX (X=할로겐 원소); Li2S-P2S5-Li2O; Li2S-P2S5-Li2O-LiI; Li2S-SiS2; Li2S-SiS2-LiI; Li2S-SiS2-LiBr; Li2S-SiS2-LiCl; Li2S-SiS2-B2S3-LiI; Li2S-SiS2-P2S5-LiI; Li2S-B2S3; Li2S -P2S5-ZmSn (0<m<10, 0<n<10, Z=Ge, Zn 또는 Ga); Li2S-GeS2; Li2S-SiS2-Li3PO4; 및 Li2S-SiS2-LipMOq (0<p<10, 0<q<10, M=P, Si, Ge, B, Al, Ga 또는 In)을 포함한다. 이와 관련하여, 황화물계 고체전해질 재료는 황화물계 고체전해질 물질의 원료 시작 물질(예를 들면, Li2S, P2S5, 등)을 용융 담금질법(melt quenching method), 기계적 밀링법 등에 의해 처리함으로써 제조될 수 있다. 또한, 소성(calcinations) 공정이 상기 처리 후에 수행될 수 있다. 황화물계 고체전해질은 비정질이거나, 결정질이거나, 이들이 혼합된 상태일 수 있다.
도 5를 참조하면, 일구현예에 따른 리튬전지(1)는 양극(3), 음극(2) 및 세퍼레이터(4)를 포함한다. 양극(3), 음극(2) 및 세퍼레이터(4)가 와인딩되거나 접혀서 전지구조체(7)를 형성한다. 형성된 전지구조체(7)가 전지케이스(5)에 수용된다. 전지케이스(5)에 유기전해액이 주입되고 캡(cap) 어셈블리(6)로 밀봉되어 리튬전지(1)가 완성된다. 전지케이스(5)는 원통형이나 반드시 이러한 형태로 한정되지 않으며 예를 들어, 각형, 박막형, 등이다.
도 6을 참조하면, 일구현예에 따른 리튬전지(1)는 양극(3), 음극(2) 및 세퍼레이터(4)를 포함한다. 양극(3) 및 음극(2) 사이에 세퍼레이터(4)가 배치되며, 양극(3), 음극(2) 및 세퍼레이터(4)가 와인딩되거나 접혀서 전지구조체(7)를 형성한다. 형성된 전지구조체(7)가 전지케이스(5)에 수용된다. 전지구조체(7)에서 형성된 전류를 외부로 유도하기 위한 전기적 통로 역할을 하는 전극탭(8)을 포함할 수 있다. 전지케이스(5)에 유기전해액이 주입되고 밀봉되어 리튬전지(1)가 완성된다. 전지케이스(5)는 각형이나 반드시 이러한 형태로 한정되지 않으며 예를 들어, 원통형, 박막형, 등이다.
도 7을 참조하면, 일구현예에 따른 리튬전지(1)는 양극(3), 음극(2) 및 세퍼레이터(4)를 포함한다. 양극(3) 및 음극(2) 사이에 세퍼레이터(4)가 배치되어 전지구조체가 형성된다. 전지구조체(7)가 바이셀 구조로 적층된(stacked) 다음, 전지케이스(5)에 수용된다. 전지구조체(7)에서 형성된 전류를 외부로 유도하기 위한 전기적 통로 역할을 하는 전극탭(8)을 포함할 수 있다. 전지케이스(5)에 유기전해액이 주입되고 밀봉되어 리튬전지(1)가 완성된다. 전지케이스(5)는 각형이나 반드시 이러한 형태로 한정되지 않으며 예를 들어, 원통형, 박막형, 등이다.
파우치형 리튬전지는 도 5 내지 7의 리튬전지에서 전지케이스로서 파우치를 사용한 것에 각각 해당한다. 파우치형 리튬전지는 하나 이상의 전지구조체를 포함한다. 양극 및 음극 사이에 세퍼레이터가 배치되어 전지구조체가 형성된다. 전지구조체가 바이셀 구조로 적층된 다음, 유기 전해액에 함침되고, 파우치에 수용 및 밀봉되어 파우치형 리튬전지가 완성된다. 예를 들어, 도면에 도시되지 않으나, 상술한 양극, 음극 및 세퍼레이터가 단순 적층되어 전극조립체 형태로 파우치에 수용되거나, 젤리롤 형태의 전극조립체로 권취되거나 접혀진 후 파우치에 수용된다. 이어서, 파우치에 유기전해액이 주입되고 밀봉되어 리튬전지가 완성된다.
리튬전지는 수명특성 및 고율특성이 우수하므로 예를 들어 전기차량(electric vehicle, EV)에 사용된다. 예를 들어, 플러그인하이브리드차량(plug-in hybrid electric vehicle, PHEV) 등의 하이브리드차량에 사용된다. 또한, 많은 양의 전력 저장이 요구되는 분야에 사용된다. 예를 들어, 전기 자전거, 전동 공구 등에 사용된다.
리튬전지는 복수개 적층되어 전지모듈을 형성하고, 복수의 전지모듈이 전지팩을 형성한다. 이러한 전지팩이 고용량 및 고출력이 요구되는 모든 기기에 사용될 수 있다. 예를 들어, 노트북, 스마트폰, 전기차량 등에 사용될 수 있다. 전지모듈은 예를 들어 복수의 전지와 이들을 잡아주는 프레임을 포함한다. 전지팩은 예를 들어 복수의 전지모듈과 이들을 연결하는 버스바(bus bar)를 포함한다. 전지모듈 및/또는 전지팩은 냉각 장치를 더 포함할 수 있다. 복수의 전지팩이 전지 관리 시스템에 의하여 조절된다. 전지 관리 시스템은 전지팩, 및 전지팩에 연결된 전지 제어장치를 포함한다.
또 다른 일구현예에 따른 복합양극활물질 제조방법은, 리튬금속산화물을 제공하는 단계; 복합체를 제공하는 단계; 제2 탄소계 재료를 제공하는 단계; 리튬금속산화물과 복합체와 제2 탄소계 재료를 기계적으로 밀링하는 단계를 포함하며, 복합체가 화학식 MaOb (0<a≤3, 0<b<4, a는 1, 2 또는 3이며, b는 정수가 아님)로 표시되는 1종 이상의 제1 금속산화물; 및 제1 탄소계 재료를 포함하며, 제1 금속산화물이 제1 탄소계 재료 매트릭스 내에 배치되며, 상기 M은 원소주기율표 2족 내지 13족, 제15족 및 16족 중에서 선택된 하나 이상의 금속이며, 상기 제2 탄소계 재료가 종횡비 10 이상의 섬유상 탄소를 포함한다.
리튬전이금속산화물이 제공된다. 리튬전이금속산화물은 예를 들어 상술한 화학식 1 내지 6으로 표시되는 화합물이다.
복합체가 제공된다. 복합체를 제공하는 단계는 예를 들어 제2 금속산화물을 포함하는 구조체에 탄소 공급원 기체로 이루어진 반응 가스를 공급하고 열처리하여 복합체를 제공하는 단계를 포함한다. 복합체를 제공하는 단계는 예를 들어, MaOc (0<a≤3, 0<c≤4, a가 1, 2 또는 3인 경우, b가 정수임)로 표시되는 1 종 이상의 제2 금속산화물에 탄소 공급원 기체로 이루어진 반응 가스를 공급하고 열처리하여 복합체를 제조하는 단계를 포함하며, 상기 M은 원소주기율표 제2 족 내지 제13 족, 제15 족 및 제16 족 중에서 선택된 하나 이상의 금속이다.
탄소 공급원 가스는 하기 화학식 9로 표시되는 화합물로 이루어진 가스이거나, 또는 하기 화학식 9로 표시되는 화합물과, 하기 화학식 10으로 표시되는 화합물과 하기 화학식 11로 표시되는 산소 함유 기체로 이루어진 군으로부터 선택된 하나 이상의 혼합 가스이다.
<화학식 9>
CnH(2n+2-a)[OH]a
상기 화학식 9 중, n은 1 내지 20, a는 0 또는 1이며;
<화학식 10>
CnH2n
상기 화학식 10 중, n 은 2 내지 6이며;
<화학식 11>
CxHyOz
상기 화학식 11 중, x는 0 또는 1 내지 20의 정수이고, y는 0 또는 1 내지 20의 정수이고, z은 1 또는 2이다.
화학식 9로 표시되는 화합물 및 화학식 10으로 표시되는 화합물이 메탄, 에틸렌, 프로필렌, 메탄올, 에탄올, 프로판올로 이루어진 군으로부터 선택된 하나 이상이다. 화학식 11로 표시되는 산소 함유 기체는 예를 들어 이산화탄소(CO2) 및 일산화탄소(CO), 수증기(H2O) 또는 그 혼합물을 포함한다.
MaOc (0<a≤3, 0<c≤4, a가 1, 2, 또는 3이면, c는 정수임)로 표시되는 제2 금속산화물에 탄소 공급원 기체로 이루어진 반응 가스를 공급하고 열처리하는 단계 이후에 질소, 헬륨 및 아르곤으로 이루어진 군으로부터 선택된 하나 이상의 불활성 기체를 이용한 냉각 단계를 더 거칠 수 있다. 냉각 단계는 상온(20-25℃)으로 조절하는 단계를 말한다. 탄소 공급원 기체는 질소, 헬륨, 아르곤으로 이루어진 군으로부터 선택된 하나 이상의 불활성 기체를 포함할 수 있다.
복합체의 제조방법에서 기상 반응에 따라 탄소계 재료 예를 들어 그래핀이 성장하는 과정은 다양한 조건에서 수행될 수 있다.
제1 조건에 의하면 예를 들어 MaOc (0<a≤3, 0<c≤4, a가 1, 2, 또는 3이면, c는 정수임)로 표시되는 제2 금속산화물이 배치된 반응기에 먼저 메탄을 공급하고 열처리온도(T)까지 승온처리한다. 열처리 온도(T)까지의 승온 시간은 10 분 내지 4 시간이고 열처리온도(T)는 700 ℃ 내지 1100 ℃ 범위이다. 열처리온도(T)에서 반응 시간 동안 열처리를 실시한다. 반응시간은 예를 들어 4 시간 내지 8 시간이다. 열처리된 결과물을 상온으로 냉각시켜 복합체를 제조한다. 열처리온도(T)에서 상온까지 냉각하는 과정에 걸치는 시간은 예를 들어 1 시간 내지 5 시간이다.
제2 조건에 의하면 예를 들어 MaOc (0<a≤3, 0<c≤4, a가 1, 2, 또는 3이면, c는 정수임)로 표시되는 제2 금속산화물이 배치된 반응기에 먼저 수소를 공급하고 열처리온도(T)까지 승온 처리한다. 열처리 온도(T)까지의 승온 시간은 10 분 내지 4 시간이고 열처리온도(T)는 700 ℃ 내지 1100 ℃ 범위이다. 열처리온도(T)에서 일정 반응 시간 동안 열처리한 후 메탄 가스를 공급하고 잔여 반응 시간 동안 열처리를 실시한다. 반응시간은 예를 들어 4 시간 내지 8 시간이다. 열처리된 결과물을 상온으로 냉각시켜 복합체를 제조한다. 냉각하는 과정에서 질소를 공급한다. 열처리온도(T)에서 상온까지 냉각하는 과정에 걸치는 시간은 예를 들어 1 시간 내지 5 시간이다.
제3 조건에 의하면 예를 들어 MaOc (0<a≤3, 0<c≤4, a가 1, 2, 또는 3이면, c는 정수임)로 표시되는 제2 금속산화물이 배치된 반응기에 먼저 수소를 공급하고 열처리온도(T)까지 승온 처리한다. 열처리 온도(T)까지의 승온 시간은 10 분 내지 4 시간이고 열처리온도(T)는 700 ℃ 내지 1100 ℃ 범위이다. 열처리온도(T)에서 일정 반응 시간 동안 열처리한 후 메탄과 수소의 혼합 가스를 공급하고 잔여 반응 시간 동안 열처리를 실시한다. 반응시간은 예를 들어 4 시간 내지 8 시간이다. 열처리된 결과물을 상온으로 냉각시켜 복합체를 제조한다. 냉각하는 과정에서 질소를 공급한다. 열처리온도(T)에서 상온까지 냉각하는 과정에 걸치는 시간은 예를 들어 1 시간 내지 5 시간이다.
복합체를 제조하는 과정에서, 탄소 공급원 기체가 수증기를 포함하는 경우, 매우 우수한 전도도를 갖는 복합체를 얻을 수 있다. 기체 혼합물 내의 수증기의 함량은, 제한되지 않으며, 예를 들어, 탄소 공급원 기체 전체 100 부피%를 기준으로 하여 0.01 부피% 내지 10 부피% 이다. 탄소 공급원 기체는 예를 들어 메탄; 메탄과 불활성 기체를 포함하는 혼합기체; 또는 메탄과 산소 함유 기체를 포함하는 혼합기체이다.
탄소 공급원 기체는 예를 들어 메탄; 메탄과 이산화탄소의 혼합 기체; 또는 메탄과, 이산화탄소와 수증기의 혼합기체일 수 있다. 메탄과 이산화탄소의 혼합 기체에서 메탄과 이산화탄소의 몰비는 약 1: 0.20 내지 1:0.50, 약 1: 0.25 내지 1:0.45, 또는 약 1:0.30 내지 1: 0.40이다. 메탄과 이산화탄소와 수증기의 혼합기체에서 메탄과 이산화탄소와 수증기의 몰비는 약 1:0.20 내지 0.50: 0.01 내지 1.45, 약 1: 0.25 내지 0.45: 0.10 내지 1.35, 또는 약 1: 0.30 내지 0.40: 0.50 내지 1.0 이다.
탄소 공급원 기체는 예를 들어 일산화탄소 또는 이산화탄소이다. 탄소 공급원 기체는 예를 들어 메탄과 질소의 혼합기체이다. 메탄과 질소의 혼합 기체에서 메탄과 질소의 몰비는 약 1: 0.20 내지 1: 0.50, 약 1: 0.25 내지 1: 0.45, 또는 약 1: 0.30 내지 1: 0.40이다. 탄소 공급원 기체는 질소와 같은 불활성 기체를 포함하지 않을 수 있다.
열처리 압력은 열처리 온도, 기체 혼합물의 조성 및 소망하는 탄소 코팅의 양 등을 고려하여 선택할 수 있다. 열처리 압력은, 유입되는 기체혼합물의 양과 유출되는 기체 혼합물의 양을 조정하여 제어할 수 있다. 열처리 압력은 예를 들어, 0.5 atm 이상, 1 atm 이상, 2 atm 이상, 3 atm 이상, 4 atm 이상, 또는 5 atm 이상이다. 열처리 압력은 예를 들어, 0.5 atm 내지 10 atm, 1 atm 내지 10 atm, 2 atm 내지 10 atm, 3 atm 내지 10 atm, 4 atm 내지 10 atm, 또는 5 atm 내지 10 atm 이다.
열처리 시간은 특별히 제한되지 않으며, 열처리 온도, 열처리시 압력, 기체 혼합물의 조성 및 소망하는 탄소 코팅의 양에 따라 적절히 조절할 수 있다. 예를 들어, 열처리 온도에서의 반응 시간은 예를 들어 10분 내지 100시간, 30분 내지 90시간, 또는 50분 내지 40 시간이다. 예를 들어 열처리 시간이 증가할수록 침적되는 탄소량 예를 들어 그래핀(탄소)량이 많아지고, 이에 따라 복합체의 전기적 물성이 향상될 수 있다. 다만, 이러한 경향이 시간에 반드시 정비례되는 것은 아닐 수 있다. 예컨대. 소정의 시간 경과 후에는 더 이상 탄소 침적 예를 들어 그래핀 침적이 일어나지 않거나 침적율이 낮아질 수 있다.
상술한 탄소 공급원 기체의 기상 반응을 통하여 비교적 낮은 온도에서도 MaOc (0<a≤3, 0<c≤4, a가 1, 2, 또는 3이면, c는 정수임)로 표시되는 제2 금속산화물 및 그 환원 생성물인 MaOb (0<a≤3, 0<b<4, a는 1, 2, 또는 3이며, b 는 정수가 아님)로 표시되는 제1 금속산화물 중에서 선택된 하나 이상에 균일한 제1 탄소계 재료의 코팅 예를 들어 그래핀 코팅을 제공함에 의하여 복합체가 얻어진다.
복합체는 예를 들어 구형 구조(spherical structure), 복수의 구형 구조(spherical structure)가 연결된 나선형 구조(spiral structure), 복수의 구형 구조(spherical structure)가 응집된 클러스터 구조(cluster structure) 및 스폰지 구조(spone structure) 중에서 선택된 하나 이상의 구조를 가지는 제1 탄소계 재료의 매트릭스 예를 들어 그래핀 매트릭스와 상기 그래핀 매트릭스 내에 배치되는 MaOb (0<a≤3, 0<b<4, a는 1, 2, 또는 3이며, b 는 정수가 아님)로 표시되는 제1 금속산화물 및 MaOc (0<a≤3, 0<c≤4, a가 1, 2, 또는 3이면, c는 정수임)로 표시되는 제2 금속산화물 중에서 선택된 하나 이상을 포함한다.
다음으로, 리튬전이금속산화물과 복합체와 제2 탄소계 재료를 기계적으로 밀링(milling)한다.
기계적으로 밀링하는 단계에서 밀링 방법은 특별히 한정되지 않으며, 리튬전이금속산화물과 복합체와 제2 탄소계 재료를 기계를 사용하여 접촉시키는 방법으로서 당해 기술 분야에서 사용 가능한 방법이라면 모두 가능하다.
밀링 시에 예를 들어 노빌타 믹서 등을 사용할 수 있다. 밀링 시의 믹서의 회전 수는 예를 들어 1000 rpm 내지 5000 rpm 또는 2000 rpm 내지 4000 rpm 이다. 밀링 속도가 지나치게 낮으면 리튬전이금속산화물과 복합체와 제2 탄소계 재료에 가해지는 전단력이 약하므로 리튬전이금속산화물과 복합체가 화학 결합을 형성하기 어려울 수 있다. 밀링 속도가 지나치게 높으면 복합화가 지나치게 단시간에 진행됨에 의하여 리튬전이금속산화물 상에 복합체와 제2 탄소계 재료가 균일하게 코팅되어 균일하고 연속적인 쉘을 형성하기 어려울 수 있다. 밀링 시간은 예를 들어 5 분 내지 100 분, 5 분 내지 60 분, 또는 5 분 내지 30 분이다. 밀링 시간이 지나치게 짧으면 리튬전이금속산화물 상에 복합체와 제2 탄소계 재료가 균일하게 코팅되어 균일한 쉘을 형성하기 어려울 수 있다. 밀링 시간이 지나치게 길어지면 생산 효율이 저하될 수 있다. 복합체의 함량은 리튬전이금속산화물과 복합체의 전체 중량의 5 wt% 이하, 4 wt% 이하, 3wt% 이하, 2wt% 이하, 또는 1wt% 이하일 수 있다. 복합체의 함량은 예를 들어 제1 리튬전이금속산화물과 복합체의 전체 중량의 0.01 내지 5 wt%, 0.01 내지 4 wt%, 0.01 wt% 내지 3 wt%, 0.1 wt% 내지 2 wt%, 또는 0.1 wt% 내지 1 wt%일 수 있다. 예를 들어, 제1 리튬전이금속산화물과 복합체의 혼합물 100 중량부에 대하여 복합체 함량은 함량은 0.01 내지 5 중량부, 0.01 내지 4 중량부, 0.01 중량부 내지 3 중량부, 0.1 중량부 내지 3 중량부, 0.1 중량부 내지 2 중량부, 또는 0.1 중량부 내지 1 중량부일 수 있다. 제1 리튬전이금속산화물과 복합체의 기계적 밀링(milling)에 사용되는 복합체의 평균 입경(D50)은 예를 들어 50 nm 내지 200 nm, 100 nm 내지 300 nm, 또는 200 nm 내지 500nm 이다.
이하의 실시예 및 비교예를 통하여 본 발명이 더욱 상세하게 설명된다. 단, 실시예는 본 발명을 예시하기 위한 것으로서 이들만으로 본 발명의 범위가 한정되는 것이 아니다.
(복합체의 제조)
제조예 1: Al 2 O 3 @Gr 복합체
Al2O3 입자 (평균 입경: 약 20 nm)를 반응기 내에 위치시킨 다음, 반응기 내로 CH4를 약 300 sccm, 1 atm 에서 약 30 분 동안 공급한 조건에서 반응기 내부 온도를 1000 ℃로 상승시켰다.
이어서 상기 온도에서 7시간 동안 유지하여 열처리를 수행하였다. 이어서 반응기 내부 온도를 상온(20-25℃)으로 조절하여 Al2O3 입자 및 그 환원 생성물인 Al2Oz (0<z<3) 입자가 그래핀에 매립된 복합체를 얻었다.
복합체가 포함하는 알루미나 함량은 60 wt% 이었다.
제조예 2: Al 2 O 3 @Gr 복합체
Al2O3 입자 (평균 입경: 약 20 nm) 대신 Al2O3 입자 (평균 입경: 약 200 nm)를 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 복합체를 제조하였다.
비교제조예 1: SiO 2 @Gr 복합체
SiO2 입자 (평균 입경: 약 15 nm)를 반응기 내에 위치시킨 다음, 반응기 내로 CH4를 약 300 sccm, 1 atm 에서 약 30분 동안 공급한 조건에서 반응기 내부 온도를 1000 ℃ 로 상승시켰다.
이어서 상기 온도에서 7시간 동안 유지하여 열처리를 수행하였다. 이어서 반응기 내부 온도를 상온(20 내지 25 ℃)으로 조절하여 SiO2 입자 및 그 환원 생성물인 SiOy (0<y<2) 입자가 그래핀에 매립된 복합체를 얻었다.
(복합양극활물질의 제조)
실시예 1: Al 2 O 3 @Gr 복합체 0.2 wt% (알루미나 0.12 wt%) 및 CNT 0.05 wt% 코팅 NCA91
평균 입경 10 ㎛의 LiNi0.91Co0.05Al0.04O2 (이하, NCA91이라고 함)과 제조예 1에서 준비된 복합체와 탄소나노튜브(이하 CNT라고 함)를 노빌타 믹서(Nobilta Mixer, Hosokawa, Japan)를 이용하여 약 1000~2000 rpm의 회전수로 약 5~30 분 동안 밀링을 실시하여 복합양극활물질을 제조하였다. NCA91과 복합체와 CNT를 97.5: 0.2: 0.05 의 비율로 혼합하여 복합양극활물질을 제조하였다.
도 2에 보여지는 바와 같이, 복합양극활물질 표면에 탄소나노튜브가 배치됨을 확인하였다. 탄소나노튜브는 탄소나노튜브 1차 구조체 및 복수의 탄소나노뷰트 단위체가 응집되어 형성된 탄소나노튜브 2차 구조체를 포함하였다.
탄소나노튜브 1차 구조체는 하나의 탄소나노튜브 단위체로 이루어진다. 탄소나노튜브 단위체의 길이는 200 nm 내지 300 nm 이고, 탄소나노튜브의 직경은 약 10 nm 이었다.
탄소나노튜브 2차 구조체는 복수의 탄소나노튜브 단위체가 응집되어 형성되었다. 탄소나노튜브 2차 구조체의 길이는 500 nm 이상이었고, 직경은 약 40 nm 이었다.
실시예 2: Al 2 O 3 @Gr 복합체 0.15 wt% 및 CNT 0.05 wt% 코팅 NCA91
복합체와 탄소나노튜브의 혼합비를 0.2: 0.05에서 0.15 : 0.05 로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 복합양극활물질을 제조하였다.
실시예 3: Al 2 O 3 @Gr 복합체 0.18 wt% 및 CNT 0.02 wt% 코팅 NCA91
복합체와 탄소나노튜브의 혼합비를 0.2: 0.05에서 0.15 : 0.05 로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 복합양극활물질을 제조하였다.
실시예 4: Al 2 O 3 @Gr 복합체 0.1 wt% 및 CNT 0.1 wt% 코팅 NCA91
복합체와 탄소나노튜브의 혼합비를 0.2: 0.05에서 0.15 : 0.05 로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 복합양극활물질을 제조하였다.
실시예 5: Al 2 O 3 @Gr 복합체 0.2 wt% 및 CNT 0.05 wt% 코팅 NCA91, 알루미나 입경 200 nm
제조예 1에 따라 얻은 복합체 대신 제조예 2에 따라 얻은 복합체를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 복합양극활물질을 제조하였다.
비교예 1: bare NCA91
평균 입경 10 ㎛ 의 NCA91을 그대로 복합양극활물질로 사용하였다.
비교예 2: CNT 0.25 wt% 코팅 NCA91
제조예 1에서 준비된 복합체를 사용하지 않고 탄소나노튜브 0.25 wt% 를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 복합양극활물질을 제조하였다.
비교예 3: SiO 2 @Gr 복합체 0.25 wt% 코팅 실리콘 복합 구조체
제조예 1에서 제조된 복합체 대신 비교제조예 1에서 얻은 복합체를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 복합양극활물질을 제조하였다.
비교예 4: Al 2 O 3 @Gr 복합체 0.2 wt% 및 CNT 0.05 wt% 의 단순 혼합물
평균 입경 10 ㎛의 LiNi0.91Co0.05Al0.04O2 (이하, NCA91이라고 함)과 제조예 1에서 준비된 복합체와 탄소나노튜브(이하 CNT라고 함)의 97.5: 0.2: 0.05 중량비 단순 혼합물을 그대로 복합양극활물질로 사용하였다.
(리튬 전지(half cell)의 제조, 습식)
실시예 6
(양극의 제조)
실시예 1에서 제조된 복합양극활물질, 탄소도전재(Denka Black), 및 폴리비닐리덴플루오라이드(PVdF)을 98.85: 0.5: 0.65의 중량비로 혼합한 혼합물을 N-메틸피롤리돈(NMP)과 함께 마노 유발에서 혼합하여 슬러리를 제조하였다.
15 ㎛ 두께의 알루미늄 집전체 위에 상기 슬러리를 바코팅(bar coating)하고 상온에서 건조한 후 진공, 120℃의 조건에서 다시 한번 건조하고, 압연 및 펀칭 하여 60 ㎛ 두께의 양극을 제조하였다.
(코인 셀의 제조)
상기에서 제조된 양극을 사용하고, 리튬 금속을 상대 전극으로 하고, PTFE 격리막(separator)과 1.5 M LiPF6 가 EC(에틸렌 카보네이트)+EMC(에틸메틸카보네이트)+DMC(디메틸 카보네이트)(2:1:7 부피비)에 녹아있는 용액을 전해질로 사용하여 코인 셀을 각각 제조하였다.
실시예 7 내지 10
실시예 1에서 제조된 복합양극활물질 대신에 실시예 2 내지 5에서 준비된 복합양극활물질을 각각 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 코인 셀을 제조하였다.
비교예 5 내지 8
실시예 1에서 제조된 복합양극활물질 대신에 비교예 1 내지 4에서 준비된 복합양극활물질을 각각 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 코인 셀을 제조하였다.
(리튬 전지(half cell)의 제조, 건식)
실시예 11
(양극의 제조)
실시예 1에서 제조된 복합양극활물질, 탄소도전재(Denka Black), 및 폴리비닐리덴플루오라이드(PVdF)을 98.85: 0.5: 0.65의 중량비로 혼합한 혼합물을 N-메틸피롤리돈(NMP)과 함께 마노 유발에서 혼합하여 슬러리를 제조하였다.
15 ㎛ 두께의 알루미늄 집전체 위에 상기 슬러리를 바코팅(bar coating)하고 상온에서 건조한 후 진공, 120℃의 조건에서 다시 한번 건조하고, 압연 및 펀칭 하여 60 ㎛ 두께의 양극을 제조하였다.
건조 양극활물질로서 실시예 1에서 제조된 복합양극활물질, 건조 도전재로서 탄소도전재(Denka Black), 및 건조 바인더로서 폴리테트라플루오로에틸렌(PTFE)을 92:4:4 의 중량비로 블레이드 믹서에 투입한 후, 25 ℃에서 1000 rpm의 속도로 10 분 동안 1차 건식 혼합하여 건조 양극활물질, 건조 도전재 및 건조 바인더가 균일하게 혼합된 제1 혼합물을 준비하였다.
이어서, 바인더의 섬유화가 진행될 수 있도록 하기 위하여 제1 혼합물을 25 ℃에서 5000 rpm의 속도로 20 분 동안 추가로 2차 혼합하여 제2 혼합물을 준비하였다. 제1 혼합물 및 제2 혼합물의 제조 시에 별도의 용매를 사용하지 않았다.
준비된 제2 혼합물을 압출기에 투입하고 압출하여 시트 형태의 양극활물질층 자립막(self-standing film)을 준비하였다. 압출 시의 압력은 50 MPa 이었다.
12 ㎛ 두께의 알루미늄 박막의 일면 상에 중간층(interlayer)으로서 카본층을 배치하여 제2 양극집전체의 일면 상에 중간층이 배치된 제1 적층체가 준비되었다.
중간층은 탄소도전재(Danka black) 및 폴리불화비닐리덴(PVDF)을 포함하는 조성물을 알루미늄 박막 상에 코팅한 후 건조시켜 준비되었다. 알루미늄 박막의 일면 상에 배치되는 중간층의 두께는 약 1 ㎛ 이었다.
준비된 제1 적층체의 중간층 상에 양극활물질층 자립막을 배치하고, 압연하여 양극을 제조하였다.
(코인 셀의 제조)
상기에서 제조된 양극을 사용하고, 리튬 금속을 상대 전극으로 하고, PTFE 격리막(separator)과 1.5 M LiPF6 가 EC(에틸렌 카보네이트)+EMC(에틸메틸카보네이트)+DMC(디메틸 카보네이트)(2:1:7 부피비)에 녹아있는 용액을 전해질로 사용하여 코인 셀을 각각 제조하였다.
비교예 9
실시예 1에서 제조된 복합양극활물질 대신에 비교예 1에서 준비된 복합양극활물질을 각각 사용한 것을 제외하고는 실시예 11과 동일한 방법으로 코인 셀을 제조하였다.
평가예 1: XPS 스펙트럼 평가
제조예 1에서 제조된 복합체의 제조 과정에서 시간 경과에 따른 Qunatum 2000 (Physical Electronics)를 사용하여 XPS 스펙트럼을 측정하였다. 승온 전, 1분 경과 후, 5분 경과 후, 30분 경과 후, 1시간 경과 후 및 4시간 경과 후의 시료에 대한 C 1s 오비탈 및 Al 2p 오비탈의 XPS 스펙트럼을 각각 측정하였다. 승온 초기에는 Al 2p 오비탈에 대한 피크만 나타나고 C 1s 오비탈에 대한 피크는 나타나지 않았다. 30분 경과 후에는 C 1s 오비탈에 대한 피크가 선명하게 나타나고, Al 2p 오비탈에 대한 피크의 크기가 현저히 감소하였다.
30분 경과 후에는 284.5eV 근처에서 그래핀의 성장에 의한 C-C 결합 및 C=C 결합에 기인한 C 1s 오비탈에 대한 피크가 선명하게 나타났다.
반응 시간이 경과함에 따라 알루미늄의 산화수가 감소함에 의하여 Al 2p 오비탈의 피크 위치가 더 낮은 결합에너지(binding energy, eV)쪽으로 쉬프트하였다.
따라서, 반응이 진행됨에 따라 Al2O3 입자 상에 그래핀이 성장하고, Al2O3의 환원 생성물인 Al2Ox(0<x<3)가 생성됨을 확인하였다.
제조예 1에서 제조된 복합체 시료의 10개 영역에서의 XPS 분석 결과를 통하여 탄소 및 알루미늄의 평균 함량을 측정하였다. 측정 결과에 대하여 각 영역별 알루미늄 함량의 편차(deviation)를 계산하였다. 알루미늄 함량의 편차를 평균값에 대한 백분율로 나타내고 이를 균일도(uniformity)라고 하였다. 알루미늄 함량의 편차의 평균값에 대한 백분율 즉 알루미늄 함량의 균일도(uniformity)는 1% 이었다. 따라서, 제조예 1에서 제조된 복합체 내에 알루미나가 균일하게 분포됨을 확인하였다.
평가예 2: SEM, HR-TEM 및 SEM-EDS 분석
제조예 1에서 제조된 복합체, 실시예 1에서 제조된 복합양극활물질 및 비교예 1에서 제조된 복합양극활물질에 대한 주사전자현미경, 고해상도 투과전자현미경 및 EDS (Energy-dispersive X-ray spectroscopy) 분석을 수행하였다.
SEM-EDS 분석 시 Philips사의 FEI Titan 80-300을 사용하였다.
제조예 1에서 제조된 복합체는 Al2O3 입자 및 그 환원 생성물인 Al2Oz (0<z<3) 입자가 그래핀에 매립된 구조를 가짐을 보여주었다. Al2O3 입자 및 Al2Oz (0<z<3) 중에서 선택된 하나 이상의 입자의 외곽에 그래핀층이 배치됨을 확인하였다. Al2O3 입자 및 Al2Oz (0<z<3) 중에서 선택된 하나 이상의 입자는 그래핀 매트릭스 내에 균일하게 분산되었다. Al2O3 입자 및 Al2Oz (0<z<3) 입자 중 하나 이상의 입경은 약 20 nm 이었다. 제조예 1에서 제조된 복합체의 입경은 약 50 nm 내지 200 nm 이었다. 실시예 1에서 제조된 복합양극활물질에서 NCA 코어 상에, 그래핀을 포함하는 복합체에 의하여 형성된 쉘(shell)이 배치됨을 확인하였다.
비교예 1 및 실시예 1에서 제조된 복합양극활물질에 대한 SEM-EDS 맵핑(mapping) 분석에서, 비교예 1의 복합양극활물질 표면에 비하여 실시예 1의 복합양극활물질 표면에 분포된 알루미늄(Al)의 농도가 증가함을 확인하였다.
실시예 1의 복합양극활물질에서 NCA 코어 상에 제조예 1에서 제조된 복합체가 균일하게 코팅되어 쉘(shell)을 형성함을 확인하였다.
평가예 3: XPS 스펙트럼 평가 (그래핀-NCA 화학결합)
제조예 1에서 제조된 복합체, 비교예 1의 NCA, 및 실시예 1에서 제조된 복합양극활물질에 대하여 Qunatum 2000 (Physical Electronics)를 사용하여 O 1s 오비탈에 대한 XPS 스펙트럼을 측정하여 그 결과를 도 3에 나타내었다.
도 3에 보여지는 바와 같이, 실시예 1의 복합양극활물질에 대하여 530.2 eV 근처에서 C-O-Ni 결합에 의한 피크가 관찰되었다. 이러한 피크는 NCM 표면에 존재하는 NiO 상(phase)과 그래핀(graphene)의 카본 사이에 형성된 결합에 기인한 피크로 판단되었다. 따라서, 코어 상에 형성된 쉘이 포함하는 그래핀이 코어가 포함하는 전이금속인 Ni과 공유결합을 형성함을 확인하였다.
평가예 4: 라만 스펙트럼 평가 (그래핀-NCA 화학결합)
제조예 1에서 제조된 복합체, 및 실시예 1에서 제조된 복합양극활물질에 대하여 라만 스펙트럼을 측정하여 그 결과를 도 4에 나타내었다.
도 4에 보여지는 바와 같이, 제조예 1에서 제조된 복합체는 그래핀에 기인한 1338.7 cm-1 에서의 D 밴드 피크 및 1575.0 cm-1 에서의 G 밴드 피크를 나타내었다.
이에 반해, 실시예 1의 복합양극활물질에서는 그래핀을 포함하는 쉘에 이하여 D 밴드 피크가 1351.3 cm-1 로 약 12 cm-1 쉬프트하고 G 밴드 피크가 1593.6 cm-1 로 약 18 cm-1 쉬프트하였다.
D밴드 피크의 쉬프트는 밀링에 의하여 코어 상에 결합되어 쉘을 형성하는 그래핀의 스트레인(strain)에 기인한 것으로 판단되었다.
G 밴드 피크의 쉬프트는 코어와 그래핀이 C-O-Ni 결합에 의한 복합체를 형성함에 의하여 이러한 복합체에서 코어와 그래핀 사이의 전하 전달(charge transfer)에 의한 것으로 판단되었다.
따라서, 따라서, 코어 상에 형성된 쉘이 포함하는 그래핀이 코어가 포함하는 전이금속인 Ni과 공유결합을 형성함을 확인하였다.
평가예 4: 고온(45℃) 충방전 특성 평가
실시예 6 내지 10 및 비교예 5 내지 8 에서 제조된 리튬전지를 25℃에서 0.1 C rate의 전류로 전압이 4.3 V (vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.3 V를 유지하면서 0.05 C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.8 V (vs. Li)에 이를 때까지 0.1 C rate의 정전류로 방전하였다(화성(formation) 사이클).
화성 사이클을 거친 리튬전지를 45 ℃에서 0.2 C rate의 전류로 전압이 4.3 V (vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.3 V를 유지하면서 0.05 C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.8 V (vs. Li)에 이를 때까지 0.2 C rate의 정전류로 방전하였다(1st 사이클). 이러한 사이클을 50th 사이클까지 동일한 조건으로 반복하였다.
모든 충방전 사이클에서 하나의 충전/방전 사이클 후 10분간의 정지 시간을 두었다. 상온 충방전 실험 결과의 일부를 하기 표 1 및 표 2에 나타내었다. 초기 효율은 하기 수학식 1로 정의되며, 용량유지율은 하기 수학식 2로 정의된다.
<수학식 1>
초기 효율[%] = [1st 사이클에서의 방전용량 / 1st 사이클에서의 충전용량] × 100
<수학식 2>
용량유지율[%] = [50th 사이클에서의 방전용량 / 1st 사이클에서의 방전용량] × 100
평가예 5: 고온 충방전 전후의 직류 내부 저항(DC-IR, Direct Current Internal Resistance) 평가
실시예 6 내지 10 및 비교예 5 내지 8 에서 제조된 리튬전지에 대하여, 고온 충방전 평가 전 및 고온 충방전 평가 후에, 직류 내부 저항(DC-IR)을 각각 하기 방법으로 측정하였다.
1st 사이클에서 0.5 C의 전류로 SOC(state of charge) 50 %의 전압까지 충전한 후 0.02 C에서 컷오프한 후 10 분 휴지시킨 후,
0.5 C로 30초간 정정류 방전한 후, 30초 휴지시킨 후, 0.5 C로 30초 정전류 충전시키고 10분 휴지시키고,
1.0 C로 30초간 정정류 방전한 후, 30초 휴지시킨 후, 0.5 C로 1분 정전류 충전시키고 10분 휴지시키고,
2.0 C로 30초간 정전류 방전한 후, 30초 휴지시킨 후, 0.5 C로 2분 정전류 충전시키고 10분 휴지시키고,
3.0 C로 30초간 정전류 방전한 후, 30초 휴지시킨 후, 0.5 C로 3분 정전류 충전시키고 10분 휴지시켰다.
각각의 C-rate 에서 정전류 방전하는 동안의 평균 전압 변화(ΔV) 및 평균 전류 변화(ΔI)의 비율로부터 직류 내부 저항(DC-IR, R= ΔV/ΔI)을 계산하고, 이들의 평균값을 측정값으로 하였다.
측정된 고온 충방전 평가 전의 직류 내부 저항 및 상온 충방전 평가 후의 직류 내부 저항의 측정 결과의 일부를 하기 표 2 에 나타내었다.
용량 유지율 [%]
실시예 6 Al2O3@Gr 복합체 0.2wt% + CNT 0.05 wt%코팅 96.0
실시예 7 Al2O3@Gr 복합체 0.15wt% + CNT 0.05 wt%코팅 93.9
실시예 8 Al2O3@Gr 복합체 0.18wt% + CNT 0.02 wt%코팅 94.5
실시예 9 Al2O3@Gr 복합체 0.1wt% + CNT 0.1wt%코팅 93.0
실시예 10 Al2O3@Gr 복합체 0.2wt% + CNT 0.05wt%코팅, Al2O3 200 nm 91.5
비교예 5 no 코팅 85.0
비교예 6: CNT 0.25 wt% 코팅 NCA91 86.0
비교예 7: SiO2@Gr 복합체 0.25 wt% 코팅 실리콘 복합 구조체 90.2
비교예 8: Al2O3@Gr 복합체 0.2 wt% 및 CNT 0.05 wt% 의 단순 혼합물 86.1
표 1에 보여지는 바와 같이 실시예 7 내지 10의 리튬전지는 비교예 5 내지 8 의 리튬전지에 비하여 고온 수명 특성이 향상되었다.
비교예 6의 리튬전지는 실시예 6의 리튬전지에 비하여 고온 수명 특성이 부진하였다. 비교예 6의 리튬전지에서, NCA91 코어 상에 CNT 만이 배치되므로, NCA91 코어와 전해액의 부반응을 효과적으로 차단하지 못하였기 때문으로 판단되었다.
비교예 7의 리튬전지는 실시예 6의 리튬전지에 비하여 고온 수명 특성이 부진하였다. 비교예 6의 리튬전지에서, NCA91 코어 상에 배치되는 SiO2@Gr 복합체의 고전압 안정성이 부지하였기 때문으로 판단되었다.
비교예 8의 리튬전지는 실시예 6의 리튬전지에 비하여 고온 수명 특성이 부진하였다. 비교예 8의 리튬전지에서, NCA91와 복합체와 CNT 가 단순 혼합되므로, NCA91 코어 상에 쉘이 형성되지 못하여 전해액의 부반응을 효과적으로 차단하지 못하였기 때문으로 판단되었다.
표 1에 보여지지 않으나, 실시예 11의 리튬전지는 비교예 9의 리튬전지에 비하여 수명 특성이 향상되었다.
초기 효율
[%]
초기 DC-IR [ohm] 50 사이클 후 DC-IR
[ohm]
실시예 6 Al2O3@Gr 복합체 0.2wt% + CNT 0.05 wt%코팅 87.7 4.5 7.2
실시예 7 Al2O3@Gr 복합체 0.15wt% + CNT 0.05 wt%코팅 87.7 4.5 8.2
비교예 5 no 코팅 87.1 4.9 12.1
표 1 및 표 2에 보여지는 바와 같이, 실시예 6 내지 7의 리튬전지는 비교예 5의 리튬전지에 비하여 초기 효율, 고온 수명 특성이 향상되고, 직류 내부 저항 증가가 억제되었다.
표 2에 보여지지 않으나, 실시예 7 내지 10의 리튬전지는 비교예 5의 리튬전지에 비하여 초기 효율이 향상되고 직류 내부 저항 증가가 억제되었다.
평가예 6: 상온 고율 특성 및 전극 반응의 가역성 평가
실시예 6 내지 10 및 비교예 5 내지 8 에서 제조된 리튬전지를 25℃에서 0.1 C rate의 전류로 전압이 4.3 V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.3 V를 유지하면서 0.05 C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.8 V (vs. Li)에 이를 때까지 0.1 C rate의 정전류로 방전하였다(화성(formation) 사이클).
화성 사이클을 거친 리튬전지를 25 ℃에서 0.2 C rate의 전류로 전압이 4.3 V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.3 V 를 유지하면서 0.05 C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.8 V (vs. Li)에 이를 때까지 0.2 C rate 의 정전류로 방전하였다(1st 사이클).
1st 사이클을 거친 리튬전지를 25 ℃에서 0.2 C rate의 전류로 전압이 4.3 V (vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.3 V 를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.8 V (vs. Li)에 이를 때까지 0.5 C rate 의 정전류로 방전하였다(2nd 사이클).
2nd 사이클을 거친 리튬전지를 25 ℃에서 0.2 C rate의 전류로 전압이 4.3 V (vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.3 V 를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.8 V (vs. Li)에 이를 때까지 1.0 C rate 의 정전류로 방전하였다(3rd 사이클).
모든 충방전 사이클에서 하나의 충전/방전 사이클 후 10분간의 정지 시간을 두었다. 상온 충방전 실험 결과의 일부를 하기 표 3에 나타내었다. 고율 특성은 하기 수학식 3으로 정의된다.
전극 반응의 가역성은 하기 수학식 4로 표시된다. 전극 반응의 가역성은 전체 충전 용량 중에서 정전류 모드로 충전된 용량의 비율이다.
<수학식 3>
고율특성[%] = [1.0 C rate 방전 용량 (3th 사이클 방전 용량) / 0.2 C rate 방전 용량 (1st 사이클 방전 용량)] × 100
<수학식 4>
전극 반응 가역성 [%] = [0.2 C rate 정전류 모드 충전 용량 (1st 사이클 CC 충전 용량) / 0.2 C rate 정전류 모드 및 정전압 모드 충전 용량 (1st 사이클 CC+CV 충전 용량)] × 100
고율 특성
[%]
전극 반응 가역성 [%]
실시예 6 Al2O3@Gr 복합체 0.2wt% + CNT 0.05 wt%코팅 95.6 89.4
실시예 7 Al2O3@Gr 복합체 0.15wt% + CNT 0.05 wt%코팅 94.9 87.6
실시예 8 Al2O3@Gr 복합체 0.18wt% + CNT 0.02 wt%코팅 94.2 88.5
실시예 9 Al2O3@Gr 복합체 0.1wt% + CNT 0.1wt%코팅 93.9 85.7
실시예 10 Al2O3@Gr 복합체 0.2wt% + CNT 0.05wt%코팅, Al2O3 200 nm 93.4 81.6
비교예 5 no 코팅 92.7 73.9
표 3에 보여지는 바와 같이, 실시예 6 내지 10의 리튬전지는 비교예 5의 리튬전지에 비하여 고율 특성 및 전극 반응의 가역성이 향상되었다.

Claims (20)

  1. 리튬전이금속산화물을 포함하는 코어;
    상기 코어의 표면을 따라 배치되는 쉘(shell);을 포함하며,
    상기 쉘이 화학식 MaOb (0<a≤3, 0<b<4, a가 1, 2, 또는 3 이면, b는 정수가 아님)로 표시되는 1종 이상의 제1 금속산화물; 제1 탄소계 재료; 및 제2 탄소계 재료를 포함하며,
    상기 제1 금속산화물이 제1 탄소계 재료 매트릭스 내에 배치되며, 상기 M은 원소주기율표 2족 내지 13족, 제15족 및 16족 중에서 선택된 하나 이상의 금속이며,
    상기 제2 탄소계 재료가 종횡비 10 이상의 섬유상 탄소를 포함하는, 복합양극활물질.
  2. 제1 항에 있어서, 상기 제2 탄소계 재료가 탄소나노섬유, 탄소나노튜브 또는 이들의 조합을 포함하는, 복합양극활물질.
  3. 제2 항에 있어서, 상기 탄소나노튜브가 탄소나노튜브 1차 구조체, 복수의 탄소나노튜브 1차 입자가 응집되어 형성되는 탄소나노튜브 2차 구조체, 또는 이들의 조합을 포함하며,
    상기 탄소나노튜브 1차 구조체가 하나의 탄소나노튜브 단위체인, 복합양극활물질.
  4. 제2 항에 있어서, 상기 탄소나노튜브 1차 구조체가 단일벽 탄소나노튜브(SWCNT, single-walled carbon nanotube), 이중벽 탄소나노튜브(DWCNT, double-walled carbon nanotube) 및 다중벽 탄소나노튜브(MWCNT, multi-walled carbon nanotube), 또는 이들의 조합을 포함하는, 복합양극활물질.
  5. 제2 항에 있어서, 상기 탄소나노튜브 1차 구조체의 직경이 1 nm 내지 20 nm 이며, 상기 탄소나노튜브 1차 구조체의 길이가 100 nm 내지 2 ㎛ 인, 복합양극활물질.
  6. 제2 항에 있어서, 상기 탄소나노튜브 2차 구조체가 번들형 탄소나노튜브(bundle-type carbon nanotube), 다발형 탄소나노튜브(rope-type carbon nanotube) 또는 이들의 조합을 포함하는, 복합양극활물질.
  7. 제2 항에 있어서, 상기 탄소나노튜브 2차 구조체의 직경이 2 nm 내지 50 nm 이며, 상기 탄소나노튜브 2차 구조체의 길이가 500 nm 내지 1000 ㎛ 인, 복합양극활물질.
  8. 제1 항에 있어서, 상기 제2 탄소계 재료의 함량이 상기 제1 탄소계 재료와 상기 제2 탄소계 재료의 전체 중량에 대하여 0.1 wt% 내지 50 wt% 이며,
    상기 제2 탄소계 재료의 함량이 상기 복합양극활물질 전체 중량에 대하여 0.001 wt% 내지 1 wt% 이며,
    상기 제2 탄소계 재료가 상기 복합양극활물질의 표면 상에 배치되는, 복합양극활물질.
  9. 제1 항에 있어서, 상기 제1 금속산화물이 포함하는 제1 금속이 Al, Nb, Mg, Sc, Ti, Zr, V, W, Mn, Fe, Co, Pd, Cu, Ag, Zn, Sb, 및 Se 중에서 선택된 하나 이상의 금속이며,
    상기 제1 금속산화물이 Al2Oz(0<z<3), NbOx(0<x<2.5), MgOx(0<x<1), Sc2Oz(0<z<3), TiOy(0<y<2), ZrOy(0<y<2), V2Oz(0<z<3), WOy(0<y<2), MnOy(0<y<2), Fe2Oz(0<z<3), Co3Ow(0<w<4), PdOx(0<x<1), CuOx(0<x<1), AgOx(0<x<1), ZnOx(0<x<1), Sb2Oz(0<z<3), 및SeOy(0<y<2) 중에서 선택되는 하나 이상인, 복합양극활물질.
  10. 제1 항에 있어서, 상기 쉘이 화학식 MaOc (0<a≤3, 0<c≤4, a가 1, 2, 또는 3 이면, c는 정수임)로 표시되는 제2 금속산화물을 더 포함하며,
    상기 제2 금속산화물이 상기 제1 금속산화물과 동일한 금속을 포함하며,
    상기 제2 금속산화물의 a 와 c의 비율인 c/a가 상기 제1 금속산화물의 a 와 b의 비율인 b/a에 비하여 더 큰 값을 가지는, 복합양극활물질.
  11. 제10 항에 있어서, 상기 제2 금속산화물이 Al2O3, NbO, NbO2, Nb2O5, MgO, Sc2O3, TiO2, ZrO2, V2O3, WO2, MnO2, Fe2O3, Co3O4, PdO, CuO, AgO, ZnO, Sb2O3, 및 SeO2 중에서 선택되며,
    상기 제1 금속산화물이 상기 제2 금속산화물의 환원 생성물인, 복합양극활물질.
  12. 제11 항에 있어서, 상기 제1 금속산화물 및 상기 제2 금속산화물 중에서 선택된 하나 이상의 입경이 1 nm 내지 100 nm 인, 복합양극활물질.
  13. 제1 항에 있어서, 상기 쉘이 상기 제1 금속산화물 및 제2 금속산화물 중 하나 이상의 표면으로부터 돌출하는 방향으로 배치되는 제1 탄소계 재료를 포함하며,
    상기 쉘의 두께가 1 nm 내지 5 ㎛ 인, 복합양극활물질.
  14. 제1 항에 있어서, 상기 쉘이 상기 제1 금속산화물과 제1 탄소계 재료와 제2 탄소계 재료를 포함하는 복합체 및 상기 복합체의 밀링(milling) 결과물 중에서 선택된 하나 이상을 포함하며,
    상기 복합체 및 상기 복합체의 밀링 결과물 중에서 선택된 하나 이상의 함량이 복합양극활물질 전체 중량의 0.01 wt% 내지 5 wt% 인, 복합양극활물질.
  15. 제14 항에 있어서, 상기 제1 탄소계 재료는 분지된 구조(branched structure)를 가지며, 상기 제1 금속산화물이 상기 분지된 구조 내에 분포되며,
    상기 분지된 구조는 서로 접촉하는 복수의 제1 탄소계 재료 입자를 포함하는, 복합양극활물질.
  16. 제1 항에 있어서, 상기 리튬전이금속산화물이 하기 화학식 1 내지 화학식 8 중에서 선택되는 화학식으로 표시되는 복합양극활물질:
    <화학식 1>
    LiaNixCoyMzO2-bAb
    상기 화학식 1에서,
    1.0≤a≤1.2, 0≤b≤0.2, 0.8≤x<1, 0≤y≤0.3, 0<z≤0.3, 및 x+y+z=1이고,
    M은 망간(Mn), 니오븀(Nb), 바나듐(V), 마그네슘(Mg), 갈륨(Ga), 실리콘(Si), 텅스텐(W), 몰리브덴(Mo), 철(Fe), 크롬(Cr), 구리(Cu), 아연(Zn), 티타늄(Ti), 알루미늄(Al), 보론(B) 또는 이들의 조합이고,
    A는 F, S, Cl, Br 또는 이들의 조합이며,
    <화학식 2>
    LiNixCoyMnzO2
    <화학식 3>
    LiNixCoyAlzO2
    상기 화학식 2 내지 3에서, 0.8≤x≤0.95, 0≤y≤0.2, 0<z≤0.2 및 x+y+z=1이며,
    <화학식 4>
    LiNixCoyMnzAlwO2
    상기 화학식 4에서, 0.8≤x≤0.95, 0≤y≤0.2, 0<z≤0.2, 0<w≤0.2, 및 x+y+z+w=1이며,
    <화학식 5>
    LiaCoxMyO2-bAb
    상기 화학식 5에서,
    1.0≤a≤1.2, 0≤b≤0.2, 0.9≤x≤1, 0≤y≤0.1, 및 x+y=1이고,
    M은 망간(Mn), 니오븀(Nb), 바나듐(V), 마그네슘(Mg), 갈륨(Ga), 실리콘(Si), 텅스텐(W), 몰리브덴(Mo), 철(Fe), 크롬(Cr), 구리(Cu), 아연(Zn), 티타늄(Ti), 알루미늄(Al), 보론(B) 또는 이들의 조합이고,
    A는 F, S, Cl, Br 또는 이들의 조합이며,
    <화학식 6>
    LiaNixMnyM'zO2-bAb
    상기 화학식 6에서,
    1.0≤a≤1.2, 0≤b≤0.2, 0<x≤0.3, 0.5≤y<1, 0<z≤0.3, 및 x+y+z=1이고,
    M'는 코발트(Co), 니오븀(Nb), 바나듐(V), 마그네슘(Mg), 갈륨(Ga), 실리콘(Si), 텅스텐(W), 몰리브덴(Mo), 철(Fe), 크롬(Cr), 구리(Cu), 아연(Zn), 티타늄(Ti), 알루미늄(Al), 보론(B) 또는 이들의 조합이고,
    A는 F, S, Cl, Br 또는 이들의 조합이며,
    <화학식 7>
    LiaM1xM2yPO4-bXb
    상기 화학식 7에서, 0.90≤a≤1.1, 0≤x≤0.9, 0≤y≤0.5, 0.9<x+y<1.1, 0≤b≤2 이며,
    M1이 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 지르코늄(Zr) 또는 이들의 조합이며,
    M2가 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 티탄(Ti), 아연(Zn), 보론(B), 니오븀(Nb), 갈륨(Ga), 인듐(In), 몰리브덴(Mo), 텅스텐(W), 알루미늄(Al), 실리콘(Si), 크롬(Cr), 바나듐(V), 스칸듐(Sc), 이트륨(Y) 또는 이들의 조합이며, X가 O, F, S, P 또는 이들의 조합이다.
    <화학식 8>
    LiaM3zPO4
    상기 화학식 8에서, 0.90≤a≤1.1, 0.9≤z≤1.1 이며,
    M3가 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 지르코늄(Zr) 또는 이들의 조합이다.
  17. 제1 항 내지 제16 항 중 어느 한 항에 따른 복합양극활물질을 포함하는 양극.
  18. 건조 복합양극활물질, 건조 도전재 및 건조 바인더를 포함하며,
    상기 건조 복합양극활물질이,
    리튬전이금속산화물을 포함하는 코어;
    상기 코어의 표면을 따라 배치되는 쉘(shell);을 포함하며,
    상기 쉘이 화학식 MaOb (0<a≤3, 0<b<4, a가 1, 2, 또는 3 이면, b는 정수가 아님)로 표시되는 1종 이상의 제1 금속산화물; 제1 탄소계 재료; 및 제2 탄소계 재료를 포함하며,
    상기 제1 금속산화물이 제1 탄소계 재료 매트릭스 내에 배치되며, 상기 M은 원소주기율표 2족 내지 13족, 제15족 및 16족 중에서 선택된 하나 이상의 금속이며,
    상기 제2 탄소계 재료가 종횡비 10 이상의 섬유상 탄소를 포함하는, 양극.
  19. 제18 항의 양극; 음극; 및
    상기 양극과 음극 사이에 배치되는 전해질을 포함하는 리튬 전지.
  20. 리튬전이금속산화물을 제공하는 단계;
    복합체를 제공하는 단계;
    제2 탄소계 재료를 제공하는 단계; 및
    상기 리튬전이금속산화물과 복합체와 제2 탄소계 재료를 기계적으로 밀링하는 단계;를 포함하며,
    상기 복합체가 화학식 MaOb (0<a≤3, 0<b<4, a가 1, 2, 또는 3 이면, b는 정수가 아님)로 표시되는 1종 이상의 제1 금속산화물; 및 제1 탄소계 재료를 포함하며,
    상기 제1 금속산화물이 제1 탄소계 재료 매트릭스 내에 배치되며, 상기 M은 원소주기율표 2족 내지 13족, 제15족 및 16족 중에서 선택된 하나 이상의 금속이며,
    상기 제2 탄소계 재료가 종횡비 10 이상의 섬유상 탄소를 포함하는, 복합양극활물질 제조방법.
KR1020210166116A 2021-11-26 2021-11-26 복합양극활물질, 이를 채용한 양극과 리튬전지 및 이의 제조방법 KR20230078384A (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020210166116A KR20230078384A (ko) 2021-11-26 2021-11-26 복합양극활물질, 이를 채용한 양극과 리튬전지 및 이의 제조방법
US17/993,714 US20230170470A1 (en) 2021-11-26 2022-11-23 Composite cathode active material, cathode and lithium secondary battery including the same, and method of preparing the same
EP22209747.9A EP4187635A1 (en) 2021-11-26 2022-11-25 Composite cathode active material, cathode and lithium secondary battery comprising the composite cathode active material, and method of preparing cathode active material
CN202211503214.1A CN116190589A (zh) 2021-11-26 2022-11-28 复合正极活性物质及其制备方法、正极和锂二次电池
JP2022189323A JP2023079218A (ja) 2021-11-26 2022-11-28 複合正極活物質、それを採用した正極とリチウム電池、及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210166116A KR20230078384A (ko) 2021-11-26 2021-11-26 복합양극활물질, 이를 채용한 양극과 리튬전지 및 이의 제조방법

Publications (1)

Publication Number Publication Date
KR20230078384A true KR20230078384A (ko) 2023-06-02

Family

ID=84362943

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210166116A KR20230078384A (ko) 2021-11-26 2021-11-26 복합양극활물질, 이를 채용한 양극과 리튬전지 및 이의 제조방법

Country Status (5)

Country Link
US (1) US20230170470A1 (ko)
EP (1) EP4187635A1 (ko)
JP (1) JP2023079218A (ko)
KR (1) KR20230078384A (ko)
CN (1) CN116190589A (ko)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102214826B1 (ko) * 2013-07-31 2021-02-10 삼성전자주식회사 복합 양극 활물질, 이를 포함하는 리튬 전지, 및 이의 제조방법
KR102247502B1 (ko) * 2014-05-30 2021-05-03 삼성전자주식회사 복합 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 전지

Also Published As

Publication number Publication date
US20230170470A1 (en) 2023-06-01
CN116190589A (zh) 2023-05-30
EP4187635A1 (en) 2023-05-31
JP2023079218A (ja) 2023-06-07

Similar Documents

Publication Publication Date Title
US10658654B2 (en) Composite anode active material, anode including the same, and lithium secondary battery including the anode
KR20200073350A (ko) 음극 활물질 및 이를 채용한 리튬 이차 전지, 및 상기 음극 활물질의 제조방법
KR20170030518A (ko) 리튬 배터리용 캐소드
JP7348231B2 (ja) 複合正極活物質、それを採用した正極、リチウム電池及びその製造方法
KR20130109785A (ko) 복합전극활물질, 이를 채용한 전극과 리튬전지 및 그 제조방법
KR20210119905A (ko) 양극 활물질, 이를 포함한 양극 및 리튬이차전지
EP4318652A1 (en) Composite cathode active material, cathode and lithium battery employing same, and preparation method for same
JP7143478B2 (ja) 複合正極活物質、それを採用した正極、リチウム電池及びその製造方法
EP4187633A1 (en) Composite anode active material, anode and lithium battery including the same
EP4354541A1 (en) Composite cathode active material, cathode and lithium battery which employ same, and preparation method therefor
JP7481388B2 (ja) 複合正極活物質、それを採用した正極及びリチウム電池、並びにその製造方法
KR20220127002A (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
KR20230078384A (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 이의 제조방법
EP4345939A2 (en) Composite positive electrode active material, positive electrode and lithium battery including the same, and preparing method thereof
JP7342162B2 (ja) 正極、それを採用したリチウム電池、及びその製造方法
EP4187634A1 (en) Composite cathode active material, cathode and lithium battery containing composite cathode active material and preparation method thereof
EP4345938A2 (en) Positive electrode and all-solid secondary battery including the same
TW202414867A (zh) 複合正電極活性物質及其製備方法、正電極和鋰電池
KR20240027437A (ko) 복합음극활물질, 이를 채용한 음극 및 리튬전지, 및 이의 제조방법
JP2022137005A (ja) 電極、それを含むリチウム電池、及びその製造方法