KR20200085615A - 고흡수성 수지 및 이의 제조 방법 - Google Patents

고흡수성 수지 및 이의 제조 방법 Download PDF

Info

Publication number
KR20200085615A
KR20200085615A KR1020190001977A KR20190001977A KR20200085615A KR 20200085615 A KR20200085615 A KR 20200085615A KR 1020190001977 A KR1020190001977 A KR 1020190001977A KR 20190001977 A KR20190001977 A KR 20190001977A KR 20200085615 A KR20200085615 A KR 20200085615A
Authority
KR
South Korea
Prior art keywords
polymer
monomer mixture
superabsorbent polymer
diameter
base resin
Prior art date
Application number
KR1020190001977A
Other languages
English (en)
Other versions
KR102452567B1 (ko
Inventor
이혜민
원태영
손정민
이준의
허성범
신광인
한창훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020190001977A priority Critical patent/KR102452567B1/ko
Priority to JP2020557906A priority patent/JP7210082B2/ja
Priority to US17/271,414 priority patent/US11718694B2/en
Priority to EP19908136.5A priority patent/EP3819330A4/en
Priority to CN201980053298.3A priority patent/CN112585193B/zh
Priority to PCT/KR2019/018228 priority patent/WO2020145548A1/ko
Priority to BR112021013354-2A priority patent/BR112021013354A2/pt
Publication of KR20200085615A publication Critical patent/KR20200085615A/ko
Application granted granted Critical
Publication of KR102452567B1 publication Critical patent/KR102452567B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 기본적인 흡수 성능이 우수할 뿐 아니라, 보다 향상된 흡수속도 등을 나타내는 고흡수성 수지 및 이의 제조 방법에 관한 것이다. 상기 고흡수성 수지는 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 제 1 가교 중합체를 포함하는 베이스 수지 분말; 및 상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 제 2 가교 중합체를 포함하는 표면 가교층을 포함하는 고흡수성 수지로서, 상기 고흡수성 수지는 각각의 고흡수성 수지 입자의 최단 직경 / 최장 직경으로 정의되는 종횡비가 0.5 미만인 고흡수성 수지 입자를 9.9 개수% 미만으로 포함하고, 볼텍스법에 의한 흡수 속도가 5 내지 55초이고, 표면 장력(surface tension)이 50 내지 80 mN/m 인 것이다.

Description

고흡수성 수지 및 이의 제조 방법{SUPER ABSORBENT POLYMER AND PREPARATION METHOD THEREOF}
본 발명은 기본적인 흡수 성능이 우수할 뿐 아니라, 보다 향상된 흡수속도 등을 나타내는 고흡수성 수지 및 이의 제조 방법에 관한 것이다.
고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.
가장 많은 경우에, 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있는데, 이러한 용도를 위해 수분 등에 대한 높은 흡수능을 나타낼 필요가 있고, 외부의 압력에도 흡수된 수분이 빠져 나오지 않아야 하며, 이에 더하여, 물을 흡수하여 부피 팽창(팽윤)된 상태에서도 형태를 잘 유지하여 우수한 통액성(permeability)을 나타낼 필요가 있다.
최근에는 얇은 기저귀에 대한 요구가 높아짐에 따라, 기저귀 내의 펄프 등 섬유재의 함량이 감소하고, 상대적으로 고흡수성 수지의 비율이 증가하는 경향이 있다. 따라서, 기저귀의 섬유재가 담당하던 성능을 고흡수성 수지가 겸비할 필요성이 있으며, 이를 위하여 고흡수성 수지의 높은 흡수능은 물론 높은 흡수속도를 나타낼 필요가 있다. 특히, 기저귀가 얇아질수록, 기저귀의 사용자인 아기의 움직임에 따라 기저귀에서 소변이 셀 우려가 증가하기 때문에, 고흡수성 수지에 대한 높은 흡수속도 등에 대한 요구는 증가하고 있는 실정이다.
한편, 상기 고흡수성 수지가 보다 높은 흡수속도를 나타내기 위해서는, 넓은 표면적을 가지며, 내부에 다수의 미세 기공이 형성된 다공성 구조 등을 나타낼 필요가 있다. 이에 이전부터 발포제나 계면 활성제 등을 적용하여 이와 같은 다공성 구조 등을 갖는 고흡수성 수지가 제조된 바 있다.
이러한 고흡수성 수지는 분쇄 후 종횡비가 작은 입자들이 다량 생성되는데, 이러한 입자들은 그 형태 등이 불균일해질 우려가 크다. 이 때문에, 분쇄 후의 표면 가교시 또는 물성 향상을 위한 첨가제 등의 혼합시에, 표면 가교가 불균일하게 이루어지거나, 첨가제의 도포가 불균일하게 이루어지는 경우가 많다. 그 결과, 다공성 구조 등을 형성해 고흡수성 수지의 높은 흡수 속도를 구현한 종래 기술에서는, 흡수 성능 등의 다른 물성이 저하되는 경우가 많았다. 또한, 이러한 기존 방법에 의할 경우, 수지 입자들의 분쇄, 분급 또는 이송 과정에서 해당 입자들이 쉽게 부서질 수 있다. 이렇게 되면, 미분의 발생이 증가하고, 표면 가교 이후의 물성이 저하될 수 있다. 또한, 분쇄, 분급 또는 이송 과정에서의 입자들의 부서짐으로 인해, 고흡수성 수지의 표면적이 줄어들 수 있으며, 그 결과 흡수 속도가 오히려 저하될 수 있다.
이에 발포제의 사용량을 줄이고 종횡비가 작은 입자들의 생성을 줄여 흡수 성능의 저하를 억제하면서도, 더욱 향상된 흡수속도를 동시에 나타내는 고흡수성 수지를 제공할 수 있는 기술의 개발이 계속적으로 요구되고 있다.
이에 본 발명은 기본적인 흡수 성능이 우수할 뿐 아니라, 보다 향상된 흡수속도 및 통액성 등을 함께 나타내는 고흡수성 수지 및 이의 제조 방법을 제공하는 것이다.
본 발명은 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 제 1 가교 중합체를 포함하는 베이스 수지 분말; 및
상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 제 2 가교 중합체를 포함하는 표면 가교층을 포함하는 고흡수성 수지로서,
상기 고흡수성 수지는 각각의 고흡수성 수지 입자의 최단 직경 / 최장 직경으로 정의되는 종횡비가 0.5 미만인 고흡수성 수지 입자를 9.9 개수% 미만으로 포함하고,
볼텍스법에 의한 흡수 속도가 5 내지 55초이고,
표면 장력(surface tension)이 50 내지 80 mN/m 인 고흡수성 수지를 제공한다.
본 발명은 또한, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제를 포함하는 단량체 혼합물을 형성하는 단계;
상기 단량체 혼합물을 구간에 따라 변화되는 직경을 갖는 이송관을 따라 중합 반응기로 이송하는 단계;
상기 중합 반응기로 이송된 단량체 혼합물을 가교 중합하여 제 1 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계;
상기 함수겔 중합체를 겔 분쇄, 건조, 분쇄 및 분급하여, 각각의 베이스 수지 분말의 최단 직경 / 최장 직경으로 정의되는 종횡비가 0.5 미만인 베이스 수지 분말을 9.9 개수% 미만으로 포함하는 베이스 수지를 형성하는 단계; 및
표면 가교제 존재 하에, 상기 베이스 수지 분말의 표면을 추가 가교하여 표면 가교층을 형성하는 단계를 포함하고,
상기 단량체 혼합물의 이송 단계에서, 상기 이송관의 최소 직경 구간에서 상기 단량체 혼합물은 최대 이송 속도를 나타내고, 상기 이송관의 최대 직경 구간에서 상기 단량체 혼합물은 최소 이송 속도를 나타내며, 상기 최대 이송 속도는 상기 최소 이송 속도의 2.5배 이상으로 되는 고흡수성 수지의 제조 방법을 제공한다.
이하, 발명의 구체적인 구현예에 따른 고흡수성 수지 및 이의 제조 방법 등에 대해 보다 상세히 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리 범위가 한정되는 것은 아니며, 발명의 권리 범위내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.
추가적으로, 본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는 "함유"라 함은 어떤 구성요소(또는 구성 성분)를 별다른 제한없이 포함함을 지칭하며, 다른 구성요소(또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.
발명의 일 구현예에 따르면, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 제 1 가교 중합체를 포함하는 베이스 수지 분말; 및
상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 제 2 가교 중합체를 포함하는 표면 가교층을 포함하는 고흡수성 수지로서,
상기 고흡수성 수지는 각각의 고흡수성 수지 입자의 최단 직경 / 최장 직경으로 정의되는 종횡비가 0.5 미만인 고흡수성 수지 입자를 9.9 개수% 미만으로 포함하고,
볼텍스법에 의한 흡수 속도가 5 내지 55초이고,
표면 장력(surface tension)이 50 내지 80 mN/m 인 고흡수성 수지가 제공된다.
발명의 일 구현예의 고흡수성 수지는 후술하는 방법에 따라, 단량체 혼합물을 중합 반응기로 이송하는 과정에서, 이의 이송 속도를 변화시키면서 특정 범위로 제어한 후, 중합, 건조, 분쇄, 분급 및 표면 가교 등의 공정을 거쳐 제조 가능한 것이다.
본 발명자들의 계속적인 연구 결과, 이와 같이 단량체 혼합물의 이송 속도를 변화시키는 경우, 물리적 발포가 일어나, 발포제 등의 사용량을 줄이거나 이를 사용하지 않으면서도, 발달된 다공성 구조 및 우수한 흡수 속도를 나타내는 고흡수성 수지를 제조할 수 있음을 밝혀내고 발명을 완성하였다.
이는 상기 이송관을 통한 이송 중 단량체 혼합물의 이송 속도가 변화하면서, 이러한 단량체 혼합물에 인가되는 압력이 순간적으로 변화함에 따라, 상기 단량체 혼합물 중의 산소 등 기체 용해도가 감소하기 때문으로 예측된다. 따라서, 상기 이송 속도 조정 단계에서, 상기 단량체 혼합물로부터 다량의 기포가 발생하며, 상기 발생된 기포에 의해, 가교 중합 단계에서 발포 중합이 진행될 수 있다. 그 결과 발포제를 사용하지 않거나 그 사용량을 크게 줄이더라도 물리적 발포에 의해 발달된 다공성 구조를 갖는 고흡수성 수지가 제조될 수 있다.
이와 같이, 발포제의 사용량이 크게 감소된 결과, 종횡비가 작은 고흡수성 수지 입자, 즉, 고흡수성 수지 입자의 최단 직경 / 최장 직경으로 정의되는 종횡비가 0.5 미만인 고흡수성 수지 입자의 형성 비율이 9.9 개수% 미만, 1 내지 9.9 개수%, 혹은 3 내지 9.7 개수%로 크게 줄어들 수 있다. 따라서, 표면 가교시 또는 첨가제 등의 혼합시에 흡수 성능 등의 다른 물성이 저하될 우려가 실질적으로 없어진다. 또한, 종횡비가 작은 입자의 형성 비율이 감소됨에 따라, 입자들의 분쇄, 분급 또는 이송 중에 입자들이 손상되거나 부서져 고흡수성 수지의 최종 물성이 저하될 우려 또한 크게 줄어들 수 있다.
따라서, 일 구현예의 고흡수성 수지는 흡수 성능 등의 제반 물성을 우수하게 유지하면서도, 상술한 물리적 발포에 의해 발달된 다공성 구조를 가짐에 따라 크게 향상된 흡수 속도를 나타낼 수 있다.
그러므로, 일 구현예의 고흡수성 수지는 흡수 속도 및 흡수 성능을 동시에 우수하게 달성하기 어렵다는 기존의 상식과는 달리 기본적인 흡수 성능을 우수하게 유지할 수 있으면서도, 보다 향상된 흡수속도 등을 함께 나타낼 수 있으며, 보다 얇은 두께를 갖는 기저귀 등 위생재에 바람직하게 적용될 수 있다.
이하, 일 구현예의 고흡수성 수지에 대해 보다 구체적으로 설명하기로 한다.
또, 본 명세서에서 지칭하는 '고흡수성 수지'란, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 제 1 가교 중합체를 포함하는 베이스 수지 분말; 및 상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 제2 가교 중합체를 포함한 표면 가교층을 포함하는 고흡수성 수지를 의미한다.
상기 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 통상적으로 사용되는 임의의 단량체일 수 있다. 비제한적인 예로, 상기 수용성 에틸렌계 불포화 단량체는 하기 화학식 1로 표시되는 화합물일 수 있다:
[화학식 1]
R1-COOM1
상기 화학식 1에서,
R1는 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고,
M1는 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다.
적절하게는, 상기 단량체는 아크릴산, 메타크릴산, 및 이들 산의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 이처럼 수용성 에틸렌계 불포화 단량체로 아크릴산 또는 그 염을 사용할 경우 흡수성이 향상된 고흡수성 수지를 얻을 수 있어 유리하다. 이 밖에도 상기 단량체로는 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타크릴로일에탄술폰산, 2-(메트)아크릴로일프로판술폰산, 또는 2-(메트)아크릴아미드-2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메트)아크릴아미드, N-치환(메트)아크릴레이트, 2-히드록시에틸(메트)아크릴레이트, 2-히드록시프로필(메트)아크릴레이트, 메톡시폴리에틸렌글리콜(메트)아크릴레이트 또는 폴리에틸렌 글리콜(메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (N,N)-디메틸아미노에틸(메트)아크릴레이트 또는 (N,N)-디메틸아미노프로필(메트)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4급화물;로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.
여기서, 상기 수용성 에틸렌계 불포화 단량체는 산성기를 가지며, 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알칼리 물질로 부분적으로 중화시킨 것이 사용될 수 있다.
이때, 상기 단량체의 중화도는 40 내지 95 몰%, 또는 40 내지 85 몰%, 또는 45 내지 80 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 달라질 수 있지만, 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수성이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다.
상기 '제1 가교 중합체'란, 상술한 수용성 에틸렌계 불포화 단량체가 내부 가교제의 존재 하게 가교 중합된 것을 의미하고, 상기 '베이스 수지 분말'이란, 이러한 제1 가교 중합체를 포함하는 물질을 의미한다. 또한, 상기 '제2 가교 중합체'란, 상기 제1 가교 중합체가 표면 가교제를 매개로 추가 가교된 물질을 의미하며, 이에 따라 상기 베이스 수지 분말 상에 형성되어 있다. 상기 표면 가교제에 대해서는 후술하기로 한다.
이러한 일 구현예의 고흡수성 수지는, 상술한 바와 같이, 발포제의 사용 없이, 혹은 발포제의 사용량이 최소화된 상태에서, 물리적 발포 중합 등에 의해 상기 베이스 수지 분말이 얻어짐에 따라, 이러한 베이스 수지 분말 및 고흡수성 수지 입자는 상대적으로 작은 종횡비를 갖는 입자의 생성 비율이 최소화될 수 있다. 보다 구체적으로, 일 구현예의 고흡수성 수지는 다수의 고흡수성 수지 입자를 포함하는데, 이들 고흡수성 수지 입자의 전체 개수를 기준으로, 예를 들어, 고흡수성 수지 입자의 최단 직경 / 최장 직경으로 정의되는 종횡비가 0.5 미만인 고흡수성 수지 입자를 9.9 개수% 미만, 1 내지 9.9 개수%, 혹은 3 내지 9.7 개수%의 비율로 포함할 수 있다.
이때, 상기 베이스 수지 분말 및 고흡수성 수지 입자의 종횡비는, 예를 들어, 도 1에 도시된 바와 같이, 각각의 입자를 전자 현미경으로 분석하여 최단 직경(a) 및 최장 직경(b)를 각각 산출할 수 있으며, 이로부터 각 베이스 수지 분말 및 고흡수성 수지 입자의 종횡비를 산출할 수 있다. 이렇게 산출된 각 입자의 종횡비 데이터로부터, 상기 종횡비가 0.5 미만인 입자의 개수 비율을 산출할 수 있다. 참고로, 베이스 수지 분말 및 고흡수성 수지 입자의 종횡비는 서로 동등한 것으로 확인된다.
이와 같이, 일 구현예의 고흡수성 수지가 물리적 발포 중합에 의한 발달된 다공성 구조를 가지면서도, 종횡비가 작은 입자를 매우 감소된 함량으로 포함함에 따라, 표면 가교층 및/또는 첨가제 등이 전체 입자 상에 균일하게 형성될 수 있다. 따라서, 일 구현예의 고흡수성 수지는 우수한 흡수 성능 및/또는 통액성 등을 유지하면서도, 발달된 다공성 구조에 의한 향상된 흡수 속도를 나타낼 수 있다.
한편, 상술한 일 구현예의 고흡수성 수지는, 기본적인 가압 하 또는 무가압 하 흡수 성능 및 흡수속도 등이 우수하며, 이는 CRC, AUP, 흡수도, 볼텍스 흡수속도 또는 표면 장력 등의 물성에 의해 정의될 수 있다.
구체적으로, 일 구현예의 고흡수성 수지는 생리 식염수(0.9 중량% 염화나트륨 수용액)에 대한 30분 동안의 원심분리 보수능(CRC)이 25 내지 35 g/g, 혹은 26 내지 33 g/g으로 될 수 있다. 이러한 원심분리 보수능(CRC) 범위는 일 구현예의 고흡수성 수지가 나타내는 우수한 무가압 하 흡수 성능을 정의할 수 있다.
상기 생리 식염수에 대한 원심분리 보수능(CRC)은 고흡수성 수지를 30분에 걸쳐 생리 식염수에 흡수시킨 후, 다음과 같은 계산식 1에 의해 산출될 수 있다:
[계산식 1]
CRC(g/g) = {[W2(g) - W1(g) - W0(g)]/W0(g)}
상기 계산식 1에서,
W0(g)는 고흡수성 수지의 초기 무게(g)이고,
W1(g)는 고흡수성 수지를 넣지 않은 부직포 봉투를 상온에서 생리 식염수에 30분 동안 함침한 후, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 무게이고,
W2(g)는 고흡수성 수지를 넣은 부직포 봉투를 상온에서 생리 식염수에 30분 동안 함침한 후, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 무게이다.
또한, 일 구현예에 따른 고흡수성 수지는 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 대한 0.7psi 하에서 1시간 동안의 가압 흡수능(AUP)이 22 내지 28 g/g, 혹은 23 내지 27 g/g으로 될 수 있다. 이러한 가압 흡수능(AUP) 범위는 일 구현예의 고흡수성 수지가 나타내는 우수한 가압 하 흡수 성능을 정의할 수 있다.
이러한 가압 흡수능(AUP)은 고흡수성 수지를 1 시간에 걸쳐 0.7 psi의 가압 하에 생리 식염수에 흡수시킨 후, 하기 계산식 2에 따라 산출될 수 있다:
[계산식 2]
AUP(g/g) = [W4(g) - W3(g)]/ W0(g)
상기 계산식 2에서,
W0(g)는 고흡수성 수지의 초기 무게(g)이고, W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고, W4(g)는 하중(0.7 psi) 하에 1시간 동안 상기 고흡수성 수지에 생리 식염수를 흡수시킨 후에, 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다.
또, 일 구현예의 고흡수성 수지가 상술한 범위의 원심분리 보수능(CRC) 및 가압 흡수능(AUP)을 나타냄에 따라, 상기 고흡수성 수지는 하기 식 1로 정의되는 흡수도가 46 내지 63g/g, 혹은 50 내지 60g/g으로 될 수 있다:
[식 1]
흡수도 = CRC + AUP
상기 식 1에서,
CRC는 상기 고흡수성 수지의 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 대한 30분 동안의 원심분리 보수능으로서, 상기 계산식 1과 같이 산출되는 보수능을 나타내며,
AUP는 상기 고흡수성 수지의 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 대한 0.7psi 하에서 1시간 동안의 가압 흡수능으로서, 상기 계산식 2로 산출되는 가압 흡수능을 나타낸다.
이에 따라, 일 구현예의 고흡수성 수지는 기본적인 흡수성 및 가압 하 흡수 유지성 등의 흡수 성능이 우수하게 발현되어 각종 위생재에 적합하게 사용할 수 있다.
또, 일 구현예의 고흡수성 수지는 표면 장력(surface tension)이 50 내지 80 mN/m, 혹은 65 내지 75 mN/m으로 될 수 있다.
이러한 표면 장력은, 예를 들어, 23±2℃의 상온에서 표면 장력 측정기를 사용하여 측정할 수 있다. 이러한 표면 장력의 구체적인 측정 방법은 후술하는 실시예에 기재되어 있다.
이러한 고흡수성 수지의 표면 장력은 보수능, 가압흡수능 등과는 구분되는 물성으로 상기 고흡수성 수지를 포함하는 기저귀에서의 소변 누출(leakage)을 평가할 수 있는 척도로 될 수 있다. 상기 표면 장력은 고흡수성 수지를 염수에 팽윤시키고, 해당 염수에 대해 측정한 표면 장력을 의미하며, 고흡수성 수지의 표면 장력이 낮을 경우 이를 포함하여 제조되는 기저귀 등에서 소변이 새는 현상이 발생할 가능성이 높다. 일 구현예의 고흡수성 수지에 따르면, 우수한 흡수 속도 등과 함께 적정한 범위의 표면 장력을 가짐으로써 누출 발생 가능성을 줄여 고품질의 위생용품을 생산할 수 있다.
한편, 상술한 일 구현예의 고흡수성 수지는, 볼텍스법에 의한 흡수 속도가 5 내지 55초, 혹은 20 내지 50초인 특성을 나타낼 수 있고, 이는 상기 고흡수성 수지의 뛰어난 흡수 속도를 정의할 수 있다.
이러한 볼텍스 법에 의한 흡수 속도는 23℃ 내지 24℃의 50 mL의 생리 식염수에 2g의 고흡수성 수지를 넣고, 마그네틱 바(직경 8 mm, 길이 31.8 mm)를 600 rpm으로 교반하여 와류(vortex)가 사라질 때까지의 시간을 초 단위로 측정하여 산출될 수 있다.
상기 고흡수성 수지는 우수한 흡수 성능을 유지하면서도, 발달된 다공성 구조를 가짐에 따라, 상술한 볼텍스 흡수속도 범위로 정의되는 우수한 흡수속도를 동시에 나타낼 수 있다. 따라서, 상기 고흡수성 수지는 펄프 등 섬유재의 함량이 감소된 위생재 내에 바람직하게 사용될 수 있다.
한편, 상술한 일 구현예의 고흡수성 수지에서, 상기 베이스 수지 분말에 포함된 제 1 가교 중합체는 트리메틸롤프로판 트리(메트)아크릴레이트, 에틸렌글리콜 디(메트)아크릴레이트, 폴리에틸렌글리콜 디(메트)아크릴레이트, 프로필렌글리콜 디(메트)아크릴레이트, 폴리프로필렌글리콜 디(메트)아크릴레이트, 부탄디올디(메트)아크릴레이트, 부틸렌글리콜디(메트)아크릴레이트, 디에틸렌글리콜 디(메트)아크릴레이트, 헥산디올디(메트)아크릴레이트, 트리에틸렌글리콜 디(메트)아크릴레이트, 트리프로필렌글리콜 디(메트)아크릴레이트, 테트라에틸렌글리콜 디(메트)아크릴레이트, 디펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메트)아크릴레이트, 펜타에리스톨 테트라아크릴레이트, 에틸렌글리콜 디글리시딜 에테르(ethyleneglycol diglycidyl ether), 폴리에틸렌글리콜 디글리시딜 에테르, 글리세롤 폴리글리시딜 에테르, 프로필렌글리콜 디글리시딜 에테르 및 폴리프로필렌 글리콜 디글리시딜 에테르로 이루어진 군에서 선택된 1종 이상의 내부 가교제 존재 하에 상기 단량체가 가교 중합된 고분자로 될 수 있다. 이외에도, 이전부터 고흡수성 수지의 제조 과정에서 사용 가능한 것으로 알려진 다양한 내부 가교제를 사용할 수도 있음은 물론이다.
또한, 상술한 고흡수성 수지에서, 상기 제 2 가교 중합체는 상기 베이스 수지 분말의 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 표면 가교층을 더 포함한다. 이러한 표면 가교제로는 이전부터 고흡수성 수지의 제조에 사용 가능한 것으로 알려진 임의의 관능성 화합물을 사용할 수 있으며, 이러한 표면 가교제의 예로는, 가교제는 다가 알코올계 화합물, 다가 에폭시계 화합물, 폴리아민 화합물, 할로에폭시 화합물, 할로에폭시 화합물의 축합 산물, 옥사졸린계 화합물 및 알킬렌 카보네이트계 화합물로 이루어진 군에서 선택된 1종 이상을 들 수 있다. 이들 중에서도, 고흡수성 수지의 통액성 및/또는 겔 강도 등을 고려하여, 상기 표면 가교제로는 탄소수 2 내지 10, 혹은 탄소수 2 내지 6의 알킬렌 카보네이트계 화합물, 보다 구체적으로 에틸렌 카보네이트, 프로필렌 카보네이트, 트리메틸렌 카보네이트 또는 글리세롤 카보네이트 등을 보다 바람직하게 사용할 수 있다.
상술한 일 구현예의 고흡수성 수지는 150 내지 850 ㎛의 입경을 가질 수 있다. 보다 구체적으로, 상기 베이스 수지 분말 및 이를 포함한 고흡수성 수지의 적어도 95 중량% 이상이 150 내지 850㎛의 입경을 가지며, 150㎛ 미만의 입경을 갖는 미분이 5 중량% 미만, 혹은 3 중량% 미만, 혹은 1 중량% 미만으로 될 수 있다. 이때, 상기 고흡수성 수지의 입경은 이미 상술한 고흡수성 수지 입자의 최장 직경으로 정의될 수 있다.
한편, 발명의 다른 구현예에 따르면, 상기 일 구현예의 고흡수성 수지의 제조 방법이 제공된다. 이러한 제조 방법은 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제를 포함하는 단량체 혼합물을 형성하는 단계;
상기 단량체 혼합물을 구간에 따라 변화되는 직경을 갖는 이송관을 따라 중합 반응기로 이송하는 단계;
상기 중합 반응기로 이송된 단량체 혼합물을 가교 중합하여 제 1 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계;
상기 함수겔 중합체를 겔 분쇄, 건조, 분쇄 및 분급하여, 각각의 베이스 수지 분말의 최단 직경 / 최장 직경으로 정의되는 종횡비가 0.5 미만인 베이스 수지 분말을 9.9 개수% 미만으로 포함하는 베이스 수지를 형성하는 단계; 및
표면 가교제 존재 하에, 상기 베이스 수지 분말의 표면을 추가 가교하여 표면 가교층을 형성하는 단계를 포함하고,
상기 단량체 혼합물의 이송 단계에서, 상기 이송관의 최소 직경 구간에서 상기 단량체 혼합물은 최대 이송 속도를 나타내고, 상기 이송관의 최대 직경 구간에서 상기 단량체 혼합물은 최소 이송 속도를 나타내며, 상기 최대 이송 속도는 상기 최소 이송 속도의 2.5배 이상으로 되는 것일 수 있다.
이러한 다른 구현예의 제조 방법에서는, 단량체 혼합물을 중합 반응기로 이송하는 과정에서, 이송관의 직경 및 이의 이송 속도를 변화시키면서 이송관의 최소 직경 구간에서의 최대 이송 속도가, 최대 직경 구간에서의 최소 이송 속도에 대해, 2.5배 이상, 혹은 3배 이상으로 되며, 5배 이하, 혹은 4배 이하가 되도록 제어한 다. 이와 같이 단량체 혼합물의 이송 송도를 변화시키게 되면, 이송 중의 단량체 혼합물에 인가되는 압력이 연속적/순간적으로 변화함에 따라, 상기 단량체 혼합물 중의 산소 등 기체 용해도가 감소할 수 있고, 그 결과 상기 단량체 혼합물로부터 다량의 기포가 발생할 수 있다. 따라서, 이러한 기포 발생에 의해, 가교 중합 단계에서 발포 중합이 진행될 수 있다. 그러므로, 다른 구현예의 방법에 따르면, 발포제를 사용하지 않거나 그 사용량을 크게 줄이더라도 상술한 물리적 발포에 의해 발달된 다공성 구조 및 향상된 흡수 속도를 갖는 고흡수성 수지가 제조될 수 있다.
이와 같이, 발포제의 사용량이 크게 감소된 결과, 상기 가교 중합 후의 건조, 분쇄 및 분급 등의 과정을 거치면, 종횡비가 작은 베이스 수지 분말 및 고흡수성 수지 입자, 즉, 각 입자의 최단 직경 / 최장 직경으로 정의되는 종횡비가 0.5 미만인 베이스 수지 분말 및 고흡수성 수지 입자의 형성 비율이 9.9 개수% 미만, 1 내지 9.9 개수%, 혹은 3 내지 9.7 개수%로 크게 줄어들 수 있다. 따라서, 표면 가교시 또는 첨가제 등의 혼합시에 흡수 성능 등의 다른 물성이 저하될 우려가 실질적으로 없어진다.
그 결과, 다른 구현예의 방법에 따르면, 보다 향상된 흡수 속도를 나타내면서도, 우수한 흡수 성능을 유지하는 일 구현예의 고흡수성 수지가 제조될 수 있다.
이하, 각 단계 별로 상기 제조 방법을 상세히 설명한다.
먼저, 다른 구현예의 제조 방법은 가교 중합에 의해 함수겔 중합체를 형성하는 단계를 포함한다. 구체적으로, 내부 가교제의 존재 하에 수용성 에틸렌계 불포화 단량체 및 중합 개시제를 포함하는 단량체 혼합물을 열 중합 또는 광 중합하여 함수겔 중합체를 형성하는 단계이다.
상기 단량체 혼합물에 포함되는 수용성 에틸렌계 불포화 단량체는 앞서 설명한 바와 같다.
또한, 상기 단량체 혼합물에는 고흡수성 수지의 제조에 일반적으로 사용되는 중합 개시제가 포함될 수 있다. 비제한적인 예로, 상기 중합 개시제로는 중합 방법에 따라 열 중합 개시제 또는 광 중합 개시제 등이 사용될 수 있다. 다만, 광 중합 방법에 의하더라도, 자외선 조사 등에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 열 중합 개시제가 추가로 포함될 수 있다.
여기서, 상기 광 중합 개시제로는, 예를 들어, 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(Benzyl Dimethyl Ketal), 아실포스핀(acyl phosphine) 및 알파-아미노케톤(a-aminoketone)으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 그 중 아실포스핀의 구체 예로서, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸-벤조일-트리메틸 포스핀 옥사이드(2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)가 사용될 수 있다. 보다 다양한 광 중합 개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)"의 115 페이지에 개시되어 있으며, 이를 참조할 수 있다.
그리고, 상기 열 중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 구체적으로, 과황산염계 개시제로는 과황산나트륨(Sodium persulfate; Na2S2O8), 과황산칼륨(Potassium persulfate; K2S2O8), 과황산암모늄(Ammonium persulfate; (NH4)2S2O8) 등을 예로 들 수 있다. 또한, 아조(Azo)계 개시제로는 2,2-아조비스-(2-아미디노프로판)이염산염(2,2-azobis(2-amidinopropane) dihydrochloride), 2,2-아조비스-(N,N-디메틸렌)이소부티라마이딘 디하이드로클로라이드(2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴(2-(carbamoylazo)isobutylonitril), 2,2-아조비스[2-(2-이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스-(4-시아노발레릭 산)(4,4-azobis-(4-cyanovaleric acid)) 등을 예로 들 수 있다. 보다 다양한 열 중합 개시제에 대해서는 Odian 저서인 "Principle of Polymerization(Wiley, 1981년)"의 203 페이지에 개시되어 있으며, 이를 참조할 수 있다.
이러한 중합 개시제는 상기 단량체 혼합물에 대하여 약 0.001 내지 1 중량%의 농도로 첨가될 수 있다. 즉, 상기 중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고 최종 제품에 잔존 모노머가 다량으로 추출될 수 있어 바람직하지 않다. 반대로, 상기 중합 개시제의 농도가 지나치게 높을 경우 네트워크를 이루는 고분자 체인이 짧아져 수가용 성분의 함량이 높아지고 가압 흡수능이 낮아지는 등 수지의 물성이 저하될 수 있어 바람직하지 않다.
한편, 상기 단량체 혼합물에는 상기 수용성 에틸렌계 불포화 단량체의 중합에 의한 수지의 물성을 향상시키기 위한 가교제("내부 가교제")가 포함된다. 상기 가교제는 함수겔 중합체를 내부 가교시키기 위한 것으로서, 후술할 "표면 가교제"와 별개로 사용될 수 있다. 다만, 이러한 내부 가교제의 종류에 있어서는 이미 상술한 바 있으므로, 이에 관한 추가적인 설명은 생략하기로 한다.
이러한 내부 가교제의 총 함량은 상기 내부 가교제 및 단량체 등을 포함하는 단량체 혼합물의 100 중량부에 대해 0.01 중량부 내지 2 중량부, 혹은 0.05 내지 1.8 중량부의 함량으로 될 수 있다. 이러한 내부 가교제의 함량에 따라, 고흡수성 수지 내부의 가교 밀도를 적절한 수준으로 달성하여 일 구현예의 물성을 충족하는 고흡수성 수지를 보다 효과적으로 얻을 수 있다. 다만, 상기 내부 가교제의 함량이 지나치게 커지면, 고흡수성 수지의 기본적인 흡수 성능이 저하될 수 있다.
한편, 상술한 단량체 혼합물은 추가적인 흡수 속도의 향상 등이 필요할 경우 발포제를 더 포함할 수도 있다. 그러나, 이미 상술한 바와 같이, 다른 구현예의 방법에 따르면, 이전보다 발포제를 크게 감소된 함량으로 사용하더라도 매우 발달된 다공성 구조 및 흡수 속도를 충족하는 고흡수성 수지를 얻을 수 있다.
이러한 발포제는 중합시 화학적 발포를 일으켜 함수겔 중합체 내의 기공을 더욱 많이 형성할 수 있다. 상기 발포제로는 대표적으로 탄산염을 사용할 수 있으며, 일례로 소디움 비카보네이트(sodium bicarbonate), 소디움 카보네이트(sodium carbonate), 포타슘 비카보네이트(potassium bicarbonate), 포타슘 카보네이트(potassium carbonate), 칼슘 비카보네이트(calcium bicarbonate), 칼슘 카보네이트(calcium bicarbonate), 마그네슘 비카보네이트(magnesiumbicarbonate) 또는 마그네슘 카보네이트(magnesium carbonate)를 사용할 수 있다.
또한, 상기 발포제는 상기 아크릴산계 단량체 100 중량부에 대하여 0 내지 1.0 중량부, 혹은 0 내지 0.5 중량부, 혹은 0.01 내지 0.1 중량부의 농도로 첨가될 수 있다. 상기 발포제의 사용량이 많아지면, 고흡수성 수지의 흡수 성능 등이 저하될 수 있다.
그리고, 상기 단량체 혼합물은 기공 형성을 최적화하기 위해 계면 활성제를 더 포함할 수 있다. 이러한 계면 활성제는 단량체 혼합물 중에 형성된 기포의 형태를 유지하면서 동시에 중합체 전 영역에 기포를 균일하게 분포시키는 역할을 할 수 있다. 따라서, 이러한 계면 활성제의 추가 사용으로 인해 고흡수성 수지의 흡수 속도가 보다 향상될 수 있다.
이러한 계면 활성제로는 이전부터 고흡수성 수지의 발포 중합시 사용되던 임의의 성분을 사용할 수 있으며, 예를 들어, 양이온성, 음이온성 또는 비이온성 계면 활성제 등을 사용할 수 있다.
상기 계면 활성제는 상기 아크릴산계 단량체 100 중량부에 대하여 0.001 중량부 내지 0.1 중량부, 혹은 0.002 중량부 내지 0.03 중량부의 농도로 첨가될 수 있다. 상기 계면 활성제의 농도가 지나치게 낮을 경우 기포를 안정화하는 역할이 미미하여 흡수 속도 향상 효과를 달성하기 어렵고, 반대로 상기 농도가 지나치게 높을 경우. 고흡수수지의 표면장력이 낮아져 기저귀에서 수분 누출(leakage) 등이 발생할 수 있다.
이 밖에도, 상기 단량체 혼합물에는 필요에 따라 증점제, 가소제, 보존 안정제, 산화 방지제 등의 첨가제가 더 포함될 수 있다.
그리고, 이러한 단량체 혼합물은 전술한 단량체, 중합 개시제, 내부 가교제 등의 원료 물질이 용매에 용해된 용액의 형태로 준비될 수 있다.
이때 사용 가능한 용매로는 전술한 원료 물질들을 용해시킬 수 있는 것이라면 그 구성의 한정 없이 사용될 수 있다. 예를 들어, 상기 용매로는 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로헥사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 자일렌, 부티로락톤, 카르비톨, 메틸셀로솔브아세테이트, N,N-디메틸아세트아미드, 또는 이들의 혼합물 등 사용될 수 있다.
상기 용매는 단량체 혼합물의 총 함량에 대하여 상술한 성분을 제외한 잔량으로 포함될 수 있다.
한편, 상술한 성분들을 혼합하여 단량체 혼합물을 형성한 후에는, 상기 단량체 혼합물을 이송관을 통해 중합 반응기로 이송하면서, 이의 이송 속도를 변화시키면서 조절할 수 있다. 보다 구체적으로, 상기 단량체 혼합물의 이송 과정에서는, 이송관의 직경 및 단량체 혼합물의 이송 속도를 변화시키면서 이송관의 최소 직경 구간에서의 최대 이송 속도가, 최대 직경 구간에서의 최소 이송 속도에 대해, 2.5배 이상, 혹은 3배 이상으로 되며, 10배 이하, 혹은 8배 이하가 되도록 조절할 수 있다.
이미 상술한 바와 같이, 상기 단량체 혼합물의 이송 중에 이송관 직경이나, 이송 속도 등을 변화시켜, 상기 단량체 혼합물에 가해지는 압력을 조정함에 따라, 단량체 혼합물 중의 산소 등 기체 용해도를 감소시킬 수 있다. 따라서, 상기 단량체 혼합물로부터 기포가 발생하며, 상기 발생된 기포에 의해, 가교 중합 단계에서 발포 중합이 진행될 수 있으며, 이러한 물리적 발포에 의해 발달된 다공성 구조를 갖는 고흡수성 수지가 제조될 수 있다.
만일, 상기 최대 이송 속도가 최소 이송 속도의 2.5배 미만으로 제어되는 경우, 물리적 발포 및 발포 중합이 제대로 진행되지 않아 고흡수성 수지의 다공성 구조 및 흡수 속도가 제대로 발현되지 못할 수 있다. 반대로, 최대 이송 속도를 지나치게 크게 제어하면, 추가적인 발포 효과가 크지 않을 뿐 아니라, 공정상 이송 속도 등이 제대로 제어되지 못하여 공정상 진행의 어려움이 발생할 수 있다.
한편, 상술한 최대 이송 속도 및 최소 이송 속도 간의 관계를 충족하기 위해, 이송관의 직경이나, 단량체 혼합물의 유량 등을 조절하여 이의 이송 속도를 변화시킬 수 있다. 예를 들어, 상기 단량체 혼합물은 구간에 따라 변화되는 직경을 갖는 이송관을 따라 이송되며, 구체적으로는, 이송관의 직경이 이송 경로에 따라 줄어들 수 있다. 이로서, 상기 이송관의 최소 직경 구간에서 상기 단량체 혼합물은 최대 이송 속도를 나타내도록 제어될 수 있다.
보다 구체적인 일 예에서, 상기 이송관은 최소 직경 구간에서 0.002내지 0.01m, 혹은 0.005 내지 0.009m의 직경을 가지며, 최소 직경 구간 전의 최대 직경 구간에서 0.011 내지 0.020m, 혹은 0.012 내지 0.016m의 직경을 가질 수 있다. 이러한 이송관의 직경은 고흡수성 수지의 적절한 생산성을 달성하기 위한 단량체 혼합물의 유량과, 상술한 이송 속도 관계 등을 고려하여 상술한 범위 내에서 적절히 결정될 수 있다.
또한, 통상 고흡수성 수지의 제조 과정에서, 적절한 생산성을 확보하고 상술한 이송 속도 관계를 조절하기 위해, 상기 단량체 혼합물은 100 내지 15000kg/hr, 혹은 100 내지 13000kg/hr, 혹은 110 내지 1000kg/hr의 유량으로 이송관을 통해 이송될 수 있다. 이러한 유량으로 이송시, 상술한 범위로 이송관의 직경 등을 변화시킴에 따라, 다른 구현예의 방법에 따른 이송 속도 관계를 제어할 수 있다. 이로서, 물리적 발포 정도를 최적화하여 발달된 다공성 구조 및 우수한 흡수 속도를 나타내는 고흡수성 수지의 제조가 가능해 진다.
한편, 상술한 유량 및 이송관 직경 등의 제어로 인해, 상기 이송관의 최소 직경 구간에서는, 상기 단량체 혼합물이 0.45내지 2.5m/s, 혹은 0.7 내지 2.2m/s의 최대 이송 속도로 이송될 수 있으며, 상기 이송관의 최대 직경 구간에서는 상기 단량체 혼합물이 0.1 내지 0.5m/s, 혹은 0.2 내지 0.4m/s의 최소 이송 속도로 이송되게 제어될 수 있다.
한편, 상술한 방법으로 단량체 혼합물의 물리적 발포를 진행하면서, 이를 중합 반응기로 이송한 후에는, 상기 단량체 혼합물을 열중합 또는 광중합하여 함수겔상 중합체를 형성할 수 있다. 이러한 중합 단계의 진행 방법/조건은 특히 한정되지 않으며, 일반적인 고흡수성 수지의 중합 조건 및 방법에 따를 수 있다.
구체적으로, 상기 중합 방법은 중합 에너지원의 종류에 따라 크게 열 중합과 광 중합으로 나뉘는데, 상기 열 중합을 진행하는 경우에는 니더(kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광 중합을 진행하는 경우에는 이동 가능한 컨베이어 벨트가 구비된 반응기에서 진행될 수 있다.
일 예로, 교반축이 구비된 니더와 같은 반응기에 상기 단량체 혼합물을 투입하고, 여기에 열풍을 공급하거나 반응기를 가열하여 열 중합함으로써 함수겔 중합체를 얻을 수 있다. 이때, 반응기에 구비된 교반축의 형태에 따라 반응기 배출구로 배출되는 함수겔 중합체는 수 밀리미터 내지 수 센티미터의 입자로 얻어질 수 있다. 구체적으로, 얻어지는 함수겔 중합체는 주입되는 단량체 혼합물의 농도 및 주입속도 등에 따라 다양한 형태로 얻어질 수 있는데, 통상 (중량 평균) 입경이 2 내지 50 mm인 함수겔 중합체가 얻어질 수 있다.
그리고, 다른 일 예로, 이동 가능한 컨베이어 벨트가 구비된 반응기에서 상기 단량체 혼합물에 대한 광 중합을 진행하는 경우에는 시트 형태의 함수겔 중합체가 얻어질 수 있다. 이때 상기 시트의 두께는 주입되는 단량체 혼합물의 농도 및 주입속도에 따라 달라질 수 있는데, 시트 전체가 고르게 중합될 수 있도록 하면서도 생산 속도 등을 확보하기 위하여, 통상적으로 0.5 내지 10 cm의 두께로 조절되는 것이 바람직하다.
한편, 상술한 가교 중합에 의해 함수겔 중합체를 형성한 후에는, 함수율이 제어된 함수겔 중합체를 겔 분쇄한다.
상기 겔 분쇄 단계에서, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기(Vertical pulverizer), 터보 커터(Turbo cutter), 터보 글라인더(Turbo grinder), 회전 절단식 분쇄기(Rotary cutter mill), 절단식 분쇄기(Cutter mill), 원판 분쇄기(Disc mill), 조각 파쇄기(Shred crusher), 파쇄기(Crusher), 초퍼(chopper) 및 원판식 절단기(Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다.
상기 함수겔 중합체의 겔 분쇄는, 상기 함수겔 중합체의 입경이 0.01 mm 내지 50 mm, 혹은 0.01 mm 내지 30mm가 되도록 수행될 수 있다. 즉, 건조 효율의 증대를 위하여 상기 함수겔 중합체는 50 mm 이하의 입자로 분쇄되는 것이 바람직하다. 하지만, 과도한 분쇄시 입자간 응집 현상이 발생할 수 있으므로, 상기 함수겔 중합체는 0.01 mm 이상의 입자로 겔 분쇄되는 것이 바람직하다.
또한, 상기 함수겔 중합체의 겔 분쇄는, 함수율이 상대적으로 낮은 상태에서 수행되기 때문에 겔 분쇄기의 표면에 함수겔 중합체가 들러붙는 현상이 나타날 수 있다. 이러한 현상을 최소화하기 위하여, 필요에 따라, 스팀, 물, 계면활성제, 응집 방지제(예를 들어 clay, silica 등); 과황산염계 개시제, 아조계 개시제, 과산화수소, 열중합 개시제, 에폭시계 가교제, 디올(diol)류 가교제, 2 관능기 또는 3 관능기 이상의 다관능기의 아크릴레이트를 포함하는 가교제, 수산화기를 포함하는 1 관능기의 가교제 등이 함수겔 중합체에 첨가될 수 있다.
상술한 겔 분쇄 후에는, 함수겔 중합체를 건조시킬 수 있다. 상기 건조는 120 내지 250℃, 바람직하게는 140 내지 200℃, 보다 바람직하게는 150 내지 200℃의 온도 하에서 수행될 수 있다. 이때, 상기 건조 온도는 건조를 위해 공급되는 열 매체의 온도 또는 건조 공정에서 열 매체 및 중합체를 포함하는 건조 반응기 내부의 온도로 정의될 수 있다. 건조 온도가 낮아 건조 시간이 길어질 경우 공정 효율성이 저하되므로, 이를 방지하기 위하여 건조 온도는 120℃ 이상인 것이 바람직하다. 또한, 건조 온도가 필요 이상으로 높을 경우 함수겔 중합체의 표면이 과하게 건조되어 후속 공정인 분쇄 단계에서 미분 발생이 많아질 수 있고, 최종 수지의 물성이 저하될 수 있는데, 이를 방지하기 위하여 건조 온도는 250℃ 이하인 것이 바람직하다.
이때, 상기 건조 단계에서의 건조 시간은 특별히 제한되지 않으나, 공정 효율 및 수지의 물성 등을 고려하여, 상기 건조 온도 하에서 20분 내지 90분으로 조절할 수 있다.
상기 건조는 통상의 매체를 이용하여 이루어질 수 있는데, 예를 들어, 상기 분쇄된 함수겔 중합체에 대한 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법을 통해 수행될 수 있다.
그리고, 이러한 건조는 건조된 중합체가 0.1 내지 10 중량%의 함수율을 갖도록 수행되는 것이 바람직하다. 즉, 건조된 중합체의 함수율이 0.1 중량% 미만인 경우 과도한 건조로 인한 제조 원가의 상승 및 가교 중합체의 분해(degradation)가 일어날 수 있어 바람직하지 않다. 그리고, 건조된 중합체의 함수율이 10 중량%를 초과할 경우 후속 공정에서 건조된 중합체가 부착되어 이송 경로에 방해가 될 수 있으므로 바람직하지 않다.
상기 건조 후에는, 건조 중합체를 분쇄할 수 있고, 이로서 중합체의 입경 및 표면적이 적절한 범위로 조절될 수 있다. 상기 분쇄는, 분쇄된 중합체의 입경이 150 내지 850 ㎛가 되도록 수행할 수 있다. 이때의 입경 역시 각 중합체 입자의 최장 직경으로 정의될 수 있고, 이하에서도 동일하다.
이때 사용할 수 있는 분쇄기로는 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill), 조그 밀(jog mill) 등 통상의 것이 사용될 수 있다.
또한, 최종 제품화되는 고흡수성 수지의 물성을 관리하기 위하여, 상기 분쇄 단계를 통해 얻어지는 중합체 입자에서 150 내지 850 ㎛의 입경을 갖는 입자를 선택적으로 분급하는 단계가 더 수행될 수 있다.
상기 분급 과정까지를 거쳐 제조된 베이스 수지 분말은, 이미 상술한 바와 같이, 각 입자의 최단 직경 / 최장 직경으로 정의되는 종횡비가 0.5 미만인 베이스 수지 분말의 형성 비율이 9.9 개수% 미만, 1 내지 9.9 개수%, 혹은 3 내지 9.7 개수%로 크게 줄어들 수 있다. 따라서, 표면 가교시 또는 첨가제 등의 혼합시에 흡수 성능 등의 다른 물성이 저하될 우려가 실질적으로 없어진다.
한편, 상술한 분급 공정까지를 거쳐 베이스 수지 분말을 제조한 후에는, 표면 가교제의 존재 하에, 상기 베이스 수지 분말을 열처리하면서 표면 가교하여 고흡수성 수지 입자를 형성할 수 있다. 상기 표면 가교는 표면 가교제의 존재 하에 상기 베이스 수지 분말의 표면에 가교 반응을 유도하는 것으로, 이러한 표면 가교를 통해 상기 베이스 수지 분말의 표면에는 표면 개질층(표면 가교층)이 형성될 수 있다.
이러한 표면 가교시 사용 가능한 표면 가교제의 종류에 대해서는 이미 상술한 바 있으므로, 이에 관한 추가적인 설명은 생략하기로 한다.
또, 상기 표면 가교제의 함량은 가교제의 종류나 반응 조건 등에 따라 적절히 조절될 수 있으며, 바람직하게는 상기 베이스 수지 분말 100 중량부에 대하여 0.001 내지 5 중량부로 조절될 수 있다. 상기 표면 가교제의 함량이 지나치게 낮아지면, 표면 개질이 제대로 이루어지지 못해, 최종 수지의 물성이 저하될 수 있다. 반대로 과량의 표면 가교제가 사용되면 과도한 표면 가교 반응으로 인해 수지의 기본적인 흡수 성능이 오히려 저하될 수 있어 바람직하지 않다.
그리고, 상술한 표면 가교 단계는 상기 표면 가교제 외에 다가 금속염, 예를 들어, 알루미늄 염, 보다 구체적으로 알루미늄의 황산염, 칼륨염, 암모늄염, 나트륨염 및 염산염으로 이루어진 군에서 선택된 1종 이상을 더 사용하여 진행할 수 있다.
이러한 다가 금속염은 추가로 사용함에 따라, 일 구현예의 방법으로 제조된 고흡수성 수지의 통액성 등을 더욱 향상시킬 수 있다. 이러한 다가 금속염은 상기 표면 가교제와 함께 표면 가교 용액에 첨가될 수 있으며, 상기 베이스 수지 분말 100 중량부에 대하여 0.01 내지 4 중량부의 함량으로 사용될 수 있다.
한편, 상기 표면 가교 공정은 상술한 표면 가교제 등과 함께, 액상 매질로서 물 및/또는 친수성 유기 용매(예를 들어, 메탄올 등의 알코올계 극성 유기 용매)를 포함하는 표면 가교액을 사용하여 진행할 수 있다. 이때, 물 및 친수성 유기 용매의 함량은 표면 가교액의 고른 분산을 유도하고 베이스 수지 분말의 뭉침 현상을 방지함과 동시에 표면 가교제의 표면 침투 깊이를 최적화하기 위한 목적으로 베이스 수지 분말 100 중량부에 대한 첨가 비율을 조절하여 적용할 수 있다.
상술한 표면 가교액을 베이스 수지 분말에 첨가하는 방법에 대해서도 그 구성의 특별한 한정은 없다. 예를 들어, 표면 가교액과, 베이스 수지 분말을 반응조에 넣고 혼합하거나, 베이스 수지 분말에 표면 가교액를 분사하는 방법, 연속적으로 운전되는 믹서에 베이스 수지 분말과 표면 가교액을 연속적으로 공급하여 혼합하는 방법 등을 사용할 수 있다.
상기 표면 가교액이 첨가된 베이스 수지 분말에 대해 140℃ 내지 200℃, 혹은 170℃ 내지 195℃의 반응 최고 온도에서 5분 내지 60분, 또는 10분 내지 50분, 또는 20분 내지 45분 동안 표면 가교 반응을 진행할 수 있다. 보다 구체적으로는, 상기 표면 가교 단계는 20℃ 내지 130℃, 혹은 40℃ 내지 120℃의 초기 온도에서 10분 이상, 혹은 10분 내지 30분에 걸쳐 상기 반응 최고 온도로 승온하고, 상기 최고 온도를 5 분 내지 60분 동안 유지하여 열처리함으로서 진행될 수 있다.
이러한 표면 가교 공정 조건(특히, 승온 조건 및 반응 최고 온도에서의 반응 조건)의 충족에 의해 일 구현예의 물성을 적절히 충족하는 고흡수성 수지가 더욱 효과적으로 제조될 수 있다.
표면 가교 반응을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 한정되는 것은 아니다.
상술한 제조방법에 따라 수득된 고흡수성 수지는 보수능과 가압 흡수능 등의 흡수 성능이 우수하게 유지되며, 보다 향상된 흡수속도 등을 충족하여, 일 구현예의 제반 물성을 충족할 수 있으며, 기저귀 등 위생재, 특히, 펄프의 함량이 감소된 초박형 위생재 등을 적절하게 사용될 수 있다.
본 발명에 따른 고흡수성 수지는, 기본적인 흡수 성능을 우수하게 유지할 수 있으면서도, 보다 향상된 흡수속도 등을 나타낼 수 있으며, 보다 얇은 두께를 갖는 기저귀 등 위생재에 바람직하게 적용될 수 있다.
도 1은 일 구현예의 고흡수성 수지에서, 고흡수성 수지 입자의 종횡비 정의 및 이의 측정 방법의 일 예를 나타내는 전자 현미경 사진이다.
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.
실시예 1
고흡수성 수지의 제조 장치로는 중합공정, 함수겔 분쇄공정, 건조공정, 분쇄공정, 분급공정, 표면 가교 공정, 냉각 공정, 분급 공정 및 각 공정을 연결하는 수송 공정으로 구성되는 연속 제조 장치를 사용하였다.
아크릴산 100 중량부에 내부 가교제로 폴리에틸렌글리콜 다이아크릴레이트(중량평균분자량: ~ 500 g/mol) 0.4 중량부, 계면 활성제로서 라우릴황산나트륨(Sodium Lauryl Sulfate)의 0.01 중량부 및 광개시제로 Phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide 0.01 중량부를 혼합하여 단량체 용액을 제조하였다. 이어, 상기 단량체 용액을 정량 펌프로 연속 공급하면서, 동시에 24 중량% 수산화나트륨 수용액 160 중량부를 연속적으로 라인 믹싱하여 단량체 수용액을 제조하였다. 또한, 4 중량% 과황산나트륨 수용액 6 중량부를 연속적으로 라인 믹싱하여 단량체 혼합물을 제조하였다.
이러한 단량체 혼합물을 240kg/h의 유량으로 1차적으로 0.015m의 직경(최대 직경 구간)을 가지는 단관을 통해 투입한 후, 2차적으로 0.008m의 직경으로 변화된 단관(최소 직경 구간)을 통해 연속 이송하였다. 이러한 이송 과정에서 각 구간의 이송 속도는 하기 표 1에 정리된 바와 같았다.
이러한 이송을 통해, 이동하는 컨베이어 벨트로 이루어진 중합 반응기로 단량체 수용액을 투입하고, UV조사 장치를 통해 자외선을 조사(조사량: 2mW/㎠)하여 2분 동안 UV 중합을 진행하여 함수겔 중합체를 제조하였다.
상기 함수겔을 평균 크기가 약 300 mm 이하가 되도록 절단한 후에, 분쇄기(10mm의 직경을 갖는 복수의 구멍을 포함하는 다공판 구비함)에 투입하고 분쇄하였다.
이어서, 상기 분쇄된 함수겔을 상하로 풍량 전이가 가능한 건조기에서 건조시켰다. 건조된 가루의 함수량이 약 2% 이하가 되도록 180℃의 핫 에어(hot air)를 15분 동안 하방에서 상방으로 흐르게 하고, 다시 15분 동안 상방에서 하방으로 흐르게 하여 상기 함수겔을 균일하게 건조시켰다.
상기 건조된 수지를 분쇄기로 분쇄한 다음 분급하여 150 내지 850 ㎛ 크기의 베이스 수지를 얻었다.
이후, 제조된 베이스 수지 분말 100 중량부에, 에틸렌 카보네이트 3 중량부를 포함하는 표면 가교제 수용액 6g을 분사하고 상온에서 교반하여 베이스 수지 분말 상에 표면 가교액이 고르게 분포하도록 혼합하였다. 이어서, 표면 가교액과 혼합된 베이스 수지 분말을 표면 가교 반응기에 넣고 표면 가교 반응을 진행하였다.
이러한 표면 가교 반응기 내에서, 베이스 수지 분말은 80℃ 근방의 초기 온도에서 점진적으로 승온되는 것으로 확인되었고, 30분 경과 후에 190℃의 반응 최고 온도에 도달하도록 조작하였다. 이러한 반응 최고 온도에 도달한 이후에, 15분 동안 추가 반응시킨 후 최종 제조된 고흡수성 수지 샘플을 취하였다. 상기 표면 가교 공정 후, ASTM 규격의 표준 망체로 분급하여 150㎛ 내지 850 ㎛의 입경을 갖는 실시예 1의 고흡수성 수지를 제조하였다.
위 방법으로 얻어진 베이스 수지 및 고흡수성 수지를 전자 현미경 사진으로 분석하여(도 1 등 참조), 각 베이스 수지 분말 및 고흡수성 수지 입자의 종횡비(a/b)를 산출하였으며, 전체 베이스 수지 분말 및 고흡수성 수지 입자 중 종횡비가 0.5 미만인 입자 비율(개수%)을 측정하였다. 측정 결과, 해당 베이스 수지 분말 및 고흡수성 수지 입자 중, 종횡비가 0.5 미만인 입자 비율은 하기 표 1에 함께 나타내었다.
실시예 2
실시예 1에 있어, 단량체 혼합물의 이송시 최소 직경 구간의 단관(이송관) 직경을 0.006m로 변화시켜, 해당 구간에서의 최대 이송 속도를 하기 표 1과 같이 조정한 것을 제외하고는 실시예 1과 동일하게 실시하여 실시예 2의 고흡수성 수지를 제조하였다.
실시예 3
실시예 1에 있어, 투입되는 단량체 혼합물의 유량을 400kg/h로 조정하여 단량체 혼합물의 각 구간별 이송 속도를 하기 표 1과 같이 조정한 것을 제외하고는 실시예 1과 동일하게 실시하여 실시예 3의 고흡수성 수지를 제조하였다.
실시예 4
단량체 혼합물 중에 상기 계면 활성제를 0.005 중량부의 함량으로 포함시킨 것을 제외하고는 실시예 1과 동일한 방법으로 실시예 4의 고흡수성 수지를 제조하였다.
실시예 5
실시예 1에 있어, 상기 단량체 혼합물을 240kg/h의 유량으로 1차적으로 0.015m의 직경(최대 직경 구간)을 가지는 단관을 통해 투입한 후, 2차적으로 0.002m의 직경으로 변화된 단관(최소 직경 구간)을 통해 연속 이송한 것을 제외하고는 실시예 1과 동일하게 실시하여 실시예 5의 고흡수성 수지를 제조하였다. 이러한 이송 과정에서 각 구간의 이송 속도는 하기 표 1에 정리된 바와 같았다.
비교예 1
실시예 1에 있어, 단량체 혼합물의 이송시 최소 직경 구간의 단관(이송관) 직경을 0.012m로 변화시켜, 해당 구간에서의 최대 이송 속도를 하기 표 1과 같이 조정한 것을 제외하고는 실시예 1과 동일하게 실시하여 비교예 1의 고흡수성 수지를 제조하였다.
비교예 2
실시예 1에 있어, 단량체 혼합물의 이송시 최소 직경 구간의 단관(이송관) 직경을 0.015m로 변화시켜, 해당 구간에서의 최대 이송 속도를 하기 표 1과 같이 조정한 것을 제외하고는 실시예 1과 동일하게 실시하여 비교예 2의 고흡수성 수지를 제조하였다.
비교예 3
단량체 혼합물 중에 상기 계면 활성제를 0.02 중량부의 함량으로 포함시키고, 0.1 중량%의 탄산소수 나트륨의 발포제를 추가 혼합한 것을 제외하고는 비교예 2와 동일한 방법으로 비교예 3의 고흡수성 수지를 제조하였다.
실험예
실시예 및 비교예에서 제조한 각 고흡수성 수지의 물성, 그리고 제조 과정 중의 제반 물성을 다음의 방법으로 측정 및 평가하였다.
(1) 단량체 수용액의 이송 속도(m/s)
단량체 수용액의 이송 속도는 이송 구간에서 이송관의 직경으로부터 단면적을 구하고, 해당 구간에서 단량체 혼합물의 유량을 측정하여 하기 식으로부터 산출하였다:
이송속도(m/s) = 유량(m3/hr)/단면적(m2)
(2) 베이스 수지 분말 및 고흡수성 수지 입자의 종횡비 및 입자 분포의 측정
도 1과 같이 전자 현미경을 통해 각 분말/입자들의 최단 직경(a) 및 최장 직경(b)을 산출하여 이로부터 각 분말/입자들의 종횡비를 측정하였고, 각 실시예/비교예에서 얻어진 전체 분말/입자들 중 종횡비가 0.5 미만인 분말/입자들의 개수 비율(개수%)을 산출하였다.
(3) 원심분리 보수능 ( CRC , Centrifuge Retention Capacity)
유럽부직포산업협회(European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 241.3에 따라 무하중하 흡수배율에 의한 원심분리 보수능(CRC)을 측정하였다. 고흡수성 수지 W0(g, 약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉(seal)한 후에, 상온에 0.9 중량%의 염화나트륨 수용액의 생리 식염수에 침수시켰다. 30분 후에 봉투를 원심 분리기를 이용하고 250G로 3분간 물기를 뺀 후에 봉투의 질량 W2(g)을 측정했다. 또한, 고흡수성 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W1(g)을 측정했다. 이렇게 얻어진 각 질량을 이용하여 다음의 계산식 1에 따라 CRC (g/g)를 산출하여 보수능을 확인하였다.
[계산식 1]
CRC(g/g) = {[W2(g) - W1(g) - W0(g)]/W0(g)}
(4) 가압 흡수능 (Absorbing under Pressure, AUP )
실시예 및 비교예의 고흡수성 수지에 대하여, 유럽부직포산업협회(European Disposables and Nonwovens Association) 규격 EDANA WSP 242.3의 방법에 따라 가압 흡수능 (AUP: Absorbency under Pressure)을 측정하였다.
먼저, 내경 60 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 23±2℃의 온도 및 45%의 상대 습도 조건하에서 철망상에 실시예 1~6 및 비교예 1~4으로 얻어진 수지 W0(g, 0.90 g)을 균일하게 살포하고 그 위에 4.83 kPa(0.7 psi)의 하중을 균일하게 더 부여할 수 있는 피스톤(piston)은 외경이 60 mm보다 약간 작고 원통의 내벽과 틈이 없고, 상하의 움직임이 방해 받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다.
직경 150 mm의 페트로 접시의 내측에 직경 125 mm로 두께 5 mm의 유리 필터를 두고, 0.90 중량% 염화 나트륨으로 구성된 생리 식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 유리 필터 위에 상기 측정장치를 싣고, 액을 하중 하에서 1 시간 동안 흡수하였다. 1 시간 후 측정 장치를 들어올리고, 그 중량 W4(g)을 측정하였다.
이렇게 얻어진 각 질량을 이용하여 다음의 계산식 2에 따라 AUP(g/g)를 산출하여 가압 흡수능을 확인하였다.
[계산식 2]
AUP(g/g) = [W4(g) - W3(g)]/ W0(g)
상기 계산식 2에서,
W0(g)는 고흡수성 수지의 초기 무게(g)이고,
W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고,
W4(g)는 하중(0.7 psi) 하에 1시간 동안 상기 고흡수성 수지에 생리 식염수를 흡수시킨 후에, 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다.
(5) 볼텍스 법에 의한 흡수 속도(Vortex time)
실시예 및 비교예의 고흡수성 수지의 흡수 속도는 국제특허 공개번호 제1987-003208호에 기재된 방법에 준하여 초 단위로 측정되었다.
구체적으로, 흡수 속도(혹은 vortex time)는 23℃ 내지 24℃의 50 mL의 생리 식염수에 2g의 고흡수성 수지를 넣고, 마그네틱 바(직경 8 mm, 길이 31.8 mm)를 600 rpm으로 교반하여 와류(vortex)가 사라질 때까지의 시간을 초 단위로 측정하여 산출되었다.
(6) 고흡수성 수지의 표면 장력
모든 과정은 항온항습실(온도 23±0.5℃, 상대습도 45±0.5%)에서 진행하였다. 고흡수성 수지의 표면 장력은 0.9 중량% 염화나트륨으로 구성된 생리식염수 150g을 250mL 비이커에 담고 마그네틱 바로 교반하였다. 고흡수성 수지 1.0g을 교반 중인 용액에 넣어 3분간 교반한 후 교반을 멈추고 팽윤된 고흡수성 수지가 바닥에 가라앉도록 15분 이상 방치하였다.
그 후 상층액(표면의 바로 밑 부분의 용액)을 피펫으로 추출하고 다른 깨끗한 컵으로 옮긴 후 표면 장력 측정기(surface tensionmeter Kruss K11/K100)를 이용하여 측정하였다.
위 방법으로 측정된 실시예 1 내지 5 및 비교예 1 내지 3의 각 물성 값을 하기 표 1에 정리하여 나타내었다.
  실시예1 실시예2 실시예3 실시예 4 실시예 5 비교예 1 비교예 2 비교예 3
유량(kg/hr) 240 240 400 240 240 240 240 240
pipe 1 Dia.(m)
(최대직경구간
이송관직경)
0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015
최대직경구간
이송속도(m/s)
0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32
Pipe 2 Dia.(m)
(최소직경구간
이송관직경)
0.008 0.006 0.008 0.008 0.002 0.012 0.015 0.015
최소직경구간의
이송속도(m/s)
1.1 1.8 2.1 1.1 1.3 0.65 0.32 0.32
입자분포(종횡비 0.5 미만; 개수%) 8.8 9.5 9.2 5.5 5.8 7.2 10.5 45.0
CRC(g/g) 30.5 28.7 30.1 31.0 29.0 29.2 29.5 27.7
AUP(g/g) 26.0 25.5 24.0 25.2 24.2 24.5 24.7 24.5
흡수도(g/g) 56.5 54.2 54.1 56.2 53.2 53.7 54.2 53.5
표면장력(mN/m) 70.2 69.8 67.2 70.8 70.0 70.1 69.7 63.3
Vortex(sec) 48 39 35 55 32 65 63 49
상기 표 1을 참고하면, 단량체 수용액의 이송 중 이송 속도가 제어된 실시예 1 내지 5의 고흡수성 수지는 비교예와 동등 수준 이상의 보수능, 가압 흡수능 및 표면 장력 등을 나타내면서도, 보다 향상된 흡수 속도를 나타냄이 확인되었다.
비교예 3은 어느 정도의 흡수 속도가 구현되었으나, 발포제 및 계면 활성제의 사용 등으로 인해 실시예에 비해 저하된 흡수도를 나타냄이 확인되었다.

Claims (13)

  1. 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 제 1 가교 중합체를 포함하는 베이스 수지 분말; 및
    상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 제 2 가교 중합체를 포함하는 표면 가교층을 포함하는 고흡수성 수지로서,
    상기 고흡수성 수지는 각각의 고흡수성 수지 입자의 최단 직경 / 최장 직경으로 정의되는 종횡비가 0.5 미만인 고흡수성 수지 입자를 9.9 개수% 미만으로 포함하고,
    볼텍스법에 의한 흡수 속도가 5 내지 55초이고,
    표면 장력(surface tension)이 50 내지 80 mN/m 인 고흡수성 수지.
  2. 제 1 항에 있어서, 하기 식 1로 표시되는 흡수도가 46 내지 63g/g인 고흡수성 수지:
    [식 1]
    흡수도 = CRC + AUP
    상기 식 1에서,
    CRC는 상기 고흡수성 수지의 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 대한 30분 동안의 원심분리 보수능을 나타내며,
    AUP는 상기 고흡수성 수지의 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 대한 0.7psi 하에서 1시간 동안의 가압 흡수능을 나타낸다.
  3. 제 2 항에 있어서, 상기 CRC는 25 내지 35 g/g인 고흡수성 수지.
  4. 제 2 항에 있어서, 상기 AUP는 22 내지 28 g/g인 고흡수성 수지.
  5. 제 1 항에 있어서, 상기 표면 가교제는 다가 알코올계 화합물, 다가 에폭시계 화합물, 폴리아민 화합물, 할로에폭시 화합물, 할로에폭시 화합물의 축합 산물, 옥사졸린계 화합물 및 알킬렌 카보네이트계 화합물로 이루어진 군에서 선택된 1종 이상을 포함하는 고흡수성 수지.
  6. 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제를 포함하는 단량체 혼합물을 형성하는 단계;
    상기 단량체 혼합물을 구간에 따라 변화되는 직경을 갖는 이송관을 따라 중합 반응기로 이송하는 단계;
    상기 중합 반응기로 이송된 단량체 혼합물을 가교 중합하여 제 1 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계;
    상기 함수겔 중합체를 겔 분쇄, 건조, 분쇄 및 분급하여, 각각의 베이스 수지 분말의 최단 직경 / 최장 직경으로 정의되는 종횡비가 0.5 미만인 베이스 수지 분말을 9.9 개수% 미만으로 포함하는 베이스 수지를 형성하는 단계; 및
    표면 가교제 존재 하에, 상기 베이스 수지 분말의 표면을 추가 가교하여 표면 가교층을 형성하는 단계를 포함하고,
    상기 단량체 혼합물의 이송 단계에서, 상기 이송관의 최소 직경 구간에서 상기 단량체 혼합물은 최대 이송 속도를 나타내고, 상기 이송관의 최대 직경 구간에서 상기 단량체 혼합물은 최소 이송 속도를 나타내며, 상기 최대 이송 속도는 상기 최소 이송 속도의 2.5배 이상으로 되는 고흡수성 수지의 제조 방법.
  7. 제 6 항에 있어서, 상기 단량체 혼합물은 계면 활성제를 더 포함하는 고흡수성 수지의 제조 방법.
  8. 제 6 항에 있어서, 상기 이송관의 최소 직경 구간에서는, 상기 단량체 혼합물이 0.45 내지 2.5m/s의 속도로 이송되며, 상기 이송관의 최대 직경 구간에서는 상기 단량체 혼합물이 0.1 내지 0.4m/s의 속도로 이송되는 고흡수성 수지의 제조 방법.
  9. 제 6 항에 있어서, 상기 이송관은 최소 직경 구간에서 0.002내지 0.01m의 직경을 가지며, 최소 직경 구간 전의 최대 직경 구간에서 0.011 내지 0.020m의 직경을 갖는 고흡수성 수지의 제조 방법.
  10. 제 6 항에 있어서, 상기 단량체 혼합물은 100 내지 15000kg/hr의 유량으로 이송관을 통해 이송되는 고흡수성 수지의 제조 방법.
  11. 제 6 항에 있어서, 상기 단량체 혼합물의 이송 중 이송 속도 변화에 의해, 상기 단량체 혼합물 중의 기포가 발생하며, 상기 발생된 기포에 의해, 가교 중합 단계에서 발포 중합이 진행되는 고흡수성 수지의 제조 방법.
  12. 제 6 항에 있어서, 상기 표면 가교제는 다가 알코올계 화합물, 다가 에폭시계 화합물, 폴리아민 화합물, 할로에폭시 화합물, 할로에폭시 화합물의 축합 산물, 옥사졸린계 화합물 및 알킬렌 카보네이트계 화합물로 이루어진 군에서 선택된 1종 이상을 포함하는 고흡수성 수지의 제조 방법.
  13. 제 6 항에 있어서, 상기 표면 가교 단계는 20℃ 내지 130℃의 초기 온도에서 10분 내지 30분에 걸쳐 140℃ 내지 200℃의 최고 온도로 승온하고, 상기 최고 온도를 5 분 내지 60분 동안 유지하여 열처리함으로서 진행되는 고흡수성 수지의 제조 방법.
KR1020190001977A 2019-01-07 2019-01-07 고흡수성 수지 및 이의 제조 방법 KR102452567B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020190001977A KR102452567B1 (ko) 2019-01-07 2019-01-07 고흡수성 수지 및 이의 제조 방법
JP2020557906A JP7210082B2 (ja) 2019-01-07 2019-12-20 高吸水性樹脂およびその製造方法
US17/271,414 US11718694B2 (en) 2019-01-07 2019-12-20 Super absorbent polymer and preparation method thereof
EP19908136.5A EP3819330A4 (en) 2019-01-07 2019-12-20 SUPERABSORBIVE RESIN AND MANUFACTURING METHOD FOR IT
CN201980053298.3A CN112585193B (zh) 2019-01-07 2019-12-20 超吸收性聚合物及其制备方法
PCT/KR2019/018228 WO2020145548A1 (ko) 2019-01-07 2019-12-20 고흡수성 수지 및 이의 제조 방법
BR112021013354-2A BR112021013354A2 (pt) 2019-01-07 2019-12-20 Polímero superabsorvente e método de preparação do mesmo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190001977A KR102452567B1 (ko) 2019-01-07 2019-01-07 고흡수성 수지 및 이의 제조 방법

Publications (2)

Publication Number Publication Date
KR20200085615A true KR20200085615A (ko) 2020-07-15
KR102452567B1 KR102452567B1 (ko) 2022-10-06

Family

ID=71521038

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190001977A KR102452567B1 (ko) 2019-01-07 2019-01-07 고흡수성 수지 및 이의 제조 방법

Country Status (7)

Country Link
US (1) US11718694B2 (ko)
EP (1) EP3819330A4 (ko)
JP (1) JP7210082B2 (ko)
KR (1) KR102452567B1 (ko)
CN (1) CN112585193B (ko)
BR (1) BR112021013354A2 (ko)
WO (1) WO2020145548A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220050584A (ko) * 2020-10-16 2022-04-25 주식회사 엘지화학 고흡수성 수지의 제조 방법
WO2022131834A1 (ko) * 2020-12-18 2022-06-23 주식회사 엘지화학 고흡수성 수지의 제조 방법
WO2022131836A1 (ko) * 2020-12-18 2022-06-23 주식회사 엘지화학 고흡수성 수지의 제조 방법
JP2023540289A (ja) * 2020-12-18 2023-09-22 エルジー・ケム・リミテッド 高吸水性樹脂およびその製造方法
JP2023543307A (ja) * 2020-12-18 2023-10-13 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
CN118178719B (zh) * 2024-05-20 2024-09-06 贝兴悦(成都)科技有限公司 羟基磷灰石复合水凝胶及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002891A (ja) * 1994-10-26 2004-01-08 Nippon Shokubai Co Ltd 吸水性樹脂の造粒粒子およびこれを含む吸収性物品ならびに吸水性樹脂の造粒粒子の製造方法
KR20120132475A (ko) * 2009-12-24 2012-12-05 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산계 흡수성 수지분말 및 그 제조방법
KR20130140660A (ko) * 2010-09-06 2013-12-24 스미토모 세이카 가부시키가이샤 흡수성 수지 및 그 제조 방법
KR20150070165A (ko) * 2012-10-18 2015-06-24 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수성 수지의 제조 방법 및 그의 공정 관리 방법
KR20150132035A (ko) * 2014-05-16 2015-11-25 주식회사 엘지화학 고흡수성 수지, 및 이의 제조 방법
KR20170095268A (ko) * 2014-12-05 2017-08-22 가부시키가이샤 닛폰 쇼쿠바이 흡수성 수지의 제조 방법
KR20180074385A (ko) * 2016-12-23 2018-07-03 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR20180092841A (ko) * 2017-02-10 2018-08-20 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2590501B1 (fr) 1985-11-22 1994-01-14 Beghin Say Sa Composition absorbant les liquides
CA2187633A1 (en) 1994-04-11 1995-10-19 Douglas R. Chambers Superabsorbent polymers and products therefrom
JP4047443B2 (ja) 1998-04-03 2008-02-13 株式会社日本触媒 吸水性樹脂組成物およびその製造方法
JP4380873B2 (ja) 1999-02-15 2009-12-09 株式会社日本触媒 吸水性樹脂粉末およびその用途
US6562879B1 (en) * 1999-02-15 2003-05-13 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and use
DE19926223A1 (de) 1999-06-10 2000-12-14 Elenac Gmbh Verfahren zur Herstellung von Ethylenhomo- und -copolymeren durch intensives Vermischen einer reaktiven Reaktionskomponente mit einem strömenden Fließmedium
EP1130045B2 (en) 2000-02-29 2015-10-28 Nippon Shokubai Co., Ltd. Process for producing a water-absorbent resin powder
BRPI0411370B1 (pt) 2003-06-24 2018-04-10 Nippon Shokubai Co., Ltd. Composição de resina absorvente de água, absorvente, artigo absorvente, método para produzir uma composição de resina absorvente de água
DE102005042608A1 (de) 2005-09-07 2007-03-08 Basf Ag Polymerisationsverfahren
DE102005042609A1 (de) 2005-09-07 2007-03-08 Basf Ag Polymerisationsverfahren
DE102005042607A1 (de) 2005-09-07 2007-03-08 Basf Ag Polymerisationsverfahren
TWI454488B (zh) 2008-10-07 2014-10-01 Evonik Degussa Gmbh 用於製造超吸性聚合物的方法
US8791210B2 (en) * 2009-02-17 2014-07-29 Nippon Shokubai Co., Ltd. Polyacrylic water-absorbent resin powder and method for producing the same
US8481159B2 (en) 2009-09-04 2013-07-09 Basf Se Water-absorbent porous polymer particles having specific sphericity and high bulk density
JP5676572B2 (ja) 2010-04-07 2015-02-25 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
WO2012002455A1 (ja) 2010-06-30 2012-01-05 株式会社日本触媒 ポリアクリル酸系吸水性樹脂及びその製造方法
EP3381956B1 (en) 2012-11-21 2021-05-05 Basf Se Surface-postcrosslinked water-absorbent polymer particles
DE102013208942A1 (de) 2013-05-15 2014-11-20 Evonik Industries Ag Superabsorbierende Polymere mit schnellen Absorptionseigenschaften sowie Verfahren zu dessen Herstellung
KR101631297B1 (ko) 2013-12-11 2016-06-16 주식회사 엘지화학 고흡수성 수지 및 그 제조 방법
US10646612B2 (en) 2013-12-20 2020-05-12 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water absorbent, and method for producing same
KR20160127742A (ko) 2014-02-28 2016-11-04 가부시키가이샤 닛폰 쇼쿠바이 폴리(메트)아크릴산(염)계 입자상 흡수제 및 제조 방법
BR102015007414B8 (pt) 2014-04-07 2022-08-23 Evonik Corp Polímero superabsorvente apresentando rápida absorção, seu processo de fabricação, e artigo absorvente
KR102472803B1 (ko) 2014-09-29 2022-12-01 가부시키가이샤 닛폰 쇼쿠바이 흡수성 수지 분말 및 흡수성 수지 분말의 탄성률의 측정 방법
WO2016182082A1 (ja) * 2015-05-14 2016-11-17 株式会社日本触媒 重合性液体組成物の分散方法及び球状重合体粒子の製造方法
KR101918285B1 (ko) 2015-06-17 2018-11-13 주식회사 엘지화학 고흡수성 수지의 제조 방법
EP3312218A4 (en) 2015-06-19 2018-06-27 Nippon Shokubai Co., Ltd. Poly (meth) acrylic acid (salt) granular water absorbent and method for producing same
KR102069312B1 (ko) 2016-06-27 2020-01-22 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 고흡수성 수지
EP3412710B1 (en) 2016-12-23 2021-11-10 LG Chem, Ltd. Method for producing porous superabsorbent polymer
US11931928B2 (en) 2016-12-29 2024-03-19 Evonik Superabsorber Llc Continuous strand superabsorbent polymerization
KR102157785B1 (ko) 2017-02-10 2020-09-18 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR102461120B1 (ko) * 2018-12-07 2022-10-28 주식회사 엘지화학 고흡수성 수지의 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002891A (ja) * 1994-10-26 2004-01-08 Nippon Shokubai Co Ltd 吸水性樹脂の造粒粒子およびこれを含む吸収性物品ならびに吸水性樹脂の造粒粒子の製造方法
KR20120132475A (ko) * 2009-12-24 2012-12-05 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산계 흡수성 수지분말 및 그 제조방법
KR20130140660A (ko) * 2010-09-06 2013-12-24 스미토모 세이카 가부시키가이샤 흡수성 수지 및 그 제조 방법
KR20150070165A (ko) * 2012-10-18 2015-06-24 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수성 수지의 제조 방법 및 그의 공정 관리 방법
KR20150132035A (ko) * 2014-05-16 2015-11-25 주식회사 엘지화학 고흡수성 수지, 및 이의 제조 방법
KR20170095268A (ko) * 2014-12-05 2017-08-22 가부시키가이샤 닛폰 쇼쿠바이 흡수성 수지의 제조 방법
KR20180074385A (ko) * 2016-12-23 2018-07-03 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR20180092841A (ko) * 2017-02-10 2018-08-20 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법

Also Published As

Publication number Publication date
US11718694B2 (en) 2023-08-08
CN112585193A (zh) 2021-03-30
EP3819330A4 (en) 2021-10-20
KR102452567B1 (ko) 2022-10-06
BR112021013354A2 (pt) 2021-09-14
JP7210082B2 (ja) 2023-01-23
JP2021518874A (ja) 2021-08-05
WO2020145548A1 (ko) 2020-07-16
US20210309777A1 (en) 2021-10-07
EP3819330A1 (en) 2021-05-12
CN112585193B (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
US11407848B2 (en) Method for preparing super absorbent polymer
KR102086058B1 (ko) 고흡수성 수지의 제조 방법
KR101959547B1 (ko) 고흡수성 수지의 제조 방법
US9701796B2 (en) Preparation method of superabsorbent polymer
KR102452567B1 (ko) 고흡수성 수지 및 이의 제조 방법
KR101447656B1 (ko) 고흡수성 수지 및 그의 제조 방법
JP7433047B2 (ja) 高吸水性樹脂およびその製造方法
KR102069312B1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
CN108026290B (zh) 超吸收性聚合物
KR20160061743A (ko) 고흡수성 수지 및 이의 제조 방법
KR20180092661A (ko) 고흡수성 수지 및 이의 제조 방법
KR102075738B1 (ko) 고흡수성 수지
KR102069313B1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
KR101595037B1 (ko) 고흡수성 수지의 제조 방법
EP3783053A1 (en) Method for preparing superabsorbent polymer
KR20200072644A (ko) 고흡수성 수지의 제조 방법
EP3722352A1 (en) Method for producing super absorbent polymer, and super absorbent polymer
KR20210037450A (ko) 고흡수성 수지의 제조 방법
KR20200041644A (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
KR102576445B1 (ko) 고흡수성 수지의 제조 방법
WO2019117482A1 (ko) 고흡수성 수지 및 이의 제조 방법
KR102457689B1 (ko) 고흡수성 수지의 제조 방법
KR20160137499A (ko) 고흡수성 수지 및 이의 제조 방법
KR20220050584A (ko) 고흡수성 수지의 제조 방법
KR20240072926A (ko) 고흡수성 수지의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant