KR20210055805A - 흡수체를 갖는 평탄화된 극자외선 리소그래피 블랭크 및 그의 제조 시스템 - Google Patents
흡수체를 갖는 평탄화된 극자외선 리소그래피 블랭크 및 그의 제조 시스템 Download PDFInfo
- Publication number
- KR20210055805A KR20210055805A KR1020217013877A KR20217013877A KR20210055805A KR 20210055805 A KR20210055805 A KR 20210055805A KR 1020217013877 A KR1020217013877 A KR 1020217013877A KR 20217013877 A KR20217013877 A KR 20217013877A KR 20210055805 A KR20210055805 A KR 20210055805A
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- absorber
- euv
- mask blank
- extreme ultraviolet
- Prior art date
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 78
- 238000004519 manufacturing process Methods 0.000 title abstract description 18
- 238000001900 extreme ultraviolet lithography Methods 0.000 title description 8
- 239000000758 substrate Substances 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims description 29
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 27
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 10
- 229910052709 silver Inorganic materials 0.000 claims description 10
- 239000004332 silver Substances 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims 6
- 239000010949 copper Substances 0.000 claims 2
- 229910052738 indium Inorganic materials 0.000 claims 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims 2
- 229910052697 platinum Inorganic materials 0.000 claims 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims 2
- 229910052714 tellurium Inorganic materials 0.000 claims 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims 1
- 229910052787 antimony Inorganic materials 0.000 claims 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 238000002310 reflectometry Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 19
- 230000007547 defect Effects 0.000 description 17
- 238000000151 deposition Methods 0.000 description 15
- 230000008021 deposition Effects 0.000 description 12
- 238000004140 cleaning Methods 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 7
- 239000006117 anti-reflective coating Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000010363 phase shift Effects 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- MOFOBJHOKRNACT-UHFFFAOYSA-N nickel silver Chemical compound [Ni].[Ag] MOFOBJHOKRNACT-UHFFFAOYSA-N 0.000 description 2
- 239000010956 nickel silver Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 102000010825 Actinin Human genes 0.000 description 1
- 108010063503 Actinin Proteins 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- SLYSCVGKSGZCPI-UHFFFAOYSA-N [B]=O.[Ta] Chemical compound [B]=O.[Ta] SLYSCVGKSGZCPI-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000276 deep-ultraviolet lithography Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 150000002739 metals Chemical group 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- FMLYSTGQBVZCGN-UHFFFAOYSA-N oxosilicon(2+) oxygen(2-) titanium(4+) Chemical compound [O-2].[Ti+4].[Si+2]=O.[O-2].[O-2] FMLYSTGQBVZCGN-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010407 vacuum cleaning Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/22—Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/22—Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
- G03F1/24—Reflection masks; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/38—Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70008—Production of exposure light, i.e. light sources
- G03F7/70033—Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
극자외선(EUV) 마스크 블랭크 생산 시스템은, 진공을 생성하기 위한 기판 핸들링 진공 챔버; 진공에서, 기판 핸들링 진공 챔버에 로딩된 초-저 팽창 기판을 운송하기 위한 기판 핸들링 플랫폼; 및 EUV 마스크 블랭크를 형성하기 위해, 기판 핸들링 플랫폼에 의해 액세싱되는 다수의 서브-챔버들을 포함하고, 다수의 서브-챔버들은, 극자외선(EUV) 광을 반사하기 위해 초-저 팽창 기판 위에 다층 스택을 형성하기 위한 제 1 서브-챔버, 및 1.9% 미만의 반사율(reflectivity)을 제공하고 13.5nm 파장의 EUV 광을 흡수하기 위해 다층 스택 위에 형성된 이중-층(bi-layer) 흡수체를 형성하기 위한 제 2 서브-챔버를 포함한다.
Description
[0001]
본 발명은 일반적으로, 극자외선 리소그래피 블랭크들(blanks), 및 그러한 극자외선 리소그래피 블랭크들을 위한 제조 및 리소그래피 시스템들에 관한 것이다.
[0002]
극자외선 리소그래피(EUV, 또한, 연질 x-선 투사 리소그래피(soft x-ray projection lithography)로 공지됨)는, 0.0135 미크론의, 그리고 그보다 더 작은, 최소 피쳐(feature) 크기의 반도체 디바이스들의 제조를 위한, 심자외선(deep ultraviolet) 리소그래피를 대체할 경쟁자이다.
[0003]
그러나, 일반적으로 5 내지 100 나노미터 파장 범위인 극자외선 광은 사실상 모든 재료들에서 강하게 흡수된다. 그러한 이유 때문에, 극자외선 시스템들은, 광의 투과(transmission)에 의해서보다는, 반사(reflection)에 의해서 작업한다(work). 비-반사성 흡수체(absorber) 마스크 패턴으로 코팅된, 반사성 엘리먼트, 또는 마스크 블랭크, 및 거울들 또는 렌즈 엘리먼트들의 시리즈의 사용을 통해, 패터닝된 화학선 광(actinic light)은 레지스트 코팅된 반도체 기판 상으로 반사된다.
[0004]
극자외선 리소그래피 시스템들의 마스크 블랭크들 및 렌즈 엘리먼트들은, 몰리브덴 및 실리콘과 같은 재료들의 반사성 다층 코팅들로 코팅된다. 렌즈 엘리먼트, 또는 마스크 블랭크당(per) 대략 65%의 반사 값들은, 매우 좁은 자외선 통과대역(bandpass); 예컨대, 13.5나노미터 극자외선(EUV) 광에 대해 12.5 내지 14.5나노미터의 통과대역 내의 광을 강하게 반사하는 다층 코팅들로 코팅된 기판들을 사용함으로써 획득되어왔다.
[0005]
문제들을 야기하는 다양한 종류들(classes)의 결함들이 반도체 프로세싱 기술에 존재한다. 흑결함들(opaque defects)은 전형적으로, 광이 반사되어야 할 때에 광을 흡수하는, 마스크 패턴 또는 다층 코팅들의 정상부 상의 입자들에 의해 야기된다. 백결함들(clear defects)은 전형적으로, 다층 코팅들의 정상부 상의 마스크 패턴의 핀홀들에 의해 야기되는데, 광이 흡수되어야 할 때 이러한 핀홀들을 통해 광이 반사된다. 그리고, 상 결함들(phase defects)은 전형적으로, 반사된 광의 상의 전이부들(transitions)을 야기하는, 다층 코팅들 아래의 표면 변화들 및 스크래치들에 의해 야기된다. 이러한 상 전이부들은, 반도체 기판의 표면 상의 레지스트에서 노출될 패턴을 왜곡(distort)시키거나 변경(alter)시키는, 광 파 간섭 효과들(light wave interference effects)을 초래한다. 서브(sub)-0.0135 미크론 최소 피쳐 크기에 대해서 사용되어야 하는, 방사선(radiation)의 더 짧은 파장들 때문에, 이전에는 대수롭지 않았던 표면 변화들 및 스크래치들이, 이제는 허용 불가능하게(intolerable) 된다.
[0006]
얇은 흡수체가 다루는 문제는, 패턴이 점점 더 작아짐에 따라 더 두꺼운 흡수체들에서 보여지는 섀도잉(shadowing) 문제들인데, 이는 결국, 기판 상에 인쇄될(printed) 수 있는 크기 피쳐들을 제한하게 된다. 더 얇은 흡수체를 달성하는 것은, 사용 중인 현재의 흡수체들보다 더 양호한 13.5nm 광을 흡수하는 새로운 재료들을 사용하는 것을 필요로 한다.
[0007]
전자 컴포넌트들의 점점 더 작은 피쳐 크기에 대한 필요성을 고려하여, 이러한 문제들에 대한 답들을 찾는 것이 점점 더 중요해진다. 성장하고 있는 소비자들의 기대들과 함께, 계속 증가하는 상업적인 경쟁 압박들을 고려하여, 이러한 문제들에 대한 답들을 찾는 것이 중요하다. 부가적으로, 비용들을 절감하고, 효율성들과 성능을 개선하며, 경쟁 압박들을 충족시키기 위한 필요성은, 이러한 문제들에 대한 답들을 찾기 위한 중요한 필요성에, 훨씬 더 큰(even greater) 긴급성을 부가한다.
[0008]
이러한 문제들에 대한 해결책들이 오랫동안 탐색되어 왔지만, 이전의 발전들은 어떠한 해결책들도 교시하거나 제안하지 않았고, 따라서, 이러한 문제들에 대한 해결책들은 오랫동안 당업자에게 발견되지 않았다.
[0009]
본 발명의 일 실시예는, 진공을 생성하기 위한 기판 핸들링 진공 챔버; 진공에서, 기판 핸들링 진공 챔버에 로딩된 초-저 팽창 기판을 운송하기 위한 기판 핸들링 플랫폼; 및 EUV 마스크 블랭크를 형성하기 위해, 기판 핸들링 플랫폼에 의해 액세싱되는 다수의 서브-챔버들을 포함하는 극자외선(EUV) 마스크 블랭크 생산 시스템이고, 다수의 서브-챔버들은, 극자외선(EUV) 광을 반사하기 위해 초-저 팽창 기판 위에 다층 스택을 형성하기 위한 제 1 서브-챔버, 및 1.9% 미만의 반사율(reflectivity)을 제공하고 13.5nm 파장의 EUV 광을 흡수하기 위해 다층 스택 위에 형성된 이중-층(bi-layer) 흡수체를 형성하기 위한 제 2 서브-챔버를 포함한다.
[0010]
본 발명의 실시예는, 표면 결점들(imperfections)을 포함하는 초-저 팽창 기판; 표면 결점들을 캡슐화(encapsulating)하기 위한, 초-저 팽창 기판 상의 평탄화 층; 평탄화 층 위의 다층 스택; 및 다층 스택 위의 이중-층 흡수체를 포함하는 극자외선(EUV) 마스크 블랭크 시스템으로, 이중-층 흡수체는, 증착된 이중-층 흡수체의 일차 흡수체 층 및 이차 흡수체 층의 두께를 30nm의 조합된 두께로 제어하는 것에 의해, 반사율의 백분율을 결정하는 것을 포함하며, 1.9% 미만의 반사율을 제공한다.
[0011]
본 발명의 특정 실시예들은 상기 언급된 것들 대신에 또는 그에 부가하여 다른 단계들 또는 엘리먼트들을 갖는다. 그러한 단계들 또는 엘리먼트는, 첨부된 도면들을 참조하여 취해질 때, 이하의 상세한 설명을 읽음으로써 당업자에게 자명해질 것이다.
[0012]
도 1은, 극자외선(EUV) 마스크 블랭크 생산 시스템이다.
[0013] 도 2는, 실시예에 따른 EUV 마스크 블랭크의 단면도이다.
[0014] 도 3은, EUV 마스크의 직교도(orthogonal view)이다.
[0015] 도 4는, 초-저 결함들을 갖는 EUV 마스크 블랭크를 만들기 위한 방법의 흐름도이다.
[0016] 도 5는, 초-저 결함들을 갖는 EUV 마스크 블랭크를 만들기 위한 대안적인 방법의 흐름도이다.
[0017] 도 6은 EUV 리소그래피 시스템을 위한 광학 트레인(optical train)이다.
[0018] 도 7은, 도 2의 일차 흡수체 층의 두께에 따른 반사율 백분율의 플롯(plot)을 도시한다.
[0013] 도 2는, 실시예에 따른 EUV 마스크 블랭크의 단면도이다.
[0014] 도 3은, EUV 마스크의 직교도(orthogonal view)이다.
[0015] 도 4는, 초-저 결함들을 갖는 EUV 마스크 블랭크를 만들기 위한 방법의 흐름도이다.
[0016] 도 5는, 초-저 결함들을 갖는 EUV 마스크 블랭크를 만들기 위한 대안적인 방법의 흐름도이다.
[0017] 도 6은 EUV 리소그래피 시스템을 위한 광학 트레인(optical train)이다.
[0018] 도 7은, 도 2의 일차 흡수체 층의 두께에 따른 반사율 백분율의 플롯(plot)을 도시한다.
[0019]
이하의 실시예들은, 당업자가 본 발명품을 만들고 사용할 수 있도록, 충분히 상세하게 설명된다. 본 개시물에 기초하여 다른 실시예들이 명백할 것이고, 본 발명의 범위에서 벗어나지 않고, 시스템, 프로세스, 또는 기계적 변화들이 이루어질 수 있음이 이해되어야 한다.
[0020]
이하의 설명에서, 본 발명의 완전한 이해를 제공하기 위해 다수의 구체적인 세부 사항들이 주어진다. 그러나, 본 발명은 이러한 구체적인 세부 사항들 없이 실시될 수 있음이 자명할 것이다. 본 발명을 불분명하게 하는 것을 피하기 위해, 몇몇 잘 공지된 회로들, 시스템 구성들, 및 프로세스 단계들은 상세하게 개시되지 않는다.
[0021]
시스템의 실시예들을 나타내는 도면들은 반-도식적(semi-diagrammatic)이고 실척이 아니며(not to scale), 특히, 치수들 중 몇몇은, 표현의 명료함을 위해, 도면들을 도시할 때 과장되게 도시된다. 유사하게, 도면들의 시점들(views)은 설명의 용이함을 위해 일반적으로 유사한 배향들을 보여주지만, 도면들에서의 이러한 묘사는 대부분의 경우에 임의적인 것이다. 일반적으로, 본 발명은 임의의 배향으로 작동될 수 있다.
[0022]
다수의 실시예들이 공통으로 몇몇 피쳐들을 갖는 것으로 개시되고 설명되는 경우, 예시, 설명, 및 이들의 이해에 대한 명료함 및 용이함를 위해, 유사한 그리고 동일한 피쳐들은 유사한 참조 번호들로 설명될 것이다.
[0023]
설명의 목적들을 위해, 본원에서 사용되는 "수평의" 라는 용어는, 마스크 블랭크의 배향과 상관없이, 마스크 블랭크의 표면 또는 평면에 평행한 평면으로 정의된다. "수직하는" 이라는 용어는, 그렇게 정의된 수평에 수직인 방향을 지칭한다. "위(above)", "아래(below)", "바닥부(bottom)", "정상부(top)", "측(side)("측벽"에서처럼)", "더 높은(higher)", "더 낮은(lower)", "상부(upper)", "위에(over)", 및 "하에서(under)" 와 같은 용어들은, 도면들에서 도시된 바와 같이, 수평 평면에 대해서 정의된다. "상에서(on)" 라는 용어는 엘리먼트들 간의 직접 접촉이 있음을 나타낸다.
[0024]
본원에서 사용되는 "프로세싱" 이라는 용어는, 설명되는 구조를 형성할 때 요구되는 바와 같이, 포토레지스트 또는 재료의 증착, 패터닝, 노출, 현상(development), 에칭, 세정, 및/또는 포토레지스트 또는 재료의 제거를 포함한다.
[0025]
이제 도 1을 참조하면, 극자외선(EUV) 마스크 블랭크 생산 시스템(100)이 도면에 도시된다. 통합형 EUV 마스크 블랭크 생산 시스템(100)은, 유리, 실리콘, 또는 다른 초-저 열 팽창 재료로 이루어진 기판들과 같은 기판들(105)을 포함하는 운송 박스들이 로딩되는 로드 포트들(load ports; 104)을 갖는 마스크 블랭크 로딩 및 캐리어 핸들링 시스템(102)을 포함한다. 에어록(airlock; 106)은 기판 핸들링 진공 챔버(108)로의 액세스를 제공한다. 실시예에서, 기판 핸들링 진공 챔버(108)는 2개의 진공 챔버들, 즉, 제 1 진공 챔버(110) 및 제 2 진공 챔버(112)를 포함할 수 있다. 제 1 진공 챔버(110)는 최초(initial) 기판 핸들링 플랫폼(114)을 포함할 수 있고, 제 2 진공 챔버(112)는 제 2 기판 핸들링 플랫폼(116)을 포함할 수 있다.
[0026]
기판 핸들링 진공 챔버(108)는, 다양한 서브 시스템들의 부착을 위해, 챔버의 둘레(periphery) 주위에 복수의 포트들을 가질 수 있다. 예컨대, 제 1 진공 챔버(110)는 탈기(degas) 서브시스템(118), 이중-층 흡수체 증착 챔버와 같은 제 1 물리 기상 증착 서브-챔버(120), 후면 척킹 층 증착 챔버와 같은 제 2 물리 기상 증착 서브-챔버(122), 및 사전 세정(preclean) 서브시스템(124)을 가질 수 있다.
[0027]
제 2 진공 챔버(112)는, 다층 증착 챔버와 같은 제 1 다중-캐소드 서브-챔버(126), 평탄화 층 증착 챔버와 같은 유동 가능한 화학 기상 증착(FCVD) 서브-챔버(128), 경화 서브-챔버(130), 및 그에 연결된 제 2 다중-캐소드 서브-챔버(132)를 가질 수 있다.
[0028]
최초 기판 핸들링 플랫폼(114)은, 제 1 진공 챔버(110)의 둘레 주위의 다양한 서브 시스템들과 에어록(106) 사이에서, 그리고 연속적인 진공(continuous vacuum)의 슬릿 밸브들(도시되지 않음)을 통해서, 제 1 인-프로세스(in-process) 기판(134)과 같은 초-저 팽창 기판을 이동시킬 수 있다. 제 2 기판 핸들링 플랫폼(116)은, 제 2 인-프로세스 기판(136)과 같은 초-저 팽창 기판을, 제 2 인-프로세스 기판(136)을 연속적인 진공에 유지하면서 제 2 진공 챔버(112) 주위로 이동시킬 수 있다.
[0029]
통합형 EUV 마스크 블랭크 생산 시스템(100)이, 제 1 인-프로세스 기판(134) 및 제 2 인-프로세스 기판(136)의 수동 운송을 최소화하면서, EUV 마스크 블랭크들을 제조하기 위한 환경을 제공할 수 있다는 것이 밝혀졌다.
[0030]
이제 도 2를 참조하면, 실시예에 따른 EUV 마스크 블랭크(200)의 단면도이다. EUV 마스크 블랭크(200)는, 유리, 실리콘, 또는 다른 초-저 열 팽창 재료로 이루어진 초-저 열 팽창 기판(202)을 가질 수 있다. 초-저 열 팽창 재료들은, 용융 실리카(fused silica), 용융 석영, 칼슘 플루오라이드, 실리콘 카바이드, 실리콘 옥사이드-티타늄 옥사이드, 또는 이러한 재료들의 범위 내의 열 팽창 계수를 갖는 다른 재료를 포함한다.
[0031]
편평한 표면(205)을 형성하도록, 초-저 팽창 기판(202)의 이미 평탄화된 표면을 평활화(smoothing)하거나, 초-저 팽창 기판(202)의 정상부 상의 입자들을 커버(covering)하거나, 또는 초-저 팽창 기판(202)의 피트들(pits) 및/또는 결함들과 같은 표면 결점들(imperfections)(203)을 필링(filling)하기 위해 평탄화 층(204)이 사용될 수 있다는 것이 밝혀졌다.
[0032]
다층 스택(206)은 브래그 반사체(Bragg reflector)를 형성하기 위해, 평탄화 층(204) 상에 형성될 수 있다. EUV 리소그래피에서 사용되는 조사(illuminating) 파장들의 흡수 본성으로 인해, 반사 광학계들(reflective optics)이 사용된다. 반사체를 형성하기 위해, 다층 스택(206)이, 몰리브덴 및 실리콘과 같은, 높은-z(high-z) 및 낮은-z(low-z) 재료들의 교번하는 층들로 구성될 수 있다.
[0033]
캡핑된(capped) 브래그 반사체를 형성하기 위해, 초-저 팽창 기판(202)에 대향하여(opposite) 다층 스택(206) 상에 캡핑(capping) 층(208)이 형성된다. 캡핑 층(208)은, 다층 스택(206)을, 후속하는 마스크 프로세싱 동안 EUV 마스크 블랭크(200)가 노출될 수 있는 임의의 화학적 에천트들(etchants)로부터, 그리고 산화로부터 보호하는 것을 돕기 위해, 루테늄(Ru)과 같은 재료 또는 그의 비-산화된 화합물일 수 있다. 티타늄 나이트라이드, 붕소 카바이드, 실리콘 나이트라이드, 루테늄 옥사이드, 및 실리콘 카바이드와 같은 다른 재료가 또한, 캡핑 층(208)에서 사용될 수 있다.
[0034]
이중-층 흡수체(210)는 캡핑 층(208) 상에 위치된다. 이중-층 흡수체(210)는 일차 흡수체 층(212) 및 이차 흡수체 층(214)을 포함할 수 있다. 이중-층 흡수체(210)는, EUV 광(약 13.5nm)의 특정 주파수에 대해서, 조합하여 높은 흡수 계수를 갖는 재료 쌍으로 이루어진다. 실시예에서, 은(Ag)과 같은 일차 흡수체 층(212)은 캡핑 층(208) 상에 직접 형성될 수 있고, 니켈(Ni)과 같은 이차 흡수체 층(214)은 일차 흡수체 층(212) 상에 직접 형성될 수 있다.
[0035]
EUV 마스크 블랭크(200) 상에 형성된, 마스크에서 섀도잉을 야기하는 표면 시차(surface parallax)를 감소시키기 위해, 이중-층 흡수체(210)는 가능한 얇게 유지되어야만 한다. 80nm 초과의 두께(211)를 갖는, 크롬, 탄탈륨 또는 이들의 나이트라이드들로 형성된 흡수체 층의 한계 중 하나는, EUV 광의 입사 각도가 섀도잉을 야기할 수 있다는 것인데, 섀도잉은, EUV 마스크 블랭크를 사용하여 마스크에 의해 생산된 집적 회로에서 달성될 수 있는 패턴 크기를 제한하며, 이는, 제조될 수 있는 집적 회로 디바이스들의 크기를 제한한다.
[0036]
일차 흡수체 층(212) 및 이차 흡수체 층(214)의 재료의 선택은, 경로 차이 유도 위상 시프트(path difference induced phase shift)에 기인한 반사율 손실에 매우 중요한 것으로 밝혀졌다. 예로서, 실시예는, 은(Ag)의 27.7nm 층인 일차 흡수체 층(212) 및 니켈(Ni)의 2.3nm 층인 이차 흡수체 층(214)으로 구성된, 30nm 두께(211)를 갖는 이중-층 흡수체(210)를 가질 수 있다. 이러한 실시예는 단지 0.58%의 반사율 백분율을 제공할 수 있다.
[0037]
반사-방지(anti-reflective) 코팅(ARC)(216)이 이중-층 흡수체(210) 상에 증착된다. ARC(216)는 탄탈륨 옥시나이트라이드 또는 탄탈륨 붕소 옥사이드와 같은 재료로 이루어질 수 있다.
[0038]
후면 척킹 층(backside chucking layer; 218)은, 기판을 정전 척(도시되지 않음) 상에 또는 정전 척을 이용하여 장착하기 위해, 평탄화 층(204)에 대향하여, 초-저 팽창 기판(202)의 후면 표면 상에 형성된다.
[0039]
이제 도 3을 참조하면, EUV 마스크(300)의 직교도가 도시된다. EUV 마스크(300)는 직사각형 형상일 수 있고, EUV 마스크의 정상부 표면 상에 패턴(302)을 가질 수 있다. 집적 회로의 제조의 단계와 연관된 지오메트리(도시되지 않음)를 나타내기 위해 캡핑 층(208)을 노출시키도록, 패턴(302)은 도 2의 이중-층 흡수체(210) 및 ARC(216) 내로 에칭될 수 있다. 후면 척킹 층(218)은, 패턴(302)에 대향하여, EUV 마스크(300)의 후면 상에 적용될 수 있다.
[0040]
이제 도 4를 참조하면, 초-저 결함들을 갖는 EUV 마스크 블랭크(200)를 만들기 위한 방법(400)의 흐름도가 도시된다. 초-저 결함들은 실질적으로 제로 결함들이다. 방법(400)은, 베이스(base)를 입력하는 단계(402)에서 공급되는, 도 2의 초-저 팽창 기판(202)을 포함한다. 초-저 팽창 기판(202)은 기판 세정 단계(404)에서 후면 세정될 수 있고, 후면 준비 단계(406)에서 탈기되고(degassed) 사전-세정될 수 있다.
[0041]
도 2의 후면 척킹 층(218)은 후면 척킹 단계(408)에서 적용되고, 정면 세정은 정면 세정 단계(410)에서 수행된다. 정면 세정 단계(410) 이후에, 마스크 블랭크(104)는 추가적인 프로세싱을 위해 제 1 진공 챔버(110)에 입력될 수 있다. 캡핑된 브래그 반사체(412)를 형성하는 단계들은, 대기 조건들로부터의 오염을 회피하기 위해 연속적인 진공 하에 있는 동안, 도 1의 EUV 마스크 블랭크 생산 시스템(100)에서 더 잘 수행된다.
[0042]
탈기 및 사전 세정 단계(414) 및 평탄화 단계(416)는 제 1 진공 챔버(110)에서 수행된다. 도 2의 평탄화 층(204)은 평탄화 층 경화 단계(418)에서 경화될 수 있고, 도 2의 다층 스택(206)의 증착은, 제 2 진공 챔버(112)에서 수행될 수 있는 다층 스택을 증착시키는 단계(420)에서 수행된다. 캡핑 층을 증착시키는 단계(422)에서, 캡핑된 브래그 반사체와 같은 제 2 인-프로세스 기판(136)을 형성하기 위해, 도 2의 캡핑 층(208)이 제 2 진공 챔버(112) 내에서 증착될 수 있다.
[0043]
EUV 마스크 블랭크 생산 시스템(100)을 빠져나간 후, 제 2 인-프로세스 기판(136)은 심자외선(DUV)/화학선 검사를 겪으며, 이는 정밀(close) 검사 단계(424)에서 수행되고, 제 2 인-프로세스 기판(136)은 선택적으로, 제 2 정면 세정 단계(426)에서 세정되며, 도 2의 흡수체 층(210) 및 도 2의 반사-방지 코팅(212)은, 도 2의 EUV 마스크 블랭크(200)를 형성하기 위해 EUV 마스크 블랭크 완성 단계(428)에서 증착될 수 있다.
[0044]
EUV 마스크 블랭크 생산 시스템(100)이, EUV 마스크 블랭크(200)를 실질적으로 제로 결함들로 일관적으로(consistently) 생산할 수 있다는 것이 밝혀졌다. 제 1 진공 챔버(110)에서의 평탄화 층(204)의 적용 및 제 2 진공 챔버(112)에서의 평탄화 층(204)의 경화는, EUV 마스크 블랭크 생산 시스템(100)의 효율을 개선할 수 있는데, 이는, 챔버들이 평탄화 층(204)의 증착과 평탄화 층의 경화 사이에 열 램프 시간(thermal ramp time)을 필요로 하지 않기 때문이다.
[0045]
이제 도 5를 참조하면, 초-저 결함들을 갖는 EUV 마스크 블랭크(200)를 만들기 위한 대안적인 방법(500)의 흐름도가 도시된다. 초-저 결함들은 실질적으로 제로 결함들이다. 대안적인 방법(500)은, 베이스을 입력하는 단계(502)에서 공급되는, 도 2의 초-저 팽창 기판(202)으로 시작한다. 초-저 팽창 기판(202)은 후면 세정 단계(504)에서 세정될 수 있고, 정면은 정면 세정 단계(506)에서 세정될 수 있다.
[0046]
캡핑된 브래그 반사체(508)를 형성하는 단계들은, 대기 조건들로부터의 오염을 회피하기 위해 연속적인 진공 하에 있는 동안, 도 1의 EUV 마스크 블랭크 생산 시스템(100)에서 더 잘 수행된다.
[0047]
마스크 블랭크(104)는, 제 1 진공 챔버(110)에서 수행되는 진공 세정 단계(510)에서 탈기되고 사전-세정된다. 후면 척킹 층(218)은 척킹 증착 단계(512)에서 증착되고, 평탄화는 평탄화 단계(514)에서 일어난다. 도 2의 평탄화 층(204)은, 제 2 진공 챔버(112)에서 수행될 수 있는 평탄화 경화 단계(516)에서 경화될 수 있다. 도 2의 다층 스택(206)의 증착은 다층 스택을 증착시키는 단계(518)에서 수행되고, 제 2 인-프로세스 기판(136)을 형성하기 위해, 도 2의 캡핑 층(208)은 캡을 증착시키는 증착 단계(520)에서 증착될 수 있다.
[0048]
DUV/화학선 검사는 EUV 마스크 블랭크 생산 시스템(100) 내부에서 수행될 수 있지만, 정밀 검사 단계(522)에서는, 그러한 검사가 또한, 외부에서 이뤄질 수 있다. 제 2 인-프로세스 기판(136)은 제 2 세정 단계(524)에서 선택적으로 세정되고, 도 2의 흡수체 층(210) 및 도 2의 반사-방지 코팅(212)은 EUV 마스크 블랭크 완성 단계(526)에서 증착될 수 있다.
[0049]
이제 도 6을 참조하면, EUV 리소그래피 시스템을 위한 광학 트레인(600)이 도면에 도시된다. 광학 트레인(600)은, EUV 광을 생성하고 그러한 광을 수집기(collector; 604)에 수집하기 위해, 플라즈마 소스와 같은 극자외선 광 소스(602)를 갖는다. 수집기(604)는, 필드 패싯 거울(field facet mirror; 608) 상에 EUV 광을 포커싱하기 위해, 포물선 형상을 가질 수 있다. 수집기(604)는, 조사기(illuminator) 시스템(606)의 파트(part)인 필드 패싯 거울(608)에 광을 제공한다.
[0050]
필드 패싯 거울(608)의 표면은, 동공 패싯(pupil facet) 거울(610) 상에 EUV 광을 추가로 포커싱하기 위해, 오목한 윤곽을 가질 수 있다. 조사기 시스템(606)은 또한, EUV 광을 레티클(reticle; 612)(도 1의 마스크 블랭크(104)의 완전히 프로세싱된 버전) 상에 전사하고(transferring) 포커싱하기 위해, 동공 패싯 거울(610)의 시리즈를 포함한다.
[0051]
레티클(612)은, 집적 회로의 프로세싱 층을 나타내는 패턴을 가질 수 있다. 레티클(612)은 EUV, 패턴을 포함하는 광을 투사 광학계들(projection optics; 614)을 통해 반도체 기판(616) 상으로 반사한다. 투사 광학계들(614)은, 레티클(612)에 의해 제공되는 패턴의 지역을 감소시킬 수 있고, 반도체 기판(616)의 표면에 걸쳐서 패턴을 반복적으로 노출시킬 수 있다.
[0052]
실시예들이, 기판 표면 상의 모든 피트들, 결함들, 및 입자들을 제거하기 위해, 도 2의 EUV 마스크 블랭크(200)를 평탄화 및 평활화하고, 이로써, 표면은 원자적으로(atomically) 편평하고 평활하다는 것이 밝혀졌다. EUV 마스크 블랭크(200)의 표면 상에서의 무결함(defect free) 재료의 증착은, 편평하고 평활한 표면을 달성하기 위해 임의의 프로세스 관련된 결함들을 유발하지 않고 프로세싱될 수 있다. 도 2의 EUV 마스크 블랭크(200)는 광학 트레인(600)의 중요한 컴포넌트이다. 광학 트레인(600)은, 수동(manual) 개입 없이 레티클(612)로부터의 패턴에 대한 노출을 위해 반도체 기판(616)을 순차적으로(sequentially) 포지셔닝할 수 있다.
[0053]
이제 도 7을 참조하면, 도 2의 일차 흡수체 층(212)의 두께에 따른 반사율 백분율(702)의 플롯(701)이 도면에 도시된다. 플롯(701)의 y-축은 도 2의 이중-층 흡수체(210)의 반사율 백분율(702)일 수 있다. x-축은, 이중-층 흡수체(210)의 30nm 실시예에서의 일차 흡수체 층(212)의 두께(704)의 치수일 수 있다.
[0054]
샘플 반사율(706)은, 일차 흡수체 층(212)의 두께(704)를 증가시키는 것에 기초한 반사율 백분율(702)의 결과 트레이스(trace)를 나타낼 수 있다. 샘플 반사율(706)은, 이중-층 흡수체(210)의 니켈-은 실시예에서 은(Ag)인 일차 흡수체 층(212)의 두께(704)를 나타낼 수 있다. 두 개의 층들이 증착되는 순서는, 경로 차이 유도 위상 시프트에 기인한 반사율 손실에 매우 중요하다.
[0055]
실시예는, 도 2의 30nm 조합된 두께(211)를 제공하기 위해, 도 2의 캡핑 층(208) 상에 증착된, 은(Ag) 층으로서의 일차 흡수체 층(212), 및 니켈(Ni) 층으로서의 도 2의 이차 흡수체 층(214)을 갖는 이중-층 흡수체(210)를 제공한다. 샘플 반사율(706)에 도시된 진동들(oscillations)은, 도 2의 다층 스택(206) 및 캡핑 층(208)과 이중-층 흡수체(210)의 위상 매칭(phase matching)에 기인한다. 이중-층 흡수체(210)의 총 두께(211)는 30nm이다. 그래프로부터 볼 수 있는 바와 같이, 가장 낮은 레벨(level)의 반사율 백분율(702)은, 이중-층 흡수체(210)를 형성하는, 27.7nm의 은 및 2.3nm의 니켈에 의해 제공된다.
[0056]
실시예는, 캡핑 층(208)이, 두께가 2nm인 얇은 루테늄 층이라고 가정한다. 이중-층 흡수체(210)의 거동(behavior)은 캡핑된 다층 상에서 플롯팅된다(plotted). 이중-층 흡수체(210)의 양태는, 반사율 백분율(702)의 감소로 이어지는 상쇄 간섭을 초래할 경로 차이 유도 위상 시프트를 생성하고 있다. 이러한 거동은 금속 층들의 굴절률의 실수부(real part)에 따른다. 도 7은, 니켈-은 이중-층 흡수체로서의 이중-층 흡수체(210)의 실시예를 도시한다. 은의 두께(704)를 증가시키는 것에 따른 반사율 백분율(702)은 샘플 반사율(706)로서 도시된다. 흡수체 스택의 총 두께(211)는 30 nm로 일정하게 유지된다. 따라서, 은 두께가 증가함에 따라, 동시에 니켈 두께는 감소한다. 2.3nm Ni 및 27.7 Ag 두께들에서 전체 반사율은 0.58%로, 순수한 30nm Ni(1.9%) 또는 순수한 30nm Ag(1.6%) 층들의 경우의 반사율보다 훨씬 낮다는 것이 도시된다. 샘플 반사율(706)에서의 진동은, 경로 차이 유도 위상 시프트로 인한 위상 매칭 및 미스매칭(mismatching)에 기인한다.
[0057]
표 1에 도시된 바와 같이, 은(Ag) 상에 니켈(Ni)로 형성된 이중-층 흡수체(210)는 다른 조합들에 비해 실질적으로 더 적은 반사율 백분율(702)을 제공한다.
[0058]
표 1: 30nm 이중-층 흡수체에 대한 가장 낮은 반사율은 몇 개의 금속 시스템들에 대해 모델링된다(modeled).
[0059]
표 1은, 30nm 이중-층 흡수체(210)의 경우의 반사율 백분율(702)의 가장 낮은 값을 편집(compilation)한 것이다. 이러한 이중 층들이 증착되는 순서는, 시스템에서 위상 미스매칭을 제어하는 데에 매우 중요하다. 이중-층 흡수체(210)의 이러한 실시예들은 PVD, CVD, ALD, RF 및 DC 마그네트론 스퍼터링 기법들에 의해 증착될 수 있다. 이러한 금속들 중 대부분은 13.5nm에서 흡수 및 위상 시프트 거동에 거의 영향을 미치지 않는 매우 얇은 자연 산화막(native oxide layer)을 형성한다.
[0060]
표 2: 이중-층 흡수체에 대해 0.8% 반사율을 얻기 위해 필요한 가장 작은 두께.
[0061]
이중-층 흡수체(210)가 0.8% 반사율 백분율(702)을 얻기 위해 요구되는 가장 작은 두께(704)가 표 2에 표로 표시된다(tabulated). 이러한 재료들의 선택 기준은, 0.8% 반사율 백분율(702)를 달성하는 데 필요한 가장 작은 두께 및 선택적으로 에칭될 능력에 기초한다. 이러한 재료들의 원자 산란 인자들(atomic scattering factors)은 주기율표의 다른 원소들보다 더 높은 실수부와 허수부 특성들(real and imaginary characteristics)을 가질 수 있다. 더 높은 허수부 특성은 흡수를 설명하고, 실수부는, 입사하는 광의 위상을 변조하는 능력에 대응한다. 위상 변조는 또한, 흡수체의 두께(704)에 따르는데, 이는 경로 차이 유도 위상 시프트와 관련되기 때문이다.
[0062]
결과적인 방법, 프로세스, 장치, 디바이스, 생산물, 및/또는 시스템은, 간단하고, 비용-효과적이며, 복잡하지 않고, 매우 다용도이며, 정확하고, 섬세하며, 효과적이고, 그리고, 준비된, 효율적인, 그리고 경제적인 제조, 어플리케이션, 및 활용을 위해, 공지된 컴포넌트들을 적응시킴으로써(adapt) 구현될 수 있다.
[0063]
본 발명의 다른 중요한 양태는, 본 발명이 가치있게, 비용들을 감소시키고, 시스템들을 단순화하며, 성능을 증가시키는 역사적인 경향을 지원하고 서비스한다는 점이다.
[0064]
본 발명의 이러한 그리고 다른 가치있는 양태들은 결과적으로 기술의 상태를 적어도 다음 수준으로 발전시킨다(further).
[0065]
본 발명은 특정한 최상의 모드와 함께 설명되었지만, 전술한 설명을 고려하여, 많은 대안들, 수정들, 및 변형들이 당업자에게 자명할 것이라는 점이 이해되어야 한다. 따라서, 본 발명은, 포함된 청구항들의 범위 내에 있는 그러한 모든 대안들, 수정들, 및 변형들을 포괄하도록 의도된다. 지금까지 본원에서 열거되거나 첨부된 도면들에 도시된 모든 사항들은 예시적인 것이며 비-제한적인 의미로 이해되어야 한다.
Claims (8)
- 표면 결점들(imperfections)을 포함하는 초-저 팽창 기판;
상기 표면 결점들을 캡슐화(encapsulating)하기 위한 상기 초-저 팽창 기판 상의 평탄화 층;
상기 평탄화 층 위의 다층 스택; 및
상기 다층 스택 위의 이중-층 흡수체를 포함하고,
상기 이중-층 흡수체는, 26.5 nm 내지 28 nm 범위의 두께를 갖는 일차 흡수체 층 및 2 nm 내지 3.5 nm 범위의 두께를 갖는 이차 흡수체 층을 포함하며,
상기 일차 흡수체 층은 13.5 nm의 파장에서 1.9% 미만의 반사율을 제공하는 두께를 가지는,
극자외선(EUV) 마스크 블랭크. - 제 1 항에 있어서,
상기 다층 스택 상에 형성된 캡핑(capping) 층을 더 포함하고, 상기 이중-층 흡수체는 상기 캡핑 층 상에 형성되며, 상기 캡핑 층은 상기 다층 스택을 보호하는,
극자외선(EUV) 마스크 블랭크. - 제 1 항에 있어서,
상기 평탄화 층 상에 직접 형성된 부가적인 다층 스택을 더 포함하고, 상기 부가적인 다층 스택은, 수직 스택으로 형성된 최대 60의 상기 다층 스택을 포함하는,
극자외선(EUV) 마스크 블랭크. - 제 1 항에 있어서,
상기 이중-층 흡수체는 주석(Sn), 백금(Pt), 은(Ag), 인듐(In), 또는 니켈(Ni)로 이루어진 상기 일차 흡수체 층을 포함하는,
극자외선(EUV) 마스크 블랭크. - 제 1 항에 있어서,
상기 이중-층 흡수체는, 니켈(Ni), 아연(Zn), 안티모니(Sb), 크롬(Cr), 구리(Cu), 탄탈륨(Ta), 또는 텔루르(Te)로 이루어진 상기 이차 흡수체 층을 포함하는,
극자외선(EUV) 마스크 블랭크. - 제 1 항에 있어서,
상기 이중-층 흡수체는, 은(Ag)으로 이루어진 상기 일차 흡수체 층 및 니켈(Ni)로 이루어진 상기 이차 흡수체 층을 포함하는,
극자외선(EUV) 마스크 블랭크. - 제 1 항에 있어서,
상기 이중-층 흡수체는, 백금(Pt)으로 이루어진 상기 일차 흡수체 층 및 아연(Zn)으로 이루어진 상기 이차 흡수체 층을 포함하는,
극자외선(EUV) 마스크 블랭크. - 제 1 항에 있어서,
상기 이중-층 흡수체는, 인듐(In)으로 이루어진 상기 일차 흡수체 층 및 텔루르(Te)로 이루어진 상기 이차 흡수체 층을 포함하는,
극자외선(EUV) 마스크 블랭크.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462023507P | 2014-07-11 | 2014-07-11 | |
US62/023,507 | 2014-07-11 | ||
US14/620,123 US9581889B2 (en) | 2014-07-11 | 2015-02-11 | Planarized extreme ultraviolet lithography blank with absorber and manufacturing system therefor |
US14/620,123 | 2015-02-11 | ||
KR1020187004515A KR102252228B1 (ko) | 2014-07-11 | 2015-07-08 | 흡수체를 갖는 평탄화된 극자외선 리소그래피 블랭크 및 그의 제조 시스템 |
PCT/US2015/039533 WO2016007613A1 (en) | 2014-07-11 | 2015-07-08 | Planarized extreme ultraviolet lithography blank with absorber and manufacturing system therefor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187004515A Division KR102252228B1 (ko) | 2014-07-11 | 2015-07-08 | 흡수체를 갖는 평탄화된 극자외선 리소그래피 블랭크 및 그의 제조 시스템 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210055805A true KR20210055805A (ko) | 2021-05-17 |
KR102291647B1 KR102291647B1 (ko) | 2021-08-18 |
Family
ID=55064823
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187004515A KR102252228B1 (ko) | 2014-07-11 | 2015-07-08 | 흡수체를 갖는 평탄화된 극자외선 리소그래피 블랭크 및 그의 제조 시스템 |
KR1020177003872A KR101831347B1 (ko) | 2014-07-11 | 2015-07-08 | 흡수체를 갖는 평탄화된 극자외선 리소그래피 블랭크 및 그의 제조 시스템 |
KR1020217013877A KR102291647B1 (ko) | 2014-07-11 | 2015-07-08 | 흡수체를 갖는 평탄화된 극자외선 리소그래피 블랭크 및 그의 제조 시스템 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187004515A KR102252228B1 (ko) | 2014-07-11 | 2015-07-08 | 흡수체를 갖는 평탄화된 극자외선 리소그래피 블랭크 및 그의 제조 시스템 |
KR1020177003872A KR101831347B1 (ko) | 2014-07-11 | 2015-07-08 | 흡수체를 갖는 평탄화된 극자외선 리소그래피 블랭크 및 그의 제조 시스템 |
Country Status (9)
Country | Link |
---|---|
US (2) | US9581889B2 (ko) |
EP (1) | EP3167475B1 (ko) |
JP (2) | JP6626878B2 (ko) |
KR (3) | KR102252228B1 (ko) |
CN (1) | CN106663602B (ko) |
MY (1) | MY180479A (ko) |
SG (1) | SG11201610501PA (ko) |
TW (2) | TWI599672B (ko) |
WO (1) | WO2016007613A1 (ko) |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9581889B2 (en) * | 2014-07-11 | 2017-02-28 | Applied Materials, Inc. | Planarized extreme ultraviolet lithography blank with absorber and manufacturing system therefor |
US9612522B2 (en) | 2014-07-11 | 2017-04-04 | Applied Materials, Inc. | Extreme ultraviolet mask blank production system with thin absorber and manufacturing system therefor |
KR20160119935A (ko) * | 2015-04-06 | 2016-10-17 | 삼성디스플레이 주식회사 | 표시장치 및 그 제작 방법 |
TWI763686B (zh) | 2016-07-27 | 2022-05-11 | 美商應用材料股份有限公司 | 具有合金吸收劑的極紫外線遮罩坯料、製造極紫外線遮罩坯料的方法以及極紫外線遮罩坯料生產系統 |
TWI774375B (zh) | 2016-07-27 | 2022-08-11 | 美商應用材料股份有限公司 | 具多層吸收劑的極紫外遮罩坯料及製造方法 |
JP6888258B2 (ja) * | 2016-09-15 | 2021-06-16 | 凸版印刷株式会社 | 反射型フォトマスク及び反射型フォトマスクブランク |
WO2018074512A1 (ja) * | 2016-10-21 | 2018-04-26 | Hoya株式会社 | 反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法 |
EP3454119B1 (en) | 2017-09-09 | 2023-12-27 | IMEC vzw | Euv absorbing alloys |
US10890842B2 (en) * | 2017-09-21 | 2021-01-12 | AGC Inc. | Reflective mask blank, reflective mask, and process for producing reflective mask blank |
US10802393B2 (en) * | 2017-10-16 | 2020-10-13 | Globalfoundries Inc. | Extreme ultraviolet (EUV) lithography mask |
KR102374206B1 (ko) | 2017-12-05 | 2022-03-14 | 삼성전자주식회사 | 반도체 장치 제조 방법 |
JP7263908B2 (ja) * | 2018-06-13 | 2023-04-25 | Agc株式会社 | 反射型マスクブランク、反射型マスク及び反射型マスクブランクの製造方法 |
US11106126B2 (en) * | 2018-09-28 | 2021-08-31 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of manufacturing EUV photo masks |
DE102019110706B4 (de) | 2018-09-28 | 2024-08-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Verfahren zum Herstellen von EUV-Fotomasken sowie Ätzvorrichtung |
TW202026770A (zh) * | 2018-10-26 | 2020-07-16 | 美商應用材料股份有限公司 | 用於極紫外線掩模吸收劑的ta-cu合金材料 |
KR20210088582A (ko) | 2018-11-15 | 2021-07-14 | 도판 인사츠 가부시키가이샤 | 반사형 포토마스크 블랭크 및 반사형 포토마스크 |
TWI845579B (zh) | 2018-12-21 | 2024-06-21 | 美商應用材料股份有限公司 | 極紫外線遮罩吸收器及用於製造的方法 |
TWI828843B (zh) | 2019-01-31 | 2024-01-11 | 美商應用材料股份有限公司 | 極紫外線(euv)遮罩素材及其製造方法 |
US11249390B2 (en) | 2019-01-31 | 2022-02-15 | Applied Materials, Inc. | Extreme ultraviolet mask absorber materials |
TW202035792A (zh) | 2019-01-31 | 2020-10-01 | 美商應用材料股份有限公司 | 極紫外光遮罩吸收體材料 |
US20200278603A1 (en) * | 2019-03-01 | 2020-09-03 | Applied Materials, Inc. | Extreme Ultraviolet Mask Blank With Multilayer Absorber And Method Of Manufacture |
TW202043905A (zh) | 2019-03-01 | 2020-12-01 | 美商應用材料股份有限公司 | 物理氣相沉積系統與處理 |
TWI842830B (zh) | 2019-03-01 | 2024-05-21 | 美商應用材料股份有限公司 | 物理氣相沉積腔室與沉積交替材料層的方法 |
TWI818151B (zh) | 2019-03-01 | 2023-10-11 | 美商應用材料股份有限公司 | 物理氣相沉積腔室及其操作方法 |
TW202104667A (zh) | 2019-05-22 | 2021-02-01 | 美商應用材料股份有限公司 | 極紫外光遮罩吸收材料 |
TWI845677B (zh) | 2019-05-22 | 2024-06-21 | 美商應用材料股份有限公司 | 極紫外光遮罩吸收材料 |
TW202104666A (zh) | 2019-05-22 | 2021-02-01 | 美商應用材料股份有限公司 | 極紫外光遮罩吸收劑材料 |
TWI836073B (zh) | 2019-05-22 | 2024-03-21 | 美商應用材料股份有限公司 | 極紫外光遮罩坯體及其製造方法 |
TWI836072B (zh) | 2019-05-22 | 2024-03-21 | 美商應用材料股份有限公司 | 具有嵌入吸收層之極紫外光遮罩 |
US11385536B2 (en) | 2019-08-08 | 2022-07-12 | Applied Materials, Inc. | EUV mask blanks and methods of manufacture |
US11630385B2 (en) | 2020-01-24 | 2023-04-18 | Applied Materials, Inc. | Extreme ultraviolet mask absorber materials |
TW202129401A (zh) | 2020-01-27 | 2021-08-01 | 美商應用材料股份有限公司 | 極紫外線遮罩坯體硬遮罩材料 |
TWI817073B (zh) | 2020-01-27 | 2023-10-01 | 美商應用材料股份有限公司 | 極紫外光遮罩坯體硬遮罩材料 |
TW202131087A (zh) | 2020-01-27 | 2021-08-16 | 美商應用材料股份有限公司 | 極紫外光遮罩吸收劑材料 |
TW202141165A (zh) | 2020-03-27 | 2021-11-01 | 美商應用材料股份有限公司 | 極紫外光遮罩吸收材料 |
TWI836207B (zh) | 2020-04-17 | 2024-03-21 | 美商應用材料股份有限公司 | 極紫外光遮罩吸收材料 |
US11300871B2 (en) | 2020-04-29 | 2022-04-12 | Applied Materials, Inc. | Extreme ultraviolet mask absorber materials |
US11366059B2 (en) * | 2020-06-05 | 2022-06-21 | Applied Materials Inc. | System and method to measure refractive index at specific wavelengths |
TW202202641A (zh) | 2020-07-13 | 2022-01-16 | 美商應用材料股份有限公司 | 極紫外線遮罩吸收劑材料 |
US11609490B2 (en) | 2020-10-06 | 2023-03-21 | Applied Materials, Inc. | Extreme ultraviolet mask absorber materials |
US20220187699A1 (en) * | 2020-12-11 | 2022-06-16 | AGC Inc. | Reflective mask blank for euvl, reflective mask for euvl, and method of manufacturing reflective mask for euvl |
US11513437B2 (en) | 2021-01-11 | 2022-11-29 | Applied Materials, Inc. | Extreme ultraviolet mask absorber materials |
US11592738B2 (en) | 2021-01-28 | 2023-02-28 | Applied Materials, Inc. | Extreme ultraviolet mask absorber materials |
JP2022124344A (ja) * | 2021-02-15 | 2022-08-25 | 株式会社トッパンフォトマスク | 反射型フォトマスクブランク及び反射型フォトマスク |
US11815803B2 (en) | 2021-08-30 | 2023-11-14 | Applied Materials, Inc. | Multilayer extreme ultraviolet reflector materials |
US11782337B2 (en) | 2021-09-09 | 2023-10-10 | Applied Materials, Inc. | Multilayer extreme ultraviolet reflectors |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004152843A (ja) * | 2002-10-29 | 2004-05-27 | Nikon Corp | Euv露光方法及び露光装置 |
US20040151988A1 (en) * | 2003-02-05 | 2004-08-05 | Silverman Peter J. | EUV mask blank defect mitigation |
KR20110050427A (ko) * | 2008-07-14 | 2011-05-13 | 아사히 가라스 가부시키가이샤 | Euv 리소그래피용 반사형 마스크 블랭크 및 euv 리소그래피용 반사형 마스크 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002329649A (ja) * | 2001-04-27 | 2002-11-15 | Nikon Corp | レチクル、レチクルの製造方法、露光装置及び露光方法 |
JP3806702B2 (ja) * | 2002-04-11 | 2006-08-09 | Hoya株式会社 | 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法 |
US6835503B2 (en) | 2002-04-12 | 2004-12-28 | Micron Technology, Inc. | Use of a planarizing layer to improve multilayer performance in extreme ultra-violet masks |
JP2003315977A (ja) * | 2002-04-25 | 2003-11-06 | Hoya Corp | リソグラフィーマスクブランクの製造方法及び製造装置 |
TWI295816B (en) * | 2005-07-19 | 2008-04-11 | Applied Materials Inc | Hybrid pvd-cvd system |
US7432201B2 (en) | 2005-07-19 | 2008-10-07 | Applied Materials, Inc. | Hybrid PVD-CVD system |
JP4703353B2 (ja) * | 2005-10-14 | 2011-06-15 | Hoya株式会社 | 多層反射膜付き基板、その製造方法、反射型マスクブランクおよび反射型マスク |
JP4652946B2 (ja) * | 2005-10-19 | 2011-03-16 | Hoya株式会社 | 反射型マスクブランク用基板の製造方法、反射型マスクブランクの製造方法、及び反射型マスクの製造方法 |
US7771895B2 (en) * | 2006-09-15 | 2010-08-10 | Applied Materials, Inc. | Method of etching extreme ultraviolet light (EUV) photomasks |
JP5194888B2 (ja) * | 2007-09-27 | 2013-05-08 | 凸版印刷株式会社 | 反射型フォトマスクブランク及びその製造方法、反射型フォトマスク及びその製造方法並びに半導体素子の製造方法 |
JP2009210802A (ja) * | 2008-03-04 | 2009-09-17 | Asahi Glass Co Ltd | Euvリソグラフィ用反射型マスクブランク |
KR100940270B1 (ko) * | 2008-03-11 | 2010-02-05 | 주식회사 하이닉스반도체 | 극자외선 리소그라피용 마스크 및 그 형성 방법. |
KR101020281B1 (ko) * | 2008-06-20 | 2011-03-07 | 주식회사 하이닉스반도체 | 극자외선 리소그라피 마스크의 제조 방법 |
KR101095681B1 (ko) | 2008-12-26 | 2011-12-19 | 주식회사 하이닉스반도체 | 극자외선 리소그래피를 위한 포토마스크 및 그 제조방법 |
JP5766393B2 (ja) | 2009-07-23 | 2015-08-19 | 株式会社東芝 | 反射型露光用マスクおよび半導体装置の製造方法 |
KR20130007537A (ko) * | 2010-03-02 | 2013-01-18 | 아사히 가라스 가부시키가이샤 | Euv 리소그래피용 반사형 마스크 블랭크 및 그 제조 방법 |
JP5559948B2 (ja) * | 2010-03-12 | 2014-07-23 | Hoya株式会社 | 多層反射膜付基板の製造方法および反射型マスクブランクの製造方法 |
JP6013720B2 (ja) | 2010-11-22 | 2016-10-25 | 芝浦メカトロニクス株式会社 | 反射型マスクの製造方法、および反射型マスクの製造装置 |
KR20140004101A (ko) * | 2011-02-01 | 2014-01-10 | 아사히 가라스 가부시키가이샤 | Euv 리소그래피용 반사형 마스크 블랭크 |
WO2013077430A1 (ja) | 2011-11-25 | 2013-05-30 | 旭硝子株式会社 | Euvリソグラフィ用反射型マスクブランクおよびその製造方法 |
JP2013120868A (ja) | 2011-12-08 | 2013-06-17 | Dainippon Printing Co Ltd | 反射型マスクブランクス、反射型マスク、および、それらの製造方法 |
US8691476B2 (en) | 2011-12-16 | 2014-04-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | EUV mask and method for forming the same |
KR20130085774A (ko) | 2012-01-20 | 2013-07-30 | 에스케이하이닉스 주식회사 | Euv 마스크 |
US8877409B2 (en) * | 2012-04-20 | 2014-11-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reflective mask and method of making same |
US8663878B2 (en) * | 2012-07-05 | 2014-03-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mask and method for forming the same |
US8932785B2 (en) | 2012-10-16 | 2015-01-13 | Advanced Mask Technology Center Gmbh & Co. Kg | EUV mask set and methods of manufacturing EUV masks and integrated circuits |
US9146458B2 (en) | 2013-01-09 | 2015-09-29 | Kabushiki Kaisha Toshiba | EUV mask |
US9354508B2 (en) * | 2013-03-12 | 2016-05-31 | Applied Materials, Inc. | Planarized extreme ultraviolet lithography blank, and manufacturing and lithography systems therefor |
US9581889B2 (en) * | 2014-07-11 | 2017-02-28 | Applied Materials, Inc. | Planarized extreme ultraviolet lithography blank with absorber and manufacturing system therefor |
US9612522B2 (en) | 2014-07-11 | 2017-04-04 | Applied Materials, Inc. | Extreme ultraviolet mask blank production system with thin absorber and manufacturing system therefor |
-
2015
- 2015-02-11 US US14/620,123 patent/US9581889B2/en active Active
- 2015-06-02 TW TW104117831A patent/TWI599672B/zh active
- 2015-06-02 TW TW106127899A patent/TWI658165B/zh active
- 2015-07-08 JP JP2017500332A patent/JP6626878B2/ja active Active
- 2015-07-08 WO PCT/US2015/039533 patent/WO2016007613A1/en active Application Filing
- 2015-07-08 EP EP15819621.2A patent/EP3167475B1/en active Active
- 2015-07-08 CN CN201580037984.3A patent/CN106663602B/zh active Active
- 2015-07-08 SG SG11201610501PA patent/SG11201610501PA/en unknown
- 2015-07-08 KR KR1020187004515A patent/KR102252228B1/ko active IP Right Grant
- 2015-07-08 KR KR1020177003872A patent/KR101831347B1/ko not_active Application Discontinuation
- 2015-07-08 MY MYPI2016002250A patent/MY180479A/en unknown
- 2015-07-08 KR KR1020217013877A patent/KR102291647B1/ko active IP Right Grant
-
2017
- 2017-01-13 US US15/405,860 patent/US10012897B2/en active Active
-
2019
- 2019-12-02 JP JP2019217688A patent/JP6855556B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004152843A (ja) * | 2002-10-29 | 2004-05-27 | Nikon Corp | Euv露光方法及び露光装置 |
US20040151988A1 (en) * | 2003-02-05 | 2004-08-05 | Silverman Peter J. | EUV mask blank defect mitigation |
KR20110050427A (ko) * | 2008-07-14 | 2011-05-13 | 아사히 가라스 가부시키가이샤 | Euv 리소그래피용 반사형 마스크 블랭크 및 euv 리소그래피용 반사형 마스크 |
Also Published As
Publication number | Publication date |
---|---|
US9581889B2 (en) | 2017-02-28 |
TWI658165B (zh) | 2019-05-01 |
CN106663602A (zh) | 2017-05-10 |
US20170131627A1 (en) | 2017-05-11 |
JP2017525998A (ja) | 2017-09-07 |
EP3167475B1 (en) | 2021-03-17 |
TW201614093A (en) | 2016-04-16 |
KR101831347B1 (ko) | 2018-02-22 |
SG11201610501PA (en) | 2017-01-27 |
JP6855556B2 (ja) | 2021-04-07 |
EP3167475A1 (en) | 2017-05-17 |
TWI599672B (zh) | 2017-09-21 |
TW201742944A (zh) | 2017-12-16 |
KR102252228B1 (ko) | 2021-05-13 |
KR20180019775A (ko) | 2018-02-26 |
US20160011500A1 (en) | 2016-01-14 |
KR102291647B1 (ko) | 2021-08-18 |
KR20170032379A (ko) | 2017-03-22 |
US10012897B2 (en) | 2018-07-03 |
CN106663602B (zh) | 2019-11-26 |
JP6626878B2 (ja) | 2019-12-25 |
EP3167475A4 (en) | 2018-04-18 |
JP2020064307A (ja) | 2020-04-23 |
MY180479A (en) | 2020-11-30 |
WO2016007613A1 (en) | 2016-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102252228B1 (ko) | 흡수체를 갖는 평탄화된 극자외선 리소그래피 블랭크 및 그의 제조 시스템 | |
US10551732B2 (en) | Extreme ultraviolet mask blank production system with thin absorber and manufacturing system therefor | |
TWI730139B (zh) | 具多層吸收劑的極紫外遮罩坯料及製造方法 | |
KR102060035B1 (ko) | 평탄화된 극자외선 리소그래피 블랭크, 및 그를 위한 제조 및 리소그래피 시스템들 | |
KR102207245B1 (ko) | 비결정질 층 극자외선 리소그래피 블랭크, 및 그를 위한 제조 및 리소그래피 시스템들 | |
TW201830122A (zh) | 具有合金吸收劑的極紫外線遮罩坯料及製造方法 | |
KR20190049836A (ko) | 초-평활 층 자외선 리소그래피 거울들 및 블랭크들, 및 그를 위한 제조 및 리소그래피 시스템들 | |
TWI827922B (zh) | 極紫外線遮罩素材及其製造方法 | |
CN115427888A (zh) | 极紫外掩模吸收体材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |