KR20170032316A - 실록산 입자 물질을 갖는 led 램프 - Google Patents

실록산 입자 물질을 갖는 led 램프 Download PDF

Info

Publication number
KR20170032316A
KR20170032316A KR1020177001618A KR20177001618A KR20170032316A KR 20170032316 A KR20170032316 A KR 20170032316A KR 1020177001618 A KR1020177001618 A KR 1020177001618A KR 20177001618 A KR20177001618 A KR 20177001618A KR 20170032316 A KR20170032316 A KR 20170032316A
Authority
KR
South Korea
Prior art keywords
particles
adhesive
siloxane polymer
nitride
substrate
Prior art date
Application number
KR1020177001618A
Other languages
English (en)
Other versions
KR102388629B1 (ko
Inventor
주하 란타라
자르코 헤이킨엔
잔느 카일마
Original Assignee
잉크론 오이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 잉크론 오이 filed Critical 잉크론 오이
Publication of KR20170032316A publication Critical patent/KR20170032316A/ko
Application granted granted Critical
Publication of KR102388629B1 publication Critical patent/KR102388629B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Silicon Polymers (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

LED 램프는 다이 기판, 여기서 상기 기판은 그에 형성된 반도체 물질을 포함하고, 상기 반도체 물질을 가로질러 바이어스를 인가하여 그로부터 광을 방출시키는 전극, 및 상기 다이 기판을 지지 기판에 결합하는 접착제로부터 형성되고, 여기서 상기 접착제는 미터 켈빈 당 0.1 와트(0.1 W/(m·K)) 보다 큰 열 전도도를 갖는 중합된 실록산 폴리머이고 여기서 접착제는 광 흡수성(light absorbing)이 아니며, 여기서 상기 실록산 폴리머는 폴리머 백본에 규소 및 산소, 뿐만 아니라 거기에 결합된 아릴 또는 알킬 기를 포함하며, 그리고 여기서 상기 접착제는 100 미크론 미만의 평균 입자 크기를 갖는 입자들을 더 포함한다.

Description

실록산 입자 물질을 갖는 LED 램프{LED LAMP WITH SILOXANE PARTICLE MATERIAL}
본 발명은 LED 램프에 관한 것이다. 특히, 본 발명은 반도체 물질이 형성된 다이 기판; 상기 반도체 물질을 가로질러 바이어스를 인가(application of a bias)하여 그로부터 광을 방출시키는 전극; 및 상기 다이 기판을 지지 기판에 결합하는 접착제를 포함하는, LED 램프에 관한 것이다. 본 발명은 또한 LED 램프의 제조 방법, 뿐만 아니라, LED 소자(devices)를 봉지하는(encapsulating) 방법에 관한 것이다.
발광 다이오드(Light emitting diode (LED)) 조명 시스템(lighting systems)은 종래의 조명 대신 널리 사용되고 있다. 발광 다이오드 램프들(고체 조명(solid state lighting)의 예)은 여러 가지 이유들 중 낮은 에너지 사용, 증가된 안정성 및 더 긴 수명, 형광등(fluorescent lighting) 보다 더 넓은 어플리케이션들에서 사용할 수 있는 능력, 원하는 색(color)을 정확한 색상으로 조정할 수 있는 능력으로 인해, 백열등(incandescent light bulb), 할로겐 조명, 또는 형광등과 같은 종래의 조명들 보다 유리할 수 있다. 일부 실시예들에서, 단일 LED 칩/다이(single LED chip/die)는 램프 내에 있고, 다른 실시예들에서 복수의 LED들이 동일한 램프 내에 있다. LED 램프의 외부 하우징(outer housing)은 백열 전구와 동일한 사양(specifications)으로 제조될 수 있고, 따라서 백열 전구가 사용되는 곳에서 사용할 수 있다.
발광 다이오드(LED)들은 전기 에너지를 광(light)으로 변환하는 고체 소자들이고, 일반적으로 n-도핑 된 그리고 p-도핑 된 부분을 갖는 적어도 하나의 반도체 물질을 갖는다. 유기 발광 다이오드들이 또한 알려져 있다. 바이어스(bias)가 반도체 물질을 가로질러 인가될 때, 정공들(holes) 및 전자들(electrons)은 광을 발생시키기 위해 그들이 재조합되는 활성 층(active layer)으로 주입된다. 광은 활성 층으로부터 방출되고 LED의 유형에 따라 주로 일 방향(one direction), 또는 임의의 방향을 향할 수 있다.
LED들은 인지된 백색광에 가깝게 빛을 이동시키는 형광체를 포함하는 청색(blue) 또는 보라색(violet) LED와 같은, 단일 LED로 백색광을 제공할 수 있다. LED는 단일 색 (예를 들어적색(red), 녹색(green), 또는 청색(blue))를 제공할 수 있고, 또는 백색광을 제공하기 위해 결합하는 동일 램프에서 상이한 색의 LED들로서 제공될 수도 있다. LED들의 예들은 GaAsP를 사용하는 적색 LED들, 및 GaP를 사용하는 녹색 LED들, 뿐만 아니라 녹색, 청색 또는 자외선을 형성하는 나이트라이드 반도체 LED들을 포함할 수 있다. LED들이 점점 더 밝아질수록, 열 방산(heat disspiation)이 증가하는 관심사가 되고 있으며 열 증가(build-up)가 LED 성능을 감소시킬 수 있기 때문이다.
가교결합성 폴리머 조성물들을 포함하는 LED 램프들은 US 2009221783, US2012123054, WO20100267, US 2011171447 및 JP 2004225005에 개시된다.
알려진 폴리머 조성물들의 특성들은 예를 들어 열 안정성과 관련하여 부적당하다.
US 2009221783 US2012123054 WO20100267 US 2011171447 JP 2004225005
본 발명의 목적을 LED 램프를 제공하는 것이다.
본 발명의 다른 목적은 LED 램프들의 제조 방법을 제공하는 것이다.
본 발명의 3번째 목적은 LED 소자들을 봉지하는(encapsulating LED devices) 방법을 제공하는 것이다.
본 발명은 다이 기판, 여기서 상기 기판은 거기에 형성된 반도체 물질을 포함하고, 상기 반도체 물질을 가로질러 바이어스를 인가하여 그로부터 광을 방출시키는 전극, 및 상기 다이 기판 및 지지 기판을 결합하는 접착제로부터 LED 램프를 형성함에 기반한다.
본 발명에서, 상기 접착제는 미터 켈빈(meter kelvin) 당 0.1 와트(watts) (0.1 W/(m·K)) 보다 큰 열 전도도(thermal conductivity)를 갖는 중합된 실록산 폴리머이고 여기서 상기 접착제는 광 흡수성(light absorbing)이 아니고, 여기서 실록산 폴리머는 폴리머 백본(backbone)에 규소 및 산소, 뿐만 아니라 거기에 결합된 아릴 또는 알킬 기를 포함하며, 그리고 여기서 상기 접착제는 100 미크론(microns) 미만의 평균 입자 크기를 갖는 입자들을 더 포함한다.
본 발명에 따르면, LED 램프의 제조 방법은, 제1 기판 상에 반도체 물질을 제공하여 발광 다이오드를 형성(forming)하고 상기 반도체 물질을 도핑(doping)하는 단계; 지지 기판을 제공(providing)하는 단계; 그리고 실록산 폴리머에 의해 형성된 접착제 조성물을 제공하는 단계를 포함하고, 상기 접착제 조성물은 100 미크론 미만의 평균 입자 크기를 갖는 입자들, 및 촉매를 더 포함한다. 상기 접착제 조성물은 제1 기판 및 지지 기판을 접착하기 위해 증착된다. 온도 및/또는 광을 적용하여 실록산 폴리머의 가교결합 기들은 다이 및 패키지 기판을 서로 부착하는 동시에 실록산 폴리머를 더 중합하고 폴리머를 더 경화하기 위해 활성화된다.
발광 다이오드를 포함하는 LED 소자들을 봉지하는(encapsulating) 방법에서 반도체 물질은 제1 기판 상에 제공되고 도핑된다. 폴리머 백본에 규소 및 산소, 뿐만 아니라 거기에 결합된 아릴 또는 알킬 기, 뿐만 아니라 거기에 결합된 작용성 가교결합 기를 갖는 실록산 폴리머를 포함하는 봉지재 조성물(encapsulant composition), 10 미크론 미만의 평균 입자 크기를 갖는 입자들, 및 촉매를 더 포함하는 접착제 조성물이 제공된다. 봉지재 조성물은 발광 다이오드를 봉지하기 위해 증착되고, 온도 및/또는 열이 실록산 폴리머를 더 중합하고 폴리머를 더 경화하기 위해 실록산 폴리머의 가교결합 기들을 활성화하도록 적용된다.
상기에서 전형적으로 나타낸 중합 및 경화된 실록산 폴리머는 중합 전과 비교하여 중합 후 적어도 96%의 질량을 포함한다. 전형적으로, 상기 실록산 폴리머는 그에 입사하는 가시광의 25% 이상을 흡수하지 않는다.
더 구체적으로, 본 발명은 독립항들에서 기술된 것들에 의해 특징된다.
상단한 이점들이 얻어진다. 따라서, 상기 접착제의 열 전도도가 높고, 그리고 상기 접착제는 열적으로 안정하다. 우수한 저장 수명(shelf life)이, 특히 사용 이전에 저장, 또한 달성된다. 전형적으로, 저장 동안 점도(가교결합)의 최소한의 증가가 있고, 그리고 저장, 운송 및 이후 고객(customer)에 의한 적용이 최종 제품에서 이후 형성된 층에서 용매 포획(capture), 중합 동안 수축(shrinkage), 및 소자 사용 중 시간에 따른 질량 손실의 문제점을 피하기 위해 용매의 부재에서 모두 수행될 수 있다.
예시적인 실시예들이 하기 첨부된 도면들과 함께 상세한 설명으로부터 보다 명확히 이해될 것이다.
도 1은 광 투과성 기판 상에 형성된 발광 다이오드의 예를 도시한다;
도 2는 광 반사성 기판 상에 형성된 발광 다이오드의 예를 도시한다;
도 3은 전면 투명 봉지재를 갖는 LED를 도시한다;
도 4는 공동 내에 봉지재를 포함하는 패키지의 오목한 공동(concave cavity) 내의 LED를 도시한다;
도 5는 LED 플립 칩 패키지(flip chip package)를 도시한다;
도 6은 상이한 일자 로딩(loading)들에 대한 굴절률 대 파장(refractive index vs. wavelength) 그래프를 나타낸다;
도 7은 투과율 대 입자 로딩(transmittance vs. particle loading) 그래프이다;
도 8은 열 유도된 중합 동안 실록산 폴리머의 질량 변화를 도시한다;
도 9는 증착 및 중합 후 실록산 물질의 열적 안정성을 도시한다; 그리고
도 10a 내지 도 10d는 LED 봉지(encapsulation)의 추가적인 예들을 도시한다.
다양한 예시적 실시예들이 첨부된 도면들을 참조하여 이하에서 보다 충분히 설명될 것이고, 여기서 일부 예시적인 실시예들을 나타낸다. 그러나, 본 발명 개념은 많은 다른 형태들로 구현될 수 있고 본 명세서에서 명시된 예시적인 실시예들에 제하되는 것으로 이해되어서는 안 된다. 오히려, 이러한 예시적인 실시예들은 본 설명을 철저히 그리고 완전히, 그리고 본 발명 개념의 범위를 당업자에게 충분히 전달하도록 제공된다. 도면들에서, 크기들 및 층들 및 영역들의 상대적인 크기들은 명확히 하기 위해 과장될 수 있다.
구성 요소(element) 또는 층이 다른 요소 또는 층 "상에(on)", "에 연결된(connected to)", 또는 "에 결합된(coupled to)" 것으로서 나타낼 때, 이것이 직접적으로 다른 구성 요소 또는 층에 있을 수 있거나, 연결될 수 있거나 결합될 수 있거나 또는 간섭 구성 요소 또는 층(intervening elements and layer)이 존재할 수 있는 것으로 이해될 것이다. 반면, 구성 요소가 다른 구성 요소 또는 층 "상에 직접적으로(directly on)", "에 직접적으로 연결된(directly connected to)", 또는 "에 직접적으로 결합된(directly coupled to)" 것으로서 나타낼 때, 간섭 구성 요소들 또는 층들이 존재하지 않는다. 동일 숫자(numerals)는 동일 구성 요소를 나타낸다. 본 명세서에서 사용된 것과 같이, 용어 " 및/또는(and/or)"는 관련 목록 항목들(associated listed items)의 하나 또는 그 이상의 임의의 그리고 모든 조합들을 포함한다.
또한 용어들 제1, 제2, 제3, 등이 본 명세서에서 다양한 구성 요소들, 구성 성분들(components), 영역들(regions), 층들 및/또는 섹션들(sections)을 설명하는데 사용될 수 있음에도 불구하고, 이러한 구성 요소들, 구성 성분들, 영역들, 층들 및/또는 섹션들은 이러한 용어들에 의해 제한되지 않아야 함이 이해될 것이다. 이러한 용어들은 단지 일 구성 요소, 구성 성분, 영역, 층 또는 섹션을 다른 구성 요소, 구성 성분, 영역, 층 또는 섹션으로부터 구별하는데 사용된다. 따라서, 하기 논의된 제1 구성 요소, 구성 성분, 영역, 층 또는 섹션은 본 발명 개념의 사상(teachings of the present inventive concept)을 벗어나지 않는 한, 제2 구성 요소, 구성 성분, 영역, 층 또는 섹션으로 지칭될 수 있다.
본 명세서에서 사용된 용어들(terminology)은 오직 특정 실시예들을 설명하는 목적이고 제한되도록 의도되지 않는다. 본 발명에서 사용된 것과 같이, "하나(a)", "하나(an)", 및 "그(the)"의 단수형들은 명백히 다르게 지시하지 않는 한, 복수형들 또한 포함하는 것으로 의도된다. 또한 용어들 "포함하다(comprises)" 및/또는 "포함하는(comprising)," 또는 "포함하다(includes)" 및/또는 "포함하는(including)"이 본 명세서에서 사용될 때, 언급된 특징들(features), 영역들(regions), 정수들(integers), 단계들(steps), 동작들(operations), 구성 요소들(elements), 및/또는 구성 성분들(components)의 존재를 명시하나, 하나 또는 그 이상의 다른 특징들, 영역들, 정수들, 단계들, 동작들, 구성 요소들, 구성 성분들, 및/또는 이들의 그룹들을 배제하지 않음이 이해될 것이다.
뿐만 아니라, 상대적인 용어들, 예를 들면, "하부(lower)" 또는 "하부(bottom)" 및 "상부(upper)" 또는 "상부(top)"은 본 명세서에서, 도면들에서 도시된 바와 같이 다른 구성 요소에 대한 일 구성 요소의 관계를 설명하는데 사용될 수 있다. 상대적인 용어들이 도면들에서 묘사된 방향(orientations) 뿐만 아니라, 소자(device)의 다른 방향을 포함하도록 의도됨이 이해될 것이다. 예를 들어, 도면들 중 하나의 소자가 뒤집히면, 다른 구성 요소들의 "하부" 측면 상에 있는 것으로 설명된 구성 요소들은 다른 구성 요소들의 "상부" 측면 상에 배향될 것이다. 예시적인 용어 "하부"는 그러므로, "하부" 및 "상부"의 방향을, 도면의 특정 방향에 따라 모두 포함할 수 있다. 유사하게, 도면들 중 하나의 소자가 뒤집힌다면, 다른 구성 요소들 "아래(below)" 또는 "아래(beneath)"로 묘사된 구성 요소들은 다른 구성 요소들의 "위(above)"에 배향될 것이다. 예시적인 용어 "아래" 또는 "아래"는 그러므로, 위 및 아래의 방향을 모두 포함할 수 있다.
본 명세서에서 이용된 것과 같이, "하나(a)", "하나(an)", 및 "그(the)"의 단수형들은 문맥을 명확히 다르게 지시하지 않는 한 복수 대상(plurar referents)을 포함한다. 용어 "포함하다(comprises)" 및/또는 "포함하는(comprising)"은, 본 명세서에서 사용될 때, 기술된 특징들, 단계들, 조작들(operations), 구성 요소들, 및/또는 구성 성분들의 존재를 명시하나, 하나 또는 그 이상의 특징들, 단계들, 조작들, 구성 요소들, 구성 성분들, 및/또는 이들의 그룹들의 추가를 못하게 하지 않는다.
다르게 정의되지 않는 한, 본 명세서에 사용된 모든 용어들 (기술적 및 과학적 용어들 포함)은 본 발명이 속하는 당업계의 당업자에게 일반적으로 이해되는 것과 동일한 의미를 갖는다. 용어들, 일반적으로 사용된 사전에서 정의된 것과 같은, 관련 분야 및 본 발명의 개시의 맥락에서 그들의 의미와 일치하는 의미를 갖는 것으로 해석되어야 하고, 본 명세서에서 분명히 정의되지 않는 한(unless expressly so defined herein) 이상적이거나 또는 지나치게 형식적인 의미로 해석되지 않을 것이다.
모노머들 및 폴리머들에 대한 하기 식들(formulars)에서 사용된 소문자들(lower case letters)은 특히 정수이다.
본 명세서에 개시된 실록산 입자 물질들은 임의의 원하는 LED 소자에 사용될 수 있지만, 제1 예로서 GaN LED가 사용될 수 있다. GaN-기반 LED들은 고체 광원으로 알려진 발광 소자(luminescent device)의 특정 유형이고, 이것은 소형화(compactness), 낮은 에너지-소비, 긴 수명, 수은 프리(mercury free)이고, 높은 효율성을 가지며, 및 낮은 서비스율(low ratio of service)과 같은 많은 이점들을 갖는다. GaN LED들은 광 어플리케이션들에서 다른 형태들 및 조합들로 제공된다, 예컨대 다른 조합들 및 구현들 중, a) 3가지 유형의 단원색(monochromatic) LED들(청색, 녹색, 적색)의 조합; b) 황색(yellow) 형광 파우더를 갖는 청색 광 LED의 조합 c) 삼원색(trichromatic) 적색-녹색-청색 형광 파우더를 갖는 자외선 LED의 조합.
백색광은 청색 광 LED를 사용하여 이트륨-알루미늄-가넷(Yttrium-Aluminium-Garnet) 구조의 YAG:Ce 형광 물질의 조합을 통한 보색이론(complementary color theory)에 기반하여 얻어질 수 있다. YAG로부터 방출된 광은 황록색(yellow-green)이기 때문에, 얻어진 백색광은 높은 색 온도 및 차가운 색조(cool tone)를 갖는 것을 특징으로 하고, 그래서 착색 색인(coloration indexing)은 모든 용도들에 충분하지 않다. 결과적으로, 녹색, 황색 또는 적색 형광 파우더가 다른 색 온도들(차가운 색조들에서 따뜻한 색조들로)을 갖는 백색광을 얻기 위해 그리고 착색 색인을 향상시키기 위해 첨가될 수 있다. 다른 형광체 호스트들은, 특히 실리케이트(silicates), 설페이트(sulphates), 니트리도실리케이트(nitridosilicates), 및 옥소-니트니도실리케이트(oxo-nitridosilicates) 기반의 것들, 연색(color rendering)을 향상시키는데 사용될 수 있다.
보다 구체적으로, 백색 LED는 노르스름한(yellowish) 형광체/신틸레이터 코팅에 의해 커버된 450-470 nm 청색 갈륨 나이트라이드(Gallium Nitride (GaN)) LED을 사용할 수 있고, 이것은 세륨으로 처리된(coped with) YAG:Ce 이트륨 알루미늄 가넷 결정들로 제조될 수 있다. 황색 광이 인간의 눈의 적색 및 녹색 원추들(cones)을 자극하기 때문에, GaN LED로부터 방출된 청색광, 그리고 형광체로부터 방출된 황색광의 혼합 결과가 백색광으로 나타난다. 다른 LED들 및 형광체들의 조합들은 백색광의 출현(appearance of white light)도 생성할 수 있다. LED들의 조합들은, 그 활성 영역으로부터 청색 광 및 기판으로부터 황색을 동시에 방출하는 ZnSe 기판 상에 호모에피택셜(homoepitaxially) 성장된 ZnSe과 같은, 백색광의 출현을 나타낼 수 있다. 또한 적색, 녹색 및 청색 LED들의 조합은, 형광체들을 포함하거나 미포함하여, 백색광을 생성하는 것으로 알려져 있다. 또한 텅스텐산염(tungstate), 카비도나이트라이드(carbidonitride), 몰리브데이트(molybdate) 및 셀레나이드(selenide) 형광체들, 뿐만 아니라 양자점들(quantum dots)이 가능하다.
YAG 형광체 및 청색 LED의 조합은 고 연색 지수(color rendering index (CRI) 및 따뜻한 색 온도가 필요하지 않은 상황들(situations)에 대한 일반적인 조합이다. 대안적으로 실리케이트 형광체들이, 예를 들면, UV 바이올렛(UV violet) 및 청색 광원들로부터 녹색, 황색 및 오렌지 색들 (507 nm 내지 600 nm와 같은)을 방출하는, 가능하다. 따뜻한 색들 및 강렬한 적색(saturated reds) (예를 들어 디스플레이 또는 주택/소매 조명(residential/retail lighting))이 요구되는 LED 어플리케이션들에 대해, 적색 및/또는 녹색 형광체들이 바람직할 수 있다. 나이트라이드 형광체들 (또는 옥시나이트라이드 형광체들)이 가능하다. 적색 나이트라이드 형광체들은 620 내지 670 nm 사이와 같은 색을 발할 수 있다. 또한 예를 들면, 516 내지 560 nm와 같은, 녹색 또는 황색 스펙트럼에서 광을 발하는, 알루미네이트 형광체들이 가능하다.
도 1에서 볼 수 있는 바와 같이, 사파이어 기판 14 상에, n-도핑 된 갈륨 나이트라이드 영역 12를 나타낸다. 예를 들면 규소 또는 산소로 도핑된 GaN는 n-형 반도체 영역을 생성할 수 있다. 또한 p-도핑 된 갈륨 나이트라이드 영역 13이 도시된다. 예를 들면 마그네슘으로 도핑된 GaN은 p-형 반도체 영역을 생성할 수 있다. 전극들 10a 및 10b가 도시되고 이것은 LED가 발광하도록, 예를 들어, 모든 방향들에서 광이 방출되도록 하기 위해 GaN 반도체 영역을 가로지르는 바이어스를 제공하기 위한 것이다.
사파이어 기판 대신에, Cree, Inc.의 LED들과 같은 SiC 기판 (그에 형성된 InGaN 반도체를 포함)을 이용하는 것이 가능하다. 또는, Soraa, Inc.의 LED들과 같이, 그에 도핑된 GaN 반도체 영역들을 갖는 GaN 기판이 또한 가능하고, 또는 Bridgelux, Inc.또는 Osram, Inc.의 LED들과 같은 그에 GaN 반도체를 포함하는 Si 기판이 또한 가능하다. 규소 기판을 사용하는 것은 큰 웨이퍼(wafer) 크기들을, 예들 들면, 6인치 웨이퍼들, 8인치 웨이퍼들, 또는 더 큰, 사용하는 장점을 갖는다.
도 2에서 볼 수 있는 것과 같이, SiC 또는 Cu 기판 16이 제공되고, 이것은 그에 p-도핑 된 GaN 영역 13, 및 n-도핑 된 GaN 영역 12를 갖는다. 전극 10이 또한 도시된다. 기판 16 및 전극 10 사이에 적용된 바이어스는 LED가 발광하도록 한다. 도 2에서 볼 수 있는 것과 같이, 광은 주로 위쪽 방향을 향한다. 도 2의 예에서, p-도핑 된 영역은 다이 기판에 가장 근접하게 제공되고, 반면 도 1의 예에서, n-도핑 된 영역이 다이 기판에 가장 근접하게 제공된다.
도 1 및 2에서 도시된 바와 같이, 다이 부착 접착제 층 17은 기판(사파이어, SiC, Cu, GaN, Si 등)을 지지 또는 패키지 기판 19에 부착하기 위해 제공된다. LED 다이 부착 접착제는 바람직하게는 열 전도성일 필요는 없지만 (예를 들면, 광학적으로 반사성이 미터 켈빈 당 0.5 와트 (0.5 W/(m·K)), 바람직하게는 4.0 W/(m·K) 및 보다 바람직하게는 10.0 W/(m·K) 보다 큰 열 전도도를 가질 수 있다. 훨씬 더 높은 열 전도도가, 예를 들어 25.0 W/(m·K)k 보다 큰, 또는 50.0 W/(m·K) 보다 큰, 또한 선택된 물질들 또는 농도들에 따라 가능하다. 그러나 접착제 또는 봉지재가 투명인 경우, 열 전도도는 전형적으로 0.1 W/(m·K) 보다 크거나 (예를 들면, 0.1 W/(m·K) 내지 0.5 W/(m·K)), 또는 0.2 W/(m·K) 보다 큰, 예를 들면 0.5 W/(m·K) 보다 크다. 접착제로서이든 봉지재로서이든, 실록산 물질은 유체(fluid),예를 들면, 액상 또는 겔로, 시린지 증착(syringe desposition) 또는 스크린 인쇄(screen printing)와 같은 공정에 의해 분배되는 것과 같이, 증착될 수 있다. 다른 증착 방법들, 예를 들면, 스핀-온(spin-on), 딥(dip), 잉크-젯(ink-jet), 막(curtain), 드립(drip), 롤러(roller), 그라비어(gravure), 리버스 오프셋(reverse offset), 압출 코팅(extrusion coating), 슬릿 코팅(slit coating), 스프레이 코팅(spray coating), 플렉소-인쇄(flexo-graphic), 등이 사용될 수 있다.
LED 다이 부착 접착제는 전기적으로 절연 또는 전기적으로 전도성일 수 있다. 도 2의 예에서, 다이 기판이 전극들 중 하나이기 때문에, LED 다이 부착 접착제는 또한 전기적으로 전도성이어야 하고, 예를 들어 1 ×10-3 Ω·m 미만의 전기 저항력(resistivity), 바람직하게는 1 ×10-5 Ω·m 미만의 전기 저항력, 또는 심지어 1 ×10-7 Ω·m 미만의 전기 저항력을 갖는다. 도 1의 예에서, LED 다이 부착 접착제는 또한 전기적으로 절연이거나 전기적으로 전도성일 수 있다. 전기적으로 전도성인 경우, 전기 저항력은 상기 도 2에 대하여 언급된 것과 같은 범위 내일 수 있다. 전기적으로 절연성인 경우 전기 저항력은 1 ×103 Ω·m 보다 클, 예컨대, 1 ×105 Ω·m 보다 크거나, 심지어 1 ×109 Ω·m 보다 클 수 있다.
LED 다이 부착 물질은 바람직하게는 가시광 스펙트럼에서 (또는 예를 들면, LED가 발광하는 스펙트럼에서- 예를 들면, 자외선 광) 광학적으로 흡수성이 아니다. 다이 부착 층은 가시 (또는 UV) 광에 투과성일 수 있고, 여기서 그에 수직적으로 입사하는 가시 광의 적어도 80%가 투과되는, 바람직하게는 적어도 85%가 투과되는, 보다 바람직하게는 90%가 투과된다. 또한 가시광의 92.5%, 또는 심지어 95% 또는 그 이상이 투과되는 것이 가능하다. 투명 타이 부착 물질이 사용되는 경우, 지지 또는 패키지 기판 상의 반사 층(reflective layer)이, LED 램프로부터 광 출력의 밝기를 향상시키기 위해 광을 반사하고자 하는 경우에 제공될 수 있다.
대안적인 예에서, LED 부착 물질은 고도로 반사성이다. 반사성이어서(Being reflective), 다이 부착 물질은 패키지 또는 지지지 기판을 향하는 광의 전향(redirection)을, 패키지의 밖으로 향하도록 하기 위해, 도울 수 있고, 따라서 LED 램프의 밝기를 향상시킨다. 바람직하게는 85% 또는 그 이상의 광이 반사되고, 또는 90% 또는 그 이상, 심지어 95% 또는 그 이상의 가시광이 상기 예로서 LED 다이 부착 층에 의해 반사된다. 다이 부착 물질은 다이의 밑(underneath) 뿐만 아니라, 다이의 측면을 둘러싸면서 소자의 측면의 밖으로 방출된 광을 반사시키기 위해 배치될 수 있다.
본 명세서에 개시된 실록산 입자 물질이 또한 배리어 층(barrier layer) 또는 봉지재로서 LED의 전면 측면에 제공될 수 있다. 도 3에서 볼 수 있는 바와 같이, 다이 24는 다이 부착 접착제 22를 통해 패키지 기판 20에 부착된다. 상기 예에서, 다이 부착 접착제는 상기에서 설명된 것과 같을 수 있거나, 또는 금속 납땜, 유리 프릿(frit), 폴리머 에폭시, 등과 같은 종래의 다이 부착 접착제일 수 있다. 다이 24는 패키지 기판 상에 다이를 전기적으로 연결하는 와이어 본드(wire bonds)를 갖는, 다이 기판 상에 반도체 물질의 층들을 포함하는 LED 소자의 단순화된 도면이다. 원하는 경우 광의 제1 파장에서 광의 제2 파장으로 LED에 방출된 광의 파장을 이동시키는 형광체 층 28이 또한 제공된다. 바람직하게는 광의 제2 파장은 가시광 스펙트럼에서이지만, 광의 제2 파장을 가시광 스펙트럼에서 일 수 있고, 또는 UV 광과 같은 가시광 스펙트럼 밖(outside the visible spectrum)일 수 있다.
또한 형광체가 존재하지 않는 것이 가능하고, 형광체 층 28은 제공되지 않는다. 상기 예에 따라, 형광체 층 28이 제공되는 경우, 형광체들은 본 명세서에 개시된 것과 같은, 선택적으로 입자들을 포함하지만, 바람직하게는 아닌, 실록산 물질들 내에 제공된다. 봉지 층 28을 갖거나 갖지 않고 제공된, 제2 봉지재 29는 패키지 기판 상의 LED 소자를 둘러싸고 보호하도록 제공된다. 층 28이 제공되지 않는 경우, 또는 형광체를 포함하지 않고 제공되는 경우, 원한다면 봉지 층 29 내에 형광체 물질을 제공하는 것이 가능하다. 층들 28 및 29는 둘 다 원한다면 형광체 물질과 함께 제공될 수 있다. 봉지층 29는 본 명세서에서 개시된 것과 같은 실록산 물질, 그에 첨가된 입자들을 포함 또는 미포함하는, 로부터 형성될 수 있다.
대안적인 예를 도 4에 나타내고, 여기서 패키지 기판 30은 본딩 층 34를 통해 그에 결합된 다이 32를 갖는 것으로 도시된다. 도 3에 대하여 언급된 바와 같이, 본딩 층은 본 명세서에서 개시된 것과 같은 실록산 입자 조성물일 수 있고, 또는 다이 부착 물질의 다른 유형일 수 있다. 다이 32는 LED 소자의 단순화된 관점이고, 여기서 반도체 물질, 바람직하게는 p-도핑 된 및 n-도핑 된 영역들을 갖는, 예컨대, 도핑된 GaN, 은 사파이어, SiC, Cu, Si, GaN, 등과 같은 기판 상에 배치된다. 원한다면, 형광체 물질 35를 갖는 제1 봉지 층이 제공되고/거나 제2 봉지 층 37이 제공되다. 층들 35 및 37은 도 3의 층들 28 및 29에 대하여 상기에서 설명된 바와 같을 수 있다.
도 5에서 LED 소자에 대한 플립 칩형 패키지가 도시되고, 여기서 투명 기판(예를 들면, 사파이어) 40에 반도체 물질 41 (예를 들면, GaN)이 제공된다. 플립 칩 스타일 패키지에서, 반도체 물질 41 및 전기적 연결 영역(electrical connection areas) 47은 기판 42를 향해 결합되고, 이 경우에는 그에 전자 회로 및 전기적 연결 영역 48을 갖는 규소 기판이다. 기판 40 및 기판 42 상에 전기적 연결 또는 패드 영역은 본 명세서에서 개시된 것과 같은 실록산 입자 접착제 46을 통해 연결되고, 이것은 전기적으로 전도성이다. 원한다면, 본 명세서의 개시에 따른 실록산 물질 49는 전기적으로 절연성이고 향상된 접착성 및 CTE 특성들을 제공하는 것으로 제공될 수 있다. 실록산 언더필(siloxan underfill) 49는 전기 전도성 특성들을 제공하지 않는 옥사이드 또는 나이트라이드 입자들과 같은 미립자 물질을 갖지 않을 수 있거나 가질 수 있다. 전기 전도성 물질 46은 스크린 인쇄, 핀 증착(pin deposition), 또는 다른 적합한 방법에 의해 제공될 수 있다. 언더필 물질 49는 낮은 분자량 실록산으로서 또는 모세관 작용을 통해 기판들 사이의 영역을 채우기 위해 액체 형태로 첨가된 용매를 갖고 제공될 수 있다. 전기 전도성 영역(Electrically conductive areas) 46은 언더필 물질 49의 첨가 이전에 경화될 수 있거나, 또는 두 물질들은 함께 경화될 수 있다. 경화는 원하는 것으로 UV 광 또는 열을 통해 될 수 있다.
또한 도 5에서 도시된 바와 같이, 와이어 본드 45는 규소 기판 42 상의 전자 회로를 패키지/지지 기판 44에 연결하고, 이것은 세라믹 기판 또는 다른 원하는 물질일 수 있다. 접착제 43은 기판 42를 기판 44에 연결하고, 본 명세서에 개시된 것과 같은 실록산 입자 물질일 수 있으며, 바람직하게는 열 전도성이다. 언더필 층 49는 가시광 (또는 UV) 스펙트럼에서 광학적으로 투과성일 수 있거나, 또는 가시광 또는 UV 광에 광학적으로 반사성일 수 있다. 투과성의 경우, 반사 층은 반대 반향으로 광을 반사시키기 위해, LED 램프의 효율성을 증가시키기 위해, 기판 42 상에 제공될 수 있다.
보다 구체적으로 상기에서 나타낸 실록산 입자 조성물에 대하여, 실록산 폴리머로 제조된 조성물이 제공된다. 바람직하게는 폴리머는 작용성 가교결합 치환기들뿐만 아니라 아릴(또는 알킬) 치환기들을 갖는, 규소 옥사이드 백본을 포함한다. 필러 물질은 실록산 폴리머와 혼합된다. 필러 물질은 바람직하게는 100 미크론 또는 그 미만, 바람직하게는 10 미크론 또는 그 미만의 평균 입자 크기를 갖는 입자들을 포함하는 미립자 물질이다. 촉매가 첨가되고, 촉매는 열 또는 UV 광(또는 다른 활성화 방법)이 조성물에 제공될 때 실록산 폴리머에서 작용성 가교결합 기들과 반응성이다. 모노머(monomeric) (또는 올리고머(oligomeric) 커플링제는 조성물에 포함되며, 바람직하게는 작용성 가교결합 기들을 포함하는, 실록산 폴리머에서와 같이 열 또는 빛의 적용 시 유사하게(likewise) 반응성이다. 안정제, 항산화제, 분산제, 접착 촉진제, 가소제, 연화제, 또는 다른 잠재적인 구성 성분들과 같은 추가 물질들이, 조성물의 최종 용도에 따라, 또한 첨가된다. 용매가 첨가됨에도, 바람직한 실시예에서 조성물은 용매-프리(solvent-free)이고 이와 같이 저장되고 운송되는 용매가 없는 점성 유체(viscous fluid)이다.
상기에서 언급한 바와 같이, 본 명세서에 개시된 제조된 조성물은 실록산 폴리머를 포함한다.
실록산 폴리머를 제조하기 위해, 하기 화학식을 갖는 제1 화합물이 제공된다;
SiR1 aR2 4-a
상기 화학식에서
a는 1 내지 3,
R1은 반응기, 및
R2는 알킬기 또는 아릴기.
또한 하기 화학식을 갖는 제2 화합물이 제공된다;
SiR3 bR4 cR5 4-(b+c)
상기 화학식에서
R3는 가교결합 작용기,
R4는 반응기, 및
R5는 알킬 또는 아릴기이고, 여기서
b = 1 내지 2, 및 c = 1 내지 (4-b).
선택적인 제3 화합물이 제1 및 제2 화합물에 따라, 그들과 함께 중합되기 위해 제공된다. 제3 화합물은 하기 화학식을 가질 수 있고,
SiR9 fR10 gW
상기 화학식에서
R9는 반응기 및
f = 1 내지 4이고, 여기서
R10은 알킬 또는 아릴기 및 g = 4-f이다.
제1, 제2 및 제3 화합물은 임의의 순서로 제공될 수 있고, 이들 화합물들의 임의의 올리고머 부분적으로 중합된 버전들(versions)의 상기 언급된 모노머들 대신 제공될 수 있다.
제1, 제2 및 제3 화합물, 및 하기 명세서에서 나열된(recited) 임의의 화합물들은, 상기 화합물들이 복수의 아릴 또는 알킬기들, 또는 복수의 반응기들, 또는 복수의 가교결합 작용기들, 등과 같은 하나 이상의 단수형의 "R"을 가진다면, 다중(multiple) R 기들은 각각의 경우에 동일하거나 상이하도록 독립적으로 선택된다. 예를 들어, 제1 화합물이 SiR1 2R2 2 라면, 다중 R1 기들은 독립적으로 서로 동일하거나 상이하도록 선택된다. 마찬가지로 다중 R2 기들은 독립적으로 서로 동일하거나 상이하도록 선택된다. 본 명세서에서 언급된 임의의 다른 화합물이, 특별히 다르게 기술되지 않는 한 동일하다.
촉매가 또한 제공된다. 촉매는 염기 촉매일 수 있고, 또는 하기 언급된 것과 같은 다른 촉매일 수 있다. 제공된 촉매는 제1 및 제2 화합물을 함께 중합할 수 있어야 한다. 상기에서 언급한 바와 같이, 화합물들 및 촉매 첨가의 순서는 임의의 원하는 순서일 수 있다. 함께 제공된 다양한 구성 성분들은 원하는 분자량 및 점도를 갖는 실록산 폴리머 물질을 생성하기 위해 중합된다. 중합 후, 입자들이, 예를 들어 마이크로입자들, 나노입자들 또는 다른 원하는 입자들, 다른 선택적인 구성 성분들, 예를 들어 커플링제, 촉매, 안정화제, 접착촉매제, 및 이와 유사한 것들, 과 함께 첨가된다. 조성물의 구성 성분들의 조합은 임의의 원하는 순서로 수행될 수 있다.
보다 구체적으로, 일례로, 실록산 폴리머는 제1 및 제2 화합물을 중합하여 제조되고, 여기서 제1 화합물은 하기 화학식을 갖고;
SiR1 aR2 4-a
상기 화학식에서
a는 1 내지 3,
R1은 반응기, 및
R2는 알킬기 또는 아릴기이며,
그리고 제2 화합물은 하기 화학식을 갖고;
SiR3 bR4 cR5 4-(b+c)
상기 화학식에서
R3는 가교결합 작용기,
R4는 반응기, 및
R5는 알킬 또는 아릴기이고,
여기서 b = 1 내지 2, 및 c = 1 내지 (4-b)이다.
제1 화합물은 화합물의 규소에 결합된 1 내지 3 알킬 또는 아릴 기들 (R2)을 가질 수 있다. 상이한 알킬기들의 조합, 상이한 아릴기들의 조합, 또는 알킬 및 아릴기들 모두의 조합이 가능하다. 알킬기의 경우, 알킬은 바람직하게는 1 내지 18, 보다 바람직하게는 1 내지 14 및 특히 바람직하게는 1 내지 12의 탄소 원자를 포함한다. 보다 짧은 알킬기들, 예컨대 1 내지 6의 탄소를 갖는(예를 들면, 2 내지 6의 탄소 원자들), 이 구상된다. 알킬기는 알파 또는 베타 위치에서 하나 또는 그 이상, 바람직하게는 두 개의 C1 내지 C6 알킬기들로 분지될 수 있다. 특히, 알킬 기는 1 내지 6 탄소 원자들 함유 저급 알킬(lower alkyl)이고, 이것은 선택적으로 메틸 및 할로겐으로부터 선택된 1 내지 3의 치환기들(substituents)을 갖는다(bear). 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸 및 t-부틸들이 특히 선호된다. 사이클로헥실(cyclohexyl), 아다만틸(adamantyl), 노보넨(Norbornene) 또는 노보닐(norbornyl)과 같은 아크릴 알킬 기(acrylic alkyl group)가 또한 가능하다.
R2가 아릴기라면, 아릴기는 페닐일 수 있고, 이것은 선택적으로 할로겐, 고리의 알킬 또는 알케닐(alkenyl), 또는 나프틸(naphthyl)로부터 선택된 1 내지 5의치환기들을 갖고, 선택적으로 할로겐 고리 구조의 알킬 또는 알케닐로부터 선택된 1 내지 11 치환기들을 갖고, 상기 치환기들은 선택적으로 플루오르화(fluorinated) (과플루오르화 또는 부분적 플루오르화 포함)된다. 아릴기가 다방향족(polyaromatic) 기라면, 다방향족기는 예를 들어, 안트라센(anthracene), 나프탈렌(naphthalene), 페난트렌(phenanthere), 테트라센(tetracene)일 수 있고, 이것은 선택적으로 1 내지 8 치환기들을 가질 수 있거나 또한 선택적으로 1 내지 12 탄소수를 포함하는 알킬, 알케닐, 알키닐(alkynyl) 또는 아릴기들에 의해 규소 원자로부터 이격될 수 있다. 페닐과 같은 단일 고리 구조 또한 이러한 방식으로 규소 원자로부터 이격될 수 있다.
실록산 폴리머는 중합 반응, 바람직하게는 제1 및 제2 화합물 사이의 염기 촉매화 중합 반응을 수행하여 제조된다. 선택적인 추가 화합물은, 하기 설명된 것과 같이, 중합 반응의 일부분으로서 포함될 수 있다.
제1 화합물은 임의의 적합한 반응기 R1를, 예를 들면, 하이드록시, 할로겐, 알콕시, 카르복시, 아민 또는 아실옥시 기, 포함할 수 있다. 예를 들면, 제1 화합물의 반응기가 -OH 기인 경우, 제1 화합물의 보다 구체적인 예들은 디페닐실란디올(diphenylsilanediol), 디메틸실란디올(dimethylsilanediol), 디-이소프로필실란디올(di-isopropylsilanediol), 디-n-프로필실란디올(di-n-propylsilanediol), 디-n-부틸실란디올(di-n-butylsilanediol), 디-t-부틸실란디올(di-t-butylsilanediol), 디-이소부틸실란디올(di-isobutylsilanediol), 페닐메틸실란디올(phenylmethylsilanediol) 및 디사이클로헥시실란디올(dicyclohexylsilanediol)과 같은 실란디올(silanediols)을 포함할 수 있다.
제2 화합물은 임의의 적합한 반응기 R4를, 예를 들면, 하이드록시, 할로겐, 알콕시, 카르복시, 아민 또는 아실옥시 기, 포함할 수 있고, 이것은 제1 화합물의 반응기와 동일하거나 상이할 수 있다. 일례로, 반응기는 생성 실록산 폴리머(resulting siloxane polymer)가 실록산 폴리머의 규소에 직접적으로 결합된 H 기들의 임의의, 또는 실질적으로 임의의 부재를 갖도록, 제1 또는 제2 화합물 (또는 실록산 폴리머를 형성하기 위해 중합 반응의 일부를 수행하는 임의의 화합물들-예를 들면, 제3 화합물, 등) 모두에서 -H가 아니다. R5는, 모든 제2 화합물에서 존재하는 경우, 제1 화합물의 R2 기와 같이 독립적으로 알킬 또는 아릴기들이다. 알킬 또는 아릴기 R5는 제1 화합물의 R2 기와 동일하거나 상이할 수 있다.
제2 화합물의 가교결합 반응기 R3는 산, 염기, 라디컬(radical) 또는 열 촉매화 반응들에 의해 가교결합될 수 있는 임의의 작용기일 수 있다. 이러한 작용기들은 예를 들면, 임의의 에폭시드(epoxide), 옥세탄(oxetane), 아크릴레이트, 알케닐, 알키닐, 비닐, 또는 Si-H 기들로부터 선택될 수 있다.
에폭시드기의 경우, 이것은 산, 염기 및 열 촉매 반응들을 사용하여 가교결합될 수 있는 세 개의 고리 원자들을 갖는 사이클릭 에테르(cylclic ether)일 수 있다. 이들 가교결합 기들 함유 에폭시드의 예들은 몇 가지만 언급하면(to mention few), 글리시틸옥시프로필(glycidyloxypropyl) 및 (3,4-에폭시사이클로헥실)에틸((3,4-Epoxycyclohexyl)ethyl) 기들이다.
옥세탄기의 경우, 이것은 산, 염기 및 열 촉매 반응들을 사용하여 가교결합될 수 있는 네 개의 고리 원자들을 갖는 사이클릭 에테르일 수 있다. 상기 실란들을 함유하는 옥세탄의 예들은 몇 가지만 언급하면, 3-(3-에틸-3-옥세타닐메톡시)프로필트리에톡시실란(3-(3-ethyl-3-oxetanylmethoxy)propyltriethoxysilane), 3-(3-메틸-3-옥세타닐메톡시)프로필트리에톡시실란(3-(3-Methyl-3-oxetanylmethoxy)propyltriethoxysilane), 3-(3-에틸-3-옥세타닐메톡시)프로필트리메톡시실란(3-(3-ethyl-3-oxetanylmethoxy)propyltrimethoxysilane) 또는 3-(3-메틸-3-옥세타닐메톡시)프로필트리메톡시실란(3-(3-Methyl-3-oxetanylmethoxy)propyltrimethoxysilane)을 포함한다.
알케닐기의 경우, 상기 그룹은 바람직하게는 2 내지 18, 보다 바람직하게는 2 내지 14 및 특히 바람직하게는 2 내지 12의 탄소 원자들을 포함할 수 있다. 에틸렌성(ethylenic), 즉, 이중 결합으로 결합된 두 개의 탄소원자 기(group)는 바람직하게는 2 또는 그 이상의 자리에 위치되고, 분자의 Si 원자와 관련된다. 분지된 알케닐(branched alkenyl)은 바람직하게 알파 또는 베타 위치에서 하나 및 그 이상, 바람직하게는 두 개의 C1 내지 C6 알킬, 알케닐, 또는 알키닐 기들, 선택적으로 플루오르화 또는 과플루오르화 알킬, 알케닐 또는 알키닐 기들로 분지된다.
알키닐기의 경우, 이것은 바람직하게는 2 내지 18, 보다 바람직하게는 2 내지 14 및 특히 바람직하게는 2 내지 12의 탄소 원자들을 가질 수 있다. 에틸린성기(ethylinic group), 즉, 삼중 결합으로 결합된 두 개의 탄소 원자들 그룹은 바람직하게는 2 또는 그 이상의 자리에 위치되고, 분자의 Si 또는 M 원자와 관련된다. 분지된 알키닐은 바람직하게는 알파 또는 베타 위치에서 하나 및 그 이상, 바람직하게는 두 개의 C1 내지 C6 알킬, 알케닐 또는 알키닐 기들, 선택적으로 과플루오르화 알킬, 알케닐 또는 알키닐 기들로 분지된다.
티올기의 경우, 이것은 탄소-결합 설프하드릴기(sulfhydryl group)를 포함하는 임의의 유기황(organosulfur) 화합물일 수 있다. 실란 함유 티올의 예들은 3-메르캅토프로필트리메톡시실란(3-mercaptopropyltrimethoxysilane) 및 3-메르캅토프로필에톡시실란(3-mercaptopropyltriethoxysilane)이다.
제2 화합물의 반응기는 알콕시기일 수 있다. 알콕시기들의 알킬 잔기(alkyl residue)는 선형 또는 분지형(linear or branched)일 수 있다. 바람직하게는, 알콕시기들은 1 내지 6 탄소 원자들을 포함하는 저급 알콕시기들(lower alkoxy groups), 예를 들어 메톡시, 에톡시, 프로폭시 및 t-부톡시 기들로 구성된다. 제2 화합물을 특정 예들은 실란, 그 중에서도(among others), 예를 들어 2-(3,4-에폭시사이클로헥실)에틸트리메톡시실란(2-(3,4-Epoxycyclohexyl)ethyltrimethoxysilane), 2-(3,4-에폭시사이클로헥실)에틸트리에톡시실란(2-(3,4-epoxycyclohexyl)ethyltriethoxysilane), 3-(트리메톡시실릴)프로필메타크릴레이트(3-(Trimethoxysilyl)propylmethacrylate), 3-(트리메톡시실릴)프로필아크릴레이트(3-(Trimethoxysilyl)propylacrylate), (3-글리시딜옥시프로필)트리메톡시실란((3-glycidyloxypropyl)trimethoxysilane), 또는 3-글리시독시프로필트리에톡시실란(3-glycidoxypropyltriethoxysilane), 3-메타크릴옥시프로필트리메톡시실란(3-methacryloxypropyltrimethoxysilane), 3-아크릴옥시프로필트리메톡시실란(3-acryloxypropyltrimethoxysilane)이다.
제3 화합물은 제1 및 제2 화합물과 함께, 그들과 중합되도록 제공될 수 있다. 제3 화합물은 하기 화학식을 가질 수 있다;
SiR9 fR10 g
상기 화학식에서,
R9는 반응기 및
f = 1 내지 4이고,
R10은 알킬 또는 아릴기 및
g = 4-f.
상기 일례는 테트라메톡시실란(tetarmethoxysilane)이다. 다른 예들은 그 중에서도, 페닐메틸디메톡시실란(phenylmethyldimethoxysilane), 트리메틸메톡시실란(trimethylmethoxysilane), 디메틸디메톡시실란실란(dimethyldimethoxysilanesilane), 비닐트리메톡시실란(vinyltrimethoxysilane), 알릴트리메톡시실란(allyltrimethoxysilane), 메틸트리메톡시실란(methyltrimethoxysilane), 메틸트리에톡시실란(methyltriethoxysilane), 메틸트리프로폭시실란(methyl tripropoxysilane), 프로필에틸트리메톡시실란(propylethyltrimethoxysilane), 에틸트리에톡시실란(ethyltriethoxysilane), 비닐트리메톡시실란(vinyltrimethoxysilane), 비닐트리에톡시실란(vinyltriethoxysilane)을 포함한다.
제1 및 제2 화합물의 중합이 산 촉매를 이용하여 수행될 수 있지만, 염기 촉매가 선호된다. 제1 및 제2 화합물 사이의 염기 촉매화 중합에서 사용된 염기 촉매는 임의의 적합한 염기성 화합물일 수 있다. 이러한 염기성 화합물들의 예들은 그 중에서도 트리에틸아민(triethylamine)과 같은 임의의 아민(amines) 및 바륨 하이드록사이드(barium hydroxide), 바륨 하이드록사이드 모노하이드레이트(barium hydroxide monohydrate), 바륨 하이드록사이드 옥타하이드레이트(barium hydroxide octahydrate)과 같은 임의의 바륨 하이드록사이드이다. 다른 염기성 촉매들은 마그네슘 옥사이드(magnesium oxide), 칼슘 옥사이드(calcium oxide), 바륨 옥사이드(barium oxide), 암모니아(ammonia), 암모늄 퍼클로레이트(ammonium perchlorate), 나트륨 하이드록사이드(sodium hydroxide), 칼륨 하이드록사이드(potassium hydroxide), 이미다존(imidazone) 또는 n-부틸 아민(n-butyl amine)을 포함한다. 일 특정 예에서 염기 촉매는 Ba(OH)2이다. 염기 촉매는, 제1 및 제2 화합물에 대해, 0.5 중량% 미만, 또는 0.1 중량% 미만과 같은 적은 양으로 제공될 수 있다.
중합은 용융상(melt phase) 또는 액체 매질(liquid medium)에서 수행될 수 있다. 온도는 약 20 내지 200 ℃, 일반적으로 약 25 내지 160 ℃, 특히 약 40 내지 120 ℃의 범위이다. 일반적으로 중합은 주위 압력(ambient pressure)에서 수행되고 최대 온도는 사용되는 임의의 용액의 녹는점에 의해 설정된다. 중합은 환류 조건에서 수행될 수 있다. 다른 압력 및 온도가 또한 가능하다. 제1 화합물 대 제2 화합물의 몰랄비는 95:5 내지 5:95, 특히 90:10 내지 10:90, 바람직하게는 80:20 내지 20:80일 수 있다. 바람직한 예에서, 제1 화합물 대 제2 화합물 (또는 제2 더하기 중합반응의 일부를 수행하는 다른 화합물 - 하기 참조)의 몰랄비는 적어도 40:60 또는 45:55 또는 그 이상까지이다.
일례로, 제1 화합물은 반응기로서 -OH 기들을 갖고 제2 화합물은 반응기로서 알콕시기들을 갖는다. 바람직하게, 첨가된 제1 화합물의 양에 대한 -OH 기들의 총 수는 반응기, 예를 들면 제2 화합물의 알콕시기들의 총 수 보다 많지 않고, 바람직하게는 제2 화합물(또는 제2 화합물 더하기 알콕시기를 갖는 첨가된 임의의 다른 화합물들, 예를 들면, 첨가된 테트라메톡시실란 또는 본 명세서에서 언급된 것과 같은, 중합 반응에 관련된 다른 제3 화합물)의 반응기의 총 수 미만이다. 알콕시기들이 하이드록시기들을 능가하면, -OH 기들의 전부 또는 실질적으로 전부는 반응할 것이고 실록산으로부터, 예를 들어 알콕시실란이 메톡시실란인 경우 메탄올, 알콕시실란이 에톡시실란인 경우 에탄올, 등이 제거될 것이다. 제1 화합물의 -OH 기들의 수 및 제2 화합물의 반응기들(바람직하게는 -OH 기들 이외)의 수가 실질적으로 동일할 수 있음에도, 제2 화합물의 반응기의 총 수가 제1 화합물의 -OH 기들을 10% 또는 그 이상, 바람직하게는 25% 또는 그 이상 능가하는 것이 바람직하다. 일부 실시예들에서 제2 화합물 반응기의 수는 제1 화합물 -OH기들을 40% 또는 그 이상, 또는 60% 까지(even) 또는 그 이상, 75% 또는 그 이상, 또는 100% 또는 그 이상까지 능가한다. 선택된 화합물들에 따른 중합 반응의 메탄올, 에탄올 또는 다른 부산물은 중합 후 제거되고, 바람직하게는 건조 챔버에서 증발된다.
수득된 실록산 폴리머들은 임의의 원하는 (중량 평균) 분자량, 예를 들면, 500 내지 100,000g/mol을 갖는다. 분자량은 상기 범위의 하단(lower end) 내 (예를 들면, 500 내지 10,000 g/mol, 또는 보다 바람직하게는 500 내지 8,000 g/mol)일 수 있고 유기실록산(organosiloxane) 물질은 상기 범위 내의 상단(upper end) 내의 (예를 들면 10,000 내지 100,000 g/mol 또는 보다 바람직하게는 15,000 내지 50,000 g/mol) 분자량을 가질 수 있다. 낮은 분자량을 갖는 폴리머 유기실록산 물질과 높은 분자량을 갖는 유기실록산 물질을 혼합하는 것이 바람직할 수 있다.
수득된 실록산 폴리머는 최종 목적하는 폴리머의 용도에 따라 추가적인 구성 성분들과 결합될 수 있다. 바람직하게, 실록산 폴리머는 조성물을 형성하기 위해 필러, 예를 들면, 100 미크론 미만, 바람직하게는 50 미크론 미만, 20 미크론 미만을 포함하는, 평균 입자 크기를 갖는 입자들을 포함하는 미립자(particulate) 필러와 결합된다. 추가적인 구성 성분들은 조성물의 일부, 예를 들어, 촉매 또는 경화제, 하나 또는 그 이상의 커플링제, 분산제, 항산화제, 안정제, 접착 촉진제, 및/또는 실록산 물질의 최종 목적 용도에 따른 원하는 다른 구성 성분들, 일 수 있다. 일례로, 산회된 표면을 그들의 금속 형태로 환원할 수 있는 환원제가 포함된다. 환원제는 실록산 입자 물질들 및 증착되거나 접착된 표면 사이의 전기적 연결을 향상시키기 위해, 산화 표면을 갖는 금속성 입자들인 경우 입자들로부터 산화를 제거할 수 있고/거나, 예를 들면, 산화된 금속성 본딩 패드(metallic bonding pads) 또는 다른 금속성 또는 전기 전도성 영역들로부터 산화를 제거할 수 있다. 환원 또는 안정화제는 에틸렌글리콜(ethylene glycol), 베타-D-글루코스(beta-D-glucose), 폴리에틸렌옥사이드(poly ethylene oxide), 글리세롤(glycerol), 1,2-프로필렌 글리콜(1,2-propylene glycol), N,N 디메틸포름아마이드(N,N dimethyl formamide), 폴리-나트륨 아크릴레이트(poly- sodium acyrylate (PSA)), 폴리아크릴산을 포함하는 베타사이클로덱스트린(betacyclodextrin with polyacyrylic acid), 디하이드록시벤젠(dihydroxy benzene), 폴리비닐알코올(poly vinyl alcohol), 1,2-프로필렌 글리콜(1,2 - propylene glycol), 하이드라진(hydrazine), 황산하이드라진(hydrazine sulfate), 나트륨 보로하이드라이드(Sodium borohydride), 아스코르브산(ascorbic acid), 하이드로퀴논족(hydroquinone family), 갈산(gallic acid), 피로갈롤(pyrogallol), 글리옥살(glyoxal), 아세트알데히드(acetaldehyde), 글루타르알데히드(glutaraldehyde), 지방족 디알데히드족(aliphatic dialdehyde family), 파라포름알데히드(paraformaldehyde), 주석 분말(tin powder), 아연 분말(zinc powder), 포름산(formic acid)을 포함할 수 있다. 안정제와 같은 첨가제, 예를 들면 Irganox (본 명세서하기에 언급된 것과 같이) 또는 다이아진(diazine) 유도체와 같은 항산화제, 가 또한 첨가될 수 있다.
가교결합 규소 또는 비-규소 기반 레진(resins) 및 올리고머(oligomers)가 실록산 폴리머들 사이의 가교결합을 향상시키는데 사용될 수 있다. 첨가된 가교결합 올리고머 또는 레진의 작용성(functionality)은 실록산 폴리머의 작용성에 의해 선택된다. 예를 들어 에폭시 기반 알콕시실란이 실록산 폴리머의 중합 동안 사용된 경우, 에폭시 작용성 올리고머 또는 레진이 사용될 수 있다. 에폭시 올리고머 또는 레진은 임의의 다이(di), 트리(tri), 테트라(tetra), 또는 그 이상의 작용성 에폭시 올리고머 또는 레진일 수 있다. 이러한 에폭시 올리고머 또는 레진의 예들은 몇가지만 언급하면, 1,1,3,3-테트라메틸다이실록산-1,3-비스2-(3,4-에폭시사이클로헥실)에틸(1,1,3,3-tetramethyldisiloxane-1,3-bis2-(3,4-epoxycyclohexyl)ethyl), 1,1,3,3-테트라메틸다이실록산-1,3-비스글리시독시프로필(1,1,3,3-tetramethyldisiloxane-1,3-bisglycidoxypropyl), 비스(3,4-에폭시사이클로헥실메틸)아디페이트(Bis(3,4-epoxycyclohexylmethyl) adipate), 3,4-에폭시사이클로헥실메틸 3,4-에폭시사이클로헥산카르복실레이트(3,4-Epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate), 1,4-사이클로헥산디메탄올 디글리시딜 에테르(1,4-Cyclohexanedimethanol diglycidyl ether), 비스페놀 A 디글리시딜 에테르(Bisphenol A diglycidyl ether), 디글리시딜 1,2-사이클로헥산디카르복실레이트(Diglycidyl 1,2-cyclohexanedicarboxylate)일 수 있다.
최종 제형에 첨가된 경화제는 실록산 폴리머의 작용기들의 경화 공정을 개시 및/또는 가속화할 수 있는 임의의 화합물이다. 이러한 경화제는 열 및/또는 UV 활성화(예를 들면, 중합 반응이 열 활성화되면 열산(thermal acid) 또는 광 활성화되면 광개시제) 중 어느 하나일 수 있다. 실록산 폴리머의 가교결합 기들은 상기에서 언급한 것과 같이, 바람직하게는 에폭시드, 옥세탄, 아크릴레이트, 알케닐, 또는 알키닐 기들이다. 경화제는 실록산의 가교결합 기에 근거하여 선택된다.
일 실시예에서, 에폭시 및 옥세탄 기들을 위한 경화제는 질소-함유 경화제들, 예를 들면 막힌(blocked) 또는 감소된 활성을 나타내는 1차 및/또는 2차 아민들로부터 선택될 수 있다. 정의 "막힌 또는 감소된 반응성을 나타내는 1차 또는 2차 아민들(primary or secondary amines which show blocked or decreased reactivity)"은 화학적 또는 물리적 블로킹으로 인해 레진 구성 성분들과 반응할 수 없거나 반응할 수 있는 능력이 매우 낮은 아민들을 의미하나, 예를 들면 증가된 온도에서 이를 용융(melting)하여, 시스(sheath) 또는 코팅을 제거하여, 압력 또는 초음파 또는 다른 에너지 형태들의 작용에 의해, 아민의 유리 후 그들의 반응성을 재생시킬 수 있고, 레진 구성 성분들의 경화 작용이 시작된다.
열-활성화 가능한 경화제의 예들은 적어도 하나의 유기보레인(organoborane) 또는 보레인과 적어도 하나의 아민으로 구성된 복합체들을 포함한다. 아민은 유기보레인 및/또는 보레인 복합체를 형성하고 원한다면 유기보레인 또는 보레인으로부터 자유로운 복합체를 형성할 수 있는 임의의 형태일 수 있다. 아민은 다양한 구조들, 예를 들면, 임의의 1차 또는 2차 아민 또는 1차 및/또는 2차 아민들을 포함하는 폴리아민들을 포함할 수 있다. 유기보레인은 알킬 보레인들로부터 선택될 수 있다. 이들 열 특히 바람직한 보레인 경화제들의 예는 보로 트리플루오라이드(boron trifuoride)이다. 적합한 아민/(유기)보레인 복합체들은 Kin Industries, Air products, 및 ATO-Tech와 같은 상업적 출처들(sources)로부터 입수할 수 있다.
에폭시 기들에 대한 다른 열 활성화 경화제는 높은 온도에서 에폭시의 가교결합 반응을 촉매하도록 강산을 방출할 수 있는 열산 발생제(thermal acid generators)이다. 이러한 열산 발생제는 예를 들어 BF4 -, PF6 -, SbF6 -, CF3SO3 -, 및 (C6F5)4B- 형태의 복합체 음이온을 갖는 설포늄(sulfonium) 및 요오도늄(iodonium) 염들과 같은 임의의 오늄염(onium salts)일 수 있다. 이들 열산 발생제의 상업적 예들은 King Industries에서 제조된 K-PURE CXC - 1612 및 K-PURE CXC - 1614이다.
추가적으로, 에폭시 및/또는 옥세탄 함유 폴리머들에 대해, 접착제 제형의 경화에 참여하거나 촉진하기 위해 설계된, 경화제, 공-경화제(co-curing agents), 촉매, 개시제 또는 다른 첨가제가, 예를 들어, 무수물(anhydrides), 아민(amines), 이미다졸(imidazoles), 티올(thiols), 카르복시산(carboxylic acids), 페놀(phenols), 디시안디아미드(dicyandiamide), 우레아(urea), 하이드라진(hydrazine), 하이드라지드(hydrazide), 아미노-포름알데히드 레진(amino-formaldehyde resins), 멜라민-포름알데히드 레진(melamine-formaldehyde resins), 4차 암모늄염(quaternary ammonium salts), 4차 인산염(quaternary phosphonium salts), 트리-아릴 설포늄염(tri-aryl sulfonium salts), 디-아릴 요오도늄염(di-aryl iodonium salts), 다이아조늄염(diazonium salts), 등과 같은, 사용될 수 있다.
아크릴레이트, 알케닐 및 알키닐 가교결합 기들에 대한 경화제는 열 또는 UV 활성화 중 어느 하나일 수 있다. 열 활성화의 예들은 퍼옥시드(peroxides) 및 아조(azo) 화합물들이다. 퍼옥시드는 불안정한 산소-산소 단일 결합을 포함하는 화합물이고 쉽게 용혈성 분열(hemolytic cleavage)을 통해 반응성 라디칼로 분열한다. 아조 화합물들은 질소 가스 및 유기 라디칼들로 분해시킬 수 있는 R-N=N-R 작용기를 갖는다. 이 두 경우 모두, 라디칼들이 아크릴레이트 및 알키닐 결합들의 중합을 촉매할 수 있다. 퍼옥시드 및 아조 화합물들의 예들은 몇 가지만 언급하면, 디-tert-부틸 퍼옥시드(di-tert-butyl peroxide), 2,2-비스(tert-부틸퍼옥시)부탄( 2,2-Bis(tert-butylperoxy)butane), tert-부틸 퍼아세테이트(tert-Butyl peracetate), 2,5-디(tert-부틸퍼옥시)-2,5-디메틸-3-헥신(2,5-Di(tert-butylperoxy)-2,5-dimethyl-3-hexyne), 디큐밀 퍼옥시드(Dicumyl peroxide), 벤조일 퍼옥시드(Benzoyl peroxide), 디-tert-아밀 퍼옥시드(Di-tert-amyl peroxide), tert-부틸 퍼옥시벤조에이트(tert-Butyl peroxybenzoate), 4,4'-아조비스(4-시아노펜탄산)(4,4'-Azobis(4-cyanopentanoic acid)), 2,2'-아조비스(2-아미디노프로판)디하이드로클로라이드(2,2'-Azobis(2-amidinopropane) dihydrochloride), 디페닐디아젠(diphenyldiazene), 디에틸 아조디카르복실레이트(Diethyl azodicarboxylate) 및 1,1'-아조비스(사이클로헥산카보니트릴)이다.
광개시제는 광에 노출될 때 자유 라디칼을 분해하는 화합물들이고 따라서 아크릴레이트, 알케닐 및 알키닐 화합물들의 중합을 촉진할 수 있다. 이러한 광개시제들의 상업적 예들은 BASF에 의해 제조된 Irgacure 149, Irgacure 184, Irgacure 369, Irgacure 500, Irgacure 651, Irgacure 784, Irgacure 819, Irgacure 907, Irgacure 1700, Irgacure 1800, Irgacure 1850, Irgacure 2959, Irgacure 1173, Irgacure 4265이다.
시스템에 경화제를 통하는 일 방법은 경화제로서 작용할 수 있는 경화제 또는 작용기를 실란 모노머에 부착하는 것이다. 따라서 경화제는 실록산 폴리머의 경화를 가속화할 것이다. 실란 모노머에 부착되는 종류의 경화제들의 예들은 몇 가지만 언급하면, γ-이미다졸릴프로필트리에톡시실란(γ-Imidazolylpropyltriethoxysilane), γ-이미다졸릴프로필트리메톡시실란(γ-Imidazolylpropyltrimethoxysilanel), 3-메르캅토프로필트리메톡시실란(3-mercaptopropyltrimethoxysilane), 3-메르캅토프로필트리에톡시실란(3-mercaptopropyltriethoxysilane), 3-(트리에톡시실릴)프로필숙신산무수물(3-(triethoxysilyl)propylsuccinicanhydride), 3-(트리메톡시실릴)프로필숙신산무수물(3-(trimethoxysilyl)propylsuccinicanhydride), 3-아미노프로필트리메톡시실란(3-aminopropyltrimethoxysilane) 및 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane)이다.
접착 촉진제는 조성물의 일부일 수 있고 경화된 제품(product) 및 제품이 도포되는 표면 사이의 접착을 향상시킬 수 있는 임의의 적합한 화합물일 수 있다. 대부분 일반적으로 사용되는 접착 촉진제는 알콕시실란 및 하나 내지 세 개의 작용기가 있는 기능성 실란이다. 다이 부착 제품들(die attach products)에 이용되는 접착 촉진제의 예들은 옥틸트리에톡시실란(octyltriethoxysilane), 메르캅토프로필트리에톡시실란(mercaptopropyltriethoxysilane), 시아노프로필트리메톡시실란(cyanopropyltrimethoxysilane), 2-(3,4-에폭시사이클로헥실)에틸트리메톡시실란(2-(3,4-Epoxycyclohexyl)ethyltrimethoxysilane), 2-(3,4-에폭시사이클로헥실)에틸트리에톡시실란(2-(3,4-epoxycyclohexyl)ethyltriethoxysilane), 3-(트리메톡시실릴)프로필메타크릴레이트(3-(Trimethoxysilyl)propylmethacrylate), 3-(트리메톡시실릴)프로필아크릴레이트(3-(Trimethoxysilyl)propylacrylate), (3-글리시딜옥시프로필)트리메톡시실란((3-glycidyloxypropyl)trimethoxysilane), 또는 3-글리시독시프로필트리에톡시실란(3-glycidoxypropyltriethoxysilane), 3-메타크릴옥시프로필트리메톡시실란(3-methacryloxypropyltrimethoxysilane) 및 3-아크릴옥시프로필트리메톡시실란(3-acryloxypropyltrimethoxysilane)일 수 있다.
형성된 중합된 실록산은 [Si-O-Si]n 반복 백본(backbone)을, 규소 함유 시작 물질에 따라 유기 작용기를 갖는 포함할 것이다. 그러나 또한 이것은 [Si-O-Si-C]n 또는 심지어 [Si-O-Me-O]n (여기서 Me는 금속임) 백본을 달성하는 것이 가능하다.
[Si-O-Si-C] 백본을 얻기 위해, 하기 화학식을 갖는 화학 물질(chemical with formula);
R2 3-aR1 aSiR11SiR1 bR2 3-b
상기 화학식에서,
a는 1 내지 3,
b는 1 내지 3,
R1은 상기에서 설명한 것과 같은 반응기,
R2는 알킬, 알케닐, 알키닐, 알코올, 카르복시산, 디카르복시산(dicarboxylic acid), 아릴, 폴리아릴, 폴리사이클릭 알킬(polycyclic alkyl), 헤테로 사이클릭 지방족, 헤테로사이클릭 방향족 및
R11은 독립적으로 알킬기 또는 아릴기,
또는 1,000 g/mol 미만의 분자량을 갖는 이들의 올리고머인,
상기 화학식을 갖는 화학 물질이 상기에서 언급한 바와 같이, 제1, 제2, 및 제3 화합물 또는 이들의 임의의 조합과 함께 중합될 수 있다.
이러한 화합물들의 예들은 1,2-비스(디메틸하이드록실실릴)에탄(1,2-bis(dimethylhydroxylsilyl)ethane), 1,2-비스(트리메톡실실릴)에탄(1,2-bis(trimethoxylsilyl)ethane), 1,2-비스(디메톡시메틸실릴)에탄(1,2-Bis(dimethoxymethylsilyl)ethane), 1,2-비스(메톡시디메틸실릴)에탄(1,2-Bis(methoxydimethylsilyl)ethane), 1,2-비스(트리에톡실실릴)에탄(1,2-bis(triethoxylsilyl)ethane), 1,3-비스(디메틸하이드록실실릴)프로판(1,3-bis(dimethylhydroxylsilyl)propane), 1,3-비스(트리메톡실실릴)프로판(1,3-bis(trimethoxylsilyl)propane), 1,3-비스(디메톡시메틸실릴)프로판(1,3-Bis(dimethoxymethylsilyl)propane), 1,3-비스(메톡시디메틸실릴)프로판(1,3-Bis(methoxydimethylsilyl)propane), 1,3-비스(트리에톡실실릴)프로판(1,3-bis(triethoxylsilyl)propane), 1,4-비스(디메틸하이드록실실릴)부탄(1,4-bis(dimethylhydroxylsilyl)butane), 1,4-비스(트리메톡실실릴)부탄(1,4-bis(trimethoxylsilyl)butane), 1,4-비스(디메톡시메틸실릴)부탄(1,4-Bis(dimethoxymethylsilyl)butane), 1,4-비스(메톡시디메틸실릴)부탄(1,4-Bis(methoxydimethylsilyl)butane), 1,4-비스(트리에톡실실릴)부탄(1,4-bis(triethoxylsilyl)butane), 1,5-비스(디메틸하이드록실실릴)펜탄(1,5-bis(dimethylhydroxylsilyl)pentane), 1,5-비스(트리메톡실실릴)펜탄(1,5-bis(trimethoxylsilyl)pentane), 1,5-비스(디메톡시메틸실릴)펜탄(1,5- Bis(dimethoxymethylsilyl)pentane), 1,5-비스(메톡시디메틸실릴)펜탄(1,5-bis(methoxydimethylsilyl)pentane), 1,5-비스(트리에톡실실릴)펜탄(1,5-bis(triethoxylsilyl)pentane), 1,6-비스(디메틸하이드록실실릴)헥산(1,6-bis(dimethylhydroxylsilyl)hexane), 1,6-비스(트리메톡실실릴)헥산(1,6-bis(trimethoxylsilyl)hexane), 1,6-비스(디메톡시메틸실릴)헥산(1,6-Bis(dimethoxymethylsilyl)hexane), 1,6-비스(메톡시디메틸실릴)헥산(1,6-Bis(methoxydimethylsilyl)hexane), 1,6-비스(트리에톡실실릴)헥산 1,4-비스(트리메톡실실릴)벤젠(1,6-bis(triethoxylsilyl)hexane 1,4-bis(trimethoxylsilyl)benzene), 비스(트리메톡실실릴)나프탈렌(bis(trimethoxylsilyl)naphthalene), 비스(트리메톡실실릴)안트라젠(bis(trimethoxylsilyl)anthrazene), 비스(트리메톡실실릴)페난트렌( bis(trimethoxylsilyl)phenanthere), 비스(트리메톡실실릴)노보넨(bis(trimethoxylsilyl)norbornene), 1,4-비스(디메틸하이드록시실릴)벤젠(1,4-Bis(dimethylhydroxysilyl)benzene), 1,4-비스(메톡시디메틸실릴)벤젠(1,4-bis(methoxydimethylsilyl)benzene) 및 1,4-비스(트리에톡시실릴)벤젠(1,4-bis(triethoxysilyl)benzene)이다.
일 실시예에서 [Si-O-Si-C] 백본을 얻기 위해, 하기 화학식을 갖는 화합물로서,
R5 3-(c+d)R4 dR3 cSiR11SiR3 eR4 fR5 3-(e+f)
상기 화학식에서,
R3는 가교결합 작용기,
R4는 반응기, 및
R5는 알킬, 알케닐, 알키닐, 알코올, 카르복시산, 디카르복시산, 아릴, 폴리아릴, 폴리사이클릭 알킬, 헤테로 사이클릭 지방족, 헤테로 사이클릭 방향족 기,
R12는 독립적으로 알킬기 또는 아릴기, 그리고
여기서 c = 1 내지 2, d = 1 내지 (3-c), e = 1 내지 2, 및 f = 1 내지 (3-e),
또는 1,000 g/mol 미만의 분자량을 갖는 이들의 올리고머인,
상기 화학식을 갖는 화합물이 본 명세서에서 언급된 것과 같은 제1, 제2, 제3 화합물, 또는 이들의 임의의 조합들과 함께 중합된다.
이들 화합물들의 예들은 몇 가지만 언급하면, 1,2-비스(에테닐디메톡시실릴)에탄(1,2-bis(ethenyldimethoxysilyl)ethane), 1,2-비스(에티닐디메톡시실릴)에탄(1,2-bis(ethynyldimethoxysilyl)ethane), 1,2-비스(에티닐디메톡시)에탄(1,2-bis(ethynyldimethoxy)ethane), 1,2-비스(3-글리시독시프로필디메톡시실릴)에탄(1,2-bis(3-glycidoxypropyldimethoxysilyl)ethane), 1,2-비스[2-(3,4-에폭시사이클로헥실)에틸디메톡시실릴]에탄(1,2-bis[2-(3,4-Epoxycyclohexyl)ethyldimethoxysilyl]ethane), 1,2-비스(프로필메타크릴레이트디메톡시실릴)에탄(1,2-bis(propylmethacrylatedimethoxysilyl)ethane), 1,4-비스(에테닐디메톡시실릴)벤젠(1,4-bis(ethenyldimethoxysilyl)benzene), 1,4-비스(에티닐디메톡시실릴)벤젠(1,4-bis(ethynyldimethoxysilyl)benzene), 1,4-비스(에티닐디메톡시실릴)벤젠(1,4-bis(ethynyldimethoxysilyl)benzene), 1,4-비스(3-글리시독시프로필 디메톡시실릴)벤젠(1,4-bis(3-glycidoxypropyl dimethoxysilyl)benzene), 1,4-비스[2-(3,4-에폭시사이클로헥실)에틸디메톡시실릴]벤젠(1,4-bis[2-(3,4-epoxycyclohexyl)ethyldimethoxysilyl]benzene), 1,4-비스(프로필 메타크릴레이트디메톡시실릴)벤젠(1,4-bis(propyl methacrylatedimethoxysilyl)benzene)이다.
일 실시예에서 하기 화학식 R1 aR2 bR3 3-(a+b)Si-O-SiR2 2-O-SiR1 aR2 bR3 3-(a+b), 여기서 R1은 상기 설명된 것과 같은 반응기, R2는 상기 설명된 것과 같은 알킬 또는 아릴, R3는 상기 설명된 것과 같은 가교결합 작용기 및 a = 0 내지 3, b = 0 내지 3, 을 갖는 실록산 모노머가 이전에 언급된 실란 또는 최종 제형에 첨가제로서 첨가된 것과 중합된다.
이들 화합물들의 예들은 몇 가지 예들만 언급하면, 1,1,5,5-테트라메톡시-1,5-디메틸-3,3-디페닐트리실록산(1,1,5,5-tetramethoxy-1,5-dimethyl-3,3-diphenyltrisiloxane), 1,1,5,5-테트라메톡시-1,3,3,5-테트라페닐트리실록산(1,1,5,5-tetramethoxy-1,3,3,5-tetraphenyltrisiloxane), 1,1,5,5-테트라에톡시-3,3-디페닐트리실록산(1,1,5,5-tetraethoxy-3,3-diphenyltrisiloxane), 1,1,5,5-테트라메톡시-1,5-디비닐-3,3-디페닐트리실록산(1,1,5,5-tetramethoxy-1,5-divinyl-3,3-diphenyltrisiloxane), 1,1,5,5-테트라메톡시-1,5-디메틸-3,3-디이소프로필트리실록산(1,1,5,5-tetramethoxy-1,5-dimethyl-3,3-diisopropyltrisiloxane), 1,1,1,5,5,5-헥사 메톡시-3,3-디페닐트리실록산(1,1,1,5,5,5-hexamethoxy-3,3-diphenyltrisiloxane), 1,5-디메틸-1,5-디에톡시-3,3-디페닐트리실록산(1,5-dimethyl-1,5-diethoxy-3,3-diphenyltrisiloxane), 1,5-비스(메르캅토프로필)-1,1,5,5-테트라메톡시-3,3-디페닐트리실록산(1,5-bis(mercaptopropyl)-1,1,5,5-tetramethoxy-3,3-diphenyltrisiloxane), 1,5-디비닐-1,1,5,5-테트라메톡시-3-페닐-3-메틸트리실록산(1,5-divinyl-1,1,5,5-tetramethoxy-3-phenyl-3-methyltrisiloxane), 1,5-디비닐-1,1,5,5-테트라메톡시-3-사이클로헥실-3-메틸트리실록산(1,5-divinyl-1,1,5,5-tetramethoxy-3-cyclohexyl-3-methyltrisiloxane), 1,1,7,7-테트라메톡시-1,7-디비닐-3,3,5,5-테트라메틸테트라실록산(1,1,7,7-tetramethoxy-1,7-divinyl-3,3,5,5-tetramethyltetrasiloxane), 1,1,5,5-테트라메톡시-3,3-디메틸트리실록산(1,1,5,5-tetramethoxy-3,3-dimethyltrisiloxane), 1,1,7,7-테트라에톡시-3,3,5,5-테트라메틸테트라실록산(1,1,7,7-tetraethoxy-3,3,5,5-tetramethyltetrasiloxane), 1,1,5,5- 테트라에톡시-3,3-디메틸트리실록산(1,1,5,5- tetraethoxy-3,3-dimethyltrisiloxane), 1,1,5,5-테트라메톡시-1,5-[2-(3,4-에폭시사이클로헥실)에틸]-3,3-디페닐트리실록산(1,1,5,5-tetramethoxy-1,5-[2-(3,4-epoxycyclohexyl)ethyl]-3,3-diphenyltrisiloxane), 1,1,5,5-테트라메톡시-1,5-(3-글리시독시프로필)-3,3-디페닐트리실록산(1,1,5,5-tetramethoxy-1,5-(3-glycidoxypropyl)-3,3-diphenyltrisiloxane), 1,5-디메틸-1,5-디메톡시-1,5-[2-(3,4-에폭시사이클로헥실)에틸]-3,3-디페닐트리실록산(1,5-dimethyl-1,5-dimethoxy-1,5-[2-(3,4-epoxycyclohexyl)ethyl]-3,3-diphenyltrisiloxane), 1,5-디메틸-1,5-디메톡시-1,5-(3-글리시독시프로필)-3,3-디페닐트리실록산(1,5-dimethyl-1,5-dimethoxy-1,5-(3-glycidoxypropyl)-3,3-diphenyltrisiloxane)이다.
조성물에 첨가된 첨가제 (상기에서 언급된 것과 같이 실록산 물질의 중합 후)는 하기 화학식을 갖는 실란 화합물일 수 있다;
R1 aR2 bSiR3 4-(a+b)
상기 화학식에서,
R1은 하이드록시, 알콕시 또는 아세틸옥시와 같은 반응성기,
R2는 알킬 또는 아릴기,
R3는 에폭시, 옥세탄, 알케닐,아크릴레이트 또는 알키닐 기와 같은 가교결합 화합물,
a = 0 내지 1 및 b = 0 내지 1.
첨가제들의 예들은 트리-(3-글리시독시프로필)페닐실란(tri-(3-glycidoxypropyl)phenylsilane), 트리-[2-(3,4-에폭시사이클로헥실)에틸]페닐실란(tri-[2-(3,4-epoxycyclohexyl)ethyl]phenylsilane), 트리-(3-메타크릴옥시프로필)페닐실란(tri-(3-methacryloxypropyl)phenylsilane), 트리-(3-아크릴옥시프로필)페닐실란(tri-(3-acryloxypropyl)phenylsilane), 테트라-(3-글리시독시프로필)실란(tetra-(3-glycidoxypropyl)silane), 테트라-[2-(3,4-에폭시사이클로헥실)에틸]실란(tetra-[2-(3,4-epoxycyclohexyl)ethyl]silane), 테트라-(3-메타크릴옥시프로필)실란(tetra-(3-methacryloxypropyl)silane), 테트라-(3-아크릴옥시프로필)실란(tetra-(3-acryloxypropyl)silane), 트리-(3-글리시독시프로필)p-톨릴실란(tri-(3-glycidoxypropyl)p-tolylsilane), 트리-[2-(3,4-에폭시사이클로헥실)에틸]p-톨릴실란(tri-[2-(3,4-epoxycyclohexyl)ethyl]p-tolylsilane), 트리-(3-메타크릴옥시프로필)p-톨릴실란(tri-(3-methacryloxypropyl)p-tolylsilane), 트리-(3-아크릴옥시프로필)p-톨릴실란(tri-(3-acryloxypropyl)p-tolylsilane), 트리-(3-글리시독시프로필)하이드록실실란(tri-(3-glycidoxypropyl)hydroxylsilane), 트리-[2-(3,4-에폭시사이클로헥실)에틸]하이드록실실란(tri-[2-(3,4-epoxycyclohexyl)ethyl]hydroxylsilane), 트리-(3-메타크릴옥시프로필)하이드록실실란(tri-(3-methacryloxypropyl)hydroxylsilane), 트리-(3-아크릴옥시프로필)하이드록실실란(tri-(3-acryloxypropyl)hydroxylsilane)이다.
첨가제는 또한 임의의 유기 또는 실리콘(silicone) 폴리머들일 수 있고 이것은 메인 폴리머 매트릭스와 결합할 수 있거나 결합하지 않을 수 있으며 따라서 가소제(plasticizer), 연화제(softener), 또는 실리콘과 같은 매트릭스 조건제(matrix modifier)로서 작용한다. 첨가제는 또한 SiOx, TiOx, AlOx, TaOx, HfOx, ZrOx, SnOx, 폴리실라잔(polysilazane)과 같은 무기 폴리콘덴세이트(polycondensate)일 수 있다.
미립자 필러는 전도성 물질, 예를 들면 카본 블랙, 흑연, 그래핀, 금, 은, 구리, 백금, 팔라듐, 니켈, 알루미늄, 은 도금 구리, 은 도금 알루미늄, 비스무스, 주석, 비스무스-주석 합금, 은 도금 섬유, 니켈 도금 구리(nickel plate copper), 은 및 니켈 도금 구리, 금 도금 구리, 금 및 니켈 도금 구리일 수 있거나, 또는 이것은 금, 은-금, 은, 니켈, 주석, 백금, 타이타늄 도금 폴리머, 예를 들먼 폴리아크릴레이트, 폴리스티렌 또는 실리콘일 수 있으나 이에 제한되지는 않는다. 필러는 또한 반도체 물질, 예를 들어 규소, n 또는 p 형 도핑된 규소, GaN, InGaN, GaAs, InP, SiC일 수 있으나 이에 제한되지는 않는다. 뿐만 아니라, 필러는 양자점(quantum dot) 또는 표면 플라즈몬성 입자(surface plasmonic particle) 또는 형광체(phosphor) 입자일 수 있다. 다른 반도체 입자들 또는 양자점들, 예를 들면, Ge, GaP, InAs, CdSe, ZnO, ZnSe, TiO2, ZnS, CdS, CdTe, 등이 또한 가능하다.
필러는 임의의 적합한 금속 또는 반-금속 입자들, 예를 들면, 금, 은, 구리, 백금, 팔라듐, 인듐, 철, 니켈, 알루미늄, 탄소, 코발트, 스트론튬, 아연, 몰리브덴(molybdenum), 타이타늄, 텅스텐, 은 도금 구리, 은 도금 알루미늄, 비스무스, 주석, 비스무스-주석 합금, 은 도금 섬유 또는 합금 또는 이들의 임의의 조합과 같은 입자들일 수 있다. 전이 금속 입자들 (전 전이금속(early transition metals) 또는 후 전이금속(later transition metals)이든)인 금속 입자들이 구상되고, 반금속 및 준금속(metalloids)과 마찬가지이다. 반-금속 또는 준금속 입자들, 예를 들어 비소(arsenic), 안티모니(antimony), 텔루륨(tellurium), 게르마늄(germanium), 규소, 및 비스무스가 구상된다.
또는 대안적으로 이것은 전기 비전도성 물질, 예를 들어 실리카, 석영, 알루미나, 알루미늄 나이트라이드(aluminum nitride), 실리카 코팅된 알루미늄 나이트라이드(aluminum nitride coated with silica), 바륨 설페이트(barium sulfate), 알루미나 트리하이드레이트, 보론 나이트라이드, 등, 일 수 있다. 필러는 입자 또는 플레이크(flakes)의 형태일 수 있고, 마이크로-크기 또는 나노-크기일 수 있다. 필러는 금속 및 반금속의 나이트라이드(nitrides), 옥시나이트라이드(oxynitrides), 카바이드(carbides), 및 옥시카바이드(oxycarbides)가 가능한 세라믹 화합물 입자들을 포함할 수 있다. 특히, 필러는 규소, 아연, 알루미늄, 이트륨, 이테르븀, 텅스텐, 타이타늄 규소, 타이타늄, 안티모니, 사마륨, 니켈, 니켈 코발트, 몰리브덴, 마그네슘, 망간, 란타나이드, 철, 인듐 주석, 구리, 코발트 알루미늄, 크롬, 세슘 또는 칼슘의 산화물인 세라믹 입자들인 입자들일 수 있다.
또한 탄소를 포함하고 카본블랙, 흑연, 그래핀, 다이아몬드, 규소 카보나이트라이드(silicon carbonitride), 타이타늄 카보나이트라이드, 탄소 나노버드(nanobuds) 및 탄소나노튜브로부터 선택되는 입자들이 가능하다. 필러의 입자들은 카바이드 입자들, 예를 들어 철 카바이드, 규소 카바이드, 코발트 카바이드, 텅스텐 카바이드, 보론 카바이드, 지르코늄 카바이드, 크롬 카바이드, 타이타늄 카바이드, 또는 몰리브덴 카바이드, 일 수 있다. 입자들은 대신에 나이트라이드 입자들, 예를 들어 알루미늄 나이트라이드, 탄탈 나이트라이드, 보론 나이트라이드, 타이타늄 나이트라이드, 구리 나이트라이드, 몰리브덴 나이트라이드, 텅스텐 나이트라이드, 철 나이트라이드, 규소 나이트라이드, 인듐 나이트라이드, 갈륨 나이트라이드 또는 탄소 나이트라이드일 수 있다.
입자들의 임의의 적합한 크기가 최종 어플리케이션에 따라 사용될 수 있다. 많은 경우에 100 미크론 미만, 그리고 바람직하게는 50 또는 20 미크론 미만까지의 평균 입자 크기를 갖는 작은 입자들이 사용된다. 서브-미크론 입자들(Sub-micron particles)이, 예컨대 1 미크론 미만, 또는 예를 들면 1 내지 500 nm, 예컨대 200 nm 미만, 예켠대 1 내지 100 nm, 또는 10 nm 미만까지, 또한 구상된다. 다른 실시예들에서, 입자들은 5 내지 50 nm, 또는 15 내지 75 nm, 100 nm 미만, 또는 50 내지 500 nm의 평균 입자 크기를 갖는 것이 제공된다. 길쭉하지 않은 입자들은, 예를 들면 실질적인 구형 또는 사각형, 또는 평평한 디스크 형태의 외관 (매끄러운 가장자리 또는 거친 가장자리를 갖는)을 갖는 플레이크(flakes)가 가능하고, 길쭉한(elongated) 위스커(whiskers), 실린더(cylinders), 와이어(wires) 및 다른 길쭉한 입자들도, 예를 들어 5:1 또는 그 이상, 또는 10:1 또는 그 이상의 종횡비(aspect ratio)를 갖는, 마찬가지이다. 매우 길쭉한 입자들, 예를 들어 매우 높은 종횡비를 갖는 나노와이어 및 나노튜브 또한 가능하다. 나노와이어 또는 나노튜브에 대한 높은 종횡비는 25:1 또는 그 이상, 50:1 또는 그 이상, 또는 100:1 또는 그 이상까지 일 수 있다. 나노와이어 또는 나노튜브의 평균 입자 크기는 길이가 꽤 긴, 심지어 센티미터 길이까지일 수 있기 때문에 가장 작은 크기(dimension) (폭 또는 직경)에 관한 것이다. 본 명세서에서 사용된 것과 같은, 용어 "평균 입자 크기(average particle size)"는 입자의 부피로 50%가 그 값 보다 작은 직경을 갖는 누적 체적(volume) 분포 곡선의 D50 값을 나타낸다.
입자들은 본 명세서 어디에서든 언급된 것과 같은 입자들의 혼합물일 수 있고, 여기서 200 nm 보다 큰 평균 입자 크기를 갖는 제1 그룹의 입자들이 200 nm 보다 작은 평균 입자 크기를 갖는 제2 그룹의 입자들과 함께 제공되고, 예를 들면 여기서 제1 그룹은 500 nm 보다 큰 평균 입자 크기를 갖고 제2 그룹은 100 nm 보다 작은 평균 입자 크기를 갖는다 (예를 들면, 1 미크론 보다 큰 제1 그룹의 평균 입자 크기, 50 nm 또는 심지어 25 nm 보다 작은 제2 그룹의 입자 크기). 더 작은 입자들은 더 큰 입자들 보다 낮은 녹는점을 갖고, 플러스 미크론 크기(plus micron size)를 갖는 동일한 물질의 질량(mass) 또는 입자들 보다 낮은 온도에서 녹거나 소결된다. 일례로, 더 작은 입자들은 1 미크론 미만의 평균 입자 크기를 갖고 동일한 물질의 벌크 온도 미만의 온도에서 녹고 소결한다. 선택된 입자 물질, 그리고 평균 입자 크기에 따라, 용융 온도(melting temperature) 및 소결 온도는 상이할 것이다.
일례로서, 매우 작은 은 나노입자들은 120 ℃ 미만에서 녹을 수 있고, 심지어 더 낮은 온도에서 소결할 수 있다. 이와 같이, 원한다면, 작은 입자들은 실록산 폴리머 물질의 완전한 가교결합 및 경화 이전에 큰 입자들을 함께 연결하는 녹거나 소결된 입자들(particles)의 웹(web)을 형성하기 위해, 폴리머 경화 온도와 동일한 또는 더 낮은 용융 온도 또는 소결 온도를 가질 수 있다. 일례로, 작은 입자들은 큰 입자들과 함께 130 ℃ 미만의 온도, 예를 들면 120 ℃ 미만, 에서 녹거나 소결되고, 또는 심지어 110 ℃ 미만에서 소결되는 반면, 실록산 물질은 더 높은 온도에서 실질적인 가교결합을 겪는다, 예를 들면, 110 ℃ 미만에서 실질적인 소결 또는 용융(melting), 그러나, 110 ℃ 보다 높은 온도에서 실질적인 중합 (또는 예를 들면 120 ℃ 미만 (또는 130 ℃)에서 실질적인 소결 또는 용해, 그러나 120 ℃ (또는 130 ℃) 초과 온도에서 실질적인 중합). 실록산 물질의 실질적인 중합 이전에 작은 입자들의 소결 또는 용해는, 최종 경화된 층의 전기 전도성을 증가시키는 형성된 금속 "격자(lattice)"의 더 큰 상호연결성(interconnectivity)을 허용한다. 작은 입자들의 실질적인 소결 또는 용해 이전에 실질적인 중합은 형성된 금속 "격자"의 양을 감소시키고 최종 경화된 층의 전기 전도성을 낮춘다. 물론, 더 작은 평균 입자 크기, 예를 들면 서브 미크론 크기의 입자들 또한 제공 가능하고, 이것은 계속 동일한 벌크 물질 (또는 예를 들어 1 미크로 보다 큰 평균 입자 크기를 갖는 동일한 입자들)과 비교하여 더 낮은 소결 및 녹는점(melting points)의 장점을 달성할 수 있다.
필러 및 실록산 폴리머의 커플링(coupling)을 향상시키기 위해, 커플링제가 사용될 수 있다. 커플링제는 필러 및 폴리머 사이의 접착을 증가시킬 것이고 따라서 최종 제품의 열 및/또는 전지 전도성이 증가될 수 있다. 커플링제는 하기 화학식을 갖는 임의의 실란 모노머일 수 있다;
R13 hR14 iSiR15 j
상기 화학식에서
R13은 할로겐, 하이드록시, 알콕시, 아세틸 또는 아세틸옥시와 같은 반응기,
R14는 알킬 또는 아릴기 및
R15는 에폭시, 무수물, 시아노, 옥세탄, 아민, 티올, 알릴, 알케닐 또는 알키닐과 같은 작용기,
h = 0 내지 4, i = 0 내지 4, j = 0 내지 4, 및 h + i + j = 4.
커플링제는 최종 제품이 준비될 때 직접적으로 필러, 실록산 폴리머, 경화제, 및 첨가제와 혼합될 수 있고 또는 커플링제가 입자들과 혼합되기 전 필러 입자들이 커플링제로 처리될 수 있다.
입자들이 그들을 최종 제형에 사용하기 전 커플링제로 처리되는 경우, 알코올 용액으로부터 증착, 수용성 용액으로부터 증착, 필러 상에 벌크 증착 및 무수물 액상 증착과 같은 다른 방법들이 사용될 수 있다. 알코올 용액으로부터 증착에서, 알코올/물 용액을 제조하고 용액의 pH는 약산성(pH 4.5 -5.5)로 조절된다. 실란을 용액에 첨가하고 부분적으로 가수분해 하도록 몇 분 동안 혼합한다. 그 다음 필러 입자들을 첨가하고 용액을 상이한 시간 동안 실온(RT) 내지 환류 온도로 혼합한다. 혼합 후, 입자들을 여과하고, 에탄올로 세척하며, 커플링제로 표면 처리된 입자들을 수득하기 위해 오븐에서 건조한다. 수용성 용액으로부터 증착은 알코올 용액으로부터 증착과 비교하여 유사하지만 알코올 대신 순순한 물을 용매로서 사용한다. pH는 기능화되지 않은 아민이 사용될 때 산으로 다시 조정한다. 입자들을 물/실란 혼합물과 혼합 후, 입자들을 여과, 세척 및 건조한다.
벌크 증착 방법은 실란 커플링제를 임의의 물 또는 pH 조정 없이 용매와 혼합하는 방법이다. 필러 입자들은 스프레이 코팅과 같은 다른 방법을 사용하여 실란 알코올 용액으로 코팅하고 그 다음 오븐에서 건조한다.
무수물 액상 증착에서, 실란은 톨루엔, 테트라하이드로퓨란, 또는 하이드로카본과 같은 유기 용매와 혼합하고 필러 입자들을 상기 용액에서 환류하며 추가 용매는 진공 또는 여과에 의해 제거한다. 입자들은 또한 후에 오븐에서 건조할 수 있지만 이것은 환류 조건들 하에서 입자들 및 필러 사이의 직접 반응으로 인해 때로는 필요하지 않다.
상기 실란 커플링제의 예들은 몇 가지만 언급하면, 비스 (2-하이드록시에틸)-3-아미노프로필트리에톡시실란(bis (2-hydroxyethyl)-3-aminopropyltriethoxysilane), 알릴트리메톡시실란(Allyltrimethoxysilane), N-(2-아미노에틸)-3-아미노프로필메틸디메톡시실란(N-(2-Aminoethyl)-3-aminopropylmethyldimethoxysilane), N-(2-아미노에틸)-3-아미노프로필트리메톡시실란(N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane), 3-아미노프로필메틸디에톡시실란(3-Aminopropylmethyldiethoxysilane). 3-아미노프로필트리에톡시실란(3-Aminopropyltriethoxysilane), 3-아미노프로필트리메톡시실란(3-Aminopropyltrimethoxysilane), (N-트리메톡시실릴프로필)폴리에틸렌이민((N-Trimethoxysilylpropyl)polyethyleneimine), 트리메톡시실릴프로필디에틸렌트리아민(Trimethoxysilylpropyldiethylenetriamine), 페닐트리에톡시실란(Phenyltriethoxysilane), 페닐트리메톡시실란(Phenyltrimethoxysilane), 3-클로로프로필트리메톡시실란(3-Chloropropyltrimethoxysilane), 1-트리메톡시실릴-2(p,m-클로로메틸)페닐에탄(1-Trimethoxysilyl-2(p,m-chloromethyl)phenylethane), 2-(3,4-에폭시사이클로헥실)에틸트리메톡시실란(2-(3,4-Epoxycyclohexyl)ethyltrimethoxysilane), 3-글리시독시프로필트리메톡시실란(3-Glycidoxypropyltrimethoxysilane), 이소시아네이트프로필트리에톡시실란(Isocyanatepropyltriethoxysilane), 비스[3-(트리에톡시실릴)프로필]테트라설파이드(Bis[3-(triethoxysilyl)propyl]tetrasulfide), 3-메르캅토프로필메틸디메톡시실란(3-Mercaptopropylmethyldimethoxysilane), 3-메르캅토프로필트리메톡시실란(3-Mercaptopropyltrimethoxysilane), 3-메타크릴옥시프로필트리메톡시실란(3-Methacryloxypropyltrimethoxysilane), 2-(디페닐포스피노)에틸트리에톡시실란(2-(Diphenylphosphino)ethyltriethoxysilane), 1,3-디비닐테트라메틸디실라잔(1,3-Divinyltetramethyldisilazane), 헥사메틸디실라잔(Hexamethyldisilazane), 3-(N-스티릴메틸-2-아미노에틸아미노)프로필트리메톡시실란(3-(N-Styrylmethyl-2-aminoethylamino)propyltrimethoxysilane), N-(트리에톡시실릴프로필)우레아(N-(Triethoxysilylpropyl)urea), 1,3-디비닐테트라메틸디실라잔(1,3-Divinyltetramethyldisilazane), 비닐트리에톡시실란(Vinyltriethoxysilane) 및 비닐트리메톡시실란(Vinyltrimethoxysilane)이다.
첨가된 입자들의 유형에 따라, 실록산-입자 경화된 최종 제품은 열 전도성인, 예를 들면 최종 열 또는 UV 경화 후, 미터 켈빈(meter kelvin) 당 0.5 와트(watts) (W/(m·K)) 보다 큰, 열 전도도를 갖는, 층 또는 필름일 수 있다. 더 높은 열 전도도 물질이, 선택된 입자들의 유형에 따라 가능하다. 실록산 조성물에서 금속 입자들은 2.0 W/(m·K) 보다 큰, 또는 심지어 10.0 W/(m·K) 보다 큰, 열 전도도를 갖는 경화된 최종 필름이 결과를 낳을 수 있다. 필름 어플리케이션에 따라, 더 높은 열 전도도를, 예를 들어 50.0 W/(m·K) 보다 크거나, 심지어 100.0 W/(m·K) 보다 큰, 원할 수 있다. 그러나 다른 어플리케이션들에서, 입자들은 원한다면, 더 낮은 열 전도성을 갖는 물질을 야기하도록 선택될 수 있고, 예컨대 실록산 입자 물질이 광학적으로 투과 층(transmissive layer)인 경우, 상기 언급한 바와 같다.
또한, 원한다면, 최종 경화된 제품은 낮은 전기 저항력(resistivity)을 가질 수 있다, 예컨대 1 ×10-3 Ω·m 미만, 바람직하게는 1 ×10-5 Ω·m 미만, 및 보다 바람직하게는 1 ×10-7 Ω·m 미만. 또한 증착된 박막의 시트(sheet) 저항(resistance)은 바람직하게는 100,000 미만, 보다 바람직하게는 10,000 미만이다. 그러나 물질의 목적하는 최종 용도들의 상당수(a number of desired final uses of the material)는 높은 전기 저항력을 가질 수 있다.
일부 경우에서, 특히 조성물이 광학 특성들을 요구하는 소자에 도포될 때, 최종 경화된 실록산에 대한 일부 경우들이 광학적 흡수 특성들을 갖는데 바람직할 수 있음에도 불구하고, 물질은 바람직하게는 가시광 스펙트럼의 광에 (또는 최종 소자가 동작되는 스펙트럼에서) 고도로 투과성일 가능성이 많거나, 또는 가시광 스펙트럼의 광에 (또는 최종 소자가 동작되는 스펙트럼에서) 고도로 반사성일 가능성이 많다. 투명한 물질의 예로서, 1 내지 50 미크론의 두께를 갖는 최종 경화 층이 그들에 90도 입사하는 가시광의 적어도 85%, 또는 바람직하게는 적어도 90%, 보다 바람직하게는 적어도 92.5% 및 가장 바람직하게는 적어도 95%를 투과시킬 것이다. 반사 층의 예로서, 최종 경화된 층은 90의 각도로 그들에 입사하는 광의 적어도 85%, 바람직하게는 적어도 95%를 반사할 수 있다.
본 발명의 물질은 또한 안정제 및/또는 항산화제를 포함할 수 있다. 이들 화합물들은 열, 광, 또는 원료들(raw materials)로부터의 잔여 촉매와 같은 것들에 의해 유도되는 산소와 반응으로 야기된 분해로부터 물질을 보호하기 위해 첨가된다.
본 명세서에 포함된 적용 가능한 안정제 또는 항산화제 중에는 높은 분자량 힌더드 페놀(hindered phenols) 및 다기능성(multifunctional) 페놀, 예컨대 황 및 인-함유 페놀 이다. 힌더드 페놀은 당업자에게 잘 알려진 것이고 페놀성 화합물로서 특징지어질 수 있으며 이것은 또한 이들의 페놀성 하이드록시기에 인접한 입체적으로 벌키한(bulky) 라디칼들을 포함한다. 특히, 4차 부틸기들은 일반적으로 페놀성 하이드로시기에 관련된 적어도 하나의 오르토(ortho) 위치에서 벤젠 고리 상에 치환된다. 하이드록시기 부군의 이러한 입체적으로 벌키한 치환된 라디칼들의 존재는 이의 스트레칭 프리퀀시(stretching frequency) 지연을 제공하고, 이에 맞게 이의 반응성 지연을 제공한다; 이 장애(hindrance)는 따라서 이의 안정화 특성들을 갖는 페놀성 화합물을 제공한다. 대표적인 힌더드 페놀은; 1,3,5-트리메틸-2,4,6-트리스-(3,5-디-tert-부틸-4-하이드록시벤질)-벤젠(1,3,5-trimethyl-2,4,6-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-benzene); 펜타에리스리틸 테트라키스-3(3,5-디-tert-부틸-4-하이드록시페닐)-프로피오네이트(pentaerythrityl tetrakis-3(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate); n-옥타데실-3(3,5-디-tert-부틸-4-하이드록시페닐)-프로피오네이트(n-octadecyl-3(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate); 4,4'-메틸렌비스(2,6-tert-부틸-페놀)(4,4'-methylenebis(2,6-tert-butyl-phenol)); 4,4'-티오비스(6-tert-부틸-o-크레졸)(4,4'-thiobis(6-tert-butyl-o-cresol)); 2,6-디-tert부틸페놀(2,6-di-tertbutylphenol); 6-(4-하이드록시페녹시)-2,4-비스(n-옥틸-티오)-l,3,5 트리아진( 6-(4-hydroxyphenoxy)-2,4-bis(n-octyl-thio)-l,3,5 triazine); 디-n-옥틸티오)에틸 3,5-디-tert-부틸-4-하이드록시-벤조에이트(di-n-octylthio)ethyl 3,5-di-tert-butyl-4-hydroxy-benzoate); 및 소르비톨 헥사[3-(3,5-디-tert-부틸-4-하이드록시-페닐)-프로피오네이트](sorbitol hexa[3-(3,5-d i- tert-butyl-4-hydroxy-phenyl)-propionate])을 포함한다. 항산화제의 상업적 예들은 예를 들어, BASF에 의해 제조된 Irganox 1035, Irganox 1010, Irganox 1076, Irganox 1098, Irganox 3114, Irganox PS800, Irganox PS802, Irgafos 168이다.
실록산 폴리머 및 필러 사이의 중량비는 최종 제품의 용도에 따라 100:0 내지 5:95 사이이다. 실록산 폴리머 및 가교결합 규소 또는 비규소 기반 레진 또는 올리고머 사이의 비는 100:0 내지 75:25 사이이다. 실록산 폴리머 양으로부터 계산된 경화제의 양은 0.1 내지 20%이다. 제형의 총량에 대한 접착 촉진제의 양은 0 내지 10%이다. 제형의 총 중량에 대한 항산화제의 양은 0 내지 5%이다.
실록산-입자 조성물은 다양한 분야들에서 사용될 수 있다. 이것은 몇 가지 예만 들자면, 전자 또는 광전자 패키징, LED 및 OLED 전 및 후위 처리, 3D, 광전지 및 디스플레이 금속화, 납땜의 대체 예를 들면, 반도체 패키징에서 납땜 범프, 인쇄 전자, OLED 낮은 일함수 캐소드 잉크, ITO 대체 잉크, 금속망 및 기타 전극들, 고해상도 광전 페이스트, LMO 캐소드 페이스트, 광전지, 전력 전자 및 EMI, 터치 센서 및 기타 디스플레이들에서 접착제 또는 봉지재, 열 또는 UV 경화성 봉지재 또는 유전체로서 이용될 수 있다.
경화 메카니즘 및 촉매 활성화의 유형에 따라 최종 제형은 일반적으로 물질을 더 높은 온도로 가열하여 경화된다. 예를 들어 열산 발생제가 사용되는 경우, 물질은 특정 시간 동안 오븐에 위치된다. 또한 전자기 조사, 예를 들어 UV 광으로 경화 가능하다.
제1 및 제2 화합물의 중합으로부터 형성된 실록산 폴리머의 분자량은 약 300 내지 10,000 g/mol, 바람직하게는 약 400 내지 5,000 g/mol, 및 보다 바람직하게는 약 500 내지 2,000 g/mol이다. 폴리머는 임의의 원하는 크기, 바람직하게는 100 미크론 미만의 평균 입자 크기를 갖는, 보다 바람직하게는 50 미크론 미만의 평균 입자 크기를 갖는, 또는 심지어 20 미크론 미만의 입자들과 결합된다. 실록산 폴리머는 10 내지 90%의 중량%로 첨가되고, 입자들은 1 내지 90%의 중량%로 첨가된다. 실록산 물질의 최종 용도가 광학적 투명도를 요구하는 경우, 입자들은 낮은 중량%, 예컨대 1 내지 20 중량%로 첨가된 세라믹 입자들일 수 있다. 실록산 물질이 전기 전도도가 요구되는 곳, 예를 들어 반도체 패키지, 에서 사용되는 경우, 입자들은 60 내지 95 중량%로 첨가된 금속 입자들일 수 있다.
제1 및 제2 화합물의 중합이 수행되고, 50 내지 100,000 mPa-sec, 바람직하게는 1000 내지 75,000 mPa-sec, 및 보다 바람직하게는 5000 내지 50,000 mPa-sec의 점도를 갖는 점성 유체를 형성하기 위해, 입자들이 그들과 함께 혼합된다. 점도는 Brookfield 또는 Cole-Parmer viscometer와 같은 점도계로 측정될 수 있고, 이것은 유체 샘플의 디스크(disc) 또는 실린더를 회전시키고 유도된 이동에 대한 점성 저항을 극복하는데 필요된 토크(torque)를 측정한다. 회전은 임의의 원하는 속도에서, 예를 들어 1 내지 30 rpm, 바람직하게는 5 rpm, 그리고, 바람직하게는 25 ℃에서 측정되는 물질과 함께, 일 수 있다.
중합 후, 임의의 추가적인 원하는 구성 성분들이 조성물로 첨가될 수 있고, 예를 들어, 입자들, 커플링제, 경화제 등이다. 조성물은 용기의 점성 물질로서 고객들(customers)에게 운송되고, 이것은 냉각(cooling) 또는 냉장(freezing) 필요 없이 주변 온도에서 운송될 수 있다. 최종 제품으로서, 물질은 상기 언급된 다양한 용도들에 적용될 수 있고, 일반적으로 고체 경화된 폴리머성 실록산 층을 형성하기 위해 열 또는 UV 경화된다.
본 명세서에 개시된 것과 같은 조성물은 바람직하게는 임의의 실질적인 용매가 없다. 용매는 일시적으로, 예를 들어, 중합된 점성 물질과 함께 경화제 또는 다른 첨가제들을 혼합하기 위해 첨가될 수 있다. 이 경우, 예를 들면 경화제는 이후 점성 실록산 폴리머와 혼합될 수 있는 유체 물질을 형성하기 위해 용매와 혼합된다. 그러나, 실질적으로 용매가 없는 조성물이 고객들에게 운송, 및 이후 고객의 소자에 적용되기에 바람직하고, 일시적으로 첨가된 용매는 건조 챔버에서 제거된다. 그러나 조성물이 실질적으로 용매가 없음에도 불구하고, 건조 공정 동안 제거될 수 없는 미량의 잔존 용매가 있을 수 있다. 용매 제거는 본 명세서에 개시된 조성물의 증착을 최종 경화 공정 동안 수축(shrinkage)을 감소시켜 돕고, 뿐만 아니라, 소자의 수명 동안 시간이 지남에 따른 수축을 최소화하고, 뿐만 아니라 소자의 수명 동안 물질의 열적 안정성을 돕는다.
조성물의 최종 어플리케이션(application), 조성물의 원하는 점도, 및 포함되는 입자들을 알면, 입자들 및 다른 구성 성분들을 갖는 조성물로 혼합 시, 원하는 최종 특성이 고객들에게 전달된 후에 달성되도록, 실록산 폴리머를 미세 조정할 수 있다 (출발 화합물, 분자량, 점도, 등). 조성물의 안정성으로 인해, 분자량 또는 점도의 어떠한 실질적인 변화 없이, 고객에 의핸 최종 사용까지 심지어 일주일, 또는 심지어 한 달의 기간 후에도 주변 온도에서 조성물을 운송할 수 있다.
실시예
하기 실록산 폴리머 실시예들은 예시로서 주어진 것이고 제한하고자 하는 것은 아니다.
실록산 폴리머의 점도는 Brookfield 점도계 (축 14(spindle 14))로 측정하였다. 폴리머의 분자량은 Agilent GPC로 측정하였다.
실록산 폴리머 i: 교반막대(stirring bar) 및 환류 콘덴서(condenser)를 갖는 500 mL 둥근 바닥 플라스크를 디페닐실란디올 (60 g, 45 mol%), 2-(3,4-에폭시사이클로헥실)에틸]트리메톡시실란(2-(3,4-epoxycyclohexyl)ethyl]trimethoxysilane) (55.67 g, 36.7 mol%) 및 테트라메톡시실란(tetramethoxysilane) (17.20 g, 18.3 mol%)로 채웠다. 플라스크는 질소 분위기 하에서 80 ℃로 가열하였고 1 mL의 메탄올에 용해된 0.08 g의 바륨 하이드록사이드 모노하이드레이트를 실란 혼합물(mixture of silanes)로 적정(dropwise) 첨가하였다. 디페닐실란디올이 알콕시실란(alkoxysilanes)과 반응하는 동안 실란 혼합물을 80 ℃에서 30분 동안 교반하였다. 30분 후, 형성된 메탄올은 진공 하에서 증발시켰다. 상기 실록산 폴리머는 1000 mPas의 점도와 1100의 Mw를 가졌다.
실록산 폴리머 ii: 교반막대 및 환류 콘덴서를 갖는 250 mL 둥근 바닥 플라스크를 디페닐실란디올 (30 g, 45 mol%), 2-(3,4-에폭시사이클로헥실)에틸]트리메톡시실란 (28.1 g, 37 mol%) 및 디메틸디메톡시실란(dimethyldimethoxysilane) (6.67 g, 18 mol%)로 채웠다. 플라스크는 질소 분위기 하에서 80 ℃로 가열하였고 1 mL의 메탄올에 용해된 0.035 g의 바륨 하이드록사이드 모노하이드레이트를 실란 혼합물로 적정 첨가하였다. 디페닐실란디올이 알콕시실란과 반응하는 동안 실란 혼합물을 80 ℃에서 30분 동안 교반하였다. 30분 후, 형성된 메탄올은 진공 하에서 증발시켰다. 상기 실록산 폴리머는 2750 mPas의 점도와 896의 Mw를 가졌다.
실록산 폴리머 iii: 교반막대 및 환류 콘덴서를 갖는 250 mL 둥근 바닥 플라스크를 디페닐실란디올 (24.5 g, 50 mol%), 2-(3,4-에폭시사이클로헥실)에틸]트리메톡시실란 (18.64 g, 33.4 mol%) 및 테트라메톡시실란 (5.75 g, 16.7 mol%)로 채웠다. 플라스크는 질소 분위기 하에서 80 ℃로 가열하였고 1 mL의 메탄올에 용해된 0.026 g의 바륨 하이드록사이드 모노하이드레이트를 실란 혼합물로 적정 첨가하였다. 디페닐실란디올이 알콕시실란과 반응하는 동안 실란 혼합물은 80 ℃에서 30분 동안 교반하였다. 30분 후, 형성된 메탄올은 진공 하에서 증발시켰다. 상기 실록산 폴리머는 7313 mPas의 점도와 1328의 Mw를 가졌다.
실록산 폴리머 iv: 교반막대 및 환류 콘덴서를 갖는 250 mL 둥근 바닥 플라스크를 디페닐실란디올 (15 g, 50 mol%), 2-(3,4-에폭시사이클로헥실)에틸]트리메톡시실란 (13.29 g, 38.9 mol%) 및 비스(트리메톡시실릴)에탄(bis(trimethoxysilyl)ethane) (4.17 g, 11.1 mol%)로 채웠다. 플라스크는 질소 분위기 하에서 80 ℃로 가열하였고 1 mL의 메탄올에 용해된 0.0175 g의 바륨 하이드록사이드 모노하이드레이트를 실란 혼합물로 적정 첨가하였다. 디페닐실란디올이 알콕시실란과 반응하는 동안 실란 혼합물을 80 ℃에서 30분 동안 교반하였다. 30분 후, 형성된 메탄올은 진공 하에서 증발시켰다. 실록산 폴리머는 1788 mPas의 점도와 1590의 Mw를 가졌다.
실록산 폴리머 v: 교반막대 및 환류 콘덴서를 갖는 250 mL 둥근 바닥 플라스크를 디페닐실란디올 (15 g, 45 mol%), 2-(3,4-에폭시사이클로헥실)에틸]트리메톡시실란 (13.29 g, 35 mol%) 및 비닐트리메톡시실란(vinyltrimethoxysilane) (4.57 g, 20 mol%)로 채웠다. 플라스크는 질소 분위기 하에서 80 ℃로 가열하였고 1 mL의 메탄올에 용해된 0.018 g의 바륨 하이드록사이드 모노하이드레이트를 실란 혼합물로 적정 첨가하였다. 디페닐실란디올이 알콕시실란과 반응하는 동안 실란 혼합물은 80 ℃에서 30분 동안 교반하였다. 30분 후, 형성된 메탄올은 진공 하에서 증발시켰다. 상기 실록산 폴리머는 1087 mPas의 점도와 1004의 Mw를 가졌다.
실록산 폴리머 vi: 교반막대 및 환류 콘덴서를 갖는 250 mL 둥근 바닥 플라스크를 디-이소프로필실란디올(di-isopropylsilandiol) (20.05 g, 55.55 mol%), 2-(3,4-에폭시사이클로헥실)에틸]트리메톡시실란 (20.0 g, 33.33 mol%) 및 비스(트리메톡시실릴)에탄 (7.3 g, 11.11 mol%)로 채웠다. 플라스크는 질소 분위기 하에서 80 ℃로 가열하였고 1 mL의 메탄올에 용해된 0.025 g의 바륨 하이드록사이드 모노하이드레이트를 실란 혼합물로 적정 첨가하였다. 디페닐실란디올이 알콕시실란과 반응하는 동안 실란 혼합물은 80 ℃에서 30분 동안 교반하였다. 30분 후, 형성된 메탄올은 진공 하에서 증발시켰다. 상기 실록산 폴리머는 150 mPas의 점도와 781의 Mw를 가졌다.
실록산 폴리머 vii: 교반막대 및 환류 콘덴서를 갖는 250 mL 둥근 바닥 플라스크를 디-이소부틸실란디올(di-isobutylsilandiol) (18.6 g, 60 mol%) 및 2-(3,4-에폭시사이클로헥실)에틸]트리메톡시실란 (17.32 g, 40 mol%)로 채웠다. 플라스크는 질소 분위기 하에서 80 ℃로 가열하였고 1 mL의 메탄올에 용해된 0.019 g의 바륨 하이드록사이드 모노하이드레이트를 실란 혼합물로 적정 첨가하였다. 디페닐실란디올이 알콕시실란과 반응하는 동안 실란 혼합물은 80 ℃에서 30분 동안 교반하였다. 30분 후, 형성된 메탄올은 진공 하에서 증발시켰다. 실록산 폴리머는 75 mPas의 점도와 710의 Mw를 가졌다.
조성물 실시예:
하기 조성물 실시예들은 예시로서 주어진 것이고 제한하고자 하는 것은 아니다.
비교예 1(Comparative example 1), 은 충전 접착제(Silver filled adhesive): 가교결합 기로서 에폭시를 갖는 실록산 폴리머 (18.3 g, 18.3 %), 4 마이크로미터의 평균 크기(D50)를 갖는 은 플레이크 (81 g, 81 %), 3-메타크릴레이트프로필트리메톡시실란(3-methacrylatepropyltrimethoxysilane) (0.5 g, 0.5 %) 및 King Industries K-PURE CXC - 1612 열산 발생제 (0.2%)를 고 전단 혼합기(high high shear mixer)를 사용하여 함께 혼합하였다. 상기 조성물은 15000 mPas의 점도를 가졌다.
비교예 2, 알루미나 충전 접착제: 가교결합 기로서 에폭시를 갖는 실록산 폴리머 (44.55 g, 44.45 %), 0.9 마이크로미터의 평균 크기(D50)를 갖는 알루미늄 옥사이드 (53 g, 53 %), 3-메타크릴레이트프로필트리메톡시실란 (1 g, 1 %), Irganox 1173 (1 g, 1 %) 및 King Industries K-PURE CXC - 1612 열산 발생제 (0.45 g, 0.45 %)를 3롤밀(three roll mill)을 사용하여 함께 혼합하였다. 상기 조성물은 20000 mPas의 점도를 가졌다.
비교예 3, BN 충전 접착제: 가교결합 기로서 에폭시를 갖는 실록산 폴리머 (60 g, 60 %), 15 마이크로미터의 평균 크기(D50)를 갖는 보론 나이트라이드 (35 g, 35 %), Irganox 1173 (1.3 g, 1.3 %), 2-(3,4-에폭시사이클로헥실)에틸트리메톡시실란 (3.4 g, 3.4 %) 및 King Industries K-PURE CXC - 1612 열산 발생제 (0.3 g, 0.3 %)를 3롤밀을 사용하여 함께 혼합하였다. 상기 조성물은 25000 mPas의 점도를 가졌다.
비교예 4, 반투명 물질(Translucent material): 가교결합 기로서 메타크릴레이트를 갖는 실록산 폴리머 (89 g, 89 %), 0.007 마이크로미터의 평균 크기(D50)를 갖는 흄드 실리카(fumed silica) (5 g, 5 %), Irganox 1173 (2 g, 2 %) 및 Irgacure 917 광개시제 (4 g, 4 %)를 3롤밀을 사용하여 함께 혼합하였다. 상기 조성물은 25000 mPas의 점도를 가졌다.
비교예 5, 투명 물질: 메탄올 중에 디페닐실란디올(Diphenylsilanediol) (20.0 g, 92 mmol), 9-(페난트레닐 트리메톡시실란(9-phenanthrenyl trimethoxysilane) (16.6 g, 56 mmol), 3-메타크릴옥시프로필트리메톡시실란(3-methacryloxypropyltrimethoxysilane) (9.2 g, 37 mmol) 및 BaO (25 mg)를 100 mL 플라스크에 넣었고 1시간 동안 환류하였다. 휘발 물질들(The volatiles)은 감압 하에서 증발하였다. 투명한 폴리머 레진 (37 g)을 수득하였다.
비교예 6, 고굴절률 물질(high refractive index material): 실시예 X1에서 설명된 것과 같이 제조된, 고굴절률을 갖는 8.6 g 폴리머 레진을 50%의 고체 함량을 갖는 1,2-프로판디올 모노메틸 에테르 아세테이트 (1,2-propanediol monomethyl ether acetate (PGMEA)) 중의 5.7 g의 ZrO2 나노입자 용액과 혼합하였다. 0.26 g 광개시제(Darocur 1173 by BASF), 접착 촉진제로서 0.4 g의 올리고머 3-메타크릴옥시프로필트리메톡시실란, 및 20 mg 계면활성제 (BYK-307 by BYK Chemie)를 용액에 첨가하였다.
수득된 물질은 100 mm 규소 웨이퍼 상에 2000 rpm에서 스핀-코팅하였다. 필름은 핫 플레이트(hot plate)에서 80 ℃로 5분 동안 구웠고 3000 mJ/cm2의 용량으로 UV-경화하였다. 굴절률은 폴리머 레진 및 ZrO2 나노입자의 중량비를 변경하여 조정하였다.
샘플 중량비 굴절률(633 nm) 굴절률(450 nm) 투과율(%, 계산치. 30 mm 필름;450 nm)
1. Resin:ZrO2 1:0 1.61 1.64 98.6
2. Resin:ZrO2 3:1 1.63 1.66 98.3
3. Resin:ZrO2 1:1 1.67 1.70 97.5
4. Resin:ZrO2 1:3 1.72 1.75 96.1
본 명세서에 개시된 실록산 조성물이 LED에 방출된 광의 광학적 경로 내에 배치되고 가시광 (또는 UV) 광에 광학적으로 투과성이기 위해 선택되는 경우, 굴절률은 선택된 실록산 입자 물질에 근거하여 선택될 수 있다. 1.25 내지 2.0의 굴절률이 제공될 수 있고, 예를 들면, 1.4 내지 1.7, 또는 다른 원하는 숫자(1.5 내지 1.9, 1.25 내지 1.45, 등), 굴절률은 632.8 nm 파장에서 측정된다. 고굴절률들, 예를 들면, 1.6 내지 2.0과 같은 유리 보다 높은 것들이 실록산 폴리머로 중합되기 위한 금속 함유 모노머를 제공하여 달성될 수 있다. 상기 언급된 바와 같이, [Si-O-Me-O]n (여기서 Me는 금속) 백본을 달성하는 것이 가능하다. 금속 함유 모노머들은, 그 중에서도, 타이타늄, 탄탈, 알루미늄, 지르코늄, 하프늄 또는 셀레늄과 같은 금속을 갖는, 굴절률을 증가시키는데 도움을 줄 수 있다. 상기 금속 함유 모노머들은 상기에서 언급된 바와 같은 제1, 제2, 또는 제3 화합물 대신, 또는 그들에 추가로 사용될 수 있다.
또한, 입자들의 선택에 기반하여 굴절률을 증가시키는 것이 가능하다(대안적으로 또는 상기 언급된 것과 같이 실록산 폴리머로 금속의 혼입(imcorporation)에 더하여). 특정 옥사이드 입자들, 예컨대 그 중에서도 타이타늄, 탄탈, 알루미늄, 지르코늄, 하르늄 또는 셀레늄은 굴절률을 증가시키는데 도움을 줄 수 있다. 게다가, 실록산 폴리머 내로 입자들의 혼입을 향상시키는 커플링제가 굴절률의 증가에 도울이 되도록 선택될 수 있다. 일례로서, 하기 화학식을 갖는 커플링제가 언급될 수 있다;
R16Ar)iSiR1 j
상기 화학식에서
i = 1 또는 2, 및 j = 4 - 1,
R16은 열 또는 UV 광의 적용 시 실록산 폴리머와 가교결합을 겪는 작용성 가교결합 기,
Ar은 아릴기, 및
여기서 R1은 하이드록시, 할로겐, 알콕시, 카르복시, 아민 또는 아크릴옥시 기와 같은 반응기.
상기와 같이, 상기 화합물은 하나 또는 두 개의 아릴기 (아릴기는 가교결합 치환기를 가짐)와 결합된 규소 원자를 포함하고, 상기 규소 원자는 또한 두 개 또는 세 개의 반응기, 바람직하게는 알콕시기와 결합된다. 아릴기는 페닐(phenyl), 나프탈렌(naphthalene), 페난트렌(phenanthrene), 안트라센(anthracene), 등일 수 있다. R16 작용성 가교결합 기는 에폭시, 아크릴레이트, 비닐, 알릴, 아세틸렌(acetylene), 알코올, 아민, 티올, 실란올, 등일 수 있다. 커플링제는 또한 타이타늄, 탄탈, 알루미늄, 지르코늄, 하프늄 또는 셀레늄 등과 같은 금속 원자를 규소 대신 갖도록 선택될 수 있다.
도 6에서 볼 수 있는 바와 같이, 본 명세서에서 개시된 경화된 실록산 입자 물질의 굴절률을 광의 파장에 대해 도시되고(is plotted vs wavelength of light), 각 그래프는 실록산 물질의 일부로서 상이한 입자들의 양을 갖는다-조성물에 첨가된 입자들이 없을 때부터, 75% 로딩까지. 도 6에서 볼 수 있는 바와 같이, 가시광 스펙트럼에서 1.60 또는 그 이상의 굴절률이 입자들 없이 달성될 수 있고, 1.70 또는 그 이상의 가시광 스펙트럼에서의 굴절률이 이 예에서 입자들과 함께 달성될 수 있다. 도 7에서 볼 수 있는 바와 같이, 실록산 물질의 % 투과율은 광의 파장에 대해 도시된다. 도면에서 도시된 바와 같이, 입자들의 상이한 로딩, 입자들 없이 부터 75%까지가 도시되고 가시광 스펙트럼에서 90% 보다 큰 가시광의 % 투과율을 갖는다(사실상(in fact) 95% 초과). 상기와 같이, 심지어 고 %의 입자들로 로딩된 실록산 물질이, 매우 투명하고 LED 램프들과 같은 다양한 광학 어플리케이션들에 유용하다.
개시된 방법들 및 물질들을 고려하여, 안정한 조성물이 형성된다. 조성물은 그에 알킬 또는 아릴기들 및 그에 작용 가교결합 기들을 갖는, [Si-O-Si-O]n의 반복 백본 (또는 [Si-O-Me-O]n의 반복 백본)을 포함하는 실록산 폴리머인 일부분을 가질 수 있고, 실록산 물질과 혼합된 입자들인 다른 부분을 가질 수 있으며, 여기서 입자들은 100 미크론 미만의 평균 입자크기를 갖고, 여기서 입자들은 예를 들어, 금속, 반-금속, 반도체 또는 세라믹 입자들과 같은 임의의 적합한 입자들이다. 고객들에게 운송되는 조성물은 300 내지 10,000 g/mol의 분자량, 및 5 rpm 점도계에서 1000 내지 75,000 mPa-sec의 점도를 가질 수 있다.
점성 (또는 액상) 실록산 폴리머는 실질적으로 -OH 기들이 없고, 따라서 증가된 저장 수명(shelf-life)을 제공하며, 원한다면 주변 온도에서 저장 또는 운송할 수 있다. 바람직하게, 실록산 물질은 그들의 FTIR 분석으로부터 검출 가능한 -OH 피크를 갖지 않는다. 형성된 실록산 물질의 증가된 안정성은 사용 전에 저장을 허용하고 여기서 저장 중에 점도 (가교결합)가 최소 증가하며, 예컨대 2주의 기간 동안 25% 미만, 바람직하게는 15% 미만, 및 보다 바람직하게는 실온에서 저장되는 2주의 가간 동안 10% 미만이다. 그리고, 저장, 운송 및 고객들에 의한 이후 적용은 용매의 부재(용매를 제거하기 위한 건조 후 남아있는 가능한 미량의 잔여물을 제외)에서 모두 수행될 수 있고, 이것은 이후 최종 제품에 형성된 층의 용매 포획(capture) 문제들, 중합 동안의 수축, 소자 사용 중 시간 경과에 따른 질량 손실, 등을 방지한다. 실질적인 가교 결합이, 바람직하게는 100 ℃ 또는 UV 광 보다 큰 열의 적용 없이, 운송 및 저장 동안 발생하지 않는다.
조성물이 증착되고 중합될 때, 예를 들어 열 또는 UV 광의 적용, 매우 작은 수축 및 질량의 감소가 관찰된다. 도 8에서, x-축은 시간(분), 좌측 y측은 출발 질량의 %관점에서 층의 질량을, 그리고 우측 y-축은 셀시우스(Celsius) 온도이다. 도8에서 볼 수 있는 바와 같이, 본 명세서에 개시된 것과 같은 실록산 입자 혼합물은 빠르게 150 ℃로 가열되었고, 그 다음 150 ℃에서 약 30분 동안 유지됐다. 이 실시예에서, 실록산 입자는 페닐기 및 에폭시기들을 갖는 Si-O 백본을 가지고, 입자들은 은 입자들이다. 이 기간 동안 열 경화 후 질량 손실은 1% 미만이다. 바람직하게는 질량 손실이 전형적으로 4% 미만이고, 일반적으로 2% 미만이다 - 그러나 많은 경우에 경화 전 및 후의 실록산 입자 조성물의 질량의 차이는 1% 미만이다. 경화 온도는 일반적으로 175 ℃ 미만이지만, 더 높은 경화 온도가 가능하다. 전형적으로 경화 온도는 160 ℃ 또는 그 이하일 것이고, 보다 전형적으로 150 ℃ 또는 그 이하일 것이다. 그러나 더 낮은 경화 온도, 예를 들어 125 ℃ 또는 그 이하가 가능하다.
도 9에서 볼 수 있는 바와 같이, 상기 개시된 조성물이 접착제로서, 열 전도성 층으로서, 봉지재로서, 패턴화 전기 전도 층(a patterned electrically conductive layer)으로서, 패턴화 유전체 층, 투명 층, 광 반사 층, 등 사용되는지의 여부에 관계없이, 조성물이 원하는 대로 증착되고 중합되며 경화될 때, 실록산 층 또는 질량은 열적으로 안정하다. 예로서, 열 또는 UV 중합에 의해 분당 10 ℃ 증가 램프 속도(ramp rate)로 600 ℃ 이하에서 경화한 후 인시츄(in situ) 물질을 가열하면, 4.0% 미만, 바람직하게는 2.0% 미만, 예를 들면 1.0% 미만의 질량 손실이 200 ℃ 및 300 ℃ 둘 다에서 관찰된다 (전형적으로 0.5% 미만의 질량 손실이 200 ℃에서 관찰되고, 또는 도 9의 예로, 200 ℃에서 0.2%의 미만의 질량 손실이 관찰된다). 300 ℃에서, 1% 미만의 질량 손실이 도 9의 예에서 관찰되고, 또는 보다 특별히 0.6% 미만이다. 유사한 결과들이 단순히 중합된 물질을 1시간 동안 200 ℃, 또는 300 ℃에서 가열하여 관찰될 수 있다. 중합된 증착된 물질을 375 ℃ 또는 그 이상에서 적어도 1시간 동안 가열함에 의해 1% 미만의 질량 손실의 결과가 가능하다. 도 9에서 볼 수 있는 바와 같이, 심지어 500 ℃ 보다 높은 온도에서, 5% 또는 그 미만의 질량 손실이 관찰된다. 이러한 열 안정한 물질이, 특히, 저온에서 (예를 들면, 175 ℃ 미만, 바람직하게는 150 ℃ 미만, 또는 130 ℃ 미만, 예를 들어 30분 경화/소성 시간(baking time)에서) 증착될 수 있거나, 또는 UV 광에 의해 중합될 수 있는 특히 본 명세서에 개시된 것과 같은 것, 바람직하다.
본 명세서에서 개시된 것과 같은 실록산 물질을 갖는 LED 램프들에 대한 많은 대안들이 있다. 예를 들어, 도 10a에서, 다이 51은 패키지 기판 50에 결합될 수 있고 커버 기판 52으로 커버되며 그 안에 입자들 또는 형광체들 또는 다른 파장 이동 구성 성분들을 램프의 원하는 용도에 따라, 포함할 수 있거나 포함할 수 없는 실록산 봉지재 53으로 채워질 수 있다. 또는, 도 10b에서 볼 수 있는 것과 같이, 등각 층 55가 적용될 수 있고, 이것은 실록산 물질이다(원하는대로 첨가된 입자들을 포함 또는 미포함하고, 원하는대로 형광체들을 포함 또는 미포함). 코팅 55 및 커버 52 사이의 영역은 또한 첨가된 입자들을 포함 또는 미포함하는 실록산 봉지재로 다시 채워질 수 있다. 또는, 도 10c에서 볼 수 있는 바와 같이, 오직 다이 51만이 광학적 입자들 및 형광체들을 갖는 실록산 물질로 커버된다. 이 실시예에서, 전형적으로 실록산 물질은 다이 싱귤레이션(singulation) 이전에 웨이퍼 수준으로 첨가된다. 또는 도 10d에서 볼 수 있는 바와 같이, 리모트 형광체 층(remote phosphor layer) 55가, 커버 52 상에 형성된 층과 같이, 제공될 수 있다 (또는 대안적으로 커버 52 내에 함입된 형광체들일 수 있다. 다른 예들과 마찬가지로, 실록산은 입자들을 포함할 수 있거나 포함하지 않을 수 있고, 이 예들에서 LED로부터 광이 그들을 통해 통과함에도, 바람직하게는 봉지재는 광학적으로 투과성이다. 도 10a-10·에서, 각각의 경우의 다이는 이전 예들에서 언급된 기판의 물질들이고, 원하는 경우 패키지 기판에 본 명세서에서 개시된 것과 같은 실록산 입자 물질을 통해 부착될 수 있다.
상기 개시로부터 볼 수 있는 것과 같이, 상기에서 개시된 것과 같은 실록산 입자 조성물은 다른 구현들 중에서도, 부착제로서, 보호 층으로서, 파장 이동 층의 일부로서, 또는 가시광 배향 렌즈(visible light directiong lens)로서 사용될 수 있다. 접착제로서 사용되는 경우, 물질은 바람직하게는 가시광 스펙트럼에서 광 흡수성이 아니고, 바람직하게는 그에 입사하는 가시광의 적어도 75%를 반사하지만, 바람직하게는 80% 이상, 또는 85% 이상, 심지어 90% 또는 95% 이상과 같이 더 높이, 투과하거나 반사한다. 파장 이동 층으로서, 형광체, 발광체(lumophors), 발광체(scintillants) 또는 다른 화학 구성 성분들이 그 안에 혼입되고, 제1 파장에서 광을 흡수하며 제2 다른 파장에 광을 방출한다. 이러한 파장 이동 구성 성분들은 임의의 파장 이동 구성 성분들이 없는 실록산 조성물을 포함하는 제2 렌즈에 가장 가까운 제1 실록산 조성물의 일부일 수 있다. 또는, 렌즈들은 실록산 조성물 및 파장 이동 구성 성분들을, 예컨대 형광체들, 모두 포함할 수 있다. 또한 실록산 입자 조성물이 전기 전도성 물질로서, 예컨대 플립 칩 다이 부착 범프(flip chip die attach bumps), 존재하거나, 또는 기판들 사이의 와이어 본드를 연결하는 것이 가능하다. 전기 전도성 및 패턴화 영역들이 또한 본 발명의 개시에 따른 실록산 물질을 포함할 수 있다.
상술한 내용은 예시적인 실시예들의 예증이고 그들을 제한하는 것으로서 해석되지 않는다. 몇몇 예시적 실시예들이 설명되었음에도 불구하고, 당업자는 새로운 사상(teaching) 및 장점들로부터 실질적으로 벗어나지 않고 예시적인 실시예들에서 많은 변형(modifications)이 가능함을 쉽게 인식할 것이다. 이에 맞춰, 모든 이러한 변형은 청구범위에서 정의된 것과 같이 본 발명의 범위(scope) 내에 포함되는 것으로 의도된다. 그러므로, 상술한 내용은 다양한 예시적인 실시예들이 예증이고 개시된 특정 실시예들에 제한된 것으로서 해석되는 것이 아니며, 개시된 실시예들, 뿐만 아니라 다른 실시예들에 대한 변형이 첨부된(appended) 청구범위 내에 포함되는 것으로 의도됨이 이해되어야 한다.
산업상 이용가능성
개시된 조성물들은 LED 라이트들(lights) 및 램프들에서 접착제, 열 전도성 층, 봉지재, 패턴화 전기 전도성 층, 패턴화 유전체 층, 투명 층, 광 반사 층으로서 사용될 수 있다. 현재의 LED 램프들은 예를 들어 야외용 표지판, 평판 디스플레이용 LED 픽셀 어레이, LCD 디스플레이용 LED 백라이팅, 공공 행사들 및 공공 교통수단용 실내 스크린, 야외용 스크린 예컨대 스포츠 또는 다른 공공 행상들에서 대형 스크린, 실내외 광고 스크린, 소비자 전자 제품 또는 임의의 장치에서 LED 라이트, 소자 또는 기계상의 LED 라이트, 원격 제어에서와 같은 적외선 LED, 교통 신호 및 도로 조명에서의 LED, 자동차 후미등, 헤드라이트, 실내 조명, 손전등, 실내 농산물 재배용 온실 조명, 및 일반적으로 형광등 또는 백열등이 사용되는 곳을 대체품으로서, 다른 구현들 중에서도, 넓은 다양한 용도들을 갖는다. LED들은 가까운 미래의 조명 분야를 지배할 것이고 에너지 절약, 환경 보호, 및 삶의 질을 향상에 중요한 역할을 할 것이다.
14: 기판
12, 13: 갈륨 나이트라이드 영역(gallium nitride regions)
10, 10a, 10b: 전극(electrodes)
16: SiC 또는 Cu 기판
17: 접착 층(adhesive layer)
19: 지지 또는 패키지 기판(support or package substrate)
24: 다이(die)
20: 패키지 기판(package substrate)
22: 부착 접착제(attach adhesive)
25: 와이어 본드(wire bonds)
28: 형광체 층(phosphor layer)
29: 봉지재 층(encapsulant layer)
30: 패키지 기판
32: 다이
34: 본딩 층(bonding layer)
35: 형광체 물질(phosphor material)
37: 봉지 층(encapsulating layer)
40: 투명 기판(transparent substrate)
41: 반도체 물질(semiconductor material)
42: 기판(substrate)
46: 실록산 입자 접착제(siloxane particle adhesive)
47, 48: 전기적 연결 영역(electrical connection areas)
48: 전기적 연결 영역(electrical connection areas)
49: 실록산 물질(siloxane material)
45: 와이어 본드 45(wire bonds 45)
43: 접착제(adhesive)
44: 패키지 / 지지 기판(package / support substrate)
51: 다이
52: 커버 기판(cover substrate)
53: 봉지재
55: 등각 층(conformal layer)

Claims (95)

  1. 다이 기판(die substrate);
    여기서 상기 기판은 그에 형성된 반도체 물질을 포함하고;
    상기 반도체 물질을 가로질러 바이어스를 인가(application of a bias)하여 그로부터 광을 방출시키는 전극; 및
    상기 다이 기판을 지지 기판에 결합하는 접착제;를 포함하는, LED 램프로서,
    여기서 상기 접착제는 미터 켈빈(meter kelvin) 당 0.1 와트(watts) (0.1 W/(m·K)) 보다 큰 열 전도도(thermal conductivity)를 갖는 중합된 실록산 폴리머이고, 그리고 여기서 상기 실록산 폴리머는 폴리머 백본(backbone)에 규소 및 산소, 뿐만 아니라 거기에 결합된 아릴 또는 알킬 기를 포함하며, 그리고 여기서 상기 접착제는 100 미크론(microns) 미만의 평균 입자 크기를 갖는 입자들을 더 포함하고;
    여기서 상기 접착제는 광 흡수성(light absorbing)이 아니고, 거기에 입사하는 가시광의 적어도 80%를 투과 또는 반사하는, LED 램프.
  2. 제1항에 있어서,
    상기 다이 기판은 더 큰 웨이퍼(wafer)로부터 절단된 다이 부분(die portion)이고, 사파이어(sapphire), SiC, Cu, GaN, 및 Si로부터 선택된, LED 램프.

  3. 제1항 또는 제2항에 있어서,
    상기 다이 기판은 가시광에 투과성이고 제공된 다이 두께에서 그에 수직으로(perpendicularly) 입사하는 가시광 영역의 광의 적어도 85%를 투과하는 물질을 포함하는, LED 램프.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 기판은 사파이어인, LED 램프.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 기판은 전기 전도성(electrically conducting) 기판인, LED 램프.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 기판은 반도체 기판인, LED 램프.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 반도체는 n-도핑 된 영역 또는 p-도핑 된 영역을 갖는 GaN을 포함하는, LED 램프.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 접착제는 광학적으로 투과성이고 수직으로 입사하는 가시광의 80% 또는 그 이상을 투과하는, LED 램프.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 실록산 폴리머는 실록산 백본의 규소에 결합된 아릴기(aryl groups)를 포함하는, LED 램프.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 접착제는 거기에 90도(degree) 각도로 입사하는 광의 적어도 80%를 반사하는 광 반사 층인, LED 램프.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서,
    상기 접착제는 거기에 90도 각도로 입사하는 광의 적어도 90%를 반사하는 광 반사 층인, LED 램프.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서,
    상기 접착제의 입자들은 금속 입자들인, LED 램프.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서,
    상기 금속 입자들은 금, 은, 구리, 백금, 팔라듐, 인듐, 철, 니켈, 알루미늄, 코발트, 스트론튬, 아연, 몰리브덴, 타이타늄, 텅스텐으로부터 선택되는, LED 램프.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서,
    상기 접착제의 열 전도도는 0.2 W/(m·K) 보다 큰, LED 램프.
  15. 제1항 내지 제14항 중 어느 한 항에 있어서,
    상기 접착제의 열 전도도는 0.5 W/(m·K) 보다 큰, LED 램프.
  16. 제1항 내지 제15항 중 어느 한 항에 있어서,
    상기 접착제의 열 전도도는 1.0 W/(m·K) 보다 큰, LED 램프.
  17. 제1항 내지 제16항 중 어느 한 항에 있어서,
    상기 실록산 폴리머는 아릴기를 포함하고, 상기 입자들은 주기율표(periodic table)의 8족 내지 11족으로부터 선택된 후 전이 금속(late transition metal)을 포함하고, 10 미크론 미만의 평균 입자 크기를 갖는, LED 램프.
  18. 제1항 내지 제17항 중 어느 한 항에 있어서,
    상기 접착제는 열적으로 안정하여, 적어도 200 ℃로 가열되는 경우, 2 % 미만의 질량 손실(mass loss)을 갖는, LED 램프.
  19. 제1항 내지 제18항 중 어느 한 항에 있어서,
    상기 접착제는 열적으로 안정하여, 적어도 300 ℃로 가열되는 경우, 2 % 미만의 질량 손실을 갖는, LED 램프.
  20. 제1항 내지 제19항 중 어느 한 항에 있어서,
    상기 접착제는 열적으로 안정하여, 적어도 200 ℃로 가열되는 경우, 1 % 미만의 질량 손실을 갖는, LED 램프.
  21. 제1항 내지 제20항 중 어느 한 항에 있어서,
    상기 접착제는 1.4 내지 1.6의 굴절률(refractive index)을 갖는, LED 램프.
  22. 제1항 내지 제21항 중 어느 한 항에 있어서,
    상기 접착제는 1.58 내지 2.0의 굴절률을 갖는, LED 램프.
  23. 제1항 내지 제22항 중 어느 한 항에 있어서,
    상기 접착제는 1.6 내지 1.85의 굴절률을 갖는, LED 램프.
  24. 제1항 내지 제23항 중 어느 한 항에 있어서,
    상기 접착제는 광학적으로 투과성이고 거기에 수직으로 입사하는 가시광의 90% 또는 그 이상 투과하는, LED 램프.
  25. 제1항 내지 제24항 중 어느 한 항에 있어서,
    상기 접착제 내에 형광체(phosphors)를 더 포함하는, LED 램프.
  26. 제1항 내지 제25항 중 어느 한 항에 있어서,
    상기 입자들은 발광 다이오드(light emitting diode)가 발광하는 파장 미만의 평균 입자 크기를 갖는, LED 램프.
  27. 제1항 내지 제26항 중 어느 한 항에 있어서,
    상기 입자들은 옥사이드 입자들(oxide particles)인, LED 램프.
  28. 제1항 내지 제27항 중 어느 한 항에 있어서,
    상기 입자들은 LED에 의해 발광되는 광의 파장 보다 작은 입자들인, LED 램프.
  29. 제1항 내지 제28항 중 어느 한 항에 있어서,
    상기 형광체는 YAG:Ce 형광체인, LED 램프.
  30. 제1항 내지 제29항 중 어느 한 항에 있어서,
    상기 형광체는 나이트라이드(nitride) 형광체인, LED 램프.
  31. 제1항 내지 제30항 중 어느 한 항에 있어서,
    상기 옥사이드 입자들은 규소, 아연, 알루미늄, 이트륨, 이테르븀, 텅스텐, 타이타늄 규소, 타이타늄, 안티모니, 사마륨, 니켈, 니켈 코발트, 몰리브덴, 마그네슘, 망간, 란타나이드, 철, 인듐 주석, 구리, 코발트 알루미늄, 크롬, 세슘 또는 칼슘의 옥사이드인, LED 램프.
  32. 제1항 내지 제31항 중 어느 한 항에 있어서,
    상기 옥사이드 입자들은 타이타늄, 탄탈, 알루미늄, 지르코늄, 하프늄 또는 셀레늄의 옥사이드인, LED 램프.
  33. 제1항 내지 제32항 중 어느 한 항에 있어서,
    상기 입자들은 알루미늄 나이트라이드, 탄탈 나이트라이드, 보론 나이트라이드, 타이타늄 나이트라이드, 구리 나이트라이드, 몰리브덴 나이트라이드, 텅스텐 나이트라이드, 철 나이트라이드, 규소 나이트라이드, 인듐 나이트라이드, 갈륨 나이트라이드, 및 탄소 나이트라이드로부터 선택된 나이트라이드 입자들인, LED 램프.
  34. 제1항 내지 제33항 중 어느 한 항에 있어서,
    상기 형광체는 실리케이트(silicate) 형광체인, LED 램프.
  35. 제1항 내지 제34항 중 어느 한 항에 있어서,
    상기 형광체는 알루미네이트(aluminate) 형광체인, LED 램프.
  36. 제1항 내지 제35항 중 어느 한 항에 있어서,
    상기 입자들은 타이타늄 옥사이드, 알루미늄 옥사이드, 알루미늄 나이트라이드, 또는 보론 나이트라이드를 포함하는, LED 램프.

  37. 제1 기판 상에 반도체 물질을 제공하여 발광 다이오드를 형성(forming)하고 상기 반도체 물질을 도핑(doping)하는 단계;
    지지 기판을 제공(providing)하는 단계;
    폴리머 백본에 규소 및 산소, 뿐만 아니라 거기에 결합된 아릴 또는 알킬 기, 뿐만 아니라 거기에 결합된 작용성 가교결합 기(functional cross-linking groups)를 갖는 실록산 폴리머를 포함하는, 접착제 조성물을 제공하는 단계로서, 상기 접착제 조성물은 100 미크론 미만의 평균 입자 크기를 갖는 입자들, 및 촉매를 더 포함하는, 접착제 조성물을 제공하는 단계;
    상기 접착제 조성물을, 상기 제1 기판 및 상기 지지 기판을 접착하기 위해 증착(depositing)하는 단계;
    다이 및 패키지 기판을 서로 부착하는 동시에 실록산 폴리머를 더 중합하고 폴리머를 경화하기 위해, 실록산 폴리머의 가교결합 기를 활성화하도록 온도 및/또는 광을 적용(applying)하는 단계;를 포함하는, LED 램프를 제조하는 방법으로서,
    여기서 중합 및 경화된 실록산 폴리머는 중합 전과 비교하여 중합 후 적어도 96 %의 질량을 갖고; 그리고
    여기서 상기 실록산 폴리머는 거기에 입사하는 가시광의 25% 이상을 흡수하지 않는, 방법.
  38. 제37항에 있어서,
    열 전도도는 0.1 W/(m·K) 보다 큰, 방법.
  39. 제37항 또는 제38항에 있어서,
    열 전도도는 0.2 W/(m·K) 보다 큰, 방법.
  40. 제37항 내지 제39항 중 어느 한 항에 있어서,
    열 전도도는 0.5 W/(m·K) 보다 큰, 방법.
  41. 제37항 내지 제40항 중 어느 한 항에 있어서,
    상기 중합 및 경화된 실록산 폴리머는 1 ×10-3 Ω·m 미만의 전기 저항력(resistivity)을 갖는, 방법.
  42. 제37항 내지 제41항 중 어느 한 항에 있어서,
    상기 중합 및 경화된 실록산 폴리머는 1 ×10-5 Ω·m 미만의 전기 저항력을 갖는, 방법.
  43. 제37항 내지 제42항 중 어느 한 항에 있어서,
    상기 중합 및 경화된 실록산 폴리머는 1 ×10-7 Ω·m 미만의 전기 저항력을 갖는, 방법.
  44. 제37항 내지 제43항 중 어느 한 항에 있어서,
    상기 중합 및 경화된 실록산 폴리머는 1 ×103 Ω·m 보다 큰 전기 저항력을 갖는, 방법.
  45. 제37항 내지 제44항 중 어느 한 항에 있어서,
    상기 중합 및 경화된 실록산 폴리머는 1 ×105 Ω·m 보다 큰 전기 저항력을 갖는, 방법.
  46. 제37항 내지 제45항 중 어느 한 항에 있어서,
    상기 중합 및 경화된 실록산 폴리머는 1 ×109 Ω·m 보다 큰 전기 저항력을 갖는, 방법.
  47. 제37항 내지 제46항 중 어느 한 항에 있어서,
    상기 접착제의 입자들은 금속 입자들이고 상기 접착제 물질은 거기에 입사하는 가시광의 적어도 25 %를 반사하는 반사 층인, 방법.
  48. 제37항 내지 제47항 중 어느 한 항에 있어서,
    상기 금속 입자들은 금, 은, 구리, 백금, 팔라듐, 인듐, 철, 니켈, 알루미늄, 코발트, 스트론튬, 아연, 몰리브덴, 타이타늄, 텅스텐으로부터 선택되는, 방법.
  49. 제37항 내지 제48항 중 어느 한 항에 있어서,
    상기 금속 입자들은 은의 외부 층(outer layer)을 갖는 다층(mutilayer) 입자들인, 방법.
  50. 제37항 내지 제49항 중 어느 한 항에 있어서,
    상기 접착제 조성물의 금속 입자들은 제1 및 제2 평균 입자 크기들을 포함하고, 여기서 제1 입자 그룹은 1 미크론 보다 큰 평균 입자 크기를 갖고, 제2 입자 그룹은 25 nm 미만인 평균 입자 크기를 갖는, 방법.
  51. 제37항 내지 제50항 중 어느 한 항에 있어서,
    상기 제2 입자 그룹의 입자들은 실록산 물질을 점성 물질에서 고체 물질로 경화하기 위해 촉매 및 작용성 가교결합 기가 반응하는 온도 미만의 온도에서 녹는(melt), 방법.
  52. 제37항 내지 제51항 중 어느 한 항에 있어서,
    상기 제1 더 낮은 온도(first lower temperature)가 제2 입자 그룹의 입자들을 녹이기 위해 적용되고, 뒤이어 제2 더 높은 온도(second higher temperature)가 실록산 물질의 가교결합 기를 활성화시키기 위해 적용되는, 방법.
  53. 제37항 내지 제52항 중 어느 한 항에 있어서,
    상기 접착제는 열 및/또는 광의 적용 이전에 5 rpm 점도계, 25 ℃, 그리고 첨가된 용매의 부재에서 1000 내지 75,000 mPa-sec의 점도를 갖는, 방법.
  54. 제37항 내지 제53항 중 어느 한 항에 있어서,
    5000 내지 50,000 mPa-sec의 점도를 갖는, 방법.
  55. 제37항 내지 제54항 중 어느 한 항에 있어서,
    상기 실록산 폴리머는 열 및/또는 광의 적용 이전에 약 500 내지 5,000 g/mol의 분자량을 갖는, 방법.
  56. 제37항 내지 제55항 중 어느 한 항에 있어서,
    상기 실록산 폴리머는 약 700 내지 1,500 g/mol의 분자량을 갖는, 방법.
  57. 제37항 내지 제56항 중 어느 한 항에 있어서,
    상기 실록산 폴리머는 아릴기를 포함하고, 상기 입자들은 주기율표 8족 내지 11족으로부터 선택된 후 전이 금속을 포함하고, 그리고 10 미크론 미만의 평균 입자 크기를 갖는, 방법.
  58. 제37항 내지 제57항 중 어느 한 항에 있어서,
    상기 입자의 외부 층은 은을 포함하고 입자의 내부 층(inner layer)은 구리를 포함하는, 방법.
  59. 제37항 내지 제58항 중 어느 한 항에 있어서,
    상기 제1 및 제2 온도는 둘 다 175 ℃ 미만인, 방법.
  60. 제37항 내지 제59항 중 어느 한 항에 있어서,
    상기 제1 입자 그룹은 은 코팅 구리 입자들(sliver coated copper particles)이고, 상기 제2 입자 그룹은 15 nm 미만의 평균 입자 크기를 갖는 은 입자들인, 방법.
  61. 제37항 내지 제60항 중 어느 한 항에 있어서,
    열이 실록산 폴리머를 경화하기 위해 적용되고, 여기서 적용된 온도는 50 ℃ 내지 200 ℃인, 방법.
  62. 제37항 내지 제61항 중 어느 한 항에 있어서,
    상기 온도는 150 ℃ 미만인, 방법.
  63. 제37항 내지 제62항 중 어느 한 항에 있어서,
    상기 다이는 플립칩 패키지를 형성하기 위해 패키지 기판을 향하는 다이 상에 형성된 전기 회로(circuitry)와 함께 패키지 기판에 결합되고, 그리고 여기서 상기 접착제가 선택적으로 다이 및 패키지 기판 상에 콘 패드(con pads)를 전기적으로 연결하기 위해 배치되는, 방법.
  64. 제37항 내지 제63항 중 어느 한 항에 있어서,
    상기 중합 및 경화된 실록산 폴리머는 미터 켈빈 당 0.1 와트 (0.1 W/(m·K)) 보다 큰 열 전도도를 갖는, 방법.
  65. 제37항 내지 제64항 중 어느 한 항에 있어서,
    상기 중합 및 경화된 실록산 폴리머는 미터 켈빈 당 0.2 와트 (0.2 W/(m·K)) 보다 큰 열 전도도를 갖는, 방법.
  66. 제37항 내지 제65항 중 어느 한 항에 있어서,
    상기 중합 및 경화된 실록산 폴리머는 중합 전과 비교하여 중합 후 적어도 98 %의 질량을 갖는, 방법.
  67. 제37항 내지 제66항 중 어느 한 항에 있어서,
    상기 중합은 125 내지 175 ℃로 가열하여 수행되는, 방법.
  68. 제37항 내지 제67항 중 어느 한 항에 있어서,
    상기 중합 및 경화된 실록산 폴리머는 중합 전과 비교하여 중합 후 적어도 99 %의 질량을 갖는, 방법.
  69. 제37항 내지 제68항 중 어느 한 항에 있어서,
    경화 시간은 적어도 10분인, 방법.
  70. 제37항 내지 제69항 중 어느 한 항에 있어서,
    상기 접착제는 액상 또는 겔(gel)로 시린지 증착(syringe desposition), 스크린 인쇄(screen printing), 스핀-온(spin-on), 딥(dip), 잉크-젯(ink-jet), 막(curtain), 드립(drip), 롤러(roller), 그라비어(gravure), 리버스 오프셋(reverse offset), 압출 코팅(extrusion coating), 슬릿 코팅(slit coating), 스프레이 코팅(spray coating), 또는 플렉소-인쇄 증착(flexo-graphic deposition) 에 의해 증착되는, 방법.
  71. 제37항 내지 제70항 중 어느 한 항에 있어서,
    상기 접착제는 제1 기판 및 지지 기판을 결합하기 위해 웨이퍼 수준(wafer level)에서 적용되고, 뒤이어 각각의 다이로 싱귤레이션되는(singulation), 방법.
  72. 제37항 내지 제71항 중 어느 한 항에 있어서,
    상기 접착제는 1.58 내지 2.0의 굴절률을 갖는, 방법.
  73. 제37항 내지 제72항 중 어느 한 항에 있어서,
    상기 접착제는 1.6 내지 1.85의 굴절률을 갖는, 방법.
  74. 제1 기판 상에 반도체 물질을 제공하여 발광 다이오드를 형성(forming)하고 상기 반도체 물질을 도핑(doping)하는 단계;
    폴리머 백본에 규소 및 산소, 뿐만 아니라 거기에 결합된 아릴 또는 알킬 기, 뿐만 아니라 거기에 결합된 작용성 가교결합 기를 갖는 실록산 폴리머를 포함하는, 봉지재 조성물을 제공하는 단계로서, 상기 접착제 조성물은 10 미크론 미만의 평균 입자 크기를 갖는 입자들, 및 촉매를 더 포함하는, 봉지재 조성물을 제공하는 단계;
    발광 다이오드를 봉지(encapsulate)하기 위해, 상기 봉지재 조성물을 증착(depositing)하는 단계;
    상기 실록산 폴리머를 더 중합하고 폴리머를 경화하기 위해, 실록산 폴리머의 가교결합 기를 활성화하도록 온도 및/또는 광을 적용(applying)하는 단계;를 포함하는, LED 소자(device)를 봉지(encapsulating)하는 방법으로서,
    여기서 중합 및 경화된 실록산 폴리머는 중합 전과 비교하여 중합 후 적어도 96 %의 질량을 갖고; 그리고
    여기서 상기 실록산 폴리머는 거기에 입사하는 가시광의 25% 이상을 흡수하지 않는, 방법.
  75. 제74항에 있어서,
    상기 봉지재 조성물은 1 미크론 미만의 평균 입자 크기를 갖는 입자들을 포함하는, 방법.
  76. 제74항 또는 제75항에 있어서,
    상기 입자들은 400 nm 미만의 평균 입자 크기를 갖는, 방법.
  77. 제74항 내지 제76항 중 어느 한 항에 있어서,
    상기 입자들은 100 nm 미만의 평균 입자 크기를 갖는, 방법.
  78. 제74항 내지 제77항 중 어느 한 항에 있어서,
    상기 봉지재 조성물은 형광체를 포함하는, 방법.
  79. 제74항 내지 제78항 중 어느 한 항에 있어서,
    상기 형광체는 YAG 형광체를 포함하는, 방법.
  80. 제74항 내지 제79항 중 어느 한 항에 있어서,
    상기 형광체는 나이트라이드 형광체를 포함하는, 방법.
  81. 제74항 내지 제80항 중 어느 한 항에 있어서,
    상기 입자들은 1 미크론 미만의 평균 입자 크기를 갖는 옥사이드 나노입자들인, 방법.
  82. 제74항 내지 제81항 중 어느 한 항에 있어서,
    상기 입자들은 규소, 아연, 알루미늄, 이트륨, 이테르븀, 텅스텐, 타이타늄 규소, 타이타늄, 안티모니, 사마륨, 니켈, 니켈 코발트, 몰리브덴, 마그네슘, 망간, 란타나이드, 철, 인듐 주석, 구리, 코발트 알루미늄, 크롬, 세슘 또는 칼슘의 옥사이드를 포함하는, 방법.
  83. 제74항 내지 제82항 중 어느 한 항에 있어서,
    상기 옥사이드 입자들은 타이타늄, 탄탈, 알루미늄, 지르코늄, 하프늄 또는 셀레늄의 옥사이드인, 방법.
  84. 제74항 내지 제83항 중 어느 한 항에 있어서,
    상기 입자들은 알루미늄 나이트라이드, 탄탈 나이트라이드, 보론 나이트라이드, 타이타늄 나이트라이드, 구리 나이트라이드, 몰리브덴 나이트라이드, 텅스텐 나이트라이드, 철 나이트라이드, 규소 나이트라이드, 인듐 나이트라이드, 갈륨 나이트라이드, 및 탄소 나이트라이드로부터 선택된 나이트라이드 입자들인, 방법.
  85. 제74항 내지 제84항 중 어느 한 항에 있어서,
    상기 형광체는 실리케이트 형광체인, 방법.
  86. 제74항 내지 제85항 중 어느 한 항에 있어서,
    상기 형광체는 알루미네이트 형광체인, 방법.
  87. 제74항 내지 제86항 중 어느 한 항에 있어서,
    상기 입자들은 타이타늄 옥사이드, 알루미늄 옥사이드, 알루미늄 나이트라이드, 또는 보론 나이트라이드를 포함하는, 방법.
  88. 제74항 내지 제87항 중 어느 한 항에 있어서,
    상기 봉지재 조성물은 광개시제(photoinitiator)를 포함하고 자외선(ultraviolet light)이 실록산 폴리머를 경화(cure) 및 경화(harden)하기 위해 적용되는, 방법.
  89. 제74항 내지 제88항 중 어느 한 항에 있어서,
    상기 봉지재 조성물은 열 경화제를 포함하고 상기 조성물은 150 ℃ 미만의 온도에서 경화되는, 방법.
  90. 제74항 내지 제89항 중 어느 한 항에 있어서,
    경화 온도는 100 ℃ 미만인, 방법.
  91. 제74항 내지 제90항 중 어느 한 항에 있어서,
    상기 접착제는 1.58 내지 2.0의 굴절률을 갖는, 방법.
  92. 제74항 내지 제91항 중 어느 한 항에 있어서,
    상기 접착제는 1.6 내지 1.85의 굴절률을 갖는, 방법.
  93. 제74항 내지 제92항 중 어느 한 항에 있어서,
    상기 나이트라이드 형광체는 옥시나이트라이드 형광체(oxynitride phosphos)인, 방법.
  94. 제74항 내지 제93항 중 어느 한 항에 있어서,
    상기 입자들 및 상기 형광체들은 50 nm 미만의 평균 입자 크기를 갖는, 방법.
  95. 제74항 내지 제94항 중 어느 한 항에 있어서,
    상기 형광체는 실록산 내에 2 내지 10 g/cm3로 제공되는, 방법.
KR1020177001618A 2014-06-19 2015-06-22 실록산 입자 물질을 갖는 led 램프 KR102388629B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462014147P 2014-06-19 2014-06-19
FI20145604 2014-06-19
US62/014,147 2014-06-19
FI20145604 2014-06-19
PCT/FI2015/050454 WO2015193555A1 (en) 2014-06-19 2015-06-22 Led lamp with siloxane particle material

Publications (2)

Publication Number Publication Date
KR20170032316A true KR20170032316A (ko) 2017-03-22
KR102388629B1 KR102388629B1 (ko) 2022-04-19

Family

ID=54934914

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177001618A KR102388629B1 (ko) 2014-06-19 2015-06-22 실록산 입자 물질을 갖는 led 램프

Country Status (6)

Country Link
US (1) US10658554B2 (ko)
EP (1) EP3158595B1 (ko)
JP (1) JP6684273B2 (ko)
KR (1) KR102388629B1 (ko)
CN (1) CN106605309B (ko)
WO (1) WO2015193555A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016115921B9 (de) * 2016-08-26 2024-02-15 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
WO2018183341A1 (en) 2017-03-27 2018-10-04 Firouzeh Sabri Light weight flexible temperature sensor kit
CN107952464B (zh) * 2017-12-13 2020-09-11 大连理工大学 一种新型光催化材料及双光催化电极自偏压污染控制系统
DE102018132955A1 (de) * 2018-12-19 2020-06-25 Osram Opto Semiconductors Gmbh Strahlungsemittierendes bauelement
JP7250560B2 (ja) * 2019-02-20 2023-04-03 旭化成株式会社 紫外線発光装置
FR3094561B1 (fr) 2019-03-25 2022-08-26 Commissariat Energie Atomique Procédé de fabrication d’une structure
JP2022077578A (ja) * 2020-11-12 2022-05-24 信越化学工業株式会社 封止用接合材及び光学素子パッケージ用リッド

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225005A (ja) 2003-01-27 2004-08-12 Shin Etsu Polymer Co Ltd ディスプレイ用粘着剤
KR20090014176A (ko) * 2006-04-26 2009-02-06 세키스이가가쿠 고교가부시키가이샤 광 반도체용 열경화성 조성물, 광 반도체 소자용 다이본드재, 광 반도체 소자용 언더필재, 광 반도체 소자용밀봉제 및 광 반도체 소자
US20090221783A1 (en) 2008-02-28 2009-09-03 Hawker Craig J Encapsulation resins
US20110171447A1 (en) 2004-08-03 2011-07-14 Ahila Krishnamoorthy Compositions, layers and films for optoelectronic devices, methods of production and uses thereof
US20120123054A1 (en) 2010-11-16 2012-05-17 Kaneka Corporation Curable composition, heat conductive resin molded product and semiconductor package
JP2012222202A (ja) * 2011-04-11 2012-11-12 Sekisui Chem Co Ltd 光半導体装置用ダイボンド材及びそれを用いた光半導体装置
WO2020100267A1 (ja) 2018-11-15 2020-05-22 ヤマハ発動機株式会社 鞍乗型車両走行データ処理装置および鞍乗型車両走行データ処理方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100509933C (zh) * 2003-01-14 2009-07-08 索尼化学株式会社 硬化剂粒子、硬化剂粒子的制造方法及粘接剂
MY151065A (en) 2003-02-25 2014-03-31 Kaneka Corp Curing composition and method for preparing same, light-shielding paste, light-shielding resin and method for producing same, package for light-emitting diode, and semiconductor device
JP4614075B2 (ja) 2005-03-22 2011-01-19 信越化学工業株式会社 エポキシ・シリコーン混成樹脂組成物及びその製造方法、並びに発光半導体装置
US20090072844A1 (en) * 2005-05-19 2009-03-19 Jsr Corporation Wafer inspecting sheet-like probe and application thereof
US7466377B2 (en) * 2005-08-26 2008-12-16 Konica Minolta Opto, Inc. Retardation film, manufacturing method thereof, polarizing plate and liquid crystal display apparatus
US8173519B2 (en) * 2006-03-03 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN101432331A (zh) * 2006-04-26 2009-05-13 积水化学工业株式会社 光半导体用热固化性组合物、光半导体元件用固晶材料、光半导体元件用底填材料、光半导体元件用密封剂及光半导体元件
WO2009001629A1 (ja) * 2007-06-26 2008-12-31 Konica Minolta Opto, Inc. クリアーハードコートフィルム、これを用いた反射防止フィルム、偏光板、及び表示装置
JP5226326B2 (ja) * 2008-01-08 2013-07-03 帝人化成株式会社 芳香族ポリカーボネート樹脂組成物
US8044330B2 (en) * 2008-01-17 2011-10-25 E.I. Du Pont De Nemours And Company Electrically conductive adhesive
JP5233325B2 (ja) * 2008-02-29 2013-07-10 信越化学工業株式会社 熱伝導性硬化物及びその製造方法
WO2010000267A1 (en) 2008-06-30 2010-01-07 Hrtools A/S Method for organizing agreements between a subordinate and a superior
JP5453276B2 (ja) 2008-09-03 2014-03-26 日本化薬株式会社 シロキサン化合物の製造方法
JP5558947B2 (ja) 2010-07-15 2014-07-23 キヤノン株式会社 画像形成装置
CN103339751B (zh) * 2011-11-15 2016-12-14 松下知识产权经营株式会社 发光模块以及使用该发光模块的灯
CN104247053B (zh) * 2012-03-23 2017-03-08 夏普株式会社 半导体发光元件、半导体发光元件的制造方法、半导体发光装置及基板
JP6062431B2 (ja) 2012-06-18 2017-01-18 シャープ株式会社 半導体発光装置
CN104396035B (zh) * 2012-07-05 2019-11-05 亮锐控股有限公司 通过透明间隔物从led分离的磷光体
JP6003763B2 (ja) * 2012-10-30 2016-10-05 デクセリアルズ株式会社 熱硬化性樹脂組成物、光反射性異方性導電接着剤及び発光装置
KR20150099581A (ko) * 2012-12-26 2015-08-31 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 경화성 폴리오르가노실록산 조성물

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225005A (ja) 2003-01-27 2004-08-12 Shin Etsu Polymer Co Ltd ディスプレイ用粘着剤
US20110171447A1 (en) 2004-08-03 2011-07-14 Ahila Krishnamoorthy Compositions, layers and films for optoelectronic devices, methods of production and uses thereof
KR20090014176A (ko) * 2006-04-26 2009-02-06 세키스이가가쿠 고교가부시키가이샤 광 반도체용 열경화성 조성물, 광 반도체 소자용 다이본드재, 광 반도체 소자용 언더필재, 광 반도체 소자용밀봉제 및 광 반도체 소자
US20090221783A1 (en) 2008-02-28 2009-09-03 Hawker Craig J Encapsulation resins
US20120123054A1 (en) 2010-11-16 2012-05-17 Kaneka Corporation Curable composition, heat conductive resin molded product and semiconductor package
JP2012222202A (ja) * 2011-04-11 2012-11-12 Sekisui Chem Co Ltd 光半導体装置用ダイボンド材及びそれを用いた光半導体装置
WO2020100267A1 (ja) 2018-11-15 2020-05-22 ヤマハ発動機株式会社 鞍乗型車両走行データ処理装置および鞍乗型車両走行データ処理方法

Also Published As

Publication number Publication date
US10658554B2 (en) 2020-05-19
WO2015193555A1 (en) 2015-12-23
KR102388629B1 (ko) 2022-04-19
EP3158595B1 (en) 2021-12-01
JP2017527126A (ja) 2017-09-14
CN106605309B (zh) 2022-10-18
CN106605309A (zh) 2017-04-26
JP6684273B2 (ja) 2020-04-22
EP3158595A1 (en) 2017-04-26
US20180212113A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
US11084928B2 (en) Transparent siloxane encapsulant and adhesive
EP3158595B1 (en) Led lamp with siloxane particle material
KR102454572B1 (ko) 실록산 폴리머 및 입자를 포함하는 조성물
US11001674B2 (en) Method of making a siloxane polymer composition
US11289666B2 (en) Electrically conductive siloxane particle films, and devices with the same
JP2017518435A5 (ko)
TWI784922B (zh) Led燈、led燈之製造方法以及led裝置之密封方法
TWI694112B (zh) 具有矽氧烷聚合物的組成物及製造矽氧烷粒子組成物的方法
TWI785389B (zh) 矽氧烷聚合物組成物及其製造方法
TW201723133A (zh) 組成物、矽氧烷聚合物膜及製造矽氧烷粒子膜之方法
TW202111062A (zh) Led燈、led燈之製造方法以及led裝置之密封方法
TW201723031A (zh) 矽氧烷聚合物組成物及其製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant