KR20230066118A - 용융 유리 컨디셔닝 장치 및 방법 - Google Patents

용융 유리 컨디셔닝 장치 및 방법 Download PDF

Info

Publication number
KR20230066118A
KR20230066118A KR1020237014270A KR20237014270A KR20230066118A KR 20230066118 A KR20230066118 A KR 20230066118A KR 1020237014270 A KR1020237014270 A KR 1020237014270A KR 20237014270 A KR20237014270 A KR 20237014270A KR 20230066118 A KR20230066118 A KR 20230066118A
Authority
KR
South Korea
Prior art keywords
flange
conduit
vessel
wall
glass
Prior art date
Application number
KR1020237014270A
Other languages
English (en)
Other versions
KR102599281B1 (ko
Inventor
앙젤리스 길버트 드
피에르 라롱즈
Original Assignee
코닝 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝 인코포레이티드 filed Critical 코닝 인코포레이티드
Publication of KR20230066118A publication Critical patent/KR20230066118A/ko
Application granted granted Critical
Publication of KR102599281B1 publication Critical patent/KR102599281B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • C03B7/07Electric means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/44Cooling arrangements for furnace walls
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/084Tube mechanisms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/086Plunger mechanisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

용융 유리를 컨디셔닝하는 장치가 개시되어 있다. 장치는 용융 유리를 반송하기 위한 도관을 갖는 연결 튜브 조립체를 포함하며, 도관(108)은 적어도 2개의 플랜지(112, 114) 및 밀봉 부재(118)를 포함하고, 밀봉 부재는 플랜지의 외부 주연 영역 주위의 적어도 2개의 플랜지(112, 114) 사이에 배치되어, 도관의 외벽(110), 적어도 2개의 플랜지(112, 114) 및 밀봉 부재(118) 사이에 밀폐 체적을 형성한다. 상기 체적 내의 분위기는 미리결정된 분압의 수소 또는 미리결정된 분압의 산소가 체적 내에 유지될 수 있도록 제어될 수 있다. 도관을 가열하기 위해 적어도 2개의 플랜지 사이에 전류가 형성될 수 있다.

Description

용융 유리 컨디셔닝 장치 및 방법{APPARATUS AND METHOD FOR CONDITIONING MOLTEN GLASS}
본 출원은 그 내용 전문이 참조로 본 명세서에 통합되어 참조되는 2015년 6월 10일자로 출원된 미국 가출원 제62/173,475호에 대한 35 U.S.C.§119 하의 우선권의 혜택을 주장한다.
본 개시내용은 일반적으로 용융 유리를 처리하기 위한 장치에 관한 것으로서, 보다 상세하게는 내화물 용기, 예로서 내화물 노(refractory furnace)로부터 용융 유리를 전달 도관으로 전달하는 장치에 관한 것이다.
상업적 규모의 유리 제조는 전형적으로 용융로 내에서 수행되며, 용융로에 원료(배치(batch))가 첨가되고 용융 유리를 제조하기 위해 이 배치가 화학 반응을 일으키는 온도로 가열된다. 배치를 가열하는 여러 가지 방법이 사용될 수 있으며, 이는 가스-연료 버너, 전류 또는 둘 모두를 포함한다. 소위 하이브리드 공정에서, 하나 이상의 가스-연료 연소 버너로부터의 가스 불꽃이 초기에 배치를 가열한다. 배치의 온도가 상승하고 용융 유리가 형성됨에 따라, 재료의 전기 저항은 전류가 용융로의 측벽 및/또는 플로어에 장착된 전극을 통해 용융 유리에 유입될 수 있도록 감소된다. 전류는 내부에서 용융 유리를 가열하고 가스 버너는 용융 유리를 위에서 가열한다. 일부 실시예에서, 침지 연소(submerged combustion)가 사용될 수 있다.
예로서 청징 및 균질화와 같은 용융 유리의 후속 하류 처리는 노 구조의 특정 부분 또는 용융로로부터 하류에 위치하며 도관에 의해 용융로에 연결되는 다른 용기에서 수행될 수 있다. 용융 유리가 반송될 때 용융 유리의 적절한 온도를 유지하기 위해 용융 유리가 가열될 수 있다. 청징 공정과 같은 일부 공정에서, 용융 유리는 용융 유리로부터 기포를 보다 완전하게 제거하는 것을 용이하게 하기 위해 노 온도를 초과하는 온도로 청징 용기에서 가열될 수 있다. 용융로 하류의 제조 장치의 다른 부분에서, 용융 유리는 하나 이상의 도관을 통해 유동하면서 냉각되어 용융 유리를 성형을 위한 적절한 점도가 되게 할 수 있다. 그러나, 너무 급속한 냉각율을 방지하기 위해 열 에너지의 제어된 첨가에 의해 냉각이 제한될 수 있다.
금속 도관을 통해 반송되는 용융 유리에 대해, 전류가 금속 도관에 공급될 수 있으며, 도관 내의 전기 저항은 도관 및 그 내부의 용융 유리가 가열되게 한다. 그러나, 백금 함유 도관과 같은 금속 도관은 물 또는 하이드록실 이온이 파괴되고 그로부터 생성된 수소가 용융 유리 내에 산소를 남기고 도관 벽을 통과하며 이 산소가 후속하여 용융 유리 내에 기포를 형성하는 수소 침투라 알려진 현상으로 인해 도관의 유리측에 산소 기포가 형성되기 쉬운 것으로 알려져 있다.
내화물 용융로와 같은 내화 구조물을 빠져나오는 용융 유리는 용융 유리가 유리 제조 장치의 다양한 추가 용기 및 도관을 통해 이송될 때 계속적인 컨디셔닝이 필요할 수 있다.
일부 실시예에서, 용융 유리는 용융 공정 동안 도입된 기포를 제거하기 위해 정제("청징")될 수 있다. 용융된 유리는 또한 혼합(예로서, 교반)되어 용융 유리 내의 불균일성을 분산시키고 제거할 수 있다. 또한, 용융 유리의 온도 및 점도는 용융 유리가 최종 유리 물품으로 적절하게 형성될 수 있는 것을 보증하도록 주의 깊게 제어되어야 한다.
디스플레이 패널 제조에 사용되는 유리 시트의 제조와 같은 광학 품질 유리의 컨디셔닝 및 이송은 일반적으로 내화물(예로서, 내화물 세라믹)과 금속 용기의 조합 내에서 수행되며, 금속 용기의 경우에, 금속 용기는 하나 이상의 백금족 금속 또는 다른 고온, 저 부식성 금속으로 구성될 수 있다.
금속 용기를 통한 용융된 유리의 이송에 영향을 미치는 것으로 공지된 하나의 현상을 수소 침투라 지칭된다. 수소 침투는 분자 물 또는 하이드록실 이온 중 어느 것이든 물이 구성 수소와 산소로 분해될 때 발생한다. 용기를 통해 유동하는 용융 유리 내의 수소 분압이 용기 외측의 수소 분압 보다 큰 경우, 수소는 용기의 금속 벽을 투과하여 용융 유리 내에 산소의 기포를 남길 수 있다. 이 기포는 용융 유리의 유동 내에서 동반될 수 있으며, 제거되지 않으면 완성된 유리 제품에 들어갈 수 있다. 수소 침투를 최소화 또는 방지하기 위해서는 용융 유리의 추가 컨디셔닝이 필요할 수 있다.
따라서, 용융 유리를 컨디셔닝하기 위한 장치가 설명되며, 이는 내화물 용기의 벽을 통해 연장되는 금속 도관, 도관에 결합된 제1 플랜지, 도관에 결합되고 제1 플랜지가 제2 플랜지와 용기 사이에 위치되도록 제1 플랜지로부터 이격되어 있는 제2 플랜지를 포함한다. 장치는 제1 플랜지와 제2 플랜지 사이에 배치된 제1 내화물 절연 재료, 제1 내화물 절연 재료의 외부 주변부 주위에 위치된 밀봉 부재로서 밀봉 부재의 대향 가장자리들을 따라 제1 및 제2 플랜지에 대해 밀봉된 밀봉 부재, 밀봉 부재를 통해 연장되고 제1 내화물 절연 재료에 가스를 공급하도록 구성된 가스 전달 튜브를 추가로 포함한다. 밀봉 부재는 예로서 금속 밴드를 포함할 수 있다. 금속 밴드는 용접과 같은 방법으로 제1 또는 제2 플랜지 각각에 결합될 수 있다. 일부 실시예에서 금속 밴드는 백금, 예컨대 백금 로듐 합금을 포함한다.
또한, 제1 및 제2 플랜지 중 어느 하나 또는 모두는 백금을 포함할 수 있다.
일부 실시예에서, 제2 플랜지는 그 주변부 주위로 연장되는 냉각 튜브를 포함할 수 있으며, 냉각 튜브는 그를 통해 냉각 유체의 유동을 수용하도록 구성된 통로를 포함한다. 일부 실시예에서, 섬유 재료가 밀봉 부재와 제1 내화물 절연 재료 사이에 위치될 수 있다.
소정 실시예에서, 내화물 용기는 용융로이다. 임의의 다른 실시예에서, 내화물 용기는 1차 용융로 보다 낮은 온도를 갖는 2차 용융로일 수 있다. 또 다른 실시예에서, 내화물 용기는 청징 용기일 수 있다. 내화물 용기 또는 용기들은 내화물 세라믹 재료, 예로서 내화물 세라믹 벽돌로 형성될 수 있다.
다른 실시예에서, 용융 유리를 컨디셔닝하기 위한 장치가 개시되며, 이는 내화물 용기 및 내화물 용기의 벽을 통해 연장되는 금속 도관을 포함하고, 도관은 외벽 및 내벽을 포함하며, 내벽은 내화물 용기 내에 위치된 도관의 제1 단부에서 외벽에 결합되고, 내벽은 외벽의 대향 단부에서 외벽으로부터 이격되어 있다. 장치는 도관의 외벽에 결합되어 내화물 용기에 인접하게 위치된 제1 플랜지; 도관의 외벽에 결합되고 제1 플랜지로부터 이격된 제2 플랜지로서, 제1 플랜지는 제2 플랜지와 용기 사이에 위치되는, 제2 플랜지; 제1 플랜지와 제2 플랜지 사이에 위치된 제1 내화물 절연 재료; 도관의 내벽에 결합되고 제2 플랜지로부터 이격된 제3 플랜지로서, 제2 플랜지는 제1 플랜지와 제3 플랜지 사이에 위치되는, 제3 플랜지; 및 제2 플랜지와 제3 플랜지 사이에 위치된 제2 내화물 절연 재료를 추가로 포함한다. 장치는 도관의 내벽과 도관의 외벽 사이에 위치된 제3 내화물 절연 재료 및 제2 플랜지와 제3 플랜지 사이에서 제2 내화물 절연 재료 주위에 배치되고 그로부터 이격되어 있는 밀봉 부재를 더 포함하며, 이에 따라 제2 내화물 절연 재료의 외주연부와 밀봉 부재 사이에 간극이 형성된다.
장치는 또한 밀봉 부재와 제2 플랜지와 제3 플랜지 사이에 위치된 섬유 절연 재료를 더 포함할 수 있다. 밀봉 부재는 밀봉 부재를 통해 연장되는 가스 공급 튜브를 포함할 수 있으며, 가스 공급 튜브는 간극에 가스를 공급하도록 구성된다.
장치는 제3 플랜지에 결합되고 냉각 부재의 통로를 통해 냉각 유체의 유동을 수용하도록 구성된 제1 냉각 부재를 더 포함할 수 있다.
장치는 제2 플랜지에 결합되고 냉각 부재의 통로를 통해 냉각 유체의 유동을 수용하도록 구성된 제2 냉각 부재를 추가로 포함할 수 있다.
일부 실시예에서, 제2 플랜지는 전력 공급원과 전기 통신한다. 제3 플랜지는 전력 공급원과 전기 통신할 수 있다.
제2 플랜지는 복수의 링을 포함할 수 있으며, 내부 링은 도관의 외벽에 부착되고 외부 링은 내부 링 주위에 배치된다. 내부 링은 예로서 백금을 포함할 수 있다. 외부 링은 백금을 포함하지 않는 금속을 포함할 수 있다. 예로서, 외부 링은 니켈을 포함할 수 있다.
또 다른 실시예에서, 유리를 제조하기 위한 장치는 제1 용기에서 용융 유리를 형성하여 용융 유리를 금속 도관을 통해 제2 용기로 유동시키는 것을 포함하고, 도관은 도관의 외벽에 결합되고 내화물 용기에 인접하게 위치된 제1 플랜지; 도관의 외벽에 결합되고 제1 플랜지로부터 이격된 제2 플랜지로서, 제1 플랜지는 용기와 제2 플랜지 사이에 위치되는, 제2 플랜지; 제1 플랜지와 제2 플랜지 사이에 위치된 제1 내화물 절연 재료; 도관의 내벽에 결합되고 제2 플랜지로부터 이격된 제3 플랜지로서, 제2 플랜지는 제1 플랜지와 제3 플랜지 사이에 위치되는, 제3 플랜지; 제2 플랜지와 제3 플랜지 사이에 위치된 제2 내화물 절연 재료; 도관의 내벽과 도관의 외벽 사이에 위치된 제3 내화물 절연 재료 및 밀봉 부재로서, 밀봉 부재는 밀봉 부재와 제2 내화물 절연 재료의 외주연부 사이에 간극이 형성되도록 제2 플랜지와 제3 플랜지 사이에서 제2 내화물 절연 재료 주위에 배치되고 그로부터 이격되는, 밀봉 부재를 포함한다.
방법은 제2 플랜지와 제3 플랜지 사이에 전류를 공급하고 제3 플랜지와 제2 용기 사이에서 용융 유리를 냉각시킴으로써 금속 도관을 가열하여 제2 플랜지와 제2 용기 사이에 유리 밀봉부를 형성하는 단계를 더 포함할 수 있다. 제2 용기는 이송 도관일 수 있다. 본 명세서에 설명된 추가의 특징 및 장점은 이하의 상세한 설명에서 설명될 것이고, 일부는 그 설명으로부터 본 기술 분야의 숙련자가 쉽게 명백히 알 수 있거나 후속하는 상세한 설명, 청구범위 및 첨부 도면을 포함하는 본 명세서에 설명된 실시예를 실시하는 것에 의해 인식할 수 있을 것이다.
또 다른 양태에서, 유리를 제조하기 위한 방법은 제1 용기에서 용융 유리를 형성하여 용융 유리를 금속 도관을 통해 제2 용기로 유동시키는 단계를 포함하고, 도관은 도관의 외벽에 결합되고 내화물 용기에 인접하게 위치된 제1 플랜지; 도관의 외벽에 결합되고 제1 플랜지로부터 이격된 제2 플랜지로서, 제1 플랜지는 용기와 제2 플랜지 사이에 위치되는, 제2 플랜지; 제1 플랜지와 제2 플랜지 사이에 위치된 제1 내화물 절연 재료; 도관의 내벽에 결합되고 제2 플랜지로부터 이격된 제3 플랜지로서, 제2 플랜지는 제1 플랜지와 제3 플랜지 사이에 위치되는, 제3 플랜지; 제2 플랜지와 제3 플랜지 사이에 위치된 제2 내화물 절연 재료; 도관의 내벽과 도관의 외벽 사이에 위치된 제3 내화물 절연 재료 및 밀봉 부재로서, 밀봉 부재는 밀봉 부재와 제2 내화물 절연 재료의 외주연부 사이에 간극이 형성되도록 제2 플랜지와 제3 플랜지 사이에서 제2 내화물 절연 재료 주위에 배치되고 그로부터 이격되는, 밀봉 부재를 포함한다.
방법은 제2 플랜지와 제3 플랜지 사이에 전류를 공급하고 제3 플랜지와 제2 용기 사이에서 용융 유리를 냉각시킴으로써 금속 도관을 가열하여 제2 플랜지와 제2 용기 사이에 유리 밀봉부를 형성하는 단계를 더 포함할 수 있다. 제2 용기는 이송 도관일 수 있다.
방법은 유리 물품, 예로서 유리 리본으로 용융 유리를 형성하는 단계를 더 포함할 수 있다. 유리 리본은 개별 유리 시트로 분리될 수 있다. 다른 실시예에서, 유리 리본은 스풀 상에 권취될 수 있다.
본 명세서에 설명된 추가의 특징 및 장점은 이하의 상세한 설명에서 설명될 것이고, 일부는 그 설명으로부터 본 기술 분야의 숙련자가 쉽게 명백히 알 수 있거나 후속하는 상세한 설명, 청구범위 및 첨부 도면을 포함하는 본 명세서에 설명된 실시예를 실시하는 것에 의해 인식할 수 있을 것이다.
전술한 일반적인 설명 및 다음의 상세한 설명 모두는 다양한 실시예를 설명하고 청구된 주제의 본질 및 특성을 이해하기 위한 개요 또는 프레임워크를 제공하기 위한 것임을 이해해야 한다. 첨부된 도면은 다양한 실시예에 대한 추가적 이해를 돕기 위해 포함되며, 본 명세서에 통합되어 본 명세서의 일부를 구성한다. 도면은 본 명세서에 설명된 다양한 실시예를 예시하고, 설명과 함께 청구된 주제의 원리 및 동작을 설명하는 역할을 한다. 달리 명시되지 않는 한, 도면은 축척에 따르지 않는다.
도 1은 본 개시내용의 일 실시예에 따른 예시적인 유리 제조 공정의 개략도이다.
도 2는 본 개시내용의 일 실시예에 따른 연결 튜브 조립체의 개략적인 단면도이다.
도 3은 도 2의 연결 튜브 조립체의 일부의 측 단면도이며, 제2 플랜지가 생략되어 연결 튜브 조립체의 내부를 도시하고 있다.
도 4는 본 개시내용의 다른 실시예에 따른 연결 튜브 조립체의 개략적인 단면도이다.
도 5는 도 4의 연결 튜브 조립체의 일부의 측 단면도이며, 제3 플랜지가 생략되어 제2 및 제3 플랜지 사이의 연결 튜브 조립체의 내부를 도시하고 있다.
도 6은 연결 튜브 조립체의 일측으로부터 본 바와 같은, 도 4에 따른 연결 튜브 조립체의 사시도이다.
도 7은 연결 튜브 조립체의 대향측으로부터 본 바와 같은, 도 5에 따른 연결 튜브 조립체의 사시도이다.
도 8은 본 개시내용의 일 실시예에 따른 다른 예시적인 유리 제조 공정의 개략도이다.
도 9는 본 개시내용의 일 실시예에 따른 또 다른 예시적인 유리 제조 공정의 개략도이다.
본 개시내용의 예시적 실시예가 도시되어 있는 첨부 도면을 참조로 장치 및 방법을 이하에서 더 완전하게 설명할 것이다. 가능하다면, 동일한 도면 부호가 동일하거나 유사한 부분을 나타내기 위해 도면 전체에 걸쳐 사용된다. 그러나, 본 개시내용은 많은 상이한 형태로 구체화될 수 있으며 본 명세서에 설명된 실시예에 한정되는 것으로 해석되어서는 안 된다.
범위는 본 명세서에서 "약" 하나의 특정 값으로부터 및/또는 "약" 다른 특정 값까지로 표현될 수 있다. 그러한 범위가 표현될 때, 다른 실시예는 하나의 특정 값 및/또는 다른 특정 값을 포함한다. 유사하게, 값이 근사값으로 표현될 때, 선행하는 "약"의 사용으로, 특정 값이 또 다른 실시예를 형성한다는 것이 이해될 것이다. 범위 각각의 종점은 다른 종점과 관련하여, 그리고 다른 종점과는 독립적으로 유의미하다는 것이 추가로 이해될 것이다.
예로서, 위, 아래, 오른쪽, 왼쪽, 앞, 뒤, 상단, 저부와 같은 본 명세서에 사용된 방향적 용어는 단지 도시된 도면을 참조하여 이루어지는 것이며 절대적인 방향을 암시하는 것을 의도하지 않는다.
다르게 명시하지 않는 한, 본 명세서에 기재된 임의의 방법은 그 단계가 특정 순서로 수행되는 것이나 임의의 장치, 특정 배향이 요구되는 것을 필요로 하는 것으로 해석되는 것을 의도하지는 않는다. 따라서, 방법 청구항이 실제로 그 단계가 후속되는 것으로 순서를 기재하지 않는 경우 또는 임의의 장치 청구항이 개별 구성요소에 대한 순서나 배향을 실제로 기재하지 않는 경우 또는 단계가 특정 순서에 제한된다는 것이 설명이나 청구항에 구체적으로 선언되어 있지 않은 경우 또는 장치의 구성요소에 대한 특정 순서나 배향이 기재되지 않는 경우, 어떠한 방식으로도 어떠한 관점에서도 순사나 배향이 유추되는 것을 의도하지 않는다. 이것은 단계의 배열, 조작 흐름, 구성요소 순서, 또는 구성요소의 배향에 관한 논리 문제; 문법적 조직 또는 마침표로부터 유도되는 평이한 의미, 및; 본 명세서에 설명된 실시예의 수 및 유형을 포함하여, 임의의 가능한 비명시적 해석 기초에 적용된다.
본 명세서에서 사용된 단수 형태 "일"은 문맥상 다르게 지시하지 않는 한 복수 대상을 포함한다. 따라서, 예로서, "일" 구성요소에 대한 언급은 문맥이 다른 것을 명백하게 나타내지 않는 한, 2개 이상의 그러한 구성요소를 갖는 양태를 포함한다.
도 1에는 예시적 유리 제조 장치(10)가 도시되어 있다. 일부 예에서, 유리 제조 장치(10)는 용융 용기(14)를 포함할 수 있는 유리 용융로(12)를 포함할 수 있다. 용융 용기(14)에 추가하여, 유리 용융로(12)는 배치를 가열하고 배치를 용융 유리로 전환시키는 가열 요소(예로서, 연소 버너 또는 전극)와 같은 하나 이상의 추가 구성요소를 선택적으로 포함할 수 있다. 다른 예에서, 유리 용융로(12)는 용융 용기의 부근으로부터 손실된 열을 감소시키도록 배열된 열 관리 디바이스(예로서, 절연 구성요소)를 포함할 수 있다. 또 다른 예에서, 유리 용융로(12)는 유리 용융물로의 배치 재료의 용융을 용이하게 하도록 구성된 전자 디바이스 및/또는 전기 기계 디바이스를 포함할 수 있다. 또한, 유리 용융로(12)는 지지 구조(예로서, 지지 샤시, 지지 부재 등) 또는 다른 구성요소를 포함할 수 있다.
유리 용융 용기(14)는 전형적으로 내화물 세라믹 재료와 같은 내화물 재료로 구성된다. 일부 예에서, 유리 용융 용기(14)는 내화물 세라믹 벽돌, 예로서 알루미나 또는 지르코니아를 포함하는 내화물 세라믹 벽돌로 구성될 수 있다.
일부 예에서, 유리 용융로는 유리 기판, 예로서 연속 길이의 유리 리본을 제조하도록 구성된 유리 제조 장치의 구성요소로서 합체될 수 있다. 일부 예에서, 본 개시내용의 유리 용융로는 슬롯 인발 장치, 부상조(float bath) 장치, 하향-인발 장치, 상향-인발 장치(예로서, 융해 프로세스 포함), 가압-롤링 장치, 튜브 인발 장치 또는 본 개시 내용으로부터 이익을 얻을 수 있는 임의의 다른 유리 제조 장치를 포함하는 유리 제조 장치의 구성요소로서 통합될 수 있다. 예로서, 도 1은 예로서 개별 유리 시트로의 후속 처리를 위해 유리 리본을 융해 인발하기 위한 융해 하향 인발 유리 제조 장치(10)의 구성요소인 유리 용융로(12)를 개략적으로 예시한다.
유리 제조 장치(10)(예로서, 융해 하향 인발 장치(10))는 선택적으로 유리 용융 용기(14)의 상류에 위치된 상류 유리 제조 장치(16)를 포함할 수 있다. 일부 예에서, 일부 또는 전체 상류 유리 제조 장치(16)는 유리 용융로(12)의 일부로서 통합될 수 있다.
예시된 예에 도시된 바와 같이, 상류 유리 제조 장치(16)는 배치 저장 통(18), 배치 전달 디바이스(20) 및 배치 전달 디바이스에 연결된 모터(22)를 포함할 수 있다. 저장 통(18)은 화살표(26)로 표시된 바와 같이, 유리 용융로(12)의 용융 용기(14) 내로 공급될 수 있는 대량의 배치(24)를 저장하도록 구성될 수 있다. 배치(24)는 전형적으로 하나 이상의 유리 형성 금속 산화물 및 하나 이상의 개질제를 포함한다. 일부 실시예에서, 배치 전달 디바이스(20)는 미리결정된 양의 배치(24)를 저장 통(18)으로부터 용융 용기(14)로 전달하도록 구성된 모터(22)에 의해 동력을 공급받을 수 있다. 추가 예에서, 모터(22)는 용융 용기(14)로부터 하류에서 감지된 용융 유리의 레벨에 기초하여 제어된 속도로 배치(24)를 도입하기 위해 배치 전달 디바이스(20)에 동력을 공급할 수 있다. 용융 용기(14) 내의 배치(24)는 이후 가열되어 용융 유리(28)를 형성할 수 있다.
유리 제조 장치(10)는 유리 용융로(12)에 대해 하류에 위치된 하류 유리 제조 장치(30)를 선택적으로 포함할 수도 있다. 일부 예에서, 하류 유리 제조 장치(30)의 일부는 유리 용융로(12)의 일부로서 통합될 수 있다. 도 1에 예시된 실시예에서, 점선(31)은 하류의 제조 장치(30)로부터 용융로(12)(그리고 상류 제조 장치(16))를 분할한다. 그러나, 일부 경우에, 후술되는 제1 연결 도관(32) 또는 하류 유리 제조 장치(30)의 다른 부분은 유리 용융로(12)의 일부로서 통합될 수 있다. 제1 연결 도관(32)을 포함하는 하류 유리 제조 장치의 요소는 귀금속으로부터 형성될 수 있다. 적합한 귀금속은 백금, 이리듐, 로듐, 오스뮴, 루테늄 및 팔라듐으로 이루어진 금속 군으로부터 선택된 백금족 금속 또는 그 합금을 포함한다. 예로서, 유리 제조 장치의 하류 구성요소는 약 70 내지 약 90 중량%의 백금 및 약 10 내지 약 30 중량 %의 로듐을 포함하는 백금-로듐 합금으로 형성될 수 있다. 그러나, 다른 적합한 금속은 몰리브덴, 팔라듐, 레늄, 탄탈, 티타늄, 텅스텐 및 이들의 합금을 포함할 수 있다.
하류 유리 제조 장치(30)는 용융 용기(14)의 하류에 위치하고 전술한 제1 연결 도관(32)을 통해 용융 용기(14)에 결합되는 제1 컨디셔닝(즉, 처리) 용기, 예컨대 청징 용기(34)를 포함할 수 있다. 일부 예에서, 용융 유리(28)는 제1 연결 도관(32)을 통해 용융 용기(14)로부터 청징 용기(34)로 중력 공급될 수 있다. 예로서, 중력은 용융 유리(28)가 용융 용기(14)로부터 제1 연결 도관(32)의 내부 경로를 통해 청징 용기(34)로 통과하게 할 수 있다. 그러나, 다른 컨디셔닝 용기가 용융 용기(14)의 하류, 예로서 용융 용기(14)와 청징 용기(34) 사이에 위치될 수 있음을 이해하여야 한다. 일부 실시예에서, 용융 용기와 청징 용기 사이에 컨디셔닝 용기(도시되지 않음), 예로서 냉각 용기가 사용될 수 있으며, 용융 용기로부터 수용된 용융 유리는 청징 용기에 진입하기 이전에 용융 용기의 용융 유리의 온도보다 낮은 온도로 냉각된다.
청징 용기(34) 내에서, 기포는 다양한 기술에 의해 용융 유리(28)로부터 제거될 수 있다. 예로서, 배치(24)는 가열될 때 화학적 환원 반응을 겪고 산소를 배출하는 산화 주석과 같은 다가 화합물(즉, 청징제)을 포함할 수 있다. 다른 적합한 청징제는 비소, 안티몬, 철 및 세륨을 포함하지만 이에 한정되지 않는다. 청징 용기(34)는 용융 용기 온도 보다 높은 온도로 가열되어 청징제를 가열한다. 청징제(들)의 온도-유도된 화학적 환원에 의해 생성된 산소 기포는 청징 용기 내의 용융 유리를 통해 상승하고, 용융로에서 생성된 용융물 내의 가스는 청징제에 의해 생성된 산소 기포에 합쳐질 수 있다. 확대된 기포는 다음에 청징 용기 내의 용융 유리의 자유 표면으로 상승한 후 배출될 수 있다.
하류 유리 제조 장치(30)는 청징 용기(34)의 하류에 위치될 수 있는 용융 유리를 혼합하기 위한 혼합 용기(36)와 같은 다른 컨디셔닝 용기를 더 포함할 수 있다. 혼합 용기(36)는 균일한 유리 용융 조성물을 제공하도록 사용되고, 그에 의해, 그렇지 않으면 청징 용기로부터 배출되는 청징된 용융 유리 내에 존재할 수 있는 물리적 및/또는 열적 불균일성을 감소시키거나 제거한다. 도시된 바와 같이, 청징 용기(34)는 제2 연결 도관(38)을 통해 용융된 유리 혼합 용기(36)에 결합될 수 있다. 일부 예에서, 용융 유리(28)는 제2 연결 도관(38)을 통해 청징 용기(34)로부터 혼합 용기(36)로 중력 공급될 수 있다. 예로서, 중력은 용융 유리(28)가 청징 용기(34)로부터 제2 연결 도관(38)의 내부 경로를 통해 혼합 용기(36)로 통과하게 할 수 있다. 혼합 용기(36)는 청징 용기(34)의 하류에 도시되어 있지만, 혼합 용기(36)는 청징 용기(34)의 상류에 위치될 수 있음을 유의하여야 한다. 일부 실시예에서, 하류 유리 제조 장치(30)는 다수의 혼합 용기, 예로서 청징 용기(34)의 상류의 혼합 용기 및 청징 용기(34)의 하류의 혼합 용기를 포함할 수 있다. 이들 다수의 혼합 용기는 동일한 디자인일 수 있거나 또는 서로 상이한 디자인일 수 있다.
하류 유리 제조 장치(30)는 혼합 용기(36)의 하류에 위치될 수 있는 전달 용기(40)와 같은 다른 컨디셔닝 용기를 더 포함할 수 있다. 전달 용기(40)는 하류 성형 디바이스 내로 공급되는 용융 유리(28)를 컨디셔닝할 수 있다. 예로서, 전달 용기(40)는 출구 도관(44)을 통해 성형체(42)에 용융 유리(28)의 일관된 유동을 조정하고 제공하기 위해 어큐뮬레이터 및/또는 유동 제어기로서 작용할 수 있다. 도시된 바와 같이, 혼합 용기(36)는 제3 연결 도관(46)을 통해 전달 용기(40)에 결합될 수 있다. 일부 예에서, 용융 유리(28)는 제3 연결 도관(46)을 통해 혼합 용기(36)로부터 전달 용기(40)로 중력 공급될 수 있다. 예로서, 중력은 혼합 용기(36)로부터 제3 연결 도관(46)의 내부 경로를 통해 용융 유리(28)를 전달 용기(40)로 구동될 수 있다.
하류 유리 제조 장치(30)는 입구 도관(50)을 포함하는 전술한 성형체(42)를 포함하는 성형 장치(48)를 더 포함할 수 있다. 출구 도관(44)은 용융 유리(28)를 전달 용기(40)로부터 성형 장치(48)의 입구 도관(50)으로 전달하도록 위치될 수 있다. 융합 성형 공정에서, 성형체(42)는 성형체의 상부 표면에 위치된 홈통(52) 및 성형체의 저부 가장자리(루트)(56)를 따라 수렴하는 수렴 성형 표면(54)을 포함할 수 있다. 전달 용기(40), 출구 도관(44) 및 입구 도관(50)을 통해 성형체 홈통에 전달된 용융 유리는 홈통의 벽을 과류하고 수렴 성형 표면(54)을 따라 용융 유리의 분리된 유동으로서 하강한다. 용융 유리의 분리된 유동은 루트를 따라 아래쪽에서 결합하여 예컨대 중력 및 견인 롤(도시되지 않음)의 조합에 의해 유리 리본에 장력을 가함으로써 루트(56)로부터 인발된 단일 리본의 유리(58)를 생성함으로써 유리가 냉각될 때 유리 리본의 치수를 제어한다. 점도가 증가함에 따라, 유리 리본(58)은 점탄성 전이를 겪고 유리 리본(58)에 안정적 치수 특성을 부여하는 기계적 성질을 취득한다. 유리 리본이 도달하고 탄성 상태가 되면, 유리 리본은 유리 분리 장치(도시되지 않음)에 의해 개별 유리 시트로 후속하여 분리될 수 있다. 다른 실시예에서, 유리 리본은 대신 롤 상에 감길 수 있으며, 일부 예에서, 롤은 추후 사용을 위해 저장될 수 있다.
일부 실시예(도시되지 않음)에서, 성형 장치(48)는 예로서 다수의 성형체를 포함할 수 있고, 상부 성형체는 하부 성형체의 홈통 내에 수용된 용융 유리와 교차하는 하나 이상의 용융 유리 유동을 생성한다. 이러한 성형체의 조합은 예로서 적층된 유리 리본을 생성하기 위해 사용될 수 있고, 상부 성형체로부터의 유리 유동은 하부 성형체로부터 용융 유리의 유동 상에 외부 층을 형성한다. 적합한 성형 장치는 예로서 코폴라(Coppola) 등의 미국 특허 제8,007,913호에 설명되어 있으며, 그 내용은 그 전문이 본 명세서에 참고로 통합되어 있다.
도 2는 예시적인 내화물 용기(100), 예로서 내화물 세라믹 용기의 일부를 도시하며, 도 1에 예시된 예시적 융해 유리 제조 장치 같은 그러나 이에 한정되지 않는 유리 제조 장치를 포함할 수 있다. 예로서, 내화물 용기(100)는 용융 용기(14)와 같은 용융 용기일 수 있다. 내화물 용기(100)는 측벽(102)과 저부 벽(104)을 포함한다. 측벽(102) 및 저부 벽(104)은 일부 예에서 세라믹 벽돌로 형성될 수 있다. 도 2는 내화물 용기(100)로부터 용융 유리의 유동을 수용하는 통로를 한정하는 외벽(110)을 포함하는 도관(108)을 포함하는 연결 튜브 조립체(106)를 예시하며, 도관(108)은 내화물 용기 측벽(102)의 통로를 통해 연장된다. 다른 실시예에서, 도관(108)은 저부 벽(104)의 유사한 통로를 통해 연장될 수 있다. 도관(108)은 예로서, 원통형 도관일 수 있으며, 외벽(110)은 도관의 종방향 축(115)에 수직인 평면에서 원형 단면 형상을 포함한다. 그러나, 다양한 다른 실시예에서, 도관(108)은 비원형 단면 형상, 예로서, 긴 단면 형상(예로서, 직사각형 단면 형상, 난형 단면 형상, 타원형 단면 형상, 또는 이들 또는 다른 형상 중 임의의 것의 조합)을 가질 수 있다. 도관(108)은 용융 유리의 고온 및 부식 특성을 견딜 수 있는 고온 금속으로 형성될 수 있다. 예로서, 도관(108)은 백금, 로듐, 이리듐, 팔라듐, 오스뮴, 루테늄 및 이들의 합금으로 이루어진 군으로부터 선택된 하나 이상의 백금족 금속으로 형성될 수 있다. 특정 실시예에서, 도관(108)은 백금-로듐 합금으로 형성될 수 있다. 특정 예에서, 백금-로듐 합금은 약 70 중량 % 내지 약 90 중량 % 범위의 양의 백금을 포함할 수 있고, 약 10 중량 % 내지 약 30 중량 % 범위의 양의 로듐을 추가로 포함할 수 있으며, 예로서 80 중량 % - 20 중량% 백금 - 로듐 합금이다.
연결 튜브 조립체(106)는 도관(108)의 외벽(110)에 결합된 제1 플랜지(112) 및 역시 도관(108)의 외벽(110)에 결합되고 제1 플랜지(112)로부터 이격된 제2 플랜지(114)를 더 포함하며, 제1 플랜지(112)는 용기 측벽(102)(또는 대안적으로 저부 벽(104))과 제2 플랜지(114) 사이에 위치된다. 제1 및 제2 플랜지(112, 114)는 용접 또는 다른 적절한 결합 기술에 의해 도관(108)에 결합될 수 있다. 다양한 실시예에서, 제1 및 제2 플랜지(112, 114) 각각은 도관(108)이 관통 연장하는 개구를 포함하는 편평한 디스크일 수 있고, 각 플랜지의 평면은 도관(108)의 종방향 축(115)에 수직이다. 따라서, 제1 및/또는 제2 플랜지(112, 114)는 일반적으로 외벽(110) 주위에 연장되어 그와 결합되는 링으로서 형성될 수 있다. 제1 및 제2 플랜지(112, 114)는 예로서 고온 금속, 예로서 백금, 로듐, 이리듐, 팔라듐, 오스뮴, 루테늄 및 이들의 합금으로 이루어진 군으로부터 선택된 하나 이상의 백금족 금속으로 형성될 수 있다. 제1 및 제2 플랜지(112, 114)는 산화물 분산 강화 합금으로 형성될 수 있다. 소정 실시예에서, 제1 및 제2 플랜지(112, 114)는 백금-로듐 합금으로 형성될 수 있다. 특정 예에서, 백금-로듐 합금은 약 70 중량 % 내지 약 90 중량 % 범위의 양의 백금을 포함할 수 있고, 약 10 중량 % 내지 약 30 중량 % 범위의 양의 로듐을 추가로 포함할 수 있으며, 예로서 80 중량 % - 20 중량% 백금 - 로듐 합금이다.
도 3에 예시된 바와 같이, 연결 튜브 조립체(106)는 제1 및 제2 플랜지(112, 114)의 외부 영역(120)에 결합된 밀봉 부재(118)를 추가로 포함하고, 외부 영역(120)은 점선(122)(제1 플랜지(112) 상에 예시됨)으로부터 각 플랜지의 최외측 가장자리로 연장한다. 도 3이 제1 및 제2 플랜지(112, 114) 사이의 단면을 도시하므로 제2 플랜지(114)는 도 3에 도시되어 있지 않다는 것을 유의하여야 한다. 밀봉 부재(118)는 제1 및 제2 플랜지(112, 114), 외벽(110) 및 밀봉 부재(118) 사이에 밀폐 체적(124)을 형성한다. 밀봉 부재(118)는 예로서, 금속 밴드일 수 있고, 금속 밴드의 가장자리는 예로서 제1 및 제2 플랜지의 외부 영역(120) 내의 제1 및 제2 플랜지(112, 114)에 예로서 용접 또는 다른 적절한 결합 방법에 의해 결합된다. 밀봉 부재(118)는 예로서 고온 금속, 예로서 백금, 로듐, 이리듐, 팔라듐, 오스뮴, 루테늄 및 이들의 합금으로 이루어진 군으로부터 선택된 하나 이상의 백금족 금속으로 형성될 수 있다. 소정 실시예에서, 밀봉 부재(118)는 백금-로듐 합금으로 형성될 수 있다. 특정 예에서, 백금-로듐 합금은 약 70 중량 % 내지 약 90 중량 % 범위의 양의 백금을 포함할 수 있고, 약 10 중량 % 내지 약 30 중량 % 범위의 양의 로듐을 추가로 포함할 수 있으며, 예로서 80 중량 % - 20 중량% 백금 - 로듐 합금이다.
다른 예에서, 연결 튜브 조립체(106)는 제1 플랜지(112)와 제2 플랜지(114) 사이 및 밀봉 부재(118)에 의해 형성된 밀폐 체적(124) 내에 위치된 내화물 절연 재료(126)를 포함할 수 있다. 내화물 절연 재료(126)는 예로서 도관 외벽(110) 주위에 연장되는 환형체일 수 있다. 적합한 내화물 절연 재료(126)는 예로서 HarbisonWalker International 사로부터 입수 가능한 TAMAX®와 같은 고 알루미나 함량 재료일 수 있다. 소정 예에서, 내화물 절연 재료(126)는 내화물 시트의 적층 배열과 같은 복수의 환형 내화물 본체를 포함할 수 있다. 다른 예에서, 내화물 절연 재료(126)는 제1 및 제2 플랜지(112, 114) 사이의 외벽(110) 근처에 배치된 복수의 블록을 포함할 수 있다. 예시적인 실시예에서, 내화물 절연 재료(126)는 제1 내화물 절연 재료(126)와 밀봉 부재(118) 사이에 간극(128)(도 3 참조)이 존재하도록 밀봉 부재(118)로부터 이격된다.
가스 전달 튜브(130)는 밀봉 부재(118)를 통해 연장되고, 가스 공급부(131)로부터 제1 플랜지(112)와 제2 플랜지(114) 사이의 밀봉 부재(118)에 의해 형성된 밀폐 체적(124)으로 가스를 공급하도록 구성된다. 다양한 예에서, 가스 전달 튜브(130)는 밀봉 부재(118)와 내화물 절연 재료(126) 사이의 밀폐 체적(124), 예로서 간극(128)에 가스를 공급하도록 구성된다. 일부 실시예에서, 섬유 재료(132), 예로서 내화물 섬유 테이프(도 2 참조)가 간극(128) 내에 포함될 수 있으며, 특정 실시예에서 간극을 완전히 채울 수 있다. 적합한 섬유 내화 테이프는 Unifrax LLC에 의해 제조된 Fiberfrax 970-J와 같은 알루미노-실리케이트 섬유 재료일 수 있다. 섬유 재료(132)는 가스 전달 튜브(130)에 의해 공급된 가스가 내화물 절연 재료(126)의 주연부 근처로 유동할 수 있는 공극을 갖도록 선택된다. 또한, 내화물 절연 재료(126)의 공극은 가스가 내화물 절연 재료를 투과하여 도관(108)의 외벽과 접촉할 수 있도록 한다. 연결 튜브 조립체에 공급된 가스는 밀봉 부재(118)와 제1 및 제2 플랜지(112, 114) 사이의 밀폐 체적(124) 내의 수소 분압(pH2) 및/또는 산소 분압(pO2)을 제어하기 위해 사용될 수 있다. 이는 예로서, 공급된 가스의 습도, 예로서 노점을 제어함으로써 달성될 수 있다. 가스가 체적(124)으로부터 빠져 나갈 수 있도록 통기부(134)가 밀봉 부재(118)에 제공될 수 있지만 외부 대기압에 대한 양의 압력이 체적 내에 유지되도록 충분히 작다. 일부 실시예에서, 통기부(134)는 가스 전달 튜브(130)에 대향하여 위치될 수 있다.
일부 실시예에서, 제어 시스템은 도관(108)의 외부(비-유리 접촉 표면) 주위의 수소 레벨을 제어하여 유리 제조 장치(10)에 의해 제조된 유리 시트에 가스 함입물 및 표면 블리스터의 형성을 억제하도록 사용될 수 있다. 또한, 제어 시스템은 도관을 포함하는 귀금속의 산화를 감소시키도록 용기(들) 주위에 미소한 산소를 갖는 분위기를 유지시키기 위해 사용될 수 있다.
용융 유리(28)에서 함입물의 형성을 억제하기 위해, 도관(108)의 외부 표면상의 수소 레벨은 도관(108)의 내측 표면(즉, 용융 유리와 직접적으로 접촉하는 도관(108)의 표면) 상의 수소 레벨과 같거나 그 보다 클 필요가 있다. 도관(108)의 외부 표면상의 수소 레벨은 물 분해 반응 H2O → H2 + 1/2O2의 열역학적 평형에 의해 결정된다. 열역학적 테이블에 따르면, 물 분해 반응에 대한 자유 에너지(ΔG)는 58,900-13.1T와 같으며, 여기서 T는 켈빈 온도이고 G는 몰당 칼로리의 자유 에너지이다. 주어진 온도에서, 물 반응에 대한 평형 상수는 Keq=e-G/RT의 관계식을 사용하여 계산할 수 있으며, 여기서 G와 T는 앞에서 언급한 것과 같고 R은 보편 기체 상수이다. Keq가 알려지면, 물 분해에 수반되는 다양한 가스의 분압의 비를 계산할 수 있으며, 여기서 Keq=[(pH2)(pO2)1/2]/pH2O이다. 예로서, 1450 ℃에서, Keq는 2.47 x 10-5와 동일하다. 따라서, 75 ℉의 노점 공기 환경(0.030 기압의 pH2O)이 1450 ℃로 가열되면, 이때, pH2는 1.59 x 10-6 기압(1.59 ppm)으로 계산된다. 이 평형 상태의 관점에서, 일정한 노점(pH2O)을 유지하면서 산소의 분압을 낮추면 대기의 수소 수준을 실질적으로 높일 수 있다. 바람직한 가스 혼합물 내의 질소(또는 다른 불활성 가스)의 존재는 물 분해 반응에 직접적으로 참여하지 않는다는 것을 유의해야 한다. 대신, 불활성 가스의 분압은 이상 기체 법칙에 따라 산소 분압에 영향을 미친다. 그리고 물의 분해로 인한 산소 분압의 변화는 형성된 평형 가스에 영향을 미친다.
밀봉 부재와 제1 및 제2 플랜지(112, 114) 사이의 밀폐 체적(124) 내의 분위기의 수소 레벨은 평형 관계를 사용하는 다음 수학식에서 계산된 수소 레벨 보다 크거나 같아야 함을 알 수 있다:
pH2(ppm)=78,000xe-(G/RT) (1)
여기서 G, R 및 T는 이전에 정의되었다. 이 수학식은 다음과 같이 숫자 형식으로 다시 쓸 수 있다.
pH2(ppm)=78,000xe [(-58,900+13.1 T)/(1.987*T)] (2)
온도는 켈빈 온도이다.
전술한 바에 따라, 본 발명의 실시예는 도관(108)과 접촉하는 환경/분위기를 제어하고 문제가 되는 산화 반응이 도관(108)의 금속/유리 계면에서 발생하는 것을 방지하는 제어 시스템(136)을 더 포함할 수 있다. 다양한 실시예에서, 제어 시스템(136)은 폐루프 제어 시스템일 수 있다. 역시, 산화 반응은 유리 제조 장치(10)에 의해 제조된 유리 물품에 가스 함입물의 형성을 초래한다. 또한, 도관(108)과의 산화 반응은 도관의 파손을 초래할 수 있다.
일부 실시예에서, 제어 시스템(136)은 연결 튜브 조립체(106) 내의, 더 구체적으로는, 외벽(110), 밀봉 부재(118) 및 제1 및 제2 플랜지(112, 114)에 의해 한정된 체적(124) 내의 수증기, 산소 및 질소의 혼합물을 갖는 가스 시스템을 제어한다. 산소의 전형적인 값은 약 0.01 % 내지 약 1 %일 수 있고 물은 약 2 % 내지 약 20 %일 수 있고, 나머지는 질소 가스(또는 아르곤과 같은 다른 불활성 가스)이다. 가스 시스템은 약 21 %의 산소만큼 높게 운전될 수 있고 약 200 ℉만큼 높은 노점을 가질 수 있다. 200 ℉ 노점에서 0.01 % 산소 및 20 % 물을 포함하는 가스 시스템은 1700℃에서 약 1 내지 약 38,000 ppm의 수소 범위를 제공할 수 있다. 대안적으로, 체적(124)에 도입되는 가스의 혼합물은 탄화수소(및 산소), 암모니아, 분해 암모니아 생성물 및/또는 연소 생성물을 포함할 수 있다.
연결 튜브 조립체(106)는 내화물 용기(100)로부터 다른 용기 또는 도관으로 유동 방향(138)으로 용융 유리를 반송하는데 사용될 수 있다. 예로서, 도 2에 예시된 실시예에 따라, 제2 도관(140)은 도관(108)에 인접하게 위치될 수 있고, 제2 도관(140)은 도관(108) 및 제2 플랜지(114)에 직접적으로 대향된 제2 도관(140)의 단부(144)에 위치된 플랜지(142)를 포함한다. 플랜지(142)를 포함하는 제2 도관(140)은 예로서 고온 금속, 예로서 백금, 로듐, 이리듐, 팔라듐, 오스뮴, 루테늄 및 이들의 합금으로 이루어진 그룹으로부터 선택된 하나 이상의 백금족 금속으로 형성될 수 있다. 소정 실시예에서, 제2 도관(140) 및 플랜지(142)는 백금-로듐 합금으로 형성될 수 있다. 특정 예에서, 백금-로듐 합금은 약 70 중량 % 내지 약 90 중량 % 범위의 양의 백금을 포함할 수 있고, 약 10 중량 % 내지 약 30 중량 % 범위의 양의 로듐을 추가로 포함할 수 있으며, 예로서 80 중량 % - 20 중량% 백금 - 로듐 합금이다.
연결 튜브 조립체(106)는 선택적으로 제2 플랜지(114)에 결합된 적어도 하나의 냉각 튜브(146)를 포함할 수 있다. 예로서, 냉각 튜브(146)는 제2 플랜지(114)의 주변부 주위에 부착될 수 있다. 냉각 유체는 그 후 냉각 튜브를 통해 종방향으로 연장되는 통로를 통해 유동할 수 있다. 냉각 유체는 전형적으로 물과 같은 액체이지만, 일부 예에서 냉각 유체는 공기, 질소, 헬륨 및/또는 아르곤 같은 그러나 이에 제한되지 않는 가스일 수 있다. 냉각 튜브는 제2 플랜지(114) 및 그에 따라 제2 도관(140)의 플랜지(142)와 제2 플랜지(114) 사이에서 누설되는 용융 유리를 냉각시켜서 도관(108)과 제2 도관(140) 사이에 유리 밀봉부(148)를 형성한다. 유리 밀봉부(148)는 도관(108)을 제2 도관(140)으로부터 전기적으로 격리시키도록 추가로 기능할 수 있다. 도 1을 참조하면, 연결 튜브 조립체(106)는 용융 용기(14)와 연결 도관(32) 사이에서 연장되는 전이부를 형성할 수 있다. 예로서, 도 1에 따른 실시예에서, 유리 밀봉부(148)는 점선(31)(도 2 참조)에 의해 표시된 바와 같이, 유리 용융로(12)와 하류 유리 제조 장치(30) 사이의 경계이다.
본 개시내용의 다른 실시예에서, 연결 튜브 조립체(200)가 도 4에 예시되어 있다. 연결 튜브 조립체(200)는 제1 단부(204)와 제2 단부(206) 사이에서 연장되는 도관(202)을 포함한다. 도관(202)은 내벽(208) 및 외벽(210)을 더 포함한다. 내벽(208)과 외벽(210)은 도관(202)의 제1 단부(204)에서 결합된다. 그러나, 내벽(208)과 외벽(210)은 외벽(210)의 반대편의 결합되지 않은 단부에서 이격되어 있다. 따라서, 제1 단부(204)로부터 외벽(210)의 대향 단부까지 연장하는 내벽(208)과 외벽(210) 사이의 간극이 있다. 내벽(208)의 길이는 외벽(210)의 길이 보다 길어서 내벽(208)이 외벽(210)을 넘어 종방향으로 연장된다. 도관(202)은 내화물 용기 측벽(102) 내의 통로를 통해 연장되어 제1 단부(204)가 내화물 용기(100)의 체적에 또는 그 내부에 위치되고, 제2 단부(206)는 내화물 용기(100) 외부에 위치된다. 즉, 일부 실시예에서 제1 단부(204)는 측벽(102)의 내부 표면과 일치될 수 있지만, 다른 실시예에서는 제1 단부(204)는 측벽(102) 내에서 종결될 수 있는 반면에 도 4에 예시된 실시예와 같은 또 다른 실시예에서는 제1 단부(204)는 내화물 용기(100) 내로 연장될 수 있다. 다른 예에서, 도관(202)은 저부 벽(104)의 통로를 통해 유사하게 연장될 수 있다.
일부 실시예에서, 연결 튜브 조립체(200)는 도관(202)의 외벽(210)에 결합된 제1 플랜지(212)를 더 포함한다. 제1 플랜지(212)는 내화물 용기 벽(102)의 외부 표면(용융 유리(28)에 대향함)에 인접하여 위치된다. 예로서, 제1 플랜지(212)는 내화물 용기 벽(102)에 접할 수 있다. 제1 플랜지(212)는 도관(202)이 관통 연장하는 개구를 포함하며, 제1 플랜지(212)의 평면은 도관(202)의 종방향 축에 수직이다. 따라서, 제1 플랜지(212)는 외벽(210) 주위에 링으로서 연장하고, 예로서 용접 또는 다른 적절한 결합 기술에 의해 외벽에 결합된다. 제1 플랜지(212)는 예로서 고온 금속, 예로서 백금, 로듐, 이리듐, 팔라듐, 오스뮴, 루테늄 및 이들의 합금으로 이루어진 그룹으로부터 선택된 하나 이상의 백금족 금속으로 형성될 수 있다. 제1 플랜지(212)는 산화물 분산 보강 합금, 예로서 분산 강화 백금(예로서, 지르코니아 강화 백금)으로 형성될 수 있다. 소정 실시예에서, 제1 플랜지(212)는 백금-로듐 합금으로 형성될 수 있다. 특정 예에서, 백금-로듐 합금은 약 70 중량 % 내지 약 90 중량 % 범위의 양의 백금을 포함할 수 있고, 약 10 중량 % 내지 약 30 중량 % 범위의 양의 로듐을 추가로 포함할 수 있으며, 예로서 80 중량 % - 20 중량% 백금 - 로듐 합금이다.
연결 튜브 조립체(200)는 제1 플랜지(212)가 내화물 용기 벽(102)과 제2 플랜지(214) 사이에 위치되도록 제1 플랜지(212)에 인접하지만 그로부터 이격 위치된 제2 플랜지(214)를 더 포함한다. 제2 플랜지(214)는 도관(202)이 관통 연장하는 개구를 포함하며, 제2 플랜지(214)의 평면은 도관(202)의 종방향 축에 수직이다. 따라서, 제2 플랜지(214)는 외벽(210) 주위에 링으로서 연장되고, 예로서 용접 또는 다른 적절한 결합 기술에 의해 외벽(210)에 결합된다. 제2 플랜지(214)는 예로서 고온 금속, 예로서 백금, 로듐, 이리듐, 팔라듐, 오스뮴, 루테늄 및 이들의 합금으로 이루어진 그룹으로부터 선택된 하나 이상의 백금족 금속으로 형성될 수 있다. 제2 플랜지(214)는 산화물 분산 보강 합금, 예로서 분산 강화 백금(예로서, 지르코니아 강화 백금)으로 형성될 수 있다. 소정 실시예에서, 플랜지(212)는 백금-로듐 합금으로 형성될 수 있다. 특정 예에서, 백금-로듐 합금은 약 70 중량 % 내지 약 90 중량 % 범위의 양의 백금을 포함할 수 있고, 약 10 중량 % 내지 약 30 중량 % 범위의 양의 로듐을 추가로 포함할 수 있으며, 예로서 80 중량 % - 20 중량% 백금 - 로듐 합금이다.
다양한 실시예에 따르면, 연결 튜브 조립체(200)는 제1 및 제2 플랜지(212, 214) 사이의 도관(202) 근처에 위치된 제1 내화물 절연 재료(216)를 더 포함할 수 있다. 예로서, 제1 내화물 절연 재료(216)는 도관(202)이 관통 연장하는 통로를 포함하는 환형체(예로서 외벽(210))일 수 있다. 그러나, 다른 실시예에서, 제1 내화물 절연 재료(216)는 복수의 세그먼트, 예로서 복수의 적층된 내화물 절연 디스크 또는 복수의 체결된 블록을 포함할 수 있다. 적합한 제1 내화물 절연 재료는 예로서 HarbisonWalker International 사로부터 입수 가능한 TAMAX®와 같은 고 알루미나 함량 재료일 수 있다.
연결 튜브 조립체(200)는 제2 플랜지(214)가 제1 플랜지(212)와 제3 플랜지(218) 사이에 위치되도록 내벽(208)에 결합되고 제2 플랜지(214)로부터 이격된 제3 플랜지(218)를 더 포함할 수 있다. 제3 플랜지(218)는 도관(202)(보다 구체적으로 내벽(208))이 관통하여 연장하는 개구를 포함하며, 제3 플랜지(218)의 평면은 도관(202)의 종방향 축에 수직이다. 따라서, 제3 플랜지(218)는 내벽(208) 주위에 링으로서 연장되고 용접과 같은 방식으로 내벽(208)에 결합된다. 제3 플랜지(218)는 예로서 고온 금속, 예로서 백금, 로듐, 이리듐, 팔라듐, 오스뮴, 루테늄 및 이들의 합금으로 이루어진 그룹으로부터 선택된 하나 이상의 백금족 금속으로 형성될 수 있다. 제3 플랜지(218)는 산화물 분산 보강된 합금, 예로서 분산 강화된 백금(예로서, ZGS 백금으로 상업적으로 공지된 지르코니아 강화 백금)으로 형성될 수 있다. 소정 실시예에서, 제3 플랜지(218)는 백금-로듐 합금으로 형성될 수 있다. 특정 예에서, 백금-로듐 합금은 약 70 중량 % 내지 약 90 중량 % 범위의 양의 백금을 포함할 수 있고, 약 10 중량 % 내지 약 30 중량 % 범위의 양의 로듐을 추가로 포함할 수 있으며, 예로서 80 중량 % - 20 중량% 백금 - 로듐 합금이다.
연결 튜브 조립체(200)는 제1 및 제2 플랜지(112, 114)의 외측 영역(222)에서 제2 플랜지(214)와 제3 플랜지(218) 사이에 위치된 밀봉 부재(220)를 더 포함할 수 있고, 외측 영역(222)은 점선(224)(제2 플랜지(114) 상에 도시됨)으로부터 각 플랜지의 최외측 가장자리로 연장한다(도 4 및 도 5 참조). 밀봉 부재(220)는 제2 플랜지(214)와 제3 플랜지(218) 사이에 밀폐 체적(226)을 형성하고, 밀폐 체적은 내벽(208)으로부터 밀봉 부재(220)까지 반경 방향 외측으로 연장된다. 밀봉 부재(220)에 적합한 재료는 예로서, ZIRCAR Refractory Composites, Inc.에 의해 제조된 ZIRCAR 내화물 시트 타입 RS-100일 수 있다.
연결 튜브 조립체(200)는 밀폐 체적(226) 내에 위치되고 내벽(208) 주위로 연장되는 제2 내화물 절연 재료(228)를 더 포함하고, 제2 내화물 절연 재료(228)는 밀봉 부재(220)로부터 이격되어 제2 내화물 절연 재료와 밀봉 부재(220) 사이에 간극(230)을 형성한다. 예로서, 제2 내화물 절연 재료(228)는 도관(202)이 관통 연장하는 통로를 포함하는 환형체(예로서 내벽(208))일 수 있다. 그러나, 다른 실시예에서, 제2 내화물 절연 재료(228)는 복수의 세그먼트, 예로서 복수의 적층된 내화물 절연 디스크 또는 복수의 체결된 블록을 포함할 수 있다. 적합한 제2 내화물 절연 재료(228)는 예로서 HarbisonWalker International 사로부터 입수 가능한 TAMAX®와 같은 고 알루미나 함량 재료일 수 있다.
선택적으로, 예로서 섬유 종이와 같은 섬유 재료(232)가 밀봉 부재(220)와 제2 및 제3 플랜지(214, 218) 모두 사이에 위치될 수 있다. 섬유 재료(232)는 섬유 종이일 수 있다. 예로서, 섬유 재료는 Unifrax LLC에 의해 제조된 Fiberfrax 970-J 종이와 같은 알루미노-실리케이트 섬유 재료일 수 있다.
연결 튜브 조립체(200)는 밀봉 부재(220)를 통해 간극(230)까지 연장되는 가스 전달 튜브(234)를 더 포함할 수 있으며, 여기서 가스 전달 튜브(234)는 가스 공급부(도시되지 않음)와 유체 연통하며, 전술된 바와 같이 가스가 제공될 수 있다. 밀봉 부재(220)는 밀봉 부재(220)의 두께를 통해 연장되고 그를 통해 밀폐 체적(226)(예로서, 간극(230)) 내의 가스가 배출될 수 있는 통기 통로(236)를 더 포함할 수 있다.
일부 실시예에서, 제어 시스템은 도관(202)의 외부(비-유리 접촉 표면) 주위의 수소 레벨을 제어하여 유리 제조 장치(10)에 의해 제조된 유리 시트에 가스 함입물 및 표면 블리스터의 형성을 억제하도록 사용될 수 있다. 또한, 제어 시스템은 도관을 포함하는 귀금속의 산화를 감소시키도록 용기(들) 주위에 미소한 산소를 갖는 분위기를 유지시키기 위해 사용될 수 있다.
전술한 바에 따라, 본 발명의 실시예는 도관(202)과 접촉하는 환경/분위기를 제어하고 문제가 되는 산화 반응이 도관(202)의 금속/유리 계면에서 발생하는 것을 방지하는 제어 시스템(136)을 더 포함할 수 있다. 다양한 실시예에서, 제어 시스템(136)은 공급 가스를 거쳐 도관(202), 특히 내벽(208)과 접촉하는 수소 및/또는 산소의 분압을 제어하는 폐루프 제어 시스템일 수 있다. 역시, 앞서 설명된 산화 반응은 유리 제조 장치(10)에 의해 제조된 유리 물품에 가스 함입물의 형성을 초래한다. 또한, 도관(202)과의 산화 반응은 도관의 파손을 초래할 수 있다.
일부 실시예에서, 제어 시스템(136)은 연결 튜브 조립체(200) 내의, 더 구체적으로는, 내벽(208), 밀봉 부재(220) 및 제2 및 제3 플랜지(214, 218)에 의해 한정된 밀폐 체적(226) 내의 수증기, 산소 및 질소의 혼합물을 갖는 가스 시스템을 제어한다. 산소의 전형적인 값은 약 0.01 % 내지 약 1 %일 수 있고 물은 약 2 % 내지 약 20 %일 수 있고, 나머지는 질소 가스(또는 아르곤과 같은 다른 불활성 가스)이다. 가스 시스템은 약 21 %의 산소만큼 높게 운전될 수 있고 약 200 ℉만큼 높은 노점을 가질 수 있다. 약 200 ℉ 노점에서 약 0.01 % 산소 및 약 20 % 물을 포함하는 가스 시스템은 약 1700℃에서 약 1 내지 약 38,000 ppm의 수소 범위를 제공할 수 있다. 대안적으로, 체적에 도입되는 가스의 혼합물은 탄화수소(및 산소), 암모니아, 분해 암모니아 생성물 및/또는 연소 생성물을 포함할 수 있다. 전술한 바와 같이, 제어 시스템(136)은 폐루프 제어 시스템일 수 있다.
연결 튜브 조립체(200)는 도관(202)의 내벽(208)과 외벽(210) 사이의 간극 내에 위치된 제3 내화물 밀봉 재료(238)를 더 포함할 수 있다. 제3 내화물 밀봉 재료(238)는 고온에서의 열화에 저항할 수 있어야 하고 도관(202)의 내벽 및 외벽의 붕괴를 피하기 위해 높은 구조 강도를 나타내어야 한다. 적합한 제3 내화물 절연 재료는 예로서 Saint-Gobain에 의해 제조된 Alundum AN485와 같은 고 알루미나 함량 재료일 수 있다. 그러나, 장치의 열적 및 구조적 요구를 충족시키는 임의의 적합한 내화물 절연 재료가 사용될 수 있다.
제3 플랜지(218) 및 선택적으로 제2 플랜지(214)에는 냉각 튜브의 내부 통로를 통해 냉각 유체의 유동을 수용하도록 구성된 냉각 튜브(240)가 제공될 수 있다. 예로서, 각각의 냉각 튜브(240)는 제2 또는 제3 플랜지(214, 218)의 외부 주변부의 적어도 일부 또는 전체 주위로 연장될 수 있다. 적어도 제3 플랜지(218)의 냉각은 도관(202)(즉, 제3 플랜지(218))과 인접한 용기, 예컨대 말단 플랜지(142)를 포함하는 제2 도관(140) 사이에 유리 밀봉부(148)를 형성하도록 기능한다. 인접한 플랜지 사이에서 누설된 용융 유리는 냉각되어 유리 밀봉부(148)로 응고되어, 2개의 인접한 플랜지(218, 142) 사이에서 용융 유리의 연속적인 유동을 방지한다. 또한, 냉각 튜브가 전류에 의해 가열될 수 있는 플랜지 또는 플랜지들을 냉각시킴으로써 플랜지에 대한 열 손상을 방지하도록 기능한다는 것이 명백하다.
일부 실시예에서, 제2 및 제3 플랜지(214, 218)는 도관(202) 내로 및 도관(202)을 통해 전류를 전도하도록 구성될 수 있다. 따라서, 도 6 및 도 7에 가장 잘 예시된 바와 같이, 제2 및 제3 플랜지(214, 218) 각각은 전류 소스(예시되지 않음)와 전기적으로 접촉하는 전극 부분(242, 244)을 포함할 수 있다. 제2 플랜지(214)는 도관(202)의 외벽(210), 보다 구체적으로는 외벽(210)의 단부에 결합되고, 제3 플랜지(218)는 도관(202)의 내벽(208), 보다 구체적으로는 내벽(208)의 일 단부에 결합되며, 도관(202)의 제1 단부(204)를 제외하고는, 내벽(208)과 외벽(210)은 간극에 의해 분리되어 있다. 제2 및 제3 플랜지(214, 218)에 공급된 전류는 실질적으로 내벽 및 외벽(208, 210) 전체를 통해 제2 및 제3 플랜지 사이로 유동하고, 그에 의해 도관(202)(및 그 내부의 용융 유리)을 가열한다. 원하는 경우, 제2 및 제3 플랜지는 도관(202) 모두가 전기적으로 가열되지는 않도록 위치될 수 있음이 명백하다. 또한, 제2 플랜지(214) 및 제3 플랜지(218) 중 어느 하나 또는 모두는 도관(202) 주위로 연장되는 제1(내부) 링 및 제1 링 주위로 연장되는 제2(외부) 링을 포함할 수 있다. 일부 실시예에서, 제1 링은 최내측 링이고 도관(202)과 직접적으로 접촉할 수 있다. 유사하게, 제2 링은 최외부 링일 수 있고 각각의 전극 부분과 직접적으로 접촉할 수 있다.
따라서, 소정 실시예에서, 제2 플랜지(214)는 외벽(210)과 직접적으로 접촉하는 최내부 링인 제1 링(246)을 포함할 수 있다. 제2 플랜지(214)는 제2 링(248)을 더 포함할 수 있고, 제2 링은 최외부 링이고 제1 링(246) 주위로 연장된다. 제2 링(248)은 제2 링(248)이 제1 링(246)의 외주연부에 결합되도록 제1 링(246)과 직접적으로 접촉할 수 있다. 다른 실시예에서, 제2 플랜지(214)는 제1 링(246)과 제2 링(248) 사이에 중간 링을 포함할 수 있다. 제1 링(246)은 도관(202)에 근접할 수 있기 때문에, 일부 실시예에서 제1 링(246)은 고온 귀금속, 예로서 백금, 로듐, 이리듐, 팔라듐, 오스뮴, 루테늄 및 그 합금으로 구성되는 그룹으로부터 선택된 백금족 금속으로 형성될 수 있다. 소정 실시예에서, 제1 링(246)은 백금-로듐 합금으로 형성될 수 있다. 특정 예에서, 백금-로듐 합금은 약 70 중량 % 내지 90 중량 % 범위의 양의 백금을 포함할 수 있고, 약 10 중량 % 내지 약 30 중량 % 범위의 양의 로듐을 추가로 포함할 수 있다. 그러나, 제2 링(248)은 제1 링(246) 보다 도관(202)으로부터 더 멀리 위치되기 때문에, 제2 링(248)은 반드시 도관(202)을 통해 흐르는 용융 유리의 고온(몇몇 유리 제조 공정에서는 용융 용기에서 나오는 용융 유리가 1500℃를 초과할 수 있다)이 아닌 적당한 온도에 견딜 수 있는 저렴한 금속으로 형성될 수 있다. 따라서, 일부 실시예에서, 제2 링(248)은 유사한 전도성 및 융점을 갖는 니켈, 몰리브덴 또는 다른 금속으로 형성될 수 있다. 제2 링(248)은 제1 링(246)의 두께 보다 큰 두께를 가질 수 있다. 전술한 중간 링은 귀금속, 예로서 제1 링의 귀금속 또는 제2 링의 금속과 같은 다른 금속으로 형성될 수 있으며, 여기서 제2 링은 최외부 링이다. 그러나, 다른 실시예에서, 중간 링 또는 링들은 제1 또는 제2 링과 상이한 금속을 포함할 수 있다.
소정 실시예에서, 제3 플랜지(218)는 외벽(210)과 직접적으로 접촉하는 최내부 링인 제1 링(250)을 포함할 수 있다. 제3 플랜지(218)는 제2 링(252)을 더 포함할 수 있고, 제2 링은 최외부 링이고 제1 링(250) 주위로 연장된다. 제2 링(252)은 제2 링(252)이 제1 링(250)의 외주연부에 결합되도록 제1 링(250)과 직접적으로 접촉할 수 있다. 다른 실시예에서, 제3 플랜지(218)는 제1 링(250)과 제2 링(252) 사이에 중간 링을 포함할 수 있다. 제1 링(250)은 도관(202)에 근접할 수 있기 때문에, 일부 실시예에서 제1 링(250)은 고온 귀금속, 예로서 백금, 로듐, 이리듐, 팔라듐, 오스뮴, 루테늄 및 그 합금으로 구성되는 그룹으로부터 선택된 백금족 금속으로 형성될 수 있다. 소정 실시예에서, 제1 링(250)는 백금-로듐 합금으로 형성될 수 있다. 특정 예에서, 백금-로듐 합금은 약 70 중량 % 내지 90 중량 % 범위의 양의 백금을 포함할 수 있고, 약 10 중량 % 내지 약 30 중량 % 범위의 양의 로듐을 추가로 포함할 수 있다. 그러나, 제2 링(252)은 제1 링(250) 보다 도관(202)으로부터 더 멀리 위치되기 때문에, 제2 링(252)은 반드시 도관(202)을 통해 흐르는 용융 유리의 고온(몇몇 유리 제조 공정에서는 용융 용기에서 나오는 용융 유리가 1500℃를 초과할 수 있다)이 아닌 적당한 온도에 견딜 수 있는 저렴한 금속으로 형성될 수 있다. 따라서, 일부 실시예에서, 제2 링(252)은 니켈, 몰리브덴 또는 다른 유사한 금속으로 형성될 수 있다. 제2 링(252)은 제1 링(250)의 두께 보다 큰 두께를 가질 수 있다. 전술한 중간 링은 귀금속, 예로서 제1 링의 귀금속 또는 제2 링의 금속과 같은 다른 금속으로 형성될 수 있으며, 여기서 제2 링은 최외부 링이다. 그러나, 다른 실시예에서, 중간 링 또는 링들은 제1 또는 제2 링과 상이한 금속을 포함할 수 있다.
제2 및 제3 플랜지(214, 218)는 볼트 또는 나사 등과 같은 복수의 체결구(254)에 의해 서로 결합될 수 있으며, 결합은 섬유 재료(232)를 밀봉 재료(220)에 대해 압착하여 밀봉을 향상시키는 기능을 할 수 있다. 예로서, 도 4에 예시된 실시예에서, 제3 플랜지(218)의 제2 링(252)은 체결구(254)가 관통 연장하는 개구를 포함한다. 전기적 절연 부싱(256)이 각 체결구 주위에 위치되고 각 체결구(254)가 제3 플랜지(218)로부터 전기적으로 절연되도록 개구에 삽입된다. 제2 플랜지(214)는 각각의 체결구(254)가 나사 결합될 수 있는 상보적인 나사식 개구를 포함한다(전기 절연체는 각각의 체결구의 한쪽 단부에서만 요구됨이 명백하다). 다른 실시예들에서, 제3 플랜지(218)가 나사식 통로를 포함하도록 체결구의 위치가 상호 교환될 수 있다는 것이 명백하다. 전기적으로 절연된 체결구의 사용은 체결구의 조임 및 섬유 재료(232)의 후속 압축 그리고 제2 및 제3 플랜지(214, 218) 사이의 전기 단락을 일으키지 않는 제2 및 제3 플랜지(214, 218)에 대한 밀봉 부재(220)의 밀봉을 용이하게 한다.
전술한 설명으로부터, 본 명세서에 개시된 연결 튜브 조립체가 다양한 유리 제조 시스템에 사용될 수 있음이 명백하다. 예로서, 도 8은 내화물 청징 용기(334), 예로서, 내화물 세라믹 청징 용기를 포함하는 다른 유리 제조 장치(10)를 예시하며, 유리 제조 장치(10)는 내화물 용기(예로서 용융 용기(14) 또는 청징 용기(334))에 진입하거나 그로부터 이탈하는(또는 양자 모두) 복수의 연결 튜브 조립체(예로서, 연결 튜브 조립체(106) 및/또는 연결 튜브 조립체(200))를 포함한다.
도 9에 예시된 또 다른 실시예에서, 유리 제조 장치(10)가 예시되어 있고, 유리 용융로(12)는 용융 용기(14)의 하류에 그리고 청징 용기(34)의 상류에 그와 직렬로 연결된 제2 용융 용기(15)를 포함한다. 제2 용융 용기(15)는 용융 용기(14) 이하의 온도일 수 있다. 유리 용융 용기(15)는 전형적으로 내화물 세라믹 재료와 같은 내화물 재료로 구성된다. 일부 예에서, 유리 용융 용기(15)는 내화물 세라믹 벽돌, 예로서 알루미나 또는 지르코니아를 포함하는 내화물 세라믹 벽돌로 구성될 수 있다. 도 8의 경우에서와 같이, 도 9의 유리 제조 장치(10)는 내화물 용기(예로서, 용융 용기(14) 또는 용융 용기(15))에 진입 또는 이탈(또는 양자 모두)하는 복수의 연결 튜브 조립체(예로서, 연결 튜브 조립체(106) 및/또는 연결 튜브 조립체(200))를 포함한다.
본 기술 분야의 숙련자는 본 발명의 사상 및 범위를 벗어나지 않고 본 개시내용의 실시예에 다양한 수정 및 변형이 이루어질 수 있음을 알 것이다. 따라서, 본 개시내용은 첨부된 청구범위 및 그 등가물의 범위 내에 있는 그러한 실시예의 변형 및 변경을 포함하는 것으로 의도된다.

Claims (20)

  1. 유리 제조 방법이며,
    용융 유리를 연결 튜브 조립체를 통해 제1 용기에서 제2 용기로 유동시키는 단계로서, 연결 튜브 조립체는:
    제1 단부 및 제1 단부의 대향 단부인 제2 단부를 포함하고, 상기 제1 단부는 제1 용기의 벽을 통해 적어도 부분적으로 연장되고, 상기 제2 단부는 제1 용기의 외부에 위치한, 제1 도관;
    제1 플랜지 및 제1 용기 외부에서 상기 제1 도관에 결합된 제2 플랜지로, 상기 제2 플랜지는 상기 제1 플랜지로부터 이격되어 상기 제1 플랜지가 상기 제2 플랜지 및 제1 용기 사이에 위치하는, 제2 플랜지;
    제1 및 제2 플랜지, 밀봉 부재 및 제1 도관 사이에 밀폐 체적을 형성하도록, 제1 및 제2 플랜지를 밀봉하는 밀봉 부재;
    밀봉 부재를 통해 밀폐 체적으로 연장되는 가스 전달 튜브;
    를 포함하는 단계; 및
    밀폐 체적의 수소 분압을 제어하기 위해 가스 전달 튜브를 통해 밀폐 체적으로 가스를 전달하는 단계
    를 포함하는, 방법.
  2. 제1항에 있어서, 상기 수소 분압을 제어하는 것은 상기 가스의 습도를 제어하는 것을 포함하는, 방법.
  3. 제1항에 있어서, 상기 가스를 전달하는 단계는 밀폐 체적 외부 대기압에 대해 양의 압력이 밀폐 체적 내에 유지되는 것을 포함하는, 방법.
  4. 제1항에 있어서, 상기 가스를 전달하는 단계는 상기 가스 내 산소의 양을 조절하는 것을 포함하는, 방법.
  5. 제1항에 있어서, 상기 제2 플랜지는 상기 제2 플랜지의 주변부에 부착된 냉각 튜브를 포함하고, 상기 방법은 냉각 튜브를 통해 냉각 유체를 유동시키는 단계를 포함하는, 방법.
  6. 제1항에 있어서, 상기 제1 도관과 상기 제1 도관에 인접한 제2 도관 사이에 유리 밀봉부를 형성하는 단계를 더욱 포함하는, 방법.
  7. 유리 제조 방법이며,
    용융 유리를 연결 튜브 조립체를 통해 제1 용기에서 제2 용기로 유동시키는 단계로서, 연결 튜브 조립체는:
    도관;
    상기 도관에 부착된 제1 플랜지;
    상기 도관에 부착되고 상기 제1 플랜지로부터 이격된 제2 플랜지로, 상기 제1 플랜지가 제2 플랜지 및 상기 제1 용기 사이에 위치하는, 제2 플랜지;
    상기 도관에 부착되고 제1 플랜지 및 제2 플랜지로부터 이격된 제3 플랜지로, 상기 제2 플랜지가 제1 플랜지 및 제3 플랜지 사이에 위치하는, 제3 플랜지;
    제2 플랜지, 제3 플랜지, 밀봉 부재 및 도관 사이에 밀폐 체적을 형성하도록, 제2 플랜지 및 제3 플랜지를 밀봉하는 밀봉 부재;
    를 포함하는 단계; 및
    밀폐 체적의 수소 분압을 제어하기 위해 밀폐 체적으로 연장되는 가스 전달 튜브를 통해 밀폐 체적으로 가스를 전달하는 단계
    를 포함하는, 방법.
  8. 제7항에 있어서, 상기 제2 플랜지와 상기 제3 플랜지 사이의 상기 도관에 전류를 공급하여 상기 도관을 가열하는 단계를 더욱 포함하는, 방법.
  9. 제7항에 있어서, 상기 제2 플랜지 또는 상기 제3 플랜지 중 적어도 하나는 이에 부착된 냉각 튜브를 포함하고, 상기 방법은 냉각 튜브에 냉각 유체를 유동시키는 단계를 포함하는, 방법.
  10. 제7항에 있어서, 복수의 체결구를 사용하여 상기 제2 플랜지를 상기 제3 플랜지에 결합하는 단계를 더욱 포함하는, 방법.
  11. 제7항에 있어서, 상기 제2 플랜지 또는 상기 제3 플랜지 중 적어도 하나는 상기 제1 도관과 접촉하고 제1 재료로 형성되는 내부 링과, 상기 내부 링 주위로 연장되고 제1 재료와 다른 제2 재료로 형성되는 최외부 링을 포함하는, 방법.
  12. 제7항에 있어서, 상기 도관은 내벽 및 외벽을 포함하며, 상기 제2 플랜지는 상기 내벽에 결합되고, 상기 제3 플랜지는 상기 외벽에 결합되는 방법.
  13. 용융 유리를 컨디셔닝하기 위한 장치이며,
    제1 용기 및 제2 용기;
    용융 유리를 상기 제1 용기로부터 제2 용기로 유동시키도록 구성된 연결 튜브 조립체로서, 연결 튜브 조립체는:
    도관;
    도관에 부착되는 제1 플랜지;
    도관에 부착되고 상기 제1 플랜지와 이격되는 제2 플랜지;
    도관에 부착되고 상기 제1 플랜지 및 상기 제2 플랜지와 이격되는 제3 플랜지로, 상기 제2 플랜지는 상기 제1 플랜지 및 상기 제3 플랜지 사이에 위치하는, 제3 플랜지;
    제2 플랜지 및 제3 플랜지 사이에 위치하고, 제2 플랜지, 제3 플랜지, 밀봉 부재 및 도관 사이에 밀폐 체적을 형성하는 밀봉 부재;
    를 포함하는 연결 튜브 조립체; 및
    밀폐 체적으로 연장되고 밀폐 체적으로 전달하기 위해 가스 공급원과 유체 연통하도록 배열된, 가스 전달 튜브;
    를 포함하는, 장치.
  14. 제13항에 있어서, 상기 도관은 내벽 및 외벽을 포함하고, 상기 제2 플랜지는 상기 외벽에 부착되고, 상기 제3 플랜지는 상기 내벽에 부착되는, 장치.
  15. 제13항에 있어서, 상기 제2 플랜지는 복수의 체결구에 의해 상기 제3 플랜지에 부착되는, 장치.
  16. 제13항에 있어서, 상기 가스 공급원은 가습된 가스의 공급원인, 장치.
  17. 제13항에 있어서, 상기 제2 플랜지 및 상기 제3 플랜지는 상기 제2 플랜지 및 상기 제3 플랜지 사이의 상기 도관에 전류를 전달하도록 구성된 전류원과 전기 통신하는, 장치.
  18. 제13항에 있어서, 상기 제2 플랜지 또는 상기 제3 플랜지 중 적어도 하나는 상기 도관과 접촉하고 제1 재료로 형성되는 내부 링과, 상기 내부 링 주위로 연장되고 상기 제1 재료와 상이한 제2 재료로 형성되는 최외부 링을 포함하는, 장치.
  19. 제13항에 있어서, 상기 제1 플랜지 또는 상기 제2 플랜지 중 적어도 하나는 냉각 유체의 흐름을 수용하도록 구성된 냉각 튜브를 포함하는, 장치.
  20. 용융 유리를 컨디셔닝하기 위한 장치이며,
    제1 용기 및 제2 용기;
    용융 유리를 상기 제1 용기로부터 제2 용기로 유동시키도록 구성된 연결 튜브 조립체로서, 연결 튜브 조립체는:
    도관;
    상기 도관에 부착된 제1 플랜지;
    상기 도관에 부착되고, 제1 플랜지로부터 이격되어 상기 제1 플랜지가 제2 플랜지 및 상기 제1 용기 사이에 위치하는, 제2 플랜지;
    제1 플랜지, 제2 플랜지, 밀봉 부재 및 도관 사이에 밀폐 체적을 형성하기 위해, 상기 제1 및 제2 플랜지를 밀봉하는, 밀봉 부재;
    를 포함하는 연결 튜브 조립체; 및
    상기 밀폐 체적으로 연장되는 가스 전달 튜브로, 상기 가스 전달 튜브는 상기 밀폐 체적으로 가스를 공급하고, 상기 밀폐 체적의 수소 분압을 제어하도록 구성된 가스 전달 튜브;
    를 포함하는 장치.
KR1020237014270A 2015-06-10 2016-06-07 용융 유리 컨디셔닝 장치 및 방법 KR102599281B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562173475P 2015-06-10 2015-06-10
US62/173,475 2015-06-10
PCT/US2016/036182 WO2016200788A2 (en) 2015-06-10 2016-06-07 Apparatus and method for conditioning molten glass
KR1020187000370A KR102527850B1 (ko) 2015-06-10 2016-06-07 용융 유리 컨디셔닝 장치 및 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020187000370A Division KR102527850B1 (ko) 2015-06-10 2016-06-07 용융 유리 컨디셔닝 장치 및 방법

Publications (2)

Publication Number Publication Date
KR20230066118A true KR20230066118A (ko) 2023-05-12
KR102599281B1 KR102599281B1 (ko) 2023-11-07

Family

ID=56134667

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020237014270A KR102599281B1 (ko) 2015-06-10 2016-06-07 용융 유리 컨디셔닝 장치 및 방법
KR1020187000370A KR102527850B1 (ko) 2015-06-10 2016-06-07 용융 유리 컨디셔닝 장치 및 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020187000370A KR102527850B1 (ko) 2015-06-10 2016-06-07 용융 유리 컨디셔닝 장치 및 방법

Country Status (7)

Country Link
US (2) US10538449B2 (ko)
EP (1) EP3307683B1 (ko)
JP (1) JP6821603B2 (ko)
KR (2) KR102599281B1 (ko)
CN (1) CN107922232B (ko)
TW (1) TWI718154B (ko)
WO (1) WO2016200788A2 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10126495B2 (en) 2016-06-29 2018-11-13 Corning Incorporated Coated low loss optical fiber with small diameter
TWI746726B (zh) * 2016-12-15 2021-11-21 美商康寧公司 用於控制流入玻璃成形機之玻璃流的方法及設備
TWI788338B (zh) * 2017-04-04 2023-01-01 美商康寧公司 用於製造玻璃片的設備與方法及用於拉引玻璃帶的拉引設備
JP6958105B2 (ja) * 2017-08-18 2021-11-02 日本電気硝子株式会社 ガラス物品の製造方法及び溶融炉
JP7167937B2 (ja) * 2017-11-21 2022-11-09 Agc株式会社 溶融ガラス搬送装置、ガラス製造装置およびガラス製造方法
JP6925583B2 (ja) * 2017-12-20 2021-08-25 日本電気硝子株式会社 ガラス物品の製造方法及び製造装置
US11760678B2 (en) * 2018-04-20 2023-09-19 Corning Incorporated Apparatus and method for controlling an oxygen containing atmosphere in a glass manufacturing process
WO2020068570A1 (en) * 2018-09-27 2020-04-02 Corning Incorporated Assembly for supporting an electrical flange in a glass manufacturing apparatus
CN113423668B (zh) 2018-12-21 2023-01-31 康宁公司 用来针对低电阻率玻璃允许高电流输入的汇流条设计
CN113544100A (zh) * 2019-02-14 2021-10-22 康宁公司 具有改良的抗腐蚀性的导管加热设备和方法
CN113603338B (zh) * 2021-06-30 2022-11-11 陕西彩虹工业智能科技有限公司 一种制造柔性玻璃用的l型铂金管组件安装装置及方法
WO2024025818A1 (en) * 2022-07-27 2024-02-01 Corning Incorporated Methods and apparatus for manufacturing a glass ribbon
WO2024091384A1 (en) * 2022-10-25 2024-05-02 Corning Incorporated Apparatus and method for manufacturing a glass article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3113505A1 (de) * 1981-04-03 1983-01-20 Diether 6203 Hochheim Böttger Vorrichtung zur steuerung der beheizung bzw. abkuehlung von geschmolzenes glas fuehrenden kanaelen, speisern und speiserkoepfen
CN201686608U (zh) * 2010-05-19 2010-12-29 河北东旭投资集团有限公司 一种铂金通道的增强型端口
KR20110096511A (ko) * 2010-02-22 2011-08-30 코닝 인코포레이티드 용융 유리 이송용 베셀들 간 연결부를 밀봉하는 장치
KR20130084324A (ko) * 2005-04-26 2013-07-24 아사히 가라스 가부시키가이샤 플로트 배스로 유리 용융물을 이송하기 위한 장치
KR101328829B1 (ko) * 2005-04-27 2013-11-13 코닝 인코포레이티드 유리의 청징방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344785A (en) * 1980-10-02 1982-08-17 Ppg Industries, Inc. Modular molten glass column
US4351664A (en) * 1981-03-16 1982-09-28 Corning Glass Works Furnace delivery system
US4365987A (en) * 1981-11-04 1982-12-28 Corning Glass Works Apparatus and method of conditioning and conveying thermoplastic material
US4352687A (en) 1981-03-16 1982-10-05 Corning Glass Works Furnace delivery system
US4726831A (en) * 1987-01-12 1988-02-23 Corning Glass Works Molten glass delivery and conditioning system
US20060242996A1 (en) 2005-04-27 2006-11-02 Gilbert Deangelis System and method for controlling the environment around one or more vessels in a glass manufacturing system
US7454925B2 (en) 2005-12-29 2008-11-25 Corning Incorporated Method of forming a glass melt
US8007913B2 (en) 2006-02-10 2011-08-30 Corning Incorporated Laminated glass articles and methods of making thereof
US8269131B2 (en) * 2008-02-28 2012-09-18 Corning Incorporated Nickel-containing flanges for use in direct resistance heating of platinum-containing vessels
US8695378B2 (en) * 2008-11-26 2014-04-15 Corning Incorporated Apparatus for making glass and methods
JP5002731B2 (ja) * 2010-09-30 2012-08-15 AvanStrate株式会社 ガラス板製造方法
US9073771B2 (en) * 2012-06-15 2015-07-07 Corning Incorporated Integral capsule for blister suppression in molten glass
CN102898016A (zh) * 2012-08-06 2013-01-30 彩虹显示器件股份有限公司 抑制tft‐lcd 基板玻璃气泡产生的装置及方法
JP2015105204A (ja) 2013-11-29 2015-06-08 AvanStrate株式会社 ガラス基板の製造方法、及び熔融ガラス処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3113505A1 (de) * 1981-04-03 1983-01-20 Diether 6203 Hochheim Böttger Vorrichtung zur steuerung der beheizung bzw. abkuehlung von geschmolzenes glas fuehrenden kanaelen, speisern und speiserkoepfen
DE3113505C2 (ko) * 1981-04-03 1989-11-09 Diether 6227 Oestrich-Winkel De Boettger
KR20130084324A (ko) * 2005-04-26 2013-07-24 아사히 가라스 가부시키가이샤 플로트 배스로 유리 용융물을 이송하기 위한 장치
KR101328829B1 (ko) * 2005-04-27 2013-11-13 코닝 인코포레이티드 유리의 청징방법
KR20110096511A (ko) * 2010-02-22 2011-08-30 코닝 인코포레이티드 용융 유리 이송용 베셀들 간 연결부를 밀봉하는 장치
CN201686608U (zh) * 2010-05-19 2010-12-29 河北东旭投资集团有限公司 一种铂金通道的增强型端口

Also Published As

Publication number Publication date
TWI718154B (zh) 2021-02-11
US10934200B2 (en) 2021-03-02
TW201706218A (zh) 2017-02-16
KR20180017082A (ko) 2018-02-20
KR102599281B1 (ko) 2023-11-07
WO2016200788A2 (en) 2016-12-15
WO2016200788A3 (en) 2017-01-19
US20180297882A1 (en) 2018-10-18
CN107922232A (zh) 2018-04-17
JP2018516837A (ja) 2018-06-28
JP6821603B2 (ja) 2021-01-27
EP3307683B1 (en) 2022-04-20
EP3307683A2 (en) 2018-04-18
CN107922232B (zh) 2020-12-08
KR102527850B1 (ko) 2023-05-02
US10538449B2 (en) 2020-01-21
US20200156981A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
KR102527850B1 (ko) 용융 유리 컨디셔닝 장치 및 방법
US9382145B2 (en) Integral capsule for blister suppression in molten glass
KR102522616B1 (ko) 유리 용융물 표면상에서의 기포 수명 감소 방법
JP6761425B2 (ja) 溶融ガラスを調節するための装置及び方法
KR102514358B1 (ko) 유리 제조 시스템을 재조정하는 방법
CN112313181B (zh) 用于在玻璃制造工艺中控制含氧气氛的设备和方法
JP2023538545A (ja) ガラス物品を形成する方法
US20230120775A1 (en) Apparatus and method for reducing defects in glass melt systems
WO2020167472A1 (en) Conduit heating apparatus and method with improved corrosion resistance
WO2024091384A1 (en) Apparatus and method for manufacturing a glass article
TW202225109A (zh) 玻璃製造裝置
WO2023163897A1 (en) Glass melting furnaces and vessels with improved thermal performance
TW202146341A (zh) 以熱電漿熔融玻璃的裝置及方法
WO2023069232A1 (en) Apparatus for forming molten glass with structurally reinforced conduits

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant