KR20190120291A - 전류 재이용형 전계 효과 트랜지스터 증폭기 - Google Patents

전류 재이용형 전계 효과 트랜지스터 증폭기 Download PDF

Info

Publication number
KR20190120291A
KR20190120291A KR1020197027542A KR20197027542A KR20190120291A KR 20190120291 A KR20190120291 A KR 20190120291A KR 1020197027542 A KR1020197027542 A KR 1020197027542A KR 20197027542 A KR20197027542 A KR 20197027542A KR 20190120291 A KR20190120291 A KR 20190120291A
Authority
KR
South Korea
Prior art keywords
fet
drain
gate
source
field effect
Prior art date
Application number
KR1020197027542A
Other languages
English (en)
Other versions
KR102322947B1 (ko
Inventor
히토시 구루스
Original Assignee
미쓰비시덴키 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰비시덴키 가부시키가이샤 filed Critical 미쓰비시덴키 가부시키가이샤
Publication of KR20190120291A publication Critical patent/KR20190120291A/ko
Application granted granted Critical
Publication of KR102322947B1 publication Critical patent/KR102322947B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0283Reducing the number of DC-current paths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • H03F1/342Negative-feedback-circuit arrangements with or without positive feedback in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • H03F3/604Combinations of several amplifiers using FET's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/129Indexing scheme relating to amplifiers there being a feedback over the complete amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/267A capacitor based passive circuit, e.g. filter, being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/411Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising two power stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)

Abstract

본 발명에 따른 전류 재이용형 FET 증폭기는, 초단의 제 1 FET의 드레인과 다음 단의 제 2 FET의 게이트 사이에 용량을 마련하고, 제 2 FET의 게이트 전압을 제 1 FET의 드레인 전압과 전기적으로 분리하고, FET의 포화 전류 Idss의 변동에 대해서, 제 2 FET의 드레인 전류의 변동과 제 1 FET의 드레인 전압의 변동을 억제하도록 제 1 FET의 게이트 전압과 제 2 FET의 게이트 전압을 제어하는 제어 회로를 구비한다. 나아가 본 발명에 따른 전류 재이용형 FET 증폭기는, 디플리션 모드의 FET만을 이용해서, 양의 단일 전원으로 동작 가능한 회로 구성을 제공한다.

Description

전류 재이용형 전계 효과 트랜지스터 증폭기
본 발명은, 디플리션 모드의 전계 효과 트랜지스터(FET)를 이용한 전류 재이용형 FET 증폭기에 있어서의 바이어스 전류 제어에 관한 것이다.
근년, 자동차의 자동 운전이나 충돌 시의 충격 완화를 목적으로 하여, 마이크로파 대역·밀리파 대역을 이용한 차량 탑재 레이더의 수요가 증가하고 있다. 이 차량 탑재 레이더의 원방(遠方) 감시에는, 직진성이 양호하고, 또한 비교적 우천에서도 감쇠하기 어려운 77GHz 대역의 밀리파 대역이 사용되고 있다. 그 레이더의 신호의 전력 증폭이나 주파수 변환을 담당하는 회로에는, 고주파에서의 고출력·고이득 특성이 우수한 GaAs계 전계 효과 트랜지스터(이하 전계 효과 트랜지스터를 FET라고 부름)를 이용한 전력 증폭기가 종종 이용되고 있다(예를 들면 특허문헌 1(P. 4, 도 1), 또는 비특허문헌 1(Fig. 9) 참조).
일본 특허공개 2012-119794호
2011 Proc. Of the 6th European Microwave Integrated Circuits Conference, pp. 29-32, "E-Band Radio Link Communication Chipset in Cost Effective Wafer Level Chip Size Package (WLCSP) Technology" 2005 IEEE Journal of Solid-State Circuits, pp. 1288-1295, "A 1.8-V Operation 5-GHz-Band CMOS Frequency Doubler Using Current-Reuse Circuit Design Technique"
특허문헌 1 및 비특허문헌 1에는, GaAs계 FET를 이용한 전력 증폭기의 예가 나타나 있다. 당해 문헌에 나타내는 바와 같이, 차량 탑재라고 하는 제약으로부터 차 내에서 일반적으로 이용 가능한, 5V의 단일 전원으로 동작 가능한 회로 구성이 선택되고 있고, 그 대표예가 전류 재이용형의 회로 구성으로 이루어져 있다. 도 6에, GaAs계 FET를 이용한 전류 재이용형 증폭기의 회로 구성을 나타낸다. 도면에서, 11, 12는 디플리션 모드(노멀리 온)의 GaAs계 FET(통상은 고전자 이동도 트랜지스터라고 불리는 HEMT가 사용됨), 31∼33은 저항, 21∼26은 용량, 51∼54는 인덕턴스와 마찬가지의 역할을 담당하는 전송 선로, 1은 RF 신호의 입력 단자, 2는 RF 신호의 출력 단자, 3은 증폭부의 전원 단자, Idd는 FET(12)를 흐르는 드레인 전류이다. 22, 24는 FET(11, 12)의 소스를 RF적으로 접지하기 위한 용량이고, 용량(21)은 입력의 DC 저지 용량이다. 용량(23)과 전송 선로(51, 52)는 단간(interstage) 정합 회로를 형성하고, 용량(25, 26)과 전송 선로(53, 54)는 출력 정합 회로와 FET(12)의 드레인 급전 회로를 형성하고 있다. 또한, 저항(31)은 FET(11)의 게이트 전위를 DC적으로 0V에 고정하는 역할을 담당하고, 저항(32, 33)은 자기 바이어스용의 저항이다.
다음으로 바이어스에 관해서 설명한다. FET(12)를 흐르는 드레인 전류(Idd)는, 저항(33)을 흐르고, 그 후 FET(11)의 드레인 전류로서 재차 흐르고, 마지막으로 저항(32)을 통과해서 접지에 흐른다. FET(11)의 게이트 바이어스(게이트·소스간 전압)는, 저항(32)에 의해서 게이트 전압이 저항(31)에 의해 0V에 고정되어 있기 때문에, 저항(32)과 전류(Idd)의 곱의 전압에 의해, FET(11)의 게이트·소스간 전압은 음으로 자기 바이어스된다. FET(12)의 게이트·소스간 전위도 마찬가지로, 저항(33)과 전류(Idd)의 곱에 의해 음으로 자기 바이어스된다.
FET(12)를 흐른 전류(Idd)가 재차 FET(11)에도 흐르기 때문에, 본 회로 구성은 전류 재이용형이라고 불린다. FET(11, 12)는 RF 증폭의 역할도 담당하고, 용량(22, 24)에 의해 FET(11, 12)는 RF적으로 소스 접지되어 있으므로, 도 5의 회로는, 소스 접지의 2단 증폭기와 등가이다. 그러나, 전류에 관해서는 동일한 Idd가 FET(11, 12)를 공통으로 흐르기 때문에, 전원(Vdd)으로부터 소비되는 전류는 Idd만이면 된다.
한편, 전원 전압 Vdd/2가 FET(11, 12)의 드레인 단자에 각각 인가되는 통상의 소스 접지형 2단 증폭기인 경우, FET F1 및 F2에 전류(Idd)가 흐른다고 하면, 전원 전압 Vdd/2로부터 소비되는 전류는 2·Idd가 되어, 전류 재이용형의 2배가 된다. 배터리 구동의 제품에서는 주로 배터리의 전류 용량이 제한되므로, 전류 재이용형의 회로를 채용함으로써, 소비 전류를 삭감할 수 있는 경우가 많다.
차량 탑재 레이더용의 RF 증폭부에 전류 재이용 회로가 적용되는 이유는, 이 전류 삭감 효과보다도 오히려 GaAs계 FET의 내압 제약에 관계되는 것이 크다. 밀리파 대역에서 적용 가능한 FET는 0.2μm 이하의 짧은 게이트 길이 때문에, DC적인 드레인·소스간 내압이 4V 이하인 경우가 많고, 경우에 따라서는 3V 정도인 경우도 있다. 그 때문에, 자동차에 탑재되는 표준 전원 전압 5V를 직접 인가할 수 없는 경우가 많다. 도 6에 나타내는 전류 재이용 회로의 경우, FET 1단당 DC 인가 전압은 5V의 절반인 2.5V가 되어, 4V의 내압보다도 충분히 낮게 설정할 수 있으므로, 전원 전압 5V를 증폭기의 전원으로서 이용할 수 있다.
그러나, GaAs계 FET는 통상 디플리션 모드이기 때문에, 인핸스먼트 모드의 CMOS계나 바이폴러계 디바이스에 비해, 프로세스 편차(process variation) 변동에 의존하지 않고 일정한 드레인 전류를 공급할 수 있는 바이어스 회로를 구성하는 것이 일반적으로 어렵다. 예를 들면, 비특허문헌 2에 기재된 전류 재이용 회로는 인핸스먼트 모드의 nMOS이기 때문에, 프로세스 편차에 강한 전류 미러형의 바이어스 회로를 적용할 수 있다.
도 7은, 도 6의 회로에 있어서, FET의 Idss(게이트·소스간 전압 0V일 때의 FET의 드레인 전류)의 변동에 대한 회로의 드레인 전류(Idd)의 변동의 시뮬레이션 결과를 나타낸다. 전원 전압은 5V, FET는 게이트 길이 0.1um의 GaAs계 HEMT를 사용했다. 도면에는, 저항(32, 33)의 값이 작은 경우의 특성(301)과 큰 경우의 특성(302)이 플로팅되고 있다. 도면 중의 A1∼A4는 점선의 교점을 나타낸다. 도면으로부터, Idss의 변화에 대해서, 특성(301)의 드레인 전류(Idd)의 변화는 특성(302)에 비해 크다. Idss의 ±20%의 변동에 대해서, 특성(301)에서는 24mA∼31.5mA(Idss의 변동 없을 때의 드레인 전류 27.5mA에 대해서 27% 변화)로 크게 변동하는 것이, 특성(302)에서는 18mA∼21mA(Idss의 변동 없을 때의 드레인 전류 19.5mA에 대해서 15% 변화)로 변동은 작다. 또한, 특성(302)의 드레인 전류는, 전류 변화는 작지만, 저항값이 크기 때문에 Idss 변동 없을 때의 드레인 전류값 자신이 낮아져 버린다.
밀리파 대역의 경우, FET가 가지는 이득을 최대한으로 인출하기 위해서, 게이트 전압 0V보다 조금 낮은 전압(예를 들면 -0.05V∼-0.15V)으로 설정하는 경우가 많기 때문에, 저항(32, 32)의 값은 작다. 그 결과, 도 7의 특성(301)에 나타내는 바와 같이 자기 바이어스 회로만으로는 큰 드레인 전류의 변화를 수반한다. 바이어스 전류의 큰 변화는, 증폭기의 이득 특성을 크게 변동시키므로, 그 억제가 과제였다. 음의 전원을 이용한 Idss의 변화를 억제하는 바이어스 회로에 관한 보고는 지금까지도 있었지만, 본원에서 취급하는, 양의 단일 전원으로 동작 가능한 바이어스 회로의 제공과 Idss의 프로세스 변동에 대해서 드레인 전류의 변화를 억제할 수 있는 회로의 제공이 과제였다.
본 발명에 따른 전류 재이용형 FET 증폭기는, RF 신호가 입력되는 제 1 게이트와, 제 1 소스와, 제 1 드레인을 갖는 제 1 전계 효과 트랜지스터와, 제 1 소스와 접지용 단자 사이에 접속된 제 1 저항과, 제 2 소스와, 제 2 게이트와, 전원용 단자에 접속되고 또한 증폭된 RF 신호를 출력하는 제 2 드레인을 갖는 제 2 전계 효과 트랜지스터와, 제 1 드레인과 제 2 소스 사이에 접속된 제 2 저항과, 제 1 드레인과 제 2 게이트 사이에 접속된 용량과, 제 3 소스, 전원용 단자에 접속된 제 3 드레인, 및 접지용 단자에 접속된 제 3 게이트를 갖는 제 3 전계 효과 트랜지스터와, 제 4 소스와, 제 4 드레인과, 제 3 소스에 접속된 제 4 게이트를 갖는 제 4 전계 효과 트랜지스터와, 제 4 소스와 접지용 단자 사이에 접속된 제 1 다이오드와, 전원 단자와 제 4 드레인 사이에 접속된 제 3 저항과, 제 4 드레인과 제 1 게이트 사이에 접속된 제 4 저항과, 제 4 드레인과 상기 제 2 게이트 사이에 접속된 제 5 저항을 구비한다.
본 발명에 따른 전류 재이용형 FET 증폭기는, FET의 포화 전류 Idss의 프로세스 편차에 따라, 증폭용 FET의 게이트 전압 또는 증폭용 FET의 자기 바이어스용의 저항값을 변화시키므로, 증폭기의 드레인 전류의 변화를 억제하는 효과를 갖는다. 나아가, 초단의 FET의 드레인 전압의 변동도 억제할 수 있으므로, Idss의 프로세스 편차에 대해서 FET의 드레인·소스간 DC 내압을 초과하는 상태를 회피할 수 있다.
도 1은 실시형태 1에 따른 전류 재이용형 FET 증폭기의 회로 구성.
도 2는 실시형태 1에 따른 전류 재이용형 FET 증폭기와 비교하기 위한 별도의 회로 구성.
도 3은 실시형태 1에 따른 전류 재이용형 FET 증폭기의 회로 구성의 Idss의 변동에 대한 드레인 전류(Idd)의 시뮬레이션 결과.
도 4는 실시형태 1에 따른 전류 재이용형 FET 증폭기의 회로 구성의 Idss의 변동에 대한 FET(11)의 드레인 전압의 시뮬레이션 결과.
도 5는 실시형태 2에 따른 전류 재이용형 FET 증폭기의 회로 구성.
도 6은 비교를 위한 전류 재이용형 FET 증폭기 전체의 회로 구성.
도 7은 비교를 위한 전류 재이용형 FET 증폭기의 회로 구성의 Idss의 변동에 대한 드레인 전류(Idd)의 시뮬레이션 결과.
본 발명의 실시형태에 따른 전류 재이용형 FET 증폭기에 대해서 도면을 참조해서 설명한다. 이미 기술한 도면도 포함시키고, 동일하거나 또는 대응하는 구성 요소에는 동일한 부호를 붙여, 설명의 반복을 생략하는 경우가 있다. 이하에, GaAs계 디플리션 모드 FET(고전자 이동도 트랜지스터의 HEMT를 포함함)를 예로 설명한다.
[실시형태 1]
(구성의 설명)
도 1에, 본 발명의 실시형태 1에 따른 전류 재이용형 FET 증폭기의 증폭부(101)의 회로 구성과 제어 회로부(102)의 회로 구성을 나타낸다. 도 1에서는 도면 간편화를 위해서, 전송 선로 등을 생략하고, 주로 DC적으로 기여하는 소자만을 나타내고 있다. 도 6과 마찬가지로, FET(11)의 소스와 접지 사이에 저항(32)과 용량(22)을 병렬로 접속하고, DC 동작상의 직류 부귀환과 RF 동작상의 소스 접지를 구성하고 있다. 드레인 전류(Idd)는, FET(12)를 흐른 후, FET(11)의 드레인 전류로서도 흐르므로, 도 1의 회로는 도 6의 회로와 마찬가지로 전류 재이용 회로이다.
입력 단자(1)에 입력된 RF 신호는 FET(11)에서 증폭되고, 추가로 용량(27)을 통해서 FET(12)의 게이트에 입력된다. FET(12)에서 증폭된 RF 신호는, FET(12)의 드레인으로부터 용량(25)을 통해서 출력된다.
제어 회로부(102)에 있어서, FET(13)는, 게이트가 접지되고, 소스 부하로서 저항(35), 드레인 부하로서 저항(36)을 갖는다. FET(14)는, 게이트가 FET(13)의 소스에 접속되고, 다이오드(61)인 소스 부하, 저항(37)인 드레인 부하를 갖는다. FET(12)의 드레인과 접지 사이에는, 다이오드(62, 63), 저항(38, 39)이 직렬로 접속된 부하가 접속되어 있다. 드레인 저항 부하(36, 37)는 전원 단자(4)에 접속되어 있다. 한편, 제어 회로부(102)의 전원 단자(4)는, 증폭부(101)의 전원 단자(3)와 공통으로 해도 된다.
제어 회로(102)와 증폭부(101)는, 2개의 제어 신호로 접속되어 있다. 제 1 제어 신호는, 제어 회로부(102)의 저항(38, 39)의 접속점과 FET(11)의 게이트 사이에 접속한 저항(34)을 통해서, FET(11)의 게이트에 주어진다. 제 2 제어 신호는, 제어 회로부(102)의 다이오드(62, 63)의 접속점과 FET(12)의 게이트 사이에 접속된 저항(40)을 통해서, FET(12)의 게이트에 주어진다.
도 1의 다이오드는, FET와 동일한 공정에서 제작 가능한 GaAs계 쇼트키 접합 다이오드를 상정하고 있지만, pn 정합 다이오드로도 동등한 동작을 실현할 수 있다.
(동작의 설명)
도 1의 드레인 전류(Idd)의 변화를, 프로세스 편차에 의한 FET의 포화 전류 Idss의 변화에 대해서 가능한 한 억제하기 위해서는, Idss가 소정의 값보다도 높아졌을 때에는 FET(11)의 게이트 전압을 저하시키고, 반대로 Idss가 소정의 값보다도 낮아졌을 때에는 FET(11)의 게이트 전압을 증가시키면 된다. 추가로, 드레인 전류(Idd)의 변동의 억제에 더하여, FET(11)의 드레인 전압의 변동을 억제하기 위해서는, 도 1에 나타내는 바와 같이, FET(12)의 게이트 전압을 FET(11)의 드레인 전압으로부터 용량(27)을 이용해서 분리하고, FET(12)의 게이트 전압을 Idd의 프로세스 변동에 따라 적절히 제어하면 된다.
제어 회로부(102)의 FET(14)의 소스 전위의 변화는, 소스 부하의 다이오드(61)에 의해 FET(14)의 소스 전류 변화에 대해서 작게 억제된다. 여기에서, FET(14)의 임계값 전압에 따라, 다이오드(61)의 직렬 접속 단수를 복수개로 해도 된다.
한편, FET(13)의 소스 부하는 저항(35)이기 때문에, Idss의 증가와 함께 FET(13)의 소스 전압도 증가한다. 그 때문에, FET(14)의 게이트·소스간 전압은 Idss의 증가와 함께 증가하고, FET(14)의 드레인 전류도 증가한다. 그 결과, 드레인 부하 저항(37)의 전압 강하가 증대하고, FET(14)의 드레인 전압은 감소한다. 이 드레인 전압의 감소는, 하나는 다이오드(62)에서 레벨 시프트되고, 저항(40)을 통해서 FET(12)의 게이트에 전달되고, 또 하나는 다이오드(62, 63)에서 레벨 시프트된 후, 저항(38, 39)에서 분압되고, 저항(34)을 통해서 FET(11)의 게이트에 전달된다.
실시형태 1에 따른 전류 재이용 FET 증폭기는, FET(11)의 게이트 전압과 FET(12)의 게이트 전압을 Idss의 프로세스 변동에 따라 독립적으로 제어할 수 있기 때문에, 드레인 전류(Idd)의 변동을 억제할 뿐만 아니라, FET(11)의 드레인 전압의 변동도 억제할 수 있다. 그 결과, Idss의 프로세스 변동에 대한 이득의 변동을 억제 가능할 뿐만 아니라, 드레인·소스간의 DC 내압이 전원 전압의 1/2인 전압에 대해서 여유가 없는 경우여도, 내압 초과에 기인한 고장을 일으키지 않아, 안정한 동작을 기대할 수 있다.
(비교 회로와의 차이의 설명)
다음으로 실시형태 1에 따른 회로와 비교 회로의 효과의 차이를 설명한다. 비교 회로의 회로 구성을 도 2에 나타낸다. 도 1의 회로와의 주요한 차이는, 도 2의 비교 회로에서는 도 6과 마찬가지로 FET(11)의 드레인 전압과 FET(12)의 게이트 전압을 분리하는 용량(27)이 없이 직결되어 있는 것, 저항(33) 대신에 가변 저항으로서 기능하는 FET(15)와 게이트 저항(41)이 마련되어 있는 것이다. FET(15)의 가변 저항값은 그 게이트 전압을 제어 회로부(102)의 FET(14)의 드레인 전압으로부터 저항(41)을 통해서 제어된다.
도 3에 도 1과 도 2의 회로의 Idss 변동에 대한 드레인 전류(Idd)의 시뮬레이션 결과를, 도 4에 도 1과 도 2의 회로의 Idss 변동에 대한 FET(11)의 드레인 전압의 시뮬레이션 결과를 나타낸다. 도 3, 도 4에 있어서, 특성(401) 및 특성(403)이 도 1의 회로의 시뮬레이션 결과를, 특성(402) 및 특성(404)이 도 2의 비교 회로의 시뮬레이션 결과를 나타낸다. 또한 B1∼B4, C1∼C4는, ±20%의 Idss의 변동에 대한 특성과의 교점을 나타낸다.
도 3에 나타내는 바와 같이, 도 1과 도 2의 회로의 드레인 전류(Idd)의 변화는 상당히 근사하고, 어느 회로 구성이어도 드레인 전류(Idd)의 변동을 상당히 억제할 수 있다.
한편, 도 4에 나타내는 바와 같이, 특성(403)의 전압 변화는, 점 B3의 2.8V로부터 점 B4의 2V의 0.8V 변화에 대해서, 특성(404)의 전압 변화는, 점 C3의 0.7V로부터 점 C4의 4.0V의 3.3V 변화로 되어 있다. FET(11)와 FET(12)의 드레인·소스간 내압이 3V인 경우, Idss가 20% 증가하면, FET(11)에 4V 인가되게 되어, 내압을 초과해 버린다. 이에 비해서, 특성(403)의 전압 변화는 최대 2.8V, 최저 2.0V이기 때문에, 3V의 내압의 범위 내에서 동작 가능하게 된다.
게이트 길이의 단축화에 의한 고주파 영역에서의 이득 향상을 도모하는 경우, 드레인·소스간 내압도 필연적으로 저하되므로, 도 4에 나타내는 바와 같이 드레인 전압 변화가 작은 회로 구성을 실현하는 것은, 실사용에서는 중요하다. 한편, 특성(403, 404)의 차이는, FET(12)에 대해서 게이트 전압을 제어 회로부(102)로부터 인가하고 있는지, 하고 있지 않는지의 차이가 주요인이다.
(실시형태 1의 효과)
이상 기술한 바와 같이, 실시형태 1에 따른 전류 재이용형 FET 증폭기는, FET의 포화 전류 Idss의 프로세스 편차에 따라, 증폭용 FET의 게이트 전압 또는 증폭용 FET의 자기 바이어스용의 저항값을 변화시키므로, 증폭기의 드레인 전류의 변화를 억제하는 효과를 갖는다. 나아가, 초단의 FET의 드레인 전압의 변동도 억제할 수 있으므로, Idss의 프로세스 편차에 대해서 FET의 드레인·소스간 DC 내압을 초과하는 상태를 회피할 수 있다. 또한, 여기에서 기술한 회로 구성은 디플리션 모드의 FET를 이용한 전류 재이용 증폭기에 있어서의 드레인 전류와 초단의 드레인 전압의 변동의 억제를 양의 단일 전원으로 실현될 수 있는 효과도 갖는다.
[실시형태 2]
도 5는, 본 발명의 실시형태 2에 따른 전류 재이용형 FET 증폭기의 회로 구성이고, 실시형태 1의 변형예이다. 실시형태 1의 도 1과의 차이는, 도 1의 저항(33)을 FET(15)와 저항(41)으로 구성되는 가변 저항으로 변경하고 있는 것, 그 가변 저항의 제어를 위해, 저항(42), FET(16), 다이오드(64)로 구성되는 제어 회로가 제어 회로부(102)에 추가되어 있는 것이다. FET(16)의 게이트는 FET(13)의 소스에 접속되고, FET(16)의 드레인이 저항(41)을 통해서 FET(15)의 게이트에 접속되어, FET(15)의 드레인·소스간 저항값을 가변할 수 있도록 하고 있다.
실시형태 1에서 기술한 바와 같이, Idss가 증가한 경우, 제어 회로부(102)의 FET(13)의 소스 전압이 상승하여, FET(16)의 드레인 전류를 증가시킨다. 드레인 전류의 증가는 저항(42)의 전압 강하를 증대시키므로, FET(15)의 게이트 전압을 저하시킨다. 이에 의해, FET(15)의 드레인·소스간 저항이 증대되고, FET(12)의 소스 전위를 상승시켜, FET(12)의 드레인 전류를 감소시킨다. 그 결과, 실시형태 1의 Idss의 변동에 대한 드레인 전류의 변동보다도 억제되는 것을 기대할 수 있다. FET(11)의 드레인 전압의 변동에 관해서는, FET(12)의 게이트 전압 제어 회로가 동일하기 때문에, 실시형태 1에서 동등한 효과가 얻어진다.
한편, 도 5에서는, FET(16), 저항(42), 다이오드(64)로 구성되는 제어 회로가, FET(15)의 게이트 전압을 제어하기 위해서 새롭게 추가되어 있지만, 이것은 설계의 자유도를 가지게 하기 위함이어서, 회로 상수의 설정에 따라서는, 저항(41)의 일단을 FET(14)의 드레인, 또는 다이오드(62, 63)의 접속점, 또는 다이오드(63)와 저항(38)의 접속점에 접속하는 것도 가능하다.
한편, 이상 기술한 실시형태는 GaAs계 디플리션 모드 FET(고전자 이동도 트랜지스터의 HEMT를 포함함)를 예로 설명했지만, n형 채널의 디플리션 모드 FET이면, InP계 FET여도 GaN계 FET여도 Si계 MOSFET여도 마찬가지의 효과가 얻어지는 것을 부기해 둔다.
특히, 인핸스먼트 모드가 통상의 Si계 MOSFET와 달리, GaAs계 FET, InP계 FET, GaN계 FET인 경우, 그 대부분의 제품에 있어서 디플리션 모드의 FET가 이용되기 때문에, 본 발명에 의한 드레인 전류 변동의 억제는 실용상 중요하다.
1: RF 입력 단자
2: RF 출력 단자
3: 증폭부의 드레인 전원 단자
4: 제어 회로부의 드레인 전원 단자
11∼16: 디플리션 모드의 GaAs계 FET
21∼27: 용량
31∼41: 저항
51∼54: 전송 선로
61∼64: 다이오드
101: 증폭부
102: 제어 회로부
301, 302: 비교 회로의 Idss 변동에 대한 드레인 전류
401: 실시형태 1의 Idss 변동에 대한 드레인 전류
402: 비교 회로의 Idss 변동에 대한 드레인 전류
403: 실시형태 1의 Idss 변동에 대한 드레인 전압
404: 비교 회로의 Idss 변동에 대한 드레인 전압

Claims (6)

  1. RF 신호가 입력되는 제 1 게이트와, 제 1 소스와, 제 1 드레인을 갖는 제 1 전계 효과 트랜지스터와,
    상기 제 1 소스와 접지용 단자 사이에 접속된 제 1 저항과,
    제 2 소스와, 제 2 게이트와, 제 1 전원용 단자에 접속되고 또한 증폭된 RF 신호를 출력하는 제 2 드레인을 갖는 제 2 전계 효과 트랜지스터와,
    상기 제 1 드레인과 상기 제 2 소스 사이에 접속된 제 2 저항과,
    상기 제 1 드레인과 상기 제 2 게이트 사이에 접속된 용량과,
    제 3 소스, 제 2 전원용 단자에 접속된 제 3 드레인, 및 상기 접지용 단자에 접속된 제 3 게이트를 갖는 제 3 전계 효과 트랜지스터와,
    제 4 소스와, 제 4 드레인과, 상기 제 3 소스에 접속된 제 4 게이트를 갖는 제 4 전계 효과 트랜지스터와,
    상기 제 4 소스와 상기 접지용 단자 사이에 접속된 제 1 다이오드와,
    상기 제 2 전원용 단자와 상기 제 4 드레인 사이에 접속된 제 3 저항과,
    상기 제 4 드레인과 상기 제 1 게이트 사이에 접속된 제 4 저항과,
    상기 제 4 드레인과 상기 제 2 게이트 사이에 접속된 제 5 저항
    을 구비하고,
    상기 제 1 내지 제 4 전계 효과 트랜지스터가 디플리션 모드인 것을 특징으로 하는 전류 재이용형 전계 효과 트랜지스터 증폭기.
  2. 제 1 항에 있어서,
    제 5 게이트와, 상기 제 2 소스에 접속된 제 5 드레인과, 상기 제 1 드레인에 접속된 제 5 소스를 갖는, 상기 제 2 저항 대신에 마련된 디플리션 모드의 제 5 전계 효과 트랜지스터와,
    를 구비하고
    상기 제 5 게이트가 상기 제 4 드레인에 접속되어 있는 것을 특징으로 하는 전류 재이용형 전계 효과 트랜지스터 증폭기.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 제 2 전원용 단자가 상기 제 1 전원용 단자에 접속되고, 공통화되어 있는 것을 특징으로 하는 전류 재이용형 전계 효과 트랜지스터 증폭기.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 제 1 내지 제 5 전계 효과 트랜지스터가 GaAs계 또는 InP계 또는 GaN계 중 어느 하나의 화합물 반도체 전계 효과 트랜지스터인 것을 특징으로 하는 전류 재이용형 전계 효과 트랜지스터 증폭기.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    제 5 게이트와, 상기 제 2 소스에 접속된 제 5 드레인과, 상기 제 1 드레인에 접속된 제 5 소스를 갖는, 상기 제 2 저항 대신에 마련된 제 5 전계 효과 트랜지스터와,
    제 6 소스와, 제 6 드레인과, 상기 제 3 소스에 접속된 제 6 게이트를 갖는 제 6 전계 효과 트랜지스터와,
    상기 제 6 소스와 상기 접지용 단자 사이에 접속된 제 2 다이오드와,
    상기 제 2 전원 단자와 상기 제 6 드레인 사이에 접속된 제 6 저항
    을 구비하고,
    상기 제 1 내지 제 6 전계 효과 트랜지스터가 디플리션 모드인 것을 특징으로 하는 전류 재이용형 전계 효과 트랜지스터 증폭기.
  6. 제 5 항에 있어서,
    상기 제 1 내지 제 6 전계 효과 트랜지스터가 GaAs계 또는 InP계 또는 GaN계 중 어느 하나의 화합물 반도체 전계 효과 트랜지스터인 것을 특징으로 하는 전류 재이용형 전계 효과 트랜지스터 증폭기.
KR1020197027542A 2017-03-28 2017-03-28 전류 재이용형 전계 효과 트랜지스터 증폭기 KR102322947B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012641 WO2018179088A1 (ja) 2017-03-28 2017-03-28 電流再利用型電界効果トランジスタ増幅器

Publications (2)

Publication Number Publication Date
KR20190120291A true KR20190120291A (ko) 2019-10-23
KR102322947B1 KR102322947B1 (ko) 2021-11-05

Family

ID=63674739

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197027542A KR102322947B1 (ko) 2017-03-28 2017-03-28 전류 재이용형 전계 효과 트랜지스터 증폭기

Country Status (6)

Country Link
US (1) US11012036B2 (ko)
JP (1) JP6689450B2 (ko)
KR (1) KR102322947B1 (ko)
CN (1) CN110463035B (ko)
DE (1) DE112017007348B4 (ko)
WO (1) WO2018179088A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6620640B2 (ja) * 2016-03-29 2019-12-18 三菱電機株式会社 電流再利用型電界効果トランジスタ増幅器
DE102017108828B3 (de) * 2017-04-25 2018-07-05 Forschungsverbund Berlin E.V. Vorrichtung zur Ansteuerung eines selbstleitenden n-Kanal Endstufenfeldeffekttransistors
CN114265038B (zh) * 2021-11-22 2024-02-09 电子科技大学 一种具有温度补偿效应的高精度开关式移相单元
CN114866047B (zh) * 2022-07-07 2022-11-11 成都嘉纳海威科技有限责任公司 基于Bi-Hemt工艺的宽带双通道收发放大芯片
CN114978051B (zh) * 2022-07-15 2022-10-28 北京信芯科技有限公司 一种基于增强型晶体管的电流复用低噪声放大器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846444A (ja) * 1994-07-27 1996-02-16 Oki Electric Ind Co Ltd 帰還増幅回路
JP2012119794A (ja) 2010-11-29 2012-06-21 Sumitomo Electric Ind Ltd 電子回路
JP2015128255A (ja) * 2013-12-27 2015-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. 整合回路、増幅回路、および通信装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260957A (ja) * 1996-01-18 1997-10-03 Fujitsu Ltd 半導体増幅回路
JP3853604B2 (ja) * 2001-04-04 2006-12-06 松下電器産業株式会社 周波数変換回路
JP2003332864A (ja) * 2002-05-17 2003-11-21 Mitsubishi Electric Corp 多段増幅回路
JP5543790B2 (ja) * 2010-01-25 2014-07-09 住友電気工業株式会社 電子回路
JP5479284B2 (ja) 2010-09-24 2014-04-23 住友電気工業株式会社 電子回路
JP2013211666A (ja) * 2012-03-30 2013-10-10 Furukawa Electric Co Ltd:The 増幅器
JP6620640B2 (ja) 2016-03-29 2019-12-18 三菱電機株式会社 電流再利用型電界効果トランジスタ増幅器
JP2017184055A (ja) * 2016-03-30 2017-10-05 住友電気工業株式会社 増幅回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846444A (ja) * 1994-07-27 1996-02-16 Oki Electric Ind Co Ltd 帰還増幅回路
JP2012119794A (ja) 2010-11-29 2012-06-21 Sumitomo Electric Ind Ltd 電子回路
JP2015128255A (ja) * 2013-12-27 2015-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. 整合回路、増幅回路、および通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
2005 IEEE Journal of Solid-State Circuits, pp. 1288-1295, "A 1.8-V Operation 5-GHz-Band CMOS Frequency Doubler Using Current-Reuse Circuit Design Technique"
2011 Proc. Of the 6th European Microwave Integrated Circuits Conference, pp. 29-32, "E-Band Radio Link Communication Chipset in Cost Effective Wafer Level Chip Size Package (WLCSP) Technology"

Also Published As

Publication number Publication date
WO2018179088A1 (ja) 2018-10-04
CN110463035B (zh) 2023-05-16
KR102322947B1 (ko) 2021-11-05
US20200119694A1 (en) 2020-04-16
US11012036B2 (en) 2021-05-18
CN110463035A (zh) 2019-11-15
JP6689450B2 (ja) 2020-04-28
DE112017007348T5 (de) 2019-12-12
JPWO2018179088A1 (ja) 2019-07-04
DE112017007348B4 (de) 2024-02-08

Similar Documents

Publication Publication Date Title
KR102322947B1 (ko) 전류 재이용형 전계 효과 트랜지스터 증폭기
US7221190B2 (en) Differential comparator with extended common mode voltage range
US8824974B2 (en) Semiconductor integrated circuit device and radio frequency module
KR101882610B1 (ko) 전류 재이용형 전계 효과 트랜지스터 증폭기
US8217722B2 (en) Power amplifier
US7733182B2 (en) Hybrid class AB super follower
US11201594B2 (en) Cascode amplifier circuit
US11031914B2 (en) Diode linearizer
KR20150135085A (ko) 리니어라이저
US9191005B2 (en) Level conversion circuit and level-conversion-function-equipped logic circuit
CN112953423A (zh) 放大电路及通信装置
GB2620815A (en) Edge detection circuit
US7953997B2 (en) Power amplifier
US20200220503A1 (en) Low noise amplifier and semiconductor device
US11923811B2 (en) High-frequency power amplifier
US11949411B2 (en) Semiconductor device
US11467016B2 (en) Semiconductor device and sensor system
KR101960181B1 (ko) 안정적으로 이득을 부스팅하는 주파수 혼합기
US20120281325A1 (en) Limiting Circuit

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant