JP5624213B2 - 駆動装置 - Google Patents

駆動装置 Download PDF

Info

Publication number
JP5624213B2
JP5624213B2 JP2013520361A JP2013520361A JP5624213B2 JP 5624213 B2 JP5624213 B2 JP 5624213B2 JP 2013520361 A JP2013520361 A JP 2013520361A JP 2013520361 A JP2013520361 A JP 2013520361A JP 5624213 B2 JP5624213 B2 JP 5624213B2
Authority
JP
Japan
Prior art keywords
base
axis
vibration
along
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013520361A
Other languages
English (en)
Other versions
JPWO2012172652A1 (ja
Inventor
純 鈴木
純 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP2013520361A priority Critical patent/JP5624213B2/ja
Application granted granted Critical
Publication of JP5624213B2 publication Critical patent/JP5624213B2/ja
Publication of JPWO2012172652A1 publication Critical patent/JPWO2012172652A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

本発明は、例えばミラー等の被駆動物を回転させるMEMSスキャナ等の駆動装置の技術分野に関する。
例えば、ディスプレイ、プリンティング装置、精密測定、精密加工、情報記録再生などの多様な技術分野において、半導体工程技術によって製造されるMEMS(Micro Electro Mechanical System)デバイスについての研究が活発に進められている。このようなMEMSデバイスとして、例えば、光源から入射された光を所定の画面領域に対して走査して画像を具現するディスプレイ分野、または所定の画面領域に対して光を走査して反射された光を受光して画像情報を読み込むスキャニング分野では、微小構造のミラー駆動装置(光スキャナないしはMEMSスキャナ)が注目されている。
ミラー駆動装置は、一般的には、ベースとなる固定された本体と、所定の中心軸の周りに回転可能なミラーと、本体とミラーとを接続する又は接合するトーションバー(ねじれ部材)とを備える構成が知られている(特許文献1参照)。
特表2007−522529号公報
このような構成を有するミラー駆動装置では、コイルと磁石を用いてミラーを駆動する構成が一般的である。このような構成では、例えばミラーにコイルを直接貼り付ける構成が一例としてあげられる。この場合、コイルに電流を流すことで生ずる磁界と磁石の磁界との間の相互作用によってミラーに対して回転方向の力が加えられ、その結果、ミラーが回転させられる。一方で、ミラーにコイルを直接貼り付けることに代えて、当該ミラーを指示するベースにコイルを貼り付ける構成も想定される。また、コイルと磁石を用いて(つまり、電磁力)ミラーを駆動する構成以外にも、例えば圧電素子による圧電力や電極による静電力を用いてミラーを駆動する構成も想定される。
このような従来のミラー駆動装置に対して、本発明は、例えば、ミラーを回転させる際の感度(つまり、電磁力や圧電力や静電力等を発生させるための単位電力に対する、ミラーの回転の大きさ若しくは振幅)を相対的に増大させることで、省電力化を図ることが可能な駆動装置(つまり、MEMSスキャナ)を提供することを課題とする。
上記課題を解決するために、駆動装置は、第1ベース部と、前記第1ベース部に取り囲まれる第2ベース部と、前記第1ベース部と前記第2ベース部とを接続し、且つ前記第2ベース部を他の方向に沿った軸を中心軸として回転させるような弾性を有する第1弾性部と、回転可能な被駆動部と、前記第2ベース部と前記被駆動部とを接続し、且つ前記被駆動部を前記他の方向とは異なる一の方向に沿った軸を中心軸として回転させるような弾性を有する第2弾性部と、前記被駆動部及び前記第2弾性部により定まる共振周波数で前記被駆動部が前記一の方向に沿った軸を中心軸として共振しながら回転するように前記被駆動部を回転させるための加振力を前記第2ベース部に加える印加部とを備え、前記印加部は、前記他の方向に沿って前記第2ベース部が定常波状に変形振動し且つ当該変形振動が共振となるように前記加振力を加え、前記第2ベース部が共振する共振周波数は、前記被駆動部の共振周波数と同一である。
第1実施例のMEMSスキャナの構成を概念的に示す平面図である。 第2ベースの裏側(具体的には、図1に示した第2ベースの反対側)の構成を示す平面斜視図である。 第1実施例のMEMSスキャナによる動作の態様を概念的に示す平面図である。 駆動源部から加えられる微振動に起因した方向性のない力について説明するための平面図である。 第2ベースの変形振動の態様を、ミラーの回転の態様と関連付けて示す側面図である。 第2ベースの変形振動の態様を、ミラーの回転の態様と関連付けて示す側面図である。 第2実施例のMEMSスキャナの構成を概念的に示す平面図である。 第3実施例のMEMSスキャナの構成を概念的に示す平面図である。
以下、駆動装置の実施形態について順に説明する。
本実施形態の駆動装置は、第1ベース部と、前記第1ベース部に取り囲まれる第2ベース部と、前記第1ベース部と前記第2ベース部とを接続し、且つ前記第2ベース部を他の方向に沿った軸を中心軸として回転させるような弾性を有する第1弾性部と、回転可能な被駆動部と、前記第2ベース部と前記被駆動部とを接続し、且つ前記被駆動部を前記他の方向とは異なる一の方向に沿った軸を中心軸として回転させるような弾性を有する第2弾性部と、前記被駆動部及び前記第2弾性部により定まる共振周波数で前記被駆動部が前記一の方向に沿った軸を中心軸として共振しながら回転するように前記被駆動部を回転させるための加振力を前記第2ベース部に加える印加部とを備え、前記印加部は、前記他の方向に沿って前記第2ベース部が定常波状に変形振動し且つ当該変形振動が共振となるように前記加振力を加え、前記第2ベース部が共振する共振周波数は、前記被駆動部の共振周波数と同一である。
本実施形態の駆動装置によれば、基礎となる第1ベース部と当該第1ベース部に取り囲まれる第2ベース部とが、弾性を有する第1弾性部(例えば、後述するトーションバー等)によって直接的に又は間接的に接続されている。更に、第2ベース部と回転可能に配置される被駆動部(例えば、後述するミラー等)とが、弾性を有する第2弾性部(例えば、後述するトーションバー等)によって直接的に又は間接的に接続されている。第2ベース部は、第1弾性部の弾性(例えば、第2ベース部を他の方向に沿った軸を中心軸として回転させることができるという弾性)によって、他の方向に沿った軸を中心軸として回転駆動される。被駆動部は、第2弾性部の弾性(例えば、被駆動部を一の方向に沿った軸を中心軸として回転させることができるという弾性)によって、一の方向に沿った軸を中心軸として回転駆動される。
本実施形態の駆動装置では特に、印加部の動作により、被駆動部及び第2弾性部により定まる共振周波数で被駆動部が一の方向に沿った軸を中心軸として共振しながら回転するような加振力が加えられる。より具体的には、印加部は、被駆動部の一の方向に沿った軸周り(つまり、被駆動部の回転軸周り)の慣性モーメント及び第2弾性部のねじりばね定数により定まる共振周波数で被駆動部が一の方向に沿った軸を中心軸として回転するような加振力を加える。
加えて、本実施形態の駆動装置では、第2ベース部は、第1弾性部の弾性(例えば、第2ベース部を他の方向に沿った軸を中心軸として回転させることができるという弾性)によって、他の方向に沿った軸を中心軸として回転駆動される。従って、第2ベース部と第2弾性部を介して接続されている被駆動部もまた、他の方向に沿った軸を中心軸として回転駆動される。つまり、本実施形態の駆動装置は、被駆動部の2軸回転駆動を実現することができる。但し、2軸以上の多軸回転駆動を行ってもよいことは言うまでもない。
更に、本実施形態の駆動装置では、微振動が加えられる第2ベース部は、他の方向に沿って定常波状に(つまり、定常波の波形状に)変形振動する。加えて、第2ベース部の変形振動は、共振となる。つまり、第2ベース部は、そのある一部分が変形振動の腹となり且つその他の一部分が変形振動の節となるように、その外観を変形させる。このような第2ベース部の変形振動によって、他の方向に沿って腹及び節が現れる。第2ベース部の変形振動は、いわゆる定常波の波形に従って行われるため、その腹及び節の位置は実質的には固定されている。
更に、本実施形態の駆動装置では、第2ベース部が共振する共振周波数(つまり、第2ベース部の変形振動の周波数)は、前記被駆動部の共振周波数と同一となる。尚、ここでいう「同一」とは、文字どおりの同一のみならず、実質的には同一と同視し得る程度のマージンをも加味した状態を含む広い趣旨を意味することが好ましい。このため、第2ベース部の変形振動の周期と被駆動部の回転の周期との間の同期をとりやすくなる。従って、第2ベース部の変形振動の周期と被駆動部の回転の周期との間の同期を適切に図ることで、第2ベース部を変形振動させない場合と比較して、被駆動部をより多く回転させることができる。より具体的には、例えば、第2ベース部を変形振動させない場合には、被駆動部の回転量は、被駆動部自身の回転量のみに依存することになる。一方で、例えば、第2ベース部を変形振動させる場合には、被駆動部の回転量は、被駆動部自身の回転量のみならず第2ベース部の変形振動による振動量にも依存することになる。従って、本実施形態の駆動装置によれば、同一の電力を用いて微振動が印加された場合には、第2ベース部を変形振動させない場合の被駆動部の回転量と比較して、被駆動部の回転量を増大させることができる。つまり、単位電力当たりの被駆動部の振幅(回転振幅であり、実質的には感度)を増大させることができる。
尚、後に図面を用いて詳細に説明するように、第2ベース部の変形振動の位相と被駆動部の位相とは、同相になってもよいし逆相になってもよい。
本実施形態の駆動装置の一の態様では、前記第2ベース部の一部の箇所の剛性が、前記第2ベース部の他の一部の箇所の剛性よりも高い。
この態様によれば、第2ベース部の剛性が調整されるため、第2ベース部を他の方向に沿って定常波状に変形振動させやすくすることができる。
第2ベース部の一部の箇所の剛性が第2ベース部の他の一部の箇所の剛性よりも高くなる駆動装置の態様では、前記第2ベース部の一部の箇所の剛性が前記第2ベース部の他の一部の箇所の剛性よりも高くなることで、前記第2ベース部の前記他の方向に沿った曲げ剛性が前記第2ベース部の前記一の方向に沿った曲げ剛性よりも低くなるように構成してもよい。言い換えれば、前記第2ベース部の前記他の方向に沿った曲げ剛性が前記第2ベース部の前記一の方向に沿った曲げ剛性よりも低くなるように、前記第2ベース部の一部の箇所の剛性が前記第2ベース部の他の一部の箇所の剛性よりも高くしてもよい。
このように構成すれば、第2ベース部の剛性が調整されることで、第2ベース部の一の方向に沿った曲げ剛性及び他の方向に沿った曲げ剛性が調整される。具体的には、第2ベース部の他の方向に沿った曲げ剛性が、第2ベース部の一の方向に沿った曲げ剛性よりも低くなる。従って、第2ベース部は、他の方向に沿っては相対的に曲がりやすくなる一方で、一の方向に沿っては相対的に曲がりにくくなる。このため、第2ベース部を他の方向に沿って定常波状に変形振動させやすくすることができる。
本実施形態の駆動装置の他の態様では、前記第2ベース部の一部の箇所の質量が、前記第2ベース部の他の一部の箇所の剛性よりも高い。
この態様によれば、第2ベース部の質量が調整されるため、第2ベース部を他の方向に沿って定常波状に変形振動させやすくすることができる。
第2ベース部の一部の箇所の質量が第2ベース部の他の一部の箇所の質量よりも高くなる駆動装置の態様では、前記第2ベース部の一部の箇所の質量が前記第2ベース部の他の一部の箇所の質量よりも高くなることで、前記第2ベース部の前記他の方向に沿った曲げ剛性が前記第2ベース部の前記一の方向に沿った曲げ剛性よりも低くなるように構成してもよい。言い換えれば、前記第2ベース部の前記他の方向に沿った曲げ剛性が前記第2ベース部の前記一の方向に沿った曲げ剛性よりも低くなるように、前記第2ベース部の一部の箇所の質量が前記第2ベース部の他の一部の箇所の質量よりも高くしてもよい。
このように構成すれば、第2ベース部の質量が調整されることで、第2ベース部の一の方向に沿った曲げ剛性及び他の方向に沿った曲げ剛性が調整される。具体的には、第2ベース部の他の方向に沿った曲げ剛性が、第2ベース部の一の方向に沿った曲げ剛性よりも低くなる。従って、第2ベース部は、他の方向に沿っては相対的に曲がりやすくなる一方で、一の方向に沿っては相対的に曲がりにくくなる。このため、第2ベース部を他の方向に沿って定常波状に変形振動させやすくすることができる。
本実施形態の駆動装置の他の態様では、前記被駆動部は、前記弾性部を介して、前記第2ベース部の変形振動における節に対応する箇所に接続されている。
この態様によれば、第2ベース部の変形振動における節に対応する箇所に被駆動部の夫々が接続されている。このため、被駆動部の上下方向(具体的には、一の方向及び他の方向の夫々に直交する方向であって、第2ベース部の表面に対して垂直な方向)の移動を防ぎつつ、第2ベース部を変形振動させない場合と比較して、被駆動部の回転量を増大させることができる。
本実施形態の駆動装置の他の態様では、前記第2ベース部の変形振動における節に対応する箇所の剛性が、前記第2ベース部の変形振動における節以外の箇所の剛性よりも高い。
この態様によれば、上述したように、第2ベース部の剛性を調整することで、第2ベース部を他の方向に沿って定常波状に変形振動させやすくすることができる。
本実施形態の駆動装置の他の態様では、前記第2ベース部の変形振動における節に対応する箇所の質量が、前記第2ベース部の変形振動における節以外の箇所の質量よりも小さい。
この態様によれば、上述したように、第2ベース部の質量を調整することで、第2ベース部を他の方向に沿って定常波状に変形振動させやすくすることができる。
本実施形態の駆動装置の他の態様では、前記加振力は、無方向性振動エネルギーとしての無方向性微振動又は異方性微振動である。
この態様によれば、印加部は、第2ベース部という構造体内を微振動が伝搬するように、微振動を第2ベース部に対して加える。つまり、印加部は、第2ベース部そのものを直接ねじれさせる力を加えることに代えて、構造体内を伝搬する微振動を、被駆動部を回転させるための加振エネルギー(言い換えれば、波動エネルギー)として加える。言い換えれば、印加部は、構造体内をエネルギーとして(言い換えれば、「振動」という力を振動に変えることなく、当該力を発現させるエネルギーとして)伝搬する微振動を、被駆動部を回転させるための波動エネルギーとして加える。このような微振動(言い換えれば、構造体内を伝搬する波動エネルギー)は、少なくとも構造体内を伝搬している段階では、方向性を有していない力となる。言い換えれば、微振動として第2ベース部内を伝搬する波動エネルギーは、第2ベース部内を任意の方向に向かって伝搬する。その結果、この微振動は、波動エネルギーとして、例えば第2ベース部等の構造体から第2弾性部へと(更には、第2ベース部から第2弾性部を介して被駆動部へと)伝わる。その後、構造体内を伝搬してきた微振動(言い換えれば、波動エネルギー)が、第2弾性部自身の弾性に応じた方向に向かって第2弾性部を振動させたり、第2弾性部の弾性に応じた方向に向かって被駆動部を回転させたりする。言い換えれば、この波動エネルギーは、微振動の方向を限定することなくあらゆる方向の振動として取り出すことができる。つまり、第2ベース部内を伝搬した波動エネルギーは、振動(より具体的には、共振)という形で外部に取り出すことができ、その結果、被駆動部を回転させることができる。
ここで、いわゆる方向性を有する力を加えることで被駆動部の回転駆動を行う場合(例えば、第2ベース部そのものを被駆動部の回転方向に向かって大きくねじれさせ、そのねじれを第2弾性部や被駆動部に直接加えることで被駆動部の回転駆動を行う場合)には、被駆動部を一の方向に沿った軸を中心軸として回転させる方向性を有する力(つまり、第2ベース部等の構造体を一の方向に沿った軸を中心軸とする回転方向に向けてねじれさせる方向性を有する力)を印加部から加える必要がある。このため、このような方向性を有する力を加えることができるように、印加部の配置位置を適切に設定しなければならない。つまり、方向性を有する力を加える場合には、当該力を作用させる方向に依存して印加部の配置位置が限定されてしまう。
しかるに、本実施形態では、微振動に起因した方向性のない力を加えているがゆえに、印加部の配置位置が限定されてしまうことはなくなる。言い換えれば、微振動に起因した方向性のない力を加えているがゆえに、被駆動部の回転の方向に依存して印加部の配置位置が限定されてしまうことはなくなる。つまり、印加部の配置位置がどのような位置に設定されたとしても、印加部から加えられる微振動(つまり、方向性のない力)は、第2弾性部の弾性を利用して、被駆動部を一の方向に沿った軸を中心軸として回転させることができる。これにより、駆動装置の設計の自由度を相対的に増加させることができる。
この態様によれば、無方向性微振動又は異方性微振動として第2ベース部内を伝搬する波動エネルギーを、第2ベース部内を任意の方向に向かって伝搬させることができる。尚、「無方向性微振動」又は「異方性微振動」は、例えば、被駆動部の回転方向に対して無相関な方向の微振動であってもよい。その結果、この波動エネルギーは、微振動の方向を限定することなくあらゆる方向の振動として取り出すことができる。つまり、第2ベース部内を伝搬した波動エネルギーは、振動(より具体的には、共振)という形で外部に取り出すことができ、その結果、被駆動部を回転させることができる。
加振力が無方向性振動エネルギーとしての無方向性微振動又は異方性微振動である駆動装置の態様では、前記印加部は、前記一の方向に沿った軸を中心軸とする回転方向とは異なる方向に作用する力によって生ずる前記微振動を加えるように構成してもよい。
このように構成すれば、印加部は、微振動を加える際には、まず、一の方向に沿った軸を中心軸とする回転方向(つまり、被駆動部の回転方向)とは異なる方向に作用する力を発生させる。この力は、後に図面を用いて詳細に説明するように、微振動(言い換えれば、波動エネルギー)となって第2ベース部に加えられる。つまり、一の方向に沿った軸を中心軸とする回転方向とは異なる方向に作用する力によって生ずる微振動(言い換えれば、当該力が変換されて生ずる微振動ないしは波動エネルギー)を加えることができる。従って、上述した各種効果を好適に享受することができる。
加振力が無方向性振動エネルギーとしての無方向性微振動又は異方性微振動である駆動装置の態様では、前記印加部は、静止時の前記被駆動部の表面に沿った方向に作用する力によって生ずる前記微振動を加えるように構成してもよい。
このように構成すれば、印加部は、微振動を加える際には、まず、静止時の(言い換えれば、初期配置時の)被駆動部の表面に沿った方向(つまり、面内方向)に作用する力を発生させる。この力は、後に図面を用いて詳細に説明するように、微振動(言い換えれば、波動エネルギー)となって第2ベース部に加えられる。つまり、静止時の被駆動部の表面に沿った方向に作用する力によって生ずる微振動(言い換えれば、当該力が変換されて生ずる微振動ないしは波動エネルギー)を加えることができる。従って、上述した各種効果を好適に享受することができる。
加振力が無方向性振動エネルギーとしての無方向性微振動又は異方性微振動である駆動装置の態様では、前記印加部は、前記第2ベース部を前記他の方向に沿った軸を中心軸として回転させるための前記加振力であって且つ前記被駆動部及び前記第2弾性部により定まる共振周波数で前記被駆動部が前記一の方向に沿った軸を中心軸として共振しながら回転するように前記被駆動部を回転させるための前記加振力を前記第2ベース部に加えるように構成してもよい。
このように構成すれば、印加部の動作により、第2ベース部(言い換えれば、第2ベース部により支持される被駆動部)が他の方向に沿った軸を中心軸として回転するような微振動が加えられる。同時に、この微振動は、被駆動部及び第2弾性部第2弾性部により定まる共振周波数で、被駆動部を、一の方向に沿った軸を中心軸として共振しながら回転させる。つまり、この態様では、同一の印加部(言い換えれば、単一の印加部)から、被駆動部の2軸回転駆動を行うための微振動が加えられる。
ここで、いわゆる方向性を有する力を加えることで被駆動部の2軸回転駆動を行う場合(例えば、第1ベース部や第2ベース部そのものを被駆動部の回転方向に向かって大きくねじれさせ、そのねじれを第1弾性部や第2弾性部や被駆動部に直接加えることで被駆動部の2軸回転駆動を行う場合)には、被駆動部を一の方向に沿った軸を中心軸として回転させる方向性を有する力(つまり、第2ベース部等の構造体を一の方向に沿った軸を中心軸とする回転方向に向けてねじれさせる方向性を有する力)を一の印加部から加えると共に、被駆動部を他の方向に沿った軸を中心軸として回転させる方向性を有する力(つまり、第1ベース部や第2ベース部等の構造体を他の方向に沿った軸を中心軸とする回転方向に向けてねじれさせる方向性を有する力)を他の印加部から加える必要がある。つまり、方向性を有する力を加えることで被駆動部の2軸回転駆動を行う場合には、通常は、2つ以上の印加部(つまりは、2つ以上の駆動源)を駆動装置が備えていなければならない。言い換えれば、方向性を有する力を加えることで被駆動部の2軸回転駆動を行う場合には、1つの印加部からは1つの方向に向かって作用する力しか加えることができないため、2つ以上の印加部(つまりは、2つ以上の駆動源)を駆動装置が備えていなければならない。
しかるに、この態様では、微振動に起因した方向性のない力を加えることで、被駆動部の2軸回転駆動を行うことができる。ここで、微振動に起因した方向性のない力を加えているがゆえに、1つの印加部から加えられた微振動は、第1弾性部及び第2弾性部の弾性(つまり、被駆動部を一の方向に沿った軸を中心軸として回転させる弾性及び被駆動部を他の方向に沿った軸を中心軸として回転させる弾性)を利用して、被駆動部を一の方向に沿った軸を中心軸として回転させると共に被駆動部を他の方向に沿った軸を中心軸として回転させることができる。つまり、この態様では、被駆動部の2軸回転駆動を行う場合であっても、2つの印加部を備える必要は必ずしもない。このため、単一の印加部(言い換えれば、単一の駆動源)を用いて、被駆動部の2軸回転駆動を行うための微振動を加えることができる。
加えて、仮に1つの印加部から2つの方向に向かって作用する力を加えることができたとしても、方向性を有する力を加えることで被駆動部の2軸回転駆動を行う場合には、結局のところ、2つの方向に作用する成分(つまり、被駆動部を一の方向に沿った軸を中心軸として回転させる方向性を有する力の成分と、被駆動部を他の方向に沿った軸を中心軸として回転させる方向性を有する力の成分)を有する力を加える必要がある。しかるに、この態様では、微振動に起因した方向性のない力を加振エネルギーとして加えているため、力が作用する方向を考慮した上で当該力を加える必要がなくなるという利点も有している。
本実施形態のこのような作用及び他の利得は次に説明する実施例から明らかにされる。
以上説明したように、本実施形態の駆動装置によれば、第1ベース部と、第2ベース部と、第1弾性部と、被駆動部と、第2弾性部と、印加部とを備え、印加部は、他の方向に沿って第2ベース部が定常波状に変形振動し且つ当該変形振動が共振となるように微振動を加え、第2ベース部が共振する共振周波数が被駆動部の共振周波数と同一である。従って、被駆動部を好適に回転させることができる。
以下、図面を参照しながら、駆動装置の実施例について説明する。尚、以下では、駆動装置をMEMSスキャナに適用した例について説明する。
(1)第1実施例
初めに、図1から図6を参照して、MEMSスキャナの第1実施例について説明する。
(1−1)基本構成
初めに、図1を参照して、第1実施例のMEMSスキャナ100の基本構成について説明する。ここに、図1は、第1実施例のMEMSスキャナ100の基本構成を概念的に示す平面図である。
図1に示すように、第1実施例のMEMSスキャナ100は、第1ベース110−1と、第1トーションバー120a−1及び120b−1と、第2ベース110−2と、第2トーションバー120a−2及び120b−2と、ミラー130と、駆動源部160とを備えている。
第1ベース110−1は、内部に空隙を備える枠形状を有している。つまり、第1ベース110−1は、図1中のY軸方向に延伸する2つの辺と図1中のX軸方向(つまり、Y軸に直交する軸方向)に延伸する2つの辺とを有すると共に、Y軸方向に延伸する2つの辺とX軸方向に延伸する2つの辺とによって取り囲まれた空隙を有する枠形状を有している。図1に示す例では、第1ベース110−1は、正方形の形状を有しているが、これに限定されることはなく、例えばその他の形状(例えば、長方形等の矩形の形状や円形の形状等)を有していてもよい。また、第1ベース110−1は、第1実施例のMEMSスキャナ100の基礎となる構造体であって、不図示の基板ないしは支持部材に対して固定されている(言い換えれば、MEMSスキャナ100という系の内部においては固定されている)ことが好ましい。
尚、図1では、第1ベース110−1が枠形状を有している例を示しているが、その他の形状を有していてもよいことは言うまでもない。例えば、第1ベース110−1は、その一部の辺が開口となるコの字型形状を有していてもよい。或いは、例えば、第1ベース110−1は、内部に空隙を備える箱型形状を有していてもよい。つまり、第1ベース110−1は、X軸及びY軸によって規定される平面上に分布する2つの面と、X軸及び不図示のZ軸(つまり、X軸及びY軸の双方に直交する軸)によって規定される平面上に分布する2つの面と、Y軸及び不図示のZ軸によって規定される平面上に分布する2つの面とを有すると共に、これらの6つの面によって取り囲まれた空隙を有する箱形状を有していてもよい。或いは、ミラー130が配置される態様に応じて適宜第1ベース110−1の形状を任意に代えてもよい。
第1トーションバー120a−1は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。第1トーションバー120a−1は、図1中X軸の方向に延伸するように配置される。言い換えれば、第1トーションバー120a−1は、X軸の方向に延伸する長手を有すると共にY軸の方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、第1トーションバー120a−1は、X軸の方向に延伸する短手を有すると共にY軸の方向に延伸する長手を有する形状を有していてもよい。第1トーションバー120a−1の一方の端部121a−1は、第1ベース110−1の内側の辺115−1に接続される。第1トーションバー120a−1の他方の端部122a−1は、X軸の方向に沿って第1ベース110−1の内側の辺115−1に対向する第2ベース110−2の外側の辺117−2に接続される。
第1トーションバー120b−1は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。第1トーションバー120b−1は、図1中X軸の方向に延伸するように配置される。言い換えれば、第1トーションバー120b−1は、X軸の方向に延伸する長手を有すると共にY軸の方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、第1トーションバー120b−1は、X軸の方向に延伸する短手を有すると共にY軸の方向に延伸する長手を有する形状を有していてもよい。第1トーションバー120b−1の一方の端部121b−1は、X軸の方向に沿って第1ベース110−1の内側の辺(言い換えれば、領域部分)115−1(つまり、第1トーションバー120a−1の一方の端部121a−1が接続される第1ベース110−1の内側の辺115−1)に対向する第1ベース110−1の内側の辺116−1に接続される。第1トーションバー120b−1の他方の端部122b−1は、X軸の方向に沿って第1ベース110−1の内側の辺116−1に対向する第2ベース110−2の外側の辺118−2に接続される。
第2ベース110−2は、内部に空隙を備える枠形状を有している。つまり、第2ベース110−2は、図1中のY軸方向に延伸する2つの辺と図1中のX軸方向(つまり、Y軸に直交する軸方向)に延伸する2つの辺とを有すると共に、Y軸方向に延伸する2つの辺とX軸方向に延伸する2つの辺とによって取り囲まれた空隙を有する枠形状を有している。図1に示す例では、第2ベース110−2は、正方形の形状を有しているが、これに限定されることはなく、例えばその他の形状(例えば、長方形等の矩形の形状や円形の形状等)を有していてもよい。
第2ベース110−2は、第1ベース110−1の内部の空隙に、第1トーションバー120a−1及び120b−1によって吊り下げられる又は支持されるように配置される。第2ベース110−2は、第1トーションバー120a−1及び120b−1の弾性によって、X軸の方向を中心軸として回転するように構成されている。
尚、図1では、第2ベース110−2が枠形状を有している例を示しているが、その他の形状を有していてもよいことは言うまでもない。例えば、第2ベース110−2は、その一部の辺が開口となるコの字型形状を有していてもよい。或いは、例えば、第2ベース110−2は、内部に空隙を備える箱型形状を有していてもよい。つまり、第2ベース110−2は、X軸及びY軸によって規定される平面上に分布する2つの面と、X軸及び不図示のZ軸(つまり、X軸及びY軸の双方に直交する軸)によって規定される平面上に分布する2つの面と、Y軸及び不図示のZ軸によって規定される平面上に分布する2つの面とを有すると共に、これらの6つの面によって取り囲まれた空隙を有する箱形状を有していてもよい。或いは、ミラー130が配置される態様に応じて適宜第2ベース110−2の形状を任意に代えてもよい。
第2トーションバー120a−2は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。第2トーションバー120a−2は、図1中Y軸の方向に延伸するように配置される。言い換えれば、第2トーションバー120a−2は、Y軸の方向に延伸する長手を有すると共にX軸の方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、第2トーションバー120a−2は、Y軸の方向に延伸する短手を有すると共にX軸の方向に延伸する長手を有する形状を有していてもよい。第2トーションバー120a−2の一方の端部121a−2は、第2ベース110−2の内側の辺111−2に接続される。第2トーションバー120a−2の他方の端部122a−2は、Y軸の方向に沿って第2ベース110−2の内側の辺111−2に対向するミラー130の一方の辺131に接続される。
第2トーションバー120b−2は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。第2トーションバー120b−2は、図1中Y軸の方向に延伸するように配置される。言い換えれば、第2トーションバー120b−2は、Y軸の方向に延伸する長手を有すると共にX軸の方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、第2トーションバー120b−1は、Y軸の方向に延伸する短手を有すると共にX軸の方向に延伸する長手を有する形状を有していてもよい。第2トーションバー120b−2の一方の端部121b−2は、Y軸の方向に沿って第2ベース110−2の内側の辺111−2(つまり、第2トーションバー120a−2の一方の端部121a−2が接続される第2ベース110−2の内側の辺111−2)に対向する第2ベース110−2の内側の辺112−2に接続される。第2トーションバー120b−2の他方の端部122b−2は、Y軸の方向に沿って第2ベース110−2の内側の辺112−2に対向するミラー130の他方の辺132に接続される。
ミラー130は、第2ベース110−2の内部の空隙に、第2トーションバー120a−2及び120b−2によって吊り下げられる又は支持されるように配置される。ミラー130は、第2トーションバー120a−2及び120b−2の弾性によって、Y軸の方向を中心軸として回転するように構成されている。
駆動源部160は、ミラー130をY軸の方向に沿った軸を中心軸として回転させるために必要な微振動を第2ベース110−2に対して加える。尚、駆動源部160が微振動を第2ベース110−2に加えることができる限りは、その配置態様は任意に定めてもよい。また、第2ベース110−2に対して力を加えることに限らず、その他の位置(例えば、第1ベース110−1)に対して力を加えることができるように構成されてもよい。
より具体的には、駆動源部160は、電磁力に起因した力を加える駆動源部であって、第2ベース110−2の枠形状に沿って配置されるコイル161と、第1ベース110−1に固定される磁極162a及び162bとを備える。この場合、コイル161には、不図示の駆動源部制御回路から所望のタイミングで、所望の電圧が印加される。コイル161への電圧の印加によって電流が流れ、コイル161と磁極162a及び162bとの間に電磁相互作用が生ずる。その結果、電磁相互作用による電磁力が発生する。この電磁力は微振動として第2ベース110−2に伝えられる。
続いて、図2を参照して、第2ベース110−2の裏側(具体的には、図1に示した第2ベース110−2の反対側)の構成について説明する。図2は、第2ベース110−2の裏側(具体的には、図1に示した第2ベース110−2の反対側)の構成を示す平面斜視図である。
図2に示すように、第2ベース110−2の枠形状のうちの一部の領域110aには、第2ベース110−2の表面から突き出るリブ119が形成されている。リブ119は、第2ベース110−2と一体的に形成されていてもよいし、第2ベース110−2が形成された後に付加的に配置されていてもよい。一方で、第2ベース110−2の枠形状のうちの他の一部の領域110bには、リブ119が形成されていない。
図2に示すリブ119により、第2ベース110−2の枠形状のうちの一部の領域110aの剛性は、第2ベース110−2の枠形状のうちの他の一部の領域110bの剛性よりも高くなる。言い換えれば、リブ119は、第2ベース110−2の枠形状のうちの一部の領域110aの剛性が、第2ベース110−2の枠形状のうちの他の一部の領域110bの剛性よりも高くなる状態を実現することができるように、第2ベース110−2に形成されることが好ましい。つまり、第2ベース110−2の枠形状のうちの一部の領域110aの剛性が、第2ベース110−2の枠形状のうちの他の一部の領域110bの剛性よりも高くなる状態を実現することができるように、リブ119の形成位置や、大きさや、質量や、剛性や、密度等が適宜決定されることが好ましい。
或いは、図2に示すリブ119により、第2ベース110−2の枠形状のうちの一部の領域110aの質量(或いは、第2ベース110−2の枠方向に沿った単位長当たりの質量)は、第2ベース110−2の枠形状のうちの他の一部の領域110bの質量(或いは、第2ベース110−2の枠方向に沿った単位長当たりの質量)よりも大きくなる。或いは、リブ119は、第2ベース110−2の枠形状のうちの一部の領域110aの質量が、第2ベース110−2の枠形状のうちの他の一部の領域110bの質量よりも大きくなる状態を実現することができるように、第2ベース110−2に形成されることが好ましい。つまり、第2ベース110−2の枠形状のうちの一部の領域110aの質量が、第2ベース110−2の枠形状のうちの他の一部の領域110bの質量よりも大きくなる状態を実現することができるように、リブ119の形成位置や、大きさや、質量や、剛性や、密度等が適宜決定されることが好ましい。
尚、リブ119が形成される領域110aとリブ119が形成されない領域110bは、ミラー130の回転軸(つまり、Y軸)に直交する方向(つまり、X軸に沿った方向)に沿って並ぶ(或いは、交互に並ぶ)ことが好ましい。
尚、図2は、リブ119が第2ベース110−2の裏側に形成される例を示している。しかしながら、リブ119は、第2ベース110−2の表側に形成されてもよいし、第2ベース110−2の側面に形成されてもよいし、第2ベース110−2の内面に形成されてもよい。或いは、リブ119以外の構成を用いて、第2ベース110−2の枠形状のうちの一部の領域110aの剛性が、第2ベース110−2の枠形状のうちの他の一部の領域110bの剛性よりも高くなる状態を実現してもよい。或いは、リブ119以外の構成を用いて、第2ベース110−2の枠形状のうちの一部の領域110aの質量が、第2ベース110−2の枠形状のうちの他の一部の領域110bの質量よりも大きくなる状態を実現してもよい。例えば、第2ベース110−2の密度や材質等を領域110aと領域110bとで異ならしめることで、上述の状態を実現してもよい。
(1−2)MEMSスキャナの動作
続いて、図3を参照して、第1実施例のMEMSスキャナ100の動作の態様(具体的には、ミラー130を回転させる動作の態様)について説明する。ここに、図3は、第1実施例のMEMSスキャナ100による動作の態様を概念的に示す平面図である。
第1実施例のMEMSスキャナ100の動作時には、コイル161には、不図示の駆動源部制御回路から所望のタイミングで、所望の電圧が印加される。コイル161への電圧の印加によって電流が流れ、コイル161と磁極162a及び162bとの間に電磁相互作用が生ずる。その結果、電磁相互作用による電磁力が発生する。この電磁力は微振動(ないしは、波動エネルギー)として第2ベース110−2に伝えられる。
ここで、コイル161と磁極162aとの間の電磁相互作用による電磁力の方向は、図3中奥側(紙面奥側)から手前側(紙面手前側)方向である。コイル161と磁極162bとの間の電磁相互作用による電磁力の方向は、図3中手前側から奥側方向である。その結果、図3に示すように、この電磁力は、第1トーションバー120a−1及び120b−1自身の弾性に応じた方向に向かって第1トーションバー120a−1及び120b−1を回転させたり、第2ベース110−2を回転させたりする。その結果、図3に示すように、第2ベース110−2が、X軸の方向に沿った軸を中心軸として回転する。
尚、第2ベース110−2は、後述するミラー130の共振周波数と同じ周波数、又は当該共振周波数よりも低い若しくは高い周波数での回転動作を所定の角度の範囲内で繰り返してもよい。例えば、第1実施例のMEMSスキャナ100をディスプレイ(或いは、ヘッドマウントディスプレイ)に適用する場合には、第2ベース110−2は、例えばディスプレイの走査周期又はフレームレートに応じた周波数(例えば、60Hz)での回転動作を繰り返してもよい。
或いは、第2ベース110−2は、第2ベース110−2を含む被懸架部並びに第1トーションバー120a−1及び120b−1により定まる共振周波数での回転動作を所定の角度の範囲内で繰り返してもよい。具体的には、第2ベース110−2は、第2ベース110−2を含む被懸架部(言い換えれば、第1トーションバー120a−1及び120b−1により懸架される第2ベース110−2を含む被懸架部)並びに第1トーションバー120a−1及び120b−1に応じて定まる共振周波数で共振するように回転してもよい。例えば、第2ベース110−2を含む被懸架部のX軸に沿った軸回りの慣性モーメント(より具体的には、第2ベース110−2内に備えられる第2トーションバー120a−2及び120b−2並びにミラー130の夫々の質量をも加味した第2ベース110−2という系全体からなる被懸架設部のX軸に沿った軸回りの慣性モーメント)がI1であり且つ第1トーションバー120a−1及び120b−1を1本のバネとみなした場合のねじりバネ定数がk1であるとすれば、第2ベース110−2は、(1/(2π))×√(k1/I1)にて特定される共振周波数(或いは、(1/(2π))×√(k1/I1)のN倍若しくはN分の1倍(但し、Nは1以上の整数)の共振周波数)で共振するように、X軸の方向に沿った軸を中心軸として回転してもよい。
更に、駆動源部160から加えられる電磁力そのものは、ミラー130の回転方向(つまり、Y軸に沿った方向を中心軸とする回転方向)とは異なる。一方で、この電磁力は、微振動として第2ベース110−2に伝わる。より具体的には、駆動源部160は、第2ベース110−2に対して、第2ベース110−2そのものの回転方向のねじれをなくしつつも第2ベース110−2内を伝搬する微振動を、波動エネルギーとして加える。言い換えれば、駆動源部160は、第2ベース110−2そのものに回転方向のねじれを与える力を加えることに代えて、第2ベース110−2内をエネルギーとして(言い換えれば、力を発現させる波動エネルギーとして)伝搬する微振動を加える。このような微振動は、第2ベース110−2内を伝搬している時点では、方向性を有していない力となる。言い換えれば、微振動として第2ベース110−2内を伝搬する波動エネルギーは、第2ベース110−2内を任意の方向に向かって伝搬する。また、このような微振動が加えられた第2ベース110−2は、第2ベース110−2そのものが振動する物体となるというよりは、微振動(言い換えれば、波動エネルギー)を伝搬する媒体となる。
その結果、駆動源部160から第2ベース110−2に対して加えられる微振動は、第2ベース110−1から第2トーションバー120a−2及び120b−2へと伝わる。その後、図3に示すように、第2ベース110−2内を伝搬してきた微振動(言い換えれば、波動エネルギー)が、第2トーションバー120a−2及び120b−2自身の弾性に応じた方向に向かって第2トーションバー120a−2及び120b−2を回転させたり、ミラー130を回転させたりする。言い換えれば、第2ベース110−2内を伝搬してきた微振動は、第2トーションバー120a−2及び120b−2の回転やミラー130の回転という形で発現する。言い換えれば、この波動エネルギーは、微振動の方向を限定することなくあらゆる方向の振動として取り出すことができる。つまり、第2ベース110−2内を伝搬した波動エネルギーは、振動(より具体的には、共振)という形で外部に取り出すことができ、その結果、ミラー130を回転させることができる。その結果、図3に示すように、ミラー130が、Y軸の方向に沿った軸を中心軸として回転する。より具体的には、ミラー130は、共振周波数での回転動作を所定の角度の範囲内で繰り返す(言い換えれば、所定の角度の範囲内での回転の往復運動を繰り返す)。
このとき、ミラー130は、ミラー130並びに第2トーションバー120a−2及び120b−2に応じて定まる共振周波数で共振するように回転する。より具体的には、ミラー130は、ミラー130(より具体的には、ミラー130を含む被懸架部であり、第2トーションバー120a−2及び120b−2によって吊り下げられる構造物)のY軸に沿った軸周り慣性モーメント並びに第2トーションバー120a−2及び120b−2のねじりバネ定数に応じて定まる共振周波数で共振するように回転する。例えば、ミラー130のY軸に沿った軸回りの慣性モーメントがIaであり且つ第2トーションバー120a−2及び120b−2を1本のバネとみなした場合のねじりバネ定数がkaであるとすれば、ミラー130は、(1/(2π))×√(ka/Ia)にて特定される共振周波数(或いは、(1/(2π))×√(ka/Ia)のN倍若しくはN分の1倍(但し、Nは1以上の整数)の共振周波数)で共振するように、Y軸の方向に沿った軸を中心軸として回転する。このため、駆動源部160は、ミラー130が上述の共振周波数で共振するように、上記共振周波数に同期した態様で微振動を加える。
また、ミラー130の共振周波数は、厳密に言えば、ミラー130という回転体を含む回転系を支える土台の剛性や質量(或いは、慣性モーメント)によって変化しかねない。例えば、ミラー130aの共振周波数は、ミラー130という回転体を含む回転系を支える第1ベース110−1や第1トーションバー120a−1及び120b−1や第2ベース110−2等の剛性や質量(或いは、慣性モーメント)によって変化しかねない。このため、ミラー130を支える土台の剛性や質量(或いは、慣性モーメント)を考慮した上で、(1/(2π))×√(ka/Ia)という数式(或いは、当該数式を特定するパラメータであるka及びIa)に対して所定の補正演算を施した結果得られる共振周波数を、実際のミラー130の共振周波数として取り扱ってもよい。
ここで、図4を参照して、駆動源部160から加えられる微振動に起因した方向性のない力について更に説明する。ここに、図4は、駆動源部160から加えられる微振動に起因した方向性のない力について説明するための平面図である。尚、以下の説明では、説明を分かりやすくするために、図1に示す駆動源部160とは異なる構成を有する駆動源部160を用いて説明を進める。但し、図1に示す駆動源部160から加えられる微振動としての電磁力と図4に示す駆動源部160から加えられる微振動としての電磁力とは、実際上は同一の力(つまり、方向性のない力)である。
図4に示すように、駆動源部160は、伝達枝160bと、伝達枝160bを介して第1ベース110−1に接続される第1支持板160−1cであって且つY軸の方向に沿って相対向する第1枝160−1x及び160−1yを備える第1支持板160−1cと、伝達枝160bを介して第1ベース110−2に接続される第2支持板160−2cであって且つY軸の方向に沿って相対向する第2枝160−2x及び160−2yを備える第2支持板160−2cと、第1枝160−1x及び160−1yの夫々に巻かれた第1コイル160−1zと、第2枝160−2x及び160−2yの夫々に巻かれた第2コイル160−2zとを備えている。また、第1枝160−1x及び160−1y並びに第2枝160−2x及び160−2yの形状及び特性は同一であるとし、第1枝160−1xに巻かれたコイル160−1zの特性(例えば、巻き数等)及び第1枝160−1yに巻かれたコイル160−1zの特性(例えば、巻き数等)は同一であるとし、第2枝160−2xに巻かれたコイル160−2zの特性(例えば、巻き数等)及び第2枝160−2yに巻かれたコイル160−2zの特性(例えば、巻き数等)は同一であるものとする。
ここで、第1枝160−1x及び160−1y並びに第2枝160−2x及び160−2yの夫々に巻かれたコイル160−1z及び160−2zに電流を流すと、電磁相互作用により、第1枝160−1x及び第2枝160−2xに対して第1枝160−1y及び第2枝160−2yの方向に向かって引っ張られる力(つまり、Y軸の負の方向であって図4中下側に向かう方向に作用する力)が発生する場合には、第1枝160−1y及び第2枝160−2yに対しても、第1枝160−1x及び第2枝160−2xの方向に向かって引っ張られる力(つまり、Y軸の正の方向であって図4中上側に向かう方向に作用する力)が発生する。この力は、互いに逆向きで同じ大きさであるため、それらが外部に加速度を生じさせたり、それら自身に加速度を発生させることもなく、第1枝160−1xと第1枝160−1yとが接合する点P1(言い換えれば、伝達枝160b上の点P1)及び第2枝160−2xと第2枝160−2yとが接合する点P2(言い換えれば、伝達枝160b上の点P2)には微振動のみが伝達される。その結果、点P1及びP2における力には方向性がないことになる。同様に、電磁相互作用により、第1枝160−1x及び第2枝160−2xに対して第1枝160−1y及び第2枝160−2yから引き離される力(つまり、Y軸の正の方向であって図4中上側に向かう方向に作用する力)が発生する場合には、第1枝160−1y及び第2枝160−2yに対しても第1枝160−1x及び第2枝160−2xから引き離される力(つまり、Y軸の負の方向であって図4中下側に向かう方向に作用する力)が発生する。この力は、互いに逆向きで同じ大きさであるため、それらが外部に加速度を生じさせたり、それら自身に加速度を発生させることもなく、第1枝160−1xと第1枝160−1yとが接合する点P1及び第2枝160−2xと第2枝160−2yとが接合する点P2には微振動のみが伝達される。その結果、点P1及びP2における力には方向性がないことになる。
しかしながら、本願発明者の実験によれば、上記構成によって第1ベース110−1並びに第1トーションバー120a−1及び120b−1を介して伝わる微振動(つまり、波動エネルギーであって、方向性のない力)が第2ベース110−2内を伝搬し、その結果、ミラー130がY軸の方向に沿った軸を中心軸として回転することが判明している。つまり、駆動源部160により加えられる微振動が上述した方向性のない力(言い換えれば、波動エネルギー)として第2ベース110−2内を伝搬することで、ミラー130がY軸の方向に沿った軸を中心軸として回転することが判明している。
このように、第1実施例においては、ミラー130がミラー130並びに第2トーションバー120a−2及び120b−2に応じて定まる共振周波数で共振するように、Y軸の方向に沿った軸を中心軸としてミラー130を回転させることができる。加えて、第1実施例においては、X軸の方向に沿った軸を中心軸として第2ベース110−2を回転させることができる。ここで、ミラー130が第2トーションバー120a−2及び120b−2を介して第2ベース110−2に接続されていることを考慮すれば、X軸の方向に沿った軸を中心軸とする第2ベース110−2の回転に合わせて、ミラー130もまたX軸の方向に沿った軸を中心軸として回転する。その結果、ミラー130がX軸及びY軸の夫々を中心軸として共振するようにミラー130を回転させることができる。つまり、第2実施例においては、ミラー130はX軸を中心軸として回転駆動すると共に、Y軸を中心軸として自励共振する。
ここで、「共振」とは、無限小の力の繰り返しにより無限大の変位が生じる現象である。このため、ミラー130を回転させるために加えられる力を小さくしても、ミラー130の回転範囲(言い換えれば、回転方向の振幅)を大きくとることができる。つまり、ミラー130が回転するために必要な力を相対的に小さくすることができる。このため、ミラー130の回転に必要な力を加えるために必要な電力量をも少なくすることができる。従って、より効率的にミラー130を移動させることができ、その結果、MEMSスキャナ100の低消費電力化を実現することができる。
加えて、第1実施例では、方向性を有していない力を加えている。
ここで、比較例として、いわゆる方向性を有する力を加えることでミラー130の2軸回転駆動を行う構成(例えば、第2ベース110−2そのものをミラー130の回転方向に向かって大きくねじれさせ、そのねじれを第2トーションバー120a−2及び120b−2やミラー130に直接加えることでミラー130の2軸回転駆動を行う構成)を例にあげて説明する。この場合、ミラー130をX軸の方向に沿った軸を中心軸として回転させる方向性を有する力(例えば、第1ベース110−1を、X軸の方向に沿った軸を中心軸として回転させるようにねじれさせる力)をある駆動源部160から加えると共に、ミラー130をY軸の方向に沿った軸を中心軸として回転させる方向性を有する力(例えば、第2ベース110−2を、Y軸の方向に沿った軸を中心軸として回転させるようにねじれさせる力)を他の駆動源部160から加える必要がある。つまり、方向性を有する力を加えることでミラー130の2軸回転駆動を行う場合には、通常は、2つ以上の駆動源部160をMEMSスキャナが備えていなければならない。言い換えれば、方向性を有する力を加えることでミラー130の2軸回転駆動を行う場合には、1つの駆動源部160からは1つの方向に向かって作用する力しか加えることができないため、2つ以上の駆動源部160をMEMSスキャナが備えていなければならない。
しかるに、第1実施例では、微振動に起因した方向性のない力を加えることで、ミラー130の2軸回転駆動を行うことができる。ここで、微振動に起因した方向性のない力を加えているがゆえに、1つの駆動源部160から加えられた微振動(つまり、方向性のない力)は、第1トーションバー120a−1及び120b−1の弾性(つまり、ミラー130を支持する第2ベース110−2をX軸の方向に沿った軸を中心軸として回転させる弾性)並びに第2トーションバー120a−2及び120b−2の弾性(つまり、ミラー130をY軸の方向に沿った軸を中心軸として回転させる弾性)を利用して、ミラー130をX軸及びY軸の夫々の方向に沿った軸を中心軸として回転させることができる。つまり、第1実施例では、ミラー130の2軸回転駆動を行う場合であっても、2つの駆動源部160を備える必要は必ずしもない。このため、単一の駆動源部160を用いて、ミラー130の2軸回転駆動を行うための微振動に起因した方向性のない力を加えることができる。
加えて、仮に1つの駆動源部から2つの方向に向かって作用する力を加えることができたとしても、方向性を有する力を加えることでミラー130の2軸回転駆動を行う場合には、結局のところ、2つの方向に作用する成分(つまり、ミラー130をX軸の方向に沿った軸を中心軸として回転させる方向性を有する力の成分と、ミラー130をY軸の方向に沿った軸を中心軸として回転させる方向性を有する力の成分)を有する力を加える必要がある。しかるに、第1実施例では、微振動に起因した方向性のない力を波動エネルギーとして加えているため、力が作用する方向を考慮した上で当該力を加える必要がなくなるという利点も有している。
加えて、微振動に起因した方向性のない力を加えているがゆえに、駆動源部160の配置位置が限定されてしまうことはなくなる。言い換えれば、微振動に起因した方向性のない力を加えているがゆえに、ミラー130の回転の方向に依存して駆動源部160の配置位置が限定されてしまうことはなくなる。つまり、駆動源部160の配置位置がどのような位置に設定されたとしても、駆動源部160から加えられる微振動(つまり、方向性のない力)は、第2トーションバー120a−2及び120b−2の弾性を利用して、ミラー130をY軸の夫々の方向に沿った軸を中心軸として回転させることができる。これにより、MEMSスキャナ100の設計の自由度を相対的に増加させることができる。これは、各構成要件のサイズ的な又は設計的な制約が大きいMEMSスキャナにとって実践上非常に有利である。
更に第1実施例では、第2ベース110−2の裏側にリブ119が形成されているため、駆動源部160から加えられる微振動によって、第2ベース110−2そのものが波打つように変形振動する。以下、図5及び図6を参照して、第2ベース110−2の変形振動の態様について説明する。図5及び図6の夫々は、第2ベース110−2の変形振動の態様を、ミラー130の回転の態様と関連付けて示す側面図である。尚、図5及び図6は、図3に示す矢印「III」の方向から第2ベース110−2及びミラー130を観察した場合の側面図を示す。
図5(a)に示すように、駆動源部160から第2ベース110−2に対して微振動が加えられていない状態では、第2ベース110−2は変形振動しておらず、ミラー130も回転していない。
図5(b)に示すように、駆動源部160から第2ベース110−2に対して微振動が加えられると、リブ119が形成されている領域110aは、剛性が相対的に高いため、微振動によって屈曲しにくい一方で、リブ119が形成されていない領域110bは、剛性が相対的に低いため、微振動によって屈曲しやすい。その結果、第2ベース110−2は、リブが形成されている領域110aを節とし且つリブ119が形成されていない領域110bを腹にして、X軸の方向に沿って波打つように変形振動する。より具体的には、第2ベース110−2は、リブ119が形成されている部分を節とし且つリブ119が形成されていない部分を腹にする定常波のようにその外観を変形させながら振動する。尚、図5(b)に示す例では、第2ベース110−2は、その中心から折れ曲がるように変形振動する。但し、第2ベース110−2は、他の変形モード(例えば、更に多くの節を有する変形モード)で変形振動してもよい。
尚、第1実施例における第2ベース110−2の変形振動は、リブ119が適切な箇所に形成されることによって実現されている。従って、上述したリブ119は、リブが形成されている領域110aを節とし且つリブ119が形成されていない領域110bを腹にして第2ベース110−2がX軸の方向に沿って変形振動するように、第2ベース110−2上の適切な箇所に形成されることが好ましい。このとき、第2トーションバー120a−2及び120b−2が接続されている箇所が領域110aに対応することが好ましい。例えば、上述したリブ119は、X軸の方向に沿った曲げ剛性が相対的に高い部分とX軸の方向に沿った曲げ剛性が相対的に低い部分とがX軸の方向に沿って順に現れるように、第2ベース110−2上の適切な箇所に形成されることが好ましい。或いは、例えば、上述したリブ119は、X軸の方向に沿った曲げ剛性が相対的に高い部分とX軸の方向に沿った曲げ剛性が相対的に低い部分とがX軸の方向に沿って順に現れると共に、第2トーションバー120a−2及び120b−2が接続されている箇所並びに第2ベース110−2のX軸方向における両端部分の夫々が領域110aになり且つその他の箇所が領域110bになるように、第2ベース110−2上の適切な箇所に形成されることが好ましい。
このとき、駆動源部160から加えられる微振動の周期によっては、第2ベース110−2は、共振するように変形振動する。ここで、第1実施例では、第2ベース110−2の変形振動における共振周波数は、ミラー130の共振周波数と同一であることが好ましい。言い換えれば、ミラー130の共振周波数と同一の共振周波数で第2ベース110−2が変形振動するように、第2ベース110−2の特性が定められることが好ましい。例えば、ミラー130の共振周波数と同一の共振周波数で変形振動するように、第2ベース110−2の裏側に形成されるリブ119の特性(例えば、形成位置や、大きさや、質量や、剛性や、密度等)が定められることが好ましい。
尚、第2ベース110−2の変形振動における共振周波数は、第2ベース110−2及びリブ119を含む構造物を一つのバネ系としてみなし、当該バネ系に付加されている質量をMとし且つ当該バネ系のバネ定数をkとした場合には、(1/(2π))×√(k/M)にて特定される。但し、当該バネ系が一つのバネに一つの質量構造物が接続された(言い換えれば、固有振動数が1個であり且つ固有振動モードが1個である)1自由度のバネ系であれば、(1/(2π))×√(k/M)という共振周波数を採用することができる。一方で、当該バネ系が一つのバネに2つの質量構造物が接続された2自由度以上のバネ系であれば、(1/(2π))×√(k/M)という共振周波数における「k」及び「M」等を補正することが好ましい。尚、第2ベース110−2及びリブ119を含む構造物を一つのバネ系とみなした場合、当該バネ系に付加されている質量M及び当該バネ系のバネ定数kは、第2ベース110−2の剛性及び質量に応じて定まる。第1実施例では、第2ベース110−2の剛性及び質量をリブ119によって調整している。このため、第2ベース110−2の共振周波数は、実質的には、上述したリブ119の特性によって定められる。
また、第2ベース110−2の変形振動における共振周波数は、厳密に言えば、第2ベース110−2という変形振動体を含む振動系を支える土台の剛性や質量(或いは、慣性モーメント)によって変化しかねない。例えば、第2ベース110−2の変形振動における共振周波数は、第2ベース110−2という変形振動体を含む振動系を支える第1ベース110−1や第1トーションバー120a−1及び120b−1等の剛性や質量(或いは、慣性モーメント)によって変化しかねない。このため、第2ベース110−2を支える土台の剛性や質量(或いは、慣性モーメント)を考慮した上で、(1/(2π))×√(k/M)という数式(或いは、当該数式を特定するパラメータであるk及びM)に対して所定の補正演算を施した結果得られる共振周波数を、実際の第2ベース110−2の変形振動における共振周波数として取り扱ってもよい。
また、第2ベース110−2の変形振動における共振は、第2ベース110−2の変形振動に係るバネ系を一つのバネに2つの質量構造物が接続された2自由度のバネ系とみなすことによって規定することに代えて、第2ベース110−2という板状の部材の高次の共振モードとみなすことによって規定してもよい。
ここで、上述したように、駆動源部160からはミラー130が上述の共振周波数で共振するように当該共振周波数に同期した態様で微振動が加えられている。従って、このような微振動の印加により、第2ベース110−2は、共振するように変形振動する。つまり、図5(a)から図5(g)に時系列的に示すように、第2ベース110−2は、両端が固定された定常波(より具体的には、第2ベース110−2の両端及び中間部が節となる定常波)の如き外観を有するように変形振動する。つまり、第2ベース110−2は、ミラー130の回転軸に直交する方向(つまり、X軸の方向)に沿って定常波が現れるような外観を有する。
尚、図5(a)から図5(g)は、第2ベース110−2の変形振動の位相とミラー130の回転の位相とが同相となる例を示している。本願発明者等の実験によれば、第2ベース110−2の変形振動の共振周波数及びミラー130の共振周波数の夫々を39kHzに設定した場合に、第2ベース110−2の変形振動の位相とミラー130の回転の位相とが同相になっている。具体的には、図5(a)から図5(c)に示す状態は、第2ベース110−2が時計回りに回転するような変形振動をしており、且つ、ミラー130が時計回りに回転する状態である。同様に、図5(c)から図5(g)に示す状態は、第2ベース110−2が反時計回りに回転するような変形振動をしており、且つ、ミラー130が反時計回りに回転する例を示している。尚、図5(g)に示す状態の第2ベース110−2及びミラー130は、その後、図5(f)に示す状態を経てから図5(a)に示す状態に遷移する。以降、第2ベース110−2及びミラー130は、図5(a)から図5(g)に示す時系列に従って変形振動ないしは回転を続ける。
他方で、図6(a)から図6(g)は、第2ベース110−2の変形振動の位相とミラー130の回転の位相とが逆相となる例を示している。本願発明者等の実験によれば、第2ベース110−2の変形振動の共振周波数及びミラー130の共振周波数の夫々を53kHzに設定した場合に、第2ベース110−2の変形振動の位相とミラー130の回転の位相とが逆相になっている。具体的には、図6(a)から図6(c)に示す状態は、第2ベース110−2が時計回りに回転するような変形振動をしており、且つ、ミラー130が反時計回りに回転する状態である。同様に、図6(c)から図6(g)に示す状態は、第2ベース110−2が反時計回りに回転するような変形振動をしており、且つ、ミラー130が時計回りに回転する例を示している。尚、図6(g)に示す状態の第2ベース110−2及びミラー130は、その後、図6(f)に示す状態を経てから図6(a)に示す状態に遷移する。以降、第2ベース110−2及びミラー130は、図6(a)から図6(g)に示す時系列に従って変形振動ないしは回転を続ける。
このような態様で第2ベース110−2が変形振動しているため、ミラー130の回転量は、ミラー130そのものの回転量に加えて第2ベース110−2の変形振動量にも依存することになる。例えば、第2ベース110−2が変形振動しない比較例のMEMSスキャナに対してある電圧量V1に応じて発生する微振動を加えた場合に、ミラー130が角度θ1だけ回転したとする。この場合、第2ベース110−2が変形振動する第1実施例のMEMSスキャナ100に対して同じ電圧量Vに応じて発生する微振動を加える場合、ミラー130が角度θ1だけ回転すると共に、第2ベース110−2もまた角度θ2だけ回転するように変形振動する。つまり、第1実施例のMEMSスキャナ100によれば、電圧量Vに応じて発生する微振動を加えた場合のミラー130の回転量(回転角度)がθ1+θ2になる。従って、第1実施例のMEMSスキャナ100によれば、同一の電圧量Vに応じて発生する微振動を加えた場合に、比較例のMEMSスキャナと比較して、ミラー130の回転量(回転角度)を増大させることができる。従って、同一の微振動(ないしは、同一の微振動を発生させるための同一の電圧量或いは電流量)に対するミラー130の回転量(言い換えれば、ミラー130の回転の感度)を相対的に大きくすることができる。
加えて、第2ベース110−2の変形振動は、リブ119を形成することによって比較的容易に実現することができる。従って、第1実施例のMEMSスキャナ100を比較的容易に実現することができる。
尚、上述した第1実施例では、ミラー130を回転させるための力(つまり、駆動源部から加えられる)として、微振動を用いる例について説明している。しかしながら、ミラー130を回転させるための力として、微振動以外の任意の力を用いてもよい。例えば、ミラー130を回転させるための力として、例えば、特開2007−522529号公報に記載されているように、ミラー130を直接的に回転させる方向(つまり、ミラー130の回転方向)に直接的に作用する方向性のある力を用いてもよい。或いは、例えば、ミラー130を回転させるための力として、例えば、特開2007−522529号公報に記載されているように、ミラー130を間接的に回転させる方向に作用する方向性のある力(例えば、圧電素子の伸縮を伝搬させることでトーションバーのねじれ振動を生み出し、結果、当該トーションバーのねじれ振動に応じてミラー130を回転させる力)を用いてもよい。言い換えれば、例えば、ミラー130を回転させるための力として、第1トーションバー120a−1及び120b−1並びに第2トーションバー120a−1から120d−1を直接的に又は間接的にねじれさせる方向に作用する方向性のある力を用いてもよい。以下の第2実施例から第3実施例においても同様である。
(2)第2実施例
続いて、図7を参照して、第2実施例のMEMSスキャナ101について説明する。図7は、第2実施例のMEMSスキャナ101の基本構成を概念的に示す平面図である。尚、上述の第1実施例のMEMSスキャナ100と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
図7に示すように、第2実施例のMEMSスキャナ101は、第1実施例のMEMSスキャナ100と同様に、第1ベース110−1と、第1トーションバー120a−1及び120b−1と、第2ベース110−2と、第2トーションバー120a−2及び120b−2と、ミラー130とを備えている。第2実施例のMEMSスキャナ102は、電磁力に起因した力(微振動)を加える駆動源部160に代えて、圧電効果に起因した力(微振動)を加える駆動源部140を備えている。
駆動源部140は、第1圧電素子140−1aと、第2圧電素子140−2aと、伝達枝140bと、第1空隙140−1dを有すると共に伝達枝140bを介して第1ベース110−1に固定される第1支持板140−1cと、第2空隙140−2dを有すると共に伝達枝140bを介して第1ベース110−1に固定される第2支持板140−2cとを備えている。第1支持板140−1c上では、第1空隙140−1dによって規定される相対向する第1枝140−1e及び140−1fによって、第1圧電素子140−1aが挟持される。第2支持板140−2c上では、第2空隙140−2dによって規定される相対向する第2枝140−2e及び140−2fによって、第2圧電素子140−2aが挟持される。不図示の電極を介して第1圧電素子140−1aに電圧を印加することで、第1圧電素子140−1aはその形状を変化させる。この第1圧電素子140−1aの形状の変化は、第1枝140−1e及び140−1fの形状の変化を引き起こす。その結果、第1枝140−1e及び140−1fの形状の変化は、後に詳述するように微振動(ないしは、波動エネルギー)として伝達枝140bを介して第1ベース110−1に伝えられる。同様に、不図示の電極を介して第2圧電素子140−2aに電圧を印加することで、第2圧電素子140−2aはその形状を変化させる。この第2圧電素子140−2aの形状の変化は、第2枝140−2e及び140−2fの形状の変化を引き起こす。その結果、第2枝140−2e及び140−2fの形状の変化は、後に詳述するように微振動(ないしは、波動エネルギー)として伝達枝140bを介して第1ベース110−1に伝えられる。
このような駆動源部140から加えられる微振動は、図4を用いて説明した方向性のない力となる。従って、第2実施例のMEMSスキャナ101によれば、上述した第2実施例のMEMSスキャナ100が享受する各種効果と同様の効果を好適に享受することができる。
(3)第3実施例
続いて、図8を参照して、第3実施例のMEMSスキャナ102について説明する。図8は、第3実施例のMEMSスキャナ102の基本構成を概念的に示す平面図である。尚、上述の第1実施例のMEMSスキャナ100と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
図8に示すように、第3実施例のMEMSスキャナ102は、第1実施例のMEMSスキャナ100と同様に、第1ベース110−1と、第1トーションバー120a−1及び120b−1と、第2ベース110−2と、第2トーションバー120a−2及び120b−2と、ミラー130とを備えている。第3実施例のMEMSスキャナ102は、電磁力に起因した力(微振動)を加える駆動源部160に代えて、静電力に起因した力(微振動)を加える駆動源部150を備えている。
駆動源部150(150aから150c)は、第2ベース110−2の外側の辺に沿って配置される櫛歯状の第1電極151a及び151bと、第1ベース110−1の内側の辺に固定されると共に第1電極151a及び151bの間に分布する櫛歯状の第2電極152a及び152bとを備える。尚、第1電極151a及び第2電極152aは、上述した磁極162aと同様の位置に配置される。第1電極151b及び第2電極152bは、上述した磁極162bと同様の位置に配置される。
この場合、第1電極151a及び151b(又は、第2電極152a及び152b)には、不図示の駆動源部制御回路から所望のタイミングで、所望の電圧が印加される。第1電極と第2電極との間の電位差に起因して、第1電極151a及び151bと第2電極152a及び152bとの間には静電力(言い換えれば、クーロン力)が生ずる。その結果、静電力が発生する。この静電力は微振動として第2ベース110−2に伝えられる。
このような駆動源部150から加えられる微振動は、図4を用いて説明した方向性のない力となる。従って、第3実施例のMEMSスキャナ102によれば、上述した第1実施例のMEMSスキャナ100が享受する各種効果と同様の効果を好適に享受することができる。
尚、上述した第1実施例のMEMSスキャナ100から第3実施例のMEMSスキャナ102は、例えば、ヘッドアップディスプレイや、ヘッドマウントディスプレイや、レーザスキャナや、レーザプリンタや、走査型駆動装置等の各種電子機器に対して適用することができる。従って、これらの電子機器もまた、本発明の範囲に含まれるものである。
また、本発明は、請求の範囲及び明細書全体から読み取るこのできる発明の要旨又は思想に反しない範囲で適宜変更可能であり、そのような変更を伴う駆動装置もまた本発明の技術思想に含まれる。
100〜102 MEMSスキャナ
110−1 第1ベース
110−2 第2ベース
120−1 第1トーションバー
120−2 第2トーションバー
130 ミラー
140、150、160 駆動源部

Claims (5)

  1. 第1ベース部と、
    前記第1ベース部に取り囲まれる第2ベース部と、
    前記第1ベース部と前記第2ベース部とを接続し、且つ前記第2ベース部を他の方向に沿った軸を中心軸として回転させるような弾性を有する第1弾性部と、
    回転可能な被駆動部と、
    前記第2ベース部と前記被駆動部とを接続し、且つ前記被駆動部を前記他の方向とは異なる一の方向に沿った軸を中心軸として回転させるような弾性を有する第2弾性部と、
    前記被駆動部及び前記第2弾性部により定まる共振周波数で前記被駆動部が前記一の方向に沿った軸を中心軸として共振しながら回転するように前記被駆動部を回転させるための加振力を前記第2ベース部に加える印加部と
    を備え、
    前記印加部は、前記他の方向に沿って前記第2ベース部が変形振動し且つ当該変形振動が共振となるように前記加振力を加え、
    前記第2ベース部が共振する共振周波数は、前記被駆動部の共振周波数に基づいて決定され、
    前記第2ベース部の前記他の方向に沿った曲げ剛性が前記第2ベース部の前記一の方向に沿った曲げ剛性よりも低くなることを特徴とする駆動装置。
  2. 前記第2ベース部の一部の箇所の剛性が前記第2ベース部の他の一部の箇所の剛性よりも高くなることで、前記第2ベース部の前記他の方向に沿った曲げ剛性が前記第2ベース部の前記一の方向に沿った曲げ剛性よりも低くなることを特徴とする請求項に記載の駆動装置。
  3. 前記第2ベース部の一部の箇所の質量が前記第2ベース部の他の一部の箇所の質量よりも大きくなることで、前記第2ベース部の前記他の方向に沿った曲げ剛性が前記第2ベース部の前記一の方向に沿った曲げ剛性よりも低くなることを特徴とする請求項に記載の駆動装置。
  4. 前記被駆動部は、前記弾性部を介して、前記第2ベース部の変形振動における節に対応する箇所に接続されており、
    前記第2ベース部の変形振動における節に対応する箇所の剛性が、前記第2ベース部の変形振動における節以外の箇所の剛性よりも高いことを特徴とする請求項に記載の駆動装置。
  5. 前記被駆動部は、前記弾性部を介して、前記第2ベース部の変形振動における節に対応する箇所に接続されており、
    前記第2ベース部の変形振動における節に対応する箇所の質量が、前記第2ベース部の変形振動における節以外の箇所の質量よりも大きいことを特徴とする請求項に記載の駆動装置。
JP2013520361A 2011-06-15 2011-06-15 駆動装置 Expired - Fee Related JP5624213B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013520361A JP5624213B2 (ja) 2011-06-15 2011-06-15 駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013520361A JP5624213B2 (ja) 2011-06-15 2011-06-15 駆動装置

Publications (2)

Publication Number Publication Date
JP5624213B2 true JP5624213B2 (ja) 2014-11-12
JPWO2012172652A1 JPWO2012172652A1 (ja) 2015-02-23

Family

ID=51942755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013520361A Expired - Fee Related JP5624213B2 (ja) 2011-06-15 2011-06-15 駆動装置

Country Status (1)

Country Link
JP (1) JP5624213B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015934A (ja) * 2017-07-10 2019-01-31 純 鈴木 駆動装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004034256A (ja) * 2002-07-05 2004-02-05 Canon Inc マイクロ構造体及びその製造方法
JP2007312465A (ja) * 2006-05-16 2007-11-29 Omron Corp 駆動装置、光走査型装置及び物体情報検知装置
JP2009258210A (ja) * 2008-04-14 2009-11-05 Panasonic Corp 光学反射素子
JP2010283994A (ja) * 2009-06-04 2010-12-16 Hoya Corp 静電型アクチュエータ
JP2011013401A (ja) * 2009-07-01 2011-01-20 National Institute Of Advanced Industrial Science & Technology 光ビーム走査装置
WO2011061833A1 (ja) * 2009-11-19 2011-05-26 パイオニア株式会社 駆動装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004034256A (ja) * 2002-07-05 2004-02-05 Canon Inc マイクロ構造体及びその製造方法
JP2007312465A (ja) * 2006-05-16 2007-11-29 Omron Corp 駆動装置、光走査型装置及び物体情報検知装置
JP2009258210A (ja) * 2008-04-14 2009-11-05 Panasonic Corp 光学反射素子
JP2010283994A (ja) * 2009-06-04 2010-12-16 Hoya Corp 静電型アクチュエータ
JP2011013401A (ja) * 2009-07-01 2011-01-20 National Institute Of Advanced Industrial Science & Technology 光ビーム走査装置
WO2011061833A1 (ja) * 2009-11-19 2011-05-26 パイオニア株式会社 駆動装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015934A (ja) * 2017-07-10 2019-01-31 純 鈴木 駆動装置

Also Published As

Publication number Publication date
JPWO2012172652A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
WO2012172652A1 (ja) 駆動装置
JP4827993B2 (ja) 駆動装置
WO2013168485A1 (ja) 駆動装置
JP2009104102A (ja) ミラーから分離されたアクチュエータを備えたmemsスキャナ
JP2016033593A (ja) スキャナ装置
JP6935254B2 (ja) 駆動装置
JP6014234B2 (ja) 駆動装置
JP4849497B2 (ja) 駆動装置
JP4958195B2 (ja) 駆動装置
JP5624213B2 (ja) 駆動装置
JP2014199326A (ja) 駆動装置
JP2009122293A (ja) 揺動体装置、光偏向器、及びそれを用いた光学機器
WO2012172653A1 (ja) 駆動装置
JP4958196B2 (ja) 駆動装置
JP4896270B1 (ja) 駆動装置
JP6914124B2 (ja) 駆動装置
JP6785588B2 (ja) 駆動装置
JP2008058434A (ja) 揺動装置、揺動装置を用いた光偏向装置、及び光偏向装置を用いた画像形成装置
JP6929006B2 (ja) 駆動装置
WO2012172654A1 (ja) 駆動装置
WO2013168273A1 (ja) 駆動装置
WO2013168271A1 (ja) 駆動装置
JP4958197B2 (ja) 駆動装置
JP4852185B2 (ja) 駆動装置
WO2013168275A1 (ja) 駆動装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140925

R150 Certificate of patent or registration of utility model

Ref document number: 5624213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees