KR20200062257A - 액튜에이터 - Google Patents

액튜에이터 Download PDF

Info

Publication number
KR20200062257A
KR20200062257A KR1020207011857A KR20207011857A KR20200062257A KR 20200062257 A KR20200062257 A KR 20200062257A KR 1020207011857 A KR1020207011857 A KR 1020207011857A KR 20207011857 A KR20207011857 A KR 20207011857A KR 20200062257 A KR20200062257 A KR 20200062257A
Authority
KR
South Korea
Prior art keywords
axis
unit
driving
magnetic field
driven
Prior art date
Application number
KR1020207011857A
Other languages
English (en)
Inventor
히로시 토사
Original Assignee
닛뽄신고가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛뽄신고가부시기가이샤 filed Critical 닛뽄신고가부시기가이샤
Publication of KR20200062257A publication Critical patent/KR20200062257A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

본 발명에 관한 액튜에이터는 피구동부(10)를 지지하는 지지부(20)와, 지지부(20)를 회전시키는 외축 구동부(DSa, DSb)를 분리 독립적으로 설치하였다. 이를 통해 회전 부분의 소형화, 경량화를 꾀하여 회전 모멘트를 저감시켜, 외측의 제2 축(AX2)의 주위에 대하여 충분한 구동력을 얻을 수 있게 하면서, 지지부(20)의 공진 주파수를 높게 설정하는 것이 가능해져서, 예를 들면 래스터 스캔에 의한 동작과 같은 고성능 구동 동작이 가능해졌다.

Description

액튜에이터
본 발명은 예를 들면 MEMS 디바이스를 구동시킬 때에 적용 가능한 액튜에이터에 관한 것이다.
MEMS 디바이스를 구동시키기 위한 액튜에이터로서, 예를 들면 미러 등의 피구동부를 구동 코일을 가진 내측 가동부로 구성하는 동시에, 구동 코일을 가진 외측 가동부를, 내측 가동부를 감싸도록 배치함으로써, 피구동부를 2축 구동시키는 것이 알려져 있다(특허문헌 1, 2 참조).
그러나, 특허 문헌 1, 2 등에 개시한 기술은, 내측 가동부와 외측 가동부의 쌍방에서 구동 코일을 배선하기 때문에, 커지거나 무거워지는 경향이 있었다. 특히 저속 축을 구동하는 외측 가동부에서는 내측 가동부를 지지하면서 구동 코일에 의한 회전 동작을 하는 것으로 되어 있었기 때문에, 그러한 경향이 현저하였다. 이 때문에, 설계에 따라서는, 외측 가동부에 대한 비공진 구동에서의 동작으로는 충분한 구동력을 얻을 수 없거나, 외측 가동부의 공진 주파수를 충분히 높게 설정할 수 없거나 할 가능성이 있었다. 따라서, 예를 들면, 래스터 스캔에 의한 동작을 시키는 것이 곤란하거나, 불필요한 진동에 의하여 오동작을 일으키거나 할 가능성이 있었다. 또한, 외측 가동부에서의 변형의 영향 등의 문제가 발생할 가능성도 있었다.
특허문헌 1: 일본 특개2009-216789호 공보 특허문헌 2: 일본 특허 제2723314호 공보
본 발명은 상기한 점을 감안하여 이루어진 것으로, 구동력이나 공진 주파수에 대한 향상을 도모하고, 고성능 구동 동작을 가능하게 하는 액튜에이터를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명에 관한 액튜에이터는 피구동부를 내측에 배치시키고, 제1 축을 따라 연장된 이너 빔(inner beam)을 통하여 피구동부와 접속하여 지지하는 지지부와, 지지부로부터 독립적으로 설치되어, 제1 축과 수직인 제2 축을 따라 연장되는 아우터 빔(outer beam)을 통하여 지지부와 접속하여, 지지부를 제2 축의 주위로 회전시키는 외축 구동부와, 피구동부를 제1 축 주위로 회전시키는 내축 구동부를 구비한다.
상기 액튜에이터에서는, 종래에 있어서 피구동부의 지지와 코일에 의한 회전 동작의 쌍방을 담당하고 있던 외측 가동부를 대신하여, 피구동부를 지지하는 지지부와, 지지부를 회전시키는 외축 구동부를 분리 독립하여 설치한 구성으로 함으로써, 회전 부분의 소형화, 경량화를 도모하고, 회전 모멘트를 저감시켜, 외측의 제2 축의 주위에 대하여 충분한 구동력을 얻을 수 있게 하면서, 지지부의 공진 주파수를 높게 설정할 수 있게 되고, 예를 들면 래스터 스캔에 의한 동작이라는 고성능 구동 동작이 가능해진다.
본 발명의 구체적인 측면에서는, 외축 구동부는 저속 축 구동부이고, 내축 구동부는 고속 축 구동부이며, 외축 구동부 및 내축 구동부는 2축 구동에 의한 래스터 스캔을 피구동부에 실시하게 한다. 이 경우, 래스터 스캔을 가능하게 함으로써, 구동 제어를 간편하게 할 수 있다.
본 발명의 다른 측면에서는, 외축 구동부는 복수 개가 설치되어 있다. 이 경우 제2 축 주위로 회전시키는 구동력의 성능을 높일 수 있다.
본 발명의 또 다른 측면에서는, 외축 구동부는 제2 축을 따라 지지부의 양단에 설치되는 한 쌍의 구성이다. 이 경우, 양단측으로부터 제2 축 주위로 회전시키는 구동력을 전달할 수 있다. 또한, 한 쌍의 구성으로 함으로써, 피구동부의 동작을 더 안정시킬 수 있다.
본 발명의 또 다른 측면에서는, 내축 구동부는 제1 축의 주위로 회전하는 제1 코일부와, 제1 코일부에 제1 축 주위의 회전력에 부여하기 위하여 한 방향으로 자계를 발생시키는 제1 자계 부여부를 가지고, 외축 구동부는 제2 축의 주위로 회전하는 제2 코일부와, 제2 코일부에 제2 축 주위를 도는 회전력에 부여하기 위하여 한 방향으로 자계를 발생시키는 제2 자계 부여부를 가진다. 이 경우, 각 자계 부여부를 간단하고 소형인 구조로 할 수 있다.
본 발명의 또 다른 측면에서는 지지부의 고유 주파수는 피구동부의 비틀림 공진 주파수보다 높다. 이 경우, 지지부에 의하여 피구동부에 불필요한 진동을 발생시키는 것을 저감할 수 있다.
[도 1] 제 1 실시 형태에 관한 액튜에이터에 대하여 설명하기 위한 도면이다.
[도 2] 액튜에이터의 동작에 대하여 설명하기 위한 개념도이다.
[도 3A] 제 1 실시 형태에 관한 액튜에이터에 대하여 가동 부분을 추출한 개념도이다.
[도 3B] 비교예로서 종래예의 하나를 도시한 도면이며, 도 3A에 대응하는 도면이다.
[도 4] 피구동부의 움직임을 측정한 보드 선도이다.
[도 5A] 고속 축측의 내축 구동부에서의 구동 제어에 대한 일례를 설명하는 도면이다.
[도 5B] 저속측의 외축 구동부에서의 구동 제어에 대한 일례를 설명하는 도면이다.
[도 6A] 자계 부여부(자기 회로)에 대하여 설명하기 위한 도면이다.
[도 6B] 비교예의 도면이다.
[도 7A] 제 2 실시 형태에 관한 액튜에이터에 대하여 설명하기 위한 도면이다.
[도 7B] 액튜에이터에 대하여 가동 부분을 추출한 개념도이다.
[제1 실시 형태]
이하, 도 1 등을 참조하여, 제 1 실시 형태에 관한 액튜에이터에 대한 일례를 설명한다. 도 1은 본 실시 형태에 관한 액튜에이터의 일례에 대하여 설명하기 위한 블록도이다. 또한, 본 실시 형태의 하나의 형태로서의 액튜에이터(100)는, 예를 들면, 레이저 펄스 등에 의한 펄스 광을 대상물에 주사시킴으로써, 대상물에 대한 거리 화상 데이터를 취득 가능하게 하는 거리 화상 장치에 있어서, 광 주사를 하기 위한 장치로서 적용 가능하다. 또한, 광 주사에 맞추어 타이밍 좋게 펄스 광을 조사함으로써, 스크린 상에 화상을 표시하는 표시 장치로서도 적용 가능하다.
예를 들면, 도 1에 도시하는 바와 같이, 액튜에이터(100)는 피구동부(10)와, 피구동부(10)를 회전시키는 내축 구동부(ID)와, 피구동부(10)를 지지하는 지지부(20)와, 지지부(20)를 회전시키기 위하여 지지부(20)의 양단에 설치되는 한 쌍의 구성으로 된 외축 구동부(DSa, DSb)와, 외축 구동부(DSa, DSb)에 각각 접속하여, 장치 전체를 고정시키는 프레임 형태의 고정부(50)를 구비한다. 또한, 액튜에이터(100)는 피구동부(10)와 지지부(20)를 접속하는 이너 빔(IB, IB)과, 외축 구동부(DSa, DSb)와 지지부(20)를 접속하는 아우터 빔(OB, OB)을 구비한다. 또한, 이들 중, 내축 구동부(ID)는, 회전 동작을 실시하게 하기 위한 회전 구동원부로서, 구동부인 제1 코일부(CL1)와 제1 코일부(CL1)에 대하여 자계를 부여하는 제1 자계 부여부(MU1)를 가진다. 마찬가지로, 각 외축 구동부(DSa, DSb)는 회전 동작을 실시하게 하기 위한 회전 구동원부로서 구동부인 제2 코일부(CL2a, CL2b)와, 제2 코일부(CL2a, CL2b)에 대하여 자계를 부여하는 제2 자계 부여부(MU2a, MU2b)를 각각 가진다.
여기서, 도 1에 있어서, 평면 상에 나타내는 장치 전체 중 외곽인 고정부(50)가 형성하는 면을 기준면(수평면)으로 하고, 기준면 중 도 1에서의 세로 방향을 X 방향으로 하고, X 방향에 수직인 가로 방향을 Y 방향으로 한다. 또한, 프레임 형태의 고정부(50)는 X 방향으로 연장하는 2개의 변과 Y 방향으로 연장하는 2개의 변에 의하여 직사각형 형태로 되어 있다. 또한, X 방향 및 Y 방향의 쌍방에 수직인 방향, 즉 기준면에 수직인 방향을 Z 방향으로 한다.
이상의 구성을 가짐으로써 액튜에이터(100)는 내축 구동부(ID)에서 발생시킨 가진력과, 각 외축 구동부(DSa, DSb)에서 발생시킨 가진력을 피구동부(10)로 전달하여, 피구동부(10)를 X 방향을 따라 연장하는 제1 축(AX1)과, X 방향에 수직인 Y 방향으로 연장하는 제2 축(AX2)의 2축에 관하여 회전 가능하도록 하고 있다.
먼저, 도시한 예에서, 지지부(20)는 피구동부(10)를 내측에 배치하여 X 방향에 평행한 제1 축(AX1)을 따라 연장하는 이너 빔(IB, IB)을 통하여 피구동부(10)와 접속하여, 이를 지지하고 있다. 또한, 내축 구동부(ID)는 회전 동작을 실시하게 하기 위한 회전 구동원부로서, 피구동부(10)를, 제1 축의 주위로 회전시키기 위하여 구동력을 부여하고 있다. 이상에 의하여, 피구동부(10)는 제1 축(AX1)을 축으로 화살표 R1으로 나타내는 방향으로 축 회전 가능(제1 축(AX1)의 축 주위로 회전 가능)하게 되어 있다.
또한, 도시한 예에서는, 각 외축 구동부(DSa, DSb)는 XY면 내에 관하여 X 방향으로 연장하는 제1 축(AX1)과 수직인, 즉 Y 방향에 평행한 제2 축(AX2)을 따라 연장하는 아우터 빔(OB, OB)을 통하여 지지부(20)와 접속하여, 이를 지지하고 있다. 각 외축 구동부(DSa, DSb)와 지지부(20)는 제2 축(AX2)의 축 위를 따라 배치되어 있다. 또한, 한 쌍의 외축 구동부(DSa, DSb)는, 단측에 설치한 한 쌍의 막대상의 접속 부재(CP, CP)를 통하여, 고정부(50)에 각각 접속되어 있다. 또한, 한 쌍의 외축 구동부(DSa, DSb), 지지부(20) 및 피구동부(10)는 모두 제2 축(AX2)을 중심 축으로 하여 대칭인 형상을 가지고 있다. 이에 따라, 제2 코일부(CL2a, CL2b) 및 지지부(20), 나아가 지지부(20)에 지지된 피구동부(10)는 제2 축(AX2)을 축으로 하여, 화살표 R2로 나타내는 방향으로 각각 축 회전 가능(제2 축(AX2) 주위로 회전 가능)하게 되어 있다.
이상에 의하여, 액튜에이터(100)는 피구동부(10)를, 제1 축(AX1)과 제2 축(AX2)의 2축에 대하여 회전 가능하게 하고, 광 주사를 하는 것으로 되어 있다.
이하, 액튜에이터(100)를 구성하는 각 부분에 대하여 더 구체적으로 설명한다.
피구동부(10)는 평면 부분(도시의 경우 타원 형상의 면 부분)을 가진 부재인데, 예를 들면 평면 부분 또는 그 일부를 가동하는 미러면(광 반사면)으로서 형성하고, 이를 앞서 서술한 바와 같이 2축 회전 구동시킴으로써, 광을 입반사시키면서 광 주사를 실시한다. 피구동부(10)는 지지부(20)의 내측에 배치되고, 이너 빔(IB, IB)을 통하여 지지부(20)에 접속됨으로써, 이너 빔(IB, IB)을 축으로 하는 축 회전 가능한 상태로 지지되고 있다.
내축 구동부(ID)는, 앞서 서술한 바와 같이, 피구동부(10)를 회전시키기 위한 회전 구동원부로서 제1 코일부(CL1)와, 제1 자계 부여부(MU1)를 가지고 있기 때문에, 지지부(20)에 의하여 축 회전 가능한 상태로 지지되는 피구동부(10)에 대하여, 회전시킬 수 있도록 힘을 부여하고 있다.
내축 구동부(ID) 중, 제1 코일부(CL1)는, 예를 들면 금이나 동등한 비교적 도전율이 높은 재료를 사용한 권선을 직사각형 형태로 설치한 루프 형태의 구성으로 되어 있다. 여기에서는, 예를 들면 제1 코일부(CL1)는 피구동부(10) 중 미러면(광 반사면)으로서 형성되는 면의 뒤쪽 면에 설치되어 있고, 직사각형 부분을 구성하는 4개의 변 중 2개의 변에 대하여, X 방향을 따라 연장되며, 이 방향에 대하여 전류(교류 전류)가 흐르고, 해당 전류가 제1 자계 부여부(MU1)에서 발생하는 자계의 방향을 가로지르도록 되어 있다. 이에 따라 제1 코일부(CL1)는 제1 자계 부여부(MU1)로부터 로렌츠의 힘을 받아 피구동부(10)를, 필요한 주사 범위나 속도 등에 따라 적절하게 조정된 편향각이나 속도로 제1 축(AX1)을 회전 축으로 하여 축 회전시킨다.
내축 구동부(ID) 중, 제1 자계 부여부(MU1)는, 예를 들면 복수의 영구자석(MG, MG)(도면에서는 2개)을 조합하여 제1 코일부(CL1)를 사이에 끼워서 가지도록 구성되어 있고, 상기와 같이 제1 코일부(CL1)에 대하여 자계를 부여한다. 또한, 영구 자석(MG, MG)의 일부를 요크로 대체하는 것으로도 자계를 부여하는 것이 가능하다. 도시한 예에서는 적절하게 영구 자석(MG, MG)를 조합하여 설치하여, 제1 자계 부여부(MU1)에 있어서 -Y 방향 쪽으로 자계를 발생시키고 있다.
제1 코일부(CL1)는, 제1 자계 부여부(MU1)에 의하여 Y 방향 쪽으로 발생시킨 자계를 가로지르도록, ±X 에 대하여 전류가 흐름으로써, ±Z 방향에 대한 힘을 받는다(플레밍의 왼손의 법칙). 이상에 대하여, 보는 시각을 바꾸어 보면, 제1 자계 부여부(MU1)는, 제1 코일부(CL1)를 제1 축(AX1)의 축 주위에 대하여 회전시키는 회전력에 대응하는 한 방향(-Y 방향)으로 자계를 발생시키고 있다.
이상과 같이, 피구동부(10)는 내축 구동부(ID)의 제1 코일부(CL1)에서 발생한 가진력에 상당하는 회전 구동의 힘 또는 회전 토크를 받아서(전달되어), 제1 축(AX1)을 회전 중심축으로 하여 회전 동작을 한다.
지지부(20)는 앞서 서술한 바와 같이, 피구동부(10)를 내측에 배치시키고, 이너 빔(IB, IB)을 통하여 이를 지지하는 동시에, 아우터 빔(OB, OB)을 통하여 1쌍의 외축 구동부(DSa, DSb)와 각각 접속되어 있다.
외축 구동부(DSa, DSb) 중, 제2 코일부(CL2a, CL2b)는, 예를 들면 금이나 구리 등의 비교적 도전율이 높은 재료를 사용한 권선을 프레임을 따라서 직사각형 형태로 설치한 루프 형태의 구성으로 되어 있다. 제2 코일부(CL2a, CL2b)에 있어서, 직사각형 부분을 구성하는 4개의 변 중 2개의 변이 Y 방향을 따라서 연장되고, 이 방향에 대하여 전류(교류 전류)가 흐르며, 해당 전류가 제2 자계 부여부(MU2a, MU2b)에서 발생하는 자계의 방향을 가로지르게 되어 있다. 이에 따라 제2 코일부(CL2a, CL2b)는 제2 코일부(CL2a, CL2b)로부터 로렌츠의 힘을 각각 받아 피구동부(10)에서 필요한 주사 범위나 속도 등에 따라 적절하게 조정된 편향각이나 속도로 축 회전시킬 수 있도록 지지부(20)를 회전시킨다.
외축 구동부(DSa, DSb) 중에서, 제2 자계 부여부(MU2a, MU2b)는, 예를 들면 복수의 영구 자석(MG, MG)(도면에서는 2개)을 조합하여 제2 코일부(CL2a, CL2b)를 사이에 끼우도록 각각 구성되어 있고, 상기와 같이, 제2 코일부(CL2a, CL2b)에 대하여 자계를 부여한다. 도시한 예에서는 적절하게 영구자석(MG, MG)을 조합하여 설치하고, 제2 자계 부여부(MU2a, MU2b)에 있어서 -X의 방향으로 자계를 각각 발생시키고 있다.
제2 코일부(CL2a, CL2b)는, 제2 자계 부여부(MU2a, MU2b)에 의하여 X 방향 쪽으로 발생시킨 자계를 가로지르도록 ±Y 방향에 대한 전류가 흐름으로써, ±Z 방향에 대한 힘을 받는다(플레밍 왼손의 법칙). 이상에 대하여, 보는 시각을 바꾸어 보면, 제2 자계 부여부(MU2a, MU2b)는, 제2 코일부(CL2a, CL2b)를 제2 축(AX2)의 축 주위에 대하여 각각 회전시키는 회전력에 대응하는 한 방향(-X 방향)으로 자계를 각각 발생시키고 있다.
이상과 같이, 지지부(20)는 한 쌍의 외축 구동부(DSa, DSb)의 제2 코일부(CL2a, CL2b)에서 발생한 가진력에 상당하는 회전 구동의 힘 또는 회전 토크를 아우터 빔(OB)을 통해 받고(전달되고), 제2 축(AX2)을 회전 중심축으로서 회전 동작을 하는 가동 프레임으로 되어 있다. 또한 피구동부(10)는 이너 빔(IB, IB)을 통하여 지지부(20)에 회전 가능하게 접속되어 있기 때문에, 제2 축(AX2)을 회전 중심축으로 하여 회전 동작을 한다.
아우터 빔(OB)은, 예를 들면 실리콘, 구리 합금, 철계 합금, 기타외 금속 등을 재료로 하는 또는 수지를 재료로 하여 구성되어, 탄성을 가진 부재이다. 또한 이너 빔(IB)도 아우터 빔(OB)과 마찬가지로 탄성을 가진 부재이며, 특히 아우터 빔(OB)에 비하여 상대적으로 높은 주파수에 대한 진동에도 응답할 수 있도록 구성되어 있다.
또한, 각 코일부(CL1, CL2a, CL2b)에는 전원(도시를 생략)으로부터 제어 전류가 공급된다. 이 때문에 도시와 같이 배선이 되어 있다. 이너 빔(IB)나 아우터 빔(OB)은 상기와 같은 회전(비틀림)에 대한 대응이 가능한 경도와 내성을 필요로 하는 것 외에, 이러한 배선을 확보할 정도의 폭(굵기)을 필요로 한다. 제어 전류에 대하여는, 피구동부(10)의 구동 주파수에 대응한 주파수의 신호 성분을 포함한 교류 전류로 되어 있다.
이하, 도 2에 제시하는 개념도를 참조하여, 상기와 같은 구성의 액튜에이터(100)에서의 피구동부(10)의 회전 구동 동작의 한 예에 대하여 설명한다. 여기에서는 각 코일부(CL1, CL2a, CL2b)에 공급하는 제어 전류(I1, I2)에 대하여, 피구동부(10)의 구동 주파수에 대응한 2개의 주파수의 신호 성분(저속 구동측의 구동 신호와 고속 구동측의 구동 신호)으로 구성되어 있는 것으로 한다. 구체적으로는, X 방향을 따라 연장하는 제1 축(AX1)의 주위에 대하여, 즉 제1 코일부(CL1)로 구성되는 내축 구동부(ID)측에서는 고속 구동으로 되어 있고, Y 방향을 따라 연장하는 제2 축(AX2) 주위에 대하여, 즉 제2 코일부(CL2a, CL2b)로 구성되는 외축 구동부(DSa, DSb)측에서는 저속 구동으로 되어 있다. 즉, 여기에서는, 제2 축(AX2)의 주위의 회전력에 대응하는 구동 주파수의 진동보다 높은 구동 주파수의 진동을 발생시킴으로써 제1 축(AX1)의 주위로 피구동부(10)를 구동시키는 것으로 되어 있다.
저속 구동용 신호의 주파수에 대하여는, 비공진 구동(강제 구동)으로 되어 있다. 한편, 고속 구동용 신호의 주파수에 대하여는, 피구동부(10)에 고유한 고유 주파수(공진 주파수)에 대응시킴으로써, 공진 구동인 것으로 되어 있다. 이들 구동용 신호, 즉, 저속 구동측의 구동 신호 및 고속 구동측의 구동 신호에 의하여 진동의 인가를 함으로써, 액튜에이터(100)는 피구동부(10)를 회전 구동시킨다.
우선, X 방향을 따라서 연장하는 제1 축(AX1)의 주위의 동작에 대하여 설명한다. 내축 구동부(ID)에 있어서, 고속 구동용 신호의 주파수에 대응하는 제어 전류(I1)가 피구동부(10)에 고유한 공진 주파수에 대응하고 있기 때문에, Y 방향으로 발생하고 있는 자계(B1)를 제어 전류(I1)가 가로지름으로써 로렌츠의 힘이 발생하여, 피구동부(10)를 공진 회전시킨다. 바꾸어 말하면, 피구동부(10)를 공진 구동시키는데 적합한 주파수를 고속 구동으로서 채용함으로써, 피구동부(10)를 제1 축(AX1)의 주위에 대하여 회전시키는 것이 가능해진다. 또한, 이 때, 이너 빔(IB)은 고속 구동측의 구동 신호에 기초한 회전 동작을 추종하여 토션 바(회전용 스프링)로서 기능하게 되어 있다.
다음으로, Y 방향을 따라 연장하는 제2 축(AX2)의 주위의 동작에 대하여 설명한다. 외축 구동부(DSa, DSb)에 있어서 저속 구동용 신호의 주파수에 대응하는 제어 전류 (I2)가 X 방향으로 발생하고 있는 자계(B2)를 가로질러 로렌츠의 힘이 발생하고, 지지부(20)를 강제 구동에 의하여 제2 축(AX2)의 주위에 대하여 회전시킨다. 또한, 이 때 아우터 빔(OB)은 저속 구동에서의 회전의 움직임에 대하여 추종 가능한, 즉 강체를 유지하면서 제2 코일부(CL2a, CL2b)로부터 받은 회전력에 의한 동작을 지지부(20), 더 나아가서는 피구동부(10)에 전달하여, 이들을 회전시킨다. 즉, 아우터 빔(OB)를 토션 바(회전용 스프링)로 하면서, 미러로서의 피구동부(10)가 Y 방향을 따라서 연장하는 제2 축(AX2)의 주위로 회전한다.
이상과 같이, 본 실시 형태에서는, 내축 구동부(ID)에 의한 제1 축(AX1) 주위의 동작을 고속 구동, 즉 제1 축(AX1)을 고속 축측(고속 축 구동부)으로 하고 외축 구동부(DSa, DSb)에 의한 제2 축(AX2) 주위의 동작을 저속 구동, 즉 제2 축(AX2_을 저속 축측(저속 축 구동부)으로 하는 2축 구동을 가능하게 하고 있다.
이하, 도 3A 및 도 3B를 참조하여, 종래예와 비교함으로써, 상기 구성의 특징의 일부에 대하여 설명한다. 도 3A는, 도 1에 도시한 액튜에이터(100) 중에서, 자계 부여부(MU1, MU2a, MU2b)를 생략하고, 가동 부분을 추출한 개념도이다. 한편, 도 3B는, 비교예로서 종래예의 하나를 도시한 도면이며, 도 3A에 대응하는 도면이다. 즉, 도 3B에서는 종래예의 액튜에이터 가동 부분을 도시하면서, 도 3A와의 비교를 위하여, 이와 마찬가지로 자계 부여부를 생략하고 있다. 또한, 이 두 도면에서는, 비교를 위하여, 피구동부(10)의 크기가 동일해지도록 하였다. 도 3B에 도시하는 비교예에서는, 회전 동작을 행하게 하기 위한 회전 구동원부 중, 외축측의 회전, 즉 저속측의 회전을 담당하는 부재가 하나의 외축 구동부(DSS)로 구성되어 있고, 또한, 외축 구동부(DSS)가 피구동부(10)를 지지하는 지지부(20)로서의 기능도 겸하고 있다. 즉, 외축 구동부(DSS)가 내측 가동부인 피구동부(10)를 지지하면서 구동 코일에 의한 회전 동작도 하게 되어 있었다. 이 점에 있어서 본 실시 형태의 액튜에이터(100)와 다르다. 이 경우, 도 3B에 제시하는 비교예의 지지부(20)로서의 외축 구동부(DSS)는, 도 3A에 도시하는 본 실시 형태에서의 지지부(20)와 비교하여 크고, 무거워진다. 예를 들면, 도 3A에 도시하는 지지부(20)의 한 변의 길이가 6mm 정도가 되는 경우에 대하여, 외축 구동부(DSS)의 한 변의 길이는 9mm 정도가 된다. 이는 외축 구동부(DSS)는 예를 들면 구동부로서의 각 코일부(CO1, CO2)를 설치하기 위하여 어느 정도의 영역을 확보하여야 하는 것에 따른 것이다. 이 경우, 외축 구동부(DSS)는 한층 더 무거워지기도 한다.
이상과 같은 비교예와의 구성의 차이로부터, 본 실시 형태에서는 특히 지지부(20) (종래예의 외축 구동부(DSS)에 상당)에서의 고유 주파수를 높일 수 있다. 상기 하나의 종래예의 구성으로부터도 알 수 있는 바와 같이, 종래의 액튜에이터 구동 제어에 있어서는, 일반적으로 저속 축측에서는 비공진 구동에서의 동작에 있어서 충분한 구동력을 얻을 수 없었고, 또한 저속 축을 구성하는 측에서의 공진 주파수를 높일 수도 없었다. 따라서, 예를 들면, 래스터 스캔에 의한 동작을 행하게 하기가 곤란하거나, 저속 축측에서의 공진 주파수가 낮은 것에 따른 불필요한 진동의 발생에 의하여 오동작을 일으키거나 할 가능성이 있었다. 또한 외측(저속 축) 부재에서의 변형의 영향 등의 문제가 발생할 가능성도 있었다. 또한, 구동을 위하여 로렌츠의 힘을 받을 수 있도록, 그 형상에 대하여도 제한이 있었다.
이에 반해, 본 실시 형태에서는 저속측의 제2 축(AX2) 주위의 회전을 담당하는 부재(구동부)로서 외축 구동부(DSa, DSb) 또는 제2 코일부(CL2a, CL2b)를 설치하고, 피구동부(10)의 지지를 담당하는 부재(가동부)로서 지지부(20)를 구비함으로써, 바꾸어 말하면, 종래의 외축 구동부(DSS)가 담당하고 있던 2개의 기능을 분리 독립시킴으로써, 저속 축측에서의 가동부의 설계 자유도를 높이고, 가동부의 구동력을 높이거나, 공진 주파수를 높일 수 있게 하여, 상기 제 문제를 해소 또는 저감할 수 있는 고성능의 구동 동작을 가능하게 하였다.
이하, 도 4를 참조하여 저속 축측, 즉 지지부(20)(도 3B의 종래예에서는 외축 구동부(DSS))에 있어서 종래보다 공진 주파수를 높인 데 따른 효과 중 하나인 불필요한 진동의 저감에 대하여 설명한다.
도 4는 피구동부(10)의 움직임을 측정한 보드 선도이다. 도 4의 그래프에서는 가로 축을 주파수, 세로 축을 편향각으로 하고 있으며, 도 4에서 곡선 C1으로 나타내는 바와 같이, 편향각이 커지는 주파수(비틀림 공진 주파수)가 많이 존재하는데, 여기에서는 도면에서 파선 및 파선의 동그라미로 둘러싼 부분으로 나타내는 위치의 주파수가 고속 축측인 내축 구동부(ID)에 의하여 피구동부(10)에서 본래 얻은 비틀림 공진 주파수 및 그 편향각인 것으로 한다. 이 경우, 해당 주파수보다 높은 주파수에 대하여는 동작하기 어려운 진동이며, 의도하는 동작에 대한 영향이 적은 것이지만, 해당 주파수보다 낮은 주파수의 진동은 동작하기 쉬운, 즉 피구동부 자신의 움직임에 있어서 방해가 되는 불필요한 진동(불필요한 진동)을 초래할 가능성이 있는 것이 된다.
예를 들면, 종래의 외축 구동부 (DSS)(도 3B참조)에서는, 그 고유 주파수가, 도 4의 화살표 A1로 나타내는 부분의 값, 즉, 피구동부(10)에서 본래 얻고자 하는 비틀림 공진 주파수보다 낮은 값이었고, 이것을 높일 수 없었다. 이 때문에, 외축 구동부(DSS)에서 발생하는 진동이, 피구동부(10)에 있어서의 불필요한 진동으로서 영향을 미치는 경우가 있었다. 이러한 사태를 피하기 위하여, 본 실시 형태에서는 종래의 외축 구동부(DSS)에 대응하는 지지부(20)에서의 고유 주파수를 종래보다 높게 설계하였다.
여기서, 피구동부(10)와 접속하기 위한 이너 빔(IB, IB)과의 관계를 보았을 경우, 먼저, 지지부(20)(또는 외축 구동부(DSS))의 강도가 약하면 이너 빔(IB, IB)의 움직임에 덤핑을 가할 가능성이 있다. 따라서, 이러한 사태가 발생하지 않도록 지지부(20)는 어느 정도 이상의 강도를 가진 부재로 하는 것이 전제로서 필요하다. 또한, 그 뿐만이 아니라, 지지부(20)는 상기한 본래 얻은 비틀림 공진 주파수를 고려하여, 고유 주파수를 높게 설계하는 것이 좋다. 특히, 지지부(20)(또는 외축 구동부(DSS))의 고유 주파수가 피구동부(10)에 있어서 본래 얻고자 하는 비틀림 공진 주파수의 N분의 1(N:정수)이 되는 경우에, 불필요한 진동을 야기하는 것이 알려져 있다. 이와 같은 점을 고려하여, 본 실시 형태에서는, 지지부(20)의 고유 주파수가 본래 얻고자 하는 비틀림 공진 주파수보다 높아지도록 설계해 둠으로써, 이러한 사태를 피하고 피구동부(10)에서 발생하는 불필요한 진동을 낮추고 있다.
이하, 도 5를 참조하여, 본 실시 형태의 액튜에이터(100)의 스캔 동작의 일례에 대하여 설명한다. 본 실시 형태의 액튜에이터(100)에서는 고속 축측의 내축 구동부(ID)와, 저속 축측의 외축 구동부(DSa, DSb)의 2축 구동에 의한 래스터 스캔을 피구동부(10)에 실시하게 하였다. 즉, 고속 축측을 주(主) 주사측(수평 방향), 저속 축을 부(副) 주사측(수직 방향)으로 하는 래스터 스캔이다. 도 5A는 고속 축측의 내축 구동부(ID)에서의 구동 제어에 대한 일례를 설명하는 도면이고, 도 5B는 저속측의 외축 구동부(DSa, DSb)에서의 구동 제어에 대한 일례를 설명하는 도면이다. 도면에서 구동파의 파형으로 나타내는 바와 같이, 여기에서는 공진 구동인 고속 축측의 구동에 대하여는 정현파 구동을 하고, 비공진 구동(강제 구동)인 저속 축측의 구동에 대하여는 톱날파 구동을 하고 있다. 본 실시 형태의 경우, 상기와 같은 구성으로 함으로써, 안정적인 래스터 스캔의 동작을 확보할 수 있다.
이하, 도 6A 및 도 6B를 참조하여, 종래예와 비교함으로써, 상기 구성의 특징의 다른 일부로서, 자계 부여부(혹은 자기회로)의 구성의 차이에 대하여 설명한다. 도 6A는 본 실시 형태의 액튜에이터(100)에 있어서의 자계 부여부(MU1, MU2a, MU2b)에 대하여 도시하는 도면이며, 도 6B는 비교예의 도면이다. 또한, 두 도면에서는, 비교를 위하여, 피구동부(10)의 크기가 동일해지도록 하였다. 도 3A에서는, 간명하게 하기 위하여, 자계 부여부(MU1, MU2a, MU2b)를 생략하였지만, 여기에서는, 이들을 도시하고, 그 차이를 설명한다. 이 때문에, 도 6B에서는 종래예의 액튜에이터에 있어서, 가동 부분과 함께 자계 부여부(MO1, MO2)를 도시하고 있다. 두 도면의 비교로부터 분명한 바와 같이, 각 자계 부여부를 구성하는 영구 자석(MG, MG)...의 크기가 분명하게 본 실시 형태 쪽이 작아져 있다. 이것은 구동부인 코일부까지의 거리의 차이에 기인하는 것이다. 즉, 본 실시 형태에서는, 제2 코일부(CL2a, CL2b)를 분리 독립시킴으로써, 제2 코일부(CL2a, CL2b)에 대하여 자계 부여부(MU2a, MU2b)를 구성하기 위한 영구 자석(MG, MG)을 가까이에 배치할 수 있게 되었을 뿐만 아니라, 제1 코일부(CL1)에 대하여도 자계 부여부(MU1)를 구성하기 위한 영구자석(MG, MG)을 가까이에 배치할 수 있게 되었다. 이는 제2 코일부(CL2a, CL2b)를 격리하는 동시에, 지지부(20)의 크기를 작게 할 수 있었던 것에 기인한다. 종래보다 코일·자계 사이의 거리를 근접하게 함으로써, 각 영구 자석(MG)을 크게 하지 않아도, 필요 충분한 자계의 발생이 가능해졌다. 또한, 자계 부여부의 구성 그 자체도 단순화할 수 있다. 도 6B에 도시하는 경우, 내측에 배치되는 제1 코일부(CO1)에 부여해야 할 자계를 자계 부여부 MO1에서 발생시키고, 또한, 제1 코일부(CO1)의 외측에 위치하는 제2 코일부(CO2)에 부여하여야 할 자계를 자계 부여부(MO2)에서 발생시키기 위하여, 예를 들면 대각선 방향으로부터 자계를 발생시키는 등의 구성으로 하고 있었다. 이에 대하여, 본 실시 형태에서는, 단순한 평면적 구성의 영구 자석에 의하여 자계 부여부(MU1, MU2a, MU2b)를 구성할 수 있다. 이상과 같이, 본 실시 형태에서는 자계 부여부 또는 이에 상당하는 자기 회로를 구성함에 있어서도 종래에 비하여 제작이 용이하게 되었다.
이상과 같이 본 실시 형태에 관한 액튜에이터에서는 종래에 피구동부의 지지와 코일에 의한 회전 동작 두 가지를 모두 담당하고 있던 외측 가동부를 대신하여, 피구동부(10)를 지지하는 지지부(20)와, 지지부(20)를 회전시키는 외축 구동부(DSa, DSb)를 분리 독립하여 설치한 구성으로 함으로써, 회전 부분의 소형화, 경량화를 도모하고, 회전 모멘트를 저감시켜, 외측의 제2 축(AX2)의 주위에 대하여 충분한 구동력을 얻을 수 있게 하면서, 지지부(20)의 공진 주파수를 높게 설정할 수 있게 되어, 예를 들면 래스터 스캔에 의한 동작과 같은 고성능 구동 동작이 가능하게 되었다.
[제2 실시 형태]
이하, 도 7을 참조하여, 제2 실시 형태에 관한 액튜에이터에 대하여 일례를 설명한다.
도 7A는 본 실시 형태에 관한 액튜에이터(200)에 대하여 설명하기 위한 도면이며, 도 7B는 액튜에이터(200)에 대하여 가동 부분을 추출한 개념도이다. 도시한 바와 같이, 본 실시 형태에 관한 액튜에이터는 제1 실시 형태의 액튜에이터(100)의 변형예이며, 외축 구동부의 차이를 제외하고는 동일한 구성요소를 구비하고 있기 때문에, 공통되는 구성요소에 대하여는 동일한 부호를 붙이고 상세한 설명은 생략한다.
도 7A 및 도 7B에 도시하는 바와 같이, 본 실시 형태에 관한 액튜에이터(200)는 하나의 외축 구동부(DS)로 구성되어 있다는 점에서 좌우에 배치되는 한 쌍의 구성의 제1 및 제2 외축 구동부(DSa, DSb)를 가진 도 1 등에 예시한 액튜에이터(100)와는 다르다. 즉, 도 1의 외축 구동부(DSa)를 구성하는 제2 코일부 (CL2a) 및 제2 자계 부여부(MU2a)에 상당하는 것으로서, 액튜에이터(200)는 외축 구동부(DS)를 구성하는 제2 코일부(CL2) 및 제2 자계 부여부(MU2)를 가지고 있다. 이 경우, 한 쌍의 구성으로 하는 경우에 비하여 외축 구동의 힘은 저감되지만, 크기를 작고 저렴하게 구성할 수 있다. 하나의 외축 구동부에서 충분한 회전력을 얻는 경우에는 본 실시 형태와 같은 구성으로 함으로써, 더 콤팩트하게 하고, 또한 제작 비용을 줄일 수 있다.
이상과 같이, 본 실시 형태에 관한 액튜에이터에 있어서도, 피구동부(10)를 지지하는 지지부(20)와, 지지부(20)를 회전시키는 외축 구동부(DS)를 분리 독립하여 설치한 구성으로 함으로써, 회전 부분의 소형화, 경량화를 도모하고, 회전 모멘트를 저감시켜, 외측의 제2 축(AX2)의 주위에 대하여 충분한 구동력을 얻을 수 있게 하면서, 지지부(20)의 공진 주파수를 높게 설정할 수 있게 되어, 예를 들면 래스터 스캔에 의한 동작과 같은 고성능의 구동 동작이 가능하게 되었다.
[기타]
이 발명은 상기 각 실시 형태에 한정되는 것이 아니라, 그 요지를 일탈하지 않는 범위에서 여러 가지 형태로 실시하는 것이 가능하다.
우선, 상기에서는, 외축 구동부를 2개 또는 1개로 하고 있는데, 예를 들면 3개 이상의 외축 구동부를 제2 축(AX2)을 따라 배치하는 실시 형태로 하는 것도 생각할 수 있다.
또한, 상기에서는 지지부(20)의 형상을 직사각형 형상으로 나타내고 있지만, 지지부(20)는, 전술한 바와 같이, 종래의 외축 구동부(DSS)와 달리, 전류를 흘려 로렌츠의 힘을 받을 필요가 없고, 피구동부(10)를 지지하고, 또한 코일부 등의 배선을 확보하는 등의 목적으로 하는 기능을 달성할 수 있으면, 여러 가지 형상으로 할 수 있다. 즉, 그 형상의 자유도는 종래에 비하여 매우 높아서, 여러 가지 형상으로 할 수 있다. 소형화, 경량화를 도모하여, 회전 모멘트를 저감시켜, 외측의 제2 축(AX2)의 주위에 대하여 충분한 구동력을 얻는 것을 가능하게 하면서, 지지부(20)의 공진 주파수를 높게 설정한다는 관점에서는, 예를 들면, 각 접속 부재(CP)의 단부로부터 비스듬한 방향으로 연장되어 마름모 형상으로 되어 있는 것으로 하여도 좋다. 또한 지지부(20)를 프레임 형태로 할 필요도 없으며, 예를 들면 배선이 이루어지지 않는 일부에 대하여는 절단된 형태로 되어 있어도 좋다.
또한, 각 실시 형태에 나타낸 전류의 제어나 자계의 방향에 대하여는 예시이며, 각 부의 형상이나 배치를 포함하여, 적절하게 변경 가능하다.
또한, 상기에서는, 제1 축(AX1)과 제2 축(AX2)이 수직으로 교차하는 것으로 하였지만, 이들의 방향이 다르면 2축 구동은 가능하며, 구성이나 목적에 따라서는 수직 이외의 방향으로 연장된 구성으로 하는 것도 생각할 수 있다.
또한, 상기에서는 고속 축측의 구동에 대하여 정현파 구동을 실시하고, 저속 축측의 구동에 대하여 톱파 구동을 하는 경우를 예시하고 있는데, 구동 파형에는 톱파, 정현파, 삼각파가 있으며, 어느 것을 사용하여도 좋다.
또한, 상기 실시 형태에서는 래스터 스캔에 적합하다고 기재하였는데, 물론 리사쥬(Lissajous) 구동에도 대응이 가능하다는 것은 말할 필요도 없다.
10...피구동부, 20...지지부, 50...고정부, 100...액튜에이터, 200...액튜에이터, A1...화살표, AX1...제1 축, AX2...제2 축, B1, B2...자계, C1...곡선, CL1...제1 코일부, CL2, CL2a, CL2b...제2 코일부, CO1, CO2...코일부, C2...접속 부재, DS...외축 구동부, DSS...외축 구동부, DSa, DSb...외축 구동부, I1, I2...제어 전류, IB...이너 빔, ID...내축 구동부, MG...영구자석, MO1, MO2...자계 부여부, MU1...제1 자계 부여부, MU2, MU2a, MU2b...제2 자계 부여부, OB...아우터 빔, R1...화살표, R2...화살표

Claims (6)

  1. 피구동부를 내측에 배치시키고, 제1 축을 따라 연장되는 이너 빔을 통하여 상기 피구동부와 접속하여 지지하는 지지부와,
    상기 지지부로부터 독립하여 설치되어, 상기 제1 축과 수직인 제2 축을 따라 연장되는 아우터 빔을 통하여 상기 지지부와 접속하여, 상기 지지부를 상기 제2 축의 주위로 회전시키는 외축 구동부와,
    상기 피구동부를 상기 제1 축 주위로 회전시키는 내축 구동부
    를 구비하는, 액튜에이터.
  2. 제1항에 있어서,
    상기 외축 구동부는 저속 축 구동부이고,
    상기 내축 구동부는 고속 축 구동부이며,
    상기 외축 구동부 및 상기 내축 구동부는 2축 구동에 의한 래스터 스캔을 상기 피구동부에 실시하게 하는 액튜에이터.
  3. 제1항 또는 제2항에 있어서,
    상기 외축 구동부는 복수 설치되어 있는 액튜에이터.
  4. 제3항에 있어서,
    상기 외축 구동부는 상기 제2 축을 따라 상기 지지부의 양단에 설치되는 한 쌍의 구성인 액튜에이터.
  5. 제1항에 있어서,
    상기 내축 구동부는 상기 제1 축 주위로 회전하는 제1 코일부와, 상기 제1 코일부에 상기 제1 축 주위의 회전력에 부여하기 위하여 한 방향으로 자계를 발생시키는 제1 자계 부여부를 가지고,
    상기 외축 구동부는, 상기 제2 축의 주위로 회전하는 제2 코일부와, 상기 제2 코일부에 상기 제2 축 주위의 회전력에 부여하기 위하여 한 방향으로 자계를 발생시키는 제2 자계 부여부를 가진 액튜에이터.
  6. 제1항에 있어서,
    상기 지지부의 고유 주파수는 상기 피구동부의 비틀림 공진 주파수보다 높은 액튜에이터.
KR1020207011857A 2017-09-27 2018-09-26 액튜에이터 KR20200062257A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2017-187237 2017-09-27
JP2017187237A JP2019061181A (ja) 2017-09-27 2017-09-27 アクチェータ
PCT/JP2018/035717 WO2019065746A1 (ja) 2017-09-27 2018-09-26 アクチェータ

Publications (1)

Publication Number Publication Date
KR20200062257A true KR20200062257A (ko) 2020-06-03

Family

ID=65901492

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207011857A KR20200062257A (ko) 2017-09-27 2018-09-26 액튜에이터

Country Status (5)

Country Link
US (1) US11340446B2 (ko)
EP (1) EP3690514A4 (ko)
JP (1) JP2019061181A (ko)
KR (1) KR20200062257A (ko)
WO (1) WO2019065746A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2723314B2 (ja) 1989-11-08 1998-03-09 富士通株式会社 検索システム
JP2009216789A (ja) 2008-03-07 2009-09-24 Nippon Signal Co Ltd:The 光学装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2722314B2 (ja) 1993-12-20 1998-03-04 日本信号株式会社 プレーナー型ガルバノミラー及びその製造方法
JP3759598B2 (ja) * 2003-10-29 2006-03-29 セイコーエプソン株式会社 アクチュエータ
KR100911144B1 (ko) 2007-03-27 2009-08-06 삼성전자주식회사 2축구동 전자기 액추에이터
US7630112B2 (en) 2007-05-15 2009-12-08 Konica Minolta Opto, Inc. Image display apparatus
JP5292880B2 (ja) * 2007-05-15 2013-09-18 コニカミノルタ株式会社 画像表示装置
KR101345288B1 (ko) * 2007-09-21 2013-12-27 삼성전자주식회사 2축 구동 전자기 스캐너
JP5172364B2 (ja) 2008-01-16 2013-03-27 スタンレー電気株式会社 光偏向器
WO2013168264A1 (ja) 2012-05-10 2013-11-14 パイオニア株式会社 駆動装置
JP6014234B2 (ja) * 2012-05-10 2016-10-25 パイオニア株式会社 駆動装置
CN105934698B (zh) * 2013-01-11 2019-04-16 英特尔公司 镜驱动装置
WO2014173437A1 (de) * 2013-04-24 2014-10-30 Robert Bosch Gmbh Mikromechanisches bauteil und herstellungsverfahren für ein mikromechanisches bauteil
WO2014192123A1 (ja) * 2013-05-30 2014-12-04 パイオニア株式会社 剛体構造体
JP6289957B2 (ja) * 2014-03-25 2018-03-07 スタンレー電気株式会社 光偏向器
JP6388262B2 (ja) * 2014-07-31 2018-09-12 船井電機株式会社 スキャナ装置
ITUB20155997A1 (it) * 2015-11-30 2017-05-30 St Microelectronics Srl Struttura micromeccanica ad attuazione biassiale e relativo dispositivo mems
JP6233396B2 (ja) * 2015-12-09 2017-11-22 ミツミ電機株式会社 光走査装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2723314B2 (ja) 1989-11-08 1998-03-09 富士通株式会社 検索システム
JP2009216789A (ja) 2008-03-07 2009-09-24 Nippon Signal Co Ltd:The 光学装置

Also Published As

Publication number Publication date
US11340446B2 (en) 2022-05-24
EP3690514A4 (en) 2021-07-07
US20200271919A1 (en) 2020-08-27
JP2019061181A (ja) 2019-04-18
EP3690514A1 (en) 2020-08-05
WO2019065746A1 (ja) 2019-04-04

Similar Documents

Publication Publication Date Title
KR100911144B1 (ko) 2축구동 전자기 액추에이터
JP4827993B2 (ja) 駆動装置
EP3006395B1 (en) Drive device
JP5860066B2 (ja) アクチュエータ
WO2013168485A1 (ja) 駆動装置
US20070268099A1 (en) Actuator and two-dimensional scanner
WO2012172652A1 (ja) 駆動装置
JP6014234B2 (ja) 駆動装置
JP4968760B1 (ja) アクチュエータ
JP6208772B2 (ja) 駆動装置
KR20200062257A (ko) 액튜에이터
JP2016095519A (ja) アクチュエータ
JP4958195B2 (ja) 駆動装置
JP2015229220A (ja) Mems装置
JP7044498B2 (ja) アクチュエータ
JP4958196B2 (ja) 駆動装置
WO2013168486A1 (ja) 駆動装置
WO2013168273A1 (ja) 駆動装置
JP2019056935A (ja) アクチュエータ
JP5624213B2 (ja) 駆動装置
WO2013168275A1 (ja) 駆動装置
JP2017146617A (ja) アクチュエータ
WO2013168272A1 (ja) 駆動装置
JPWO2013168485A1 (ja) 駆動装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application