KR20200123212A - 적층 제조를 위한 방법 및 장치 - Google Patents

적층 제조를 위한 방법 및 장치 Download PDF

Info

Publication number
KR20200123212A
KR20200123212A KR1020207027227A KR20207027227A KR20200123212A KR 20200123212 A KR20200123212 A KR 20200123212A KR 1020207027227 A KR1020207027227 A KR 1020207027227A KR 20207027227 A KR20207027227 A KR 20207027227A KR 20200123212 A KR20200123212 A KR 20200123212A
Authority
KR
South Korea
Prior art keywords
build
printing
sheet
build sheet
layer
Prior art date
Application number
KR1020207027227A
Other languages
English (en)
Inventor
데이비드 리하
알렉시스 피히터
로버트 베드솔
찰스 힐
티모페이 노비코브
카일 로웨
Original Assignee
로컬 모터스 아이피, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 로컬 모터스 아이피, 엘엘씨 filed Critical 로컬 모터스 아이피, 엘엘씨
Publication of KR20200123212A publication Critical patent/KR20200123212A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/379Handling of additively manufactured objects, e.g. using robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/729Textile or other fibrous material made from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/748Joining plastics material to non-plastics material to natural products or their composites, not provided for in groups B29C66/742 - B29C66/746
    • B29C66/7485Natural fibres, e.g. wool, cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2055/00Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 - B29K2049/00, e.g. having a vinyl group, as moulding material
    • B29K2055/02ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Robotics (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)

Abstract

적층 제조를 위한 방법 및 장치
적층 제조를 위한 방법 및 장치. 적층 제조 방법에서 빌드 시트는 프린터의 인쇄 기질에 배치될 수 있다. 객체는 빌드 시트에 인쇄될 수 있다. 객체를 빌드 시트에서 분리할 수 있다. 유리하게는, 빌드 시트는 인쇄 중에 객체가 빌드 시트상에서 이동하는 것을 방지할 수 있다. 객체에서 빌드 시트를 제거해도 객체가 크게 변형되거나 구부러지지 않다. 객체의 손상을 방지할 수 있다. 객체는 잔여물이나 물질을 제거하기 위해 추가 청소나 마감 처리가 필요하지 않다. 빌드 시트는 다시 사용할 수 있다. 빌드 시트는 유리하게는 객체로부터 빌드 시트의 제거를 유지하기 위해 기계적 강도를 가질 수 있다.

Description

적층 제조를 위한 방법 및 장치
본 출원은 2018년 4월 23일에 출원된 미국 잠정 특허 출원 제62/661,553 및 2018년 4월 24일에 출원된 미국 잠정 특허 출원 제62/661,903에 대해 우선권을 주장한다. 잠정 특허 출원에 대한 우선권이 명시적으로 청구되며, 잠정 출원의 개시는 전체적으로 및 모든 목적을 위해 여기에 참조로 포함된다.
다음 미국 특허 출원은 본 출원의 양수인이 전적으로 소유하고 있으며 동일한 날짜에 함께 제출된다. 미국 특허 출원의 개시 내용은 전체적으로 그리고 모든 목적을 위해 여기에 참고로 포함된다.: "적층 제조를 위한 방법 및 장치", 2019년 4월 23일에 제출 어토니 매터 번호 36681.4004.
개시된 실시예는 일반적으로 적층 제조에 관한 것이고, 더욱 구체적으로, 적층 제조를 위한 방법 및 장치에 관한 것이지만 배타적인 것은 아니다.
적층 제조로도 알려진 3 차원(3D) 프린팅은 필요한 곳에만 재료를 증착하는 기술로, 일반적으로 벌크 재료를 줄이거나 제거하여 부분을 형성하는 기존 제조 기술보다 재료 낭비를 크게 줄인다. 일반적인 적층 제조 공정에서는 컴퓨터 제어하에 재료 층을 형성하여 3D 객체를 만든다. 최초의 3 차원(3D) 인쇄 항목은 일반적으로 모델이었지만, 산업은 경첩, 도구, 구조 요소와 같은 더 복잡한 시스템의 기능 부분일 수 있는 3D 인쇄 항목를 형성함으로써 빠르게 발전하고 있다.
대규모로(즉, 일반적으로 적어도 하나의 치수가 5 피트보다 큰) 3D 물품을 제조하기 위한 적층 제조는 대규모 적층 제조로 지칭될 수 있다. 대규모 적층 제조를 위한 시스템(또는 기술)은 대규모 적층 제조 시스템(또는 기술)이라고 할 수 있다. 예시적인 대규모 적층 제조 시스템은 예를 들어 오하이오 주 해리슨에 위치한 Cincinnati Incorporated에서 입수할 수 있는 대영역 적층 제조(BAAM) 100 ALPHA 또는 인디애나 주 데일에 위치한 Thermwood Corporation에서 입수할 수 있는 대규모 적층 제조(LSAM) 기계를 포함한다. 대규모 적층 제조를 위해 압출 증착을 사용하는 예시적인 시스템에는 BAAM 100 ALPHA 및 LSAM 기계가 포함된다.
대규모 적층 제조는 최근 재료 특성의 개선과 맞춤형 대형 구조물의 증가된 요구로 인해 더 큰 연구, 사용 및 기술 발전의 영역이 되었다. 예를 들어, 애리조나 주 피닉스에 위치한 Local Motors는 차량을 인쇄하기 위해 대규모 적층 제조 또는 대규모 압출 증착을 사용한 최초의 기업이다. 그러나 대규모 적층 제조는 또한 소규모 적층 제조에 사용되는 기술을 직접 채택하여 해결할 수 없는 큰 문제에 직면해 있다. 문제 중 하나는 인쇄하기에 적합한 인쇄 표면을 제공하는 것이다.
예를 들어, 압출 증착에 기초한 3D 프린팅 공정에서, 인쇄 표면은 층이 미끄러지지 않도록 초기 프린팅 층을 유지해야 한다. 또한 인쇄 표면은 인쇄된 3D 객체에 충분히 강하게 부착되어 인쇄 기간 동안 3D 객체가열적으로 수축하거나 팽창함에 따라 3D 객체가 움직이지 않도록 해야 한다. 또한 인쇄 표면은 3D 객체를 손상시키지 않고 3D 객체에서 분리할 수 있어야 한다. 기존 인쇄 표면은 설정하는 데 많은 시간과 노력이 필요하고 원하는 접착력을 제공할 수 없으며 재사용하기 어렵다.
인쇄 표면은 인쇄 표면과 초기 인쇄 층 사이의 접착이 적절하도록 선택될 필요가 있다. 본 출원의 발명자들은 접착력이 너무 약하면 인쇄 표면은 인쇄 층이 이동하거나 미끄러지는 것을 방지할 수 없고 인쇄 오류를 초래할 수 있음을 발견했다.
본 발명자들은 접착력이 너무 강하면 인쇄 표면이 객체를 손상시키거나 오염시키지 않으면서 객체로부터 분리될 수 없다는 것을 발견했다.
또한 인쇄 중에 각 인쇄 층는 열 수축으로 인해 일정량의 변형을 경험할 수 있다. 접착력이 매우 강할 때, 인쇄된 층 내에 축적된 응력은 인쇄된 객체가 인쇄 표면에 접착되는 것을 강력하고 갑작스럽게 극복할 수 있으며 인쇄된 각 층마다 다른 정도의 변형을 초래할 수 있다. 이러한 변형이 있는 객체는 모양이 좋지 않은 것처럼 보일 수 있다. 객체의 특정 변형은 인쇄하는 동안 객체와 인쇄 헤드 사이의 거리를 감소시킬 수 있으며, 이후에 객체에 부착되는 비드의 폭이 증가하여 인쇄 결함이 발생할 수 있다.
본 발명자들은 소규모 적층 제조가 적합한 인쇄 표면을 설정하는 데 어려움을 겪을 수 있지만, 그 어려움이 특히 심각할 수 있고 대규모 적층 제조에서 고유 한 도전을 제시할 수 있음을 발견했다. 예를 들어, 소규모 적층 제조에서 인쇄 기질은 글루 스틱이나 페인트 테이프로 코팅할 수 있으며 이러한 코팅은 시간이 많이 걸리고 대규모에서는 비실용적일 수 있다. 또한, 대규모 압출 증착 공정에서는 비드의 응고에 오랜 시간이 걸릴 수 있다. 따라서 각 인쇄 층은 각각의 응고 진행을 가질 수 있다. 또한 인쇄된 층의 크기가 커서 인접 층 간의 상대적인 변형량이 크다. 인접한 층 사이에 축적된 응력이 상당할 수 있다.
일 예에서, 본 발명자들은 인쇄 베드를 아크릴로니트릴 부타디엔 스티렌(ABS) 시트로 덮고 인쇄 베드를 통해 진공을 적용된 적용시켰다. 능동적으로 가열되는 인쇄 베드에 부착하여 ABS 시트를 가열하여 인쇄 중에 객체에 부착할 수 있다. 그러나 인쇄 베드는 가열될 때 뜨거워져 대규모 적층 제조 과정에서 ABS 시트를 내려 놓거나 걸어 가기가 어렵다.
본 발명자들은 큰 인쇄물의 경우 단일 ABS 시트가 충분히 큰 크기로 상업적으로 이용 가능하지 않을 수 있음을 발견했다. 따라서 전체 인쇄 표면을 만들기 위해 여러 ABS 시트를 나란히 테이프로 붙여야 할 수 있다. 예를 들어, 전기 테이프와 같은 접착 테이프를 테이핑에 사용할 수 있다. 이러한 테이핑은 큰 인쇄물에 고르지 않은 간격을 남길 수 있으며 인쇄 베드에 근접한 객체 층의 변형을 초래할 수 있으며 객체가 접착 테이프에 부착되지 않은 경우 인쇄 베드에서 멀리 떨어진 층에 인쇄 품질 문제를 일으킬 수 있다. 더 얇은 ABS 시트는 롤 형태로 시판될 수 있다. 그러나 두꺼운 ABS 시트는 인쇄 중에 높은 응력으로 인해 ABS 시트가 변형되는 것을 방지하거나 최소화하기 위해 자주 사용된다.
본 발명자들은 또한 가열되고 진공에 의해 당겨질 때, ABS 시트가 진공을 잃을 수 있고 진공의 손실이 인쇄 중에 객체를 움직일 수 있다는 것을 발견했다. 예를 들어, 인쇄 중에 객체과 객체에 부착된 ABS 시트에 변형이 발생한 후 ABS 시트가 진공 밀봉 테이프에서 빠져 나와 진공 손실을 초래할 수 있다. 인쇄 베드는 ABS 시트의 유리 전이 온도(Tg) 바로 이상으로 유지될 수 있다. 따라서 ABS 시트가 부착된 객체의 열 수축으로 인해 인쇄 베드에서 약 ¼ inch 정도 들어 올려지면 ABS 시트가 유리 상태이며 이전에 ABS 시트를 인쇄 베드에 평평하게 고정한 진공력에 반응하여 더 이상 흐르지 않는다. ABS 시트는 이전에 ABS 시트를 인쇄 베드에 고정하는 데 사용되었던 진공 밀봉 테이프 아래에서 뽑힐 수 있을 정도로 수축될 수 있으며, 결과적으로 진공이 손실되어 인쇄 중에 객체가 움직일 수 있다. 인쇄 중 객체의 회전 또는 변환은 객체의 인쇄가 완료될 수 있더라도 최종 인쇄 객체에 결함을 발생시킨다.
다른 예에서, 본 발명자들은 목재 파티클 보드와 같은 보드가 목재 접착제와 같은 접착제로 코팅될 수 있음을 발견했다. 플라스틱 펠릿은 목재 접착제 위에 뿌릴 수 있다. 펠릿에 의해 도입된 거칠기는 인쇄 중에 객체를 제자리에 고정하는 데 도움이 된다. 그러나 대규모 적층 제조에서는 펠릿을 보드 위에 펴는 데 시간이 많이 걸릴 수 있다. 또한 객체를 보드에서 제거하면 많은 양의 펠릿이 지면에 떨어져 엉망이 될 수 있다. 또한 펠릿이 손실되어 보드를 쉽게 재사용할 수 없다.
따라서, 인쇄 표면을 제공하기 위해, 대규모 적층 제조에서의 문제는 소규모 적층 제조에서의 문제와 다르거나 더 크다. 또한, 대규모 적층 제조에서 문제를 해결하기 위한 특정 방법은 효과적이거나 실용적이지 않을 수 있다.
전술한 관점에서, 적층 제조를 위한 방법 및 장치를 개선하고 기존 해결책의 결점을 극복하는 인쇄 표면을 생성하기 위한 개선 및/또는 대안 또는 추가 해결책이 필요하다.
본 명세서는 적층 제조를 위한 방법 및 장치에 관한 것이다.
본 명세서에 개시된 제 1 양태에 따르면, 다음을 포함하는 적층 제조 방법이 제시된다:
프린터의 인쇄 기질 상에 빌드 시트를 위치시키는 단계;
빌드 시트에 객체를 인쇄하는 단계; 및
인쇄 완료 후 빌드 시트에서 객체를 탈착하는 단계,
상기 빌드 시트는 프린팅 동안 객체에 적어도 부분적으로 접착하도록 구성된 빌드 표면 층을 포함하고,
상기 빌드 표면 층은 프린팅 후 객체으로부터 제거 가능하도록 구성되며,
상기 빌드 시트는 재사용 가능하도록 구성된다.
개시된 방법의 일부 실시예에서, 프린터는 대규모 적층 제조 시스템이다.
개시된 방법의 일부 실시예에서, 위치 설정은 빌드 시트를 인쇄 기질에 고정하는 것을 포함한다.
개시된 방법의 일부 실시예에서, 빌드 시트는 열가소성 폴리우레탄으로 적어도 부분적으로 제조된다.
개시된 방법의 일부 실시예에서, 객체를 인쇄하는 것은 아크릴로니트릴 부타디엔 스티렌(ABS), 폴리카보네이트 또는 이들의 조합으로 적어도 부분적으로 제조된 객체를 인쇄하는 것을 포함한다.
개시된 방법의 일부 실시예에서, 위치 설정은 프린터를 사용하여 인쇄 기질 상에 빌드 시트를 인쇄하는 것을 포함한다.
개시된 방법의 일부 실시예에서, 인쇄 기질은 프린터의 인쇄 베드 상에 배치된 테이블을 포함하고, 상기 방법은 프린터를 사용하여 인쇄 베드 상에 테이블을 인쇄하는 단계를 더 포함한다.
개시된 방법의 일부 실시예에서, 테이블은 폴리카보네이트로 제조되고 빌드 표면 층은 열가소성 폴리우레탄으로 제조된다.
개시된 방법의 일부 실시예에서, 빌드 시트는 적어도 부분적으로 직물로 만들어진 빌드 표면 층을 포함한다.
개시된 방법의 일부 실시예에서, 빌드 표면 층은 적어도 부분적으로 면, 데님, 캔버스, 덕 캔버스, 린넨, 실크, 울, 레이온, 폴리에스테르, 나일론, 아크릴, 폴리아미드, 중합체 마이크로 섬유, 또는 이들의 조합으로 만들어진다.
개시된 방법의 일부 실시예에서, 방법은 위치 설정 전에 빌드 표면 층을 접착제로 코팅하는 단계를 추가로 포함한다.
개시된 방법의 일부 실시예에서, 코팅은 접촉 접착제, 목재 접착제 또는 이들의 조합을 포함하는 접착제로 빌드 표면 층을 코팅하는 것을 포함한다.
개시된 방법의 일부 실시예에서, 빌드 시트는 빌드 표면 층에 부착되고 인쇄 기질에 근접한 밀봉층을 추가로 포함한다.
개시된 방법의 일부 실시예에서, 방법은 접착제 또는 열 프레스를 통해 밀봉층을 빌드 표면 층에 부착하는 단계를 추가로 포함한다.
개시된 방법의 일부 실시예에서, 밀봉층은 진공 밀봉에 적합하다.
개시된 방법의 일부 실시예에서, 인쇄 기질은 인쇄 베드를 포함하고, 방법은 인쇄 전에, 인쇄 베드를 통해 인가되는 진공을 통해 빌드 시트를 인쇄 기질에 고정하는 단계를 더 포함한다.
개시된 방법의 일부 실시예에서, 방법은 객체를 인쇄한 후 진공상태를 터닝하여 인쇄 기질으로부터 빌드 시트를 방출하는 단계를 더 포함한다.
개시된 방법의 일부 실시예에서, 방법은 인쇄 베드와 빌드 시트 사이에 장벽 층을 위치시키는 단계를 추가로 포함하고, 장벽 층은 가스 투과성이다.
개시된 방법의 일부 실시예에서, 장벽 층은 와이어 메쉬, 가스 투과성 섬유 보드 또는 이들의 조합을 포함한다.
개시된 방법의 일부 실시예에서, 방법은 인쇄 전에 하나 이상의 폐쇄 시트를 통해 밀봉층 및 장벽 층의 에지에서 진공을 밀봉하는 단계를 더 포함한다.
개시된 방법의 일부 실시예에서, 장벽 층을 배치하는 것은 인쇄 베드와 빌드 시트 사이에 스페이서 플랫폼을 배치하는 것을 포함하고, 스페이서 플랫폼은 가스 투과성 섬유 보드로 제조된다.
개시된 방법의 일부 실시예에서, 스페이서 플랫폼은 비평탄 형태를 갖는 플랫폼 표면을 제공하고, 여기서 빌드 시트를 위치시키는 것은 빌드 시트를 비평 탄 형태에 맞추는 것을 포함한다.
개시된 방법의 일부 실시예에서, 인쇄 기질은 인쇄 베드 및 인쇄 베드 상에 배치된 템플릿 층을 포함하며, 템플릿 층은 인쇄 베드에 수직한 z-방향의 템플릿 층을 통과하는 하나 이상의 템플릿 공극을 정의한다.
개시된 방법의 일부 실시예에서, 방법은 템플릿 공극의 형상적 구조에 기초하여 적어도 부분적으로 형상화된 복수의 섹션으로 객체를 절단하는 단계를 더 포함한다.
개시된 방법의 일부 실시예에서, 절단은 z 방향으로, 객체 및 빌드 시트를 통해 그리고 인쇄 베드를 절단하지 않고 템플릿 층의 선택된 템플릿 공극으로 절단하는 것을 포함한다.
개시된 방법의 일부 실시예에서, 빌드 시트는 1mm 내지 10mm 두께이다.
개시된 방법의 일부 실시예에서, 빌드 표면 층은 1mm 미만의 거칠기를 갖는 인쇄 표면을 갖는다.
개시된 방법의 일부 실시예에서, 빌드 시트는 50N보다 큰 파단력을 갖는다.
개시된 방법의 일부 실시예에서, 빌드 시트와 객체 사이의 접착력은 10 내지 1000 파운드 force/inch 사이의 박리 강도를 갖는다.
본 명세서에 개시된 또 다른 양태에 따르면:
프린터의 인쇄 기질에 고정되고;
적층 제조 동안 객체에 접착되고; 및
적층 제조가 완료된 후 객체에서 제거할 수 있도록 구성된 빌드 표면 층을 포함하는, 객체의 적층 제조 동안 객체를 수용하기 위한 빌드 시트가 제공된다.
개시된 빌드 시트의 일부 실시예에서, 빌드 표면 층은 열가소성 폴리우레탄으로 적어도 부분적으로 제조된다.
개시된 빌드 시트의 일부 실시예에서, 빌드 표면 층은 적어도 부분적으로 직물로 만들어진다.
본 명세서에 개시된 다른 측면에 따르면, 다음을 포함하는 적층 제조 방법이 제시된다:
프린터의 인쇄 기질 상에 빌드 시트를 위치시키는 단계;
빌드 시트에 객체를 인쇄하는 단계;
객체에 부착된 빌드 시트의 일부가 빌드 시트로부터 절단되도록 객체의 변부를 따라 빌드 시트를 절단하는 단계; 및
인쇄 기질으로부터 객체 및 객체에 부착된 빌드 시트의 일부를 분리하는 단계.
개시된 방법의 일부 실시예에서, 빌드 시트는 적어도 부분적으로 열가소성 폴리우레탄으로 제조되고 프린팅 중에 객체에 적어도 부분적으로 접착하도록 구성된 빌드 표면 층을 포함한다.
도 1은 적층 제조를 위한 시스템의 실시예를 도시하는 예시적인 다이어그램.
도 2는 적층 제조 동안 빌드 시트를 포함하는 도 1의 시스템의 선택적인 실시예를 도시하는 예시적인 다이어그램.
도 3은 제조 동안 객체가 빌드 시트로부터 제거된 도 2의 시스템의 선택적인 실시예를 도시하는 예시적인 다이어그램.
도 4는 도 2의 시스템에 기초한 적층 제조 방법의 일 실시예를 도시하는 예시적인 최상위 흐름도.
도 5는 제조 동안 빌드 시트가 객체로부터 제거된 도 2의 시스템의 선택적인 실시예를 도시하는 예시적인 다이어그램.
도 6은 도 4의 방법의 선택적인 실시예를 도시하는 예시적인 흐름도.
도 7은 도 2의 빌드 시트의 실시예를 도시하는 예시적인 단면도.
도 8A는 도 7의 빌드 시트의 선택적인 실시예를 도시하는 예시적인 상세도.
도 8B는 도 8A의 빌드 시트를 도시하는 예시적인 단면도.
도 9는 밀봉층을 포함하는 도 5의 빌드 시트의 선택적인 실시예를 도시하는 예시적인 단면도.
도 10은 시스템은 빌드 시트에 진공을 적용하도록 구성된 도 2의 시스템의 또 다른 선택적인 실시예를 도시하는 예시적인 다이어그램.
도 11은 장벽 층을 포함하는 도 10의 시스템의 선택적인 실시예를 도시하는 예시적인 다이어그램.
도 12는 시스템이 스페이서 플랫폼을 포함하는 도 2의 시스템의 선택적인 실시예를 도시하는 예시적인 다이어그램.
도 13은 빌드 시트에 진공을 적용하도록 구성된 도 12의 시스템의 선택적인 실시예를 도시하는 예시적인 다이어그램.
도 14는 시스템이 진공 플레넘을 포함하는 도 12의 시스템의 다른 선택적인 실시예를 도시하는 예시적인 다이어그램.
도 15는 스페이서 플랫폼이 불균일한 플랫폼 표면을 갖는 도 12의 시스템의 다른 선택적인 실시예를 도시하는 예시적인 다이어그램.
도 16은 템플릿 계층을 포함하는 도 2의 시스템의 다른 선택적인 실시예를 도시하는 예시적인 다이어그램.
도 17은 도 16의 템플릿 층의 선택적인 실시예를 도시하는 예시적인 평면도.
도 18은 기계 가공을 위해 구성된 도 2의 시스템의 다른 선택적인 실시예를 도시하는 예시적인 다이어그램.
도 19는 제조 동안 빌드 시트가 절단된 도 2의 시스템의 다른 선택적인 실시예를 도시하는 예시적인 다이어그램.
도 20은 제조 동안 빌드 시트는 테이블 상에 배치된 도 2의 시스템의 다른 선택적인 실시예를 도시하는 예시적인 다이어그램.
도 21은 도 1의 시스템을 제어하기 위한 제어 시스템의 실시예를 도시하는 예시적인 다이어그램.
도면은 일정한 비율로 그려지지 않았으며 유사한 구조 또는 기능의 요소는 일반적으로 도면 전체에 걸쳐 예시를 위해 유사한 참조 번호로 표시된다는 점에 유의해야 한다. 또한 도면은 바람직한 실시예의 설명을 용이하게 하기 위한 것일 뿐이라는 점에 유의해야 한다. 도면은 설명된 실시예의 모든 측면을 예시하는 것은 아니며 본 개시의 범위를 제한하지 않는다.
도 1은 적층 제조를 위한 예시적인 시스템(100)을 도시한다. 시스템(100)은 압출 증착(또는 재료 압출)을 통해 객체(180)를 인쇄할 수 있다. 인쇄 헤드(120)는 하나 이상의 폴리머 층을 인쇄 기질(140) 상에 증착하여 객체(180)를 형성하도록 구성된 노즐을 포함하는 것으로 도시된다. 인쇄 기질(140)은 인쇄 헤드(120)로부터 증착된 초기 인쇄 재료를 수용하기 위한 인쇄 표면(110)을 제공하는 것으로 도 1에 도시된다. .
인쇄 기질(140)은 인쇄 베드(160)를 포함하는 것으로 도시된다. 인쇄 베드(160)는 균일하거나 평평한 표면을 제공할 수 있다. 인쇄 베드(160)는 가열 및/또는 비가열 테이블을 포함할 수 있다. 층의 적층 방향은 z 방향이고 인쇄 방향은 x 방향이다.
도 1은 압출 증착을 사용하여 시스템(100)에 의해 구현되는 적층 제조를 도시하지만, 적층 제조를 위한 임의의 다른 시스템 또는 공정이 본 개시에서 사용될 수 있다. 적층 제조를 위한 예시적인 공정은 바인더 제트, 직접 에너지 증착, 재료 제트, 분말 베드 융합, 시트 적층, 광중합, 베트 광중합, 스테레오 리소그래피 또는 이들의 조합을 포함할 수 있다.
현재 이용 가능한 방법 및 시스템은 적절한 접착력을 가진 신뢰할 수 있는 인쇄 표면을 제공할 수 없고 준비 및 재사용이 용이하기 때문에, 적절한 인쇄 표면(110)을 제공하는 적층 제조를 위한 방법 및 장치가 바람직 함을 입증하고 차량 및/또는 건축 구조물을 위한 적층 제조와 같은 광범위한 응용 분야를 위한 기초를 제공할 수 있다.
본 발명에 개시된 장치 및 방법은 대규모 적층 제조의 기술적 문제를 해결하기 위해 적용되지만, 상기 장치 및 방법은 중규모 및/또는 중규모 적층 제조와 같은 소규모 적층 제조 또는 제한없이 소규모 적층 제조에 적용될 수 있다. .
도 2로 돌아 가면, 예시적인 시스템(100)이 도시된다. 시스템(100)은 인쇄 기질(140) 및 인쇄 기질(140) 상에 배치된 빌드 시트(200)를 포함하는 것으로 도시된다. 빌드 시트(200)는 객체(180)의 인쇄 전에 인쇄 기질(140) 상에 위치될 수 있다. 빌드 시트(200)는 고정될 수 있다. 임의의 적절한 방식으로 인쇄 기질(140)에 대한 위치에서. 빌드 시트(200)는 인쇄 표면(110)으로 작용하는 인쇄 측면(222) 및 인쇄 측면(222)과 마주하고 인쇄 기질(140)과 접촉하는 후방 측면(260)을 포함하는 것으로 도시된다. 인쇄 헤드(120)는 객체(180)를 인쇄할 수 있다. 객체(180)는 z 방향으로 적층되는 하나 이상의 층(182)을 포함하는 것으로 도시된다. 객체(180)는 적층 제조를 사용하여 제조될 수 있다.
시스템(100)은 선택적 가공 도구(130)를 포함하는 것으로 도시된다. 가공 도구(130)는 객체(180)의 인쇄 동안 및/또는 후에 객체(180)의 선택된 부분을 제거할 수 있다. 예시적인 가공 도구(130)는 밀, 선반, 모든 유형의 절단기 또는 이들의 조합을 포함할 수 있다. 가공 도구(130)은 시스템(100)의 임의의 적절한 위치에 설치될 수 있다. 도 2는 단지 예시를 위해 인쇄 베드(160)에 직접 및/또는 간접적으로 연결된 가공 도구(130)을 도시한다. 인쇄 헤드(120) 및 가공 도구(130)는 균일하고 및/또는 상이한 제어 시스템(400)(도 19에 도시됨)에 의해 제어될 수 있다.
인쇄 표면(110)과 객체(180) 사이의 접착력은 객체(180)가 인쇄 표면(110)을 따라 이동하지 않도록 충분히 강할 수 있다. 다소 다르게 말하면, 초기에 증착되고 인쇄 표면(110)과 접하는 층(182)은 인쇄 표면(110)이 인쇄 동안 객체(180)를 제자리에 유지할 수 있도록 인쇄 표면(110)에 적어도 부분적으로 접착될 수 있다.
도 2는 z-방향 및 x-방향으로 부분의 단면을 도시하지만, 빌드 시트(200)는 제한없이 균일 및/또는 상이한 z-방향 및/또는 y-방향 부분의 단면에서 볼 수 있다.
도 3을 참조하면, 객체(180)는 선택적으로 빌드 시트(200)로부터 분리되는 것으로 도시된다. 다소 다르게 말하면, 빌드 시트(200)는 객체(180)로부터 분리될 수 있다. 따라서, 객체(180)는 인쇄물에서 제거된다. 일 실시예에서, 객체(180)의 인쇄가 완료되면, 빌드 시트(200)는 인쇄 기질(140) 상에 남아있을 수 있다. 웨지와 같은 형상의 기계 도구는 빌드 시트(200)와 객체(180)는 빌드 시트(200)로부터 객체(180)를 점진적으로 분리할 수 있다. 따라서 객체(180)는 빌드 시트(200)로부터 제거될 수 있는 한편 빌드 시트(200)는 인쇄 기질(140)에 부착된 채로 남아있을 수 있다.
도 3은 단지 예시의 목적으로 인쇄 기질(140) 상에 위치된 것으로 빌드 시트(200)를 도시하지만, 빌드 시트(200)는 제한없이 빌드 시트(200)로부터 객체(180)의 제거 이전, 도중 및/또는 이후에 인쇄 기질(140)으로부터 접촉 및/또는 분리될 수 있다.
제거시, 빌드 시트(200)로부터의 잔류 접착제 및/또는 재료 중 어느 것도 또는 무시할 수 있는 양이 객체(180) 상에 남아 있지 않는다. 다소 다르게 말하면, 빌드 시트(200)는 제거 동안 손상되지 않은 상태로 남아있을 수 있다. 유리하게는, 객체(180)는 임의의 잔류물 및/또는 재료를 제거하기 위한 추가 세척 및/또는 마무리 작업을 필요로 하지 않으며, 빌드 시트(200)는 재사용 준비가 될 수 있다.
추가적으로 및/또는 선택적으로, 빌드 시트(200)와 객체(180) 사이의 접착력은 초기에 증착되고 인쇄 표면(110)과 접하는 층(182)이 열 수축으로 인한 스트레스하에 인쇄 표면(110)으로부터 부분적으로 분리될 수 있도록 충분히 약할 수 있다. 따라서 점진적 또는 꾸준한 방식으로 인쇄하는 동안 스트레스를 완화할 수 있다. 유리하게는, 다중 층(182)의 갑작스럽고 불균일한 변형이 방지될 수 있다.
도 4로 돌아 가면, 적층 제조를 위한 예시적인 방법(300)이 도시된다. 빌드 시트(200)는 인쇄 기질(140)상의 단계 310에서 위치될 수 있다. 객체(180)는 빌드 시트(200) 상에, 단계 320에서 인쇄될 수 있다. 객체(180)는 빌드 시트(200)로부터 선택적으로 단계 330에서 분리될 수 있다.
유리하게는, 빌드 시트(200)와 객체(180) 사이의 접착력이 충분히 약하여 빌드 시트(200)로부터 객체(180)를 분리하는 것이 객체(180)의 상당한 변형 및/또는 굽힘을 필요로 하지 않을 정도로 충분히 약할 수 있다. 객체(180)에 대한 손상은 예방될 수 있다.
도 5를 참조하면, 빌드 시트(200) 및 객체(180)이 인쇄 기질(140)으로부터 분리된 것으로 도시된다. 일 실시예에서, 객체(180)의 인쇄가 완료되면, 빌드 시트(200)가 인쇄 기질으로부터 분리될 수 있다. 다소 다르게 말하면, 객체(180)에 부착된 빌드 시트(200)는 인쇄 기질(140)으로부터 분리될 수 있다.
도 5는 가요성 빌드 시트(200)를 도시한다. 인쇄 표면(110)과 객체(180) 사이의 접착력은 빌드 시트(200)가 객체(180)로부터 선택적으로 벗겨질 수 있을 정도로 충분히 약할 수 있다. 약간 다르게 말하면, 조작자 및/또는 기계는 그 한쪽 또는 한쪽 모서리를 잡을 수 있다. 빌드 시트(200)를 형성하고 점차적으로 빌드 시트(200)를 객체(180)로부터 멀어지게 당긴다. 빌드 시트(200)는 제거 중에 파손되지 않고 말리거나, 구부러지고, 구부러지고 및/또는 신장될 수 있다. 가요성에 의해, 빌드 시트(200)는 유리하게는 저장을 위해 롤업될 수 있고 인쇄를 위해 인쇄 기질(140) 상에 롤아웃될 수 있다.
도 6으로 돌아 가면, 적층 제조를 위한 방법(300)의 선택적인 실시예의 예시적인 흐름도가 도시된다. 빌드 시트(200)는 인쇄 기질(140)상의 단계 310에 위치할 수 있다. 객체(180)는 빌드 시트(200) 상에서 단계 320에서 인쇄될 수 있다. 객체(180) 및 빌드 시트(200)는 단계 332에서, 빌드 시트(200)는 단계 340에서 객체(180)로부터 선택적으로 제거될 수 있다.
유리하게는, 빌드 시트(200)를 객체(180)로부터 제거하는 것은 빌드 시트(200)를 박리함으로써 수행될 수 있고, 객체(180)의 변형 및/또는 구부러짐을 요구하지 않는다. 객체(180)의 손상을 방지할 수 있다.
도 7을 참조하면, 예시적인 빌드 시트(200)가 빌드 표면 층(220)을 포함하는 것으로 도시된다. 빌드 표면 층(220)은 인쇄 측면(222) 및 부착 측면(224)을 포함하는 양면을 갖는 시트인 것으로 도시된다. 인쇄 측면(222)은 객체(180)(도 2에 도시됨)를 수용할 수 있다. 다소 다르게 말하면, 인쇄 표면(110)은 인쇄 측면(222)을 포함할 수 있고 객체(180)는 인쇄 측면(222)과 직접 접촉할 수 있다.
빌드 표면 층(220)은 인쇄 동안 객체(180)에 부착될 수 있는 임의의 적절한 재료로 제조될 수 있다. 인쇄 완료 후, 빌드 표면층(220)은 파손되지 않고 객체체(180)로부터 제거될 수 있다.
일 실시예에서, 빌드 표면 층(220)의 부착 측면(224)은 객체(180)를 인쇄하기 전에 인쇄 기질(140)(도 2에 도시됨)에 접착될 수 있다. 인쇄가 완료된 후, 빌드 표면 층(220)은 임의의 방식으로 인쇄 기질(140)으로부터 제거될 수 있다. 예를 들어, 빌드 표면 층(220)과 인쇄 기질(140) 사이에 쐐기가 삽입되어 인쇄 기질(140)으로부터 빌드 표면 층(220)을 해제할 수 있다.
일 실시예에서, 빌드 표면 층(220)은 빌드 시트(200)가 객체(180)로부터 박리될 수 있도록 가요성일 수 있다. 빌드 표면 층(220)은 충분한 기계적 강도(예를 들어, 인장 강도, 극한 파괴 강도, 및/또는 파단력) 빌드 표면 층(220)에 가해진 박리력이 객체(180)와의 접착을 극복할 수 있고 빌드 표면 층(220)을 찢거나 파손하지 않도록 한다. 빌드 표면 층(220)과 객체(180) 사이의 접착력 빌드 표면 층(220)과 통합된 접착제에 의해 제공될 수 있다.
일부 실시예에서, 빌드 표면 층(220)의 파단력은 2 inch 폭의 샘플을 사용하여 직물 직물의 파단력 및 신장에 대한 ASTM D5035-2C 표준 테스트 방법을 사용하여 측정될 수 있다. 파단력이 50 N보다 큰 빌드 표면 층(220)은 파단없이 객체(180)와의 최소 요구 접착량을 극복할 수 있다.
빌드 표면층(220)과 객체(180) 사이의 접착력은 180° 박리 테스트를 사용하여 측정된 박리 강도에 의해 특성화될 수 있다. 일부 실시예에서, 박리 강도는 10 파운드 force/inch(lbf/in) 내지 1000lbf/in의 범위일 수 있다. 바람직한 실시예에서, 박리 강도는 인쇄 후 객체(180)와 빌드 표면층(220) 사이의 용이한 분리를 허용하고 차량을 인쇄하기 위한 인쇄 조건 하에서 인쇄 중에 신뢰성있는 접착을 보장하기 위해 50 lbf/in 내지 400 lbf/in 범위일 수 있다. 바람직한 박리 강도 범위에 대응하여, 빌드 표면 층(220)은 객체(180)와의 접착력을 극복하기 위해 100N 보다 큰 파단력을 가질 수 있다.
예시적인 빌드 표면 층(220)의 두께는 0.1mm 내지 10mm 범위일 수 있다. 일 실시예에서, 두께는 충분한 유연성, 강도 및 견고성을 제공할 수 있는 0.3mm 내지 0.8mm 범위일 수 있다. 다른 실시예에서, 두께는 1mm 내지 10mm 범위일 수 있다.
도 8A로 돌아 가면, 빌드 표면 층(220)의 예시적인 평면도가 도시된다. 빌드 표면 층(220)은 직물을 포함하는 재료로 만들어진 것으로 도시된다. 직물은 천연 및/또는 인공 섬유(226)의 네트워크를 포함하는 임의의가요성 재료를 포함할 수 있다. 예시적인 섬유(226)는 얀 또는 실을 포함할 수 있다. 직물은 예를 들어 직조, 편직, 크로 셰 뜨개질, 매듭, 펠트, 매트, 응축 및/또는 압착을 포함하는 임의의 적절한 공정에 의해 형성될 수 있다. 직물은 임의의 유기 직물, 반합성 직물, 합성 직물, 직조 직물, 부직 직물 또는 이들의 조합을 포함할 수 있다. 예시적인 유기 직물은 면, 데님, 캔버스, 덕 캔버스, 린넨, 실크, 양모 등을 포함할 수 있다. 예시적인 반합성 직물은 레이온 등을 포함할 수 있다. 예시적인 합성 직물은 폴리에스테르, 아크릴, 폴리아미드, 중합체 마이크로 섬유 등을 포함할 수 있다.
도 8A는 단지 예시적인 목적으로 직조 구조를 갖는 것으로 빌드 표면 층(220)을 도시하지만, 빌드 표면 층(220)은 제한없이 직조 및/또는 부직 구조를 가질 수 있다. 도 8A는 단지 예시적인 목적으로 직물의 한 층을 포함하는 것으로 빌드 표면 층(220)을 도시하지만, 빌드 표면 층(220)은 제한없이 분리 및/또는 상호 연결된 임의의 수의 균일하고 및/또는 상이한 직물을 포함할 수 있다. 도 8A는 단지 예시를 위해 서로 평행하거나 수직인 섬유(226)를 포함하는 빌드 표면 층(220)을 도시하지만, 빌드 표면 층(220)은 제한없이 서로에 대해 임의의 각도 및/또는 배향을 갖는 섬유(226)를 포함할 수 있다.
직물은 유리하게는 객체(180)로부터 빌드 표면 층(220)의 제거를 유지하기 위한 기계적 강도를 가질 수 있다(도 2에 도시됨). 직물은 유리하게는 객체(180)가 빌드 표면 층(220)상에서 이동하는 것을 방지할 수 있는 표면 텍스처를 제공할 수 있다. 빌드 표면 층(220)의 텍스처는 객체(180) 상에 각인될 수 있다.
도 8B로 돌아 가면, 도 8A의 빌드 표면층(220)의 단면이 도시된다. 빌드 표면 층(220)의 인쇄 측면(222)은 물리적 질감 또는 거칠기를 갖는 것으로 도시된다. 물리적 거칠기는 객체(180)(도 2에 도시됨)가 인쇄 측면(222)을 가로 질러 이동하는 것을 방지하는 마찰을 제공할 수 있다.
추가적으로 및/또는 선택적으로, 빌드 표면 층(220)은 섬유(226)(도 8A에 도시됨)와 적어도 부분적으로 통합된 접착제(미도시)를 포함할 수 있다. 일 실시예에서, 접착제는 빌드 표면 층(220)의 섬유를 투과할 수 있다. 접착제는 빌드 표면 층(220)의 인쇄 측면(222) 위에 연속 코팅(도시되지 않음)을 형성할 수 있다. 추가적으로 및/또는 선택적으로, 접착제는 빌드 표면 층(220)의 인쇄 측면(222)을 가로질러 분리된 패치를 형성할 수 있다. 추가적으로 및/또는 선택적으로, 빌드 표면 층(220)을 코팅하는 접착제의 두께는 접착제가 인쇄 측면(222)의 물리적 거칠기를 감소시키지 않도록 충분히 작을 수 있다.
예시적인 접착제는 수지 기반, 우레탄 기반, 아크릴 레이트 기반, 부타디엔-클로로프렌 기반, 아크릴 기반, 네오프렌 기반, 폴리(비닐 알코올) 기반 또는 이들의 조합일 수 있다. 예를 들어, 접착제는 임의의 접촉 접착제, 목재 접착제 또는 이들의 조합을 포함할 수 있다. 예시적인 접촉 접착제는 천연 고무 및/또는 폴리 클로로프렌(또는 네오프렌)을 포함할 수 있다. 일례에서, 접촉 접착제는 3M 30NF 접촉 접착제(미국 미네소타 주 메이플우드에 위치한 3M Company에서 입수 가능), 3M Fastbond 감압 접착제 4224 NF, Clear(3M Company에서 입수 가능), 3M Fastbond 30H 접촉 접착제(3M Company에서 입수 가능), 3M Neoprene contact Adhesive 5, Neutral Sprayable(3M Company에서 입수 가능)을 포함할 수 있다. 예시적인 목재 접착제는 폴리(비닐 알코올) 기반 또는 PVA 기반일 수 있다. 접착제는 임의의 방식으로 인쇄 측면(222) 상에 코팅될 수 있다. 예를 들어, 직물은 접착제로 코팅될 접착제에 적시고 및/또는 포화될 수 있다. 추가적으로 및/또는 선택적으로, 접착제는 3D 인쇄될 수 있고 예를 들어 열가소성 폴리우레탄(TPU)으로 만들어 질 수 있다. 섬유는 섬유 강화 TPU를 형성하기 위해 3D 프린팅 중에 TPU에 내장될 수 있다.
접착제는 객체(180)와 빌드 표면 층(220) 사이에 접착을 제공할 수 있다. 접착은 객체(180)가 인쇄 동안 빌드 표면 층(220)에 적어도 부분적으로 접착될 수 있도록 충분할 수 있다. 추가적으로 및/또는 선택적으로, 빌드 표면 층(220)은 인쇄 동안 진공 및/또는 열 하에서 평평한 형상을 유지할 수 있다. 접착제는 객체(180)가 열수축에 의해 결정되는 정도로 변형될 수 있도록 접착력을 제공하지만, 객체(180)는 층(182)의 일부(도 2에 도시)가 변형으로 인해 빌드 표면층(220)에서 분리될 수 있도록 빌드 표면 층(220)에 여전히 적어도 부분적으로 접착될 수 있다. 유리하게는, 층(182)의 갑작스럽고 불균일한 변형이 방지될 수 있다.
예를 들어, ABS 시트는 박리 테스트 동안 찢어지지 않으면 높은 초기 박리 강도를 가질 수 있지만 박리 강도는 빠르게(취성 재료에서 균열을 시작하고 실행하는 것과 유사) 떨어질 수 있다. 대조적으로, 상기 언급된 접착제(예를 들어, 접촉 접착제)는보다 일정한 박리 강도를 갖지만 초기 강도는 낮을 수 있다. 박리 강도 및 박리 시험 방법에 대한 추가 정보는 별첨 A에 나와 있다.
직물 및 접착제는 객체(180)로부터 빌드 표면층(220)을 제거하는 동안 빌드 표면층(220)과 객체(180) 사이의 접착력이 파손 또는 찢어지는 데 필요한 힘보다 약해질 수 있도록 선택될 수 있다. 다소 다르게 말하면, 접착제 코팅된 직물과 객체(180) 사이의 접착력은 직물의 강도보다 약하고 접착제와 직물 사이의 접착력보다 약할 수 있다.
도 9를 참조하면, 예시적인 빌드 시트(200)는 빌드 표면층(220)의 부착 측면(224)에 고정적으로 부착된 선택적인 밀봉층(240)을 포함하는 것으로 도시된다. 밀봉층(240)은 빌드 시트(200)를 인쇄 기질(140)(도 2에 도시됨)에 부착을 허용하는 중간층으로 작용할 수 있다. 일 실시예에서, 밀봉층(240)은 진공 밀봉 시트를 포함할 수 있다. 예시적인 밀봉층(240)은 열가소성 시트, 시트 금속 및/또는 열경화성 시트를 포함할 수 있다. 예시적인 열가소성 시트는 ABS 시트 및/또는 폴리 에테르이 미드(PEI) 시트를 포함할 수 있다. 예시적인 PEI 시트는 사우디 아라비아 리야드에 위치한 Saudi Basic Industries Corporation에서 입수할 수 있다. 유리하게는, 빌드 표면층(220)이 진공 밀봉이 아니더라도, 밀봉층(240)은 빌드 시트(200)가 진공 밀봉을 통해 인쇄 기질(140)에 고정되도록 할 수 있다.
일부 실시예에서, 예시적인 밀봉층(240)의 두께는 0.1mm 내지 10mm 범위일 수 있다. 바람직한 실시예에서, 예시적인 밀봉층(240)의 두께는 0.6mm 내지 1.6mm 범위일 수 있다. 바람직한 범위의 두께로, 밀봉층(240)은 인쇄 동안 고온 하에서 변형을 방지하고 취급 동안 찢어짐을 방지하기에 충분히 두껍다. 일 예에서, 밀봉층(240)은 ABS로 제조되고, ABS 시트가 객체(180)(도 2에 도시됨)의 뜨거운 재료가 그 위에 인쇄될 때 휘거나 변형되는 경향을 갖기 때문에 1.5mm 두께일 수 있다. 다른 예에서, 밀봉층(240)은 PEI로 제조되고 PEI가 인쇄 중에 열적으로 변형되는 경향이 없기 때문에 0.7mm 두께일 수 있다.
밀봉층(220)은 피 검체(180)와 직접 접촉하지 않고 고온에서 가열 할 필요가 없어 밀봉층(220)의 변형이 감소되고 밀봉층(220)이 기존의 ABS 시트보다 얇아 질 수 있다. 스페이서 플랫폼(142)(도 12에 도시됨)이 사용될 때, 밀봉층(220)은 개별 진공 구멍과 접촉하지 않기 때문에 변형이 더 방지되고 밀봉층(220)의 두께가 더 감소될 수 있다. 추가적으로 및/또는 선택적으로, 빌드 표면 층(220)이 빌드 시트(200)에 추가적인 두께 및 견고성을 제공하기 때문에, 밀봉층(240)은 예를 들어 인쇄 표면(110)으로서 단독으로 사용되는 ABS 시트보다 더 얇을 수 있고, 밀봉층(240)을 가능하게 한다. 쉽게 말아서 보관할 수 있다. 또한, 복수의 밀봉층(240)이 인쇄 기질(140)을 덮기 위해 나란히 배치될 필요가 있을 때, 빌드 표면층(220)은 인접한 밀봉층(240) 사이의 갭 또는 중첩에 의해 야기되는 임의의 불균일성을 완화할 수 있다. 인쇄 품질이 유리하게 개선될 수 있다.
추가적으로 및/또는 선택적으로, 빌드 표면 층(220)없이, 작동자는 인쇄 전에 밀봉층(240)을 인쇄 기질(140)에 부착할 필요가 있을 수 있다. 인쇄 기질(140)이 객체(180)에 직접 부착되도록 밀봉층(240)을 위한 밀봉층(240)을 가열하기 위해 인쇄 기질(140)이 상승된 온도에 있을 수 있기 때문에 이러한 작동은 조작자에게 어려울 수 있다. 빌드 시트(200)는 고온 하에서 인쇄 기질(140)에 부착될 필요가 없으며, 유리하게는 빌드 시트(200)를 부착하기 위해 작업자가 요구하는 노력을 감소시킬 수 있다.
빌드 표면 층(220)은 임의의 방식으로 밀봉층(240)에 부착될 수 있다. 일 실시예에서, 접착제(미도시)는 밀봉층(240) 상에 코팅될 수 있다. 빌드 표면층(220)은 접착제 코팅된 밀봉층(240) 상에 배치될 수 있다. 접착제는 부착 측면(224)으로부터 빌드 표면층(220)을 투과할 수 있다. 추가적으로 및/또는 선택적으로, 빌드 표면 층(220)은 밀봉층(240)에 열 압착(또는 열 압착)될 수 있다.
빌드 표면 층(220)은 균일한 접촉을 형성하기 위해 밀봉층(240)에 부착될 수 있다. 유리하게는, 빌드 표면 층(220)과 밀봉층(240) 사이의 공극이 최소화되거나 방지될 수 있으므로, 프린팅 중에 객체(180)로부터 생성된 열이 공극을 확장하지 않고 따라서 빌드 표면 층(220)이 밀봉층(240)으로부터 박리되는 것을 야기하거나 인쇄 표면(110)의 균일성을 감소시키지 않는다.
도 10을 참조하면, 빌드 시트(200)가 인쇄 기질(140) 상에 위치하는 것으로 도시된다. 인쇄 기질은 인쇄 베드(160)를 포함하는 것으로 도시된다. 인쇄 베드(160)는 더 많은 진공 홀(162)을 정의하는 진공 테이블을 포함하는 것으로 도시된다. 진공이 진공 홀(162)을 통해 빌드 시트(200)에 적용될 수 있다. 유리하게, 빌드 시트(200)는 인쇄 베드(160)와 빌드 시트(200) 사이의 접착제없이 인쇄 베드(160)에 균일하게 고정될 수 있다.
일 실시예에서, 인쇄 전에 빌드 시트(200)는 인쇄 베드(160) 상에 위치될 수 있다. 빌드 시트(200)와 인쇄 베드(160) 사이의 상대적인 위치는 진공의 적용시 고정될 수 있다. 진공을 해제함으로써, 빌드 시트(200) 및 객체(180(도 2에 도시됨))이 인쇄 베드(160)로부터 방출될 수 있다. 유리하게는, 빌드 시트(200)를 인쇄 베드(160)에 설치하고 빌드 시트(200)를 방출한다. 간단한 방법으로 수행할 수 있다.
추가적으로 및/또는 선택적으로, 빌드 표면 층(220)은 직물의 존재로 인해 적어도 부분적으로 밀봉층(240)의 국부적 인 변형을 제한할 수 있다. 따라서, 밀봉층(240)의 수축으로 인한 진공 손실의 위험이 완화될 수 있다. 접착제의 초기 박리 강도가 낮기 때문에(도면 A에 표시됨), 객체(180)와 접촉하는 빌드 표면 층(220)에 사용된 접착제는 밀봉층(240)이 크게 변형되기 시작하기 전에 객체(180)로부터 분리될 수 있다. 따라서, 객체(180)는 상당한 전체적인 변형이 진공 손실을 초래하기 전에 빌드 표면 층(220)으로부터 들어 올리기 시작할 수 있다.
약간 다르게 말하면, 진공을 가함으로써 빌드 시트(200)를 빌드 시트(200)와 인쇄 베드(160) 사이에 접착제없이 인쇄 베드(160)에 부착할 수 있어 대규모 적층 제조에 유리하다. 반대로, 진공이 사용되지 않는 경우, 대규모 적층 제조에서 빌드 시트(200)와 인쇄 베드(160) 사이의 계면에서 높은 잔류 응력에 저항함으로써 빌드 시트(200)를 인쇄 베드(160)에 고정시킬 수 있을만큼 적절한 접착제가 강해야 한다. 접착제는 또한 빌드 시트(200)가 인쇄 베드(160)로부터 제거될 수 있도록 충분히 약해야 한다. 제시된 기준을 충족하는 접착제는 식별하기 어려울 수 있다. 선택된 접착제가 사용되는 경우, 선택된 접착제는 인쇄 베드(160)로부터 제거하기 어려울 수 있고 진행할 때 지저분하거나 끈적일 수 있다.
도 10은 단지 예시적인 목적으로 2 개의 진공 홀(162)을 정의하는 것으로 인쇄 베드(160)를 도시하지만, 인쇄 베드(160)는 제한없이 하나의 진공 홀(162), 또는 임의의 수의 균일하고 및/또는 상이한 진공 홀(162)을 정의할 수 있다.
도 11을 참조하면, 빌드 시트(200)와 인쇄 기질(140) 사이에 장벽 층(146)이 위치하는 것으로 도시된다. 장벽 층(146)은 가스 투과성 재료의 하나 이상의 층을 포함할 수 있다. 예시적인 장벽 층(146)은 와이어 메쉬, 필터 페이퍼, 가스 투과성 섬유 보드 등을 포함할 수 있다. 장벽 층(146)은 밀봉층(240)과 진공 홀(162) 사이에 공간을 도입할 수 있다.
장벽 층(146)은 진공이 전체 밀봉층(240)에 균일하게 적용되는 것을 보장할 수 있다. 반대로, 장벽 층(146)없이, 진공 홀(162)에 인접한(또는 그에 근접한) 밀봉층(240)은 진공 홀(162)을 강하게 밀봉할 수 있다. 그 결과, 진공 홀(162)으로부터 멀리 떨어진 밀봉층(240)은 진공 밀봉을 형성하거나 인쇄 베드(160)와 균일한 접촉을 형성하지 않을 수 있다. 도 11은 장벽 층(146) 및 밀봉층의 밀봉 에지로서 하나 이상의 폐쇄 시트(148)를 도시한다. 유리하게는, 진공은 인쇄 베드(160), 밀봉층(240) 및 폐쇄 시트(148)에 의해 정의된 공간 내에 밀봉될 수 있다. 폐쇄 시트(148)는 임의의 진공 밀봉 재료를 포함할 수 있다. 예시적인 폐쇄 시트(148)는 전기 테이프 및/또는 덕트 테이프를 포함할 수 있다.
일 실시예에서, 인쇄 전에, 빌드 시트(200) 및 장벽 층(146)은 마감 시트(148)가 도포된 상태로 인쇄 베드(160) 상에 위치될 수 있다. 빌드 시트(200)와 인쇄 베드(160) 사이의 상대적 위치는 진공 및/또는 클로징 시트(148)에 의해 고정될 수 있다. 진공을 중지시키고 빌드 시트(200), 빌드 시트(200) 및 객체로부터 클로징 시트(148)를 제거함으로써 객체(180)(도 2에 도시됨)는 인쇄 베드(160)로부터 해제될 수 있다. 유리하게는, 인쇄 베드(160) 상에 빌드 시트(200)를 설치하고 빌드 시트(200)의 해제가 간단한 방식으로 수행될 수 있다.
도 12를 참조하면, 인쇄 기질(140)은 인쇄 베드(160)와 빌드 시트(200) 사이에 위치하는 스페이서 플랫폼(142)을 포함하는 것으로 도시된다. 스페이서 플랫폼(142)은 임의의 적절한 재료로 제조될 수 있다. 예시적인 스페이서 플랫폼(142)은 중 밀도 섬유판(MDF), 비드 보드, 콘크리트, 폴리머, 금속, 폼 삽입물, 판지, 저밀도 섬유판(LDF), 파티클 보드, 또는 이들의 조합으로 만들어 질 수 있다. 빌드 시트(200)는 임의의 적절한 방식으로 스페이서 플랫폼(142)에 고정될 수 있다. 예를 들어, 접착 테이프 및/또는 진공은 빌드 시트(200)를 스페이서 플랫폼(142)에 고정할 수 있다.
추가적으로 및/또는 선택적으로, 스페이서 플랫폼(142)은 볼트 체결, 테이핑 또는 접착제 도포와 같은 임의의 방식으로 인쇄 베드(160)에 고정될 수 있다. 추가적으로 및/또는 선택적으로, 스페이서 플랫폼(142)은 스페이서 플랫폼(142)과 인쇄 베드(160)를 서로에 대해 결합 또는 분리하기 위해 선택적으로 또는 자동으로 결합 및/또는 결합 해제될 수 있는 블록, 탭, 포켓, 슬롯, 경사로, 잠금 핀, 캔틸레버 부재, 지지 핀 등와 같은 결합 요소의 임의의 조합을 포함하는 협력 멈춤쇠와 같은 기계적 연결을 통해 인쇄 베드(160)에 결합될 수 있다.
추가적으로 및/또는 선택적으로, 빌드 시트(200)는 빌드 시트(200)와 스페이서 플랫폼(142) 사이의 접착제 층을 통해 스페이서 플랫폼(142)에 부착될 수 있다. 따라서, 빌드 시트(200)는 밀봉층(240)을 포함 할 필요가 없다. 스페이서 플랫폼(142)으로부터 빌드 시트(200)를 들어 올림으로써, 빌드 시트(200) 및 객체(180)가 스페이서 플랫폼(142)으로부터 해제될 수 있다.
일 실시예에서, 스페이서 플랫폼(142)은 임의의 선택된 방식으로 빌드 시트(200)로부터 인쇄 베드(160)를 분리하기 위해 사용될 수 있다. 분리에는 단열 및/또는 전기 절연이 포함될 수 있다. 예를 들어, 인쇄 동안, 스페이서 플랫폼(142)은 객체(180)로부터 인쇄 베드(160) 로의 열 전도를 억제할 수 있다. 유리하게는, 열은 객체(180)에 더 오래 남아있을 수 있다. 객체(180)의 층간 접착이 개선될 수 있고 객체(180)의 뒤틀림이 감소될 수 있다.
다른 실시예에서, 스페이서 플랫폼(142)은 열원(미도시)에 연결될 수 있고 열원에 의해 가열될 수 있다. 유리하게는, 인쇄 베드(160)가 능동적으로 가열되지 않은 경우에도 인쇄 기질(140)이 능동적으로 가열된 상태에서 인쇄가 수행될 수 있다.
선택적으로, 스페이서 플랫폼(142)은 인쇄 베드(160) 및 빌드 시트(200) 중 어느 것과도 접촉하지 않는 도장된면을 갖는 다공성 MDF 및/또는 다공성 LDF를 포함할 수 있다. 다소 다르게 말하면 z 방향이 아닌 스페이서 플랫폼(142)의 측면은 상기 측면을 통한 진공 누출을 방지하기 위해 페인팅될 수 있다.
도 12는 단지 예시를 위해 하나의 층을 포함하는 것으로 스페이서 플랫폼(142)을 도시하지만, 스페이서 플랫폼(142)은 제한없이 임의의 수의 균일하고 및/또는 상이한 적층된 층을 포함할 수 있다. 예를 들어, 스페이서 플랫폼(142)은 인쇄 베드(160) 및 합판 보드와 빌드 시트(200) 사이의 MDF와 접촉하는 합판 보드의 층을 포함할 수 있다. MDF와 합판 보드는 예를 들어 볼트 체결 및/또는 협력 멈춤쇠을 통해 연결될 수 있다.
도 12는 진공 홀(162)을 정의하지 않는 인쇄 베드(160)(도 11에 도시됨)를 나타내지만, 인쇄 베드(160)는 임의의 수의 균일하고 및/또는 상이한 진공 홀(162)을 정의하고 제한없이 진공을 제공하도록 구성될 수 있다.
도 13을 참조하면, 하나 이상의 폐쇄 시트(148)가 스페이서 플랫폼(142) 및 밀봉층(240)의 밀봉 에지로서 도시되어 있고 이를 인쇄 베드(160)에 고정한다. 인쇄 베드(160)는 진공을 정의하는 것으로 도시된다. 일 실시예에서, 스페이서 플랫폼(142)은 다공성 및/또는 공기 투과성일 수 있다. 스페이서 플랫폼(142)은 밀봉층(240)과 진공 홀(162) 사이에 공간을 도입할 수 있다. 다소 다르게 말하면, 장벽 층(146)은 진공이 전체 밀봉층(240)에 균일하게 적용되도록 스페이서 플랫폼(142)을 포함할 수 있다. 진공은 인쇄 베드(160), 밀봉층(240) 및 폐쇄 시트(148)에 의해 정의된 공간 내에 밀봉될 수 있다.
따라서, 스페이서 플랫폼(142)은 진공 홀(162)을 통해인가되는 진공에 의해 인쇄 베드(160)에 고정될 수 있다. 약간 다르게 말하면, 인쇄하기 전에 스페이서 플랫폼(142)은 인쇄 베드(160)에 위치할 수 있고 시트(200)는 폐쇄 시트(148)가 적용된 상태로 스페이서 플랫폼(142) 상에 위치될 수 있다.
빌드 시트(200), 스페이서 플랫폼(142) 및 인쇄 베드(160) 사이의 상대적 위치는 진공 및/또는 클로징 시트(148)의 적용시 동시에 고정될 수 있다. 진공을 중단하고 클로징 시트(148)를 제거함으로써 빌드 시트(200), 빌드 시트(200) 및 객체(180)(도 2에 도시됨)는 스페이서 플랫폼(142)으로부터 분리될 수 있다. 유리하게는, 스페이서 플랫폼(142) 및 빌드 시트(200)를 인쇄 베드(160)에 설치하고, 빌드 시트(200)는 간단한 방식으로 수행될 수 있다.
도 13은 진공 밀봉을 위해 구성된 인쇄 베드(160)와 함께 사용되는 스페이서 플랫폼(142)을 도시하고 있고 예시 목적으로 만 밀봉층(240)과 함께 사용되는 것으로 도시하지만, 진공이 적용되지 않거나 또는 인쇄 베드(160)가 진공 홀(162)을 형성하지 않는 경우 및/또는 인쇄 베드(160)가 진공을 인가할 수 없는 경우 스페이서 플랫폼(142)이 사용될 수 있다.
도 14를 참조하면, 인쇄 기질(140)은 인쇄 베드(160) 상에 배치된 진공 플레넘(141)을 포함하는 것으로 도시된다. 진공 플레넘(141)은 진공 홀(162)과 연통하는 하나 이상의 플레넘 홀(143)을 정의하는 플랫폼을 포함할 수 있다. 예시적인 진공 플레넘(141)은 알루미늄, 페놀 또는 밀봉된 MDF로 제조될 수 있다. 진공 플레넘(141)은 그 위에 하나 이상의 그루브(149)를 형성할 수 있다. 각각의 선택된 ㄱ그루브(149)는 예를 들어 가요성 고무 및/또는 임의의 다른 엘라스토머로 만들어진 개스킷(150)을 수용할 수 있다. 예시적인 개스킷(150)은 변형 가능할 수 있다. 개스킷(150)은 진공 플레넘(141)과 스페이서 플랫폼(142) 사이의 진공을 적어도 부분적으로 밀봉할 수 있다. 일 예에서, 진공 플레넘(141)은 협력 멈춤쇠, 나사 체결, 테이핑 및/또는 접착제를 통해 인쇄 베드(160)에 고정될 수 있다.
선택적으로, 스페이서 플랫폼(142)은 진공 플레넘(141) 및 빌드 시트(200) 중 어느 것과도 접촉하지 않는 도장된면을 갖는 다공성 MDF 및/또는 다공성 LDF를 포함할 수 있다. 스페이서 플랫폼(142)의 측면은 다음과 같다. z 방향이 아닌 경우 측면을 통한 진공 누출을 방지하기 위해 칠할 수 있다. 추가적으로 및/또는 선택적으로, 폐쇄 시트(148)는 진공을 밀봉하기 위해 스페이서 플랫폼(142) 및 밀봉층(240)에 적용될 수 있다.
도 14는 스페이서 플랫폼(142)의 단부를 넘어 돌출된 밀봉층(240)을 도시한다. 다소 다르게 말하면, 밀봉층(240)은 거리 d만큼 x-방향으로 스페이서 플랫폼(142)을 넘어 연장될 수 있다. 거리 d는 객체(180)가 휘는 동안 밀봉층(240)이 객체(180)(도 2에 도시 됨)와 함께 이동함에 따라 밀봉층(240)이 수축하더라도, 수축 거리는 거리 d보다 작을 수 있으므로, 밀봉층(240)은 여전히 전체 스페이서 플랫폼(142)을 덮을 수 있도록 선택할 수 있다. 유리하게는, 상술한 바와 같이 스페이서 플랫폼(142)의 측면을 페인팅하면 밀봉층(240)과 스페이서 플랫폼(142)이 밀폐 시트(148)로 밀봉되지 않더라도 진공 손실을 방지할 수 있다.
도 14는 거리 d만큼 x-방향으로 스페이서 플랫폼(142)을 넘어 연장하는 것으로 밀봉층(240)을 도시하지만, 밀봉층(240)은 제한없이 임의의 균일 및/또는 상이한 거리로 x-방향, y-방향 또는 이들의 조합으로 스페이서 플랫폼(142)을 넘어 연장할 수 있다.
도 15를 참조하면, 스페이서 플랫폼(142)이 불균일한 두께를 갖는 것으로 도시된다. 다소 다르게 말하면, 스페이서 플랫폼(142)은 평평하지 않거나 인쇄 베드(160)와 평행하지 않은 플랫폼 표면(144)을 제공한다. 도 15는 평평하고 z-방향에 수직인 베드 표면(164)을 갖는 것으로 인쇄 베드(160)를 도시한다. 플랫폼 표면(144)은 베드 표면(164)의 표면 형태과 상이한 표면 형태를 갖는 것으로 도시된다.
도 15는 스페이서 플랫폼(142)의 형상을 따르는 빌드 시트(200)를 도시한다. 다소 다르게 말하면, 빌드 시트(200)는 가요성일 수 있고 임의의 형상의 플랫폼 표면(144)에 순응할 수 있다. 객체(180)(도 2에 도시됨)는 평평하지 않은 인쇄 표면(110) 상에 인쇄될 수 있다. 유리하게는, 인쇄 표면(110)과 접촉하는 객체(180)의 측면은 평평한 표면으로 제한되지 않고 임의의 선택된 형상을 가질 수 있다.
도 15는 단지 예시 목적으로 직사각형 웰 형상의 표면 윤곽을 갖는 것으로 플랫폼 표면(144)을 도시하지만, 플랫폼 표면(144)은 제한없이 임의의 형상을 가질 수 있다. 예를 들어, 플랫폼 표면(144)의 형상은 직사각형, 삼각형, 지그재그, 톱니, 곡선 또는 이들의 조합을 포함할 수 있다.
도 15는 진공 홀(162)(도 11에 도시됨)을 정의하지 않는 인쇄 베드(160)를 도시하지만, 인쇄 베드(160)는 제한없이 임의의 수의 균일한 및/또는 상이한 진공 홀(162)을 정의할 수 있다.
도 16을 참조하면, 인쇄 기질(140)은 빌드 시트(200)와 인쇄 베드(160) 사이에 위치된 템플릿 층(145)을 포함하는 것으로 도시된다. 예시적인 템플릿 층(145)은 z 방향으로 템플릿 층(145)을 적어도 부분적으로 통과하는 선택된 크기, 모양 및/또는 패턴의 템플릿 공극(147)(도 17에 도시됨)를 정의하는 재료 층을 포함할 수 있다. 템플릿 공극(147)는 가공 도구(130)가 z 방향으로 객체(180) 및 빌드 시트(200)를 절단 할 때 및/또는 가공 도구(130)가 인쇄 기질(140)에 근접한 층(182) 근처의 객체(180)의 외부 표면을 절단 할 때 가공 도구(130)(도 2에 도시됨)에 대한 간극을 제공할 수 있다.
도 16은 단지 예시의 목적으로 빌드 시트(200) 및 인쇄 베드(160) 모두와 접촉하는 것으로 템플릿 층(145)을 도시하지만, 시스템(100)의 추가 구성 요소는 제한없이 템플릿 층(145)과 빌드 시트(200) 사이에 또는 템플릿 층(145)과 인쇄 베드(160) 사이에 포함될 수 있다. 예를 들어, 장벽 층(146)(도 11에 도시됨), 스페이서 플랫폼(142)(도 12에 도시됨), 진공 플레넘(141)(도 14에 도시됨) 및/또는 임의의 다른 추가 및/또는 대안 층 진공 밀봉을 위해, 템플릿 층(145)과 빌드 시트(200) 사이에 배치될 수 있다. 추가적으로 및/또는 선택적으로, 폐쇄 시트(148)(도 13에 도시됨)는 빌드 시트(200), 템플릿 층(145)의 변부에 및/또는 진공을 밀봉하기 위해 인쇄 베드(160) 상에 적용될 수 있다.
도 17을 참조하면, 템플릿 층(145)의 일 실시예의 z 방향의 예시도가 도시된다. 템플릿 층(145)은 예를 들어 레이저 절단 및/또는 워터 제트 절단을 포함하는 임의의 적절한 방법을 통해 절단되는 재료 시트로 제조될 수 있다. 추가로 및/또는 선택적으로, 템플릿 층(145)은 예를 들어 MDF 시트를 포함하는 임의의 적절한 재료로 제조된 하나 이상의 적층 시트를 포함할 수 있다. 추가적으로 및/또는 선택적으로, 템플릿 층(145)은 예를 들어 압출 증착에 기초한 적층 제조로 제조될 수 있다. 유리하게는, 템플릿 층(145)은 객체(180)의 인쇄 전에 시스템(100)에서 만들어 질 수 있다. 따라서 제조 공정이 단순화될 수 있다.
도 17은 단지 예시 목적으로 3 개의 직사각형 템플릿 공극(147A-147C)를 정의하는 직사각형 인 템플릿 층(145)을 도시하지만, 템플릿 층(145)은 임의의 형상일 수 있고 임의의 수의 균일하고 및/또는 제한없이 임의의 선택된 형상을 갖는 상이한 템플릿 공극(147)을 정의할 수 있다.
도 18을 참조하면, 객체(180)는 라인(A1A1'-A6A6') 각각을 따라 z-방향으로 절단된 것으로 도시된다. 다소 다르게 말하면, 객체(180)는 객체(180) 및 빌드 시트(200)를 통과하는 선 및/또는 평면을 따라 및 z-방향으로 템플릿 공극(147) 내로 절단될 수 있다. 예를 들어, 가공 도구(130)(도 2에 도시됨)는 객체(180) 및 빌드 시트(200)를 절단할 수 있다. 템플릿 공극(147) 때문에, 가공 도구(130)는 인쇄 베드(160) 또는 템플릿 공극(147) 아래의 임의의 다른 구조의 손상을 방지할 수 있다.
따라서, 객체(180)는 라인(A1A1'-A6A6')에 의해 적어도 부분적으로 정의된 영역 내에서 복수의 섹션으로 절단될 수 있다. 절단될 때, 객체(180)의 각 섹션은 빌드 시트(200)로부터 제거될 수 있다. 유리하게, 인쇄 후에, 객체(180)는 시스템(100)으로부터 객체(180)를 언로드하고 객체(180)를 다른 가공 시스템으로 로드할 필요없이 시스템(100)에서 가공될 수 있다. 따라서 가공 시스템에서 객체(180)의 위치 정보를 다시 획득할 필요가 없어 질 수 있다. 따라서 제조 공정이 단순화되고 가공 공정의 정확성이 향상될 수 있다.
A1A1'-A6A6'의 각각은 선택된 템플릿 공극(147)의 변부에 인접하고 및/또는 선택된 템플릿 공극(147)의 변부로부터 선택된 거리에 위치할 수 있다. 예를 들어, 라인(A3A3')는 템플릿 공극(147B)의 변부(도 17에 도시됨)로부터 이격된 것으로 도시된 반면 라인(A2A2')는 템플릿 공극(147A)의 변부(도 17에 도시됨)에 인접해 있는 것으로 도시된다.
다시 도 7로 돌아가서, 예시적인 빌드 시트(200)가 빌드 표면 층(220)을 포함하는 것으로 도시된다. 빌드 표면 층(220)은 3D 인쇄될 수 있는 재료로 제조될 수 있다. 추가적으로 및/또는 선택적으로, 빌드 표면 층(220)은 시트 형성 또는 시트 결합에 의해 제조될 수 있다. 추가적으로 및/또는 선택적으로, 빌드 표면 층(220)은 3D 프린팅 또는 예를 들어 용액 캐스팅 및/또는 전기 방사를 포함하는 다른 수단에 의해 제조된 가요성 및/또는 탄성 재료로 제조될 수 있다. 일 실시예에서, 빌드 표면 층(220)은 열가소성 폴리우레탄(TPU)으로 적어도 부분적으로 제조될 수 있다. 다른 실시예에서, 빌드 표면 층(220)은 폴리아미드로 만들어 질 수 있다. 3D 프린팅할 수 있는 예시적인 폴리아미드는 독일 뒤셀도르프에 위치한 Henkel AG & Co. KGaA에서 입수할 수 있는 Technomelt를 포함할 수 있다.
일 실시예에서, 빌드 표면 층(220)은 TPU로 제조된다. TPU는 이러한 접착 특성의 메커니즘이 아직 잘 알려져 있지 않더라도 부분적으로 우레탄 그룹의 수소 결합 및/또는 냉각시 TPU 표면의 표면 마찰로 인한 강력한 접착을 제공할 수 있다. TPU는 일례로 미국 펜실베니아 주 만하임에 위치한 NinjaTek에서 구입할 수 있는 NinjaFlex를 포함할 수 있다. NinjaFlex의 예시적인 TPU는 85A Shore 경도를 가질 수 있다. TPU를 사용함으로써, 빌드 표면 층(220)의 인쇄물(180)(도 2에 도시됨)에 대한 접착성이 향상될 수 있다. 빌드 표면 층(220)은 인쇄된 3D 객체(180)에 충분히 강하게 부착되어 3D 객체(180)가 열적으로 수축 또는 팽창함에 따라 3D 객체(180)가 이동하는 것을 방지할 수 있다.
추가적으로 및/또는 선택적으로, TPU 시트로 제조될 때, 빌드 표면 층(220)만이 진공을 밀봉할 수 있고 따라서 진공 밀봉을 통해 적어도 부분적으로 인쇄 기질(140)에 부착될 수 있다.
추가적으로 및/또는 선택적으로, TPU는 NinjaTek에서 입수 가능한 SemiFlex를 포함할 수 있다. 비제한적인 예에서, SemiFlex의 TPU는 98A Shore 경도를 가질 수 있다.
TPU는 실온에서 유지되는 인쇄 베드(160)(도 2에 도시됨)로 3D 인쇄될 수 있다. 유리하게는, 더 높은 작동 온도는 인쇄 베드(160)에 부담을 주기 때문에, 인쇄 베드(160)를 실온으로 유지하면 인쇄 베드(160)의 수명을 연장하고 작업자에 의해 수행되는 인쇄 베드 관련 절차를 용이하게 할 수 있다. 추가 및/또는 대안으로 TPU는 재활용이 가능하고 환경 낭비를 줄일 수 있다.
예시적인 빌드 표면 층(220)의 두께는 0.1mm 내지 10mm 범위일 수 있다. 원하는 속성에 따라 두께를 선택할 수 있다. 예를 들어, TPU로 제조된 두꺼운 빌드 표면 층(220)은 시스템(100)(도 2에 도시됨)에 더 많은 댐핑을 제공할 수 있고/있거나 객체(180)로부터의 열에 의해 녹을 가능성이 적을 수 있다. TPU의 얇은 TPU 층의 적은 컴플라이언스로 인해 적어도 부분적으로는 객체(180)로부터 더 쉽게 제거될 수 있다. 바람직한 실시예에서, 두께는 충분한 유연성, 강도 및 견고성을 제공할 수 있는 1mm 내지 8mm 범위일 수 있다.
객체(180)는 인쇄 동안 인쇄 표면(110)(도 2에 도시됨)과 접촉하는 빌드 인터페이스 영역(184)(도 2에 도시됨)을 갖는다. TPU로 만들어진 빌드 표면 층(220)은 매끄럽고 나노 미터 정도의 거칠기를 갖는 인쇄 표면(110)을 가질 수 있다. 빌드 시트(200)로부터 객체(180)를 제거할 때, 빌드 인터페이스 영역(184)은 실질적으로 매끄러울 수 있고 대략mm 단위(예를 들어, 적어도 1mm)의 거칠기를 갖는 거친 "비드 보드" 표면과 상이할 수 있다.
빌드 시트(200)로부터 객체(180)를 제거 할 때, 빌드 시트(200)로부터의 잔류 물질 중 어느 것도 또는 소량의 잔여 물질이 객체(180)에 남아 있을 수 있다. 예를 들어, TPU의 흔적이 객체(180)에 남아 있을 수 있다. 다소 다르게 말하면, 빌드 시트(200)는 제거 동안 실질적으로 손상되지 않은 채로 남아 있을 수 있다. 유리하게는, 객체(180)는 임의의 잔류 물질을 제거하기 위한 추가 세척 및/또는 마무리 작업을 필요로 하지 않으며, 빌드 시트(200)는 재사용 준비가 될 수 있다.
TPU로 만들어진 빌드 표면 층(220)은 선택된 인쇄 조건 하에서 제거 및/또는 재사용 가능할 수 있다. 객체체(180)의 초기 층이 선택된 온도에서 빌드 표면 층(220)과 접촉 할 때, 객체체(180)와 빌드 표면 층(220) 사이의 표면 상호 작용은 그 사이에 최적의 접착을 초래할 수 있다. 따라서 빌드 표면 층(220)은 프린팅 동안 객체(180)에 부착될 수 있고 인쇄 후에 제거될 수 있다. 예를 들어, 압출 온도는 섭씨 200도에서 400도, 바람직하게는 섭씨 250도에서 300도 범위일 수 있다. 선택한 온도보다 낮은 온도에서 인쇄하면 접착력이 낮아지고 빌드 표면 층(220)이 쉽게 제거될 수 있다.
객체(180)의 초기 층이 접촉 및/또는 병렬로 다수의 비드를 포함할 때, 초기 층은 더 큰 열 질량을 가질 수 있고 더 긴 시간 동안 고온에서 유지될 수 있다. 따라서 초기 층과 빌드 표면 층(220) 사이의 접착력은 더 클 수 있다. 따라서, 접촉 및/또는 병렬로 더 적은 수의 비드가 접착력을 낮추고 빌드 표면 층(220)의 제거를 용이하게 할 수 있다.
선택적으로, 표면 처리는 객체(180)의 제거가 더 쉬울 수 있도록 빌드 표면 층(220)의 표면 화학을 변경하기 위해 적용될 수 있다. 예시적인 표면 처리는 빌드 표면 층(220)의 표면 반응성을 감소시키는 임의의 공정을 포함할 수 있다. 예를 들어, 고체, 액체 및/또는 증기 형태의 선택된 첨가제가 빌드 표면 층(220)에 적용될 수 있다.
TPU로 제조된 빌드 표면 층(220)은 특정 인쇄 조건 하에서 객체(180)로부터 쉽게 제거되지 않을 수 있다. 예를 들어, 폴리머의 온도가 높거나 객체(180)가 오랫동안 열을 유지하는 두꺼운 구조(예: 벽이 다중 비드 너비를 가짐)를 포함하거나 인쇄 시간이 길어 고온에서의 시간이 길면 빌드 시트(200)로부터 객체체(180)의 제거 용이성이 감소될 수 있다. TPU로 완전히 또는 부분적으로 제조된 빌드 시트(200)가 인쇄 조건 때문에 객체(180)로부터 완전히 제거되지 않더라도, 빌드 시트(200)의 사용은 여러 측면에서 유리할 수 있다: 빌드 시트(200)는 3D 인쇄될 수 있다; 인쇄 베드(160)는 실온에서 유지될 수 있다; 인쇄 표면 영역은 거친 "비드 보드" 표면을 사용할 때보 다 훨씬 더 부드럽다. "비드 보드" 표면과 관련된 혼란을 피할 수 있다. 그리고 완전히 제거되지 않더라도, 빌드 시트(200)는 빌드 시트의 일부만 남겨두고, 빌드 시트(200)로부터 객체(180)를 절단함으로써 매 인쇄 후에 빌드 시트(200)를 신속하게 셋업하고 빌드 시트(200)에서 객체(180)를 빠르게 제거할 수 있다. 빌드 시트(200)는 객체(180)의 바닥에 부착된다(도 19에 도시됨). 또한, TPU로 만들어진 빌드 표면 층(220)은 더 짧은 인쇄 시간 동안 상승된 온도에서 인쇄될 수 있고 작은 열 질량을 갖기 때문에 소규모 적층 제조 시스템에서 훨씬 더 쉽게 제거될 수 있다.
선택적으로 및/또는 추가적으로, 빌드 표면 층(220)은 고온 엘라스토머로 제조될 수 있다. 고온 엘라스토머는 증착시 반드시 용융되는 것은 아니지만 객체(180)의 바닥을 유지하는 역할을하는 표면 텍스처를 가질 수 있다. 다소 다르게 말하면 고온 엘라스토머는 녹거나 들러붙지 않고 인쇄 재료를 고정하는 텍스처와 함께 사용할 수 있다. 예시적인 고온 엘라스토머는 탄화 플루오르, 실리콘 또는 이들의 조합을 포함할 수 있다. 예를 들어, 탄화 플루오르는 미국 델라웨어 주 윌 밍턴에 위치한 The Chemours Company에서 구입할 수 있는 Viton을 포함할 수 있다.
다시도 9로 돌아 가면, 예시적인 빌드 시트(200)가 빌드 표면 층(220)의 부착 측면(224)에 부착된 선택적 밀봉층(240)을 포함하는 것으로 도시된다. 빌드 표면 층(220)이 밀봉없이 진공을 밀봉할 수 있지만 층(240)에서 밀봉층(240)은 백킹 층으로서 기능할 수 있고 유리하게는 빌드 시트(200)의 기계적 견고성을 향상시킬 수 있다. 예를 들어, 빌드 표면 층(220)이 얇 으면(예를 들어, 3mm 미만 두께), 밀봉층(240)은 빌드 시트(200)의 두께를 증가시키고 취급을 용이하게 할 수 있다.
빌드 표면 층(220)은 임의의 방식으로 전이 층(280)에 부착될 수 있다. 일 실시예에서, 빌드 표면 층(220)은 밀봉층(240) 상에 3D 인쇄될 수 있다. 추가적으로 및/또는 선택적으로, 빌드 표면 층(220)은 시트 형성 및/또는 시트 결합을 통해 밀봉층(240) 상에 형성될 수 있다.
도 20을 참조하면, 시스템(100)은 인쇄 베드(160) 상에 배치된 테이블(170)을 더 포함하는 것으로 도시된다. 테이블(170)은 인쇄 기질(140)의 일부를 형성할 수 있다. 빌드 시트(200)는 테이블(170) 상에 배치된 것으로 도시된다. 테이블(170)은 객체(180)와 인쇄 베드(160) 사이의 거리를 증가시키는 것으로 도시된다. 가공 도구(130)는 객체(180)의 바닥을 가공 및/또는 밀링하기 위해 객체(180)의 바닥에 접근하는 것으로 도시된다. 다르게, 가공 공구(130)는 A 방향으로 인쇄 베드(160)에 근접한 객체(180)의 일부를 향해 이동하는 것으로 도시된다. 테이블(170)의 높이는 가공 공구(130)에 대한 간극을 제공하고 가공 공구(130)가 인쇄 베드(160)에 부딛히는 것을 방지한다.
테이블(170)은 임의의 적절한 재료 및/또는 공정으로 만들어 질 수 있다. 일 실시예에서, 테이블(170)은 시스템(100)에서 3D 인쇄될 수 있고, 예를 들어 폴리카보네이트 및/또는 ABS로 제조될 수 있다. 이 실시예에서, 테이블(170)은 z 방향으로 적층된 하나 이상의 폴리카보네이트 층을 포함할 수 있다. 유리하게는, 테이블(170)은 객체(180)의 크기, 모양 및/또는 치수와 일치하도록 3D 인쇄될 수 있다. 따라서, 가공 도구(130)는 객체(180)의 변부위로 연장되는 테이블(170)의 임의의 부분에 의해 차단되지 않고 객체(180)에 접근할 수 있다.
빌드 시트(200)는 임의의 적절한 방식으로 제조될 수 있다. 예를 들어, 빌드 시트(200)는 TPU로 만들어 질 수 있고 3D 인쇄될 수 있고, z 방향으로 적층된 하나 이상의 TPU 층을 포함할 수 있다. 유리하게는, 빌드 시트(200)는 테이블(170)이 복잡한 형상적 구조를 갖는 경우에도 테이블(170)을 정확하게 덮을 수 있다. 빌드 시트(200)는 객체(180)의 크기, 형상 및/또는 치수와 일치할 수 있고 따라서 기계 가공 공정을 더 깨끗하고 효율적으로 만들 수 있다. 대조적으로, 빌드 시트(200) 대신 대체 구조(예: 합판 또는 비드 보드)가 사용되는 경우, 구조는 객체(180)의 형상과 일치하도록 쉽게 가공되지 않을 수 있다. 구조가 객체에 비해 크기가 큰 경우 도 180에 도시된 바와 같이, 가공 도구(130)는 구조물의 많은 부분을 가공하는 경향이 있고(톱밥과 같은) 혼란과 오염을 초래한다.
도 21을 참조하면, 적층 제조를 위한 제어 시스템(400)이 도시된다. 제어 시스템(400)은 인쇄 헤드(120)(도 2에 도시됨) 및/또는 가공 도구(130)(도 2에 도시됨)를 제어하도록 구성될 수 있다. 제어 시스템(400)은 프로세서(410)를 포함할 수 있다. 프로세서(410)는 하나 이상의 범용 마이크로 프로세서(예를 들어, 단일 또는 다중 코어 프로세서), 애플리케이션 특정 집적 회로, 애플리케이션 특정 명령어 세트 프로세서, 그래픽 처리 유닛, 물리 처리 유닛, 디지털 신호 처리 유닛, 코 프로세서, 네트워크 처리 유닛, 암호화 처리 유닛 등을 포함할 수 있다. .
프로세서(410)는 제어 시스템(400) 및/또는 객체(180)의 컴퓨터 화된 모델(도 2에 도시됨)을 구현하기 위한 명령을 실행할 수 있다. 비 제한적인 예에서, 명령어는 하나 이상의 적층 제조 소프트웨어 프로그램을 포함한다. 프로그램은 대형 구성 요소의 추가 인쇄를 구현하기 위한 다중 인쇄 옵션, 설정 및 기술로 시스템(100)(도 2에 도시됨)을 제어하도록 작동할 수 있다.
프로그램은 객체(180)의 3D 컴퓨터 모델을 생성하기 위한 CAD(computer-aided design) 프로그램을 포함할 수 있다. 추가적으로 및/또는 선택적으로, 3D 컴퓨터 모델은 다른 컴퓨터 시스템(도시되지 않음)으로부터 임포트될 수 있다. 3D 컴퓨터 모델은 산업 표준에서 솔리드, 표면 또는 메쉬 파일 형식일 수 있다.
프로그램은 3D 컴퓨터 모델을로드하고, 인쇄 모델을 생성하고, 시스템(100)을 제어하여 객체(180)를 인쇄하기 위한 기계 코드를 생성할 수 있다. 예시적인 프로그램은 인디애나 주 데일에 위치한 Thermwood Corporation에서 입수할 수 있는 LSAM Print 3D를 포함할 수 있다. 추가적으로 및/또는 선택적으로, 예시적인 프로그램은 오하이오 주 해리슨에 위치한 Cincinnati Incorporated에서 이용 가능한 Unfolder 모듈 소프트웨어, 벤드 시뮬레이션 소프트웨어, 레이저 프로그래밍 및/또는 네스팅 소프트웨어를 포함할 수 있다.
제어 시스템(400)은 원하는대로 하나 이상의 추가 하드웨어 구성 요소를 포함하는 것으로 도시된다. 예시적인 추가 하드웨어 구성 요소는 메모리(420)(선택적으로 본 명세서에서 비 일시적 컴퓨터 판독 가능 매체로 지칭 됨)를 포함하지만 이에 제한되지 않는다. 예시적인 메모리(420)는 예를 들어 랜덤 액세스 메모리(RAM), 정적 RAM, 동적 RAM, 읽기 전용 메모리(ROM), 프로그램 가능 ROM, 삭제 가능 프로그램 가능 ROM, 전기적으로 삭제 가능한 프로그램 가능 ROM, 플래시 메모리, 보안 디지털(SD) 카드 등을 포함할 수 있다. 제어 시스템(400) 및/또는 객체(180)의 컴퓨터 화된 모델을 구현하기 위한 명령은 프로세서(410)에 의해 실행될 메모리(420)에 저장될 수 있다.
추가적으로 및/또는 선택적으로, 제어 시스템(400)은 통신 모듈(430)을 포함할 수 있다. 통신 모듈(430)은 제어 시스템(400)과 다른 컴퓨터 시스템(400) 사이에서 데이터 및/또는 명령을 교환하도록 동작하는 임의의 통상적인 하드웨어 및 소프트웨어를 포함할 수 있다. 표시되지 않음) 유선 및/또는 무선 통신 방법을 사용한다. 예를 들어, 제어 시스템(400)은 통신 모듈(430)을 통해 객체(180)에 대응하는 컴퓨터 설계 데이터를 수신할 수 있다. 예시적인 통신 방법은 예를 들어 라디오, 무선 충실도(Wi-Fi), 셀룰러, 위성, 방송 또는 이들의 조합을 포함한다.
추가적으로 및/또는 선택적으로, 제어 시스템(400)은 디스플레이 장치(440)를 포함할 수 있다. 디스플레이 장치(440)는 제어 시스템(400)을 작동시키기 위한 프로그래밍 명령을 제공하고 및/또는 인쇄 헤드와 관련된 데이터를 제공하도록 작동하는 임의의 장치를 포함할 수 있다. 추가적으로 및/또는 선택적으로, 제어 시스템(400)은 원하는대로 하나 이상의 입력/출력 장치(450)(예를 들어, 버튼, 키보드, 키패드, 트랙볼)를 포함할 수 있다.
프로세서(410), 메모리(420), 통신 모듈(430), 디스플레이 장치(440) 및/또는 입/출력 장치(450)는 예를 들어 하드웨어 커넥터 및 버스를 사용하여 및/또는 무선 방식으로 통신하도록 구성될 수 있다.
개시된 실시예는 다양한 수정 및 선택적인 형태가 가능하며, 그 특정 예는 도면에서 예로서 도시되었으며 여기서 상세히 설명된다. 그러나, 개시된 실시예는 개시된 특정 형태 또는 방법에 제한되지 않고, 반대로 개시된 실시예는 모든 수정, 등가물 및 대안을 포함하는 것임을 이해해야 한다.

Claims (34)

  1. 적층 제조 방법에 있어서,
    프린터의 인쇄 기질 상에 빌드 시트를 위치설정하는 단계;
    빌드 시트에 객체를 인쇄하는 단계; 및
    상기 인쇄가 완료된 후 빌드 시트에서 객체를 탈착하는 단계를 포함하고,
    상기 빌드 시트는 상기 프린팅 동안 객체에 적어도 부분적으로 접착하도록 구성된 빌드 표면 층을 포함하고,
    상기 빌드 표면 층은 인쇄 후 객체로부터 제거 가능하도록 구성되고, 및
    상기 빌드 시트는 재사용 가능하도록 구성되는 것을 특징으로 하는 적층 제조 방법.
  2. 제 1 항에 있어서, 상기 프린터는 대규모 적층 제조 시스템인 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서, 상기 위치 설정은 빌드 시트를 인쇄 기질에 고정하는 단계를 포함하는 것을 특징으로 하는 방법.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 빌드 시트가 열가소성 폴리우레탄으로 적어도 부분적으로 제조되는 것을 특징으로 하는 방법.
  5. 제 4 항에 있어서, 상기 객체를 인쇄하는 단계는 아크릴로니트릴 부타디엔 스티렌(ABS), 폴리카보네이트, 또는 이들의 조합으로 적어도 부분적으로 만들어진 객체를 인쇄하는 단계를 포함하는 것을 특징으로 하는 방법.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 상기 위치 설정 단계는 프린터를 사용하여 인쇄 기질 상에 빌드 시트를 인쇄하는 단계를 포함하는 것을 특징으로 하는 방법.
  7. 제 6 항에 있어서, 상기 인쇄 기질은 프린터의 인쇄 베드 상에 배치된 테이블을 포함하고, 상기 프린터를 이용하여 상기 인쇄 베드 상에 상기 테이블을 인쇄하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  8. 제 7 항에 있어서, 테이블이 폴리카보네이트로 제조되고 빌드 표면 층이 열가소성 폴리우레탄으로 제조되는 것을 특징으로 하는 방법.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서, 빌드 시트가 적어도 부분적으로 직물로 제조된 빌드 표면 층을 포함하는 것을 특징으로 하는 방법.
  10. 제 9 항에 있어서, 상기 빌드 표면 층은 적어도 부분적으로 면, 데님, 캔버스, 덕 캔버스, 린넨, 실크, 울, 레이온, 폴리에스테르, 나일론, 아크릴, 폴리아미드, 중합체 마이크로 섬유, 또는 그 조합으로 제조되는 것을 특징으로 하는 방법.
  11. 제 9 항 또는 제 10 항에 있어서, 상기 위치 설정 전에 빌드 표면 층을 접착제로 코팅하는 단계를 추가로 포함하는 것을 특징으로 하는 방법.
  12. 제 11 항에 있어서, 상기 코팅은 접촉 접착제, 목재 접착제 또는 이들의 조합을 포함하는 접착제로 빌드 표면 층을 코팅하는 것을 포함하는 것을 특징으로 하는 방법.
  13. 제 9 항 내지 제 12 항 중 어느 한 항에 있어서, 빌드 시트가 빌드 표면 층에 부착되고 인쇄 기질에 근접한 밀봉층을 추가로 포함하는 것을 특징으로 하는 방법.
  14. 제 13 항에 있어서, 접착제 또는 열 프레스를 통해 밀봉층을 빌드 표면 층에 부착하는 단계를 추가로 포함하는 것을 특징으로 하는 방법.
  15. 제 13 항 또는 제 14 항에 있어서, 밀봉층은 진공 밀봉에 적합화된 것을 특징으로 하는 방법.
  16. 제 13 항 내지 제 15 항 중 어느 한 항에 있어서, 상기 인쇄 기질은 인쇄 베드를 포함하고, 상기 방법은 상기 인쇄 전에 상기 인쇄 베드를 통해 인가되는 진공을 통해 상기 빌드 시트를 상기 인쇄 기질에 고정시키는 단계를 더 포함하는 것을 특징으로 하는 방법.
  17. 제 16 항에 있어서, 상기 객체를 인쇄한 후, 진공을 터닝하여 인쇄 기질으로부터 빌드 시트를 방출하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  18. 제 16 항 또는 제 17 항에 있어서, 인쇄 베드와 빌드 시트 사이에 장벽 층을 위치시키는 단계를 추가로 포함하고, 장벽 층은 가스 투과성인 것을 특징으로 하는 방법.
  19. 제 18 항에 있어서, 장벽 층은 와이어 메쉬, 가스 투과성 섬유판 또는 이들의 조합을 포함하는 것을 특징으로 하는 방법.
  20. 제 18 항 또는 제 19 항에 있어서, 상기 인쇄 전에 하나 이상의 폐쇄 시트를 통해 밀봉층 및 장벽 층의 변부에서 진공을 밀봉하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  21. 제 18 항 내지 제 20 항 중 어느 한 항에 있어서, 상기 장벽 층을 위치시키는 단계는 인쇄 베드와 빌드 시트 사이에 스페이서 플랫폼을 위치시키는 단계를 포함하고, 상기 스페이서 플랫폼은 가스 투과성 섬유 보드로 제조되는 것을 특징으로 하는 방법.
  22. 제 21 항에 있어서, 스페이서 플랫폼은 비평탄 형태를 갖는 플랫폼 표면을 제공하고, 상기 빌드 시트를 위치시키는 단계는 빌드 시트를 비평탄 형태에 맞추는 단계를 포함하는 것을 특징으로 하는 방법.
  23. 제 1 항 내지 제 22 항 중 어느 한 항에 있어서, 인쇄 기질은 인쇄 베드 및 인쇄 베드 상에 배치된 템플릿 층을 포함하고, 템플릿 층은 인쇄 베드에 수직인 z-방향으로 템플릿 층을 통과하는 하나 이상의 템플릿 공극을 형성하는 것을 특징으로 하는 방법.
  24. 제 23 항에 있어서, 상기 템플릿 공극의 형상적 구조에 기초하여 적어도 부분적으로 형상화된 복수의 섹션으로 객체를 절단하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  25. 제 24 항에 있어서, 상기 절단 단계는 인쇄 베드를 절단하지 않고 z-방향으로 객체 및 빌드 시트를 통해 템플릿 층의 선택된 템플릿 공극으로 절단하는 단계를 포함하는 것을 특징으로 하는 방법.
  26. 제 1 항 내지 제 25 항 중 어느 한 항에 있어서, 빌드 시트가 1mm 내지 10mm 두께인 것을 특징으로 하는 방법.
  27. 제 1 항 내지 제 26 항 중 어느 한 항에 있어서, 빌드 표면 층이 1mm 미만의 거칠기를 갖는 인쇄 표면을 갖는 것을 특징으로 하는 방법.
  28. 제 1 항 내지 제 27 항 중 어느 한 항에 있어서, 빌드 시트가 50 N보다 큰 파단력을 갖는 것을 특징으로 하는 방법.
  29. 제 1 항 내지 제 28 항 중 어느 한 항에 있어서, 빌드 시트와 객체 사이의 접착력이 10 내지 1000 파운드 force/inch 사이의 박리 강도를 갖는 것을 특징으로 하는 방법.
  30. 객체의 적층 제조 동안 객체를 수용하기 위한 빌드 시트에 있어서,
    프린터의 인쇄 기질에 고정되고,.
    적층 제조 중에 객체에 부착하고, 및
    적층 제조가 완료된 후 객체에서 제거할 수 있도록 구성된 빌드 표면 층을 포함하는 것을 특징으로 하는 빌드 시트.
  31. 제 30 항에 있어서, 빌드 표면 층이 적어도 부분적으로 열가소성 폴리우레탄으로 제조되는 것을 특징으로 하는 빌드 시트.
  32. 제 30 항 또는 제 31 항에 있어서, 빌드 표면 층이 적어도 부분적으로 직물로 제조되는 것을 특징으로 하는 빌드 시트.
  33. 적층 제조 방법에 있어서,
    프린터의 인쇄 기질 상에 빌드 시트를 위치시키는 단계;
    빌드 시트에 객체 인쇄하는 단계;
    객체에 부착된 빌드 시트의 일부가 빌드 시트로부터 절단되도록 객체의 변부를 따라 빌드 시트를 절단하는 단계; 및
    인쇄 기질에서 객체와 상기 객체에 부착된 빌드 시트의 일부를 탈착하는 단계를 포함하는 것을 특징으로 하는 방법.
  34. 제 33 항에 있어서, 상기 빌드 시트가 열가소성 폴리우레탄으로 적어도 부분적으로 제조되고 상기 프린팅 동안 객체에 적어도 부분적으로 접착하도록 구성된 빌드 표면 층을 포함하는 것을 특징으로 하는 방법.
KR1020207027227A 2018-04-23 2019-04-23 적층 제조를 위한 방법 및 장치 KR20200123212A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862661553P 2018-04-23 2018-04-23
US62/661,553 2018-04-23
US201862661903P 2018-04-24 2018-04-24
US62/661,903 2018-04-24
PCT/US2019/028775 WO2019209863A2 (en) 2018-04-23 2019-04-23 Method and apparatus for additive manufacturing

Publications (1)

Publication Number Publication Date
KR20200123212A true KR20200123212A (ko) 2020-10-28

Family

ID=67138009

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207027227A KR20200123212A (ko) 2018-04-23 2019-04-23 적층 제조를 위한 방법 및 장치

Country Status (8)

Country Link
US (1) US11745423B2 (ko)
EP (1) EP3784472B1 (ko)
JP (1) JP2022501209A (ko)
KR (1) KR20200123212A (ko)
CN (1) CN112004655A (ko)
CA (1) CA3096488A1 (ko)
MX (1) MX2020011161A (ko)
WO (1) WO2019209863A2 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11826957B2 (en) * 2017-08-08 2023-11-28 Toybox Labs, LLC Reusable build surface for 3D printed objects
US11554532B2 (en) 2018-09-14 2023-01-17 Makerbot Industries, Llc Extruder thermal management
JP7123356B2 (ja) * 2021-01-07 2022-08-23 株式会社 ミタテ工房 立体物造形装置および立体物造形方法
US11981460B2 (en) * 2022-05-13 2024-05-14 Firestorm Labs, Inc. Mission-adaptable aerial vehicle and methods for in-field assembly and use

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593633A (en) * 1990-05-03 1997-01-14 Dull; Kenneth M. Edge and surface breather for high temperature composite processing
US6022207A (en) 1998-01-26 2000-02-08 Stratasys, Inc. Rapid prototyping system with filament supply spool monitoring
US5939008A (en) 1998-01-26 1999-08-17 Stratasys, Inc. Rapid prototyping apparatus
US6331028B1 (en) 2000-10-17 2001-12-18 Advance Usa, Inc. Fiber-reinforced composite structure
GB0309662D0 (en) 2003-04-28 2003-06-04 Crampton Stephen Robot CMM arm
US7127309B2 (en) * 2004-02-10 2006-10-24 Stratasys, Inc. Modeling apparatus with tray substrate
US7261542B2 (en) 2004-03-18 2007-08-28 Desktop Factory, Inc. Apparatus for three dimensional printing using image layers
KR101321651B1 (ko) 2006-11-22 2013-10-23 후쿠이 켄 열가소성 수지 복합 재료 성형품의 성형 방법
US9822045B2 (en) 2007-03-22 2017-11-21 Ronald D Jones Additive manufactured thermoplastic-aluminum nanocomposite hybrid rocket fuel grain and method of manufacturing same
US10286599B2 (en) 2007-03-22 2019-05-14 Ronald D Jones Additive manufactured thermoplastic-nanocomposite aluminum hybrid rocket fuel grain and method of manufacturing same
GB0819935D0 (en) * 2008-10-30 2008-12-10 Mtt Technologies Ltd Additive manufacturing apparatus and method
GB201003599D0 (en) 2010-03-04 2010-04-21 Renishaw Plc Measurement method and apparatus
US20120115379A1 (en) * 2010-11-09 2012-05-10 Applied Ft Composite Solutions Inc. Multi-layered composite cushioning material and method for making the same
WO2013136096A1 (en) 2012-03-16 2013-09-19 University Of Exeter Additive manufacturing
KR20140139493A (ko) 2012-03-19 2014-12-05 도레이 카부시키가이샤 탄소 섬유 프리폼, 탄소 섬유 강화 플라스틱, 탄소 섬유 프리폼의 제조 방법
JP6342912B2 (ja) 2012-11-08 2018-06-13 ディーディーエム システムズ, インコーポレイテッド 金属構成要素の加法的製造および修復
FR2998209B1 (fr) 2012-11-19 2015-05-22 Hexcel Reinforcements Procede de depot d'un materiau intermediaire permettant d'assurer la cohesion de ce dernier et procede de constitution d'un empilement destine a la fabrication de pieces composites
US9399320B2 (en) 2013-03-08 2016-07-26 Stratasys, Inc. Three-dimensional parts having interconnected hollow patterns, and method for generating and printing thereof
US9815268B2 (en) 2013-03-22 2017-11-14 Markforged, Inc. Multiaxis fiber reinforcement for 3D printing
US9555582B2 (en) 2013-05-07 2017-01-31 Google Technology Holdings LLC Method and assembly for additive manufacturing
CN105579219B (zh) 2013-06-13 2017-09-01 安斯百克特生物系统公司 用于三维结构的增材制造的系统和方法
US9144940B2 (en) 2013-07-17 2015-09-29 Stratasys, Inc. Method for printing 3D parts and support structures with electrophotography-based additive manufacturing
DE102013217422A1 (de) 2013-09-02 2015-03-05 Carl Zeiss Industrielle Messtechnik Gmbh Koordinatenmessgerät und Verfahren zur Vermessung und mindestens teilweisen Erzeugung eines Werkstücks
WO2015049834A1 (ja) 2013-10-03 2015-04-09 コニカミノルタ株式会社 三次元造形装置および三次元造形方法
WO2015107333A1 (en) 2014-01-14 2015-07-23 King's College London 3d printing of facial prostheses
JP6273849B2 (ja) 2014-01-15 2018-02-07 セイコーエプソン株式会社 三次元造形物の製造方法、三次元造形物製造装置およびインクセット
US20160332387A1 (en) * 2014-01-29 2016-11-17 Stocklyn Venture, Llc A device and method for removing 3d print material from build plates of 3d printers
EP3122542B1 (en) 2014-03-28 2019-06-05 Ez Print, LLC 3d print bed having permanent coating
US9816058B2 (en) 2014-04-10 2017-11-14 3D Systems, Inc. Three-dimensional soap objects formed by additive manufacturing
EP3172040B1 (en) 2014-07-23 2020-09-09 Canon Kabushiki Kaisha Method and apparatus for manufacturing three-dimensional object
US20160039194A1 (en) * 2014-08-08 2016-02-11 Eastman Chemical Company Additive manufacturing using miscible materials
US9592660B2 (en) * 2014-12-17 2017-03-14 Arevo Inc. Heated build platform and system for three dimensional printing methods
US10695992B2 (en) * 2014-12-31 2020-06-30 3D Systems, Inc. System and method for 3D printing on permeable materials
US9610733B2 (en) * 2015-01-06 2017-04-04 Stratasys, Inc. Additive manufacturing with soluble build sheet and part marking
US20160207263A1 (en) 2015-01-16 2016-07-21 Mark Christopher Gordon Targeted cooling in a 3d printing system
US20160250808A1 (en) 2015-02-26 2016-09-01 Mitsubishi Electric Research Laboratories, Inc. System and Method for Printing Three Dimensional Objects
JP6472308B2 (ja) 2015-04-13 2019-02-20 株式会社ミマキエンジニアリング 立体物造形方法及び3次元プリンタ
KR101692146B1 (ko) 2015-04-29 2017-01-03 이정애 3차원 프린터 출력베드 겸 배출 컨베이어 벨트
KR101713420B1 (ko) 2015-07-02 2017-03-07 단국대학교 산학협력단 다중소재 토출 노즐 헤드 및 토출 방법
EP3294553A4 (en) 2015-08-07 2018-11-14 Alcoa Inc. Architectural manufactures, apparatus and methods using additive manufacturing techniques
US20170072466A1 (en) 2015-09-16 2017-03-16 Applied Materials, Inc. Selectively openable support platen for additive manufacturing
CN108471841A (zh) * 2015-11-06 2018-08-31 梦想Gp株式会社 木模的制作方法
US10688581B2 (en) 2015-11-24 2020-06-23 The Board Of Trustees Of Western Michigan University 3D metal printing device and process
US11198284B2 (en) 2015-12-21 2021-12-14 2679667 Ontario Inc. Large format 3D printing augmented with 3D scanning and anomoly tracking feedback
US10369742B2 (en) 2015-12-28 2019-08-06 Southwest Research Institute Reinforcement system for additive manufacturing, devices and methods using the same
US20170252980A1 (en) * 2016-03-03 2017-09-07 Shawsheen Rubber Co., Inc. Multi-layer sheet having functional surfaces for use on a 3-d printer and related methods
WO2017159349A1 (ja) 2016-03-17 2017-09-21 日東電工株式会社 造形ステージ用粘着シート
JP6720608B2 (ja) 2016-03-18 2020-07-08 セイコーエプソン株式会社 三次元造形物の製造方法
WO2017172574A1 (en) * 2016-03-28 2017-10-05 Sabic Global Technologies B.V. Method and apparatus for additive manufacturing comprinsing a release sheet
US11330865B2 (en) 2016-04-15 2022-05-17 Materialise Nv Optimized three dimensional printing using ready-made supports
US10471658B2 (en) 2016-04-18 2019-11-12 Stratasys, Inc. Sheet substrate retention device for securing a sheet substrate to a vacuum platen in an additive manufacturing system
US20180009172A1 (en) * 2016-04-21 2018-01-11 Rakshit Amba Method, equipment and material for 3d printing and deposition on a surface or object with strong bond
US10543617B2 (en) 2016-04-22 2020-01-28 Caterpillar Inc. System and method of connecting two 3D printed structures
US10525628B2 (en) 2016-04-28 2020-01-07 Wisconsin Alumni Research Foundation Systems and methods for controlling support structures in manufacturing
US10675684B2 (en) 2016-04-29 2020-06-09 Hexcel Corporation Metal AM process with in situ inspection
US20190240934A1 (en) 2016-09-06 2019-08-08 Fibre Reinforced Thermoplastics B.V. Fiber-reinforced composites, laminates including the same, and systems and methods for making such laminates
JP6799431B2 (ja) 2016-10-11 2020-12-16 株式会社ミマキエンジニアリング 三次元造形物の製造方法および造形物
US20180154441A1 (en) 2016-12-07 2018-06-07 General Electric Company Methods and table supports for additive manufacturing
EP3944271A1 (en) 2016-12-22 2022-01-26 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Inductor made of component carrier material comprising electrically conductive plate structures
US20180207863A1 (en) 2017-01-20 2018-07-26 Southern Methodist University Methods and apparatus for additive manufacturing using extrusion and curing and spatially-modulated multiple materials
CN106626369B (zh) 2017-02-19 2019-10-08 荆门米丰信息科技有限公司 具有支撑材料成型功能的三维打印机及其成型方法
US10442003B2 (en) 2017-03-02 2019-10-15 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
JP6989272B2 (ja) * 2017-03-17 2022-01-05 日東電工株式会社 造型マット
JP6721042B2 (ja) 2017-03-31 2020-07-08 三菱ケミカル株式会社 プリプレグシート、その製造方法、表皮材付き単位層、繊維強化複合材料成形品の製造方法、及び繊維強化複合材料成形品
US20180311891A1 (en) 2017-04-28 2018-11-01 Ut-Battelle, Llc Z-axis improvement in additive manufacturing
CN206884186U (zh) 2017-05-18 2018-01-16 金华市易立创三维科技有限公司 3d打印平台及3d打印机
CN107097424A (zh) * 2017-06-13 2017-08-29 昆山市奇迹三维科技有限公司 一种可旋转式3d打印机打印平台装置
US20210039315A1 (en) * 2017-07-25 2021-02-11 Northworks Automation, Inc. Vacuum bed with base member for three-dimensional printing
US11826957B2 (en) * 2017-08-08 2023-11-28 Toybox Labs, LLC Reusable build surface for 3D printed objects
US10933586B2 (en) 2017-09-13 2021-03-02 Thermwood Corporation Apparatus and method for printing large thermoplastic parts during additive manufacturing
US10967576B2 (en) 2017-11-10 2021-04-06 Local Motors IP, LLC Additive manufactured structure having a plurality of layers in a stacking direction and method for making the same
US11584065B2 (en) 2018-01-23 2023-02-21 Rapidflight Holdings, Llc Additively manufactured structure and method for making the same

Also Published As

Publication number Publication date
CA3096488A1 (en) 2019-10-31
MX2020011161A (es) 2020-11-12
US11745423B2 (en) 2023-09-05
JP2022501209A (ja) 2022-01-06
WO2019209863A3 (en) 2020-02-13
CN112004655A (zh) 2020-11-27
EP3784472B1 (en) 2022-11-02
EP3784472A2 (en) 2021-03-03
US20190322047A1 (en) 2019-10-24
WO2019209863A2 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
EP3784472B1 (en) Method for additive manufacturing
US8029642B2 (en) Tape removal apparatus and process
US7763138B2 (en) Auto lamination cassette apparatus and process
JP2021511990A (ja) 付加製造された構造体および同構造体を形成するための方法
CA3100846C (en) Additively manufactured structure and method for making the same
KR101274852B1 (ko) 점착제 처리된 시트지를 갖는 바닥재
EP3027411A1 (en) Cover for a three-dimensional printer build surface
US20130115408A1 (en) Processes for precutting laminated flocked articles
KR101577299B1 (ko) 양각 금형 장치 및 이것을 이용한 제품의 제조 방법
US11731342B2 (en) Additively manufactured structure and method for making the same
KR101577301B1 (ko) 양각 금형 장치 및 이것을 이용한 제품의 제조 방법
KR101821980B1 (ko) 디스플레이 패널 접착용 발포 폼 접착테이프
JP6458207B2 (ja) コンクリート型枠用内張シート
CN104540682A (zh) 版印刷方法
JP2009167368A (ja) 接着シート
JP2000248719A (ja) 連結タイルの製造方法
JP2007326058A (ja) 塗工装置
JP2010255186A (ja) 二重床構造
JP2008093746A (ja) 被研磨物保持材用板状体の製造法
JPH07113311A (ja) 自己粘着性タイルセット
JP2017203251A (ja) コンクリート型枠用内張シート
JP2016117197A (ja) シート間綴じ体、シート間綴じ体の製造方法、画像形成装置
JP4826109B2 (ja) 版洗浄装置
JP2007331090A (ja) 被研磨物保持材用板状体の製造法
JP2007090552A (ja) エンボス加工装置および加工方法

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right