KR20180134847A - 생체외 배양 과정 동안 체세포의 복제 능력을 증가시키는 방법 - Google Patents

생체외 배양 과정 동안 체세포의 복제 능력을 증가시키는 방법 Download PDF

Info

Publication number
KR20180134847A
KR20180134847A KR1020187023328A KR20187023328A KR20180134847A KR 20180134847 A KR20180134847 A KR 20180134847A KR 1020187023328 A KR1020187023328 A KR 1020187023328A KR 20187023328 A KR20187023328 A KR 20187023328A KR 20180134847 A KR20180134847 A KR 20180134847A
Authority
KR
South Korea
Prior art keywords
cell
gene
cells
population
protein
Prior art date
Application number
KR1020187023328A
Other languages
English (en)
Inventor
니콜라스 제노비스
다니엘 니콜 데스메트
에릭 슐즈
Original Assignee
멤피스 미츠 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 멤피스 미츠 인코포레이티드 filed Critical 멤피스 미츠 인코포레이티드
Publication of KR20180134847A publication Critical patent/KR20180134847A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0658Skeletal muscle cells, e.g. myocytes, myotubes, myoblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1276RNA-directed DNA polymerase (2.7.7.49), i.e. reverse transcriptase or telomerase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/11Protein-serine/threonine kinases (2.7.11)
    • C12Y207/11022Cyclin-dependent kinase (2.7.11.22)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/04Immortalised cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2511/00Cells for large scale production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2523/00Culture process characterised by temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites

Abstract

복제성 노화 동안 세포 주기의 진행의 억제를 폐지하고 후생동물 세포 바이오매스의 확장 가능한 응용분야 및 산업 생산을 위한 클론 세포주를 유도하도록 표적화된 유전자 수정을 사용하여 후생동물 체세포의 복제 능력을 증가시키는 제품 및 방법. 각 단백질을 암호화하는 전사체의 첫 번째 액손을 표적으로 하는 가이드 RNA를 사용하는 삽입 또는 결실 돌연변이는 CRISPR/Cas9를 사용하여 생성된다. 표적화된 수정은 변형되지 않은 부모 집단에 비해 변형된 세포 집단의 증식 능력을 증가시키는 p15 및 p16 단백질의 불활성화를 초래한다. TERT 유전자로부터 텔로머라제 단백질 상동체의 발현을 지시하는 유전자 구조체로부터 보조 텔로머라제 활성과 이들 수정을 결합하면 변형된 세포 집단의 복제 능력을 무기한 증가시킨다. 한 응용분야는 가금류 종 적색야계로부터의 세포를 사용하여 식이 섭취를 위한 골격근을 제조하는 것이고 다른 하나는 가축 종 소로부터의 세포를 사용하여 식이 섭취를 위한 골격근을 제조하는 것이다.

Description

생체외 배양 과정 동안 체세포의 복제 능력을 증가시키는 방법
본 발명은 산업적 바이오 처리 응용분야에서 바이오매스의 확장 가능한 제조를 위해 후생동물 세포의 복제 능력을 증가시키는 제품 및 방법에 관한 것이다.
근원성(즉, "근육 형성") 세포주는 거의 50년 전에 그들의 유도가 최초로 기술되었기 때문에 골격근 생물학을 이해하기 위한 기본 모델로 사용되어 왔다. 기본적인 연구 외에도, 근육(즉, 근원세포) 세포주는 생물학적 로봇 공학; 약리학적 화합물을 스크리닝하는 바이오인공 근육 구조물; 유전성 근육 질환의 치료적 교정; 및 식이 섭취를 위한 식용 바이오매스의 생체 외 생산에서 산업적 응용을 기대하고 있다. 동물 바이오매스의 상업적 규모의 생산에서의 응용을 위한 세포 공급원으로서의 기증자 조직으로부터의 1차 근육 세포 조달은 현재 응용-특이적 배치 배양을 배제하는 기술적 및 물질적 자원을 필요로 한다. 또한, 1차 세포가 복제할 수있는 원래의 능력은 유전자 변형을 위해 계대배양되거나 세포 은행 및 산업적 제조에 사용되는 규모를 제한한다. 이러한 과제를 해결하기 위해, 본 발명은 이후 "근원성 세포주(myogenic cell line)"라고 부르는 것을 만드는 골격근 계통으로 분화될 세포의 재생 능력을 증가시키는 유전자 수정을 포함한다.
근원성으로 또는 다른 방식으로 완전 기능성 세포주는 분화될 계통이 정해진 존재론적 표현형, 보다 넓은 핵형을 갖는 게놈의 안정성, 영구적인 재생을 위한 능력 및 생체 내에서 조직학적 대응물에 존재하는 말단 분화 세포의 기능적 특징을 나타내는 잠재력에 의해 확인된다. 골격근 세포주의 경우, 이러한 특징의 일부는 세포 융합, 줄무늬 근섬유 발달 및 아세틸콜린과 같은 화학적 자극물질에 대한 생리적 반응을 포함한다.
특정 골격근 세포주의 유도의 성공은 정상 조직 및 돌연변이 조직으로부터 분리되거나 종양으로부터 분리된 연속적인 통과를 통해 달성되었다. 현재까지, 존재하는 근원성 세포주는 특징 묘사가 잘 되지 않았고, 주로 유전적 불안정성, 이수배체체, 손상된 분화 능력 및 분자 신호 전달와 전사 네트워크의 변이성 변화와 같은 바람직하지 않은 특성을 갖는다.
불멸화 세포주에 대한 이용가능한 옵션은 일부 전구 종의 선택된 그룹에 한정되어 있다. 이러한 세포주의 전부는 아니지만 대부분은 선택된 전구 종의 종-특이적 또는 고-충실도 표현을 필요로 하는 응용을 위한 기능적 적합성을 잠재적으로 감소시키는 바람직하지 못한 특징을 가진다. 예를 들어, 소, 돼지, 닭 및 연어와 같은 농업적으로 중요한 동물 종으로부터의 불멸화 근원성 세포주의 유도는 성취되지 못했다. 현존하는 근원성 세포주의 선택은 생의학 연구에서 일반적으로 사용되는 모델 종, 즉 쥐 및 영장류 종으로 주로 제한된다; 그러나 이러한 세포주는 일반적으로 식품에 사용하기 위한 식용 바이오매스를 생산하는 전구 공급원으로서 허용되지 않는다.
이것은 세포 주기 진입의 망막모세포종 패밀리 단백질(즉, p107, pRB, p130)-매개 억제 및 연속적인 세포 분할 주기 동안 염색체의 말단에서 텔로미어 DNA 서열의 반복체(TTAGGG)n의 짧아짐에 의해 유도된 DNA-손상 반응과 같이 반복적 인 노화에 기여하는 개별 경로를 직접 표적으로 하여 근원성 세포주를 확립하는데 사용되는 다른 접근법에도 해당된다. 예를 들어, pRB 기능의 절제는 말단적으로 분화된 상태에 도달하여 유지하는 근원 세포의 능력을 손상시키고, 그 자체만으로는 증식 능력을 유지하기에 불충분하다. 마찬가지로, 기능성 텔로미어 역전사 효소( "TERT")의 과발현에 의한 텔로머라제 활성의 장기간 유지는 텔로미어 침식을 중화시킴으로써 1차 근원세포의 재생 능력을 증가시킨다; 혼자서는 이러한 세포들에 의한 노화를 방지하기에는 불충분하다.
정상 골격근에서, p107은 미분화되고, 증식하는 근원세포에서 발현되어 E2F 전사 인자와 복합체화된 지배적인 망막모세포종 패밀리 단백질이다. 말단 분화 동안, 근원세포는 세포 분열 주기를 탈출하여 수축 근육 섬유로 성숙하는 다핵 근육으로 융합된다. 근원세포 분화 동안 세포-주기 탈출을 개시하고 근관에서 유사분열 후 상태를 유지하는 E2F에 의한 유전자 발현의 전사 활성화를 억제하는데 망막모세포종 패밀리 단백질 pRB와 p130의 역할은 사이클린-의존성 키나아제 억제제("CKIs")에 의해 지시된다. 그러나 현재까지 모델링되고 특성화된 포유류 골격 근육에서, 분리에서 CKI의 기능은 말단 분화 동안 세포 주기를 막기에는 충분하지 않다. 오히려, p21, p18, p27 및 p57을 포함하는 조합에서 CKI에 의해 공유되는 역할은 근원세포 분화 동안 세포 주기로부터의 탈출을 지시하고 안정화시킨다. CKI의 어떤 조합이 이 역할을 효과적으로 수행하기에 충분하고 필요한지에 대한 합의는 이루어지지 않았다. 이 결론에도 불구하고, CKI 단백질 p15와 p16은 이 역할에 관련되지 않았다.
CKI 단백질 p16(INK4A라고도 함)은 순차적 CDKN2B 및 CDKN2A 유전자에 의해 공유되는 INK4B-ARF-INK4A 유전자좌의 일부를 구성하는 포유 동물에서 발견된 CDKN2A의 발현 산물이다. CDKN2A 유전자는 선택적 스플라이싱 변이체로부터 번역되는 ARF와 p16, 두 개의 단백질에 대한 전사체를 암호화한다. 각 CDKN2A 전사체의 발현은 별개의 프로모터의 조절하에 있다. ARF 및 p16 단백질은 CDKN2A 유전자 내에서 공유된 엑손에 의해 암호화되지만, ARF 전사체는 p16 전사체에 비해 선택적 판독 프레임에서 전사되어, ARF와 p16을 포함하는 아미노산 서열은 완전히 구별된다. CDKN2B 유전자는 구조 및 기능 모두에서 p16과 유사한 CKI인 p15 단백질 (INK4B라고도 함)을 암호화한다.
P15 및 p16은 포유 동물에 존재하는 패럴로그(paralogs)이며, CDKN2A 유전자는 후생동물 계통 발생 내에서 포유 동물의 발산과 동시에 CDKN2B 유전자의 중복으로부터 발생하는 것으로 생각된다. p15와 달리, p16은 복제성 노화 동안 포유 동물에서 주요 CKI로 작용한다.
특히, 오래 살았던 종양 저항성 설치류인 벌거숭이 두더지 쥐는 p15의 첫 번째 엑손과 p16의 두 번째 및 세 번째 엑손을 연결하는 전사 스플라이스 변이체로부터 p15/p16 하이브리드 단백질을 발현하는 것으로 알려져 있다. 어류 및 조류에서, INK4B-ARF-INK4A 유전자좌는 부분적으로만 보존된다. 닭 게놈에서, CDK2NA 유전자는 p16 단백질을 암호화하지 않는다; p15 및 ARF 단백질만 암호화된다. 서열화되고 주석이 달린 어류 게놈은 CDKN2B 유전자를 특징으로 하지만, CDKN2A 유전자는 이 게놈 내에 존재하지 않는다. 닭 p15 단백질은 인간 p16 단백질에 기능적으로 상응한다; 인간 섬유아세포에서 과발현될 때 CDK4/6에 결합하고 세포 주기 진행을 제한한다. 더욱이, p15는 닭 섬유아세포에서 복제성 노화를 촉진할 수 있다.
또한, 특히 INK4B-ARF-INK4A 유전자좌에서 불멸 근원성 쥐 C2C12 세포주 내에서 결실 돌연변이가 p16 및 ARF의 발현을 중지시킨다. 그러나 현재까지 보고된 근원성 세포주는 INK4B-ARF-INK4A 유전자좌의 표적화된 비-확률 유전자 수정에 의해 생성되지 않았다. 오히려, 인간 근원성 세포에서의 p16 단백질의 억제성 CKI 기능은 CDK4(즉, 사이클린-의존성 키나아제 4) 단백질의 이소성 과발현에 의해 부분적으로 극복되어 노화를 극복하고 세포주를 유도하였다.
p16 및 p15 기능의 짧은 헤어핀 RNA(shRNA) 사일런싱과 같은 다른 방법은 연장된 계대배양이 가능한 근원성 세포주의 유도를 입증하지 못했다. 어류, 가금류 및 가축 종으로부터 골격근 세포주를 생산하는 비-확률적 방법은 보고되지 않았다. 현재까지, 동물성 바이오매스는 식이 섭취를 위한 생체외 배양에 의해 상업적으로 제조되지 못했다. 동물 바이오매스로 제조된 다양한 식품 제품 시제품이 문서화되어있다. 그러나, 이러한 시제품을 제조하는데 사용된 세포 원료는, 정상적인 체세포에서, 복제성 노화를 수반하는 세포 원료의 유전 프로그램에 의해 허용되는 확장 규모로 제한된다.
복제성 노화를 회피하기 위한 하나의 접근법은 근원성 계통에 대한 무한 갱신 능력을 갖는 이전에 확립된 다능성 또는 비-근원성 세포주의 존재론적 계통 실행(ontological lineage commitmen)을 지시하는 것을 사용한다. 본 발명에 참조로 포함된 U.S. Pat. App. No. 15/134,252 참조. 대조적으로, 본 발명에서 기술된 대안적인 접근법은 식이 섭취 및 산업용 바이오프로세스 응용을 위한 바이오매스의 확장 가능한 제조를 위한 근원성 세포주를 생성하기 위해 계통-실행 근육 세포의 복제 능력을 무한히 확장시키는 상호 프로세스이다.
본 발명의 상기 문제를 해결하는 것을 목적으로 한다.
본 발명은 정상적이고 변형되지 않은 체세포의 복제성 노화 특성을 줄이거 나 없애고, 후생동물 세포 바이오매스의 산업 생산에서 확장 가능한 응용을 위한 클론 세포주를 유도하기 위해 분화 동안은 아니지만, 증식 동안 세포 주기의 망막모세포종 단백질 억제를 중지시킴으로써 후생동물 체세포의 복제 능력을 증가시키면서 텔로머라제 활성을 유지함으로써 후생동물 체세포의 복제 능력을 증가시키는 유전자 수정을 사용하는 생산물 및 공정이다.
응용분야가 식이 섭취를 위해 제조된 바이오매스인 본 발명의 한 예에서, 세포의 종 정체는 적색야계(Gallus gallus)이고 세포 계통은 골격근이다. 한 실시태양에서, 본 발명의 유전자 수정은 CDK4 "INK4" CKI 상동체 p15 및 p16(사이클린-의존성 키나아제 4 "CDK4"의 억제제(따라서 이들의 이름은 CDK4의 억제제임))의 억제제를 나타내는 단백질의 직접적인 불활성화를 구성한다. p15 및 p16의 불활성화는 INK4B-ARF-INK4A 유전자좌에 의해 암호화되는 INK4 단백질을 암호화하는 보존 된 뉴클레오타이드 서열을 돌연변이시켜 표적화된 세포 집단의 증식 능력을 증가시킴으로써 달성된다.
특히, CDKN2B 유전자의 첫 번째 엑손은 적색야계 골격근으로부터 분리된 일차 세포 집단 내에서 p15 단백질을 파괴하도록 표적화된다. 첫 번째 엑손을 표적으로하는 가이드 RNA를 사용하는 삽입 또는 결실 돌연변이(INDEL)는 클러스터링된 규칙적 간격의 짧은 회문 반복체(clustered regularly-interspaced short palindromic repeats)-Cas9(CRISPR/Cas9)를 사용하여 생성된다. 이것은 CDKN2B 유전자좌만의 파괴가 그들의 변형되지 않은 모집단에 비해 변형된 세포 집단에서 증식 능력을 증가시키기에 충분하다는 것을 입증한다.
그럼에도 불구하고, 이러한 수정이 (예를 들어, 이소성 TERT 유전자로부터의) 텔로머라제 단백질 상동체의 발현을 지시하는 유전자 구조체로부터의 부수적 인 텔로머라제 활성과 조합될 때, 변형된 세포 집단의 복제 능력은 무기한 증가한다. 접근법을 검증하기 위해 증식 및 노화에 대한 지표를 변경되지 않은 일차 세포 집단에 대해 점수화한다.
암컷 적색야계 종 핵형의 세포는 여러 가지 이유로 이 과정을 모델링하기 위해 선택되었다. 첫째, 적색야계의 암컷 핵형이 이형 염색체 배우자 성(heterogametic sex)을 구성한다. CDKN2B 대립 유전자가 적색야계의 성 염색체에 위치하고 있기 때문에, 오직 하나의 대립 유전자만을 표적으로 삼는다면 이 게놈을 암컷 동물에서 무효 접합체로 만든다. 둘째, 적색야계 게놈은 p16 단백질을 암호화하는 포유류 CDKN2A 유전자의 오솔로그가 결여된다. 따라서, 단지 하나의 INK4 암호화 유전자의 불활성화가 이 모델에서 모든 p15/p16 활성을 제거하기 위해 필요하다.
본 발명의 내용 중에 포함되어 있다.
도 1은 활성 조절 영역(도시된 예: 데스민 프로모터)이 선행되거나 그 규제하에 있는 유전자(도시된 예: 혈청 알부민)를 함유하는 형질전환 DNA 서열의 삽입을 도시한다.
도 2는 게놈에 내인성인 표적 유전자(도시된 예: 혈청 알부민)로부터의 발현 조절을 위한 활성 조절 영역(도시된 예: 데스민 프로모터)을 함유하는 형질전환 DNA 서열의 삽입을 도시한다.
도 3은 조절 영역(도시된 예: 혈청 알부민 유전자)의 활성화를 위한 INDEL 또는 점 돌연변이에 의한 내인성 조절 영역(도시된 예: 혈청 알부민 프로모터) DNA 서열의 유전자 수정을 도시한다.
도 4는 조직 특이적 활성을 갖는 내인성, 5 '조절 영역(도시된 예: 미오스타틴 프로모터)의 조절하에서 발현을 위한 표적 유전자(도시된 예: 혈청 알부민 유전자)를 나타내는 형질전환 DNA 서열의 삽입 및 삽입된 DNA 서열(도시된 예: 미오스타틴 유전자)에 내인성 유전자 3'의 조절 영역 활성화의 평형 파괴를 도시한다.
도 5는 표적 유전자(도시된 예: 혈청 알부민 프로모터 및 유전자)의 프로모터 영역으로부터의 유전자 발현의 표적화된 활성화 단독 또는 유전자 서열-표적 활성화 테더(tether)에 의한 조절 영역 바깥의 인핸서로부터의 유전자 발현의 활성화와 조합에 대한 대한 후성 또는 전사 프로그램 유도성 수정을 도시한다. 예시를 위해, CRISPRα(즉, CRISPR 활성화)를 나타내는 양식이 도시된다.
도 6은 표적 유전자의 조절 영역으로부터 또는 표적 유전자의 암호화 서열로부터의 DNA 발현 표적 억압 테더(도시된 예: 혈청 알부민 프로모터 및 유전자)에 의한 유전자 발현의 표적 억제에 대한 후성- 또는 전사 프로그램-억제 수정을 나타낸다. 예시적인 목적을 위해, CRISPRi를 나타내는 양상(즉, CRISPR 간섭)이 도시되어 있다.
도 7은 내인성 조절 영역(도시된 예: 미오스타틴 프로모터) 또는 내인성 표적 유전자(도시된 예: 미오스타틴 유전자)의 발현을 침묵시키거나 파괴시키기 위해 INDEL 또는 점 돌연변이에 의한 개시 코돈과 같은 표적 유전자 암호화 서열의 유전자 수정을 도시한다.
도 8은 활성 조절 영역(도시된 예: 데스민 프로모터)에 의해 선행되거나 조절하에 있는 shRNA 암호화 영역(도시된 예: 미오스타틴 shRNA)을 함유하는 형질 전환 DNA 서열의 삽입을 도시한다.
도 9는 p16 및 p15 아미노산 정렬을 도시한다: a. 대표적인 포유류 쥐(Mus musculus; SEQ ID NO 17), 소(Bos taurus; SEQ ID NO 18) 및 멧돼지(Sus scrofa; SEQ ID NO 19) p16 오솔로그 내 예측된 아미노산 서열 상동성 사이의 보존(패널 A); b. 대표적인 후생동물 적색야계(Gallus gallus; SEQ ID NO 20), 쥐(Mus musculus; SEQ ID NO 21), 소(Bos taurus, SEQ ID NO 23), 멧돼지(Sus scrofa; SEQ ID NO 22), 연어(Oncorhynchus mykiss; SEQ ID NO 24) 및 틸라피아(Oreochromis niloticus; SEQ ID NO 25) p15 오솔로그 내 예측된 아미노산 서열 상동성 사이의 보존(패널 B).
본 발명의 유전적 수정은 복제성 노화 동안 세포 분열 주기 전진의 망막모세포종 단백질 억제를 완화시킨다. 이는 예시적인 실시태양에 도시된 바와 같이, 망막모세포종 단백질의 CKI-매개 안정화를 폐기함으로써 달성된다. 본 발명자들은 3 가지 실시태양을 개시한다: (I) 암호화 서열의 표적 돌연변이를 통한 CDKN2B 유전자의 파괴에 의한 p15 단백질의 불활성화; (II) 암호화 서열의 표적 돌연변이를 통한 CDKN2A 유전자의 파괴에 의한 p16 단백질의 불활성화; 및 (III) 사이클린-의존성 키나아제 상동체의 과발현에 의한 세포 분열 주기 진행의 망막모세포 단백질 억제의 내인성 CKI-매개 안정화의 폐지. 이런 수정은 단독으로 또는 이소성 유전자 구조에 의해 지시된 텔로머라제의 부수적인 과발현과 조합으로 수정된 후생동물 세포의 복제 능력을 증가시킨다.
유전자의 표적화된 전사 활성화에 대한 유도 수정의 5 가지 예시 모델 및 유전자 산물의 표적화된 억제에 대한 억제 수정의 4 가지 예시 모델(도 4, 6-8)이 도 1-5에 도시되어 있다. 도 1-8에서, G는 천연 게놈 DNA 서열을 나타내고 T는 외래 형질전환 DNA 서열을 나타낸다. 또한, 도 4는 도입된 형질전환 유전자에 대한 귀납적인 수정 및 이의 천연 프로모터로부터 분리된 내인성 유전자에 대한 억압적인 수정을 나타낼 수 있다는 것에 유의한다. 본 실시예를 위해서, 야생형 숙주 세포 조직 계통은 미오스타틴+/데스민+ 골격근이다. 예시를 위해서, 화살표는 INDEL 또는 점 돌연변이에 의해 프로모터 및/또는 유전자의 DNA 서열 내의 유전자 수정의 예시적인 영역을 나타낸다. ROSA26은 전형적으로 전사적으로 활동적인 수정 유전자좌를 나타낸다. 수정은, 예를 들어, 내인성 또는 변형되지 않은 유전성, 후성적 또는 전사 프로그램에 대한 변경을 포함할 수 있다.
가축으로 분류되는 것으로 일반적으로 받아 들여지는 종 중에서, 단백질 p16의 예측된 아미노산 서열은 소(Bos taurus)(SEQ ID NO 18)와 멧돼지(Sus scrofa)(SEQ ID NO 19) 사이의 82% 쌍의 동일성으로 크게 보전된다. 마찬가지로, 가축 및 해산물로 분류되는 종 중에서, 단백질 p15의 아미노산 서열은 다음과 같이 보존된다: 소(Bos taurus)(SEQ ID NO 23) 및 멧돼지(Sus scrofa)(SEQ ID NO 22) 사이의 92% 쌍의 동일성, 연어(Oncorhynchus mykiss)(SEQ ID NO 24) 및 틸라피아(Oreochromis niloticus)(SEQ ID NO 25) 사이의 60% 쌍의 동일성. 또한, p15 유전자좌에서 모든 가축, 가금류 및 해산물을 비교하면(도 9 패널 B에 도시됨), 게놈 정렬은 58% 쌍의 동일성(Gallus gallus, SEQ ID NO 20; Mus musculus, SEQ ID NO 21; Bos taurus, SEQ ID NO 23; Sus scrofa, SEQ ID NO 22; Oncorhynchus mykiss) SEQ ID NO 24; 및 Oreochromis niloticus, SEQ ID NO 25)이 존재한다는 것을 나타낸다.
도 9는 p16 및 p15 아미노산 정렬을 입증한다: a. 대표적인 포유류 쥐(Mus musculus; SEQ ID NO 17), 소(Bos taurus; SEQ ID NO 18) 및 돼지(Sus scrofa; SEQ ID NO 19) p16 오솔로그 내 예측된 아미노산 서열 상동성 사이의 보존; b. 대표적인 후생동물 갈리나세안(Gallus gallus; SEQ ID NO 20), 쥐(Mus musculus; SEQ ID NO 21), 소(Bos taurus, SEQ ID NO 23), 돼지(Sus scrofa; SEQ ID NO 22), 연어(Oncorhynchus mykiss; SEQ ID NO 24) 및 틸라피아(Oreochromis niloticus; SEQ ID NO 25) p15 오솔로그 내 예측된 아미노산 서열 상동성 사이의 보존(패널 B). 검은색 음영은 보존의 등급(즉, 동일성 및 유사성)을 나타낸다: 블로섬(Blosum) 62 점수 행렬을 기반으로 검은색 음영은 100% 유사성을 나타내며, 회색은 60-80% 유사성을 나타내며 흰색은 60% 유사성을 나타낸다(Geneious R10에서 생성된 이미지 및 점수(http://www.geneious.com, Kearse et al., 2012).
함께, 이런 오솔로그는 가축, 가금류 및 해산물로 분류된 종 중에서 본 발명의 실시태양에 의해 표적화된 p15 및 p16 오솔로그의 보존된 아미노산 서열 상동성을 입증한다. 주석이 달린 물고기 및 조류 게놈은 p16 오솔로그가 없다는 것에 유의한다. 따라서, 조류, 포유류 및 어류 종 전반에 대한 p15-매개 기능의 무결성이 보존되고, 포유 동물 종 전반에에 대한 p16-매개 기능의 무결성이 본 발명의 표적화된 응용분야를 위한 플랫폼으로서 보존되는 것으로 예상된다.
<제 1 예시적 실시태양: CDKN2B 유전자좌의 유전자 수정 및 TERT의 이소성 발현을 통한 지연된 복제성 노화>
(A) CDKN2B 유전자좌의 유전자 수정을 통한 지연된 복제성 노화
요약하면, 이 제 1 예시적 실시태양은 가이드 RNAs(gRNAs)(SEQ ID NO 1-5)를 사용하는 CDKN2B의 엑손 #1(NCBI 등록 번호: NM_204433.1)을 표적으로 하는 INDEL을 생성하기 위해 CRISPR/Cas9를 사용하여 적색야계 골격근으로부터 분리된 1차 근육모세포 세포 집단 내의 p15 단백질을 암호화하는 CDKN2B 유전자좌를 파괴한다. TERT 유전자(NCBI 등록 번호: NM_001031007.1; NCBI Gene ID: 420972)로부터 텔로 머라아제 단백질 상동체의 발현을 지시하는 유전자 구조체(SEQ ID NO 6)으로부터의 보조 텔로머라제 활성과 조합하여 수행될 때, CDKN2B 유전자좌만 파괴시키는 것이 이점을 제공하지만, 변형된 세포 집단의 복제 능력은 무한히 증가한다. CDKN2B의 표적화된 비활성화는 새로운 접근법이다.
일반적으로, 제 1 실시태양은 5 단계 과정으로 생체외 배양에 의해 후생동물 체세포의 천연 복제 능력을 증가시킨다: (1) 분화 동안은 아니지만, 증식 동안 세포 주기의 망막모세포종 단백질 억제를 폐지하기 위해 p15 단백질을 불활성화시킴으로써 복제성 노화에서 세포 분열 주기 진행의 망막모세포종 단백질 억제를 디커플링(decoupling)하는 단계; (2) 기능적인 TERT 유전자로부터 텔로머라제 단백질 상동체의 발현("TERT의 이소성 발현")을 유도하는 유전자 구조체로 후생동물 체세포를 형질전환시켜 텔로머라제 활성을 유지시켜 복제성 노화를 줄이는 단계; (3) CDKN2B 유전자 돌연변이 및 TERT의 이소성 발현(즉, "마스터 세포 은행")을 갖는 세포의 은행을 유지하는 단계; (4) 생체외 환경에서 마스터 세포 은행으로부터 세포를 배양하는 단계; (5) 식이 섭취를 위해 배양된 세포 바이오매스를 수확하는 단계.
좀 더 구체적으로 그리고 한 실시태양에서, p15 단백질을 암호화하는 CDKN2B 유전자(NCBI 등록 번호: NM_204433.1)의 제 1 엑손은 적색야계 세포 집단의 게놈 내의 CDKN2B 유전자의 첫 번째 엑손 내에 돌연변이을 삽입하기 위해 gRNA-표적화 CRISPR/Cas9 (gRNA SEQ ID NO 1-5)를 사용하여 유전자 수정을 표적으로 한다. 이런 예를 위해 사용된 방법의 더욱 자세한 설명은 아래의 재료 및 방법 섹션 A, B, D, E 및 F를 참조.
예시적인 실시태양 I는 내인성 p15 단백질의 기능을 파괴하기 위한 도 7에 예시된 모델을 사용한다. 구체적으로는, 도 7에 도시된 모델은 내인성 유전자 발현이 개시 코돈의 돌연변이 또는 전사 활성화를 가능하게 하는 조절 영역 서열에 의해 파괴되는 본 발명에서의 사용에 적용될 수 있다. 대안으로, 내인성 유전자 기능은 시작 코돈 이후에 프레임변이 돌연변이를 도입함으로써 파괴될 수 있다. 예를 들어, 본 발명에 적용된 바와 같이, 도 7에 도시된 모델은 CRISPR/Cas9-표적화 핵산 분해효소 활성을 사용하여 CDKN2B 유전자의 5-프라이머(5') 암호화 서열에 도입된 INDEL 돌연변이에 의한 p15 기능의 억제를 나타낼 수 있다.
(B) 이소성 TERT 유전자의 발현
실시태양 I-A에 기재된 바와 같이 변형된 세포는 또한 TERT 유전자(NCBI 등록 번호: NM_001031007.1; NCBI 유전자 ID: 420972)로부터 텔로머라제 단백질 상 동체의 발현을 지시하는 유전자 구조체로 변형될 수 있다. 이어서 텔로머라제 단백질 상동체의 발현을 지시하는 유전자 구조체에 의한 유전자 수정을 특징으로 하는 세포에 대한 TERT 유전자로부터 텔로머라제 단백질 상동체의 발현을 지시하는 유전자 구조체(SEQ ID NO 6)으로 형질 도입된 이 집단으로부터 세포를 선별한다.
예시적인 실시태양 I는 이소성 TERT 유전자의 발현을 위해 도 1에 도시된 모델을 사용한다. 구체적으로는, 도 1에 도시된 모델은 외부 유전자가 외래 프로모터의 조절하에 발현되는 본 발명에서의 사용에 적합할 수 있다. 예를 들어, 본 발명에 적용된 바와 같이, 도 1에 도시된 모델은 도입된 CAG 프로모터로부터의 이소성 TERT 유전자의 발현을 나타낼 수 있다.
도 2에 도시된 모델은 내인성 유전자가 외래 프로모터의 조절하에 발현되는 본 발명에서의 사용에 적합할 수 있다. 예를 들어, 본 발명에 적용된 바와 같이, 도 2는 또한 도입된 CAG 프로모터로부터의 내인성 TERT 유전자의 발현을 나타낼 수있다.
도 3에 도시된 모델은 유전자 발현이 그의 조절 서열의 표적화된 돌연변이에 의해 변경되는 본 발명에서의 사용에 적합할 수 있다. 예를 들어, 본 발명에 적용된 바와 같이, 도 3은 내인성 TERT 프로모터로부터의 내인성 TERT 유전자의 발현을 나타낼 수 있으며 여기서 TERT 프로모터 내의 리프레서 결합 부위가 돌연변이에 의해 파괴되었다.
도 4에 도시된 모델은 외래 유전자의 발현이 유전자의 3-프라이머(3') 말단에 삽입된 내인성 프로모터의 조절하에 발현되는 본 발명에서의 사용에 적합할 수있다. 예를 들어, 본 발명에 적용된 바와 같이, 도 4는 내인성 β-액틴 프로모터로부터의 외래 TERT 유전자의 발현을 나타낼 수 있다.
도 5에 도시된 모델은 내인성 유전자의 발현이 유전자 서열-표적화된 활성화 테더링에 의해 프로모터로부터 전사적으로 활성화되는 본 발명에서의 사용에 적합 할 수 있다. 예를 들어, 본 발명에 적용된 바와 같이, 도 5는 TERT 프로모터를 표적으로하는 CRISPRα에 의한 내인성 TERT 유전자의 유도를 나타낼 수있다. 예시적인 CRISPRα 양상은 단일 gRNA에 의해 표적 유전자의 조절 영역을 표적으로 하는 핵산 분해효소-결핍 Cas9 단백질에 의해 매개되는 활성화를 포함하나, 이에 제한되지 않는다. CRISPRa의 범위 외부에, 이 유도 수정 메커니즘의 양상은 핵산 분해효소-결핍 아연 핑거 핵산 효소(ZFNs) 및 핵산 분해효소-결핍 전사 인자 유사 효과기 핵산 분해효소(TALENs)를 포함하지만 이에 제한되지 않는 유전자 서열-표적화 활성화 테더링을 포함한다.
도 6에 도시된 모델은 내인성 유전자의 발현이 유전자 서열-표적 억압 테더링에 의해 프로모터로부터 전사적으로 억제되는 본 발명에서의 사용에 적합할 수 있다. 예를 들어, 본 발명에 적용된 바와 같이, 도 6에 도시된 모델은 CDKN2B 프로모터를 표적으로 하는 CRISPRi에 의한 내인성 CDKN2B 유전자의 억제를 나타낼 수 있다. 예시적인 CRISPR1 억제 양상은 단일 gRNA에 의한 조절 영역 또는 유전자를 표적으로 하는 핵산 분해효소-결핍 Cas9 단백질에 의해 매개되는 억제를 포함하나 이에 제한되지 않는다. CRISPRi의 범위 밖에서, 이 억압 수정 메커니즘의 양상은 핵산 분해효소-결핍 ZFN 및 핵산 분해효소-결핍 TALEN을 포함한 이에 제한되지 않는 DNA 서열-표적화 서열 테더링을 포함한다.
이런 예에서 사용된 방법의 더 자세한 설명을 위해, 아래의 C, G, H 및 I 항의 재료 및 방법을 참조; 이 제조 방법에 주목하는 것은 섹션 I-B에서 전술한 동일한 제조 방법을 사용하여 이 예시적인 실시태양에서 달성될 수 있다.
(C)식이 섭취를 위한 바이오매스 제조
한 실시태양에서, 식이 섭취를 위한 바이오매스 제조는 4 단계를 포함한다: (1) CDKN2B 유전자좌 및/또는 TERT의 이소성 발현에 대한 유전자 수정을 포함하는 선택된 세포 집단을 확장하는 단계; (2) 마스터 세포 은행 재고 목록에서 확장된 세포 집단을 냉동 보존 및 저장하는 단계; (3) 생체외 환경에서 마스터 세포 은행 재고 목록에서 세포를 씨딩하고 배양하는 단계; 및 (4) 식이 섭취를 위해 배양된 세포 바이오매스를 수확하는 단계.
단계 1은 CDKN2B 유전자좌에 대한 유전자 수정을 포함하는 선택된 세포 집단을 확장하는 것이다. 유전자 수정을 포함하는 선택된 세포 집단을 7.5 x 103 세포/ cm2의 밀도이고 5% 이산화탄소, 5% 산소 대기 조건하에 37℃에서 배양된 소 혈청 + 기초 배지를 포함하나 이에 제한되지 않는 10% 동물성 혈청을 함유하는 표준 성장 배지에서 젤라틴-코팅 조직-배양 처리 플라스틱으로 이루어진 기질 상에 씨드한다. 배양액이 80%의 밀집도에 이르면, 세포는 효소적으로 해리되고 세포의 확장된 양은 7.5 x 103 세포/cm2로 분주한다. 이 과정은 해리 후 수확된 총 세포 수가 1.0 x 108 세포를 초과할 때까지 반복한다.
단계 2는 마스터 세포 은행 재고 목록에 확장된 세포 집단을 냉동 보존 및 저장한다. 세포를 1.0 x 108 이상의 양으로 수확한다. 확장 후, 선택된 세포를 300 x g에서 5분간 원심 분리하여 펠렛화한다. 세포 펠렛을 2.5 x 106 세포/mL의 표준 냉동 보존 배지에 현탁시키고, 냉동 바이알당 1.0 mL로 분취하였다. 냉동 바이알을 제어된 냉각 용기를 사용하여 1 ℃/분으로 -80℃까지 냉각시키고 장기 저장을 위해 액체 질소를 함유하는 듀어에 옮긴다. 세포 원료가 이 은행으로부터 고갈됨에 따라, 잔류 세포 바이알은 실시태양 I-B-1에서 기술된 바와 같이 확장되고 실시태양 I-B-2에서 기술된 바와 같이 냉동 보존되어 마스터 세포 은행 재고를 보충하고 확장시킨다.
단계 3은 생체외 환경에서 마스터 세포 은행의 세포를 씨딩하고 배양하는 것이다: 원하는 배양 규모에 따라, 마스터 세포 은행의 하나 이상의 바이알을 신속하게 실온으로 해동한다. 냉동 보존 배지를 5분, 300 X g 원심 분리 단계에 의해 세포에서 제거한다. 세포를 표준 성장 배지에 현탁시키고, 표준 성장 배지에서 젤라틴-코팅 배양 기질 상에 씨드하고, 실시태양 IB-1에서 약술한 바와 같이 배양하고, 다만 수확 전의 최종 계대배양 시에, 세포를 세포 배양 기질 상에서 100% 이상의 밀집도로 증식시킨다. 바이오매스 수확을 위한 배양 규모는 표 1에 요약되어 있으며, 예측된 평균 세포 질량은 2.0 x 10-9 그램이며 예측된 평균 세포 배증 시간은 24 시간(h)이다.
# 시간 1
바이알
2
바이알
3
바이알
4
바이알
5
바이알
6
바이알
7
바이알
8
바이알
9
바이알
10
바이알
0 h 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
24 h 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
48 h 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
72 h 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4
96 h 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8
120 h 0.16 0.32 0.48 0.64 0.8 0.96 1.12 1.28 1.44 1.6
144 h 0.32 0.64 0.96 1.28 1.6 1.92 2.24 2.56 2.88 3.2
168 h 0.64 1.28 1.92 2.56 3.2 3.84 4.48 5.12 5.76 6.4
192 h 1.28 2.56 3.84 5.12 6.4 7.68 8.96 10.24 11.52 12.8
216 h 2.56 5.12 7.68 10.24 12.8 15.36 17.92 20.48 23.04 25.6
240 h 5.12 10.24 15.36 20.48 25.6 30.72 35.84 40.96 46.08 51.2
264 h 10.24 20.48 30.72 40.96 51.2 61.44 71.68 81.92 92.16 102.4
288 h 20.48 40.96 61.44 81.92 102.4 122.88 143.36 163.84 184.32 204.8
312 h 40.96 81.92 122.88 163.84 204.8 245.76 286.72 327.68 368.64 409.6
336 h 81.92 163.84 245.76 327.68 409.6 491.52 573.44 655.36 737.28 819.2
표 1은 바이오매스 생산 규모 배양 수확량 추정치를 도시한다. 질량은 그램 단위로 표시된다. 1 바이알은 ~ 2.5 x 106 세포와 동일하다.
단계 4는 식이 섭취를 위해 배양된 세포 바이오매스를 수확하는 것이다. 세포가 밀집도로 증식한 후, 배양 배지를 제거하고 접착 세포 배양물을 인산 완충 식염수로 헹구었다. 다음으로, 접착 세포의 밀집 바이오매스는 스크래핑 장치에 의해 기질로부터 기계적으로 해리된다. 해리된 바이오매스를 원심 분리 튜브에 수집하여, 과량의 액체를 제거하기 위해 400 x g에서 5분 동안 펠렛화되고 식품 제품 제제를 위해 처리한다.
<제 2 예시적 실시태양: CDKN2A 유전자좌의 유전자 변형 및 TERT의 이소성 발현을 통한 지연된 복제성 노화>
요약하면, 제 2 예시적 실시태양은 gRNA(SEQ ID NO 8-10)를 사용하여, p16을 암호화하는 CDKN2A 서열의 제 1 엑손에 표적화된 INDEL 돌연변이를 생성하도록 CRISPR/Cas9를 사용하여 소(Bos taurus) 골격근으로부터 분리된 1차 근육모세포 세포 집단인 후생 동물 체세포 집단 내에서 p16 단백질을 암호화하는 CDKN2A 유전자좌를 파괴한다. 소 유전자 CDKN2A는 두 개의 예측된 스플라이스 변이체(NCBI 등록 번호: XM_010807759.2, XM_010807758.1)를 가지며, 여기서 p16을 암호화하는 첫 번째 엑손은 CDKN2A의 엑손 #2이다. 동일한 세포 집단(NCBI 등록 번호: NM_001046242.1, NCBI Gene ID 518884)에서 TERT 유전자로부터 텔로 머라제 단백질 상동체의 발현을 지시하는 합성 유전자 구조체(SEQ ID NO 11)의 보조 텔로머라제 활성과 조합하여 사용하는 경우, CDKN2A 유전자좌만을 파괴시키는 것은 복제 이점을 제공하지만, 두 수정의 상승 작용은 단독의 수정보다 변형된 세포 집단의 복제 능력을 더 증가시킬 수 있다. 소 종의 게놈은 p16(NCBI 등록 번호: XM_010807759.2)을 암호화하는 예측된 전사 인자를 갖는 CDKN2A 유전자를 특징으로 한다. 즉, 유전자 수정은 CDKN2A 유전자의 엑손 2(즉, p16을 암호화하는 유전자 서열의 엑손 1)에서 보존된 뉴클레오타이드 서열의 돌연변이이고, CDKN2A 유전자의 엑손 2(즉, p16을 암호화하는 유전자 서열)를 표적으로 하는 가이드 RNA의 돌연변이이고 CRISPR/Cas9를 사용하여 생성된다. 예측된 p16 암호화 서열 내에서 CDKN2A 유전자좌를 파과시키는 것은 본 출원에서 새로운 방법이다. 이 예에 사용된 방법에 대한 자세한 설명은 재료 및 방법 섹션 A, B, C, D, E, F, G, H 및 I를 참조.
다른 모든 견지에서, 제 2 예시적 실시태양은 다음 단계를 포함하여 생체외 배양 과정에서 식이 섭취를 위한 바이오매스를 제조하는 제 1 예시적 실시태양에서 약술한 방법을 따른다: (1) 분화 동안은 아니지만, 증식 동안 세포 주기의 망막모세포종 단백질 억제를 폐지하기 위해 p15 단백질을 불활성화시킴으로써 복제성 노화에서 세포 분열 주기 진행의 망막모세포종 단백질 억제를 디커플링하는 단계; (2) 기능적인 TERT 유전자로부터 텔로머라제 단백질 상동체의 발현("TERT의 이소성 발현")을 유도하는 유전자 구조체로 후생동물 체세포를 형질전환시켜 텔로머라제 활성을 유지시켜 복제성 노화를 줄이는 단계; (3) CDKN2B 유전자 돌연변이 및 TERT의 이소성 발현(즉, "마스터 세포 은행")을 갖는 세포의 은행을 유지하는 단계; (4) 생체외 환경에서 마스터 세포 은행으로부터 세포를 배양하는 단계; (5) 식이 섭취를 위해 배양된 세포 바이오매스를 수확하는 단계
예시적인 실시태양 II는 내인성 p16 단백질의 기능을 파괴시키 위해 도 7에 예시된 모델을 사용한다; 예시적인 실시태양 II는 이소성 TERT 유전자의 발현을 위해 도 1에 예시된 모델을 사용한다.
<제 3 예시적 실시태양: 이소성 사이클린-의존성 키나아제 및 이소성 TERT 발현을 통한 지연된 복제성 노화>
일반적으로, 제 3 예시적 실시태양은 사이클린-의존성 키나아제 상동체의 이소성 과발현에 의한 복제성 노화 동안 세포 분열 주기의 망막모세포 단백질 억제의 사이클린-의존성 키나아제 억제제-매개 안정화; 특히, CDK4 유전자(NCBI Gene ID: 510618)로부터 CDK4 단백질 상동체의 이소성 발현을 지시하는 유전자 구조체에 의한 세포의 변형을 폐기시키는 것이다. 부수적인 텔로머라제 활성을 추가함으로써 TERT 유전자(NCBI Gene ID: 518884)로부터 텔로머라제 단백질 상동체의 과발현을 지시하는 유전자 구조체로부터 추가적인 이점을 얻을 수 있다. 텔로머라제 단백질 상동체의 과발현은 변형되지 않은 모집단에 비해 변형된 세포 집단의 복제 능력을 증가시킨다.
보다 구체적으로 한 실시태양에서, 적색야계(Gallus gallus)는 사이클린-의존성 키나아제 유전자로부터 사이클린-의존성 키나아제 단백질 상동체의 이소성 발현을 지시하는 유전자 구조체를 사용하여 가금류 골격근 세포의 변형을 모델링하도록 선택되었다; 사이클린-의존성 키나아제 유전자로부터 사이클린-의존성 키나아제 단백질 상동체의 이소성 발현을 지시하는 유전자 구성체를 보유하는 세포의 마스터 세포 은행 재고 목록을 유지한다. 상기 후생 동물 세포 집단의 형질 도입은 소 CDK4 유전자(NCBI 등록 번호: NM_001037594.2; NCBI 유전자 ID: 510618)로부터 CDK4 단백질 상동체의 발현을 지시하는 유전자 구조체(SEQ ID NO 12)를 사용한다. 이 예에 사용된 방법에 대한 자세한 설명은 재료 및 방법 섹션 C, G, H 및 I를 참조.
TERT 유전자로부터 텔로머라제 단백질 상동체의 발현을 지시하는 유전자 구조체(SEQ ID NO 11)을 갖는 후생 생물 세포 집단으로부터의 세포의 식이 섭취 및 변형을 위한 바이오매스 제조는 제 1 예시적 실시태양에서 상기 방법을 따른다.
예시적인 실시태양 III은 이소성 CDK4 유전자의 발현을 위해 도 1에 예시된 모델을 사용한다. 예시적인 실시태양 III은 이소성 TERT 유전자의 발현을 위해 도 1에 예시된 모델을 사용한다.
<재료 및 방법>
(A) 표적 유전자좌 시퀀싱
게놈 DNA는 E.Z.N.A에 의해 1차 세포 분리물로부터 추출된다. 각 종에 대한 조직 DNA 추출 키트(오메가 Bio-tek). 게놈 DNA는 적색야계의 내인성 CDKN2B와 소의 내인성 CDKN2A를 증폭하기 위해 고안된 프라이머를 사용하여 PCR 증폭한다.
적색야계에서, 추정 프로모터 영역 및 CDKN2B는 프라이머 SEQ ID NO 26-31를 사용하여 PCR 증폭한다; 프라이머 표적에 대한 세부 사항을 제공하는 하기 표 2를 참조. 소에서, 추정 프로모터 영역 및 CDKN2A는 프라이머 SEQ ID NO 32-43을 사용하여 PCR 증폭한다; 프라이머 표적에 대한 자세한 내용은 아래의 표 2를 참조.
SEQ ID NO DNA 서열 세부 내용
1 TCACCCGCAG CAGATCGCCG CGG 적색야계 CDKN2B 엑손 1을 표적으로 하는 gRNA
2 CGGGTGAAGG AGCTACTGGA CGG 적색야계 CDKN2B 엑손 1을 표적으로 하는 gRNA
3 GCACCACGCC TGCTGCTCCG GGG 적색야계 CDKN2B 엑손 1을 표적으로 하는 gRNA
4 GCTGGGCTCC CCTCGCGGGT CGG 적색야계 CDKN2B 엑손 1을 표적으로 하는 gRNA
5 CCTCGTGTCT GTGGGCAGCG GGG 적색야계 CDKN2B 엑손 1을 표적으로 하는 gRNA
8 GGCGGCCAAC AAGTCGGCCG AGG 소 CDKN2A 엑손 2를 표적으로 하는 gRNA
9 GCCAACGCGC CGAACCGTTA CGG 소 CDKN2A 엑손 2를 표적으로 하는 gRNA
10 CCTCGGGTGC AAAGACTCCG CGG 소 CDKN2A 엑손 2를 표적으로 하는 gRNA
26 CTCTCCGTCC TCCCTACCTG 적색야계 CDKN2B 엑손 1를 위한 프라이머
27 GTACCAACTG CGGGGAGAAA 적색야계 CDKN2B 엑손 1를 위한 프라이머
28 GGACGCCGGT CAATGAATCA 적색야계 CDKN2B 엑손 2를 위한 프라이머
29 CAGGTGATGA TGCTGGGCAG 적색야계 CDKN2B 엑손 2를 위한 프라이머
30 TTTCTCCCCG CAGTTGGTAC 적색야계 CDKN2B 프로모터를 위한 프라이머
31 CTGCAAGACC CAAGACGTCT 적색야계 CDKN2B 프로모터를 위한 프라이머
32 GCCTAGTCCC ACACCCTTTC 소 CDKN2A 프로모터를 위한 프라이머
33 CATTTAAGCC TGGCCCCTGA 소 CDKN2A 프로모터를 위한 프라이머
34 TGTCCGACTC TTTGCCATCC 소 CDKN2A 엑손 4를 위한 프라이머
35 GACCCTGGAT AAGGCGTCAG 소 CDKN2A 엑손 4를 위한 프라이머
36 AGTGAATGCT CTGGGAAGCG 소 CDKN2A 엑손 3을 위한 프라이머
37 GATTGTCAGC GCATCTGCAG 소 CDKN2A 엑손 3을 위한 프라이머
38 TAGAGATCTG AACCCCACGC 소 CDKN2A 엑손 2를 위한 프라이머
39 CTCTGATGGG AGTGGGGAGA 소 CDKN2A 엑손 2를 위한 프라이머
40 AGGCCTTTCC TACCTGGTCT 소 CDKN2A 엑손 1을 위한 프라이머
41 TAATTCCGCT GGTTTCCCAA 소 CDKN2A 엑손 1을 위한 프라이머
42 AAACTGCTGC GACATCTGGA 소 CDKN2A 프로모터를 위한 프라이머
43 ACGGTCCCTC TTCTCTCTCC 소 CDKN2A 프로모터를 위한 프라이머
표 2는 gRNA 및 프라이머 서열의 세부 사항을 도시한다.
PCR 생성물을 겔 전기영동(10 W/cm에서 1% 아가로스 실행)을 사용하여 인 실리코 예측 서열 크기와 비교하였다. CDKN2A 및 CDKN2B의 게놈 서열을 결정하기 위해, 각각의 PCR 생산물을 상업용 자기 비드 키트를 사용하여 정제하고 생거(Sanger) 서열화한다. 시퀀싱 프라이머는 초기 PCR 생산물을 증폭시키는데 사용되는 것과 동일하다. 모든 PCR 프라이머는 적색야계 CDKN2B(NCBI 등록 번호 NM_204433.1) 및 소 CDKN2A(NCBI 등록 번호: XM_010807759.2)를 사용하여, Geneious R10(http://www.geneious.com, Kearse et al., 2012)에서 구입할 수 있는 Primer3 2.3.7(Untergasser et al., 2012)의 변형 버전을 사용하여 설계된다. 각 종에 대한 참조 염색체(소의 경우 NCBI Accession Number: AC_000165, 적색야계의 경우 NCBI Accession Number: NC_006127)에 대한 기준 염색체 어셈블리를 사용하여 각 유전자의 추정 프로모터 영역을 증폭하는 프라이머를 디자인한다
(B) gRNA 디자인
CRISPR/Cas9는 소 게놈에서 CDKN2A의 p16 및 적색야계 게놈에서 CDKN2B의 p15를 파괴시키는데 사용된다. CRISPR/Cas9에 적합한 gRNA는 Geneious R10(http://www.geneious.com, Kearse et al., 2012)에서 "Find CRISPR Sites" 기능을 사용하여 설계한다. 오프-표적 효과는 각 종: 적색야계-5.0(NCBI RefSeq Assembly Accession Number: GCF_000002315.4.) 및 소 v3.1.1(NCBI RefSeq Assembly Accession Number: GCF_000003055.6)에 대한 NCBI의 최신 참고 게놈을 사용하여 스크리닝된다. 오프-표적 점수 >90%를 갖는 gRNA만 합성을 위해 고려된다. 합성을 위해 선택된 가이드 RNA 서열은 적색야계의 경우 SEQ ID NO 1-5 및 소 경우 SEQ ID NO 8-10을 포함하나 이에 제한되지 않는다. 별도의 pGS-gRNA 벡터가 제 3 자 공급업체에 의해 선택된 각 gRNA에 대해 제작, 증폭 및 정제된다. 각 gRNA 플라스미드와 함께 형질감염될 pSpCas9 PX165 벡터는 또한 제 3 자 공급업체로부터 공급받는다.
(C) 합성 제조 디자인
사이토메갈로바이러스, 닭 베타-액틴, 토끼 베타-글로불린(CAG) 조절 요소(Alexopoulou, Couchman 및 Whiteford 2008)는 모든 도입된 합성 구조체의 강력한 발현을 촉진하는데 사용된다. 적색야계 TERT 참조 서열(NCBI 등록 번호: NM_001031007.1)은 NCBI로부터 검색하였다. 각 전사 변이체(NM_001031007.1 및 XM_015282334.1)의 경우, 암호화 DNA 서열(CDS) 영역이 추출되어 연쇄상 서열로 결합된다. 그런 후에 CAG 조절 요소는 Geneious R10(http://www.geneious.com, Kearse et al., 2012)의 각 전사 변이체에 대해 CDS의 5' 말단에 결합된다. 전체 합성 구조체 SEQ ID NO 6 및 SEQ ID NO 7을 모으고 상업적 공급업자에 의해 포유류 발현 벡터에 복제하였다. 본 발명에 기술된 전략은 합성 TERT 구조체의 소 버전을 생산하는데 사용된다. 소 TERT 구조체(SEQ ID NO 11)은 기준 서열(NCBI 등록 번호: NM_001046242.1)을 사용하여 디자인된다.
소 세포에서 CDK4의 강한 발현을 유도하기 위해, 상기 기술된 방법을 사용하여 다른 세트의 합성 구조체를 제조하였다. 소 CDK4 참조 서열(NCBI 등록 번호: NM_001037594.2)은 NCBI로부터 검색하였다. 야생형 및 돌연변이 염기 서열 모두에 대해, CDS 영역을 추출하여 연쇄상 서열로 결합시켰다. 합성 구조체 SEQ ID NO 12를 결합하고 제 3 자 판매자에 의해 포유류 발현 벡터에 복제하였다.
(D) 적색야계 CDKN2B 또는 소 CDKN2A의 INDEL 돌연변이 유발을 위한 CRISPR/Cas9 세포 형질감염
표적화된 INDEL 돌연변이 유발을 수행하기 위해, 플라스미드에 의해 암호화된 CRISPR/Cas9 단백질에 의해 인식되는 gRNA 서열을 형질 감염을 위해 합성, 증폭 및 정제한다. 플라스미드 DNA는 원핵생물 시스템에서 증폭을 위해 필요한 조절 요소를 함유하는 표준 벡터 백본을 포함한다. 각각의 플라스미드는 또한 5' 조절 영역, 암호화 영역 또는 둘 모두 내에서 INDEL 돌연변이 형성을 유도하기 위해 각 표적 세포 집단 내에서 일시적으로 gRNA 또는 Cas9 단백질을 발현하는데 필요한 조절 및 암호화 영역을 함유한다.
플라스미드 DNA 구조체의 전달은 현탁액 상태로 접착 동안 일차 세포 분리물에 직접 전달되는 비-리포솜 DNA 복합체-형질감염 시약(Fugene HD, Promega)에 의해 매개된다. p15를 암호화하는 적색야계 CDKN2B 유전자의 5' 영역 또는 p16을 암호화하는 소 CDKN2A 유전자의 5' 영역을 표적으로 하는 gRNA는 형질감염된 플라스미드로부터의 발현을 위해 디자인된다. 형질감염은 일차 인간 골격 근육모세포의 표적화된 변형에 대한 Grunwald and Speer(2007) 프로토콜의 변형을 사용하여 수행된다(Biochemica 3/2007, 26-27 페이지). 준비된 플라스미드 DNA를 살균 탈이온수에 1μg/μL의 작업 농도로 희석한다. 각각의 플라스미드 DNA 원료를 2㎍의 총 DNA 양에 대해 2:1 비율의 Cas9 플라스미드 DNA:gRNA 플라스미드로 분취하고 분쇄를 통해 잘 혼합한다. 총 DNA는 살균 탈이온수에 1μg/50μL의 농도로 희석한다. Fugene HD를 DNA 혼합물에 6:2의 비율로 첨가하고(Fugene HD 시약(μL): 총 DNA(μg)) 잘 혼합한다.
혼합물은 DNA와의 착화를 촉진시키기 위해 실온에서 15분 동안 배양한다. 배양된 DNA 혼합물을 동일한 부피의 살균 탈이온수를 첨가하여 희석시켰다. 그런 후에 이 전체 반응 혼합물을 현탁액 속의 세포에 적가한다. 세포와 DNA 반응 혼합물을 5% CO2, 5% O2 대기 조건하에서 16시간 동안 37℃에서 배양한다.
표적 세포 집단을 조직 배양 처리 플라스틱(6-웰 플레이트)의 증식 배지에서 유지한다. 세포는 4 x 105 세포/ml의 배양 배지의 밀도로 유지된다. 형질감염 전에, 세포 배지를 무균적으로 제거하고 세포를 1x PBS로 세척한 다음 37 ℃에서 1x 해리 시약(TrypLE-Gibco)에 3분간 노출시켰다. 동량의 증식 배지를 첨가하고 부드럽게 연화하여 반응을 종결시킨다. 그런 후에 세포를 0.1% 젤라틴-코팅 웰로 옮긴다. 이 시점에서, DNA 형질감염 반응 복합체를 첨가하고, 추가 처리 및 평가에 앞서 48시간 동안 5% CO2, 5% O2에서 48시간 동안 37℃에서 세포를 배양한다.
(E) CDKN2B 또는 CDKN2A를 표적으로 하는 형질전환된 세포의 한계 희석
CRISPR/Cas9 gRNA를 사용하여 이전에 형질감염된 세포 집단을 하나의 형질감염 사이클을 거친 세포의 부모 풀로부터 세포의 개별 클론 집단을 먼저 분리함으로써 선택된다. 세포는 한계 희석법을 사용하여 선택한다. 형질감염된 세포는 효소 적으로 단일 세포 현탁액으로 해리된다. 2 x 104 세포/mL 증식 배지의 작업 원료가 총 500μL 부피로 생산된다. 조직-배양 96웰 플레이트의 각 웰을 0.1% 젤라틴에 코팅한다. 웰 A1을 제외하고, 각 웰을 100㎕의 증식 배지로 미리 채운다. 조직 배양 처리된 96-웰 플레이트의 0.1% 젤라틴 코팅 A1 웰에 4 x 103 세포(200 uL)를 무균 적으로 옮긴다. 웰 A1의 부피(100μL)의 절반을 즉시 웰 B1로 옮기고 잘 섞는다. 이 희석 시리즈(1:2)를 웰 C1에서 H1까지 반복한다. 세포를 받으면, 100μL를 제거하고 웰 H1으로부터 버린다. 100μL의 세포-제거 증식 배지를 A1-H1의 각 웰에 첨가하고 잘 혼합한다. 다음으로, 웰 A1의 부피의 절반을 웰 A2에 옮기고 잘 혼합한다. 이 과정을 A2에서 A12까지 반복한다. 희석 시리즈를 웰 B1로부터 다시 시작하여 반복하고 B12까지 지속한다. 이 전체 과정을 전체 플레이트(96 웰 모두)가 희석된 부피의 세포를 수용할 때까지 C 내지 H행에 대해 반복한다. 희석 시리즈를 완료하기 위해, 12열의 각 웰의 절반(100μL)을 제거하고 버린다. 2열에서 12열의 각 웰은 각각에 첨가된 100μL의 세포-제거 증식 배지를 가져서 플레이트 상의 각 웰의 최종 부피를 200μL로 만든다. 전체 플레이트를 개별 세포 콜로니가 나타날 때까지 저산소 상태에서 37℃에서 배양한다(10 세포 더블링 또는 1,024 세포보다 크거나 같음). 하나의 분리된 세포로부터 유래하는 세포를 보유하는 것으로 보이는 웰은 단일 세포로 해리되고 0.1% 젤라틴 코팅된 24 웰 플레이트의 1개의 웰 속에 1:1로 계대배양하고 5% CO2, 5% O2 대기 조건하에서 37℃에서 배양한다. 90% 밀집 후, 세포를 12웰 및 6웰 플레이트로 팽창시킨다.
한계 희석에 의해 분리되고 6웰 플레이트에서 90% 밀집도로 팽창된 세포를 6 웰 플레이트로 1:4로 계대배양한다. 그런 후에 90% 밀집도 웰을 다음 평가를 위해 처리한다. 하나의 웰을 단일 세포로 해리시키고, 세척하고, 5분 동안 300 x g에서 펠렛화하였다. 총 세포 게놈 DNA를 분리하고 정량화한다. 그런 후에 총 게놈 DNA를 CDKN2B 또는 CDKN2A 유전자좌의 PCR 증폭으로 처리하고 분석될 때까지 10W/cm의 1% 아가로 오스 겔에서 수행한다. 그런 후에 이 PCR 생산물을 아가로오스 겔에서 추출하여 생거(Sanger) 서열 분석을 위해 제출한다. 서열 추적을 이전에 검증된 야생형 비처리 부모 세포 집단 CDKN2B 또는 CDKN2A 유전자 서열과 비교한다.
(F) 세포 증식 및 노화 분석(EdU 방법)
p15 기능을 표적으로 하는 적색야계 CDKN2B 유전자 또는 p16 기능을 표적으로 하는 소 CDKN2A 유전자의 5' 영역에서 INDEL 돌연변이 형성을 나타내는 세포 집단을 표준 EdU 분석을 통해 기능적 및 표현형 특성에 대해 평가한다. 정확하게 INDEL 파괴 유전자를 보유하고 클론적으로 순수한 것으로 판명된 세포 집단은 이전의 CRISPR/Cas9 표적화를 받지 않은 야생형 세포와 동일한 밀도로 씨드되며 INDEL-수정 세포와 동일한 세포 더블링 수이다. 각 세포 유형은 5% CO2, 5% O2 대기 조건 하에서 24시간 동안 37℃에서 배양한다. 다음에, 표준 티미딘 유사 시약(EdU)을 배양 배지(Click-It Alexa 488 EdU 키트, Thermo-Fisher)에 첨가하고 세포를 4시간 동안 5% CO2, 5% O2 대기 조건하에 37℃에서 배양한다. 배양 후, 세포를 세척하고, 고정시키고, 투과성으로 만들고, 항-EdU Alexa 488-접합 아자이드를 사용하여 프로브한다. 핵 역-염색법은 표준 DAPI 핵 염색을 사용하여 성취된다. 그런 후에 세포를 다음 표준 488nm 파장 빛 아래에서 여기 후 시각화한다. 야생형 및 CDKN2B/A 유전자-수정된 세포 집단에서 Alexa Flour 488/DAPI의 비율을 정량하고 비교하여 각 세포 그룹 내에서의 증식 집단 비율을 평가한다. 집단 처리 당 총 세포 수와 세포 계대배양 수를 통해 측정한 양성 Alexa Fluor 488 신호는 DNA 복제가 발생했음을 나타내며 적극적으로 증식하는 세포의 직접적인 척도이다. 연속적으로 계대배양 동안 증식 능력의 상대적 유지를 정량화하고 추적하기 위해, 이 과정을 세포 집단 중 적어도 하나가 증식을 멈추고 노화가 될 때까지 연속적인 집단 더블링 동안 반복한다.
(G) 이소성 플라스미드 DNA 형질감염 방법
이소성으로 발현하기 위해, 연구중인 후생 동물(즉, "관심 유전자")에 종-특이적 TERT 또는 CDK4 조절 및 암호화 서열을 함유하는 플라스미드 DNA 구조체는 상업적인 플라스미드 생산 서비스뿐만 아니라 독특한 진핵 항생제 저항 유전자(즉, 다른 상주 약물 선택 마커에 독특한)를 사용하여 생성된다. 본 발명에 기술된 의도된 사용을 위해, 플라스미드 DNA는 원핵생물 시스템에서 증폭을 위해 필요한 조절 요소를 함유하는 표준 벡터 백본을 함유한다.
각 플라스미드는 각 표적 세포 집단 내에서 TERT 또는 CDK4 단백질을 구성 적으로 발현하는데 필요한 조절 및 암호화 영역을 함유한다. 플라스미드 DNA 구조체의 전달은 현탁액 상태로 접착 동안 일차 세포 분리물에 직접 전달되는 비-리포솜 DNA 복합체-형질감염 시약(Fugene HD, Promega)에 의해 매개된다. 플라스미드는 관심 유전자 및 진핵 항생제 내성을 암호화하는 유전자의 발현을 촉진시키는데 필요한 조절 서열을 함유한다. 형질감염은 일차 인간 골격 근육모세포의 표적화된 변형에 대한 Grunwald and Speer(2007) 프로토콜의 변형을 사용하여 수행된다(Reference Biochemica 3/2007, 26-27 페이지). 준비된 플라스미드 DNA는 독특한 제한 효소 부위를 사용하여 5' 조절 성분의 제한 효소 절단 상류이다. 절단되지 않은 또는 잘못 절단된 플라스미드로부터 절단된 플라스미드를 절단하기 위해, 0.8% 아가로오스 겔을 분해될 때까지 10W/cm에서 수행하였다. 샘플링된 모든 플라스미드 DNA가 적절하게 선형화되면, 절단된 플라스미드를 살균 탈이온수에 1μg/μL의 작업 농도로 희석한다. 2μg의 총 DNA를 살균 탈이온수에 1μg/50μL의 농도로 희석한다. Fugene HD를 DNA 혼합물에 6:2의 비율(Fugene HD 시약(μL): 총 DNA(μg))로 첨가하고 잘 혼합한다. 혼합물을 DNA와의 착화를 촉진시키기 위해 실온에서 15분 동안 배양한다. 배양된 DNA 혼합물을 동일한 부피의 살균 탈이온수를 첨가하여 희석한다. 그런 후에 이 전체 반응 혼합물을 현탁액 속의 세포에 적가한다(아래 참조). 세포와 DNA 반응 혼합물을 5% CO2, 5% O2 대기 조건에서 48시간 동안 37℃에서 배양한다.
(H) 이소성 DNA로 형질감염된 세포의 클론 선택
세포 집단은 항생제 약물 선택 및 생존을 통해 선택된다: Fugene HD : 선형화된 TERT 또는 CDK4 플라스미드 DNA 서열에서 배양된 세포는 배지를 제거하고 1x PBS로 세척하고 새로운 증식 배지를 도포한다. 치사량의 항생 물질을 세포 배양물에 도포하여 세포 클론 선택을 개시한다. 세포를 치사 항생제 약물에 노출시키면서 5% O2, 5% CO2 하에서 14일 동안 37℃에서 배양한다. 세포 배양 배지를 모니터하고 일정한 간격으로 대체하여 약물로 유발된 사망으로 인한 세포질 및 잔해를 제거한다. 형질감염된 플라스미드 상에 운반된 항생제 내성 유전자를 보유하는 단일 세포로부터 나오는 비 병리적, 증식하는 세포 콜로니를 살균 p200 피펫 팁을 사용하여 골라 내고 96웰 플레이트의 0.1% 젤라틴 코팅된 웰로 옮겼다. 치명적인 항생제 농도가 포함된 200μL의 증식 배지를 일정한 선택 압력을 유지하기 위해 이전과 같이 재도포한다. 콜로니가 나타날 때까지 세포를 5% O2, 5% CO2 대기 조건 하에서 37℃에서 배양한다. 그런 후에 확립되고 증식하는 콜로니는 단일 세포로 해리되고 6 웰 플레이트의 6 웰 내에서 밀집될 때까지 더 큰 표면적의 젤라틴-코팅 웰로 확장된다. 관심 유전자 함유 플라스미드에 의해 표적화된 각 살아남은, 확장된 세포 집단의 각각의 6 웰 플레이트 중 하나의 밀집 웰을 전체 게놈 DNA 분리 처리한다. 총 세포 게놈 DNA를 분리하고 정량화한다. 그런 후에 총 게놈 DNA를 관심 유전자의 암호화 서열을 PCR 증폭으로 처리하고 용해될 때까지 10W/cm의 0.8% 아가로오스 겔에서 수행한다. 그런 후에 이 PCR 생산물을 아가로오스 겔에서 추출하여 생거(Sanger) 서열 분석을 위해 제출한다. 서열 추적을 야생형, 처리되지 않은 부모 세포 집단 및 관심 서열의 종 특이적 유전자의 인 실리코 디자인과 비교한다. 인 실리코 예측과 일치하는 관심 유전자 게놈 서열을 나타내는 세포 집단을 기능적 및 표현형 특성에 대해 평가한다.
(I) TRAP를 사용하는 텔로머라제 기능 검증 분석
표준 TRAP 분석을 사용하여 TERT 발현 생산물의 기능적 평가를 수행한다. TRAP, Telomerase Repeated Amplification Protocol을 다음과 같은 방식으로 수행한다. TERT 구조체를 보유하기로 결정된 분리된 세포 집단을 TERT 구조체(처리되지 않은 세포 비교체)를 함유하지 않는 세포와 동일한 농도로 플레이트하고 5% CO2, 5% O2 대기 조건 하에서 37℃에서 80% 밀집도까지 배양하였다. 그런 후에, 세포를 세척하고, 수집하고, 펠렛화하고 용해시켜 게놈 DNA뿐만 아니라 세포내 단백질 분획을 수집한다. 필요한 시약과 완충액을 함유하는 구입가능한 TRAP 분석 키트(TRAPeze Telomerase Detection Kit, EMD Millipore)를 사용하여, 게놈 DNA에 대해 PCR 증폭을 수행한다. 결과는 활성 텔로머라제의 존재를 나타내는 밴딩 패턴(즉, 증가된 활성 텔로머라제 또는 이의 부재와 양의 상관 관계가 있는 사다리 밴딩의 패턴)을 핵석하기 위해 비 변성 아크릴아마이드 겔 상에서 수행된다.
<결론>
본 발명은 복제성 노화 동안 세포 분열 주기 진행의 망막모세포종 단백질 억제를 분리하는데 사용된 특정 기술에 의해 제한되지 않는다. 본 발명에 명명된 이러한 특정 기술 이외에, 이러한 억제는 다른 기술에 의해 성취될 수 있다. 이러한 기술의 예는 다음을 포함하나 이에 제한되지 않는다: (1) 짧은 헤어핀 RNA에 의한 RNA 번역의 사일런싱(도 8); (2) 가이드 RNA 표적 뉴클레아제-결핍 Cas9에 의한 내인성 유전자 발현의 조절(도 5 및 도 6); (3) 렌티바이러스 벡터, 레트로바이러스 벡터, 형질감염된 DNA 또는 상동 재조합 유도 유전자 공학; (4) RB1 유전자좌에서 유전자 발현을 파괴하도록 도 4, 6, 7 및 8에 모델링된 방법에 의한 pRB 기능 또는 유전자 발현의 직접 표적화 억제; (5) CDK6 및 CDK2와 같은 야생형 사이클린 의존성 키나아제 상동체뿐만 아니라 CDK4R24C와 같은 CKI 억제에 내성인 돌연변이 CDK 상동체(Wolfel et al., 1995; Science Vol. 269 pp 1281 - 1284)의 이소성 과발현; (6) 종 정체성이 두 전사체를 특징으로 하는 세포에서 p15와 p16 기능의 동시 파괴; (7) 류신-X-시스테인-X-글루탐산을 함유하는 펜타펩타이드 모티프에 상동성인 모티프를 함유하는 망막모세포종 패밀리 단백질을 표적으로 하는 바이러스 단백질을 사용하여 망막모세포종 패밀리 단백질 기능의 파괴.
이 공정의 한 실시태양은 식이 섭취를 위한 동물 바이오매스의 배양을 초래하나, 다른 응용분야는 가죽과 같은 직물 생산을 위한 바이오공정; 치료 조직 및 백신과 같은 의학적 용도를 포함한다. 또한, 고기에 대한 세계적 요구가 급속히 증가함에 따라, 육류 소비, 클론, 완전 근원성 및 불멸화 가축 세포주의 자원 요구량 및 생태학적 영향이 가축의 골격근 발달 메커니즘을 이해하고, 가축의 체중 증가를 개선하고 수의학 및 기타 수의학 응용분야에 유용한 자원을 제공할 수 있다.또한, 본 발명의 범위 내에서 기술된 용도는 (1) 유전자 정체성이 농업에서 유행하는 동물 종으로부터 유래되지 않은 세포주에 대한 응용분야; 및 (2) 골격근 이외의 조직의 존재론적 세포 계통으로부터의 동물 바이오매스의 생산을 배제하지 않으며 이에 제한되지 않는다.
본 발명 및 방법의 분류학적 범위는 적색야계(Gallus gallus), 들칠면조(Meleagris gallopavo) 및 청둥오리(Anas platyrhynchos)를 포함하나 이에 제한되지 않는 가금류로 허용되는 종, 소(Bos taurus), 멧돼지(Sus scrofa) 및 양(Ovis aries)을 포함하나 이에 제한되지 않는 종 및 대서양연어(Salmo salar), 참다랑어(Thunnus thynnus), 대서양참대구(Gadus morhua), 아메리칸 랍스터(Homarus americanus) 및 보리새우(Litopenaeus setiferus)을 포함하나 이에 제한되지 않는 해산물로 허용되는 종을 포함한다.
SEQUENCE LISTING <110> Memphis Meats, Inc. <120> Engineer cell lines for cultivation of animal biomass for dietary consumption <130> 45974.0002 <160> 43 <170> PatentIn version 3.5 <210> 1 <211> 23 <212> DNA <213> Gallus gallus <400> 1 tcacccgcag cagatcgccg cgg 23 <210> 2 <211> 23 <212> DNA <213> Gallus gallus <400> 2 cgggtgaagg agctactgga cgg 23 <210> 3 <211> 23 <212> DNA <213> Gallus gallus <400> 3 gcaccacgcc tgctgctccg ggg 23 <210> 4 <211> 23 <212> DNA <213> Gallus gallus <400> 4 gctgggctcc cctcgcgggt cgg 23 <210> 5 <211> 23 <212> DNA <213> Gallus gallus <400> 5 cctcgtgtct gtgggcagcg ggg 23 <210> 6 <211> 5816 <212> DNA <213> Artificial Sequence <220> <223> Synthetic construct <220> <221> enhancer <222> (1)..(293) <223> human CMV IE1 <220> <221> promoter <222> (294)..(573) <223> Chicken Beta Actin Promoter <220> <221> Intron <222> (576)..(1546) <223> Intron Chicken beta actin <400> 6 acttacggta aatggcccgc ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 60 aatgacgtat gttcccatag taacgccaat agggactttc cattgacgtc aatgggtgga 120 gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc 180 ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt acatgacctt 240 atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta ccatggtcga 300 ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac ccccaatttt 360 gtatttattt attttttaat tattttgtgc agcgatgggg gcgggggggg ggggggcgcg 420 cgccaggcgg ggcggggcgg ggcgaggggc ggggcggggc gaggcggaga ggtgcggcgg 480 cagccaatca gagcggcgcg ctccgaaagt ttccttttat ggcgaggcgg cggcggcggc 540 ggccctataa aaagcgaagc gcgcggcggg cgggagtcgc tgcgcgctgc cttcgccccg 600 tgccccgctc cgccgccgcc tcgcgccgcc cgccccggct ctgactgacc gcgttactcc 660 cacaggtgag cgggcgggac ggcccttctc ctccgggctg taattagcgc ttggtttaat 720 gacggcttgt ttcttttctg tggctgcgtg aaagccttga ggggctccgg gagggccctt 780 tgtgcggggg gagcggctcg gggggtgcgt gcgtgtgtgt gtgcgtgggg agcgccgcgt 840 gcggctccgc gctgcccggc ggctgtgagc gctgcgggcg cggcgcgggg ctttgtgcgc 900 tccgcagtgt gcgcgagggg agcgcggccg ggggcggtgc cccgcggtgc ggggggggct 960 gcgaggggaa caaaggctgc gtgcggggtg tgtgcgtggg ggggtgagca gggggtgtgg 1020 gcgcgtcggt cgggctgcaa ccccccctgc acccccctcc ccgagttgct gagcacggcc 1080 cggcttcggg tgcggggctc cgtacggggc gtggcgcggg gctcgccgtg ccgggcgggg 1140 ggtggcggca ggtgggggtg ccgggcgggg cggggccgcc tcgggccggg gagggctcgg 1200 gggaggggcg cggcggcccc cggagcgccg gcggctgtcg aggcgcggcg agccgcagcc 1260 attgcctttt atggtaatcg tgcgagaggg cgcagggact tcctttgtcc caaatctgtg 1320 cggagccgaa atctgggagg cgccgccgca ccccctctag cgggcgcggg gcgaagcggt 1380 gcggcgccgg caggaaggaa atgggcgggg agggccttcg tgcgtcgccg cgccgccgtc 1440 cccttctccc tctccagcct cggggctgtc cgcgggggga cggctgcctt cgggggggac 1500 ggggcagggc ggggttcggc ttctggcgtg tgaccggcgg ctctagagcc tctgctaacc 1560 atgttcatgc cttcttcttt ttcctacagc tcctgggcaa cgtgctggtt attgtgctgt 1620 ctcatcattt tggcaaagaa ttcggcttga tcgaagccgt ctcaggggag agaccgcagg 1680 agcccgggct gggcataaaa gtcagggcag agccatctat tgcttacatt tgcttctgac 1740 acaactgtgt tcactagcaa cctcaaacag acaccatgga gcgcggggct cagccgggag 1800 tcggtgtgcg gcggctccgc aatgtagcgc gggaggagcc cttcgccgcg gtcctgggcg 1860 cgctgcgggg ctgctacgcc gaggccacgc cgctggaggc cttcgtccgg cggctgcagg 1920 agggtggcac cggggaggtc gaggtgctgc gaggcgacga cgctcagtgc taccggacct 1980 tcgtgtcgca gtgcgtggtg tgcgtccccc gcggtgctcg cgccatcccc cggcccatct 2040 gcttccagca gttatccagt cagagcgaag tcatcacaag aatcgttcag aggctgtgtg 2100 aaaagaaaaa gaagaacatc cttgcgtatg gatactcctt gctggatgag aacagttgtc 2160 acttcagagt tttgccatct tcgtgtatat acagctatct gtccaatact gtaacagaaa 2220 cgattcgcat cagtggcctc tgggagatac tgctgagtag gataggggac gacgtgatga 2280 tgtacctgct ggagcactgt gcactcttca tgctggttcc cccaagtaac tgttaccagg 2340 tctgcgggca accaatttat gaacttattt cgcgtaacgt agggccatcc ccagggtttg 2400 ttagacgacg gtactcaagg tttaaacata atagcttgct tgactatgtg cgaaaaaggc 2460 ttgtgtttca caggcactat ctttccaagt cgcagtggtg gaagtgcagg ccgagacgtc 2520 gaggtcgtgt ctccagcagg agaaaaagaa ggagccatag gatacaaagc ctaaggtctg 2580 gttatcagcc ttctgcaaaa gtgaactttc aagcaggtag gcagatcagc acagttactg 2640 cacgtctgga aaaacagagc tgctccagtt tatgtttgcc agctagagca ccatctttaa 2700 aaaggaagcg tgatggagaa caggttgaaa tcacagctaa gagagtgaaa ataatggaga 2760 aagagataga ggaacaggct tgtagtatcg ttcctgatgt aaaccaaagt agctcccaga 2820 ggcatggaac ctcctggcat gtagcaccac gtgctgtagg tcttattaaa gaacattaca 2880 tttctgaaag aagtaacagt gagatgtctg gtccttctgt agttcacaga tctcaccctg 2940 ggaagaggcc tgtggcagac aaaagctctt ttccacaagg agttcagggt aacaaacgca 3000 taaagaccgg tgcagaaaaa cgagcagaat ccaatagaag gggcatagag atgtatataa 3060 acccaatcca taaacccaat agaaggggca tagagaggcg tataaatcca acccacaaac 3120 ctgagttgaa ttctgtacaa actgaaccaa tggaaggtgc ttcttcaggg gacagaaagc 3180 aggaaaatcc cccagctcat ttggcaaagc agttaccaaa tacattgtcg cgctctacag 3240 tgtactttga gaagaaattt cttctgtatt cccgcagtta ccaagaatat tttcctaaat 3300 cgttcatact gagccgcctg cagggttgtc aggcaggtgg aaggcggctt atagaaacta 3360 tattcttaag ccaaaaccca ttaaaggaac agcagaacca aagcctacca cagcaaaagt 3420 ggcgaaagaa gaggttgccc aaacgctact ggcaaatgag agagatattt cagaagctgg 3480 taaagaacca tgagaagtgc ccttatttag ttttcttgag gaaaaattgc cctgttttgc 3540 tttctgaagc atgtttgaaa aagacggagc tgaccttgca ggcggctctg cctggggaag 3600 caaaggttca caagcacaca gaacatggga aagagtccac tgagggtact gcaccgaaca 3660 gcttcctcgc tcctccctca gtgctagcat gtgggcagcc agagagaggg gaacagcacc 3720 ctgcagaggg gagtgatccg ctcctcaggg agctgctcag gcagcacagc agccactggc 3780 aggtgtatgg ctttgtgagg gagtgcctgg agcgggtgat ccctgctgag ctgtggggtt 3840 caagccataa caaatgccgg ttctttaaaa acgtgaaagc attcatttcc atggggaagt 3900 atgctaagct ttcattgcag cagctgatgt ggaagatgag agtgaatgac tgcgtatggc 3960 ttcgtctggc caaaggtaat cactctgttc ctgcctatga acattgttac cgtgaagaaa 4020 ttctggcaaa attcctatac tggctgatgg attcctatgt tatcgagttg ctcaaatcat 4080 ttttctatat caccgagacc atgttccaga aaaacatgct tttctactac cgaaagttta 4140 tctggggcaa gttacagaac attggaatta gagaccattt tgccaaagta catctacgtg 4200 ccttgtcttc agaggagatg gaagtgatcc gtcaaaaaaa gtattttcct attgcatcaa 4260 ggctccggtt cattcctaaa atgaatggtt taagacccgt agtaagacta agccgtgttg 4320 ttgaaggaca gaaactcagc aaggaaagca gagaaaagaa gatacagcgc tataacactc 4380 agctaaaaaa tctatttagt gttttaaact atgaacgaac tgtaaacacc agtatcattg 4440 gctcttcagt attcgggaga gatgatatct acaggaagtg gaaggagttt gttacaaagg 4500 tttttgaatc aggtggtgaa atgcctcatt tctactttgt aaagggtgat gtatccagag 4560 cttttgatac cattcctcac aagaaacttg tggaagtgat atcacaggtc ttgaaacctg 4620 agagccaaac tgtctatgga ataaggtggt atgcagtgat tatgattacc ccaactggaa 4680 aagccaggaa actctataag agacatgttt ctactttcga ggattttatt ccagacatga 4740 agcagtttgt gtccaagctt caagagagaa cttcattacg aaatgcaata gtagttgaac 4800 agtgcttaac ttttaatgag aacagttcca ccctgtttac tttctttctt caaatgttac 4860 ataataacat cctggagatt gggcacaggt actatataca gtgctctgga atcccacagg 4920 gctccatttt gtcaacctta ctttgcagct tatgctacgg agacatggaa aacaaattac 4980 tctgtgggat ccagaaggat ggagtcctaa tacgtcttat tgatgacttt ttgctggtta 5040 cgccacattt aatgcaggca agaacttttc taaggactat agcagcaggt attcctgagt 5100 atggcttttt aataaatgcc aagaagactg tggtgaattt tcctgttgat gatatcccgg 5160 gatgttccaa gttcaaacat ctgccagatt gtcgtttgat ctcatggtgt ggtttattat 5220 tggatgtgca gacacttgag gtttattgtg attactccag ttatgccttt acttctatca 5280 gatcaagtct ttccttcaat tcaagtagaa tagctgggaa aaacatgaaa tgcaaattga 5340 ctgcagtcct caaactgaaa tgccatcctt tacttcttga cttaaagatc aacagccttc 5400 agacagttct aattaacatc tacaagatat ttttacttca ggcttacagg ttccatgcct 5460 gtgttcttca gcttccattc aaccagaaag ttaggaataa tcctgatttc ttcctaagga 5520 tcatctctga tactgcttca tgctgctatt ttatcctgaa agctaaaaat ccaggagttt 5580 ctttaggtag caaagatgca tctggcatgt tcccttttga ggcagcagaa tggctgtgct 5640 accatgcctt cattgtcaaa ctgtccaacc acaaagttat ttacaaatgc ttacttaagc 5700 cccttaaagt ctataagatg catctgtttg ggaagatccc aagggatact atggaactgc 5760 tgaagacggt gacggaacca tcgctttgtc aagatttcaa aactatactg gactaa 5816 <210> 7 <211> 5854 <212> DNA <213> Artificial Sequence <220> <223> Synthetic construct <220> <221> enhancer <222> (1)..(293) <223> human CMV IE1 <220> <221> promoter <222> (294)..(575) <223> Chicken Beta Actin Promoter <220> <221> Intron <222> (578)..(1548) <223> Intron Chicken beta actin <400> 7 acttacggta aatggcccgc ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 60 aatgacgtat gttcccatag taacgccaat agggactttc cattgacgtc aatgggtgga 120 gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc 180 ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt acatgacctt 240 atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta ccatggtcga 300 ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac ccccaatttt 360 gtatttattt attttttaat tattttgtgc agcgatgggg gcgggggggg ggggggggcg 420 cgcgccaggc ggggcggggc ggggcgaggg gcggggcggg gcgaggcgga gaggtgcggc 480 ggcagccaat cagagcggcg cgctccgaaa gtttcctttt atggcgaggc ggcggcggcg 540 gcggccctat aaaaagcgaa gcgcgcggcg ggcgggagtc gctgcgcgct gccttcgccc 600 cgtgccccgc tccgccgccg cctcgcgccg cccgccccgg ctctgactga ccgcgttact 660 cccacaggtg agcgggcggg acggcccttc tcctccgggc tgtaattagc gcttggttta 720 atgacggctt gtttcttttc tgtggctgcg tgaaagcctt gaggggctcc gggagggccc 780 tttgtgcggg gggagcggct cggggggtgc gtgcgtgtgt gtgtgcgtgg ggagcgccgc 840 gtgcggctcc gcgctgcccg gcggctgtga gcgctgcggg cgcggcgcgg ggctttgtgc 900 gctccgcagt gtgcgcgagg ggagcgcggc cgggggcggt gccccgcggt gcgggggggg 960 ctgcgagggg aacaaaggct gcgtgcgggg tgtgtgcgtg ggggggtgag cagggggtgt 1020 gggcgcgtcg gtcgggctgc aaccccccct gcacccccct ccccgagttg ctgagcacgg 1080 cccggcttcg ggtgcggggc tccgtacggg gcgtggcgcg gggctcgccg tgccgggcgg 1140 ggggtggcgg caggtggggg tgccgggcgg ggcggggccg cctcgggccg gggagggctc 1200 gggggagggg cgcggcggcc cccggagcgc cggcggctgt cgaggcgcgg cgagccgcag 1260 ccattgcctt ttatggtaat cgtgcgagag ggcgcaggga cttcctttgt cccaaatctg 1320 tgcggagccg aaatctggga ggcgccgccg caccccctct agcgggcgcg gggcgaagcg 1380 gtgcggcgcc ggcaggaagg aaatgggcgg ggagggcctt cgtgcgtcgc cgcgccgccg 1440 tccccttctc cctctccagc ctcggggctg tccgcggggg gacggctgcc ttcggggggg 1500 acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa 1560 ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttattgtgct 1620 gtctcatcat tttggcaaag aattcggctt gatcgaagcc gtctcagggg agagaccgca 1680 ggagcccggg ctgggcataa aagtcagggc agagccatct attgcttaca tttgcttctg 1740 acacaactgt gttcactagc aacctcaaac agacaccatg gagcgcgggg ctcagccggg 1800 agtcggtgtg cggcggctcc gcaatgtagc gcgggaggag cccttcgccg cggtcctggg 1860 cgcgctgcgg ggctgctacg ccgaggccac gccgctggag gccttcgtcc ggcggctgca 1920 ggagggtggc accggggagg tcgaggtgct gcgaggcgac gacgctcagt gctaccggac 1980 cttcgtgtcg cagtgcgtgg tgtgcgtccc ccgcggtgct cgcgccatcc cccggcccat 2040 ctgcttccag cagttatcca gtcagagcga agtcatcaca agaatcgttc agaggctgtg 2100 tgaaaagaaa aagaagaaca tccttgcgta tggatactcc ttgctggatg agaacagttg 2160 tcacttcaga gttttgccat cttcgtgtat atacagctat ctgtccaata ctgtaacaga 2220 aacgattcgc atcagtggcc tctgggagat actgctgagt aggatagggg acgacgtgat 2280 gatgtacctg ctggagcact gtgcactctt catgctggtt cccccaagta actgttacca 2340 ggtctgcggg caaccaattt atgaacttat ttcgcgtaac gtagggccat ccccagggtt 2400 tgttagacga cggtactcaa ggtttaaaca taatagcttg cttgactatg tgcgaaaaag 2460 gcttgtgttt cacaggcact atctttccaa gtcgcagtgg tggaagtgca ggccgagacg 2520 tcgaggtcgt gtctccagca ggagaaaaag aaggagccat aggatacaaa gcctaaggtc 2580 tggttatcag ccttctgcaa aagtgaactt tcaagcaggt aggcagatca gcacagttac 2640 tgcacgtctg gaaaaacaga gctgctccag tttatgtttg ccagctagag caccatcttt 2700 aaaaaggaag cgtgatggag aacaggttga aatcacagct aagagagtga aaataatgga 2760 gaaagagata gaggaacagg cttgtagtat cgttcctgat gtaaaccaaa gtagctccca 2820 gaggcatgga acctcctggc atgtagcacc acgtgctgta ggtcttatta aagaacatta 2880 catttctgaa agaagtaaca gtgagatgtc tggtccttct gtagttcaca gatctcaccc 2940 tgggaagagg cctgtggcag acaaaagctc ttttccacaa ggagttcagg gtaacaaacg 3000 cataaagacc ggtgcagaaa aacgagcaga atccaataga aggggcatag agatgtatat 3060 aaacccaatc cataaaccca atagaagggg catagagagg cgtataaatc caacccacaa 3120 acctgagttg aattctgtac aaactgaacc aatggaaggt gcttcttcag gggacagaaa 3180 gcaggaaaat cccccagctc atttggcaaa gcagttacca aatacattgt cgcgctctac 3240 agtgtacttt gagaagaaat ttcttctgta ttcccgcagt taccaagaat attttcctaa 3300 atcgttcata ctgagccgcc tgcagggttg tcaggcaggt ggaaggcggc ttatagaaac 3360 tatattctta agccaaaacc cattaaagga acagcagaac caaagcctac cacagcaaaa 3420 gtggcgaaag aagaggttgc ccaaacgcta ctggcaaatg agagagatat ttcagaagct 3480 ggtaaagaac catgagaagt gcccttattt agttttcttg aggaaaaatt gccctgtttt 3540 gctttctgaa gcatgtttga aaaagacgga gctgaccttg caggcggctc tgcctgggga 3600 agcaaaggtt cacaagcaca cagaacatgg gaaagagtcc actgagggta ctgcaccgaa 3660 cagcttcctc gctcctccct cagtgctagc atgtgggcag ccagagagag gggaacagca 3720 ccctgcagag gggagtgatc cgctcctcag ggagctgctc aggcagcaca gcagccactg 3780 gcaggtgtat ggctttgtga gggagtgcct ggagcgggtg atccctgctg agctgtgggg 3840 ttcaagccat aacaaatgcc ggttctttaa aaacgtgaaa gcattcattt ccatggggaa 3900 gtatgctaag ctttcattgc agcagctgat gtggaagatg agagtgaatg actgcgtatg 3960 gcttcgtctg gccaaaggta atcactctgt tcctgcctat gaacattgtt accgtgaaga 4020 aattctggca aaattcctat actggctgat ggattcctat gttatcgagt tgctcaaatc 4080 atttttctat atcaccgaga ccatgttcca gaaaaacatg cttttctact accgaaagtt 4140 tatctggggc aagttacaga acattggaat tagagaccat tttgccaaag tacatctacg 4200 tgccttgtct tcagaggaga tggaagtgat ccgtcaaaaa aagtattttc ctattgcatc 4260 aaggctccgg ttcattccta aaatgaatgg tttaagaccc gtagtaagac taagccgtgt 4320 tgttgaagga cagaaactca gcaaggaaag cagagaaaag aagatacagc gctataacac 4380 tcagctaaaa aatctattta gtgttttaaa ctatgaacga actgtaaaca ccagtatcat 4440 tggctcttca gtattcggga gagatgatat ctacaggaag tggaaggagt ttgttacaaa 4500 ggtttttgaa tcaggtggtg aaatgcctca tttctacttt gtaaagggtg atgtatccag 4560 agcttttgat accattcctc acaagaaact tgtggaagtg atatcacagg tcttgaaacc 4620 tgagagccaa actgtctatg gaataaggtg gtatgcagtg attatgatta ccccaactgg 4680 aaaagccagg aaactctata agagacatgt ttctactttc gaggatttta ttccagacat 4740 gaagcagttt gtgtccaagc ttcaagagag aacttcatta cgaaatgcaa tagtagttga 4800 acagagattt ttactaaact gttacagtct aattcttcag tgcttaactt ttaatgagaa 4860 cagttccacc ctgtttactt tctttcttca aatgttacat aataacatcc tggagattgg 4920 gcacaggtac tatatacagt gctctggaat cccacagggc tccattttgt caaccttact 4980 ttgcagctta tgctacggag acatggaaaa caaattactc tgtgggatcc agaaggatgg 5040 agtcctaata cgtcttattg atgacttttt gctggttacg ccacatttaa tgcaggcaag 5100 aacttttcta aggactatag cagcaggtat tcctgagtat ggctttttaa taaatgccaa 5160 gaagactgtg gtgaattttc ctgttgatga tatcccggga tgttccaagt tcaaacatct 5220 gccagattgt cgtttgatct catggtgtgg tttattattg gatgtgcaga cacttgaggt 5280 ttattgtgat tactccagtt atgcctttac ttctatcaga tcaagtcttt ccttcaattc 5340 aagtagaata gctgggaaaa acatgaaatg caaattgact gcagtcctca aactgaaatg 5400 ccatccttta cttcttgact taaagatcaa cagccttcag acagttctaa ttaacatcta 5460 caagatattt ttacttcagg cttacaggtt ccatgcctgt gttcttcagc ttccattcaa 5520 ccagaaagtt aggaataatc ctgatttctt cctaaggatc atctctgata ctgcttcatg 5580 ctgctatttt atcctgaaag ctaaaaatcc aggagtttct ttaggtagca aagatgcatc 5640 tggcatgttc ccttttgagg cagcagaatg gctgtgctac catgccttca ttgtcaaact 5700 gtccaaccac aaagttattt acaaatgctt acttaagccc cttaaagtct ataagatgca 5760 tctgtttggg aagatcccaa gggatactat ggaactgctg aagacggtga cggaaccatc 5820 gctttgtcaa gatttcaaaa ctatactgga ctaa 5854 <210> 8 <211> 23 <212> DNA <213> Bos taurus <400> 8 ggcggccaac aagtcggccg agg 23 <210> 9 <211> 23 <212> DNA <213> Bos taurus <400> 9 gccaacgcgc cgaaccgtta cgg 23 <210> 10 <211> 23 <212> DNA <213> Bos taurus <400> 10 cctcgggtgc aaagactccg cgg 23 <210> 11 <211> 4993 <212> DNA <213> Artificial Sequence <220> <223> Synthetic construct <220> <221> enhancer <222> (1)..(293) <223> human CMV IE1 <220> <221> promoter <222> (294)..(575) <223> Chicken Beta Actin Promoter <220> <221> Intron <222> (578)..(1548) <223> Intron Chicken beta actin <300> <308> NCBI RefSeq / NM_001046242.1 <309> 2016-04-02 <313> (1646)..(4993) <400> 11 acttacggta aatggcccgc ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 60 aatgacgtat gttcccatag taacgccaat agggactttc cattgacgtc aatgggtgga 120 gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc 180 ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt acatgacctt 240 atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta ccatggtcga 300 ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac ccccaatttt 360 gtatttattt attttttaat tattttgtgc agcgatgggg gcgggggggg ggggggggcg 420 cgcgccaggc ggggcggggc ggggcgaggg gcggggcggg gcgaggcgga gaggtgcggc 480 ggcagccaat cagagcggcg cgctccgaaa gtttcctttt atggcgaggc ggcggcggcg 540 gcggccctat aaaaagcgaa gcgcgcggcg ggcgggagtc gctgcgcgct gccttcgccc 600 cgtgccccgc tccgccgccg cctcgcgccg cccgccccgg ctctgactga ccgcgttact 660 cccacaggtg agcgggcggg acggcccttc tcctccgggc tgtaattagc gcttggttta 720 atgacggctt gtttcttttc tgtggctgcg tgaaagcctt gaggggctcc gggagggccc 780 tttgtgcggg gggagcggct cggggggtgc gtgcgtgtgt gtgtgcgtgg ggagcgccgc 840 gtgcggctcc gcgctgcccg gcggctgtga gcgctgcggg cgcggcgcgg ggctttgtgc 900 gctccgcagt gtgcgcgagg ggagcgcggc cgggggcggt gccccgcggt gcgggggggg 960 ctgcgagggg aacaaaggct gcgtgcgggg tgtgtgcgtg ggggggtgag cagggggtgt 1020 gggcgcgtcg gtcgggctgc aaccccccct gcacccccct ccccgagttg ctgagcacgg 1080 cccggcttcg ggtgcggggc tccgtacggg gcgtggcgcg gggctcgccg tgccgggcgg 1140 ggggtggcgg caggtggggg tgccgggcgg ggcggggccg cctcgggccg gggagggctc 1200 gggggagggg cgcggcggcc cccggagcgc cggcggctgt cgaggcgcgg cgagccgcag 1260 ccattgcctt ttatggtaat cgtgcgagag ggcgcaggga cttcctttgt cccaaatctg 1320 tgcggagccg aaatctggga ggcgccgccg caccccctct agcgggcgcg gggcgaagcg 1380 gtgcggcgcc ggcaggaagg aaatgggcgg ggagggcctt cgtgcgtcgc cgcgccgccg 1440 tccccttctc cctctccagc ctcggggctg tccgcggggg gacggctgcc ttcggggggg 1500 acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa 1560 ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttattgtgct 1620 gtctcatcat tttggcaaag aattcatgcc gcgcgcgccc aggtgccggg ccgtgcgcgc 1680 ccttctgcgg gccagctacc ggcaggtgct gcccctggcc gccttcgtac ggcgcctgcg 1740 gccccagggc caccggcttg tgcggcgcgg ggacccggcg gccttccgcg cgctggtggc 1800 tcagtgcttg gtgtgcgtgc cctgggacgc gcagccgccc cctgccgccc cgtccttccg 1860 ccaggtgtcc tgcctgaagg agctggtggc cagagtcgtg cagaggctct gcgagcgcgg 1920 cgcgaggaac gtgctggcct tcggcttcac gctgctggcc ggggcccgcg gcgggccgcc 1980 cgtggccttc acgaccagcg tacgcagcta cctgcccaac acggtaaccg acacgctgcg 2040 cggcagcggc gcctgggggc tgctgctgca ccgcgtgggc gacgacgtgc tcacccacct 2100 gctgtcgcgc tgcgcgctct acctgctggt gcccccgacc tgcgcctacc aggtgtgtgg 2160 gccgccgctc tatgacctcc gcgccgccgc cgccgccgct cgtcggccca cgcggcaagt 2220 gggcgggacc cgggcgggct tcggactccc gcgcccggcc tcgtcgaacg gcggccacgg 2280 ggaggccgaa ggactcctgg aggcgcgggc ccagggcgcg aggcggcgtc gcagtagcgc 2340 gcggggacga ctgcctccag ccaagaggcc caggcgcggc ctggagcccg ggcgggatct 2400 cgaagggcag gtggcccgca gcccgccccg cgtggtgaca cctacccgag acgctgcgga 2460 agccaagtct cggaagggcg acgtgcccgg gccctgccgc ctcttcccgg gcggcgagcg 2520 gggtgtcggc tccgcgtcct ggcggctgtc accctcggag ggcgagccgg gtgccggagc 2580 ttgcgctgag accaagaggt tcctttactg ctccggcggt ggcgaacagc tgcgccgctc 2640 cttcctgctc tgctccctgc ctcccagcct ggccggggcg cggacactcg tggaaaccat 2700 ctttctggac tcgaagcccg ggccgccagg ggctccccgc cggccgcgcc gcctgcccgc 2760 gcgctactgg cagatgcggc ccctgttccg gaaactgctt gggaaccacg cgcggtgccc 2820 ctatggcgcg ctgctcaggg cgcactgccc gctgccggcc tctgcgcccc gggcggggcc 2880 agaccatcag aagtgccctg gtgttggggg ctgcccctct gagaggccgg ccgctgcccc 2940 cgagggcgag gcgaactcag ggcgcctggt ccagctgctc cgccagcaca gcagcccctg 3000 gcaggtgtac ggcctcctgc gggcctgtct tcgccgcctg gtgcccgccg gcctctgggg 3060 ctcccggcac aacgagcggc gcttcctgcg gaacgtgaag aagctcctct ccctggggaa 3120 gcacggcagg ctctcgcagc aggagctcac gtggaagatg aaggtgcagg actgcgcctg 3180 gctgcgcgcg agcccagggg ctcgctgcgt gcccgccgcg gagcaccgcc agcgcgaggc 3240 cgtcctgggt cgcttcctgc actggctgat gggcgcctac gtggtggagc tgctcaggag 3300 cttcttctac gtcacagaga ccacgttcca gaagaaccgg ctcttcttct tccggaagcg 3360 catctggagc cagctgcagc gcctgggcgt cagacaacac ttagaccgtg tgcggcttcg 3420 agaactgtca gaagcagagg tcaggcagca ccaggaggcc aggccggctc tgctgacatc 3480 caggctccgt ttcgtcccca agcccggcgg gctgcggccc atcgtgaacg tgggctgtgt 3540 tgagggcgcc ccggcaccgc ccagagacaa gaaggtgcag catctcagct cacgggtcaa 3600 gacgctgttc gcggtgctga actacgagcg agctcggcgg cctggcctcc tgggggcctc 3660 ggtgctgggc atggacgaca tccacagggc ctggcgggcc ttcgtgctgc ccctgagggc 3720 ccggggccca gcccccccgc tctacttcgt caaggtggac gtggtggggg cctacgatgc 3780 cctcccccag gataagctgg cagaggtgat cgctaacgtg ctgcagccgc aggagaatac 3840 gtactgcgtg cgccactgcg ccatggtccg gactgcgcgc gggcgcatgc gcaagtcctt 3900 caagagacac gtgtccacct tctcggactt ccagccgtac ctgaggcagc tcgtggagca 3960 tctgcaggcg atgggctccc tgagggacgc cgtggtcatc gagcagagct gctccctgaa 4020 cgagcctggc agcagcctct tcaacctctt cctgcacctg aggtcctaca tccagtgtca 4080 ggggatcccc cagggctcca tcctgtccac cctgctctgc agcttctgct atggggacat 4140 ggagaacaag ctcttccctg gagtccagca ggacggggtg cttctgcgcc tggtggacga 4200 cttcctgctg gtcaccccgc acctgacgcg ggccagagac ttcctcagga cgctggtgcg 4260 cggtgtgcct gagtatggct gccaggtgaa cctgcggaag acggtggtga acttccccgt 4320 ggagcccggg gccctgggcg gcgcggcgcc cctgcagctg ccggcccact gcctgttccc 4380 ctggtgcggc ctgctgctgg atacccgcac cctggaggtg catggcgacc actccagtta 4440 cgcccggacg tccatcagag cgagtctcac cttcacccag ggcttcaagc ccgggaggaa 4500 catgcgtcgc aagctgttgg cggtcttgca gctcaagtgc catgggctct tcctggacct 4560 gcaggtgaac agtctgcaga cggtcttcac aaacgtttac aagatattcc tgctgcaggc 4620 ctacaggttc cacgcctgcg tgctgcagct gcccttcagc cagccggtca ggagcagccc 4680 cgcgttcttt ctccaggtca tcgccgacac cgcatcccgc ggctacgccc tcctgaaagc 4740 caggaacgca ggggcgtcac tgggggccag gggcgccgcc ggcctgttcc cgtctgaagc 4800 tgcgcagtgg ctgtgtctcc acgccttcct gctcaagctg gctcaccacc gtgtcaccta 4860 cagccgcctg ctgggggccc tccggacagc ccaagcacgg ctgcaccggc agctcccggg 4920 gcccacacgg gccgccctgg aggcggcggc cgaccccgcc ctgaccgcag acttcaagac 4980 catcttggac tga 4993 <210> 12 <211> 2557 <212> DNA <213> Artificial Sequence <220> <223> Synthetic construct <220> <221> enhancer <222> (1)..(293) <223> human CMV IE1 <220> <221> promoter <222> (294)..(575) <223> Chicken Beta Actin Promoter <220> <221> Intron <222> (578)..(1548) <223> Intron Chicken beta actin <400> 12 acttacggta aatggcccgc ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 60 aatgacgtat gttcccatag taacgccaat agggactttc cattgacgtc aatgggtgga 120 gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc 180 ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt acatgacctt 240 atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta ccatggtcga 300 ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac ccccaatttt 360 gtatttattt attttttaat tattttgtgc agcgatgggg gcgggggggg ggggggggcg 420 cgcgccaggc ggggcggggc ggggcgaggg gcggggcggg gcgaggcgga gaggtgcggc 480 ggcagccaat cagagcggcg cgctccgaaa gtttcctttt atggcgaggc ggcggcggcg 540 gcggccctat aaaaagcgaa gcgcgcggcg ggcgggagtc gctgcgcgct gccttcgccc 600 cgtgccccgc tccgccgccg cctcgcgccg cccgccccgg ctctgactga ccgcgttact 660 cccacaggtg agcgggcggg acggcccttc tcctccgggc tgtaattagc gcttggttta 720 atgacggctt gtttcttttc tgtggctgcg tgaaagcctt gaggggctcc gggagggccc 780 tttgtgcggg gggagcggct cggggggtgc gtgcgtgtgt gtgtgcgtgg ggagcgccgc 840 gtgcggctcc gcgctgcccg gcggctgtga gcgctgcggg cgcggcgcgg ggctttgtgc 900 gctccgcagt gtgcgcgagg ggagcgcggc cgggggcggt gccccgcggt gcgggggggg 960 ctgcgagggg aacaaaggct gcgtgcgggg tgtgtgcgtg ggggggtgag cagggggtgt 1020 gggcgcgtcg gtcgggctgc aaccccccct gcacccccct ccccgagttg ctgagcacgg 1080 cccggcttcg ggtgcggggc tccgtacggg gcgtggcgcg gggctcgccg tgccgggcgg 1140 ggggtggcgg caggtggggg tgccgggcgg ggcggggccg cctcgggccg gggagggctc 1200 gggggagggg cgcggcggcc cccggagcgc cggcggctgt cgaggcgcgg cgagccgcag 1260 ccattgcctt ttatggtaat cgtgcgagag ggcgcaggga cttcctttgt cccaaatctg 1320 tgcggagccg aaatctggga ggcgccgccg caccccctct agcgggcgcg gggcgaagcg 1380 gtgcggcgcc ggcaggaagg aaatgggcgg ggagggcctt cgtgcgtcgc cgcgccgccg 1440 tccccttctc cctctccagc ctcggggctg tccgcggggg gacggctgcc ttcggggggg 1500 acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa 1560 ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttattgtgct 1620 gtctcatcat tttggcaaag aattcatggc tacctcccga tatgagccag tggctgagat 1680 tggtgtcggt gcctatggga cagtgtacaa ggcccgtgat ccccacagtg gccactttgt 1740 ggccctcaag agtgtaagag tccccaatgg aggaggtgct ggagggggcc tgcccatcag 1800 caccgttcgg gaggtggcct tactgcggcg tctggaggct tttgagcatc ccaatgttgt 1860 caggcttatg gacgtctgtg caacagcccg aactgaccgg gagaccaaag tgaccctggt 1920 gtttgagcat gtggaccaag atctcaggac atatctggac aaggcacccc caccaggctt 1980 gccagtggag accataaaag atctgatgcg ccaatttcta agaggcctgg atttccttca 2040 tgccaactgc atcgttcacc gagacctgaa gccagagaac attctggtga caagtggtgg 2100 gacagtcaag ctggctgact ttggcctggc cagaatctac agctaccaga tggcacttac 2160 acctgtggtt gttacactct ggtatcgtgc tccagaagtt cttttgcagt ctacgtatgc 2220 aacacccgtg gacatgtgga gcgttggctg tatctttgca gagatgtttc gtcgaaagcc 2280 tctcttctgt ggaaactctg aagctgacca gttaggcaaa atctttgacc tgattggact 2340 gcccccagag gatgactggc cccgagatgt ctctctaccc cgaggagcct tttccccccg 2400 agggccccgc ccagtgcagt cggtggtccc tgagctggag gaatctggag cacagctgct 2460 gctggagatg ctgactttta acccacacaa gcgaatctct gccttccgag ccctgcagca 2520 ctcttatcta cacaaggcag aaggtgacgc agagtga 2557 <210> 13 <211> 2557 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Construct <220> <221> enhancer <222> (1)..(293) <223> human CMV IE1 <220> <221> promoter <222> (294)..(575) <223> Chicken Beta Actin Promoter <220> <221> Intron <222> (578)..(1548) <223> Intron Chicken beta actin <400> 13 acttacggta aatggcccgc ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 60 aatgacgtat gttcccatag taacgccaat agggactttc cattgacgtc aatgggtgga 120 gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc 180 ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt acatgacctt 240 atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta ccatggtcga 300 ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac ccccaatttt 360 gtatttattt attttttaat tattttgtgc agcgatgggg gcgggggggg ggggggggcg 420 cgcgccaggc ggggcggggc ggggcgaggg gcggggcggg gcgaggcgga gaggtgcggc 480 ggcagccaat cagagcggcg cgctccgaaa gtttcctttt atggcgaggc ggcggcggcg 540 gcggccctat aaaaagcgaa gcgcgcggcg ggcgggagtc gctgcgcgct gccttcgccc 600 cgtgccccgc tccgccgccg cctcgcgccg cccgccccgg ctctgactga ccgcgttact 660 cccacaggtg agcgggcggg acggcccttc tcctccgggc tgtaattagc gcttggttta 720 atgacggctt gtttcttttc tgtggctgcg tgaaagcctt gaggggctcc gggagggccc 780 tttgtgcggg gggagcggct cggggggtgc gtgcgtgtgt gtgtgcgtgg ggagcgccgc 840 gtgcggctcc gcgctgcccg gcggctgtga gcgctgcggg cgcggcgcgg ggctttgtgc 900 gctccgcagt gtgcgcgagg ggagcgcggc cgggggcggt gccccgcggt gcgggggggg 960 ctgcgagggg aacaaaggct gcgtgcgggg tgtgtgcgtg ggggggtgag cagggggtgt 1020 gggcgcgtcg gtcgggctgc aaccccccct gcacccccct ccccgagttg ctgagcacgg 1080 cccggcttcg ggtgcggggc tccgtacggg gcgtggcgcg gggctcgccg tgccgggcgg 1140 ggggtggcgg caggtggggg tgccgggcgg ggcggggccg cctcgggccg gggagggctc 1200 gggggagggg cgcggcggcc cccggagcgc cggcggctgt cgaggcgcgg cgagccgcag 1260 ccattgcctt ttatggtaat cgtgcgagag ggcgcaggga cttcctttgt cccaaatctg 1320 tgcggagccg aaatctggga ggcgccgccg caccccctct agcgggcgcg gggcgaagcg 1380 gtgcggcgcc ggcaggaagg aaatgggcgg ggagggcctt cgtgcgtcgc cgcgccgccg 1440 tccccttctc cctctccagc ctcggggctg tccgcggggg gacggctgcc ttcggggggg 1500 acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa 1560 ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttattgtgct 1620 gtctcatcat tttggcaaag aattcatggc tacctcccga tatgagccag tggctgagat 1680 tggtgtcggt gcctatggga cagtgtacaa ggcctgtgat ccccacagtg gccactttgt 1740 ggccctcaag agtgtaagag tccccaatgg aggaggtgct ggagggggcc tgcccatcag 1800 caccgttcgg gaggtggcct tactgcggcg tctggaggct tttgagcatc ccaatgttgt 1860 caggcttatg gacgtctgtg caacagcccg aactgaccgg gagaccaaag tgaccctggt 1920 gtttgagcat gtggaccaag atctcaggac atatctggac aaggcacccc caccaggctt 1980 gccagtggag accataaaag atctgatgcg ccaatttcta agaggcctgg atttccttca 2040 tgccaactgc atcgttcacc gagacctgaa gccagagaac attctggtga caagtggtgg 2100 gacagtcaag ctggctgact ttggcctggc cagaatctac agctaccaga tggcacttac 2160 acctgtggtt gttacactct ggtatcgtgc tccagaagtt cttttgcagt ctacgtatgc 2220 aacacccgtg gacatgtgga gcgttggctg tatctttgca gagatgtttc gtcgaaagcc 2280 tctcttctgt ggaaactctg aagctgacca gttaggcaaa atctttgacc tgattggact 2340 gcccccagag gatgactggc cccgagatgt ctctctaccc cgaggagcct tttccccccg 2400 agggccccgc ccagtgcagt cggtggtccc tgagctggag gaatctggag cacagctgct 2460 gctggagatg ctgactttta acccacacaa gcgaatctct gccttccgag ccctgcagca 2520 ctcttatcta cacaaggcag aaggtgacgc agagtga 2557 <210> 14 <211> 2559 <212> DNA <213> Artificial Sequence <220> <223> Synthetic construct <220> <221> enhancer <222> (1)..(293) <223> human CMV IE1 <220> <221> promoter <222> (294)..(575) <223> Chicken Beta Actin Promoter <220> <221> Intron <222> (578)..(1548) <223> Intron Chicken beta actin <400> 14 acttacggta aatggcccgc ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 60 aatgacgtat gttcccatag taacgccaat agggactttc cattgacgtc aatgggtgga 120 gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc 180 ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt acatgacctt 240 atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta ccatggtcga 300 ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac ccccaatttt 360 gtatttattt attttttaat tattttgtgc agcgatgggg gcgggggggg ggggggggcg 420 cgcgccaggc ggggcggggc ggggcgaggg gcggggcggg gcgaggcgga gaggtgcggc 480 ggcagccaat cagagcggcg cgctccgaaa gtttcctttt atggcgaggc ggcggcggcg 540 gcggccctat aaaaagcgaa gcgcgcggcg ggcgggagtc gctgcgcgct gccttcgccc 600 cgtgccccgc tccgccgccg cctcgcgccg cccgccccgg ctctgactga ccgcgttact 660 cccacaggtg agcgggcggg acggcccttc tcctccgggc tgtaattagc gcttggttta 720 atgacggctt gtttcttttc tgtggctgcg tgaaagcctt gaggggctcc gggagggccc 780 tttgtgcggg gggagcggct cggggggtgc gtgcgtgtgt gtgtgcgtgg ggagcgccgc 840 gtgcggctcc gcgctgcccg gcggctgtga gcgctgcggg cgcggcgcgg ggctttgtgc 900 gctccgcagt gtgcgcgagg ggagcgcggc cgggggcggt gccccgcggt gcgggggggg 960 ctgcgagggg aacaaaggct gcgtgcgggg tgtgtgcgtg ggggggtgag cagggggtgt 1020 gggcgcgtcg gtcgggctgc aaccccccct gcacccccct ccccgagttg ctgagcacgg 1080 cccggcttcg ggtgcggggc tccgtacggg gcgtggcgcg gggctcgccg tgccgggcgg 1140 ggggtggcgg caggtggggg tgccgggcgg ggcggggccg cctcgggccg gggagggctc 1200 gggggagggg cgcggcggcc cccggagcgc cggcggctgt cgaggcgcgg cgagccgcag 1260 ccattgcctt ttatggtaat cgtgcgagag ggcgcaggga cttcctttgt cccaaatctg 1320 tgcggagccg aaatctggga ggcgccgccg caccccctct agcgggcgcg gggcgaagcg 1380 gtgcggcgcc ggcaggaagg aaatgggcgg ggagggcctt cgtgcgtcgc cgcgccgccg 1440 tccccttctc cctctccagc ctcggggctg tccgcggggg gacggctgcc ttcggggggg 1500 acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa 1560 ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttattgtgct 1620 gtctcatcat tttggcaaag aattcatggc tacctctcga tatgagccag tggctgaaat 1680 tggtgtcggt gcctatggga cagtgtacaa ggcctgtgat ccccacagtg gccactttgt 1740 ggccctcaag agtgtgagag tccccaatgg aggaggaggt ggaggaggcc ttcccatcag 1800 cacagttcgt gaggtggctt tactgaggcg actggaggct tttgagcatc ccaatgttgt 1860 ccggctgatg gacgtctgtg ccacatcccg aactgaccgg gagatcaagg taaccctggt 1920 gtttgagcat gtagaccagg acctaaggac atatctggac aaggcacccc caccaggctt 1980 gccagccgaa acgatcaagg atctgatgcg ccagtttcta agaggcctag atttccttca 2040 tgccaattgc atcgttcacc gagatctgaa gccagagaac attctggtga caagtggtgg 2100 aacagtcaag ctggctgact ttggcctggc cagaatctac agctaccaga tggcacttac 2160 acccgtggtt gttacactct ggtaccgagc tcccgaagtt cttctgcagt ccacatatgc 2220 aacacctgtg gacatgtgga gtgttggctg tatctttgca gagatgtttc gtcgaaagcc 2280 tctcttctgt ggaaactctg aagccgacca gttgggcaaa atctttgacc tgattgggct 2340 gcctccagag gatgactggc ctcgagatgt atccctgccc cgtggagcct ttccccccag 2400 agggccccgc ccagtgcagt cggtggtacc tgagatggag gagtcgggag cacagctgct 2460 gctggaaatg ctgactttta acccacacaa gcgaatctct gcctttcgag ctctgcagca 2520 ctcttatcta cataaggatg aaggtaatcc ggagtgaaa 2559 <210> 15 <211> 2542 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Construct <220> <221> enhancer <222> (1)..(293) <223> human CMV IE1 <220> <221> promoter <222> (294)..(575) <223> Chicken Beta Actin Promoter <220> <221> Intron <222> (578)..(1548) <223> Intron Chicken beta actin <400> 15 acttacggta aatggcccgc ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 60 aatgacgtat gttcccatag taacgccaat agggactttc cattgacgtc aatgggtgga 120 gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc 180 ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt acatgacctt 240 atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta ccatggtcga 300 ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac ccccaatttt 360 gtatttattt attttttaat tattttgtgc agcgatgggg gcgggggggg ggggggggcg 420 cgcgccaggc ggggcggggc ggggcgaggg gcggggcggg gcgaggcgga gaggtgcggc 480 ggcagccaat cagagcggcg cgctccgaaa gtttcctttt atggcgaggc ggcggcggcg 540 gcggccctat aaaaagcgaa gcgcgcggcg ggcgggagtc gctgcgcgct gccttcgccc 600 cgtgccccgc tccgccgccg cctcgcgccg cccgccccgg ctctgactga ccgcgttact 660 cccacaggtg agcgggcggg acggcccttc tcctccgggc tgtaattagc gcttggttta 720 atgacggctt gtttcttttc tgtggctgcg tgaaagcctt gaggggctcc gggagggccc 780 tttgtgcggg gggagcggct cggggggtgc gtgcgtgtgt gtgtgcgtgg ggagcgccgc 840 gtgcggctcc gcgctgcccg gcggctgtga gcgctgcggg cgcggcgcgg ggctttgtgc 900 gctccgcagt gtgcgcgagg ggagcgcggc cgggggcggt gccccgcggt gcgggggggg 960 ctgcgagggg aacaaaggct gcgtgcgggg tgtgtgcgtg ggggggtgag cagggggtgt 1020 gggcgcgtcg gtcgggctgc aaccccccct gcacccccct ccccgagttg ctgagcacgg 1080 cccggcttcg ggtgcggggc tccgtacggg gcgtggcgcg gggctcgccg tgccgggcgg 1140 ggggtggcgg caggtggggg tgccgggcgg ggcggggccg cctcgggccg gggagggctc 1200 gggggagggg cgcggcggcc cccggagcgc cggcggctgt cgaggcgcgg cgagccgcag 1260 ccattgcctt ttatggtaat cgtgcgagag ggcgcaggga cttcctttgt cccaaatctg 1320 tgcggagccg aaatctggga ggcgccgccg caccccctct agcgggcgcg gggcgaagcg 1380 gtgcggcgcc ggcaggaagg aaatgggcgg ggagggcctt cgtgcgtcgc cgcgccgccg 1440 tccccttctc cctctccagc ctcggggctg tccgcggggg gacggctgcc ttcggggggg 1500 acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa 1560 ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttattgtgct 1620 gtctcatcat tttggcaaag aattcatgga gaacttccag aaggtggaga agatcgggga 1680 gggcacctat ggtgtggtgt acaaggctcg caacaagcgc acgggcgagc tggtggcgct 1740 caagaagatc cggctggaca cggagaccga gggtgtcccc agcactgcca tccgagaaat 1800 ctcgctgctg aaggagctga agcatcccaa catagtcaaa ctgctggacg tgatccacac 1860 ggagaacaag ctctacctgg tctttgagtt cctgcaccag gacctgaaga agttcatgga 1920 tgcatcatcc ctgggcggca tcgcgctgcc cctcatcaag agctacctgt tccagctgct 1980 gcaaggcctg gccttctgcc acgcacaccg cgtgctgcac cgtgacctca aaccccagaa 2040 cctcctcatc aacgccgacg gtgccatcaa gctggctgac ttcgggctgg cccgcgcctt 2100 tggggtgccc gtgcgcacct acacacacga ggtggtgacg ttgtggtacc gtgcgcctga 2160 gatcctgctg ggctgcaagt actattcgac tgctgtggac atctggagcc tgggctgcat 2220 ttttgctgag atggtgacgc ggcgcgcgct cttccccggg gattcggaga tcgatcagct 2280 cttccgtatc ttccgcacgt tggggacacc ggatgaggcc gcctggcccg gcgtcaccgc 2340 gctgcccgac tacaagccca gcttccccaa atgggcccgg caggatctgg gcaaggtggt 2400 gccgccgctg gatgaggagg gccgcaagct gctggctcaa atgctgcact acgatcccaa 2460 caagcgcatc tcggccaagg cagcgctgag ccaccccttc ttccgcgacg tcaccagggc 2520 tgtcccccac ctgcgcctgt ga 2542 <210> 16 <211> 2626 <212> DNA <213> Artificial Sequence <220> <223> Synthetic construct <220> <221> enhancer <222> (1)..(293) <223> human CMV IE1 <220> <221> promoter <222> (294)..(575) <223> Chicken Beta Actin Promoter <220> <221> Intron <222> (578)..(1548) <400> 16 acttacggta aatggcccgc ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 60 aatgacgtat gttcccatag taacgccaat agggactttc cattgacgtc aatgggtgga 120 gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc 180 ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt acatgacctt 240 atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta ccatggtcga 300 ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac ccccaatttt 360 gtatttattt attttttaat tattttgtgc agcgatgggg gcgggggggg ggggggggcg 420 cgcgccaggc ggggcggggc ggggcgaggg gcggggcggg gcgaggcgga gaggtgcggc 480 ggcagccaat cagagcggcg cgctccgaaa gtttcctttt atggcgaggc ggcggcggcg 540 gcggccctat aaaaagcgaa gcgcgcggcg ggcgggagtc gctgcgcgct gccttcgccc 600 cgtgccccgc tccgccgccg cctcgcgccg cccgccccgg ctctgactga ccgcgttact 660 cccacaggtg agcgggcggg acggcccttc tcctccgggc tgtaattagc gcttggttta 720 atgacggctt gtttcttttc tgtggctgcg tgaaagcctt gaggggctcc gggagggccc 780 tttgtgcggg gggagcggct cggggggtgc gtgcgtgtgt gtgtgcgtgg ggagcgccgc 840 gtgcggctcc gcgctgcccg gcggctgtga gcgctgcggg cgcggcgcgg ggctttgtgc 900 gctccgcagt gtgcgcgagg ggagcgcggc cgggggcggt gccccgcggt gcgggggggg 960 ctgcgagggg aacaaaggct gcgtgcgggg tgtgtgcgtg ggggggtgag cagggggtgt 1020 gggcgcgtcg gtcgggctgc aaccccccct gcacccccct ccccgagttg ctgagcacgg 1080 cccggcttcg ggtgcggggc tccgtacggg gcgtggcgcg gggctcgccg tgccgggcgg 1140 ggggtggcgg caggtggggg tgccgggcgg ggcggggccg cctcgggccg gggagggctc 1200 gggggagggg cgcggcggcc cccggagcgc cggcggctgt cgaggcgcgg cgagccgcag 1260 ccattgcctt ttatggtaat cgtgcgagag ggcgcaggga cttcctttgt cccaaatctg 1320 tgcggagccg aaatctggga ggcgccgccg caccccctct agcgggcgcg gggcgaagcg 1380 gtgcggcgcc ggcaggaagg aaatgggcgg ggagggcctt cgtgcgtcgc cgcgccgccg 1440 tccccttctc cctctccagc ctcggggctg tccgcggggg gacggctgcc ttcggggggg 1500 acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa 1560 ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttattgtgct 1620 gtctcatcat tttggcaaag aattcatgga caaggacggc accaacctgg ccgaccagca 1680 gtatgagtgc gtggctgaga tcggcgaggg agcctacggg aaggtgttca aggcccgcga 1740 cctgaagaat ggcggccgct tcgtggcgct gaagcgggtg cgggtgcaga ccagcgagga 1800 gggcatgccg ctgtccacca tccgggaggt ggccgtcctg aggcacctgg agaccttcga 1860 gcaccccaac gtggtcagat tgtttgatgt gtgcaccgtg tcacgaacag acagagaaac 1920 caagttaacg ttggtgtttg aacatgtgga tcaagacttg actacttact tggataaagt 1980 tccagagcct ggagtgccta ctgaaactat aaaggatatg atgcttcagc tgtttcgggg 2040 actggatttt ctgcattcac atcgtgtggt gcatcgggac ctgaaacccc agaatatcct 2100 tgtaaccagc agtgggcaga taaagttagc tgactttgga cttgcacgaa tctacagttt 2160 tcagatggct cttacatcag tggttgttac tttgtggtat agagctcctg aagttttgct 2220 tcagtccagc tatgcaacac cagttgatct ttggagtgtt ggttgcatat ttgcagaaat 2280 gttccgtcga aaaccactct tccgtggaaa ttcagatgtt gatcagctag gaaaaatctt 2340 tgatgtaatt ggactcccag aagaagagga ctggcctaat gatgtggccc ttccaagaaa 2400 tgcttttgct tccagacccg cacaacctat tgaaaaattt gtaccagata ttgatgacat 2460 gggcaaagac ttgcttctta aatgcttagc gttcaatcca gccaagagaa tatctgccta 2520 tgctgccctg tctcacccct atttccatga tctggagaaa tgcaaggaga atctggactc 2580 tcacatgtca tccagccaaa actccagtga ggtgaacgca tcataa 2626 <210> 17 <211> 168 <212> PRT <213> Mus musculus <300> <308> NCBI RefSeq / NP_001035744.1 <309> 2015-05-12 <313> (1)..(168) <400> 17 Met Glu Ser Ala Ala Asp Arg Leu Ala Arg Ala Ala Ala Gln Gly Arg 1 5 10 15 Val His Asp Val Arg Ala Leu Leu Glu Ala Gly Val Ser Pro Asn Ala 20 25 30 Pro Asn Ser Phe Gly Arg Thr Pro Ile Gln Val Met Met Met Gly Asn 35 40 45 Val His Val Ala Ala Leu Leu Leu Asn Tyr Gly Ala Asp Ser Asn Cys 50 55 60 Glu Asp Pro Thr Thr Phe Ser Arg Pro Val His Asp Ala Ala Arg Glu 65 70 75 80 Gly Phe Leu Asp Thr Leu Val Val Leu His Gly Ser Gly Ala Arg Leu 85 90 95 Asp Val Arg Asp Ala Trp Gly Arg Leu Pro Leu Asp Leu Ala Gln Glu 100 105 110 Arg Gly His Gln Asp Ile Val Arg Tyr Leu Arg Ser Ala Gly Cys Ser 115 120 125 Leu Cys Ser Ala Gly Trp Ser Leu Cys Thr Ala Gly Asn Val Ala Gln 130 135 140 Thr Asp Gly His Ser Phe Ser Ser Ser Thr Pro Arg Ala Leu Glu Leu 145 150 155 160 Arg Gly Gln Ser Gln Glu Gln Ser 165 <210> 18 <211> 152 <212> PRT <213> Bos taurus <300> <308> NCBI RefSeq / XP_010806061.1 <309> 2016-01-26 <313> (1)..(152) <400> 18 Met Glu Thr Ser Ala Asp Leu Leu Ala Ala Ala Ala Ala Leu Gly Trp 1 5 10 15 Ala Glu Glu Val Arg Ala Leu Leu Glu Ala Gly Ala Ser Ala Asn Ala 20 25 30 Pro Asn Arg Tyr Gly Arg Ser Ala Ile Gln Val Met Met Met Gly Ser 35 40 45 Ala Arg Val Ala Glu Leu Leu Leu Leu His Gly Ala Asp Pro Asn Cys 50 55 60 Ala Asp Pro Ala Thr Leu Thr Arg Pro Val His Asp Ala Ala Arg Glu 65 70 75 80 Gly Phe Leu Asp Thr Leu Val Ala Leu His Arg Ala Gly Ala Arg Leu 85 90 95 Asp Val Arg Asp Ala Trp Gly Arg Leu Pro Val Asp Leu Ala Glu Glu 100 105 110 Arg Gly His Arg Asp Val Ala Arg Tyr Leu Arg Ala Ala Ala Glu Asp 115 120 125 Thr Glu Gly Gly Ser His Ala Ser Ala Asp Ser Ala Glu Gly Pro Ala 130 135 140 Asp Ser Ser Asp Leu Lys Lys Asp 145 150 <210> 19 <211> 152 <212> PRT <213> Sus scrofa <300> <308> GenBank / CAC87046.1 <309> 2005-04-15 <313> (1)..(152) <400> 19 Met Glu Pro Ser Ala Asp Trp Leu Ala Ser Ala Ala Ala Arg Gly Arg 1 5 10 15 Glu Gly Glu Val Arg Ala Leu Leu Glu Ala Gly Ala Leu Ala Asn Ala 20 25 30 Pro Asn Arg Tyr Gly Arg Thr Pro Ile Gln Val Met Met Met Gly Ser 35 40 45 Thr Arg Val Ala Glu Leu Leu Leu Leu His Gly Ala Asp Pro Asn Cys 50 55 60 Glu Asp Pro Ala Thr Leu Thr Arg Pro Val His Asp Ala Ala Arg Glu 65 70 75 80 Gly Phe Leu Asp Thr Leu Val Val Leu His Arg Ala Gly Ala Arg Leu 85 90 95 Asp Val Arg Asp Ala Trp Gly Arg Leu Pro Val Asp Leu Ala Glu Glu 100 105 110 Arg Gly His Arg Asp Val Ala Gly Tyr Leu Arg Ala Asn Ala Gly Arg 115 120 125 Thr Glu Gly Gly Ser His Ala Arg Ser Asn Ser Gly Glu Asp Pro Ala 130 135 140 Asp Ile Ser Asn Leu Gln Asn His 145 150 <210> 20 <211> 139 <212> PRT <213> Gallus gallus <300> <308> NCBI RefSeq / NP_989764.1 <309> 2016-11-06 <313> (1)..(139) <400> 20 Met Ala Gln Arg Ala Ala Ser Thr Ala Ala Asp Glu Leu Ala Asn Ala 1 5 10 15 Ala Ala Arg Gly Asp Leu Leu Arg Val Lys Glu Leu Leu Asp Gly Ala 20 25 30 Ala Asp Pro Asn Ala Val Asn Ser Phe Gly Arg Thr Pro Ile Gln Val 35 40 45 Met Met Leu Gly Ser Pro Arg Val Ala Glu Leu Leu Leu Gln Arg Gly 50 55 60 Ala Asp Pro Asn Arg Pro Asp Pro Arg Thr Gly Cys Arg Pro Ala His 65 70 75 80 Asp Ala Ala Arg Ala Gly Phe Leu Asp Thr Leu Ala Ala Leu His Arg 85 90 95 Ala Gly Ala Arg Leu Asp Leu Pro Asp Gly Arg Gly Arg Leu Pro Ile 100 105 110 Asp Val Ala Ala Gly Gly Pro His Gly Pro Val Gly Cys Tyr Leu Arg 115 120 125 Arg Leu Pro Ala Leu Pro Arg Ala Pro Leu Pro 130 135 <210> 21 <211> 130 <212> PRT <213> Mus musculus <300> <308> NCBI RefSeq / NP_031696.1 <309> 2015-02-15 <313> (1)..(130) <400> 21 Met Leu Gly Gly Ser Ser Asp Ala Gly Leu Ala Thr Ala Ala Ala Arg 1 5 10 15 Gly Gln Val Glu Thr Val Arg Gln Leu Leu Glu Ala Gly Ala Asp Pro 20 25 30 Asn Ala Leu Asn Arg Phe Gly Arg Arg Pro Ile Gln Val Met Met Met 35 40 45 Gly Ser Ala Gln Val Ala Glu Leu Leu Leu Leu His Gly Ala Glu Pro 50 55 60 Asn Cys Ala Asp Pro Ala Thr Leu Thr Arg Pro Val His Asp Ala Ala 65 70 75 80 Arg Glu Gly Phe Leu Asp Thr Leu Val Val Leu His Arg Ala Gly Ala 85 90 95 Arg Leu Asp Val Cys Asp Ala Trp Gly Arg Leu Pro Val Asp Leu Ala 100 105 110 Glu Glu Gln Gly His Arg Asp Ile Ala Arg Tyr Leu His Ala Ala Thr 115 120 125 Gly Asp 130 <210> 22 <211> 131 <212> PRT <213> Sus scrofa <300> <308> NCBI RefSeq / NP_999289.1 <309> 2016-07-29 <313> (1)..(131) <400> 22 Met Leu Ser Gly Gly Gly Gly Asp Ala Gly Leu Ala Asn Ala Ala Ala 1 5 10 15 Arg Gly Gln Val Glu Thr Val Arg Gln Leu Leu Glu Ala Gly Ala Asp 20 25 30 Pro Asn Gly Leu Asn His Phe Gly Arg Arg Pro Ile Gln Val Met Met 35 40 45 Met Gly Ser Ala Arg Val Ala Glu Leu Leu Leu Leu His Gly Ala Asp 50 55 60 Pro Asn Cys Ala Asp Pro Ala Thr Leu Thr Arg Pro Val His Asp Ala 65 70 75 80 Ala Arg Glu Gly Phe Leu Asp Thr Leu Val Ala Leu Arg Arg Ala Gly 85 90 95 Ala Arg Leu Asp Val Gln Asp Ala Trp Gly Arg Leu Pro Val Asp Leu 100 105 110 Ala Glu Glu Arg Gly His Arg Asp Val Ala Arg Phe Leu Arg Ala Ala 115 120 125 Ala Gly Asp 130 <210> 23 <211> 131 <212> PRT <213> Bos taurus <300> <308> NCBI RefSeq / NP_001069362.1 <309> 2016-07-29 <313> (1)..(131) <400> 23 Met Leu Ser Gly Gly Gly Gly Asp Ala Asp Leu Ala Asn Ala Ala Ala 1 5 10 15 Arg Gly Gln Val Glu Ala Val Arg Gln Leu Leu Glu Ala Gly Val Asp 20 25 30 Pro Asn Arg Leu Asn Arg Phe Gly Arg Arg Pro Ile Gln Val Met Met 35 40 45 Met Gly Ser Ala Arg Val Ala Glu Leu Leu Leu Leu His Gly Ala Asp 50 55 60 Pro Asn Cys Ala Asp Pro Ala Thr Leu Thr Arg Pro Val His Asp Ala 65 70 75 80 Ala Arg Glu Gly Phe Leu Asp Thr Leu Val Ala Leu His Arg Ala Gly 85 90 95 Gly Arg Leu Asp Val Arg Asp Ala Trp Gly Arg Leu Pro Val Asp Leu 100 105 110 Ala Glu Glu Arg Gly His Arg Asp Val Ala Arg Tyr Leu Arg Ala Thr 115 120 125 Ala Gly Asp 130 <210> 24 <211> 126 <212> PRT <213> Oncorhynchus mykiss <300> <308> GenBank / ACO08670.1 <309> 2009-03-27 <313> (1)..(126) <400> 24 Met Thr Met Pro Leu Glu Asp Asp Leu Ala Ser Ala Ala Ala Thr Gly 1 5 10 15 Asn Thr Asn Arg Val Lys Ile Leu Leu Gln Ser Gly Val Asp Val Asn 20 25 30 Gly Val Asn Cys Phe Gly Arg Thr Pro Leu Gln Val Met Met Met Gly 35 40 45 Gly Ser Pro Val Ala Gln Leu Leu Leu Met Gln Gly Ala Asp Pro Asn 50 55 60 Ile Ala Asp Arg His Thr Gly Thr Thr Pro Leu His Asp Ala Ala Arg 65 70 75 80 Met Gly Phe Leu Asp Thr Val Glu Ile Leu Val Gln Phe Leu Ala Asp 85 90 95 Pro Asn Ser Arg Asp Asn Arg Asn Cys Arg Pro Ile Asp Leu Ala Ile 100 105 110 Glu Ser Gly His Asn Asn Val Val Ala Phe Leu Lys Ala Leu 115 120 125 <210> 25 <211> 127 <212> PRT <213> Oreochromis niloticus <300> <308> NCBI RefSeq / XP_003452283.1 <309> 2016-12-05 <313> (1)..(127) <400> 25 Met Thr Leu Gln Asp Glu Leu Thr Thr Ala Ala Ala Lys Gly Asn Thr 1 5 10 15 Ala Ala Val Lys Ala Leu Leu Asp Arg Gly Ala Gln Val Asn Gly Thr 20 25 30 Asn Ser Phe Gly Arg Thr Ala Leu Gln Val Met Met Met Gly Ser Thr 35 40 45 Ser Val Ala Gln Leu Leu Leu Glu His Gly Ala Asn Pro Asn Val Gly 50 55 60 Asp Ser Ser Thr Gly Ala Ser Pro Leu His Asp Ala Ala Arg Thr Gly 65 70 75 80 Phe Val Asp Thr Val His Leu Leu Val Gln His His Ala Asp Pro Gln 85 90 95 Ala Arg Asp Lys Leu Asn Arg Leu Pro Val Asp Leu Ala Arg Gln His 100 105 110 Gly His Gly Asp Val Val Asp Phe Leu Glu Ser Leu Gln Asn Pro 115 120 125 <210> 26 <211> 20 <212> DNA <213> Gallus gallus <400> 26 ctctccgtcc tccctacctg 20 <210> 27 <211> 20 <212> DNA <213> Gallus gallus <400> 27 gtaccaactg cggggagaaa 20 <210> 28 <211> 20 <212> DNA <213> Gallus gallus <400> 28 ggacgccggt caatgaatca 20 <210> 29 <211> 20 <212> DNA <213> Gallus gallus <400> 29 caggtgatga tgctgggcag 20 <210> 30 <211> 20 <212> DNA <213> Gallus gallus <400> 30 tttctccccg cagttggtac 20 <210> 31 <211> 20 <212> DNA <213> Gallus gallus <400> 31 ctgcaagacc caagacgtct 20 <210> 32 <211> 20 <212> DNA <213> Bos taurus <400> 32 gcctagtccc acaccctttc 20 <210> 33 <211> 20 <212> DNA <213> Bos taurus <400> 33 catttaagcc tggcccctga 20 <210> 34 <211> 20 <212> DNA <213> Bos taurus <400> 34 tgtccgactc tttgccatcc 20 <210> 35 <211> 20 <212> DNA <213> Bos taurus <400> 35 gaccctggat aaggcgtcag 20 <210> 36 <211> 20 <212> DNA <213> Bos taurus <400> 36 agtgaatgct ctgggaagcg 20 <210> 37 <211> 20 <212> DNA <213> Bos taurus <400> 37 gattgtcagc gcatctgcag 20 <210> 38 <211> 20 <212> DNA <213> Bos taurus <400> 38 tagagatctg aaccccacgc 20 <210> 39 <211> 20 <212> DNA <213> Bos taurus <400> 39 ctctgatggg agtggggaga 20 <210> 40 <211> 20 <212> DNA <213> Bos taurus <400> 40 aggcctttcc tacctggtct 20 <210> 41 <211> 20 <212> DNA <213> Bos taurus <400> 41 taattccgct ggtttcccaa 20 <210> 42 <211> 20 <212> DNA <213> Bos taurus <400> 42 aaactgctgc gacatctgga 20 <210> 43 <211> 20 <212> DNA <213> Bos taurus <400> 43 acggtccctc ttctctctcc 20

Claims (34)

  1. 다음 단계를 포함하여 후생동물 체세포 집단의 복제 능력을 증가시키는 방법:
    유전자 수정을 사용하여 망막모세포종 단백질의 사이클린-의존성 키나아제 억제제("CKI")-매개 안정화를 폐지함으로써 복제성 노화 동안 세포 분열 주기 진행의 망막모세포종 단백질 억제를 완화시키는 단계;
    기능성 텔로미어 역전사효소("TERT") 단백질의 이소성 발현을 지시하는 유전자 구조체(SEQ ID NO 11)로 후생동물 체세포 집단을 형질전환시켜 텔로머라제 활성을 유지시키는 단계;
    유전자 돌연변이 및 TERT 단백질의 이소성 발현을 갖는 마스터 세포 은행인 세포의 은행을 유지하는 단계;
    배양된 세포 바이오매스인 생체외 환경에서 마스터 세포 은행으로부터 세포를 배양하는 단계; 및
    식이 섭취를 위해 배양된 세포 바이오매스를 수확하는 단계.
  2. 제 1 항에 있어서,
    유전자 수정은 복제성 노화 동안 세포 주기의 망막모세포종 단백질 억제를 폐지하기 위해 후생동물 체세포 집단에서 CDKN2B 유전자(NCBI Gene ID: 395076)의 유전자 수정에 의해 p15 단백질을 불활성화시키는 단계를 포함하는 방법.
  3. 제 2 항에 있어서,
    유전자 수정은 CDKN2B 유전자의 엑손 1에서 보존된 뉴클레오타이드 서열의 돌연변이인 방법.
  4. 제 3 항에 있어서,
    유전자 수정은 가이드 RNA를 사용하여 만들어진 삽입 돌연변이이고, 상기 가이드 RNA는 CDKN2B 유전자의 엑손 1을 표적으로 하는 가이드 RNA로 이루어진 그룹(SEQ ID NO 1, 2, 3, 4 및 5)으로부터 선택되며 뭉쳐진 규칙적으로 이격된 짧은 회분구조 반복체-Cas9("CRISPR/Cas9")를 사용하여 생성되는 방법.
  5. 제 3 항에 있어서,
    유전자 수정은 가이드 RNA를 사용하여 만들어진 결실 돌연변이이고, 상기 가이드 RNA는 CDKN2B 유전자의 엑손 1을 표적으로 하는 가이드 RNA로 이루어진 그룹(SEQ ID NO 1, 2, 3, 4 및 5)으로부터 선택되며 CRISPR/Cas9를 사용하여 생성되는 방법.
  6. 제 2 항에 있어서,
    마스터 세포 은행으로부터의 세포를 배양하는 것은 다음 단계를 추가로 포함하는 방법:
    마스터 세포 은행으로부터 선택된 세포 집단을 확장하는 단계;
    마스터 세포 은행 재고 목록에서 확장된 세포 집단을 냉동 보존 및 저장하고 생체외 환경에서 마스터 세포 은행 재고 목록에서 세포를 씨딩하고 배양하는 단계; 및
    식이 섭취를 위해 배양된 세포 바이오매스를 수확하는 단계.
  7. 제 2 항에 있어서,
    후생동물 체세포 집단 종 정체는 적색야계이고 후생동물 체세포 집단 계통은 골격근인 방법.
  8. 제 1 항에 있어서,
    유전자 수정은 복제성 노화 동안 세포 주기의 망막모세포종 단백질 억제를 폐지하기 위해 후생동물 체세포 집단에서 CDKN2A 유전자(NCBI Gene ID: 616369)의 유전자 수정에 의해 p16 단백질을 불활성화시키는 단계를 포함하는 방법.
  9. 제 8 항에 있어서,
    유전자 수정은 CDKN2A 유전자의 엑손 2에서 보존된 뉴클레오타이드 서열의 돌연변이인 방법.
  10. 제 9 항에 있어서,
    유전자 수정은 CDKN2A 유전자의 엑손 2를 표적으로 하는 가이드 RNA를 사용하여 만들어진 삽입 돌연변이이고 CRISPR/Cas9를 사용하여 생성되는 방법.
  11. 제 9 항에 있어서,
    유전자 수정은 가이드 RNA를 사용하여 만들어진 결실 돌연변이이고, 상기 가이드 RNA는 CDKN2A의 엑손 2를 표적으로 하는 가이드 RNA로 이루어진 그룹(SEQ ID NO. 8, 9 및 10)으로부터 선택되며 CRISPR/Cas9를 사용하여 생성되는 방법.
  12. 제 8 항에 있어서,
    마스터 세포 은행으로부터의 세포를 배양하는 것은 다음 단계를 추가로 포함하는 방법:
    마스터 세포 은행으로부터 선택된 세포 집단을 확장하는 단계;
    마스터 세포 은행 재고 목록에서 확장된 세포 집단을 냉동 보존 및 저장하고 생체외 환경에서 마스터 세포 은행 재고 목록에서 세포를 씨딩하고 배양하는 단계; 및
    식이 섭취를 위해 배양된 세포 바이오매스를 수확하는 단계.
  13. 제 8 항에 있어서,
    후생동물 체세포 집단 종 정체는 소이고 후생동물 체세포 집단 계통은 골격근인 방법.
  14. 제 1 항에 있어서,
    유전자 수정은 CDK4 유전자(NCBI Gene ID: 510618)로부터 사이클린-의존성 키나아제 4("CDK4") 단백질 상동체의 이소성 발현을 지시하는 유전자 구조체(SEQ ID NO 12)로 세포 집단을 변형시키는 단계를 추가로 포함하는 방법.
  15. 제 14 항에 있어서,
    마스터 세포 은행으로부터의 세포를 배양하는 것은 다음 단계를 추가로 포함하는 방법:
    마스터 세포 은행으로부터 선택된 세포 집단을 확장하는 단계;
    마스터 세포 은행 재고 목록에서 확장된 세포 집단을 냉동 보존 및 저장하고 생체외 환경에서 마스터 세포 은행 재고 목록에서 세포를 씨딩하고 배양하는 단계; 및
    식이 섭취를 위해 배양된 세포 바이오매스를 수확하는 단계.
  16. 제 14 항에 있어서,
    후생동물 체세포 집단 종 정체는 소이고 후생동물 체세포 집단 계통은 골격근인 방법.
  17. 제 14 항에 있어서,
    후생동물 세포 집단을 변형시키는 단계는 소 CDK4 유전자로부터 CDK4 단백질 상동체의 발현을 지시하는 유전자 구조체(SEQ ID NO 12)를 이용하는 방법.
  18. 유전자 수정을 사용하여 망막모세포종 단백질의 CKI-매개 안정화를 폐지함으로써 복제성 노화 동안 세포 분열 주기 진행의 망막모세포종 단백질 억제를 디커플링하는 단계;
    기능성 TERT 단백질의 이소성 발현을 지시하는 유전자 구조체(SEQ ID NO 11)로 후생동물 체세포 집단을 형질전환시켜 텔로머라제 활성을 유지시키는 단계;
    유전자 돌연변이 및 TERT 단백질의 이소성 발현을 갖는 마스터 세포 은행인 세포의 은행을 유지하는 단계;
    배양된 세포 바이오매스인 생체외 환경에서 마스터 세포 은행으로부터 세포를 배양하는 단계;
    식이 섭취를 위해 배양된 세포 바이오매스를 수확하는 단계를 포함하여 유도된 후생동물 체세포 집단의 클론 세포주로서,
    클론 세포주는 산업 생산에서 확장 가능한 응용분야를 위한 무기한 복제 능을 갖는 클론 세포주.
  19. 제 18 항에 있어서,
    유전자 수정은 복제성 노화 동안 세포 주기의 망막모세포종 단백질 억제를 폐지하기 위해 후생동물 체세포 집단에서 CDKN2B 유전자(NCBI Gene ID: 395076)의 유전자 수정에 의해 p15 단백질을 불활성화시키는 단계를 포함하는 클론 세포주.
  20. 제 19 항에 있어서,
    유전자 수정은 CDKN2B 유전자의 엑손 1에서 보존된 뉴클레오타이드 서열의 돌연변이인 클론 세포주.
  21. 제 20 항에 있어서,
    유전자 수정은 가이드 RNA를 사용하여 만들어진 삽입 돌연변이이고, 상기 가이드 RNA는 CDKN2B의 엑손 1을 표적으로 하는 가이드 RNA로 이루어진 그룹(SEQ ID NO. 1, 2, 3, 4 및 5)으로부터 선택되며 CRISPR/Cas9를 사용하여 생성되는 클론 세포주.
  22. 제 20 항에 있어서,
    유전자 수정은 가이드 RNA를 사용하여 만들어진 결실 돌연변이이고, 상기 가이드 RNA는 CDKN2B의 엑손 1을 표적으로 하는 가이드 RNA로 이루어진 그룹(SEQ ID NO. 1, 2, 3, 4 및 5)으로부터 선택되며 CRISPR/Cas9를 사용하여 생성되는 클론 세포주.
  23. 제 18 항에 있어서,
    마스터 세포 은행으로부터의 세포를 배양하는 것은 다음 단계를 추가로 포함하는 클론 세포주:
    마스터 세포 은행으로부터 선택된 세포 집단을 확장하는 단계;
    마스터 세포 은행 재고 목록에서 확장된 세포 집단을 냉동 보존 및 저장하고 생체외 환경에서 마스터 세포 은행 재고 목록에서 세포를 씨딩하고 배양하는 단계; 및
    식이 섭취를 위해 배양된 세포 바이오매스를 수확하는 단계.
  24. 제 19 항에 있어서,
    후생동물 체세포 집단 종 정체는 적색야계이고 후생동물 체세포 집단 계통은 골격근인 클론 세포주.
  25. 제 18 항에 있어서,
    유전자 수정은 복제성 노화 동안 세포 주기의 망막모세포종 단백질 억제를 폐지하기 위해 후생동물 체세포 집단에서 CDKN2A 유전자(NCBI Gene ID: 616369)의 유전자 수정에 의해 p16 단백질을 불활성화시키는 단계를 포함하는 클론 세포주.
  26. 제 25 항에 있어서,
    유전자 수정은 CDKN2A 유전자의 엑손 2에서 보존된 뉴클레오타이드 서열의 돌연변이인 클론 세포주.
  27. 제 26 항에 있어서,
    유전자 수정은 가이드 RNA를 사용하여 만들어진 삽입 돌연변이이고, 상기 가이드 RNA는 CDKN2A의 엑손 2를 표적으로 하는 가이드 RNA로 이루어진 그룹(SEQ ID NO. 8-10)으로부터 선택되며 CRISPR/Cas9를 사용하여 생성되는 클론 세포주.
  28. 제 26 항에 있어서,
    유전자 수정은 가이드 RNA를 사용하여 만들어진 결실 돌연변이이고, 상기 가이드 RNA는 CDKN2A의 엑손 2를 표적으로 하는 가이드 RNA로 이루어진 그룹(SEQ ID NO. 8-10)으로부터 선택되며 CRISPR/Cas9를 사용하여 생성되는 클론 세포주.
  29. 제 25 항에 있어서,
    마스터 세포 은행으로부터의 세포를 배양하는 것은 다음 단계를 추가로 포함하는 클론 세포주:
    마스터 세포 은행으로부터 선택된 세포 집단을 확장하는 단계;
    마스터 세포 은행 재고 목록에서 확장된 세포 집단을 냉동 보존 및 저장하고 생체외 환경에서 마스터 세포 은행 재고 목록에서 세포를 씨딩하고 배양하는 단계; 및
    식이 섭취를 위해 배양된 세포 바이오매스를 수확하는 단계.
  30. 제 25 항에 있어서,
    후생동물 체세포 집단 종 정체는 소이고 후생동물 체세포 집단 계통은 골격근인 클론 세포주.
  31. 제 18 항에 있어서,
    유전자 수정은 CDK4 유전자(NCBI Gene ID: 510618)로부터, CDK4 단백질 상동체의 이소성 발현을 지시하는 유전자 구조체로 세포 집단을 변형시키는 단계를 추가로 포함하는 클론 세포주.
  32. 제 31 항에 있어서,
    마스터 세포 은행으로부터의 세포를 배양하는 것은 다음 단계를 추가로 포함하는 클론 세포주:
    마스터 세포 은행으로부터 선택된 세포 집단을 확장하는 단계;
    마스터 세포 은행 재고 목록에서 확장된 세포 집단을 냉동 보존 및 저장하고 생체외 환경에서 마스터 세포 은행 재고 목록에서 세포를 씨딩하고 배양하는 단계; 및
    식이 섭취를 위해 배양된 세포 바이오매스를 수확하는 단계.
  33. 제 31 항에 있어서,
    후생동물 체세포 집단 종 정체는 적색야계이고 후생동물 체세포 집단 계통은 골격근인 클론 세포주.
  34. 제 31 항에 있어서,
    후생동물 세포 집단을 변형시키는 단계는 소 CDK4 유전자로부터 CDK4 단백질 상동체의 발현을 지시하는 유전자 구조체(SEQ ID NO 12)을 이용하는 클론 세포주.
KR1020187023328A 2016-01-14 2017-01-17 생체외 배양 과정 동안 체세포의 복제 능력을 증가시키는 방법 KR20180134847A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662278869P 2016-01-14 2016-01-14
US62/278,869 2016-01-14
US201662361867P 2016-07-13 2016-07-13
US62/361,867 2016-07-13
PCT/US2017/013782 WO2017124100A1 (en) 2016-01-14 2017-01-17 Methods for extending the replicative capacity of somatic cells during an ex vivo cultivation process

Publications (1)

Publication Number Publication Date
KR20180134847A true KR20180134847A (ko) 2018-12-19

Family

ID=59311600

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187023328A KR20180134847A (ko) 2016-01-14 2017-01-17 생체외 배양 과정 동안 체세포의 복제 능력을 증가시키는 방법

Country Status (10)

Country Link
US (2) US20190024079A1 (ko)
EP (1) EP3394246A4 (ko)
JP (1) JP2019501657A (ko)
KR (1) KR20180134847A (ko)
CN (1) CN108779471A (ko)
AU (1) AU2017208094A1 (ko)
CA (1) CA3011484A1 (ko)
MX (1) MX2018008733A (ko)
SG (1) SG11201806002SA (ko)
WO (1) WO2017124100A1 (ko)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
WO2015066377A1 (en) 2013-10-30 2015-05-07 The Curators Of The University Of Missouri Method for scalable skeletal muscle lineage specification and cultivation
US20150165054A1 (en) 2013-12-12 2015-06-18 President And Fellows Of Harvard College Methods for correcting caspase-9 point mutations
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
WO2017070633A2 (en) 2015-10-23 2017-04-27 President And Fellows Of Harvard College Evolved cas9 proteins for gene editing
SG11201900907YA (en) 2016-08-03 2019-02-27 Harvard College Adenosine nucleobase editors and uses thereof
EP3497214B1 (en) 2016-08-09 2023-06-28 President and Fellows of Harvard College Programmable cas9-recombinase fusion proteins and uses thereof
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
CA3039928A1 (en) 2016-10-14 2018-04-19 President And Fellows Of Harvard College Aav delivery of nucleobase editors
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
IL306092A (en) 2017-03-23 2023-11-01 Harvard College Nucleic base editors that include nucleic acid programmable DNA binding proteins
EP3612623A4 (en) 2017-05-06 2021-06-23 Memphis Meats, Inc. COMPOSITIONS AND METHODS FOR INCREASING THE CULTURE DENSITY OF A CELLULAR BIOMASS IN A CULTURE INFRASTRUCTURE
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11479792B2 (en) 2017-07-13 2022-10-25 Upside Foods, Inc. Compositions and methods for increasing the efficiency of cell cultures used for food production
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
WO2019079347A1 (en) 2017-10-16 2019-04-25 The Broad Institute, Inc. USES OF BASIC EDITORS ADENOSINE
US10669524B2 (en) 2018-06-12 2020-06-02 Fork & Goode, Inc. Large scale cell culture system for making meat and associated products
WO2020190932A1 (en) * 2019-03-18 2020-09-24 Regeneron Pharmaceuticals, Inc. Crispr/cas screening platform to identify genetic modifiers of tau seeding or aggregation
AU2020242032A1 (en) 2019-03-19 2021-10-07 Massachusetts Institute Of Technology Methods and compositions for editing nucleotide sequences
CA3229492A1 (en) 2019-05-28 2020-12-03 Upside Foods, Inc. Apparatuses and methods for preparing a comestible meat product
AU2020386085B2 (en) 2019-11-20 2022-08-11 Upside Foods, Inc. Apparatuses and systems for preparing a meat product
US20210235733A1 (en) 2020-02-04 2021-08-05 Memphis Meats, Inc. Characteristics of meat products
KR20230019843A (ko) 2020-05-08 2023-02-09 더 브로드 인스티튜트, 인코퍼레이티드 표적 이중 가닥 뉴클레오티드 서열의 두 가닥의 동시 편집을 위한 방법 및 조성물
CA3179816A1 (en) 2020-06-05 2021-12-09 Kalle Lukyan JOHNSON Nutrient media for the production of slaughter-free meat
US20220056394A1 (en) 2020-08-18 2022-02-24 Upside Foods, Inc. Systems, devices, and methods for sterilizing bioreactors and culture media
WO2022132983A1 (en) * 2020-12-16 2022-06-23 Good Meat, Inc. Food products comprising cultivated bovine cells and methods thereof
US20220333081A1 (en) 2021-04-07 2022-10-20 Upside Foods, Inc. Generation of cell-based products for consumption that comprise proteins from exotic, endangered, and extinct species
US20220369665A1 (en) 2021-04-28 2022-11-24 Upside Foods, Inc. Generation of Cell-Based Products for Human Consumption
BR112023022889A2 (pt) 2021-05-06 2024-01-23 Yeda Res & Dev Método para induzir fibras musculares hipertróficas para produção de carne industrial
EP4337757A1 (en) 2021-06-16 2024-03-20 Upside Foods, Inc. Plant fat-based scaffolds for the growth of cell-based meats and methods of making such products
BR112023026380A2 (pt) * 2021-07-09 2024-03-05 Supreme Gêneros alimentícios compreendendo células diferenciadas a partir de células-tronco oligopotentes engenheiradas
AU2022369299A1 (en) 2021-10-19 2024-03-14 Eat Scifi Inc. Plant base/animal cell hybrid meat substitute
WO2023087033A1 (en) * 2021-11-15 2023-05-19 Trustees Of Tufts College Indefinite extension of cell proliferation via the supplementation of transient, non-genome modifying factors
EP4293109A1 (en) 2022-06-14 2023-12-20 Upside Foods, Inc. Non-skeletal muscle-derived cells as a source of suspension capable myogenic cells for cultured foods
EP4292440A1 (en) 2022-06-14 2023-12-20 Upside Foods, Inc. Suspension based chicken product formulation
GB202214410D0 (en) * 2022-09-30 2022-11-16 Ivy Farm Tech Limited genetically modified cells

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670504B2 (en) * 2011-07-08 2017-06-06 Cilbiotech S.A. Transgenic system for reversibly immortalizing mammalian quiescent cells
WO2015066377A1 (en) * 2013-10-30 2015-05-07 The Curators Of The University Of Missouri Method for scalable skeletal muscle lineage specification and cultivation
WO2015120174A1 (en) * 2014-02-05 2015-08-13 Modern Meadow, Inc. Dried food products formed from cultured muscle cells
EP3137633A4 (en) * 2014-04-28 2017-11-29 Sigma-Aldrich Co. LLC Epigenetic modification of mammalian genomes using targeted endonucleases

Also Published As

Publication number Publication date
EP3394246A1 (en) 2018-10-31
AU2017208094A1 (en) 2018-08-09
WO2017124100A1 (en) 2017-07-20
US20220251550A1 (en) 2022-08-11
SG11201806002SA (en) 2018-08-30
CN108779471A (zh) 2018-11-09
EP3394246A4 (en) 2019-05-22
CA3011484A1 (en) 2017-07-20
US20190024079A1 (en) 2019-01-24
JP2019501657A (ja) 2019-01-24
MX2018008733A (es) 2019-01-28

Similar Documents

Publication Publication Date Title
KR20180134847A (ko) 생체외 배양 과정 동안 체세포의 복제 능력을 증가시키는 방법
US11708587B2 (en) Compositions and methods for increasing the efficiency of cell cultures used for food production
KR102021585B1 (ko) 두 개의 벡터로부터 발현된 Cas9 단백질을 이용한 유전자 발현 조절 방법
JP6670743B2 (ja) Ii型crisprシステムにおける新規のコンパクトなcas9足場
JP2024023294A (ja) 遺伝子編集のためのcpf1関連方法及び組成物
JP7418470B2 (ja) オリジアス由来のトランスポザーゼを用いた核酸コンストラクトの真核細胞への組み込み
BR112019025717A2 (pt) método para produzir célula eucariótica de dna editado e kit usado no mesmo
AU2017378482A1 (en) Enhanced hAT family transposon-mediated gene transfer and associated compositions, systems, and methods
CN103732751A (zh) 在幽门螺杆菌中的基因表达和根除系统
JP2022512868A (ja) C2c1ヌクレアーゼに基づくゲノム編集のためのシステムおよび方法
JP2023182637A (ja) 制御性t細胞を改変するための組成物および方法
Sui et al. CRISPR-Cas9 mediated RNase L knockout regulates cellular function of PK-15 cells and increases PRV replication
JP2022528722A (ja) 改善された遺伝子編集のための組成物及び方法
US20230233621A1 (en) Novel probiotic bacteria and methods to control pathogens in aquatic animals
JP2024501892A (ja) 新規の核酸誘導型ヌクレアーゼ
TW202239959A (zh) 用於減少細胞中hla-a之組合物及方法
TW202235617A (zh) 用於減少細胞中ii類mhc之組合物及方法
CA3156789A1 (en) Genome editing in bacteroides
US20230323335A1 (en) Miniaturized cytidine deaminase-containing complex for modifying double-stranded dna
Duda Generation and functional characterization of CRISPR/Cas9-expressing chickens to protect them from Marek´ s disease virus
CA3200855A1 (en) Influenza a-resistant animals having edited anp32 genes
Sano et al. Lentiviral CRISPR
Hossner Cellular and molecular biology.
Herz Optimization of RNA-based transgene expression by targeting Protein Kinase R