KR20190098973A - 구조체 및 그 제조 방법 - Google Patents

구조체 및 그 제조 방법 Download PDF

Info

Publication number
KR20190098973A
KR20190098973A KR1020197017737A KR20197017737A KR20190098973A KR 20190098973 A KR20190098973 A KR 20190098973A KR 1020197017737 A KR1020197017737 A KR 1020197017737A KR 20197017737 A KR20197017737 A KR 20197017737A KR 20190098973 A KR20190098973 A KR 20190098973A
Authority
KR
South Korea
Prior art keywords
shape
resin
fiber
fibers
reinforcing
Prior art date
Application number
KR1020197017737A
Other languages
English (en)
Inventor
타카시 후지오카
요시키 타케베
마사토 혼마
Original Assignee
도레이 카부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도레이 카부시키가이샤 filed Critical 도레이 카부시키가이샤
Publication of KR20190098973A publication Critical patent/KR20190098973A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/041Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with metal fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/772Articles characterised by their shape and not otherwise provided for
    • B29L2031/7724Conical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2423/30Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by oxidation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

강성 및 경량성이 우수한 산형의 형상을 가진 구조체를 제공한다. 본 발명은 수지와 강화 섬유와 공극을 갖는 구조체로서, 굽힘 탄성률을 Ec, 밀도를 ρ로 했을 때, Ec1/3·ρ-1로서 나타내어지는 비굽힘 강성이 2.5 이상이며, 산형의 형상을 갖고 있는 구조체이다.

Description

구조체 및 그 제조 방법
본 발명은, 산형의 형상을 갖는, 수지와 강화 섬유와 공극을 갖는 구조체 및 그 제조 방법에 관한 것이다.
최근, 자동차, 항공기, 스포츠 제품 등의 산업용 제품에 대해서는 강성이나 경량성의 향상에 대한 시장요구가 해마다 높아지고 있다. 또한, 여러가지 형상이 부여된 구조체, 또한 균질성이 높은 구조체가 요구되고 있다. 이러한 요구에 응하기 위해, 강성이나 경량성이 우수한 섬유 강화 수지가 각종 산업용도에 폭넓게 이용되고 있다. 구체적으로는, 연속 섬유로 이루어지는 일방향으로 강화 섬유가 배향된 재료를 적층한 구조체가 검토되고 있다(특허문헌 1). 경량성을 만족시키기 위해서, 발포성 수지의 발포에 의해 공극을 형성시킨 구조체나 성형후에 강화 섬유를 제거해서 공극을 형성시키는 구조체도 검토되고 있다(특허문헌 2, 3 참조). 또 강화 섬유로 이루어지는 부직포 매트를 사용하고, 매트의 스프링백(복원력)을 이용하고, 공극을 형성하는 구조체도 검토되고 있다(특허문헌 4).
일본국 특허 공개 2001-306062호 공보 일본국 특허 공개 2006-63149호 공보 일본국 특허 공고 소 62-38712호 공보 일본국 특허 공표 2014-508055호 공보
그런데, 일방향으로 강화 섬유가 배향된 재료를 사용한 것에서는 섬유 방향에서는 매우 높은 역학특성을 발현하지만, 섬유 수직 방향에서는 역학특성이 현저하게 저하된다. 또 연속 섬유는 복잡한 형상으로 부형하는 것이 곤란하다. 이 때문에, 재료의 배치 등의 제품설계가 중요하게 되고, 설계 자유도가 제한된다. 또 발포성 수지를 사용한 것에서는 형상을 부형하는 관점에서는 우수하지만, 본래 필요하지 않은 재료를 함유하지 않을 수 없는 점에서 구조체의 역학 특성 저하는 피할 수 없다. 성형후에 섬유를 제거할 경우, 형상이 단순한 것이면 용이할지도 모르지만, 복잡한 형상으로 한 경우에는 섬유를 제거하는 것에 의한 공극 형성이 곤란하게 되어 본래의 특성을 발현하는 것이 곤란하게 되고, 형상이 어느 정도 제한된다. 부직포 매트의 스프링백을 이용한 것은 비교적 높은 역학특성을 발현하지만, 경량성의 관점에서 떨어지고, 경량성을 향상하려고 하면 역학특성이 떨어진다. 이상의 점에서 강성 및 경량성이 우수한 구조체를 제공하는 것이 급무로 되어 있다.
그래서 본 발명은, 상기 과제를 감안하여 이루어진 것으로서, 그 목적은 강성 및 경량성이 우수한 산형의 형상을 가진 구조체를 제공하는 것에 있다.
본 발명은 이하의 (1)이다.
(1)수지와 강화 섬유와 공극을 갖는 구조체로서,
굽힘 탄성률을 Ec, 밀도를 ρ로 했을 때, Ec1/3·ρ-1로서 나타내어지는 비굽힘 강성이 2.5 이상이며,
산형의 형상을 이루는 측면부를 갖고 있는 것을 특징으로 하는 구조체.
(발명의 효과)
본 발명에 따른 구조체에 의하면, 강성 및 경량성이 우수한 산형의 형상을 가진 구조체를 제공할 수 있다.
도 1은 본 발명의 실시형태에 따른 구조체의 모식도이다.
도 2는 본 발명의 실시형태에 따른 구조체의 구조를 설명하는 도면이다.
도 3은 본 발명의 실시형태의 다른 예에 따른 구조체의 모식 사시도이다.
도 4는 본 발명의 실시형태의 다른 예에 따른 구조체의 모식 측면도이다.
도 5는 본 발명의 실시형태에 따른 구조체의 단면확대 구조를 나타내는 모식도이다.
도 6은 본 발명의 실시형태에서 사용하는 강화 섬유 매트에 있어서의 강화 섬유의 분산 상태의 일례를 나타내는 모식도이다.
도 7은 본 발명의 실시형태에 따른 구조체의 단면구조의 일례를 나타내는 모식도이다.
도 8은 본 발명의 실시형태에 따른 구조체의 동심원 균질도를 설명하는 모식도이다.
도 9는 본 발명의 실시형태에 따른 구조체의 방사 균질도를 설명하는 모식도이다.
도 10은 본 발명의 실시형태의 다른 예에 따른 구조체의 단면 확대도이다.
도 11은 강화 섬유 매트의 제조 장치의 일례를 나타내는 모식도이다.
이하, 본 발명에 따른 구조체에 대해서 설명한다.
도 1(a)는 본 발명의 실시형태에 따른 구조체(1)를 나타내는 모식 사시도이며, 도 1(b)는 구조체(1)의 상면도이며, 도 1(c)는 구조체(1)의 측면도이다. 도 1(a)에 나타내듯이 본 발명의 실시형태에 따른 구조체(1)는 산형의 형상을 갖고 있다. 구체적으로는, 원형상의 상면부(2)와, 상면부(2)의 외주와 접하는 원뿔대형상의 측면부(3)를 갖는다. 상면부(2) 및 측면부(3)는 소정의 두께를 갖고, 상면부(2)와 측면부(3)로 둘러싸여져 있는 공간은 공동(空洞)이다. 또, 여기에서 말하는 「산형의 형상」이란, 구조체의 중앙으로부터 구조체의 외측을 향해 소정 기울기로 넓어짐을 갖는 형상이면 좋고, 예를 들면, 뿔체 또는 뿔대이다. 이 때, 측면부(3)는 정점(4)(도 4(a) 참조) 또는 상면부(2)(도 1(a) 참조)의 모든 외주로부터 연속해서 형성되어 있다. 측면부(3)의 상면부(2)(또는 정점(4))로부터 타단까지의 길이는 특별히 한정되지 않지만, 형상의 밸런스의 관점으로부터 같은 것이 바람직하다. 디자인이나 특성을 부여하는 관점으로부터 측면부(3)는 측면부(3)의 상면부(2)(또는 정점(4)))로부터 타단까지의 길이가 부분적으로 달라도 좋지만, 최단부가 최장부의 30% 이상의 길이인 것이 바람직하고, 50% 이상인 것이 보다 바람직하다(도 1(d) 참조).
본 발명의 구조체 중의 산형의 형상은 구조체(1)에 나타내는 원뿔대형상 외에 반구대형상, 다각뿔대형상, 또는, 상면부(2)를 갖지 않는 원뿔형상, 반구형상, 다각뿔형상으로부터 선택되는 형상이어도 좋다. 저면의 형상이 원인 경우, 산형의 형상은 원뿔형상 또는 원뿔대형상이며, 저면의 형상이 삼각형, 사각형, 육각형 등의 다각형의 경우, 산형의 형상은 다각뿔형상 또는 다각뿔대형상이 된다. 구조체의 강성을 향상시키는 관점으로부터, 산형의 형상으로서는 각을 갖는 다각뿔형상 또는 다각뿔대형상이 바람직하고, 그 중에서도 선대칭인 정다각형이 저면이 되는 정다각뿔형상 또는 정다각뿔대형상이 보다 바람직하다. 구조체의 균질성의 관점으로부터, 산형의 형상으로서는 점대칭인 원이 구조체의 저면이 되는 원뿔형상 또는 원뿔대형상, 반구형상 또는 반구대형상으로부터 선택되는 것이 바람직하다. 또한 본 발명의 구조체는, 도 3에 나타내는 형상이어도 좋다. 도 3은 본 발명의 실시형태의 다른 예에 따른 구조체(1A,1B)의 모식 사시도이다. 구조체(1A)는 상면부(2)와, 측면부(3)에 추가해서 측면부(3)로부터 연장되는 플랜지부(10)를 갖고 있다. 구조체(1A)는 측면부(3)의 저면의 형상이 원이며, 플랜지부(10)의 저면의 형상이 8각형을 이루고 있고, 구조체(1B)는 플랜지부(10)의 저면의 형상이 원형으로 이루어져 있다.
여기에서 말하는 「구조체의 저면」이란, 예를 들면, 실시형태 1의 구조체(1)에서는 도 1(b)에 나타내듯이 구조체(1)의 측면부(3)의 수평투영면적(산형의 형상의 높이방향(상면)으로부터 관측했을 때의 면적)이 최대가 되도록, 또한 구조체(1)의 측면부(3)의 수직투영면(상기 수평투영면에 수직이며, 면적이 최대가 되는 면)에 있어서의 무게중심(5)이 바닥면측으로 되었을 때의 구조체(1)와 바닥면의 접지면이며, 도 1의 하측의 면(저면)이다.
도 2는 본 발명의 실시형태 1에 따른 구조체(1)의 구조를 설명하는 도면이다. 본 발명의 구조체의 형상(단면형상)은 도 2(a)에 나타내듯이 구조체(1)의 수직투영면의 면적을 S1로 하고, 도 2(b)에 나타내듯이 구조체(1)의 수직투영면의 정점(4)과, 저면으로 형성되는 삼각형의 면적을 S2로 했을 때에, S1과 S2의 비(S1/S2)가 0.3∼1.7인 것이 바람직하다. 산형의 형상의 부형의 하기 쉬움의 관점으로부터는 0.5∼1.6인 것이 바람직하고, 더욱 바람직하게는 0.8∼1.5이다. 여기에서 말하는 「구조체의 수직투영면의 정점(4)」이란, 도 1(c)에 나타내는 수직투영면(산형의 형상의 단면)에 있어서 수직투영면의 무게중심(5)으로부터 저면을 연결하는 수직선(S)과 구조체(1)의 가장 높은 위치의 교점(정점(4))이다. 이 정점(4)과 저면의 양단을 연결하는 삼각형의 면적을 S2로 한다. S1과 S2의 비(S1/S2)가 0.3보다도 작은 경우, 구조체(1)의 수직투영면이 T자형과 같이 되고, 형상의 부형이 곤란한 것이나 역학특성이 불균일하게 될 수 있다. 또 비(S1/S2)가 1.7보다 큰 경우, 구조체(1)의 수직투영면이 대형이 될 수 있다.
산형의 형상의 측면의 방향에 있어서의 단면형상은 도 4에 나타내듯이, (a)삼각형, (b)사다리형 등을 들 수 있다. 또 산형의 형상의 사변은 직선에 한정되지 않고, 곡선이어도 좋고, 상측으로 불룩함을 갖는 곡선이면, 도 4(c)에 나타내는 반원이 되고, 하측으로 불룩함을 갖는 곡선이면 도 4(d)에 나타내는 형상 등을 들 수 있다. 또한, 사변에 복수의 정점을 갖는 선이면, 도 4(e)에 나타내는 형상 등도 들 수 있다. 이 때, 반드시 선대칭일 필요는 없고, 도 4(f)에 나타내는 형상에 대해서도 산형의 형상의 단면형상의 1종이다.
도 5는 본 발명에 따른 구조체(1)의 단면확대 구조를 나타내는 모식도이다. 도 5에 나타내듯이, 본 발명에 따른 구조체(1)는 수지(6)와 강화 섬유(7)와 공극(8)으로 구성되어 있다.
여기에서, 수지(6)로서는 열가소성 수지나 열경화성 수지를 예시할 수 있다. 또한 본 발명에 있어서는, 열경화성 수지와 열가소성 수지가 혼합되어 있어도 좋다.
본 발명에 있어서의 하나의 형태에 있어서, 수지(6)는 적어도 1종류 이상의 열가소성 수지를 포함하는 것이 바람직하다. 열가소성 수지로서는 「폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트(PBT), 폴리트리메틸렌테레프탈레이트(PTT), 폴리에틸렌나프탈레이트(PEN), 액정 폴리에스테르 등의 폴리에스테르, 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리부틸렌 등의 폴리올레핀, 폴리옥시메틸렌(POM), 폴리아미드(PA), 폴리페닐렌술피드(PPS) 등의 폴리아릴렌술피드, 폴리케톤(PK), 폴리에테르케톤(PEK), 폴리에테르에테르케톤(PEEK), 폴리에테르케톤케톤(PEKK), 폴리에테르니트릴(PEN), 폴리테트라플루오로에틸렌 등의 불소계 수지, 액정 폴리머(LCP)」 등의 결정성 수지, 「스티렌계 수지 외, 폴리카보네이트(PC), 폴리메틸메타크릴레이트(PMMA), 폴리염화비닐(PVC), 폴리페닐렌에테르(PPE), 폴리이미드(PI), 폴리아미드이미드(PAI), 폴리에테르이미드(PEI), 폴리술폰(PSU), 폴리에테르술폰, 폴리아릴레이트(PAR)」 등의 비결정성 수지, 기타, 페놀계 수지, 페녹시 수지, 또한 폴리스티렌계, 폴리올레핀계, 폴리우레탄계, 폴리에스테르계, 폴리아미드계, 폴리부타디엔계, 폴리이소프렌계, 불소계 수지, 및 아크릴로니트릴계 등의 열가소 엘라스토머 등이나, 이들의 공중합체 및 변성체 등으로부터 선택되는 열가소성 수지를 예시할 수 있다. 그 중에서도, 얻어지는 구조체(1)의 경량성의 관점으로부터는 폴리올레핀이 바람직하고, 강도의 관점으로부터는 폴리아미드가 바람직하고, 표면외관의 관점으로부터 폴리카보네이트나 스티렌계 수지와 같은 비결정성 수지가 바람직하고, 내열성의 관점으로부터 폴리아릴렌술피드가 바람직하고, 연속 사용 온도의 관점으로부터 폴리에테르에테르케톤이 바람직하고, 또한 내약품성의 관점으로부터 불소계 수지가 바람직하게 사용된다.
본 발명에 있어서의 1개의 형태에 있어서, 수지(6)는 적어도 1종류 이상의 열경화성 수지를 포함하는 것이 바람직하다. 열경화성 수지로서는 불포화 폴리에스테르, 비닐에스테르, 에폭시 수지, 페놀 수지, 우레아 수지, 멜라민 수지, 열경화성 폴리이미드, 이들의 공중합체, 변성체, 및 이들의 적어도 2종류를 혼합한 수지를 예시할 수 있다.
또한 본 발명의 목적을 손상시키지 않는 범위에서, 본 발명에 따른 구조체는 수지(6)의 성분의 하나로서, 엘라스토머 또는 고무 성분 등의 내충격성 향상제, 다른 충전재나 첨가제를 함유해도 좋다. 충전재나 첨가제의 예로서는, 무기충전재, 난연제, 도전성 부여제, 결정핵제, 자외선 흡수제, 산화방지제, 제진제, 항균제, 방충제, 방취제, 착색 방지제, 열안정제, 이형제, 대전방지제, 가소제, 활제, 착색제, 안료, 염료, 발포제, 제포제, 또는, 커플링제를 예시할 수 있다.
본 발명의 구조체(1)는 구조체(1)의 체적 함유율을 100체적%로 했을 때에, 다음의 (1)∼(3)을 충족시키는 것이 바람직하다.
(1)수지(6)의 체적 함유율이 2.5∼85체적%
(2)강화 섬유(7)의 체적 함유율이 0.5∼55체적%
(3)공극(8)의 체적 함유율이 10∼97체적%
즉 구조체(1)의 체적 함유율을 100체적%로 했을 때의 수지(6)의 체적 함유율은 2.5체적% 이상 85체적% 이하의 범위내에 있는 것이 바람직하다. 수지(6)의 체적 함유율이 2.5체적% 이상인 경우, 구조체(1) 중의 강화 섬유끼리를 결착하고, 강화 섬유(7)의 보강 효과를 충분한 것으로 할 수 있고, 구조체(1)의 역학특성, 특히 굽힘 탄성률을 만족시킬 수 있으므로 바람직하다. 한편, 수지(6)의 체적 함유율이 85체적% 이하이면, 공극(8)의 형성을 저해하지 않으므로 바람직하다.
본 발명의 구조체(1)는 강화 섬유(7)를 포함한다. 그리고 강화 섬유(7)로서는 알루미늄, 황동, 스테인레스 등의 금속 섬유, PAN계, 레이온계, 리그닌계, 피치계의 탄소 섬유, 흑연섬유, 유리 등의 절연성 섬유, 아라미드, PBO, 폴리페닐렌술피드, 폴리에스테르, 아크릴, 나일론, 폴리에틸렌 등의 유기섬유, 실리콘카바이트, 실리콘나이트라이드 등의 무기섬유를 예시할 수 있다. 또한 이들의 섬유에 표면처리가 실시되어 있는 것이어도 좋다. 표면처리로서는 도전체로서 금속의 피착 처리 이외에, 커플링제에 의한 처리, 사이징제에 의한 처리, 결속제에 의한 처리, 첨가제의 부착 처리 등이 있다. 또한 이들 섬유는 1종류를 단독으로 사용해도 좋고, 2종류 이상을 병용해도 좋다. 그 중에서도, 경량화 효과의 관점으로부터, 비강도, 비강성이 우수한 PAN계, 피치계, 레이온계 등의 탄소 섬유가 바람직하게 사용된다. 또한 얻어지는 구조체(1)의 경제성을 높이는 관점으로부터는 유리 섬유가 바람직하게 사용되며, 특히 역학특성과 경제성의 밸런스로부터 탄소 섬유와 유리 섬유를 병용하는 것이 바람직하다. 또한, 얻어지는 구조체(1)의 충격흡수성이나 부형성을 높이는 관점으로부터는 아라미드 섬유가 바람직하게 사용되며, 특히 역학특성과 충격흡수성의 밸런스로부터 탄소 섬유와 아라미드 섬유를 병용하는 것이 바람직하다. 또한 얻어지는 구조체(1)의 도전성을 높이는 관점으로부터는 도전성을 갖는 금속으로 이루어지는 금속 섬유나 니켈이나 구리나 이테르븀 등의 금속을 피복한 강화 섬유를 사용할 수도 있다. 이들 중에서, 강도와 탄성률 등의 역학특성이 우수한 금속 섬유, 피치계 탄소 섬유, 및 PAN계 탄소 섬유로 이루어지는 군으로부터 선택되는 강화 섬유를 보다 바람직하게 사용할 수 있다.
강화 섬유(7)는 불연속이며, 구조체(1) 중에 랜덤으로 분산되어 있는 것이 바람직하다. 또 분산 상태가 대략 모노필라멘트형상인 것이 보다 바람직하다. 강화 섬유(7)를 이러한 양태로 함으로써 시트형상의 구조체(1)의 전구체 내지 구조체(1)를 외력을 가해서 성형할 경우에, 복잡 형상으로의 부형이 용이하게 된다. 또한 강화 섬유(7)를 이러한 양태로 함으로써 강화 섬유(7)에 의해 형성된 공극이 치밀화되어 구조체(1) 중에 있어서의 강화 섬유(7)의 섬유다발끝에 있어서의 약부(弱部)가 극소화될 수 있으므로, 우수한 보강 효율 및 신뢰성에 추가해서, 등방성도 부여된다.
여기에서, 대략 모노필라멘트형상이란, 강화 섬유 단사가 500개 미만인 세섬도 스트랜드로 존재하는 것을 가리킨다. 더욱 바람직하게는, 모노필라멘트형상, 즉 단사로서 분산되어 있는 것이다.
여기에서, 대략 모노필라멘트형상, 또는, 모노필라멘트형상으로 분산되어 있다란, 구조체(1) 중에서 임의로 선택한 강화 섬유(7)에 대해서 그 이차원 접촉각이 1° 이상인 단섬유의 비율(이하, 섬유분산율이라고도 칭한다)이 80% 이상인 것을 가리키고, 바꿔 말하면, 구조체(1) 중에 있어서 단섬유의 2개 이상이 접촉해서 평행한 다발이 20% 미만인 것을 말한다. 따라서, 여기에서는 적어도 강화 섬유(7)에 있어서의 필라멘트수 100개 이하의 섬유다발의 질량분률이 100%에 해당되는 것이 특히 바람직하다.
또한, 강화 섬유(7)는 랜덤으로 분산되어 있는 것이 특히 바람직하다. 여기에서, 강화 섬유(7)가 랜덤으로 분산되어 있다란, 구조체(1)에 있어서의 임의로 선택한 강화 섬유(7)의 이차원 배향각의 산술평균값이 30° 이상, 60° 이하의 범위내에 있는 것을 말한다. 이러한 이차원 배향각이란, 강화 섬유(7)의 단섬유와 이 단섬유와 교차하는 단섬유로 형성되는 각도이며, 교차하는 단섬유끼리가 형성하는 각도 중, 0° 이상, 90° 이하의 범위내에 있는 예각측의 각도로 정의한다.
이 이차원 배향각에 대해서 도면을 이용하여 더 설명한다. 도 6은, 본 발명에서 사용하는 강화 섬유 매트에 있어서의 강화 섬유의 분산 상태의 일례를 나타내는 모식도이며, 도 6(a)는 면방향, 도 6(b)는 두께방향으로부터 본 도면이다. 도 6(a), (b)에 있어서, 단섬유(9a)를 기준으로 하면, 단섬유(9a)는 다른 단섬유(9b∼9f)와 교차하고 있다. 여기에서, 교차란, 관찰하는 이차원 평면에 있어서 기준으로 하는 단섬유가 다른 단섬유와 교차해서 관찰되는 상태를 의미하고, 단섬유(9a)와 단섬유(9b∼9f)가 반드시 접촉하고 있을 필요는 없고, 투영해서 본 경우에 교차해서 관찰되는 상태에 대해서도 예외는 아니다. 즉, 기준이 되는 단섬유(9a)에 대해서 본 경우, 단섬유(9b∼9f) 전체가 이차원 배향각의 평가 대상이며, 도 6(a) 중에 있어서 이차원 배향각은 교차하는 2개의 단섬유가 형성하는 2개의 각도 중, 0° 이상, 90° 이하의 범위내에 있는 예각측의 각도(A)이다.
이차원 배향각을 측정하는 방법으로서는, 특별히 제한은 없지만, 예를 들면, 구성요소의 표면으로부터 강화 섬유(7)의 배향을 관찰하는 방법을 예시할 수 있고, 상술한 이차원 접촉각의 측정 방법과 같은 수단을 취할 수 있다. 이차원 배향각의 평균값은 다음 수순으로 측정한다. 즉, 무작위로 선택한 단섬유(도 6에 있어서의 단섬유(9a))에 대해서 교차하고 있는 모든 단섬유(도 6에 있어서의 단섬유(9b∼9f))와의 이차원 배향각의 평균값을 측정한다. 예를 들면, 소정 단섬유에 교차하는 다른 단섬유가 다수인 경우에는, 교차하는 다른 단섬유를 무작위로 20개 골라 측정한 산술평균값을 대용해도 좋다. 이 측정을 다른 단섬유를 기준으로 해서 합계 5회 반복하고, 그 산술평균값을 이차원 배향각의 산술평균값으로서 산출한다.
강화 섬유(7)가 대략 모노필라멘트형상, 또한, 랜덤으로 분산되어 있음으로써, 상술한 대략 모노필라멘트형상으로 분산된 강화 섬유(7)에 의해 부여되는 성능을 최대한까지 높일 수 있다. 또한 구조체(1)에 있어서 역학특성에 등방성을 부여할 수 있다. 이러한 관점으로부터, 강화 섬유(7)의 섬유 분산율은 90% 이상인 것이 바람직하고, 100%에 가까울수록 보다 바람직하다. 또한 강화 섬유(7)의 이차원 배향각의 산술평균값은 40° 이상, 50° 이하의 범위내에 있는 것이 바람직하고, 이상적인 각도인 45°에 가까울수록 바람직하다.
한편, 강화 섬유(7)가 부직포형상의 형태를 취하지 않는 예로서는, 강화 섬유(7)가 일방향으로 배열되어 이루어지는 시트 기재, 직물 기재, 및 논크림프 기재 등이 있다. 이들의 형태는, 강화 섬유(7)가 규칙적으로 치밀하게 배치되므로, 구조체(1) 중의 공극(8)이 적게 되어 버려, 수지(6)의 함침이 매우 곤란하게 되고, 미함침부를 형성하거나, 함침 수단이나 수지종의 선택지를 크게 제한하거나 하는 경우가 있다.
강화 섬유(7)의 형태로서는 구조체(1)와 같은 정도의 길이의 연속성 강화 섬유, 또는, 소정 길이로 절단된 유한길이의 불연속성 강화 섬유 중 어느 것이어도 좋지만, 수지(6)를 용이하게 함침시키거나, 그 양을 용이하게 조정할 수 있거나 하는 관점으로부터는 불연속성 강화 섬유인 것이 바람직하다.
강화 섬유(7)의 질량 평균 섬유길이가 1mm 이상 15mm 이하의 범위내에 있는 것이 바람직하다. 이것에 의해, 강화 섬유(7)의 보강 효율을 높일 수 있고, 구조체(1)에 우수한 역학특성이 부여된다. 강화 섬유(7)의 질량 평균 섬유길이가 1mm 이상인 경우, 구조체(1) 중의 공극을 효율적으로 형성할 수 있으므로, 밀도를 낮게 하는 것이 가능해지고, 바꿔 말하면, 동일한 두께이면서 경량인 구조체를 얻을 수 있으므로 바람직하다. 한편, 강화 섬유(7)의 질량 평균 섬유길이가 15mm 이하인 경우에는, 구조체(1) 중에서 강화 섬유(7)가 자체 중량에 의해 굴곡되기 어려워지고, 역학특성의 발현을 저해하지 않으므로 바람직하다. 질량 평균 섬유길이는 구조체(1)의 수지성분을 소실이나 용출 등의 방법에 의해 제거하고, 남은 강화 섬유(7)로부터 무작위로 400개를 선택하고, 그 길이를 10㎛ 단위까지 측정하고, 이들의 질량 평균 섬유길이로서 산출할 수 있다.
구조체(1)의 체적 함유율을 100체적%로 했을 때의 강화 섬유(7)의 체적 함유율은 0.5체적% 이상 55체적% 이하의 범위내에 있는 것이 바람직하다. 강화 섬유(7)의 체적 함유율이 0.5체적% 이상인 경우, 강화 섬유(7)에 유래하는 보강 효과를 충분한 것으로 할 수 있으므로 바람직하다. 한편, 강화 섬유(7)의 체적 함유율이 55체적% 이하인 경우에는, 강화 섬유(7)에 대한 수지(6)의 체적 함유율이 상대적으로 많아지고, 구조체(1) 중의 강화 섬유(7)끼리를 결착하여, 강화 섬유(7)의 보강 효과를 충분한 것으로 할 수 있으므로, 구조체(1)의 역학특성, 특히 굽힘특성을 만족시킬 수 있으므로 바람직하다.
강화 섬유(7)는 수지(6)에 피복되어 있고, 피복하고 있는 수지(6)의 두께(피복 두께)가 1㎛ 이상, 15㎛ 이하의 범위내에 있는 것이 바람직하다. 수지(6)에 피복된 강화 섬유(7)의 피복 상태는 적어도 구조체(1)를 구성하는 강화 섬유(7)의 단섬유끼리의 교차하는 점이 피복되어 있으면, 구조체(1)의 형상 안정성이나, 두께제어의 용이함 및 자유도의 관점으로부터 충분하지만, 더욱 바람직한 양태로 하면, 수지(6)는 강화 섬유(7)의 주위에 상술한 두께로 피복된 상태인 것이 바람직하다. 이 상태는 강화 섬유(7)의 표면이 수지에 의해 노출되어 있지 않는, 바꿔 말하면, 강화 섬유(7)가 수지(6)에 의해 전선형상의 피막을 형성하고 있는 것을 의미한다. 이것에 의해, 구조체(1)는 또한 형상 안정성을 가짐과 아울러, 역학특성의 발현을 충분한 것으로 한다. 또한 수지(6)에 피복된 강화 섬유(7)의 피복 상태는 그 강화 섬유(7) 전체에 있어서 피복되어 있을 필요는 없고, 본 발명에 따른 구조체(1)의 형상 안정성이나, 굽힘 탄성률, 굽힘 강도를 손상시키지 않는 범위내이면 좋다.
본 발명의 구조체(1)는 공극(8)을 갖는다. 그리고 본 발명에 있어서의 공극(8)이란, 수지(6)에 의해 피복된 강화 섬유(7)가 기둥형상의 지지체로 되고, 그것이 겹쳐지거나, 또는, 교차함으로써 형성된 공간을 가리킨다. 예를 들면, 강화 섬유(7)에 수지(6)가 미리 함침된 구조체 전구체를 가열해서 구조체(1)를 얻는 경우, 가열에 따른 수지(6)의 용융 내지는 연화에 의해, 강화 섬유(7)가 기모함으로써 공극(8)이 형성된다. 이것은, 구조체 전구체에 있어서 가압에 의해 압축상태로 되어 있던 내부의 강화 섬유(7)가 그 탄성률에 유래하는 기모력에 의해 기모하는 성질에 의거한다.
또 구조체(1)의 체적 함유율을 100체적%로 했을 때의, 공극(8)의 체적 함유율은 10체적% 이상 97체적% 이하의 범위내에 있다. 공극(8)의 함유율이 10체적% 이상인 것에 의해, 구조체(1)의 밀도가 낮아지므로 경량성을 만족시킬 수 있으므로 바람직하다. 한편, 공극(8)의 함유율이 97체적% 이하인 경우에는, 바꿔 말하면, 강화 섬유(7)의 주위에 피복된 수지(6)의 두께가 충분한 것으로 되는 점에서 구조체(1) 중에 있어서의 강화 섬유(7)끼리의 보강을 충분히 행할 수 있고, 역학특성이 높아지므로 바람직하다. 공극(8)의 체적 함유율의 상한값은 97체적%인 것이 바람직하다. 본 발명에 있어서, 체적 함유율은 구조체(1)를 구성하는 수지(6)와 강화 섬유(7)와 공극(8)의 각각의 체적 함유율의 합계를 100체적%로 한다.
구조체(1)의 단면방향에 있어서의 강화 섬유(7)의 배향각도를 θf로 했을 때, 구조체(1)에 있어서의 보강 기능을 보다 효과적으로 발현하는 관점으로부터, 강화 섬유(7)의 배향각도(θf)는 60° 이하인 것이 바람직하고, 또한 45° 이하인 것이 보다 바람직하다. 이 때, 구조체(1)의 단면방향에 있어서의 강화 섬유(7)의 배향각도(θf)는 구조체(1)의 단면방향에 대한 기울기 정도이며, 바꿔 말하면, 두께방향에 대한 강화 섬유(7)의 기울기 정도이다. 값이 클수록 두께방향에 서서 기울어져 있는 것을 나타내고, 0° 이상, 90° 이하의 범위에서 부여된다. 또한 강화 섬유(7)의 배향각도(θf)가 3° 이상인 경우, 구조체(1) 중의 강화 섬유(7)가 두께방향, 바꿔 말하면 3차원으로 배향된 상태로 되므로, 구조체(1)의 두께의 자유도가 증가하고, 경량성을 만족할 수 있으므로 바람직하다. 그 때문에 강화 섬유(7)의 배향각도(θf)는 3° 이상인 것이 바람직하다.
강화 섬유(7)의 배향각도(θf)는 구조체(1)의 면방향에 대한 수직단면의 관찰에 의거하여 측정할 수 있다. 도 7은 본 발명에 따른 구조체(1)의 두께방향 및 섬유 장척방향으로 형성되는 면(도 7 (a)), 및, 두께방향 및 섬유 장척방향에 수직인 방향으로 형성되는 면(도 7(b))의 단면구조의 일례를 나타내는 모식도이다. 도 7(a)에 있어서, 단섬유(9g,9h)의 단면은 측정을 간편하게 하기 위해서 타원형상에 근사되어 있다. 여기에서, 단섬유(9h)의 단면은 타원 애스펙트비(=타원 장축/타원 단축)가 작게 보여지며, 이에 비해서 단섬유(9g)의 단면은 타원 애스펙트비가 크게 보여진다. 한편, 도 7(b)에 의하면, 단섬유(9h)는 평면방향(Y)에 대해서 거의 평행한 기울기를 갖고, 단섬유(9g)는 평면방향(Y)에 대해서 일정량의 기울기를 갖고 있다. 이 경우, 단섬유(9g)에 대해서는 구조체(1)의 평면방향(X)과 섬유 주축(타원에 있어서의 장축방향)(α)이 이루는 각도(θx)가 단섬유(9g)의 두께방향의 배향각도(θf)와 거의 같게 된다. 한편, 단섬유(9h)에 대해서는 각도(θx)와 배향각도(θf)가 나타내는 각도에 큰 괴리가 있고, 각도(θx)가 배향각도(θf)를 반영하고 있다고는 할 수 없다. 따라서, 구조체(1)의 평면방향에 대한 수직단면으로부터 배향각도(θf)를 판독할 경우, 섬유단면의 타원 애스펙트비가 일정값 이상의 것을 추출함으로써 배향각도(θf)의 검출 정밀도를 높일 수 있다.
추출 대상이 되는 타원 애스펙트비의 지표로서는 단섬유의 단면형상이 진원에 가까운, 즉 강화 섬유의 장척방향에 수직인 단면에 있어서의 섬유 애스펙트비가 1.1 이하인 경우, 타원 애스펙트비가 20 이상인 강화 섬유에 대해서 평면방향(X)과 섬유 주축(α)이 이루는 각도(θx)를 측정하고, 이것을 배향각도(θf)로서 채용하는 방법을 이용할 수 있다. 한편, 단섬유의 단면형상이 타원형이나 고치형 등이며, 섬유 애스펙트비가 1.1보다 큰 경우에는 보다 큰 타원 애스펙트비를 갖는 강화 섬유에 주목해서 배향각도(θf)를 측정하는 편이 좋고, 섬유 애스펙트비가 1.1 이상, 1.8 미만인 경우에는 타원 애스펙트비가 30 이상, 섬유 애스펙트비가 1.8 이상, 2.5 미만인 경우에는 타원 애스펙트비가 40 이상, 섬유 애스펙트비가 2.5 이상인 경우에는 타원 애스펙트비가 50 이상인 강화 섬유를 선택하고, 배향각도(θf)를 측정하면 좋다.
구조체(1)의 굽힘 탄성률을 Ec, 구조체(1)의 밀도를 ρ로 했을 때, Ec1/3·ρ-1로서 나타내어지는 구조체(1)의 비굽힘 강성은 2.5 이상이다. 구조체(1)의 비굽힘 강성이 2.5 이상인 경우, 굽힘 탄성률이 높고, 밀도가 낮은 상태이며, 소망하는 경량화 효과가 얻어지므로 바람직하다. 한편, 구조체(1)의 비굽힘 강성의 상한값에는 특별히 제한은 없지만, 20 이하인 것이 바람직하고, 20 이하로 함으로써, 경량화 효과와 굽힘 탄성률의 밸런스가 우수한 점에서 바람직하다. 일반적으로 강재나 알루미늄의 비굽힘 강성은 1.5 이하이며, 비굽힘 강성이 2.5 이상인 본 발명의 구조체(1)는 이들의 금속재료보다 매우 우수한 비굽힘 강성을 갖는다. 본 발명의 구조체(1)는 경량화 효과에 착안되는 탄소 섬유 강화 수지 복합재료의 일반적인 비굽힘 강성인 2.3을 초과하는 2.5 이상의 비굽힘 강성을 갖지만, 더욱 바람직하게는 본 발명의 구조체(1)의 비굽힘 강성은 5 이상이다.
본 발명의 구조체(1)에 있어서, 산형의 형상의 동심원 균질도가 20% 이하, 바람직하게는 10% 이하이면 좋다. 동심원 균질도가 20% 이하인 경우, 산형의 형상의 동심원에 있어서의 역학특성의 불균일이 적은 것으로 되고, 구조체(1)의 파손을 억제할 수 있고, 또한 구조체(1)의 설계 자유도가 저하된다. 또 산형의 형상에 있어서의 동심원 균질도가 20% 이하이면, 또한 진동판 등의 음향부재에 사용한 경우, 균질한 소리나 표현하고 싶은 소리를 발생하는 것이 가능해진다.
여기에서 말하는 「동심원 균질도」란, 도 8(a)에 나타내듯이 정점(4)으로부터 같은 거리(r1), 즉 동심원 상의 위치의 역학특성의 불균일을 나타낸다. 동심원 균질도를 측정하는 방법으로서는, 특별히 제한은 없지만, 예를 들면, 도 8(a)에 나타내듯이 정점(4)을 통과하는 1개의 직선(L)과, 정점(4)을 중심으로 하는 반경(r1)의 동심원의 교점(11a,11b), 직선(L)으로부터 45°, 90°, 135° 기울어진 정점(4)을 통과하는 합계 4개의 직선과, 정점(4)을 중심으로 하는 반경(r1)의 동심원의 교점(11c, 11d, 11e, 11f, 11g, 11h)을 중심으로 한 합계 8개의 시험편을, 예를 들면, 도 8(b)의 12a에 나타내듯이 잘라내고, 이들 시험편을 이용하여 굽힘 시험을 행한다. 각 위치에 있어서의 굽힘 탄성률을 Eci, 얻어진 모든 데이터의 평균 굽힘 탄성률을 Ec로 했을 때, 얻어진 굽힘 탄성률의 값(Eci, Ec) 및 다음 식으로부터 동심원 균질도를 산출할 수 있다.
·동심원 균질도(%)={Σ(Eci-Ec)2/i}0.5/Ec×100
Eci:굽힘 탄성률의 개별값(i=1, 2, ···8)(GPa)
Ec:평균 굽힘 탄성률(GPa)
구조체(1)의 굽힘 탄성률(Ec)은 3GPa 이상인 것이 바람직하고, 보다 바람직하게는 6GPa 이상이면 좋다. 구조체(1)의 굽힘 탄성률(Ec)이 3GPa 이상인 경우, 구조체(1)로서 사용하는 범위를 확대할 수 있으므로 바람직하다. 또한 구조체(1)의 설계를 용이하게 하기 위해서, 굽힘 탄성률(Ec)은 등방성을 갖고 있는 것이 바람직하다. 굽힘 탄성률(Ec)의 상한에 대해서는 제한을 설정하지 않지만, 일반적으로 강화 섬유(7)와 수지(6)를 갖는 구조체(1)에서는 그 구성 성분인 강화 섬유(7) 및 수지(6) 각각의 탄성률로부터 산출되는 값이 상한이 될 수 있다. 본 발명에 따른 구조체(1)에 있어서는, 구조체(1)를 단독으로 사용하는 경우에 있어서도 다른 부재와 함께 사용하는 경우에 있어서도 구조체(1) 자신의 굽힘 탄성률을 이용하여 부재의 설계를 행하고, 실용에 제공하기 위해서는 5GPa도 있으면 충분하다.
본 발명의 구조체(1)에 있어서, 산형의 형상의 방사 균질도는 본 발명의 특징을 손상시키지 않는 범위에서 의도적으로 변경해도 좋다. 목적에 따른 구조체(1)를 얻는 관점으로부터, 예를 들면, 구조체(1)의 저면의 외주나 정점(4)의 근방은 구조체(1)를 낙하시켜 버린 경우에 바닥면 등과 직접 접할 가능성이 높고, 충격을 완화할 목적으로 구조체(1)를 유연하게 하고(저탄성률화), 구조체(1)로서의 강성을 발현하기 위해서, 그 이외의 부분은 단단하게(고탄성률화) 할 수도 있다. 한편, 반대의 구성으로 한 경우에도, 구조체(1) 전체에서 충격을 흡수하고, 접촉할 가능성이 있는 개소는 파손하지 않도록 설계하는 것도 가능하다.
본 발명의 구조체(1)에 있어서, 산형의 형상의 방사 균질도가 20% 이하, 바람직하게는 10% 이하이면 좋다. 방사 균질도가 의도하지 않게 20%보다 큰 경우, 산형의 형상에 역학특성의 불균일이 발생하고 있게 되고, 구조체(1)의 설계 자유도가 저하되는 일이 있다. 또 목적의 형상으로 부형할 수 없는 경우도 있다.
여기에서 말하는 「방사 균질도」란, 도 9(a)에 나타내듯이 정점(4)으로부터 저면을 향해서 선(방사선)을 그린 경우의 정점으로부터 다른 거리에 존재하는 동일 방사선 상의 역학특성의 불균일을 나타낸다. 방사 균질도를 측정하는 방법으로서는, 특별히 제한은 없지만, 예를 들면, 도 9(a)에 나타내듯이 정점(4)을 통과하는 1개의 직선(L)(동일 방사선 상)과 정점(4)을 중심으로 하는 반경(r2, r3)의 동심원의 교점(13a, 13b, 13c, 13d), 또 정점(4)을 통과하는 직선(L)과 수직인 정점(4)을 통과하는 또 하나의 직선과 정점(4)을 중심으로 하는 반경(r2, r3)의 동심원의 교점(13e, 13f, 13g, 13h)을 중심으로 한 합계 8개의 시험편을, 예를 들면, 도 9(b)의 14a에 나타내듯이 잘라내고, 이들 시험편을 이용하여 굽힘 시험을 행한다. 각 위치에 있어서의 굽힘 탄성률을 Eri, 얻어진 모든 데이터의 평균 굽힘 탄성률을 Er로 했을 때, 얻어진 굽힘 탄성률의 값(Eri, Er) 및 다음 식으로부터 방사 균질도를 산출할 수 있다.
·방사 균질도(%)={Σ(Eri-Er)2/i}0.5/Er×100
Eri:굽힘 탄성률의 개별값(i=1, 2, ···8)(GPa)
Er:평균 굽힘 탄성률(GPa)
구조체(1)의 두께는 0.2mm 이상인 것이 바람직하다. 0.2mm 미만이면 구조체(1)의 밸런스가 무너지고, 강성을 우선하면 경량성이 떨어지고, 경량성을 우선하면 강성이 떨어진다. 구조체(1)의 두께에 대해서 강성과 경량성의 밸런스의 관점으로부터 0.5mm 이상인 것이 보다 바람직하고, 1.0mm 이상인 것이 더욱 바람직하다. 두께의 상한에 대해서 특별히 한정되지 않지만, 20mm 이하인 것이 바람직하고, 10mm 이하인 것이 구조체(1)의 질량의 관점으로부터 보다 바람직하다. 여기에서 말하는 구조체(1)의 두께란, 구조체(1)의 비굽힘 강성을 평가할 때에 측정된 구조체(1)의 두께의 평균값이다.
구조체(1)의 밀도(ρ)는 0.9g/㎤ 이하인 것이 바람직하다. 구조체(1)의 밀도(ρ)가 0.9g/㎤ 이하인 경우, 구조체(1)로 한 경우의 질량이 감소하는 것을 의미하고, 그 결과, 제품으로 한 경우의 질량의 경량화에 공헌하게 되므로 바람직하다. 밀도의 하한에 대해서는 제한을 설정하지 않지만, 일반적으로 강화 섬유(7)와 수지(6)를 갖는 구조체(1)에서는 그 구성 성분인 강화 섬유(7), 수지(6), 및 공극(8) 각각의 체적비율로부터 산출되는 값이 하한이 될 수 있다. 본 발명에 따른 구조체(1)에 있어서는 구조체(1)를 단독으로 사용하는 경우에 있어서도, 다른 부재와 함께 사용하는 경우에 있어서도, 구조체 자신의 밀도는 사용하는 강화 섬유(7)나 수지(6)에 따라 다르지만, 구조체(1)의 역학특성을 유지한다라는 관점으로부터 0.03g/㎤ 이상인 것이 바람직하다.
구조체(1)의 표면으로부터 두께방향의 중점위치까지의 30% 이내의 부분에 있어서의 공극(8)의 체적 함유율이 0체적% 이상, 10체적% 미만의 범위내에 있고, 나머지 부분의 공극(8)의 체적 함유율이 10체적% 이상, 99체적% 이하의 범위내에 있는 것이 바람직하다. 이러한 공극(8)의 체적 함유율은 작을수록 역학특성이 우수하고, 또한 클수록 경량성이 우수하다. 바꿔 말하면, 구조체(1)가 동일구성의 재료로 이루어지는 경우, 구조체(1)의 표면으로부터 두께방향의 중점위치까지의 30% 이내의 부분에 있어서의 공극의 체적 함유율이 0체적% 이상, 10체적% 미만인 것에 의해, 구조체의 역학특성을 담보하고, 나머지의 부분의 공극의 체적 함유율이 10체적% 이상, 99체적% 이하의 범위내에 있는 것에 의해 경량특성을 만족시킬 수 있으므로 바람직하다.
본 발명에 있어서 구조체(1)의 두께는 두께를 구하고 싶은 표면 상의 1점과 그 이면측의 표면을 연결하는 최단의 거리로부터 구할 수 있다. 두께방향의 중점이란 구조체(1)의 두께의 중간점을 의미한다. 구조체(1)의 표면으로부터 두께방향의 중점위치까지의 30% 이내의 부분이란 구조체(1)의 표면과 그 두께방향의 중점까지의 거리를 100%로 했을 때에, 구조체(1)의 표면으로부터 30%의 거리까지를 포함한 부분을 의미한다. 여기에서의 나머지의 부분이란 구조체(1)의 한쪽의 표면으로부터 두께방향의 중점위치까지의 30% 이내의 부분 및 구조체(1)의 다른쪽의 표면으로부터 두께방향의 중점위치까지의 30% 이내의 부분을 제외한 나머지의 부분을 의미한다. 도 10은 본 발명의 실시형태의 다른 예에 따른 구조체(1C)의 단면 확대도이다. 도 10에 나타내듯이 구조체(1C)의 표면으로부터 두께방향의 중점위치까지의 30% 이내의 부분(R1) 및 나머지의 부분(R2)은 구조체(1C)의 두께방향의 다른 위치에 존재해도 좋다.
본 발명에 있어서의 강화 섬유(7)는 부직포형상의 형태를 취하는 것이 강화 섬유(7)에의 수지(6)의 함침의 용이함의 관점으로부터 바람직하다. 또한, 강화 섬유(7)가 부직포형상의 형태를 갖고 있음으로써, 부직포 자체의 핸들링성의 용이함에 추가해서 일반적으로 고점도로 되는 열가소성 수지의 경우에 있어서도 함침을 용이한 것으로 할 수 있으므로 바람직하다. 여기에서, 부직포형상의 형태란 강화 섬유(7)의 스트랜드 및/또는 모노필라멘트가 규칙성 없이 면형상으로 분산된 형태를 가리키고, 촙드 스트랜드 매트, 컨티뉴언스 스트랜드 매트, 초지 매트, 카딩 매트, 에어레이드 매트 등을 예시할 수 있다(이하, 이들을 합쳐서 강화 섬유 매트라고 칭한다).
구조체(1)를 구성하는 강화 섬유 매트의 제조 방법으로서는, 예를 들면, 강화 섬유를 미리 스트랜드 및/또는 대략 모노필라멘트형상으로 분산해서 강화 섬유 매트를 제조하는 방법이 있다. 강화 섬유 매트의 제조 방법으로서는 강화 섬유(7)를 공기류로 분산 시트화하는 에어레이드법이나, 강화 섬유(7)를 기계적으로 빗질하면서 형상을 다듬어 시트화하는 카딩법 등의 건식 프로세스, 강화 섬유(7)를 수중에서 교반해서 초지하는 래드라이트법에 의한 습식 프로세스를 공지기술로서 들 수 있다. 강화 섬유(7)를 보다 모노필라멘트형상에 가깝게 하는 수단으로서는 건식 프로세스에 있어서는 개섬 바를 설치하는 방법이나 또한 개섬 바를 진동시키는 방법, 또한 카드의 눈을 파인으로 하는 방법이나, 카드의 회전속도를 조정하는 방법 등을 예시할 수 있다. 습식 프로세스에 있어서는 강화 섬유(7)의 교반 조건을 조정하는 방법, 분산액의 강화 섬유 농도를 희박화하는 방법, 분산액의 점도를 조정하는 방법, 분산액을 이송시킬 때에 와류를 억제하는 방법 등을 예시할 수 있다. 특히, 강화 섬유 매트는 습식 프로세스로 제조하는 것이 바람직하고, 투입 섬유(7)의 농도를 높이거나, 분산액의 유속(유량)과 메시 컨베이어의 속도를 조정함으로써 강화 섬유 매트의 강화 섬유(7)의 비율을 용이하게 조정할 수 있다. 예를 들면, 분산액의 유속에 대해서 메시 컨베이어의 속도를 느리게 함으로써 얻어지는 강화 섬유 매트 중의 섬유의 배향이 인취 방향으로 향하기 어려워지고, 부피 높은 강화 섬유 매트를 제조 가능하다. 강화 섬유 매트는 강화 섬유 단체로 구성되어 있어도 좋고, 강화 섬유(7)가 분말형상이나 섬유형상의 매트릭스 수지 성분과 혼합되어 있거나, 강화 섬유(7)가 유기 화합물이나 무기 화합물과 혼합되어 있거나, 강화 섬유끼리가 수지 성분으로 고정되어 있어도 좋다. 이들의 제조 방법에 있어서, 얻어지는 부직포형상의 형태의 강화 섬유(7)가 미리 구조체에 부여되는 산형의 형상으로 되어 있는 것이 바람직하다. 얻어지는 구조체의 균질성이 향상되는 관점으로부터 강화 섬유 매트를 산형의 형상으로 하는 것이 바람직하다. 구체적으로는, 산형의 형상의 형태나 메시를 제조 공정에 사용함으로써 얻는 것이 가능해진다.
또한, 강화 섬유 매트에는 미리 수지를 함침시켜 두고, 구조체 전구체로 해 둘 수도 있다. 본 발명에 따른 구조체 전구체를 제조하는 방법으로서는, 강화 섬유 매트에 용융 내지 연화한 상태의 수지를 가압 또는 감압하는 방법을 들 수 있다. 구체적으로는, 강화 섬유 매트의 두께방향의 양측으로부터 수지를 배치한 적층물을 가열, 가압해서 수지를 용융 함침시키는 방법을 제조의 용이함의 관점으로부터 바람직하게 예시할 수 있다.
상기 각 방법을 실현하기 위한 설비로서는 압축 성형기나 더블 벨트 프레스를 적합하게 사용할 수 있다. 배치식의 경우에는 전자이며, 가열용과 냉각용의 2기 이상을 병렬한 간헐식 프레스 시스템으로 함으로써 생산성의 향상이 꾀해진다. 연속식의 경우에는 후자이며, 연속적인 가공을 용이하게 행할 수 있으므로 연속 생산성이 우수하다.
본 발명에 따른 구조체를 제조할 때에는 적어도 이하의 공정을 이 순서로 갖는 제조 방법을 채용하는 것이 제조의 용이함 및 균질도가 높은 구조체를 얻는 관점으로부터 바람직하다.
공정 [1]: 적어도 수지와 강화 섬유를 포함하는 섬유 강화 수지(구조체 전구체)를 수지의 인장강도가 10MPa 이하가 될 때까지 가열하는 공정.
공정 [2]: 섬유 강화 수지(구조체 전구체)를 수지의 인장강도가 10MPa 이하가 될 때까지 가열한 상태로 압력을 부여하고, 형상을 부형하는 공정.
공정 [3]: 섬유 강화 수지(구조체 전구체)의 두께 조정을 함으로써 팽창시키는 공정.
공정 [1]은 성형에 사용하는 섬유 강화 수지(구조체 전구체)를 가열하는 공정이다. 이 때, 취급제의 관점으로부터는 구조체 전구체가 팽창하고 있지 않은 것이 바람직하고, 부형성을 높이는 관점으로부터는 팽창하고 있는 것이 바람직하다.
공정 [2]는 가열한 섬유 강화 수지(구조체 전구체)에 압력을 부여하고, 형상을 부형하는 공정이다. 이 때, 수지의 인장강도가 10MPa 이하이면 압력을 부여했을 때에, 구조체 전구체가 찢어지지 않고 목적의 형상으로 부형하기 쉬워지는 점에서 바람직하다. 수지의 인장강도의 하한은 특별히 한정되지 않지만, 형상으로 부형할 때에 섬유 강화 수지를 결착시켜 두는 관점으로부터, 1MPa 이상인 것이 바람직하다.
공정 [3]은 섬유 강화 수지의 두께를 조정함으로써 팽창시켜서 공극을 형성하는 공정이다. 두께 제어를 행하는 방법으로서는 가열되는 구조체 전구체를 목적의 두께로 제어할 수 있으면 방법에 따르지 않지만, 금속판 등을 이용하여 두께를 구속하는 방법, 구조체 전구체에 부여하는 압력에 의해 두께 제어하는 방법 등이 제조의 간편함의 관점으로부터 바람직한 방법으로서 예시된다. 상기 방법을 실현하기 위한 설비로서는 압축 성형기나 더블 벨트 프레스를 적합하게 사용할 수 있다. 배치식의 경우에는 전자이며, 가열용과 냉각용의 2기 이상을 병렬한 간헐식 프레스 시스템으로 함으로써 생산성의 향상이 꾀해진다. 연속식의 경우는 후자이며, 연속적인 가공을 용이하게 행할 수 있으므로 연속 생산성이 우수하다.
강화 섬유 매트가 부직포형상의 형태를 취하지 않는 예로서는, 강화 섬유가 일방향으로 배열되어 이루어지는 시트 기재, 직물 기재, 및 논크림프 기재 등이 있다. 이들의 형태는 강화 섬유가 규칙적으로 치밀하게 배치되므로, 강화 섬유 매트 중의 공극부가 적고, 열가소성 수지가 충분한 앵커링 구조를 형성하지 않으므로, 접합 능력이 저하된다. 또한 수지가 열가소성 수지인 경우, 함침이 매우 곤란하게 되고, 미함침부를 형성하거나, 함침 수단이나 수지종의 선택지를 크게 제한하거나 한다.
본 발명에 있어서는, 본 발명의 특징을 손상시키지 않는 범위에 있어서, 구조체 또는 구조체 전구체를 코어층에 사용하고, 또한, 연속된 강화 섬유에 수지를 함침시킨 시트형상 중간 기재를 스킨층에 사용한 샌드위치 구조체로 할 수도 있다. 여기에서, 연속된 강화 섬유란 적어도 일방향으로 100mm 이상의 길이로 연속된 것이며, 그 다수 개가 일방향으로 배열된 집합체, 소위 강화 섬유 다발은 샌드위치 구조체의 전체 길이에 걸쳐 연속되어 있다. 연속된 강화 섬유로 이루어지는 시트형상 중간 기재의 형태로서는 다수 개의 연속된 강화 섬유로 이루어지는 강화 섬유 다발로 구성된 크로스, 다수 개의 연속된 강화 섬유가 일방향으로 배열된 강화 섬유 다발(일방향성 섬유다발), 이 일방향성 섬유다발로 구성된 일방향성 크로스 등이다. 강화 섬유는, 동일 형태의 복수 개의 섬유다발로 구성되어 있어도, 또는, 다른 형태의 복수 개의 섬유다발로 구성되어 있어도 좋다. 하나의 강화 섬유 다발을 구성하는 강화 섬유수는 통상 300∼48,000개이지만, 프리프레그의 제조나 크로스의 제조를 고려하면, 바람직하게는 300∼24,000개이며, 보다 바람직하게는 1,000∼12,000개이다.
부직포 이외의 강화 섬유 매트를 사용할 경우, 구조체의 굽힘 탄성률(Ec)을 컨트롤하기 위해서, 강화 섬유의 방향을 바꾸어서 적층하는 형태가 바람직하게 사용된다. 특히, 샌드위치 구조체의 탄성률이나 강도를 효율적으로 높인 후에, 섬유다발을 일방향으로 배열한 연속된 강화 섬유(UD라고 칭한다)를 사용하고, 강화 섬유의 배향방향을 바꾸어서 적층하는 것이 바람직하다.
구조체는, 예를 들면, 「PC, 디스플레이, OA기기, 휴대전화, 휴대정보단말, PDA(전자수첩 등의 휴대정보단말), 비디오 카메라, 광학기기, 오디오, 에어컨, 조명기기, 오락용품, 완구용품, 기타 가전제품 등의 하우징, 트레이 섀시, 내장부재, 진동판, 스피커콘, 또는 그 케이스」 등의 전기, 전자기기부품, 「스피커콘」등의 음향부재, 「각종 멤버, 각종 프레임, 각종 힌지, 각종 암, 각종 차축, 각종 차륜용 베어링, 각종 빔」, 「후드, 루프, 도어, 펜더, 트렁크 리드, 사이드 패널, 리어 앤드 패널, 프론트 바디, 언더 바디, 각종 필러, 각종 멤버, 각종 프레임, 각종 빔, 각종 서포트, 각종 레일, 각종 힌지」 등의 외판, 또는, 바디 부품, 「범퍼, 범퍼빔, 몰, 언더 버커, 엔진 커버, 정류판, 스포일러, 카울 루버, 에어로 파트」 등의 외장 부품, 「인스트루먼트 패널, 시트 프레임, 도어 트림, 필러 트림, 핸들, 각종 모듈」 등의 내장 부품, 또는, 「모터 부품, CNG 탱크, 가솔린 탱크」 등의 자동차, 이륜차용 구조부품, 「배터리 트레이, 헤드램프 서포트, 페달 하우징, 프로텍터, 램프 리플렉터, 램프 하우징, 노이즈 실드, 스페어 타이어 커버」 등의 자동차, 이륜차용 부품, 「차음벽, 방음벽 등의 벽 내부재」 등의 건재, 「랜딩 기어 박스, 윙렛, 스포일러, 엣지, 래더, 엘리베이터, 페일링, 리브, 시트」 등의 항공기용 부품을 들 수 있다. 역학특성 및 형상 부형성의 관점으로부터는 자동차 내외장, 전기·전자기기 하우징, 자전거, 스포츠 용품용 구조재, 항공기 내장재, 수송용 상자체, 건재에 바람직하게 사용된다. 그 중에서도, 특히 복수의 부품으로 구성되는 모듈 부재에 적합하다. 역학특성 및 균질성의 관점으로부터는 진동판이나 스피커콘 등의 음향부품에 바람직하게 사용된다.
실시예
이하, 실시예에 의해 본 발명을 더욱 상세하게 설명한다.
(1)구조체에 있어서의 강화 섬유의 체적 함유율(Vf)
구조체의 질량(Ws)을 측정한 후, 구조체를 공기 중 500℃에서 30분간 가열해서 수지성분을 번아웃하고, 남은 강화 섬유의 질량(Wf)을 측정하고, 다음 식에 의해 산출했다. 이 때, 강화 섬유 및 수지의 밀도는 JIS Z8807(2012)의 액중 칭량법에 따라 측정한 결과를 이용한다.
Vf(체적%)=(Wf/ρf)/{Wf/ρf+(Ws-Wf)/ρr}×100
ρf:강화 섬유의 밀도(g/㎤)
ρr:수지의 밀도(g/㎤)
(2)구조체의 굽힘 시험
구조체로부터 시험편을 잘라내고, ISO178법(1993)에 따라 굽힘 탄성률을 측정했다. 시험편은 임의의 방향을 0°방향으로 한 경우에 +45°, -45°, 90°방향의 4방향에 대해서 잘라낸 시험편을 제작하고, 각각의 방향에 대해서 측정수 n=5로 하고, 산술 평균값을 굽힘 탄성률(Ec)로 했다. 측정 장치로서는 "인스트론(등록상표)" 5565형 만능재료 시험기(인스트론 재팬(주)제)를 사용했다. 얻어진 결과로부터 다음 식에 의해, 구조체의 비굽힘 강성을 산출했다.
비굽힘 강성=Ec1/3
(3)구조체의 동심원 균질도
구조체의 정점으로부터 저면의 단부까지의 최소거리를 r로 한 경우에, 정점으로부터 거리(r)의 50%의 위치(r50)와 정점을 통과하는 임의의 1개의 직선 및 그 직선으로부터 45°, 90°, 135° 기울어진 정점을 통과하는 합계 4개의 직선의 교점에 있어서 상기 (2)항과 동일하게 해서 굽힘 시험을 행했다. 거리(r50)에 있어서의 굽힘 탄성률을 Eci로 했다. 또 얻어진 모든 데이터의 평균 굽힘 탄성률을 Ec로 했다. 얻어진 굽힘 탄성률의 값 및 다음 식으로부터 동심원 균질도를 산출했다.
·동심원 균질도(%)={Σ(Eci-Ec)2/i}0.5/Ec×100
Eci:거리(r50)에 있어서의 굽힘 탄성률의 개별값(i=1, 2, ···8)(GPa)
Ec:거리(r50)에 있어서의 평균 굽힘 탄성률(GPa)
(4)구조체의 방사 균질도
구조체의 정점을 통과하는 임의의 1개의 직선 및 그 직선으로부터 90° 기울어진 직선의 합계 2개의 직선과 정점으로부터 저면의 단부까지의 최소거리를 r로 한 경우에, 정점으로부터 거리(r)의 30%의 위치(r30), 정점으로부터 거리(r)의 70%의 위치(r70)의 교점에 있어서 상기 (2)항과 동일하게 해서 굽힘 시험을 행했다. 각 교점에 있어서의 굽힘 탄성률을 Eri로 했다. 또 얻어진 모든 데이터의 평균 굽힘 탄성률을 Er로 했다. 얻어진 굽힘 탄성률의 값 및 다음 식으로부터 방사 균질도를 산출했다.
·방사 균질도(%)={Σ(Eri-Er)2/i}0.5/Er×100
Eri:각 위치에 있어서의 굽힘 탄성률의 개별값(i=1, 2, ···8)(GPa)
Er:각 위치에 있어서의 평균 굽힘 탄성률(GPa)
(5)구조체의 밀도(ρ)
구조체로부터 시험편을 잘라내고, JIS K7222(2005)에 따라서 구조체의 겉보기 밀도를 측정했다. 시험편의 치수는 세로 100mm, 가로 100mm로 했다. 시험편의 세로, 가로, 두께를 마이크로 미터로 측정하고, 얻어진 값으로부터 시험편의 체적(V)을 산출했다. 또한 잘라낸 시험편의 질량(M)을 전자 저울로 측정했다. 얻어진 질량(M) 및 체적(V)을 다음 식에 대입함으로써 구조체의 밀도(ρ)를 산출했다.
ρ[g/㎤]=103×M[g]/V[㎣]
(6)구조체의 공극의 체적 함유율
구조체로부터 세로 10mm, 가로 10mm의 시험편을 잘라내고, 단면을 주사형 전자현미경(SEM)((주)히타치 하이테크놀러지즈제 S-4800형)에 의해 관찰하고, 구조체의 표면으로부터 등간격으로 10개소를 1000배의 배율로 촬영했다. 각각의 화상에 대해서 화상내의 공극의 면적(Aa)을 구했다. 또한, 공극의 면적(Aa)의 합계를 화상 전체의 면적으로 나눔으로써 공극률을 산출했다. 구조체의 공극의 체적 함유율은 5매의 시험편으로 각각 10개소씩 촬영한 합계 50개소의 공극률로부터 산술평균에 의해 구했다.
또, 구조체에 있어서, 표면으로부터 두께방향의 중점위치까지의 공극률과 나머지의 부분의 공극률이 다른 경우를 판단하기 위해서, 상기 등간격으로 촬영한 10개소에 있어서, 각각의 공극의 체적 함유율을 산출하고, 공극의 체적 함유율이 0체적% 이상, 10체적% 미만의 범위내에 있는 것과, 공극의 체적 함유율이 10체적% 이상, 99체적% 이하의 것으로 분별해서 구했다.
(7)구조체에 있어서의 수지의 체적 함유율
(1), (6)으로부터 구한 구조체에 있어서의 강화 섬유의 체적 함유율과 공극의 체적 함유율의 값을 이용하여 하기 식에 의해 수지의 체적 함유율을 구했다.
수지의 Vr(체적%)=100-(Vf+Va)
Vf:강화 섬유의 체적 함유율(체적%)
Va:공극의 체적 함유율(체적%)
하기의 실시예 및 비교예에 있어서, 이하의 재료를 사용했다.
[탄소 섬유 1]
폴리아크릴로니트릴을 주성분으로 하는 공중합체로부터 방사, 소성 처리, 및 표면 산화 처리를 행하고, 총단사수 12,000개의 연속 탄소 섬유를 얻었다. 이 연속 탄소 섬유의 특성은 다음에 나타내는 바와 같았다.
단섬유 지름:7㎛
밀도:1.78g/㎤
인장 강도:4600MPa
인장 탄성률:220GPa
[PP 수지]
미변성 폴리프로필렌 수지(프라임 폴리머(주)제 "프라임폴리프로"(등록상표) J105G) 80질량%와, 산 변성 폴리프로필렌 수지(미츠이 가가쿠(주)제 "아도머" QB510) 20질량%로 이루어지는 단위중량 100g/㎡의 수지 시트를 제작했다.
[PA 수지]
나일론6 수지(도레이(주)제 "아밀란"(등록상표) CM1021T)로 이루어지는 단위중량 124g/㎡의 수지 필름을 제작했다.
[강화 섬유 매트 1]
탄소 섬유 1을 카트리지 커터로 6mm로 자르고, 촙드 탄소 섬유를 얻었다. 물과 계면활성제(나카라이테크스(주)제, 폴리옥시에틸렌라우릴에테르(상품명))로 이루어지는 농도 0.1질량%의 분산액을 제작하고, 이 분산액과 촙드 탄소 섬유를 이용하고, 도 11에 나타내는 강화 섬유 매트의 제조 장치를 이용하여 강화 섬유 매트를 제조했다. 도 11에 나타내는 제조 장치는 분산조로서의 용기 하부에 개구 코크를 갖는 지름 1000mm의 원통형상의 용기, 분산조와 초지조를 접속하는 직선형상의 수송부(경사각 30°)를 구비하고 있다. 분산조의 상면의 개구부에는 교반기가 부속되고, 개구부로부터 촙드 탄소 섬유 및 분산액(분산매체)을 투입 가능하다. 초지조는 저부에 폭 500mm의 초지면을 갖는 메시 컨베이어를 구비하고, 탄소 섬유 기재(초지 기재)를 운반 가능한 컨베이어를 메시 컨베이어에 접속하고 있다. 초지는 분산액 중의 탄소 섬유 농도를 0.05질량%로 해서 행했다. 초지한 탄소 섬유 기재를 200℃의 건조로에서 30분간 건조하고, 부직포형상의 강화 섬유 매트 1을 얻었다. 얻어진 단위중량은 50g/㎡였다.
[강화 섬유 매트 2]
탄소 섬유 1을 카트리지 커터로 3mm로 잘라낸 것 이외는 강화 섬유 매트 1과 동일하게 해서, 부직포형상의 강화 섬유 매트 2를 얻었다.
(실시예 1)
강화 섬유 매트로서 강화 섬유 매트 1, 수지 시트로서 PP 수지를 [수지 시트/강화 섬유 매트/수지 시트/강화 섬유 매트/강화 섬유 매트/수지 시트/강화 섬유 매트/수지 시트]의 순서로 배치한 적층물을 제작했다. 이어서, 이하의 공정(I)∼(IV)을 거침으로써 구조체 전구체를 얻었다.
(I)적층물을 230℃로 예열한 프레스 성형기의 열반 사이에 배치해서 금형을 닫는다.
(II)이어서, 120초간 유지한 후, 3MPa의 압력을 부여해서 60초간 더 유지한다.
(III)공정(II) 후, 압력을 유지한 상태에서 열반의 온도를 50℃까지 냉각한다.
(IV)프레스 성형기의 열반을 열어서 구조체 전구체를 꺼낸다.
얻어진 구조체 전구체를 200℃로 설정한 오븐에서 3분간 가열했다. 사전에 200℃의 오븐에서 PP 수지를 가열했을 때의 인장강도를 측정하고 있고, 3분 이상의 가열로 인장강도가 10MPa 이하가 되는 것을 확인하고, 가열 시간을 3분으로 설정했다.
이어서, 가열된 상태의 구조체 전구체를 도 1에 나타내는 구조체를 성형 가능한 표면 온도 230℃로 설정한 금형에 배치하고, 3MPa의 가압을 행했다. 그 후, 금형을 개방하고, 그 말단에 금속 스페이서를 삽입하고, 구조체를 얻을 때의 두께가 1.68mm가 되도록 조정하고, 다시 금형을 체결했다. 3MPa의 압력을 유지한 상태에서 금형 표면 온도가 50℃가 될 때까지 냉각하고, 금형을 열어서 구조체를 꺼냈다. 실시예 1의 구조체의 특성을 표 1에 나타낸다.
(실시예 2)
강화 섬유 매트로서 강화 섬유 매트 1, 수지 시트로서 PP 수지를 [수지 시트/강화 섬유 매트/수지 시트/강화 섬유 매트/수지 시트/강화 섬유 매트/수지 시트/강화 섬유 매트/강화 섬유 매트/수지 시트/강화 섬유 매트/수지 시트/강화 섬유 매트/수지 시트/강화 섬유 매트/수지 시트]의 순서로 배치한 적층물을 제작한 것 이외는, 실시예 1과 동일하게 해서 구조체를 얻었다. 실시예 2의 구조체의 특성을 표 1에 나타낸다.
(실시예 3)
강화 섬유 매트로서 강화 섬유 매트 1, 수지 시트로서 PP 수지를 [수지 시트/강화 섬유 매트/강화 섬유 매트/수지 시트]의 순서로 배치한 적층물을 제작한 것, 구조체를 얻을 때의 두께가 1.40mm가 되도록 조정한 것 이외는, 실시예 1과 동일하게 해서 구조체를 얻었다. 실시예 3의 구조체의 특성을 표 1에 나타낸다.
(실시예 4)
성형에 사용하는 금형을 도 4(c)에 나타내는 단면형상을 갖는 반구형상으로 한 것 이외는, 실시예 1과 동일하게 해서 구조체를 얻었다. 실시예 4의 구조체의 특성을 표 1에 나타낸다.
(실시예 5)
성형에 사용하는 금형을 저면이 정방형이며 도 4(b)에 나타내는 4각뿔대형상으로 한 것 이외는, 실시예 1과 동일하게 해서 구조체를 얻었다. 실시예 5의 구조체의 특성을 표 1에 나타낸다.
(실시예 6)
성형에 사용하는 금형을 도 4(d)에 나타내는 형상으로 한 것 이외는, 실시예 1과 동일하게 해서 구조체를 얻었다. 실시예 6의 구조체의 특성을 표 2에 나타낸다.
(실시예 7)
강화 섬유 매트를 강화 섬유 매트 1로부터 강화 섬유 매트 2로 변경해서 구조체 전구체한 것 이외는, 실시예 1과 동일하게 해서 구조체를 얻었다. 실시예 7의 구조체의 특성을 표 2에 나타낸다.
(실시예 8)
수지 시트를 PP 수지로부터 Ny 수지로 변경해서 구조체 전구체로 한 것, 오븐의 온도를 230℃로 한 것, 금형의 온도를 260℃로 한 것 이외는, 실시예 1과 동일하게 해서 구조체를 얻었다. 실시예 8의 구조체의 특성을 표 2에 나타낸다.
(실시예 9)
재료로서 탄소 섬유 강화 에폭시 수지(상품명: "토레카" 프리프레그 P3252S-10, 도레이(주)) 및 발포 폴리프로필렌 시트(상품명:에프셀 RC2010(2배 발포, 두께 1.0mm), 후루가와 덴키고교(주))을 사용하고, [프리프레그(0°방향)/프리프레그(90°방향)/프리프레그 (0°방향/프리프레그(90°방향)/에프셀/프리프레그(90°방향)/프리프레그(0°방향)/프리프레그(90°방향)/프리프레그(0°방향)]의 적층체를 얻었다. 이 적층체를, 표면온도를 150℃로 설정한 금형에 배치하고, 0.5MPa의 가압을 행했다. 30분간 압력을 유지한 후, 금형을 열어서 구조체를 얻었다. 실시예 9의 구조체의 특성을 표 2에 나타낸다.
(비교예 1)
재료로서 유리 섬유 강화 폴리프로필렌 수지(상품명: "모스트론" L-3040P, (주)프라임폴리프로)를 50질량%, 발포제(상품명:폴리스렌 EE206, 에이와 카세이 고교(주))를 50질량%의 비율로 드라이 블랜드하고, 실린더 온도 230℃, 금형 온도 50℃에서 실시예 1의 구조체와 동일한 형상이 되는 금형을 사용해서 사출성형을 행하고, 구조체를 얻었다. 비교예 1의 구조체의 특성을 표 3에 나타낸다.
(비교예 2)
재료로서 탄소 섬유 강화 에폭시 수지(상품명: "토레카" F6343B-05P, 도레이(주))를 7매 적층한 적층체를 얻었다. 이 적층체를 이용하는 것 이외는 실시예 1과 동일하게 해서, 구조체를 얻었다. 비교예 2의 구조체의 특성을 표 3에 나타낸다.
Figure pct00001
Figure pct00002
Figure pct00003
〔검토〕
실시예 1∼9가 구조체의 비굽힘 강성을 만족한 산형의 형상을 갖는 구조체인 것은 명확하다. 실시예 1∼3에 있어서는, 비굽힘 강성을 의도적으로 변화시키는 것이 가능하며, 요구되는 특성에 따라 구성을 변경하는 것을 나타냈다. 실시예 4 및 5에서는 측면부 또는 저면이 다른 산형의 형상이 되는 구조체이며, 실시예 4는 점대칭이기 때문에 전방향으로 균질한 특성을 발현할 수 있다. 실시예 5는 각을 갖는 구조체이기 때문에, 구조체의 강성을 높일 수 있었다. 실시예 6에 있어서, 사면의 기울기가 급한 단면형상을 갖는 구조체를 얻을 수 있었다. 실시예 7에 있어서는 섬유길이를 실시예 8에 있어서는 수지를 변경한 구조체를 얻을 수 있었다. 실시예 9에 있어서는, 연속 섬유를 사용한 샌드위치 구성으로 구조체를 얻을 수 있었다. 또한 실시예 1∼8에 있어서는, 동심원형상 및/또는 방사선형상의 균질성이 우수하다. 한편, 비교예 1 및 비교예 2에 있어서는, 비굽힘 강성 및 균질성을 만족할 수 없었다.
(산업상의 이용 가능성)
본 발명에 의하면, 강성 및 경량성이 우수한 산형의 형상을 갖는 구조체를 제공할 수 있다. 또한, 균질성이 우수한 구조체를 제공할 수 있다.
1: 구조체
2: 상면부
3: 측면부
4: 정점
5: 무게중심
6: 수지
7: 강화 섬유
8: 공극
9: 단섬유
10: 플랜지부

Claims (11)

  1. 수지와 강화 섬유와 공극을 갖는 구조체로서,
    굽힘 탄성률을 Ec, 밀도를 ρ로 했을 때, Ec1/3·ρ-1로서 나타내어지는 비굽힘 강성이 2.5 이상이며,
    산형의 형상을 갖고 있는 구조체.
  2. 제 1 항에 있어서,
    상기 산형의 형상에 있어서의 동심원 균질도가 20% 이하인 구조체.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 산형의 형상이 원뿔형상, 반구형상, 다각뿔형상, 원뿔대형상, 반구대형상, 및 다각뿔대형상으로 이루어지는 군으로부터 선택되는 형상인 것을 특징으로 하는 구조체.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 구조체의 수직투영면의 면적을 S1로 하고, 상기 구조체의 수직투영면의 정점과 저면으로 형성되는 삼각형의 면적을 S2로 했을 때에, S1과 S2의 비(S1/S2)가 0.3∼1.7인 구조체.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 굽힘 탄성률(Ec)이 3GPa 이상인 구조체.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 산형의 형상에 있어서의 방사 균질도가 20% 이하인 구조체.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 구조체의 두께가 0.2mm 이상인 구조체.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    이하의 (1)∼(3)을 충족시키는 구조체.
    (1)상기 수지의 체적 함유율이 2.5∼85체적%
    (2)상기 강화 섬유의 체적 함유율이 0.5∼55체적%
    (3)상기 공극의 체적 함유율이 10∼97체적%
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 강화 섬유가 대략 모노필라멘트형상이며, 구조체 중에 랜덤으로 분산되어 이루어지고, 질량 평균 섬유길이 1∼15mm의 불연속인 강화 섬유로 구성되는 부직포형상의 형태인 구조체.
  10. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서,
    상기 강화 섬유가 금속 섬유, 피치계 탄소 섬유, 및 PAN계 탄소 섬유로 이루어지는 군으로부터 선택되는 어느 하나인 구조체.
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 기재된 구조체의 제조 방법으로서, 적어도 이하의 공정을 이 순서로 갖는 구조체의 제조 방법.
    공정 [1]: 적어도 수지와 강화 섬유를 포함하는 섬유 강화 수지(구조체 전구체)를 상기 수지의 인장강도가 10MPa 이하가 될 때까지 가열하는 공정.
    공정 [2]: 상기 섬유 강화 수지(구조체 전구체)를 상기 수지의 인장강도가 10MPa 이하가 될 때까지 가열한 상태에서 압력을 부여하고, 형상을 부형하는 공정.
    공정 [3]: 상기 섬유 강화 수지(구조체 전구체)의 두께 조정을 함으로써 팽창시키는 공정.
KR1020197017737A 2016-12-22 2017-12-20 구조체 및 그 제조 방법 KR20190098973A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016248746 2016-12-22
JPJP-P-2016-248746 2016-12-22
PCT/JP2017/045789 WO2018117180A1 (ja) 2016-12-22 2017-12-20 構造体及びその製造方法

Publications (1)

Publication Number Publication Date
KR20190098973A true KR20190098973A (ko) 2019-08-23

Family

ID=62627702

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197017737A KR20190098973A (ko) 2016-12-22 2017-12-20 구조체 및 그 제조 방법

Country Status (7)

Country Link
US (1) US10947352B2 (ko)
EP (1) EP3560985A4 (ko)
JP (1) JP7143588B2 (ko)
KR (1) KR20190098973A (ko)
CN (1) CN110088174B (ko)
TW (1) TWI778002B (ko)
WO (1) WO2018117180A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017223607B4 (de) * 2017-12-21 2020-10-08 Continental Automotive Gmbh Verfahren zur mobilen Einparkhilfe
US20210347132A1 (en) * 2018-10-03 2021-11-11 Zephyros, Inc. Composite structure
EP3838970B1 (en) * 2018-11-27 2024-05-15 Toray Industries, Inc. Sheet molding compound and fiber-reinforced composite material
EP4067033A4 (en) * 2019-11-29 2023-12-20 Toray Industries, Inc. FIBER-REINFORCED COMPOSITE MATERIAL AND SANDWICH STRUCTURE
JPWO2021106649A1 (ko) * 2019-11-29 2021-06-03

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238712A (ja) 1985-08-13 1987-02-19 Sumitomo Light Metal Ind Ltd アルミニウム箔ダブリング圧延方法
JP2001306062A (ja) 2000-04-20 2001-11-02 Inoac Corp 音響板用複合材及び音響板
JP2006063149A (ja) 2004-08-25 2006-03-09 Sekisui Chem Co Ltd 長繊維強化ポリウレタン発泡樹脂、並びに、まくら木
JP2014508055A (ja) 2011-01-25 2014-04-03 クオドラント・プラスチック・コンポジット・ジャパン 株式会社 曲げ剛性を備えた積層板、同積層板からの成形品、及びその製造方法及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373267A (en) 1976-12-10 1978-06-29 Toho Beslon Co Molding of blended fiber mat and composite material
JPS54109422A (en) 1978-02-16 1979-08-28 Toray Industries Acoustic elastomer
JPS5853298A (ja) 1981-09-25 1983-03-29 Toray Ind Inc 音響機器用振動板およびその製造方法
JPS5877399A (ja) 1981-11-04 1983-05-10 Toray Ind Inc 音響機器用振動板およびその製造方法
JPS5919997A (ja) 1982-07-24 1984-02-01 ヤマハ株式会社 楽器用音板の製法
JPS6360743A (ja) 1986-09-02 1988-03-16 東レ株式会社 軽量複合材料
JP2001268686A (ja) * 2000-03-23 2001-09-28 Idemitsu Petrochem Co Ltd 電気音響変換器用振動板およびその製造方法
TWI414543B (zh) * 2006-02-24 2013-11-11 Toray Industries 纖維強化熱可塑性樹脂成形體、成形材料及其製法
JP4983316B2 (ja) 2006-03-07 2012-07-25 東レ株式会社 航空機用内装材
EP2803694B1 (en) * 2008-07-31 2019-09-18 Toray Industries, Inc. Prepreg, preform, molded product, and method for manufacturing prepreg
JP5341728B2 (ja) * 2009-11-24 2013-11-13 京セラケミカル株式会社 スピーカー用振動板、及びその製造方法
WO2012029810A1 (ja) * 2010-08-30 2012-03-08 株式会社イノアックコーポレーション 繊維強化成形体及びその製造方法
WO2013147257A1 (ja) * 2012-03-29 2013-10-03 三菱レイヨン株式会社 炭素繊維熱可塑性樹脂プリプレグ、炭素繊維複合材料、ならびに製造方法
KR20160051727A (ko) 2013-08-30 2016-05-11 도레이 카부시키가이샤 샌드위치 구조체, 그것을 사용한 일체화 성형품 및 그들의 제조 방법
JP2015140353A (ja) 2014-01-27 2015-08-03 東レ株式会社 繊維強化熱可塑性樹脂組成物およびその製造方法ならびに繊維強化熱可塑性樹脂成形体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238712A (ja) 1985-08-13 1987-02-19 Sumitomo Light Metal Ind Ltd アルミニウム箔ダブリング圧延方法
JP2001306062A (ja) 2000-04-20 2001-11-02 Inoac Corp 音響板用複合材及び音響板
JP2006063149A (ja) 2004-08-25 2006-03-09 Sekisui Chem Co Ltd 長繊維強化ポリウレタン発泡樹脂、並びに、まくら木
JP2014508055A (ja) 2011-01-25 2014-04-03 クオドラント・プラスチック・コンポジット・ジャパン 株式会社 曲げ剛性を備えた積層板、同積層板からの成形品、及びその製造方法及びその製造方法

Also Published As

Publication number Publication date
US10947352B2 (en) 2021-03-16
EP3560985A4 (en) 2020-07-22
JPWO2018117180A1 (ja) 2019-10-31
JP7143588B2 (ja) 2022-09-29
CN110088174A (zh) 2019-08-02
EP3560985A1 (en) 2019-10-30
TW201829158A (zh) 2018-08-16
WO2018117180A1 (ja) 2018-06-28
TWI778002B (zh) 2022-09-21
US20190382543A1 (en) 2019-12-19
CN110088174B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
KR20190098973A (ko) 구조체 및 그 제조 방법
KR102104802B1 (ko) 구조체
KR101688868B1 (ko) 중공 구조를 갖는 성형체 및 그 제조 방법
KR102117241B1 (ko) 구조체의 제조 방법
KR102135049B1 (ko) 구조체
KR102212735B1 (ko) 복합 구조체의 제조 방법 및 일체화 복합 구조체의 제조 방법
KR20200135782A (ko) 성형품의 제조 방법
JP6123965B1 (ja) 構造体
JP2018104482A (ja) 構造体
JP2019178450A (ja) 繊維基材の製造方法および成形品の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
WITB Written withdrawal of application