KR20160035088A - 내연 기관 - Google Patents

내연 기관 Download PDF

Info

Publication number
KR20160035088A
KR20160035088A KR1020167006273A KR20167006273A KR20160035088A KR 20160035088 A KR20160035088 A KR 20160035088A KR 1020167006273 A KR1020167006273 A KR 1020167006273A KR 20167006273 A KR20167006273 A KR 20167006273A KR 20160035088 A KR20160035088 A KR 20160035088A
Authority
KR
South Korea
Prior art keywords
reducing agent
hydrocarbon
soot
nozzle hole
supply valve
Prior art date
Application number
KR1020167006273A
Other languages
English (en)
Other versions
KR101800982B1 (ko
Inventor
가즈히로 우메모토
고헤이 요시다
유키 비사이지
Original Assignee
도요타지도샤가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요타지도샤가부시키가이샤 filed Critical 도요타지도샤가부시키가이샤
Publication of KR20160035088A publication Critical patent/KR20160035088A/ko
Application granted granted Critical
Publication of KR101800982B1 publication Critical patent/KR101800982B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

내연 기관에 엔진 배기 통로에 배열된 탄화수소 공급 밸브(15)가 구비된다. 배기 처리를 위해 탄화수소 공급 밸브(15)로부터의 탄화수소를 분사하는 분사 제거가 정지될 때, 탄화수소 공급 밸브(15)가 막히는 것을 방지하기 위해, 엔진이 그을음을 배출하지 않을 때, 즉, 연소 챔버(2) 내부로의 연료의 공급이 정지될 때 막힘 방지용 탄화수소가 탄화수소 공급 밸브(15)로부터 분사되고, 막힘 방지용 탄화수소가 한번 분사된 후, 배기 처리용 분사 제어가 개시될 때까지 탄화수소 공급 밸브(15)로부터의 막힘 방지용 탄화수소의 분사가 정지된다.

Description

내연 기관{INTERNAL COMBUSTION ENGINE}
본 발명은 내연 기관에 관한 것이다.
NOx 정화 촉매가 엔진 배기 통로 내에 배열되고, NOx 정화 촉매 상류에 환원제를 공급하기 위한 환원제 공급 밸브가 엔진 배기 통로 내에 배열되고, 린(lean) 공연비 하에서 연료가 연소될 때 엔진으로부터 배출된 NOx가 NOx 정화 촉매에 흡장되고, NOx 정화 촉매로부터 흡장된 NOx를 방출시키기 위해 배기가스의 공연비가 리치(rich)로 되어야 할 때 엔진 작동 상태에 따라서 리치 공연비의 연소 가스가 연소 챔버 내에 생성되거나 환원제가 환원제 공급 밸브로부터 분사되는 내연 기관이 알려져 있다(예를 들어, 특허문헌 1을 참조). 이 내연 기관에서, 연소 챔버 내의 연소 가스의 공연비가 린으로부터 리치로 전환될 때, 리치가 될 때, 그리고 리치에서 린으로 전환될 때, 다량의 그을음이 생성되고 이 대량으로 생성된 그을음에 의해 환원제 공급 밸브의 노즐 구멍이 막히게 되는 위험이 존재한다. 따라서, 이 내연 기관에서는, 연소가 리치 공연비 하에서 수행될 때부터 다음의 연소가 리치 공연비 하에서 수행될 때까지의 간격에서, 환원제 공급 밸브가 소량의 환원제를 분사하여 노즐 구멍에 피착된 그을음을 분출하고 이에 의해 환원제 공급 밸브의 노즐 구멍이 막히는 것을 방지한다.
일본 특허 공개 번호 2009-270567A
이에 관해, 지금까지는, 그을음이 엔진으로부터 배출되는 경우, 그을음은 환원제 공급 밸브의 노즐 구멍에 침입해서 노즐 구멍의 내주면 상에 피착 및 퇴적하고 이에 의해서 노즐 구멍이 막히게 된다고 생각되었다. 따라서, 종래에는, 상술된 내연 기관에서와 같이, 엔진으로부터 다량의 그을음이 배출되었을 때 노즐 구멍 막힘의 위험이 존재한다고 판별되고, 따라서 엔진으로부터 다량의 그을음이 배출되었을 때 막힘 방지용 환원제를 환원제 공급 밸브로부터 분사하여 노즐 구멍이 막히는 것을 방지하였다. 그러나, 본 발명자는 노즐 구멍의 막힘에 관한 반복된 연구에 참여한 결과, 환원제 공급 밸브가 환원제를 분사하지 않을 때, 엔진이 다량의 그을음을 배출하더라도, 그을음은 노즐 구멍에 침입하지 않고, 따라서, 엔진으로부터 다량의 그을음의 배출이 노즐 구멍의 막힘의 원인이 아니고, 막힘은 환원제 공급 밸브로부터의 환원제의 분사 종료시 그을음이 노즐 구멍 내로 흡인되는 것에 의해 발생되는 점을 알게 되었다.
즉, 분사 종료시 니들 밸브를 폐쇄함으로써 환원제 공급 밸브가 환원제의 분사를 정지할 때, 노즐 구멍 내부에 존재하는 환원제는 관성에 의해 노즐 구멍으로부터 유출한다. 그 결과, 이때 노즐 구멍은 내부 압력이 일시적으로 부압이 되고, 따라서 이때 배기 통로 내로 개방되는 노즐 구멍의 개구 주변의 배기가스가 그을음을 함유하는 경우, 그을음은 노즐 구멍 내로 흡인되고 그을음이 노즐 구멍의 내주면 상에 피착된다. 그러나, 이 방식으로 그을음이 노즐 구멍의 내주면 상에 부착되더라도, 짧은 시간 내에 환원제 공급 밸브가 다음의 분사를 수행하는 경우, 노즐 구멍의 내주면에 피착된 그을음은 분출될 수 있다. 따라서, 이 경우, 노즐 구멍은 절대로 막히지 않을 것이다. 이에 관해, 그을음이 노즐 구멍의 내주면 상에 피착되고 나서 오랜 시간이 경과하는 경우, 그을음은 노즐 구멍의 내주면에 부착될 수 있다. 그을음이 노즐 구멍의 내주면에 부착되는 경우, 환원제가 분사되더라도 그을음이 더 이상 분출되지 않을 수 있다. 그 결과, 노즐 구멍이 막일 수 있다. 따라서, 노즐 구멍이 막히는 것을 방지하기 위해, 환원제 공급 밸브가 짧은 주기로 환원제를 분사시키는 것이 필요하게 된다. 그러나, 환원제 공급 밸브가 짧은 주기로 환원제를 분사시키는 경우, 환원제의 소모량이 증가할 수 있다.
그런데, 상술된 바와 같이, 배기 통로 내로 개방되는 노즐 구멍의 개구 주변의 배기가스가 그을음을 함유하는 경우, 환원제 공급 밸브로부터 환원제의 분사 종료시 그을음은 노즐 구멍 내로 흡인되고 따라서 그을음은 노즐 구멍의 막힘을 야기한다. 이에 반대로, 배기 통로 내로 개방되는 노즐 구멍의 개구 주변의 배기가스가 그을음을 함유하지 않는 경우, 그을음은 환원제 공급 밸브가 환원제를 분사할 때 노즐 구멍 내로 흡인되지 않을 것이고, 그을음은 노즐 구멍의 내주면에 더 이상 피착되지 않을 것이다. 따라서, 배기 통로 내로 개방되는 노즐 구멍의 개구 주변의 배기가스가 그을음을 함유하지 않을 때 환원제 공급 밸브가 환원제를 분사하는 경우, 막힘이 발생하지 않을 것이고, 따라서 노즐 구멍의 내주면 상에 피착된 그을음을 더 이상 분출할 필요가 없어, 환원제의 소모량을 크게 감소시킬 수 있게 된다. 또한, 연소 챔버 내로의 연료의 공급이 정지되고 그을음이 생성되지 않을 때, 배기 통로 내로 개방되는 노즐 구멍의 개구 주변의 배기가스는 더 이상 그을음을 함유하지 않는다. 따라서, 이 때 환원제 공급 밸브가 환원제를 분사하는 경우, 환원제의 소모량은 크게 감소될 수 있다.
따라서, 본 발명에서, 엔진 배기 통로에 배열된 환원제 공급 밸브, 및 환원제 공급 밸브로부터의 환원제의 분사 작용을 제어하기 위한 환원제 분사 제어 장치를 포함하는 내연 기관이 제공되고, 환원제 공급 밸브는 엔진 배기 통로의 내부에서 개방되는 노즐 구멍을 구비하며 노즐 구멍의 내부 단부측에서 개폐하도록 제어되는 일 유형의 공급 밸브로 구성되고, 환원제 분사 제어 장치는 배기 처리에 필요한 양의 환원제를 분사하는 배기 처리용 분사 제어를 수행하며 환원제 공급 밸브의 노즐 구멍의 막힘을 방지하기 위해 배기 처리에 필요한 양의 환원제보다 적은 양의 환원제를 환원제 공급 밸브로부터 분사하는 막힘 방지 분사 제어를 수행하고, 환원제 분사 제어 장치는, 배기 처리용 분사 제어의 정지 기간 도중 연소 챔버로의 연료의 공급이 정지될 때 막힘 방지용 환원제를 환원제 공급 밸브로부터 분사하고, 막힘 방지용 환원제를 환원제 공급 밸브로부터 한번 분사한 후 배기 처리용 환원제 분사 제어가 재개될 때까지 환원제 공급 밸브로부터의 막힘 방지용 환원제 분사를 정지한다.
배기 처리용 분사 제어가 수행될 때, 환원제가 주기적으로 분사되고, 따라서 환원제 공급 밸브의 노즐 구멍은 막히지 않게 된다. 오직 배기 처리용 분사 제어가 정지될 때 노즐 구멍 막힘의 위험이 존재한다. 따라서, 본 발명에서, 노즐 구멍 막힘의 위험이 존재하는 경우 배기 처리용 분사 제어의 정지 기간 도중, 연소 챔버로의 연료 공급이 정지될 때, 즉 엔진으로부터 그을음이 배출되지 않을 때, 막힘 방지용 환원제가 환원제 공급 밸브로부터 분사된다. 따라서, 막힘 방지용 환원제가 분사될 때, 그을음은 노즐 구멍의 내주면 상에 절대로 피착되지 않을 것이고, 노즐 구멍은 절대로 막히지 않을 것이고, 따라서 막힘 방지용 환원제가 분사된 후 배기 처리용 환원제 분사 제어가 재개될 때까지, 환원제 공급 밸브로부터의 막힘 방지용 환원제의 분사가 정지된다. 따라서, 환원제의 소모량을 크게 저감할 수 있다.
[도 1] 도 1은 압축 착화식 내연 기관의 전체도이다.
[도 2] 도 2는 촉매 담체의 표면 부분을 개략적으로 도시하는 도면이다.
[도 3] 도 3은 배기 정화 촉매로 유입하는 배기가스의 공연비의 변화를 도시하는 도면이다.
[도 4] 도 4a 및 도 4b는 탄화수소 분사량과, 배기 정화 촉매에 유입하는 배기가스의 공연비의 변화를 도시하는 도면이다.
[도 5] 도 5a 및 도 5b는 노즐 구멍의 내주면 상의 그을음의 피착을 설명하기 위한 도면이다.
[도 6] 도 6a 및 도 6b는 그을음이 부착할 때까지의 온도와 시간 사이의 관계 등을 설명하는 도면이다.
[도 7] 도 7은 그을음의 배출량 맵을 도시하는 도면이다.
[도 8] 도 8은 분사 제어에 대한 흐름도이다.
도 1에 압축 착화식 내연 기관의 전체도를 나타낸다. 도 1을 참조하면, 1은 엔진 본체, 2는 각각의 실린더의 연소 챔버, 3은 각각의 연소 챔버(2) 내에 연료를 분사하기 위한 전자 제어식 연료 분사기, 4는 흡기 매니폴드, 5는 배기 매니폴드를 나타낸다. 흡기 매니폴드(4)는 흡기 덕트(6)를 개재해서 배기 터보과급기(7)의 컴프레서(7a)의 출구에 연결되고, 컴프레서(7a)의 입구는 흡입 공기량 검출기(8)를 개재해서 에어 클리너(9)에 연결된다. 흡기 덕트(6) 내부에, 액추에이터에 의해 구동되는 스로틀 밸브(10)가 배열된다. 흡기 덕트(6) 주변에, 흡기 덕트(6)의 내부를 통해 흐르는 흡입 공기를 냉각하기 위한 냉각 장치(11)가 배열된다. 도 1에 도시된 실시예에서, 엔진 냉각수가 냉각 장치(11) 내부에 유도되고, 여기서 엔진 냉각수는 흡입 공기를 냉각하는데 사용된다.
한편, 배기 매니폴드(5)는 배기 터보 과급기(7)의 배기 터빈(7b)의 입구에 연결되고, 배기 터빈(7b)의 출구는 배기 파이프(12)를 개재해서 배기 정화 촉매(13)의 입구에 연결된다. 본 발명의 실시예에서, 이 배기 정화 촉매(13)는 NOx 흡장 촉매로 구성된다. 배기 정화 촉매(13)의 출구는 미립자 필터(14)에 연결되고, 배기 파이프(12) 내부의 배기 정화 촉매(13) 상류에는, 압축 착화식 내연 기관의 연료로서 사용되는 경유 또는 기타 연료로 구성되는 탄화수소를 공급하기 위한 탄화수소 공급 밸브(15)가 배열된다. 도 1에 도시된 실시예에서, 탄화수소 공급 밸브(15)로부터 공급되는 탄화수소로서 경유가 사용된다. 또한, 본 발명은 연료가 린 공연비 하에서 연소되는 불꽃 점화식 내연 기관에도 적용될 수 있다. 이 경우, 탄화수소 공급 밸브(15)로부터, 불꽃 점화식 내연 기관의 연료로서 사용되는 가솔린 또는 기타 연료로 구성된 탄화수소가 공급된다.
한편, 배기 매니폴드(5) 및 흡기 매니폴드(4)는 배기가스 재순환(이후, "EGR"로 지칭됨) 통로(16)를 개재해서 서로 연결된다. EGR 통로(16) 내부에, 전자 제어식 EGR 제어 밸브(17)가 배열된다. 또한, EGR 통로(16) 주변에, EGR 통로(16) 내부를 통해 흐르는 EGR 가스를 냉각하기 위한 냉각 장치(18)가 배열된다. 도 1에 도시된 실시예에서, 엔진 냉각수가 냉각 장치(18) 내부에 유도되고 여기서 엔진 냉각수는 EGR 가스를 냉각하는데 사용된다. 한편, 각각의 연료 분사기(3)는 연료 공급관(19)을 개재해서 커먼 레일(20)에 연결된다. 이 커먼 레일(20)은 전자 제어식 가변 토출 연료 펌프(21)를 개재해서 연료 탱크(22)에 연결된다. 연료 탱크(22) 내부에 저장된 연료는 연료 펌프(21)에 의해 커먼 레일(20)의 내부에 공급된다. 커먼 레일(21)의 내부에 공급된 연료는 각각의 연료 공급 튜브(19)를 개재해서 연료 분사기(3)에 공급된다.
전자 제어 유닛(30)은 쌍방향성 버스(31)에 의해 서로 접속된, ROM(리드 온리 메모리)(32), RAM(랜덤 액세스 메모리)(33), CPU(마이크로프로세서)(34), 입력 포트(35) 및 출력 포트(36)를 구비한 디지털 컴퓨터로 구성된다. 배기 정화 촉매(13)의 하류에는, 배기 정화 촉매(13)로부터 유출되는 배기가스의 온도를 검출하기 위한 온도 센서(23)가 배열되고, 미립자 필터(14) 이전 및 이후의 압력 차이를 검출하기 위한 차압 센서(24)가 미립자 필터(14)에 부착된다. 이들 온도 센서(23), 차압 센서(24) 및 흡입 공기량 검출기(8)의 출력 신호는 각각 대응하는 AD 변환기(37)를 개재해서 입력 포트(35)에 입력된다. 또한, 가속기 페달(40)은 이에 연결된 부하 센서(41)를 갖고, 부하 센서는 가속기 페달(40)의 답입량(L)에 비례한 출력 전압을 발생시킨다. 부하 센서(41)의 출력 전압은 대응하는 AD 변환기(37)를 개재해서 입력 포트(35)에 입력된다. 또한, 입력 포트(35)에는, 크랭크샤프트가 예를 들어 15° 만큼 회전할 때마다 출력 펄스를 발생시키는 크랭크각 센서(42)가 연결된다. 한편, 출력 포트(36)는 대응하는 구동 회로(38)를 개재해서 연료 분사기(3), 스로틀 밸브(10) 구동용 액추에이터, 탄화수소 공급 밸브(15), EGR 제어 밸브(17) 및 연료 펌프(21) 각각에 접속된다.
도 2는 도 1에 도시된 배기 정화 촉매(13)의 기재 상에 담지된 촉매 담체의 표면 부분을 개략적으로 도시한다. 이 배기 정화 촉매(13)에서, 도 2에 도시된 바와 같이, 예를 들어 알루미나로 이루어지는 촉매 담체(50) 상에는 백금(Pt)으로 이루어지는 귀금속 촉매(51)가 담지된다. 또한, 이 촉매 담체(50) 상에는, 칼륨(K), 나트륨(Na), 세슘(Cs), 또는 다른 이러한 알칼리 금속, 바륨(Ba), 칼슘(Ca), 또는 다른 이러한 알칼리 토금속, 란타노이드 또는 다른 이러한 희토류 및 은(Ag), 구리(Cu), 철(Fe), 이리듐(Ir), 또는 NOx에 전자를 제공할 수 있는 다른 금속으로부터 선택된 적어도 하나를 포함하는 염기성 층(53)이 형성된다. 이 경우, 배기 정화 촉매(13)의 촉매 담체(50) 상에는, 백금(Pt)에 추가로, 로듐(Rh) 또는 팔라듐(Pd)이 추가로 담지될 수 있다.
상술된 바와 같이, 배기 정화 촉매(13)는 NOx 흡장 촉매로 이루어지고, 엔진 흡기 통로, 연소 챔버(2) 및 배기 통로에서 배기 정화 촉매(13) 상류에 공급되는 공기 및 연료(탄화수소)의 비가 "배기가스의 공연비"로 지칭되는 경우, 배기 정화 촉매(13)는 배기가스의 공연비가 린일 때에는 NOx를 흡장하고 배기가스의 공연비가 리치일 때에는 흡장된 NOx를 방출하는 기능을 갖는다. 즉, 배기가스의 공연비가 린일 때, 배기가스에 함유된 NOx는 백금(Pt)(51) 상에서 산화된다. 그리고, 이 NOx는 질산 이온(NO3 -)의 형태로 염기성 층(53) 내에서 확산하여 질산염이 된다. 즉, 이때에는, 배기가스에 함유된 NOx는 질산염의 형태로 염기성 층(53) 내부에 흡수된다. 한편, 배기가스의 공연비가 리치가 되는 경우, 배기가스 내의 산소 농도가 저하된다. 그 결과, 반응은 역방향(NO3 - →NO2)으로 진행하고, 결과적으로 염기성 층(53) 내에 흡수된 질산염은 연속하여 질산 이온(NO3 -)이 되고 NO2의 형태로 염기성 층(53)로부터 방출된다. 이어서, 방출된 NO2는 배기가스에 함유된 탄화수소(HC) 및 CO에 의해 환원된다.
도 3은 염기성 층(53)의 NOx 흡장 능력이 포화되기 바로 전에 연소 챔버(2) 내의 연소 가스의 공연비를 형성함으로써, 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)를 리치로 하는 경우를 도시한다. 이 경우, 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)는 연소 챔버(2) 내의 연소 가스의 공연비가 리치가 되게 할 수 없는 특정 작동 상태에서만 탄화수소를 탄화수소 공급 밸브(15)로부터 분사함으로써 일시적으로 리치가 된다. 또한, 도 3에 도시된 예에서, 이 리치 제어의 시간 간격은 1분 이상이다. 이 경우, 배기가스의 공연비((A/F) in)가 린일 때 염기성 층(53) 내에 흡장되는 NOx는 배기가스의 공연비((A/F) in)가 일시적으로 리치가 될 때 염기성 층(53)로부터 한번에 모두 방출되어 환원된다. 이 방식으로 NOx의 흡장 및 방출 작용에 의해 NOx가 제거되는 경우, 촉매 온도(TC)가 250℃ 내지 300℃일 때, 매우 높은 NOx 정화율이 획득된다. 그러나, 촉매 온도(TC)가 350℃ 이상의 고온이 되는 경우, NOx 정화율이 저하된다.
한편, 탄화수소 공급 밸브(15)로부터 탄화수소를 짧은 주기로 분사함으로써 NOx가 염기성 층(53) 내에 흡장되기 전에 배기가스의 공연비를 리치로 하는 경우, 이소시아네이트 화합물(R-NCO) 및 아민 화합물(R-NH2) 등으로 이루어지는 환원성 중간체가 탄화수소 공급 밸브(15)로부터 분사된 탄화수소 및 배기가스에 함유된 NOx로부터 생성되고, 이들 환원성 중간체는 염기성 층(53) 내에 흡장되지 않고 염기성 층(53) 상에 보유된다. 이어서, 배기가스에 함유된 NOx가 이들 환원성 중간체에 의해 환원된다. 도 4a는 이들 환원성 중간체를 생성시켜서 NOx가 제거되는 경우 탄화수소 공급 밸브(15)로부터의 분사되는 탄화수소의 양 및 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)의 변화를 도시한다. 이 경우, 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)가 리치로 되는 주기는 도 3에 도시된 경우에 비해 짧고, 도 4a에 도시된 예에서, 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)가 리치로 되는 주기, 즉 탄화수소 공급 밸브(15)로부터 탄화수소의 분사 간격은 3초로 된다.
한편, 상술된 바와 같이 NOx의 흡장 및 방출 작용을 이용하여 NOx가 제거되는 경우, 촉매 온도(TC)가 350℃ 이상이 될 때, NOx 정화율이 저하된다. 이는 촉매 온도(TC)가 350℃ 이상이 되는 경우, NOx가 용이하게 흡장되지 않고 질산염이 열에 의해 분해되어 배기 정화 촉매(13)로부터 NO2의 형태로 방출되기 때문이다. 즉, NOx를 질산염의 형태로 흡장하는 한, 촉매 온도(TC)가 높을 때, 높은 NOx 정화율을 얻는 것은 곤란하다. 그러나, 도 4a에 도시된 NOx 정화 방법에서, 질산염의 형태로 흡장된 NOx의 양은 소량이고, 그 결과, 촉매 온도(TC)가 400℃ 이상이더라도, 높은 NOx 정화율이 획득될 수 있다. 도 4a에 도시된 이 NOx 정화 방법은 이후 "제 1 NOx 정화 방법"으로 지칭될 수 있고, 도 4a에 도시된 바와 같이 NOx의 흡장 및 방출 작용을 사용하는 NOx 정화 방법은 이후 "제2 NOx 정화 방법"으로 지칭될 수 있다.
또한, 상술된 바와 같이, 촉매 온도(TC)가 비교적 낮은 경우 제2 NOx 정화 방법에 의한 NOx 정화율이 높아지고, 촉매 온도(TC)가 높아지는 경우 제1 NOx 정화 방법에 의한 NOx 정화율이 높아진다. 따라서, 본 발명의 실시예에서, 개략적으로 말하면, 촉매 온도(TC)가 낮은 경우 제2 NOx 정화 방법이 사용되고, 촉매 온도(TC)가 높은 경우 제1 NOx 정화 방법이 사용된다.
한편, 미립자 필터(14)를 재생하는 경우, 탄화수소 공급 밸브(15)로부터 탄화수소가 분사되고, 분사된 탄화수소의 산화 반응열로 인해 미립자 필터(14)의 승온 작용이 수행된다. 또한, 배기 정화 촉매(13)에 흡장된 SOx를 배기 정화 촉매(13)로부터 방출할 때에도, 탄화수소 공급 밸브(15)로부터 탄화수소가 분사되고, 분사된 탄화수소의 산화 반응열로 인해 배기 정화 촉매(13)의 승온 작용이 수행된다. 도 4b는 미립자 필터(14) 또는 배기 정화 촉매(13)의 온도를 이 방식으로 승온시키기 위해 탄화수소 공급 밸브(15)로부터 탄화수소가 분사되는 경우 탄화수소 공급 밸브(15)로부터 분사되는 탄화수소의 양 및 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)의 변화를 도시한다. 이 때, 도 4b로부터 알 수 있는 바와 같이, 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)를 린으로 유지하면서 도 4a에 도시된 경우의 것과 유사한 짧은 주기로 탄화수소가 탄화수소 공급 밸브(15)로부터 분사된다.
이어서, 도 5a 및 도 5b를 참조하여, 본 발명자에 의해 발견된 탄화수소 공급 밸브(15)의 노즐 구멍의 막힘 메커니즘이 설명될 것이다. 도 5a는 탄화수소 공급 밸브(15)의 전방 단부를 도시한다. 탄화수소 공급 밸브(15)의 전방 단부의 전방 단부면(60)은 배기 파이프(12) 내부에 노출된다. 이 전방 단부면(60)에는, 복수의 노즐 구멍(61)이 형성된다. 탄화수소 공급 밸브(15)의 전방 단부의 내부에, 액체 탄화수소로 충전된 탄화수소 챔버(62)가 형성된다. 이 탄화수소 챔버(62)에는, 솔레노이드에 의해 구동되는 니들 밸브(63)가 배열된다. 도 5a는 니들 밸브(63)가 탄화수소 챔버(62)의 저면 상에 안착되는 경우를 도시한다. 이때, 노즐 구멍(61)으로부터의 탄화수소의 분사는 정지하게 된다. 또한, 이때, 니들 밸브(63)의 전방 단부면과 탄화수소 챔버(62)의 저부면 사이에는, 흡인 챔버(64)가 형성된다. 노즐 구멍(61)의 내부 단부는 이 흡인 챔버(64)의 내부로 개방된다.
니들 밸브(63)가 상승하게 되어 탄화수소 챔버(62)의 저부면으로부터 이격되는 경우, 탄화수소 챔버(62) 내의 탄화수소는 흡인 챔버(64)을 개재해서 노즐 구멍(61)으로부터 배기 파이프(12) 내에 분사될 것이다. 따라서, 이 탄화수소 공급 밸브(15)는 엔진 배기 통로의 내부에서 개방되는 노즐 구멍(61)을 구비하며 노즐 구멍(61)의 내측 단부 측에서 개폐 제어되는 유형의 탄화수소 공급 밸브로 이루어진다. 이러한 유형의 탄화수소 공급 밸브(15)에서, 종래에는, 엔진이 그을음을 배출하는 경우, 그을음은 탄화수소 공급 밸브(15)의 노즐 구멍(61) 내부에 침입하여 노즐 구멍(61)의 내주벽 상에 피착 및 퇴적되고 이에 의해 노즐 구멍(61)이 막힐 것이라고 생각되었다. 그러나, 본 발명자는 노즐 구멍(61)의 막힘에 대한 반복된 연구에 참여한 결과, 탄화수소 공급 밸브(15)가 탄화수소를 분사하지 않을 때 엔진이 다량의 그을음을 배출하더라도, 그을음은 노즐 구멍(61)에 침입하지 않고, 따라서 엔진으로부터 다량의 그을음의 배출이 노즐 구멍(61)의 막힘 원인이 아니고, 막힘은 탄화수소 공급 밸브(15)로부터의 탄화수소의 분사 종료 시 그을음이 노즐 구멍(61) 내에 흡인되는 것에 의해 발생되는 점을 알게 되었다.
즉, 도 5a에 도시된 바와 같은 유형의 탄화수소 공급 밸브(15)에서, 분사 종료시 니즐 밸브(63)를 폐쇄함으로써 탄화수소 공급 밸브(15)로부터의 탄화수소의 분사가 정지될 때, 흡인 챔버(64) 및 노즐 구멍(61) 내에 존재하는 탄화수소는 관성에 의해 노즐 구멍(61)으로부터 유출한다. 그 결과, 이때, 흡인 챔버(64) 내부 및 노즐 구멍(61) 내부는 일시적으로 부압이 된다. 따라서, 이때 배기 통로 내로 개방되는 노즐 구멍(61)의 개구 주변의 배기가스가 그을음을 함유하는 경우, 그을음은 노즐 구멍(61) 및 흡인 챔버(64) 내로 흡인될 수 있고 그을음은 흡인 챔버(64) 및 노즐 구멍(61)의 내부에서 내주면 상에 피착될 수 있다. 그러나, 이 방식으로 그을음이 노즐 구멍(61)의 내주면 및 흡인 챔버(64)의 내주면 상에 피착되더라도, 짧은 기간 내에 탄화수소 공급 밸브(15)로부터 다음의 연료를 분사하는 경우, 노즐 구멍(61)의 내주면 및 흡인 챔버(64)의 내주면 상에 피착된 그을음이 분출될 수 있다. 따라서, 이 경우, 노즐 구멍(61)은 절대로 막히지 않을 것이다. 이에 관해, 그을음이 노즐 구멍(61)의 내주면 및 흡인 챔버(64)의 내부면 상에 피착되고 나서 시간이 경과하는 경우, 그을음은 노즐 구멍(61)의 내주면 및 흡인 챔버(64)의 내주면에 부착할 수 있다. 이 방식으로 그을음이 노즐 구멍(61)의 내주면 및 흡인 챔버(64)의 내주면에 부착하는 경우, 탄화수소가 분사되더라도, 그을음은 더 이상 분출되지 않을 수 있다. 그 결과, 노즐 구멍(61)이 막힐 수 있다. 이어서, 이 그을음의 부착 작용이 도 5b를 참조하여 설명될 것이다.
도 5b는 노즐 구멍(61)의 내주면(65)의 확대 단면도를 도시한다. 탄화수소 공급 밸브(15)가 탄화수소 분사를 종료하는 경우, 탄화수소는 통상적으로 액체의 형태로 노즐 구멍(61)의 내주면(65) 상에 잔류할 수 있다. 이때, 잔류하는 액체 탄화수소는 도 5b에서 참조 번호 66 에 의해 개략적으로 도시된다. 한편, 탄화수소 공급 밸브(15)가 탄화수소를 분사할 때, 배기 통로의 내부로 개방되는 노즐 구멍(61)의 개구 주변의 배기가스가 그을음을 함유하는 경우, 탄화수소 공급 밸브(15)가 탄화수소 분사 종료시, 그을음이 노즐 구멍(61) 및 흡인 챔버(64) 내부에 흡인될 수 있고 그을음이 노즐 구멍(61) 및 흡인 챔버(64)의 내주면 상에 부착될 수 있다. 도 5b는 이때 노즐 구멍(61)의 내주면(65) 상에 액체 탄화수소(66) 상에 피착된 그을음을 참조번호 67에 의해 개략적으로 도시한다.
그런데, 노즐 구멍(61) 및 흡인 챔버(64) 내부에 흡인된 그을음(67)이 액체 탄화수소(66)과 접촉하는 경우, 그을음(67) 및 액체 탄화수소(66)의 접촉면에서의 압력이 주위의 압력보다도 낮아질 수 있고, 따라서 그을음(67)은 액체 탄화수소(66)를 향해서 가압될 수 있고, 그을음(67)은 액체 탄화수소(66)와의 원자간 힘에 의해 액체 탄화수소(66)를 향해 당겨질 수 있어, 그을음(67)은 도 5b에 도시된 바와 같이 피착된 상태로 유지될 수 있다. 이때, 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면에 대한 그을음(67)의 피착력은 약하다. 따라서, 이러한 상태에서 탄화수소의 분사 작용이 수행되는 경우, 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착된 그을음(67)은 즉시 분출될 수 있다. 따라서, 이러한 상태일 때 탄화수소의 분사 작용이 수행되는 경우, 노즐 구멍(61)은 절대로 막히지 않을 것이다.
한편, 도 5b에 도시된 바와 같이, 그을음(67)이 액체 탄화수소(66)에 피착된 상태가 긴 시간 동안 계속되는 경우, 액체 탄화수소, 및 그을음(67)의 세공 내에 진입한 액체 탄화수소 내의 탄화수소가 중합하여 점차 고분자를 형성할 수 있고, 점차 점성이 강하게 될 수 있다. 액체 탄화수소(66)의 점성이 높아지는 경우, 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면에 대한 부착력이 강해진다. 그을음(67)의 세공 내에 진입한 액체 탄화수소의 점성이 높아지는 경우, 액체 탄화수소(66)와의 부착력은 강하게 될 수 있다. 즉, 그을음(67)이 액체 탄화수소(66) 상에 피착된 상태가 긴 시간 동안 계속되는 경우, 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면과의 그을음(67)의 부착력이 강하게 될 수 있다. 이 방식으로 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면에 대한 그을음(67)의 부착력이 강해지는 경우, 탄화수소의 분사 작용이 수행되더라도, 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착되는 그을음(67)은 분출되지 않고 부착된 상태로 유지될 수 있다. 따라서, 이 경우, 그을음(67)에 의해 노즐 구멍(61)이 막히게 될 수 있다.
이 경우, 그을음(67)에 의해 노즐 구멍(61)이 막히는 것을 방지하기 위해서는, 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면에 대한 그을음(67)의 부착력이 그렇게 강하지 않을 때, 즉 탄화수소가 분사되는 경우 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착된 그을음(67)이 결국 분출될 수 있는 정도의 부착력일 때, 탄화수소를 분사하는 것이면 충분하다. 이 방식으로 탄화수소가 분사되는 경우 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착된 그을음(67)이 분출될 수 있는 부착력 중에서 가장 높은 부착력이 "한계 부착력"으로 지칭되는 경우, 그을음(67)의 부착력이 이 한계 부착력보다도 약할 때 탄화수소의 분사 작용이 수행되면 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착된 그을음(67)은 분출될 수 있고, 그을음(67)의 부착력이 이 한계 부착력보다 강해질 때 탄화수소의 분사 작용이 수행되면 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착된 그을음(67)은 분출되지 않고 부착된 상태로 유지될 수 있다. 이어서, 이 한계 부착력에 대해서, 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 소정의 고정량의 그을음(67)이 피착되는 경우를 예로서 취하는 도 6a를 참조하여 설명될 것이다.
이 한계 부착력은 도 6a에서 파선(GXO)에 의해 도시된다. 또한, 도 6a에서, 종축(TB)은 탄화수소 공급 밸브(15)의 전방 단부면(60)의 온도를 나타내고, "t"는 탄화수소 공급 밸브(15)의 탄화수소의 분사 작용이 종료되고 나서 경과된 시간을 나타낸다. 탄화수소 공급 밸브(15)의 전방 단부면(60)의 온도(TB)가 높을수록, 즉 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면의 온도가 높을수록, 액체 탄화수소(66), 및 그을음(67)의 세공 내에 진입한 액체 탄화수소내의 탄화수소의 중합 작용이 더욱 진행하고 점성이 더욱 급속하게 강해진다. 따라서, 탄화수소 공급 밸브(15)의 전방 단부면(60)의 온도(TB)가 높을수록, 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면에 대한 부착 정도가 더욱 빠르게 상승하고, 탄화수소 공급 밸브(15)의 탄화수소의 분사 작용이 종료되고 나서 경과된 시간 "t"은 부착력이 한계 부착력(GXO)이 될 때까지 짧아진다. 따라서, 도 6a에 도시된 바와 같이, 탄화수소 공급 밸브(15)의 전방 단부면(60)의 온도(TB)가 높을수록, 경과된 시간 "t"은 더욱 짧아져 부착력이 한계 부착력(GXO)에 도달한다.
본 발명에 따르는 실시예에서, 한계 부착력(GXO)보다도 다소 약한 부착 정도를 갖는 허용 가능한 부착 정도(GX)는 미리 설정된다. 부착 정도가 이 허용 가능한 부착 정도(GX)의 한계에 도달할 때, 탄화수소 공급 밸브(15)는 탄화수소를 분사하여 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착된 그을음(67)을 분출한다. 이어서, 이 부착 정도의 산출 방법의 일 예가 설명될 것이다. 그런데, 도 6a에서, 탄화수소 공급 밸브(15)의 전방 단부면(60)의 온도(TB)가 TBH인 경우, 탄화수소 공급 밸브(15)로부터의 탄화수소의 분사가 수행된 후 시간(tH)이 경과될 때, 부착의 정도는 허용 가능한 부착 정도(GX)의 한계에 도달한다. 따라서, 탄화수소 공급 밸브(15)의 전방 단부면(60)의 온도(TB)가 ΔT 시간에 걸쳐서 TBH라고 상정하는 경우, 이때에는 부착 정도가 허용 가능한 부착 정도(GX)의 한계를 향해 정확히 ΔT/tH 퍼센트만큼 진행한 것으로 고려될 수 있다. 따라서, 순차적으로 변하는 탄화수소 공급 밸브(15)의 전방 단부면(60)의 각 온도(TB)에 대한 ΔT/tH의 값을 산출하고 산출된 ΔT/tH의 값을 적산하는 경우 적산값이 100%가 될 때, 부착의 정도가 허용 가능한 부착 정도(GX)의 한계에 도달한 것으로 판별할 수 있다.
또한, 이 경우, 허용 가능한 부착 정도(GX)는 탄화수소 공급 밸브(15)가 탄화수소를 마지막으로 분사할 때 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착된 그을음(67)의 양에 따라서 변한다. 즉, 탄화수소 공급 밸브(15)가 마지막으로 연료를 분사할 때 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착된 그을음(67)의 양이 많을수록, 중합되는 그을음(67)의 양이 더욱 증가하고, 따라서 부착의 정도는 빠른 시기에 허용 가능한 부착 정도(GX)의 한계에 도달한다. 따라서, 탄화수소 공급 밸브(15)로부터의 마지막 분사 시 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착된 그을음(67)의 양이 많을수록, 허용 가능한 부착 정도의 한계를 도시하는 곡선은 도 6b에서 GX1, GX2, 및 GX3에 의해 도시된 바와 같이 더욱 낮게 위치된다. 본 발명에 따르는 실시예에서, 탄화수소가 탄화수소 공급 밸브(15)로부터 마지막으로 분사될 때 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착된 그을음(67)의 양에 대응하는 허용 가능한 부착 정도(GX1, GX2, GX3, ...)는 탄화수소 공급 밸브(15)의 전방 단부면(60)의 온도(TB), 및 탄화수소 공급 밸브(15)로부터 탄화수소가 분사되고 나서 경과된 시간 "t"의 함수로서 미리 저장된다.
한편, 탄화수소 공급 밸브(15)로부터 탄화수소가 마지막으로 분사된 때에 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착되는 그을음(67)의 양(SG)은 탄화수소 공급 밸브(15)로부터 탄화수소가 마지막으로 분사된 때에 엔진으로부터 배출되는 그을음의 양에 비례하는 것으로 생각된다. 엔진으로부터 배출되는 그을음의 양은 엔진 작동 상태로부터 결정된다. 따라서, 본 발명에 따르는 실시예에서, 탄화수소 공급 밸브(15)로부터 탄화수소가 분사된 때에 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착되는 그을음(67)의 양(SC)은 가속기 페달(40)의 답입량(L) 및 엔진 회전 수(N)의 함수로서 도 7에 도시된 바와 같은 맵의 형태로 미리 저장된다.
그런데, 상술된 바와 같이, 그을음(67)은 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 부착되는데, 이는 탄화수소 공급 밸브(15)가 탄화수소 분사를 종료할 때 그을음이 노즐 구멍(61) 및 흡인 챔버(64) 내에 흡인되기 때문이다. 탄화수소 공급 밸브(15)로부터의 탄화수소의 분사 종료 시, 배기 통로에 개방되는 노즐 구멍(61)의 개구 주변의 배기가스가 그을음을 함유하지 않는 경우, 즉, 배기 통로에 개방되는 노즐 구멍(61)의 개구 주변의 배기가스가 그을음을 함유하지 않을 때 탄화수소 공급 밸브(15)가 탄화수소를 분사하게 하는 경우, 그을음은 노즐 구멍(61)의 내부에 흡인되지 않을 것이고 그을음은 더 이상 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착되지 않을 것이다. 그을음이 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착되지 않는 경우, 막힘은 발생하지 않을 것이고 탄화수소 공급 밸브(15)로부터 탄화수소를 분사함으로써 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착되는 그을음을 더 이상 분출할 필요가 없다. 그 결과, 탄화수소의 소모량을 저감할 수 있다.
이에 관해, 본 발명에 따르는 실시예에서, 도 3에 도시된 바와 같이, NOx가 배기 정화 촉매(13)로부터 방출해야 할 때에는, 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)가 일시적으로 리치로 된다. 이 경우, 상술된 바와 같이, 연소 챔버(2) 내의 연소 가스의 공연비가 리치로 될 수 없는 특정 작동 조건 시에만, 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)는 탄화수소 공급 밸브(15)로부터 탄화수소를 분사함으로써 일시적으로 리치로 된다. 또한, 제1 NOx 정화 방법을 사용하여 NOx를 정화할 때에는, 도 4a에 도시된 바와 같이, 탄화수소 공급 밸브(15)로부터 짧은 주기로 탄화수소가 분사된다. 한편, 미립자 필터(14)를 재생하기 위해 미립자 필터(14)의 승온 작용을 수행할 때에는, 도 4b에 도시된 바와 같이, 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)를 린으로 유지하면서 탄화수소 공급 밸브(15)로부터 짧은 주기로 탄화수소가 분사된다. 또한, 상술된 바와 같이, 배기 정화 촉매(13)에 흡장된 SOx가 배기 정화 촉매(13)로부터 방출되는 경우, 배기 정화 촉매(13)의 승온 작용을 수행하는 경우, 도 4b에 도시된 바와 같이, 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)를 린으로 유지하면서 탄화수소 공급 밸브(15)로부터 짧은 주기로 탄화수소가 분사된다.
이 방식으로, 배기 정화 촉매(13) 또는 미립자 필터(14)와 같은 배기 처리 장치에서, 배기 정화 처리를 행하기 위해 필요한 탄화수소를 탄화수소 공급 밸브(15)로부터 분사하기 위한 제어, 또는 배기 정화 촉매(13) 또는 미립자 필터(14)의 승온 작용에 필요한 탄화수소를 탄화수소 공급 밸브(15)로부터 분사하기 위한 제어를 "배기 처리용 분사 제어"라고 지칭하는 경우, 이 분사 제어가 계속적으로 수행되는 동안에, 탄화수소 공급 밸브(15)로부터 탄화수소가 분사될 때 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 그을음이 피착되는 경우에도, 이 그을음은 다음에 탄화수소 공급 밸브(15)로부터 탄화수소가 분사될 때 분출될 수 있고, 따라서 이 시간 동안 노즐 구멍(61)은 절대로 막히지 않을 것이다.
이에 반대로, 제2 NOx 정화 방법이 NOx의 제거 작용을 수행하는데 사용되며 배기 정화 촉매(13)로부터 NOx가 방출되어야 할 때 연소 챔버(2) 내의 연소 가스의 공연비를 리치로 함으로써 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)가 일시적으로 리치로 되는 경우, 탄화수소를 분사하는 탄화수소 공급 밸브(15)의 분사 작용은 수행되지 않는다. 따라서, 이 경우, 즉, 상술된 배기 처리용 분사 제어가 정지될 때, 노즐 구멍(61)이 막히는 위험이 존재한다. 따라서, 이때, 노즐 구멍(61)이 막히는 것을 방지하기 위해, 탄화수소 공급 밸브(15)로부터 탄화수소를 분사하는 것이 필요하다. 이 경우, 배기 통로에 개방되는 노즐 구멍(61)의 개구 주변의 배기가스가 그을음을 함유하지 않을 때, 탄화수소 공급 밸브(15)로부터 탄화수소가 분사되는 경우, 분사 개시 시 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착된 그을음은 분출될 수 있으나, 분사 종료 시에 그을음은 노즐 구멍(61) 내에 흡인되지 않을 것이고, 그을음은 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 더 이상 피착되지 않을 것이다. 따라서, 노즐 구멍(61)이 더 이상 막히지 않을 것이다. 즉, 탄화수소 공급 밸브(15)가 탄화수소를 한번 분사하게 하는 경우, 그 후, 탄화수소를 탄화수소 공급 밸브(15)로부터 분사함으로써 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착된 그을음을 더 이상 분출할 필요가 없다. 따라서, 탄화수소의 소모량을 저감할 수 있다.
따라서, 본 발명에서, 연소 챔버(2) 내로의 연료의 공급이 정지될 때, 막힘 방지용 탄화수소가 탄화수소 공급 밸브(15)로부터 분사되게 된다. 연소 챔버(2) 내로의 연료의 공급이 정지될 때, 그을음이 엔진으로부터는 배출되지 않는다. 따라서, 이때, 배기 통로에 개방되는 노즐 구멍(61)의 개구 주변의 배기가스는 그을음을 완전히 함유하지 않는다. 따라서, 이때, 막힘 방지용 탄화수소를 탄화수소 공급 밸브(15)로부터 분사하는 경우, 분사 개시 시 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착된 그을음은 분출될 수 있으나, 분사 종료 시 그을음이 노즐 구멍 내로 흡인되지 않을 것이고, 그을음이 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착되지 않을 것이다. 또한, 이때의 막힘 방지용 탄화수소의 분사량은 분사 개시 시 노즐 구멍(61) 및 흡인 챔버(64)의 전체 용적을 채우는 정도의 탄화수소의 양만을 필요로 한다. 따라서 본 발명에 따르는 실시예에서, 막힘 방지용 탄화수소의 분사량은 노즐 구멍(61) 및 흡인 챔버(64)의 전체 용적을 채우는 양이 된다. 본 발명에서, 이 막힘 방지용 탄화수소의 분사 제어를 "막힘 방지용 분사 제어"라고 지칭하는 경우, 탄화수소 공급 밸브(15)의 노즐 구멍(61)의 막힘을 방지하기 위해, 배기 처리에 필요한 양의 탄화수소에 비해 소량의 탄화수소를 탄화수소 공급 밸브(15)로부터 분사하는 막힘 방지용 분사 제어가 수행된다.
또한, "연소 챔버(2) 내로의 연료의 공급이 정지될 때"는, 차량의 감속 작동 시 연소 챔버(2) 내로의 연료의 공급이 정지될 때, 또는 엔진이 정지될 때이다. "엔진이 정지될 때"는, 운전자가 엔진을 정지시키는 작동을 수행할 때, 예를 들어, 운전자가 점화 스위치를 오프로 할 때 또는, 예를 들어, 구동원으로서 내연 기관 및 전기 모터를 사용하는 하이브리드 엔진에서 내연 기관이 자동으로 정지될 때이다. 이때, 엔진의 회전이 정지할 때 막힘 방지용 탄화수소가 탄화수소 공급 밸브(15)로부터 분사된다.
이에 관해, NOx를 환원하기 위해 요소 수용액에 의해 구성된 환원제를 사용하고 배기 통로 내에 요소 수용액을 분사하기 위한 요소 수용액 공급 밸브를 엔진 배기 통로 내부에 배치한 경우에도, 유사한 문제가 발생한다. 즉, 배기 통로의 내부에 개방되는 요소 수용액 공급 밸브의 노즐 구멍의 개구 주변의 배기가스가 그을음을 함유할 때, 요소 수용액 공급 밸브로부터 요소 수용액을 분사하는 경우, 그을음이 노즐 구멍 내에 흡인되고 그을음이 노즐 구멍의 내벽면 상에 피착되어 막힘을 발생시킨다. 이 경우에도, 배기 통로의 내부에 개방되는 노즐 구멍의 개구 주변의 배기가스가 그을음을 함유하지 않을 때, 요소 수용액 공급 밸브가 요소 수용액을 분사하는 경우, 그을음은 노즐 구멍 내로 흡인되지 않을 것이고 그을음은 노즐 구멍의 내벽면 상에 더 이상 피착되지 않을 것이다. 따라서, 막힘이 더 이상 발생하지 않는다.
이 방식으로, 본 발명은 탄화수소에 의해 구성되는 환원제가 사용되는 경우 또는 요소 수용액에 의해 구성되는 환원제가 사용되는 경우 적용될 수 있다. 따라서, 본 발명에서, 탄화수소 또는 요소 수용액 공급용 공급 밸브를 "환원제 공급 밸브(15)"로 지칭하는 경우, 엔진 배기 통로에 배열된 환원제 공급 밸브(15) 및 환원제 공급 밸브(15)로부터 환원제의 분사 작용을 제어하는 환원제 분사 제어 장치를 포함하는 내연 기관에서, 환원제 공급 밸브(15)는 엔진 배기 통로의 내부에서 개방되는 노즐 구멍(61)이 구비되고 노즐 구멍(61)의 내부 단부층에서 개폐 제어되는 유형의 공급 밸브로 구성되며, 환원제 분사 제어 장치는 배기 처리에 필요한 양의 환원제를 분사하는 배기 처리용 분사 제어를 수행하고, 환원제 공급 밸브의 노즐 구멍(61)이 막히는 것을 방지하는 배기 처리에 필요한 양의 환원제보다 적은 양의 환원제를 환원제 공급 밸브(15)로부터 분사하는 막힘 방지용 분사 제어를 수행하고, 환원제 분사 제어 장치는 배기 처리용 분사 제어의 정지 기간 도중 연소 챔버(2)로의 연료 공급이 정지될 때 막힘 방지용 환원제를 환원제 공급 밸브(15)로부터 분사하고, 막힘 방지용 환원제를 환원제 공급 밸브(15)로부터 한번 분사한 후 배기 처리용 환원제 분사 제어가 재개될 때까지 막힘 방지용 환원제의 환원제 공급 밸브(15)로부터의 분사를 정지한다.
이 경우, 제1 실시예에서, 환원제 분사 제어 장치는 배기 처리용 분사 제어의 정지 기간 도중 연소 챔버(2)로의 연료의 공급이 정지될 때에만 막힘 방지용 환원제를 환원제 공급 밸브(15)로부터 분사하고, 막힘 방지용 환원제를 환원제 공급 밸브(15)로부터 한번 분사한 후 배기 처리용 환원제 분사 제어가 재개될 때까지 막힘 방지용 환원제의 환원제 공급 밸브(15)로부터의 분사를 정지한다. 이 제1 실시예에서, 그을음이 노즐 구멍(61) 내로 흡인되는 위험이 없을 때에만, 막힘 방지용 환원제가 환원제 공급 밸브(15)로부터 분사된다. 또한, 본 발명에 따르는 이 실시예에서, 도 1에 도시된 전자 제어 유닛(30)은 환원제 분사 제어 장치를 형성한다.
한편, 제2 실시예에서, 환원제 분사 제어 장치는, 배기 처리용 분사 제어의 정지 기간 도중 연소 챔버(2)로의 연료의 공급이 정지되지 않을 때 막힘 방지용 환원제가 환원제 공급 밸브(15)로부터 분사되는 경우, 배기 처리용 환원제 분사 제어의 동일한 정기 기간 도중에도 막힘 방지용 환원제가 환원제 공급 밸브(15)로부터 분사되는 것을 허용한다. 즉, 배기 처리용 분사 제어의 정지 기간 도중, 통상적으로 감속 동작이 한번 수행되고, 따라서 연소 챔버(2)로의 연료의 공급이 한번 정지된다. 그러나, 배기 처리용 분사 제어의 정지 기간 도중, 연소 챔버(2)로의 연료의 공급이 정지되지 않은 경우, 배기가스가 그을음을 함유하는 경우에도, 즉 막힘의 위험이 존재하는 경우에도, 막힘 방지용 환원제가 환원제 공급 밸브(15)로부터 분사된다. 이 경우, 막힘의 위험이 다시 발생하는 경우, 막힘 방지용 환원제가 환원제 공급 밸브(15)로부터 다시 분사된다. 즉, 제2 실시예에서, 배기 처리용 환원제 분사 제어의 동일한 정지 기간 도중, 막힘 방지용 환원제가 환원제 공급 밸브(15)로부터 분사된 후, 막힘 방지용 환원제가 환원제 공급 밸브(15)로부터 다시 분사되는 것이 허용된다.
이 경우, 이 제2 실시예에서, 환원제 분사 제어 장치는 노즐 구멍(61) 내의 그을음의 부착 정도를 산출하고, 환원제 분사 제어 장치는 배기 처리용 분사 제어의 정지 기간 도중 연소 챔버(2)로의 연료의 공급이 정지되기 전에 산출된 그을음의 부착 정도가 허용 가능한 부착 정도(GX1, GX2, 및 GX3)의 한계에 도달할 때 막힘 방지용 환원제를 환원제 공급 밸브(15)로부터 분사한다. 이 부착 정도는 환원제 공급 밸브(15)로부터 환원제가 분사될 때 피착되는 그을음의 양(SG), 환원제 공급 밸브(15)의 노즐 구멍(61)의 내벽면의 온도를 나타내는 온도(TB), 및 환원제 공급 밸브(15)의 분사가 정지된 후 경과된 시간 "t"에 기초하여 산출된다.
도 8은 제2 실시예에서 탄화수소로 구성된 환원제를 사용하는 경우의 분사 제어 루틴을 도시한다. 이 루틴은 미리 정해진 시간 간격마다의 끼어들기(interruption)에 의해 실행된다. 도 8을 참조하면, 먼저, 단계(70)에서, 탄화수소 공급 밸브(15)가 배기 처리에 필요한 양의 탄화수소를 분사하는 배기 처리용 분사 제어가 요구되는지의 여부가 판별된다. 배기 처리용 분사 제어가 요구되는 경우, 루틴은 단계(71)로 진행해서 요구에 따른 배기 처리용 분사 처리가 수행된다. 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)를 일시적으로 리치로 하고 배기 정화 촉매(13)로부터 NOx를 방출하기 위해 탄화수소가 탄화수소 공급 밸브(15)로부터 분사되고, 제1 NOx 정화 방법을 사용하여 NOx를 제거하기 위해 탄화수소가 탄화수소 공급 밸브(15)로부터 짧은 주기로 분사되고, 미립자 필터(14)의 승온 작용을 수행하기 위해 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)를 린으로 유지하면서 탄화수소가 탄화수소 공급 밸브(15)로부터 짧은 주기로 분사되고, 또는 배기 정화 촉매(13)에 흡장된 SOx를 배기 정화 촉매(13)로부터 방출하도록 배기 정화 촉매(13)의 승온 작용을 수행하기 위해 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)를 린으로 유지하면서 탄화수소가 탄화수소 공급 밸브(15)로부터 짧은 주기로 분사된다.
계속해서, 단계(72)에서, 탄화수소 공급 밸브(15)로부터의 탄화수소의 분사 작용이 수행될 때마다, 도 7에 도시된 맵으로부터 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착되는 그을음(67)의 양(SG)이 산출된다. 그을음(67)의 양(SG)은 탄화수소 공급 밸브(15)로부터 탄화수소가 마지막으로 분사될 때 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착되는 그을음(67)의 양을 도시한다. 이어서, 탄화수소 공급 밸브(15)의 노즐 구멍(61)의 막힘이 완전히 해소된 것을 나타내는 막힘 해소 플래그가 리셋된다. 한편, 단계(70)에서 배기 처리용 분사 제어가 요구되지 않는다고 판별될 때, 즉, 제2 NOx 정화 방법에 의한 NOx의 정화 작용이 수행되고 배기 정화 촉매(13)로부터 NOx를 방출하기 위해 연소 챔버(2) 내의 연소 가스의 공연비를 일시적으로 리치로 함으로써 배기 정화 촉매(13)에 유입하는 배기가스의 공연비((A/F) in)가 일시적으로 리치로 될 때, 즉, 탄화수소 공급 밸브(15)로부터의 탄화수소의 분사 작용이 정지될 때, 루틴은 단계(74)로 진행하여 막힘 해소 플래그가 설정되는지 여부가 판별된다. 막힘 해소 플래그가 설정되지 않을 때, 루틴은 단계(75)로 진행하여 작동 상태가 그을음이 연소 챔버(2)로부터 완전히 배출되지 않는 상태인지의 여부가 판별된다.
즉, 단계(75)에서, 차량의 감속 시 연료 분사기(3)로부터의 연료의 공급이 정지되는지 여부가 판별된다. 단계(75)에서, 차량의 감속 시 연료 분사기(3)로부터의 연료의 공급이 정지되지 않는다고 판별될 때, 루틴은 단계(76)로 진행하여 엔진이 정지되는지 여부가 판별된다. 단계(75)에서 차량의 감속 시 연료 분사기(3)로부터의 연료의 공급이 정지된다고 판별될 때, 또는 단계(76)에서 엔진이 정지된다고 판별될 때, 루틴은 단계(77)로 진행하여 탄화수소 공급 밸브(15)로부터 막힘 방지용 소량의 탄화수소가 분사된다. 이어서, 루틴은 단계(78)로 진행하여 막힘 해소 플래그가 설정된다. 막힘 해소 플래그가 일단 설정되는 경우, 다음에 루틴은 단계(74)를 통해 진행하여 처리 사이클이 종료된다. 따라서, 단계(70)에서 배기 처리용 분사 제어가 요구되지 않는다고 판별되는 한, 즉, 배기 처리용 분사 제어가 정지하는 기간 도중, 탄화수소 공급 밸브(15)로부터의 막힘 방지용 분사가 정지된다.
한편, 차량의 감속 시 연료 분사기(3)로부터의 연료의 공급 정지 작용이 수행되지 않고 엔진이 정지되지 않을 때, 루틴은 단계(79)로 진행하여 탄화수소 공급 밸브(15)로부터 탄화수소가 마지막으로 분사되었을 때 노즐 구멍(61) 및 흡인 챔버(64)의 내벽면 상에 피착된 그을음(67)의 양(SG)에 기초하여 도 6b에 도시된 허용 가능한 부착 정도(GX1, GX2, 및 GX3)가 구해진다. 이어서, 단계(80)에서, 구해진 허용 가능한 부착 정도(GXi)로부터, 탄화수소 공급 밸브(15)의 전방 단부면(60)의 온도(TB)에서의 그을음의 부착 정도가 허용 가능한 부착 정도(GXi)의 한계에 도달할 때까지의 경과된 시간(tH)이 구해진다. 또한, 이 경우, 탄화수소 공급 밸브(15)의 전방 단부면(60)의 온도(TB)는 온도 센서(23)의 검출 신호로부터 추정된다. 이어서, 단계(81)에서, 이 경과된 시간(tH)에 대한 루틴 중단 시간(ΔT)의 비(ΔT/tH)의 값을 PD에 가산하고 이에 의해 ΔT/tH의 값의 적산값(PD)이 산출된다.
이어서, 단계(82)에서, ΔT/tH의 값의 적산값(PD)이 100%에 도달하는지 여부가 판별된다. ΔT/tH의 값의 적산값(PD)이 100%에 도달할 때 루틴은 단계(83)로 진행하여 탄화수소 공급 밸브(15)로부터 막힘 방지용 소량의 탄화수소가 분사된다. 이어서, 단계(84)에서, ΔT/tH의 값의 적산값(PD)이 소거된다. 이어서, 단계(85)에서, 탄화수소 공급 밸브(15)로부터의 막힘 방지용 분사가 수행될 때, 노즐 구멍(61) 및 흡인 챔버(64)의 내주벽 상에 피착되는 그을음(67)의 양(SG)이 산출된다.
또한, 도 8에 도시된 분사 제어 루틴에서, 단계(72) 및 단계(79 내지 85)를 삭제하는 경우, 결과는 제1 실시예를 행하기 위한 루틴이 된다.
4 흡기 매니폴드
5 배기 매니폴드
7 배기 터보과급기
12 배기 파이프
13 배기 정화 촉매
14 미립자 필터
15 탄화수소 공급 밸브

Claims (6)

  1. 엔진 배기 통로 내에 배열된 환원제 공급 밸브, 및 환원제 공급 밸브로부터의 환원제의 분사 작용을 제어하기 위한 환원제 분사 제어 장치를 포함하는 내연 기관이며, 상기 환원제 공급 밸브는 엔진 배기 통로의 내부에서 개방되는 노즐 구멍을 구비하며 노즐 구멍의 내부 단부측에서 개폐하도록 제어되는 유형의 공급 밸브로 구성되고, 상기 환원제 분사 제어 장치는 배기 처리에 필요한 양의 환원제를 분사하는 배기 처리용 분사 제어를 수행하며 환원제 공급 밸브의 노즐 구멍의 막힘을 방지하기 위해 배기 처리에 필요한 양의 환원제보다 적은 양의 환원제를 환원제 공급 밸브로부터 분사하는 막힘 방지용 분자 제어를 수행하고,
    상기 환원제 분사 제어 장치는, 상기 배기 처리용 분사 제어의 정지 기간 도중 연소 챔버 내로의 연료의 공급이 정지될 때 막힘 방지용 환원제를 환원제 공급 밸브로부터 분사하고, 막힘 방지용 환원제를 환원제 공급 밸브로부터 한번 분사한 후 배기 처리용 환원제 분사 제어가 재개될 때까지 환원제 공급 밸브로부터의 막힘 방지용 환원제의 분사를 정지하는, 내연 기관.
  2. 제1항에 있어서,
    상기 환원제 분사 제어 장치는, 오직 상기 배기 처리용 분사 제어의 정지 기간 도중 연소 챔버 내로의 연료의 공급이 정지될 때 막힘 방지용 환원제를 환원제 공급 밸브로부터 분사하고, 막힘 방지용 환원제를 환원제 공급 밸브로부터 한번 분사한 후 배기 처리용 환원제 분사 제어가 재개될 때까지 환원제 공급 밸브로부터의 막힘 방지용 환원제의 분사를 정지하는, 내연 기관.
  3. 제1항에 있어서,
    차량 감속 또는 엔진 정지시 연소 챔버 내로의 연료의 공급이 정지되는, 내연 기관.
  4. 제1항에 있어서,
    상기 환원제 분사 제어 장치는, 상기 배기 처리용 분사 제어의 정지 기간 도중 연소 챔버로의 연료의 공급이 정지되지 않을 때 막힘 방지용 환원제가 환원제 공급 밸브로부터 분사되는 경우, 배기 처리용 환원제 분사 제어의 동일한 정지 기간 도중에도 환원제 공급 밸브로부터의 막힘 방지용 환원제의 분사를 허용하는, 내연 기관.
  5. 제4항에 있어서,
    상기 환원제 분사 제어 장치는 노즐 구멍 내의 그을음의 부착 정도를 산출하고, 상기 환원제 분사 제어 장치는, 배기 처리용 분사 제어의 정지 기간 도중 연소 챔버로의 연료의 공급이 정지되기 전에 산출된 그을음의 부착 정도가 허용 가능한 부착 정도의 한계에 도달할 때, 막힘 방지용 환원제를 환원제 공급 밸브로부터 분사하는, 내연 기관.
  6. 제5항에 있어서,
    상기 부착 정도는, 환원제 공급 밸브로부터 환원제가 분사될 때 피착되는 그을음의 양, 환원제 공급 밸브의 노즐 구멍의 내벽면의 온도를 나타내는 온도, 및 환원제 공급 밸브로부터의 분사가 정지된 후 경과된 시간에 기초하여 산출되는, 내연 기관.
KR1020167006273A 2013-09-12 2014-08-14 내연 기관 KR101800982B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2013-189627 2013-09-12
JP2013189627A JP5835293B2 (ja) 2013-09-12 2013-09-12 内燃機関
PCT/JP2014/071816 WO2015037405A1 (en) 2013-09-12 2014-08-14 Internal combustion engine

Publications (2)

Publication Number Publication Date
KR20160035088A true KR20160035088A (ko) 2016-03-30
KR101800982B1 KR101800982B1 (ko) 2017-11-23

Family

ID=51541227

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167006273A KR101800982B1 (ko) 2013-09-12 2014-08-14 내연 기관

Country Status (7)

Country Link
US (1) US9926826B2 (ko)
EP (1) EP3044433B1 (ko)
JP (1) JP5835293B2 (ko)
KR (1) KR101800982B1 (ko)
CN (1) CN105531451B (ko)
RU (1) RU2641774C2 (ko)
WO (1) WO2015037405A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108691610A (zh) * 2017-04-07 2018-10-23 福特环球技术公司 通知车辆中的还原剂补充的方法以及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564275B2 (ja) * 1986-05-09 1996-12-18 株式会社日立製作所 状態適応型内燃機関制御システム
JP3855781B2 (ja) * 2002-01-29 2006-12-13 トヨタ自動車株式会社 還元剤供給装置
JP2005106047A (ja) 2003-09-08 2005-04-21 Toyota Motor Corp 排気浄化装置
JP2007321575A (ja) * 2006-05-30 2007-12-13 Toyota Motor Corp 排気浄化装置
JP4487982B2 (ja) * 2006-07-12 2010-06-23 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP4453739B2 (ja) * 2007-10-24 2010-04-21 トヨタ自動車株式会社 添加弁の制御方法
JP5142048B2 (ja) 2008-04-08 2013-02-13 株式会社デンソー 内燃機関の排気浄化装置
DE102009014831A1 (de) * 2009-03-25 2010-09-30 Daimler Ag Verfahren zum Betreiben eines Reduktionsmittelversorgungssystems
JP5397298B2 (ja) 2010-04-13 2014-01-22 トヨタ自動車株式会社 エンジンの制御装置
SE536316C2 (sv) 2010-06-21 2013-08-20 Scania Cv Ab Förfarande och anordning för att avlägsna bränsle ur en doseringsenhet vid ett HC-doseringssystem
WO2012014316A1 (ja) 2010-07-30 2012-02-02 トヨタ自動車株式会社 排気昇温装置及び燃料供給弁の詰まり除去方法
JP5150702B2 (ja) * 2010-10-15 2013-02-27 株式会社豊田自動織機 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
CN105531451B (zh) 2018-04-06
JP5835293B2 (ja) 2015-12-24
KR101800982B1 (ko) 2017-11-23
US20160281573A1 (en) 2016-09-29
JP2015055216A (ja) 2015-03-23
RU2641774C2 (ru) 2018-01-22
WO2015037405A1 (en) 2015-03-19
US9926826B2 (en) 2018-03-27
CN105531451A (zh) 2016-04-27
RU2016108471A (ru) 2017-10-17
EP3044433A1 (en) 2016-07-20
EP3044433B1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP5617348B2 (ja) Scrシステム
CN102378854B (zh) 内燃机的排气净化装置
US8181448B2 (en) System for controlling urea injection quantity of vehicle and method thereof
EP2039901B1 (en) Exhaust purifier of internal combustion engine and method of exhaust purification
CN101892891B (zh) 尾气排放控制装置
WO2009082035A1 (ja) 内燃機関の排気浄化装置
EP2952704A1 (en) Fault detection device for internal combustion engine
KR101800982B1 (ko) 내연 기관
US9617898B2 (en) Control system of internal combustion engine
EP3085935B1 (en) Exhaust gas purification device for internal combustion engine
US9567889B2 (en) Exhaust purification system for internal combustion engine
US9435245B2 (en) Exhaust gas purification device for internal combustion engine
EP2846028A1 (en) Control device of internal combustion engine
EP2987977B1 (en) Control system and control method of internal combustion engine
US8534048B2 (en) Exhaust purification system of internal combustion engine
US9562453B2 (en) Control system of internal combustion engine
JP2009185621A (ja) 内燃機関の排気浄化システム
EP2835510B1 (en) Exhaust purification system of internal combustion engine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant