KR20160006339A - 초소형 led 전극어셈블리의 제조방법 - Google Patents

초소형 led 전극어셈블리의 제조방법 Download PDF

Info

Publication number
KR20160006339A
KR20160006339A KR1020140085384A KR20140085384A KR20160006339A KR 20160006339 A KR20160006339 A KR 20160006339A KR 1020140085384 A KR1020140085384 A KR 1020140085384A KR 20140085384 A KR20140085384 A KR 20140085384A KR 20160006339 A KR20160006339 A KR 20160006339A
Authority
KR
South Korea
Prior art keywords
electrode
ultra
led
small led
small
Prior art date
Application number
KR1020140085384A
Other languages
English (en)
Other versions
KR101628345B1 (ko
Inventor
도영락
성연국
Original Assignee
피에스아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피에스아이 주식회사 filed Critical 피에스아이 주식회사
Priority to KR1020140085384A priority Critical patent/KR101628345B1/ko
Publication of KR20160006339A publication Critical patent/KR20160006339A/ko
Application granted granted Critical
Publication of KR101628345B1 publication Critical patent/KR101628345B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes

Abstract

본 발명은 초소형 LED 전극어셈블리의 제조방법에 관한 것으로, 보다 상세하게는 초소형 LED 소자가 실장되는 전극라인에 초소형 LED 소자를 집중하여 분산시킬 수 있는 동시에 나노단위의 초소형 LED 소자를 초소형 전극에 불량 없이 연결시킬 수 있는 초소형 LED 전극어셈블리의 제조방법에 관한 것이다.

Description

초소형 LED 전극어셈블리의 제조방법{Method for manufacturing nano-scale LED electrode assembly}
본 발명은 초소형 LED 전극어셈블리의 제조방법에 관한 것으로, 보다 상세하게는 초소형 LED 소자가 실장되는 전극라인을 벗어나 배치되거나 뭉쳐 배치되는 것을 막아 목적한 전극영역에 초소형 LED 소자를 집중하여 분산시킬 수 있는 동시에 나노단위의 초소형 LED 소자를 초소형 전극에 불량 없이 연결시킬 수 있는 초소형 LED 전극어셈블리의 제조방법에 관한 것이다.
LED는 1992년 일본 니치아사의 나카무라 등이 저온의 GaN 화합물 완층층을 적용하여 양질의 단결정 GaN 질화물 반도체를 융합시키는데 성공함으로써 개발이 활발하게 이루어져 왔다. LED는 화합물 반도체의 특성을 이용하여 다수의 캐리어가 전자인 n형 반도체 결정과 다수의 캐리어가 정공인 p형 반도체 결정이 서로 접합된 구조를 갖는 반도체로써, 전기신호를 원하는 영역의 파장대역을 가지는 빛으로 변환시켜 표출되는 반도체 소자이다.
이러한 LED 반도체는 광 변환 효율이 높기에 에너지 소비량이 매우 적으며 수명이 반영구적이고 환경 친화적이어서 그린 소재로서 빛의 혁명이라고 불린다. 최근에는 화합물 반도체 기술의 발달로 고휘도 적색, 주황, 녹색, 청색 및 백색 LED가 개발되었으며, 이를 활용하여 신호등, 핸드폰, 자동차 전조등, 옥외 전광판, LCD BLU(back light unit), 그리고 실내외 조명 등 많은 분야에서 응용되고 있으며 국내외에서 활발한 연구가 계속되고 있다. 특히 넓은 밴드갭을 갖는 GaN계 화합물 반도체는 녹색, 청색 그리고 자외선 영역의 빛을 방출하는 LED 반도체의 제조에 이용되는 물질이며, 청색 LED 소자를 이용하여 백색 LED 소자의 제작이 가능하므로 이에 대한 많은 연구가 이루어지고 있다.
또한, LED 반도체의 다양한 분야의 활용과 이에 대한 연구로 고출력의 LED 반도체가 요구되고 LED 반도체의 효율향상이 매우 중요하게 되었다. 하지만 고효율 고출력의 청색 LED 소자의 제작에는 여러 가지 어려움이 있다. 상기 청색 LED 소자의 효율향상에 있어 난점은 제조과정에서의 어려움과 제조된 청색 LED의 GaN계 반도체와 대기와의 높은 굴절율에 기인한다. 먼저, 제조과정에서의 어려움은 GaN계 반도체와 동일한 격자상수를 갖는 기판을 갖기 어렵기 때문이다. 기판 위에 형성되는 GaN 에피층은 기판과 격자상수가 크게 불일치하는 경우 많은 결함이 생기게 되어 효율이 떨어지고 성능이 저하되는 문제점이 생기게 된다.
다음으로, 제조된 청색 LED의 GaN계 반도체와 대기와의 높은 굴절율에 기인하여 LED의 활성층 영역에서 방출된 빛이 외부로 빠져나가지 못하고 LED 내부에서 전반사 하게 된다. 이렇게 전반사 하게 되는 빛은 내부에서 재흡수 되어 결국 LED의 효율이 떨어지는 문제점이 있다. 이러한 효율을 LED 소자의 광추출 효율이라고 하며 이를 해결하기 위해 많은 연구가 진행되고 있다.
한편, LED 소자를 조명, 디스플레이에 등에 활용하기 위해서는 LED 소자와 상기 소자에 전원을 인가할 수 있는 전극이 필요하며, 활용목적, 전극이 차지하는 공간의 감소 또는 제조방법과 연관되어 LED 소자와 서로 다른 두전극의 배치는 다양하게 연구되어 왔다.
LED 소자와 전극의 배치에 관한 연구는 전극에 LED 소자를 성장시키는 것과 LED 소자를 별도로 독립성장 시킨 후에 전극에 배치하는 것으로 분류할 수 있다.
먼저, 전극에 LED 소자를 성장시키는 연구는 기판 위에 하부전극을 박막하고 그 위로 n형 반도체층, 활성층, p형 반도체층, 상부전극을 순차적으로 적층한 후 식각하거나 상부전극을 적층하기 전에 기 적층된 층들을 식각한 후 상부전극을 적층하는 방법 등을 통해 LED 소자와 전극을 일련의 제조과정에서 동시에 생성 및 배치시키는 bottom-up 방식이 있다.
다음으로, LED 소자를 별도로 독립성장 시킨 후에 전극에 배치하는 방법은 LED 소자를 별도의 공정을 통해 독립성장 제조한 각각의 LED 소자를 패터닝된 전극에 일일이 배치시키는 방법이다.
상기 전자의 방법은 고결정성/고효율의 박막 및 LED 소자의 성장이 결정학적으로 매우 어렵다는 문제가 있고 후자의 방법의 경우 광추출 효율이 낮아져 발광효율이 떨어질 수 있다는 문제점이 있었다.
또한, 후자의 방법의 경우 일반적인 LED 소자라면 3차원의 LED 소자를 직립하여 전극과 연결할 수 있지만 LED 소자가 나노단위 크기의 초소형일 경우 전극에 직립시키기가 매우 어렵다는 문제점이 있었다. 본 출원의 발명자에 의한 한국특허출원 제2011-0040174호는 나노단위 크기의 초소형 LED 소자를 전극에 3차원 직립하여 연결시키기 위해 초소형 LED 소자에 전극과 결합을 용이하게 하는 결합링커까지 구성하였으나 이를 실제 초소형 전극에 구현 시에 초소형 LED 소자가 전극과 3차원으로 직립하여 결합시키기 매우 어려운 문제점이 있었다.
나아가 독립하여 제조된 LED 소자를 패터닝된 전극에 일일이 배치시켜야 하나 LED 소자의 크기가 나노단위로 초소형일 경우 초소형의 서로 다른 두 전극라인에 LED 소자를 배치하기 매우 어려우며, 용액상태로 초소형 LED 소자를 자기정렬시켜 초소형의 전극라인에 LED 소자를 배치한다 하더라도 초소형 LED 소자가 뭉쳐서 전극라인의 특정한 부분에 치우쳐 배치되거나 전극라인의 외곽부에만 배치되는 등 목적한 실장범위에 초소형 LED 소자를 배치하기 매우 어려운 문제점이 있다.
더 나아가, 전극라인과 초소형 LED의 전기적 연결에 단락 발생함에 따른 불량이 빈번하여 목적하는 전극어셈블리가 구현되지 않는 문제점이 있었다.
한국특허출원 제2010-0042321호는 LED 모듈을 위한 어드레스 전극라인의 구조 및 제조방법을 개시하고 있다. 상기 출원의 경우 기판 위에 하부 전극을 박막하고 하부 전극 위로 절연층, 상부 전극을 차례로 적층한 후 식각하여 전극라인을 제조 후에 상부 전극상에 LED 칩을 실장하고 있다. 그러나 실장되는 LED 칩이 나노단위의 크기일 경우 3차원의 LED 칩을 상부 전극에 정확히 직립하여 실장하기 매우 어렵다는 문제점이 있으며, 실장한 후에도 실장된 나노단위 크기의 LED 칩과 하부전극을 연결하기 어려운 문제점이 있다. 또한, 실장되는 LED 칩은 LED 칩의 n, p 형 반도체 층이 기판을 기준으로 상, 하를 이루기 때문에 활성층 영역에서 발생한 빛이 LED 칩의 전극에 가려 LED 칩을 빠져나오지 못하고 내부에서 흡수됨으로써 광추출 효율이 떨어진다는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명이 해결하려는 과제는 독립하여 제조된 나노단위 크기의 초소형 LED 소자를 전기적 단락 등 불량 없이 서로 다른 두 전극에 실장시키면서 광추출 효율을 향상시킬 수 있는 초소형 LED 전극어셈블리 제조방법을 제공하는 것이다.
또한, 초소형 LED 소자를 용액상태로 투입 시, 전극라인영역 중 초소형 LED 소자가 뭉쳐 특정부분에만 배치되거나 소자가 외곽으로 퍼져나가 실장 또는 실장조차 되지 못하는 문제점을 해결하여 목적한 실장영역에 초소형 LED 소자가 집중하여 분포할 수 있게 할 수 있는 초소형 LED 전극어셈블리 제조방법을 제공하는 것이다.
상술한 과제를 해결하기 위해 본 발명은, (1) 베이스 기판, 상기 베이스 기판상에 형성된 제1 전극 및 상기 제1 전극과 동일평면상에 이격되어 형성된 제2 전극을 포함하는 전극라인에 복수개의 초소형 LED 소자를 투입하는 단계; 및 (2) 상기 제1 전극과 제2 전극에 복수개의 초소형 LED 소자들을 동시에 연결시키기 위하여 상기 전극라인에 용매를 투입하고, 전극라인에 전원을 인가하여 복수개의 초소형 LED 소자들을 자기정렬 시키는 단계;를 포함하는 초소형 LED 전극어셈블리 제조방법을 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 (1)단계의 제1 전극 및 제2 전극은 소용돌이(spiral) 배치 및 상호 교번적(interdigitated) 배치중 어느 하나의 배치로 이격될 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 초소형 LED 소자는
제1 도전성 반도체층; 상기 제1 도전성 반도체층상에 형성된 활성층; 및 상기 활성층상에 형성된 제2 도전성 반도체층;을 포함할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 초소형 LED 소자는 초소형 LED 소자의 활성층과 전극라인이 접촉되어 발생하는 단락을 방지하기 위해 적어도 활성층 부분의 외부면 전체를 덮는 절연피막;을 외부면에 포함할 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 초소형 LED 소자는 소자 상호간 응집을 방지하기 위하여 초소형 LED 소자의 절연피막 외부면에 코팅된 소수성 피막을 포함할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 초소형 LED 소자는 제1 도전성 반도체층 하부에 형성된 제1 전극층 및 제2 도전성 반도체층 상부에 형성된 제2 전극층을 포함할 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 초소형 LED 소자의 제1 전극층 및 제2 전극층은 절연피막이 코팅되지 않을 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 초소형 LED 소자의 길이는 100 nm 내지 10㎛이고, 종횡비는 1.2 ~ 100일 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 제1 전극의 폭 길이(X), 2 전극의 폭 길이(Y), 제1 전극과 상기 제1 전극과 인접한 제2 전극 간의 간격거리(Z) 및 초소형 LED 소자의 길이(H)는 하기의 관계식 1을 만족할 수 있다.
[관계식 1]
0.5Z ≤ H < X + Y + 2Z 이며, 상기 X, Y, Z는 100nm〈X≤10㎛, 100nm〈Y≤10㎛, 100nm〈Z≤10㎛ 이다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 (1)단계는 1-1) 베이스 기판, 상기 베이스 기판상에 형성된 제1 전극 및 상기 제1 전극과 동일평면상에 이격되어 형성된 제2 전극을 포함하는 전극라인을 제조하는 단계; 1-2) 상기 베이스 기판상에 초소형 LED 소자가 실장되는 전극라인 영역을 둘러싸는 절연 격벽(barrier)을 형성시키는 단계; 및 1-3) 상기 절연 격벽으로 둘러싸인 전극라인 영역에 복수개의 초소형 LED 소자를 투입하는 단계;를 포함할 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 (2)단계에서 인가되는 전원의 전압은 0.1V 내지 1000 V 이며, 주파수는 10 Hz 내지 100 GHz일 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 (2)단계에서 제1 전극과 제2 전극에 동시에 연결되는 초소형 LED 소자의 개수는 초소형 LED 소자가 실장되는 전극라인의 면적 100 ×100㎛2 당 2 내지 100,000 개일 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 제1 전극의 폭 길이(X), 2 전극의 폭 길이(Y), 제1 전극과 상기 제1 전극과 인접한 제2 전극 간의 간격거리(Z) 및 초소형 LED 소자의 길이(H)는 하기의 관계식 1을 만족할 수 있다.
[관계식 1]
Z ≤ H ≤ X + Y + Z 이며, 상기 X, Y, Z는 100nm〈X≤10㎛, 100nm〈Y≤10㎛, 100nm〈Z≤10㎛이다.
본 발명의 바람직한 또 다른 일실시예에 따르면, (3) 제1 전극 및 제2 전극 중 어느 하나 이상의 전극과 초소형 LED 소자의 연결부분에 금속오믹층을 형성하는 단계;를 더 포함 할 수 있다.
이하 본 발명에서 사용한 용어에 대해 정의한다.
본 발명에 따른 구현예의 설명에 있어서, 각 층, 영역, 패턴 또는 구조물들이 기판, 각 층, 영역, 패턴들의 “위(on)”, “상부”, “상”, “아래(under)", "하부”, “하”에 형성되는 것으로 기재되는 경우에 있어, “위(on)”, “상부”, “상”, “아래(under)", "하부”, “하”는 “directly"와 "indirectly"의 의미를 모두 포함한다.
본 발명에 따른 구현예의 설명에 있어 “제1 전극”과 “제2 전극”은 초소형 LED가 실질적으로 실장될 수 있는 전극 영역 또는 상기 영역과 더불어 베이스 기판상 전극을 배치하는 방법에 따라 더 포함될 수 있는 전극 영역까지를 모두 포함한다. 다만, 본 발명의 초소형 LED 전극어셈블리는 초소형 LED가 실질적으로 실장될 수 있는 전극영역을 의미한다.
본 발명에 따른 구현예의 설명에 있어, "단위 전극"이란 초소형 LED 소자를 배열하여 독립적으로 구동 시킬 수 있는 두 전극이 배치된 배열 영역을 의미하고 단위 전극면적이란 상기 배열영역의 면적을 의미한다.
본 발명에 따른 구현예의 설명에 있어서, “연결”이란 초소형 LED 소자가 서로 다른 두 전극(예를 들어 제1 전극, 제2 전극)에 실장되는 것을 의미한다. 또한, “전기적으로 연결”이란 초소형 LED 소자가 서로 다른 두 전극에 실장됨과 동시에 전원을 전극라인에 인가할 때 초소형 LED 소자가 발광할 수 있는 상태를 의미한다.
본 발명의 초소형 LED 전극어셈블리 제조방법은 먼저, 독립하여 제조된 나노단위 크기의 초소형 LED 소자를 전기적 단락 등의 불량 없이 초소형의 서로 다른 두 전극에 연결시킴으로써 종래의 초소형 LED 소자를 직립시켜 3차원 형상으로 전극에 결합시킬 때 초소형 LED 소자를 직립하여 세울 수 없는 문제점 및 초소형 LED 소자를 초소형의 서로 다른 전극에 일대일 대응하여 결합시키기 어렵다는 난점을 극복할 수 있다.
또한, 전극에 연결되는 초소형 LED 소자의 구조와 기판의 상대적 위치관계로 인해, 즉 초소형 LED 소자의 길이방향으로 기판상에 수평하게 배치되는 초소형 LED 소자의 배열에 기인하여 활성층에서 발생되는 광자 중 대기중으로 방출되는 광자가 증가함에 따라 초소형 LED 전극어셈블리의 광추출 효율을 크게 향상시킬 수 있고, 서로 다른 전극과 연결되는 초소형 LED 소자의 개수를 조절할 수 있어 목적하는 광량을 수득이 용이할 수 있다.
나아가, 초소형 LED 소자가 직립하여 상, 하부 전극과 3차원 결합하지 않음으로써 다른 두 전극 사이에 초소형 LED 소자를 자기조립하기가 용이하므로 대면적 평면에 초소형 LED를 구동 가능한 상태로 배열할 수 있는 대면적 양산 공정이 가능하고, 만일하나 발생할 수 있는 LED 소자의 불량을 대비하여 복수개의 LED 소자를 전극과 연결시킴으로써 초소형 LED 전극어셈블리 본래의 기능을 유지할 수 있다.
더 나아가, 초소형 LED 소자를 용액상태로 투입 시, 전극라인영역 중 초소형 LED 소자가 뭉쳐 특정부분에만 배치되거나 소자가 외곽으로 퍼져나가 실장 또는 실장조차 되지 못하는 문제점을 해결하여 초소형 LED 소자 실장영역에 초소형 LED 소자를 자기정렬 시킴에 따라 목적한 전극라인 영역에 집중하여 초소형 LED 소자를 배치시킬 수 있어 수득되는 광량을 현저히 증가시킬 수 있다.
도 1은 본 발명의 바람직한 일구현예에 따른 초소형 LED 전극어셈블리를 제조하는 단계를 나타내는 사시도이다.
도 2는 본 발명의 바람직한 일구현예에 따른 전극라인의 제조공정을 나타내는 사시도이다.
도 3은 본 발명의 바람직한 일구현예에 따른 베이스기판 상에 형성된 제1 전극 및 제2 전극을 포함하는 전극라인 사시도이다.
도 4는 본 발명의 바람직한 일 구현예에 따른 베이스 기판상에 형성된 제1 전극 및 제2 전극을 포함하는 전극라인 평면도이다.
도 5는 본 발명의 바람직한 일구현에에 따른 베이스기판 상에 형성된 제1 전극 및 제2 전극을 포함하는 전극라인 사시도이다.
도 6은 본 발명의 바람직한 일구현예에 따른 초소형 LED 소자에 대한 사시도이다.
도 7은 종래의 초소형 LED 전극 어셈블리의 수직단면도이다.
도 8은 본 발명의 바람직한 일구현예에 따른 제1 전극과 제2 전극에 연결된 초소형 LED 소자의 평면도 및 수직단면도이다.
도 9는 본 발명의 바람직한 일구현예에 따른 베이스기판상에 절연격벽을 형성시키는 제조공정을 나타내는 사시도이다.
도 10은 본 발명의 바람직한 일구현예에 따른 초소형 LED 전극어셈블리의 제조공정 사시도이다.
도 11은 본 발명의 바람직한 일구현예에 따른 초소형 LED 전극어셈블리에 대한 사시도 및 부분확대도이다.
도 12는 본 발명의 바람직한 일구현예에 따른 초소형 LED 전극어셈블리에 대한 SEM 사진 및 초소형 LED의 청색 전계 발광 사진이다.
도 13은 본 발명의 바람직한 일구현예에 따른 초소형 LED 전극어셈블리의 청색 전계 발광 스펙트럼이다.
도 14는 본 발명의 바람직한 일구현예에 포함된 초소형 LED 소자의 TEM 사진이다.
도 15는 본 발명의 바람직한 일구현예에 의해 제조된 초소형 LED 전극어셈블리에 대한 1500배 확대된 광학현미경 사진이다.
도 16는 본 발명의 일비교예에 의해 제조된 초소형 LED 전극어셈블리에 대한 1500배 확대된 광학현미경 사진이다.
이하, 본 발명을 첨부된 도면을 참고하여 보다 상세하게 설명한다.
상술한 바와 같이 종래의 bottom-up 방식은 고결정성/고효율의 박막 및 n-타입/양자우물/p-타입 적층 구조를 갖는 LED 소자의 성장이 결정학적으로 매우 어렵다는 문제가 있고, LED 소자를 별도의 공정을 통해 독립성장 제조한 후 각각의 LED 소자를 패터닝된 전극에 일일이 배치시키는 방법은 일반적인 LED 소자라면 3차원의 LED 소자를 직립하여 전극과 연결할 수 있지만 LED 소자가 나노단위 크기의 초소형일 경우 전극에 직립시키기가 매우 어렵다는 문제점이 있다. 또한, LED 소자의 크기가 나노단위로 초소형일 경우 초소형의 서로 다른 두 전극에 초소형의 LED 소자를 목적한 영역에 집중하여 배치시켜 정렬시킴과 동시에 전기적 단락 등 불량 없이 연결시키기 매우 어려웠다. 나아가 초소형 LED 소자를 용액상태로 전극영역에 투입하여 자기정렬 시킬 경우 용액내에서 부유하여 전극영역의 외곽부로 퍼져나감에 따라 초소형 LED 소자가 전극영역의 외곽부에만 배치되거나 뭉쳐 배치될 수 있고, 전극에 실장조차 제대로 되지 않는다는 문제점이 있었다.
이에 본 발명에서는 (1) 베이스 기판, 상기 베이스 기판상에 형성된 제1 전극 및 상기 제1 전극과 동일평면상에 이격되어 형성된 제2 전극을 포함하는 전극라인에 복수개의 초소형 LED 소자를 투입하는 단계; 및 (2) 상기 제1 전극과 제2 전극에 복수개의 초소형 LED 소자들을 동시에 연결시키기 위하여 상기 전극라인에 용매를 투입하고, 전극라인에 전원을 인가하여 복수개의 초소형 LED 소자들을 자기정렬 시키는 단계;를 포함하는 초소형 LED 전극어셈블리 제조방법을 제공함으로써 상술한 문제의 해결을 모색하였다.
이를 통해 종래의 초소형 LED 소자를 직립시켜 3차원 형상으로 전극에 결합시킬 때 초소형 LED 소자를 직립하여 세울 수 없는 문제점 및 초소형 LED 소자를 초소형의 서로 다른 전극에 일대일 대응하여 결합시키기 어렵다는 난점을 극복할 수 있다. 또한 초소형 LED 소자를 용액상태로 투입 시, 전극라인영역 중 초소형 LED 소자가 뭉쳐 특정부분에만 배치되거나 소자가 용액에서 부유하여 전극라인의 외곽으로 퍼져나가 실장 또는 실장조차 되지 못하는 문제점을 해결하여 초소형 LED 소자 실장영역에 초소형 LED 소자를 자기정렬 시킴에 따라 목적한 전극라인 영역에 집중하여 초소형 LED 소자를 배치시킬 수 있는 동시에 불량 없이 초소형 LED 소자를 전극에 연결시킬 수 있다. 나아가, 전극에 연결되는 초소형 LED 소자의 방향성으로 인해 활성층에서 발생되는 광자 중 대기중으로 방출되는 광자의 양이 증가함에 따라 초소형 LED 전극어셈블리의 광추출 효율을 크게 향상시킬 수 있다.
본 발명에 따른 (1) 단계로서 베이스 기판, 상기 베이스 기판상에 형성된 제1 전극 및 상기 제1 전극과 동일평면상에 이격되어 형성된 제2 전극을 포함하는 전극라인에 복수개의 초소형 LED 소자를 투입한다.
구체적으로 도 1은 본 발명의 바람직한 일구현예에 따른 초소형 LED 전극어셈블리를 제조하는 단계를 나타내는 사시도로서, 도 1a는 베이스기판(100) 상에 형성된 제1 전극(110), 상기 제1 전극과 동일평면상에 이격되어 형성된 제2 전극(130) 및 상기 제1 전극(110) 및 제2 전극(130)을 포함하는 전극라인에 투입된 초소형 LED 소자(120)를 나타낸다.
먼저, 제1 전극 및 상기 제1 전극과 동일평면상에 이격되어 형성된 제2 전극을 포함하는 전극라인의 제조방법을 설명한다. 구체적으로 도 2는 본 발명의 바람직한 일구현예에 따른 베이스기판상에 형성된 전극라인의 제조공정을 나타내는 사시도이다. 다만, 전극라인의 제조공정이 후술되는 제조공정에 제한되는 것은 아니다.
먼저, 도 2a는 전극라인이 형성되는 베이스 기판(100)으로써, 상기 베이스 기판(100)은 바람직하게는 유리기판, 수정기판, 사파이어 기판, 플라스틱 기판 및 구부릴 수 있는 유연한 폴리머 필름 중 어느 하나의 재질일 수 있다. 보다 더 바람직하게는 상기 베이스기판(100)은 투명한 기재일 수 있다. 다만, 베이스 기판(100)의 재질은 상기 종류에 한정되는 것은 아니며 통상 전극이 형성될 수 있는 베이스 기판의 경우 어떤 종류의 재질이나 사용될 수 있다.
상기 베이스기판(100)의 면적은 제한이 없으며, 베이스 기판(100)상에 형성될 제1 전극의 면적, 제2 전극의 면적, 상기 제1 전극 및 제2 전극에 연결되는 초소형 LED 소자 크기 및 연결되는 초소형 LED 소자 개수 등을 고려하여 변할 수 있다. 바람직하게 상기 베이스기판(100)의 두께는 100㎛ 내지 1 mm일 수 있으나, 이에 제한되는 것은 아니다.
이후 도 2b와 같이 베이스기판(100) 상에 광 레지스트(PR, photo resist)(101)를 코팅할 수 있다. 상기 광 레지스트는 당업계에서 통상적으로 사용하는 광 레지스트일 수 있다. 상기 광 레지스트를 베이스기판(100)상에 코팅하는 방법은 스핀코팅, 스프레이코팅 및 스크린 프린팅 중 어느 하나 일 수 있고, 바람직하게는 스핀코팅일 수 있지만 이에 한정되는 것은 아니며, 구체적인 방법은 당업계의 공지된 방법에 의할 수 있다. 코팅시키는 광 레지스트(101)의 두께는 0.1 내지 10 ㎛ 일 수 있다. 다만, 코팅되는 광 레지스트(101)의 두께는 이후 베이스 기판상에 증착될 전극의 두께를 고려하여 변할 수 있다.
상기와 같이 베이스기판(100) 상에 광 레지스트(101)층을 형성시킨 이후 동일평면상에 제1 전극과 제2 전극이 상호 교번적 배치로 이격되어 있는 전극라인(도 3 참조)에 상응하는 패턴(102a, 102b)이 그려진 마스크(102)를 도 2c와 같이 광 레지스트(101)층에 올려놓고, 상기 마스크(103) 상부에서 자외선을 노광할 수 있다.
이후 노광된 광 레지스트층을 통상적인 광 레지스트 용매에 침지시켜 제거하는 단계를 거칠 수 있고, 이를 통해 도 2d와 같은 전극라인이 형성될 노광된 광 레지스트층 부분을 제거할 수 있다. 상기 초소형 LED용 전극라인에 대응하는 제1 전극라인에 상응하는 패턴(102a)의 폭은 100 nm 내지 50 ㎛, 제2 전극라인에 상응하는 패턴(102b)의 폭은 100 nm 내지 50 ㎛일 수 있으나 상기 기재에 한정되는 것은 아니다.
이후 도 2e와 같이 전극라인 마스크(102)의 형상으로 광 레지스트층이 제거된 부분에 전극 형성 물질(103)을 증착할 수 있다. 상기 전극 형성 물질은 제1 전극의 경우 알루미늄, 타이타늄, 인듐, 골드 및 실버로 이루어진 군에서 선택된 어느 하나 이상의 금속물질 또는 ITO(Indum Tin Oxide), ZnO:Al 및 CNT-전도성 폴리머(polmer) 복합체로 이루어진 군에서 선택된 어느 하나 이상의 투명물질 일수 있다. 상기 전극 형성 물질이 2종 이상일 경우 바람직하게는 제1 전극은 2종 이상의 물질이 적층된 구조일 수 있다. 보다 더 바람직하게는 제1 전극은 타이타늄/골드로 2종 물질이 적층된 전극일 수 있다. 다만 제1 전극은 상기 기재에 제한되는 것은 아니다.
상기 전극 형성 물질은 제2 전극의 경우 알루미늄, 타이타늄, 인듐, 골드 및 실버로 이루어진 군에서 선택된 어느 하나 이상의 금속물질 또는 ITO(Indum Tin Oxide), ZnO:Al 및 CNT-전도성 폴리머(polmer) 복합체로 이루어진 군에서 선택된 어느 하나 이상의 투명물질 일수 있다, 상기 전극 형성 물질이 2종 이상일 경우 바람직하게는 제2 전극은 2종 이상의 물질이 적층된 구조일 수 있다. 보다 더 바람직하게는 제2 전극은 타이타늄/골드로 2종 물질이 적층된 전극일 수 있다. 다만 제2 전극은 상기 기재에 제한되는 것은 아니다.
상기 제1 전극과 제2 전극을 형성하는 물질은 동일 또는 상이할 수 있다.
상기 전극 형성 물질의 증착은 열증착법, e-빔 증착법, 스퍼터링 증착법 및 스크린 프린팅 방법 등의 방법 중 어느 하나의 방법으로 증착될 수 있으며 바람직하게는 열증착 방법일 수 있으나, 이에 제한되는 것은 아니다.
상기 전극 형성 물질(103)을 증착한 이후 도 2f와 같이 아세톤, N-메틸피롤리돈 (1-Methyl-2-pyrrolidone, NMP) 및 디메틸설폭사이드(Dimethyl sulfoxide, DMSO) 중 어느 하나의 광 레지스트 제거제를 이용하여 베이스기판(100)에 코팅된 광 레지스트층(101)을 제거하면 베이스기판(100)상에 증착된 전극라인(103?(도 1의 110), 103?(도 1의 130)을 제조할 수 있다.
상술한 방법을 통해 제조된 본 발명에 따른 전극라인에서 단위 전극 면적 즉, 초소형 LED 소자를 배열하여 독립적으로 구동 시킬 수 있는 두 전극이 배치된 배열 영역의 면적은 바람직하게는 1㎛2 내지 100 cm2 이고, 보다 더 바람직하게는 10㎛2 내지 100 mm2일 수 있으나, 단위 전극의 면적은 상기의 면적에 제한되는 것은 아니다. 또한, 상기 전극라인은 단위 전극이 한 개 또는 복수개 포함될 수 있다.
나아가, 상기 전극라인에서 제1 전극과 제2 전극 사이의 이격 간격은 초소형 LED 소자의 길이보다 작거나 같을 수 있다. 이를 통해 제1 전극과 제2 전극 사이에 초소형 LED 소자가 누운 형태로 두 전극 사이에 끼거나 또는 두 전극에 걸쳐 연결될 수 있다.
한편, 본 발명의 적용 가능한 전극라인은 후술하는 제1 전극과 동일평면상에 이격되어 형성되는 제2 전극으로써 초소형 LED 소자를 실장할 수 있는 것이면 적용가능하며 동일평면상에 이격된 제1 전극과 제2 전극의 구체적 배치는 목적에 따라 달라질 수 있다.
구체적으로 도 3은 본 발명의 바람직한 일구현예에 따른 베이스기판 상에 형성된 제1 전극 및 제2 전극에 대한 전극라인 사시도로서 제1 전극(213)은 베이스기판(200)상에 형성될 수 있다. 상기 “베이스 기판상”의 의미는 제1 전극 및 제2 전극 중 어느 하나 이상의 전극이 베이스기판 표면에 직접적으로 형성 또는 베이스기판 상부에 이격하여 형성될 수 있음을 의미한다.
더 구체적으로 도 3에서 제1 전극(213, 214)과 제2 전극(233, 234)이 모두 베이스기판(200) 표면에 직접적으로 형성되어 있으면서 제1 전극(214)과 제2 전극(234)이 상호 교번적으로 배치되어 동일평면상에 이격된 전극라인(244)을 형성할 수 있다.
도 4는 본 발명의 바람직한 일 구현예에 따른 베이스 기판상에 형성된 제1 전극 및 제2 전극에 대한 전극라인 평면도로서 제1 전극(212, 215)과 제2 전극(232, 235)이 모두 베이스기판(201) 표면에 직접적으로 형성되어 있으면서 제1 전극(215)과 제2 전극(235)이 소용돌이 배치되어 동일평면상에 이격된 전극라인(245)을 형성할 수 있다.
상기와 같이 전극라인을 상호 교번적 배치 또는 소용돌이 배치로 구성할 경우 한정된 면적의 베이스 기판(200, 201)에 포함되는 초소형 LED를 한번에 배열하여 독립적으로 구동 할 수 있는 단위 전극의 구동 면적을 높일 수 있어 단위 전극에 실장되는 초소형 LED 수를 증가시킬 수 있다. 이는 단위 면적의 LED 발광의 세기를 증가시키므로 단위면적당 높은 밝기가 요구되는 여러 가지 광전소자의 응용에 활용할 수 있다.
한편 도 3, 4는 바람직한 일구현예이며, 이에 한정되지 않고 두 전극이 일정한 간격을 갖는 상상 가능한 모든 구조의 배치로 다양하게 변형하여 구현할 수 있다.
또한, 상기 도 3에 나타난 본 발명의 바람직한 일구현예에 따른 전극라인과 다르게 본 발명의 또 다른 바람직한 일구현예에 따르면 제2 전극이 베이스 기판 상부에 이격되어 형성될 수 있다.
구체적으로 도 5는 본 발명의 바람직한 일구현에에 따른 베이스기판 상에 형성된 제1 전극 및 제2 전극에 대한 전극라인 사시도로서, 베이스 기판(202) 표면에 직접적으로 제1 전극(211)이 형성되나 제2 전극(231, 236)은 베이스 기판(202) 상부에 이격되어 형성되어 있으며, 제1' 전극(216)은 연결전극을 통해 제1 전극(211)과 연결되고, 베이스 기판(202) 상부에 제1 전극(211)과 이격되어 형성되어 있으며, 제1' 전극(216)과 제2 전극(236)이 동일평면상에 상호 교번적으로 배치되어 이격된 전극라인(246)을 형성할 수 있다.
이하 제1 전극과 제2 전극이 동일평면상에서 상호 교번적으로 배치된 형상을 중심으로 설명한다. 다만, 제1 전극과 제2 전극은 베이스기판 표면에 직접적으로 또는 베이스기판 표면에서 이격되어 형성될 수 있으며, 제1 전극 및 제2 전극 중 어느 하나 이상의 전극이 베이스 기판 표면에서 이격되어 형성되는 경우 제1 전극의 모든 부분과 제2 전극의 모든 부분은 동일평면이 아닐 수 있다. 다만, 이 경우에도 초소형 LED가 실질적으로 실장될 수 있는 영역에 포함되는 제1 전극 및 제2 전극은 동일평면상에 위치할 수 있다.
다음으로 초소형 LED 소자(도 1a의 120)를 설명한다.
본 발명에 사용될 수 있는 초소형 LED 소자는 일반적으로 조명 또는 디스플레이에 사용되는 초소형 LED 소자이면 제한 없이 사용될 수 있으며, 바람직하게는 상기 (1)단계의 초소형 LED 소자의 길이는 100 nm 내지 10㎛일 수 있고, 보다 더 바람직하게는 500 nm 내지 5㎛ 일 수 있다. 만일 초소형 LED 소자의 길이가 100 nm 미만인 경우 고효율의 LED 소자의 제조가 어려우며, 10 ㎛ 를 초과하는 경우 LED 소자의 발광 효율을 저하시킬 수 있다. 초소형 LED 소자의 형상은 원기둥, 직육면체 등 다양한 형상일 수 있고, 바람직하게는 원기둥 형상일 수 있으나 상기 기재에 한정되는 것은 아니다.
이하, 초소형 LED 소자의 설명에서 ‘위’, ‘아래’, ‘상’, ‘하’, ‘상부’ 및 ‘하부’는 초소형 LED 소자에 포함된 각 층을 기준으로 하여 수직의 상, 하 방향을 의미한다.
먼저 본 발명의 바람직한 일구현예에 따르면, 상기 초소형 LED 소자는 제1 도전성 반도체층; 상기 제1 도전성 반도체층상에 형성된 활성층; 및 상기 활성층상에 형성된 제2 도전성 반도체층;을 포함할 수 있다.
구체적으로 도 6은 본 발명이 포함하는 초소형 LED 소자의 일구현예를 나타내는 사시도로, 제1 도전성 반도체층(21), 상기 제1 도전성 반도체층(21)상에 형성된 활성층(22) 및 상기 활성층(22)상에 형성된 제2 도전성 반도체층(23)을 나타낸다.
먼저, 제1 도전성 반도체층(21)에 대해 설명한다. 상기 제1 도전성 반도체층(21)은 예컨대, n형 반도체층을 포함할 수 있다. 상기 초소형 LED 소자가 청색 발광 소자일 경우에는, 상기 n형 반도체층은 InxAlyGa1 -x- yN (0≤x≤1, 0 ≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료 예컨대, InAlGaN, GaN, AlGaN, InGaN, AlN, InN 등에서 어느 하나 이상이 선택될 수 있으며, 제1 도전성 도펀트(예: Si, Ge, Sn 등)가 도핑될 수 있다. 바람직하게 상기 제1 도전성 반도체층(21)의 두께는 500 nm ~ 5㎛ 일 수 있으나 이에 제한되지 않는다. 상기 초소형 LED의 발광은 청색에 제한되지 않으므로, 발광색이 다른 경우 다른 종류의 III-V족 반도체 물질을 n형 반도체 층으로 사용하는데 제한이 없다.
다음으로, 상기 제1 도전성 반도체층(21)상에 형성되는 활성층(22)에 대해 설명한다.
상기 초소형 LED 소자가 청색 발광 소자일 경우에는, 상기 활성층(22)은 상기 제 1도전성 반도체층(21) 위에 형성되며, 단일 또는 다중 양자 우물 구조로 형성될 수 있다. 상기 활성층(22)의 위 및/또는 아래에는 도전성 도펀트가 도핑된 클래드층(미도시)이 형성될 수도 있으며, 상기 도전성 도펀트가 도핑된 클래드층은 AlGaN층 또는 InAlGaN층으로 구현될 수 있다. 그 외에 AlGaN, AlInGaN 등의 물질도 활성층(12)으로 이용될 수 있음은 물론이다. 이러한 활성층(22)에서는 전계를 인가하였을 때, 전자-정공 쌍의 결합에 의하여 빛이 발생하게 된다. 바람직하게 상기 활성층의 두께는 10 ~ 200 nm 일 수 있으나 이에 제한되지 않는다. 상기 활성층의 위치는 LED 종류에 따라 다양하게 위치하여 형성될 수 있다. 상기 초소형 LED의 발광은 청색에 제한되지 않으므로, 발광색이 다른 경우 다른 종류의 III-V족 반도체 물질을 활성층으로 사용하는데 제한이 없다.
다음으로, 상기 활성층(22)상에 형성되는 제2 도전성 반도체층(23)에 대해 설명한다.
상기 초소형 LED 소자가 청색 발광 소자일 경우에는, 상기 활성층(22) 상에는 제 2도전성 반도체층(23)이 형성되며, 상기 제 2도전성 반도체층(23)은 적어도 하나의 p형 반도체층으로 구현될 수 있는 데, 상기 p형 반도체층은 InxAlyGa1 -x- yN (0≤x≤1, 0 ≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질 예컨대, InAlGaN, GaN, AlGaN, InGaN, AlN, InN 등에서 어느 하나 이상이 선택될 수 있으며, 제 2도전성 도펀트(예: Mg)가 도핑될 수 있다. 여기서, 발광 구조물은 상기 제1도전형 반도체층(21), 상기 활성층(22), 상기 제 2도전성 반도체층(23)을 최소 구성 요소로 포함하며, 각 층의 위/아래에 다른 형광체층, 활성층, 반도체층 및/또는 전극층을 더 포함할 수도 있다. 바람직하게 상기 제2 도전성 반도체층(23)의 두께는 50 nm ~ 500 nm 일 수 있으나 이에 제한되지 않는다. 상기 초소형 LED의 발광은 청색에 제한되지 않으므로, 발광색이 다른 경우 다른 종류의 III-V족 반도체 물질을 p형 반도체 층으로 사용하는데 제한이 없다.
또한, 본 발명의 바람직한 일구현예에 따르면, 상기 초소형 LED 소자는 제1 도전성 반도체층 하부에 형성된 제1 전극층 및 제2 도전성 반도체층 상부에 형성된 제2 전극층을 더 포함할 수 있다.
구체적으로 도 6은 본 발명이 포함하는 초소형 LED 소자의 일구현예를 나타내는 사시도로, 제1 도전성 반도체층(21) 하부에 형성된 제1 전극층(11) 및 제2 도전성 반도체층(23) 상부에 형성된 제2 전극층(12)을 나타낸다.
상기 제1 전극층(11) 및 제2 전극층(12)은 통상의 LED 소자의 전극으로 사용되는 금속 또는 금속산화물을 이용할 수 있으며, 바람직하게는 각각 독립적으로 크롬(Cr), 티타늄(Ti), 알루미늄(Al), 금(Au), 니켈(Ni), ITO 및 이들의 산화물 또는 합금 등을 단독 또는 혼합하여 사용할 수 있으나 이에 제한되지 않는다. 바람직하게 상기 제1 전극층(11)의 두께 및 제2 전극층(12)의 두께는 각각 1 ~ 100 nm 일 수 있으나 이에 제한되지 않는다. 초소형 LED 소자에 제1 전극층(11) 및 제2 전극층(12)을 포함할 경우 제1 반도체층(21) 및/또는 제2 반도체층(23);과 전극라인의 연결부위에 금속오믹층을 형성하는 공정에서 요구되는 온도보다 낮은 온도로 금속오믹층을 형성 시킬 수 있는 이점이 있다.
한편, 본 발명에 따른 초소형 LED 전극어셈블리에 포함되는 초소형 LED 소자는 상기 초소형 LED 소자의 활성층(22)과 초소형 LED 전극어셈블리에 포함되는 전극라인이 접촉되어 발생하는 단락을 방지하기 위해 위해 적어도 활성층(22) 부분의 외부면 전체를 덮는 절연피막(30);을 소자의 외부면에 포함할 수 있다. 또한, 바람직하게는 전기적 단락 및 반도체층의 외부 표면 손상을 통한 초소형 LED 소자의 내구성 저하를 동시에 방지하기 위해 제1 반도체층(21) 및 제2 반도체층(23) 중 어느 하나 이상의 외부면에도 절연피막(30)이 코팅될 수 있다.
구체적으로 도 6에서 절연피막(30)은 제1 도전성 반도체층(21), 활성층(22) 및 제2 도전성 반도체층(23) 외부면을 덮고 있다.
상기 절연피막(30)은 초소형 LED 소자에 포함된 활성층이 전극과 접촉 시에 발생하는 전기적 단락을 방지하는 역할을 한다. 또한, 절연피막(30)은 초소형 LED 소자의 활성층을 포함한 외부면을 보호함으로써 소자의 외부표면 결함을 방지해 발광 효율 저하를 막을 수 있다.
만일 초소형 LED 소자 각각을 일일이 서로 다른 두 전극 사이에 배치시키고 연결시킬 수 있는 경우 활성층이 전극에 닿아 발생하는 전기적 단락을 방지할 수 있다. 그러나 나노단위의 초소형 LED 소자를 일일이 전극에 실장하는 것은 물리적으로 어렵다. 이에 따라 본 발명과 같이 전원을 인가하여 서로 다른 두 전극 사이에 초소형 LED 소자를 자기정렬 시킬 경우 초소형 LED 소자는 서로 다른 두 전극 사이를 이동, 정렬 등의 위치변경을 하게 되며, 이 과정에서 초소형 LED 소자의 활성층(22) 외부면이 전극라인에 접촉할 수 있어 전기적 단락이 빈번히 발생할 수 있다.
한편, 초소형 LED 소자를 전극상에 직립하여 세울 경우에는 활성층과 전극라인이 접촉하여 발생하는 전기적 단락의 문제가 발생하지 않을 수 있다. 즉, 초소형 LED 소자를 전극상에 직립하여 세우지 못하여 전극상에 LED 소자가 누워있는 경우에만 활성층과 전극라인이 접촉할 수 있으며, 이러한 경우는 초소형 LED 소자를 서로 다른 두 전극에 연결시키지 못한 문제가 있을 뿐 전기적 단락의 문제는 발생하지 않을 수 있다.
구체적으로 도 7은 종래의 초소형 전극 어셈블리의 수직단면도로써, 제1 전극라인(61)상에 제1 초소형 LED 소자(71)의 제1 반도체층(71a)이 연결되어 있고, 제2 반도체층(71c)이 제2 전극라인(62)에 연결되어 있으며, 제1 초소형 LED 소자(71)가 상하로 위치하는 두 전극(61, 62)에 직립하여 연결되고 있음을 확인할 수 있다. 도 7과 같은 전극어셈블리에서 제1 초소형 LED 소자(71)가 두 전극에 동시에 연결되어 있다면 상기 소자의 활성층(71b)이 서로 다른 두 전극(61, 62) 중 어느 하나에 접촉할 가능성이 없어 활성층(71b)과 전극(61, 62)의 접촉에 따른 전기적 단락은 발생하지 않을 수 있다.
이에 반하여, 도 7에서 제2 초소형 LED 소자(72)는 제1 전극(61)에 누워있으며 이 경우 제2 초소형 LED 소자(72)의 활성층(72b)이 제1 전극(61)과 접촉하고 있다. 그러나 이때는 제2 초소형 LED 소자가 제1 전극(61) 및 제2 전극(62)에 연결되지 못한 문제점이 있을 뿐 전기적 단락의 문제는 발생하지 않는다. 이에 따라 만일 도 7과 같은 전극어셈블리에 포함되는 제1 초소형 LED 소자(71)의 제1 반도체층(71a), 활성층(71b) 및 제2 반도체층(71c) 외부면에 절연피막이 코팅된 경우, 상기 절연피막은 초소형 LED 소자 외부 표면의 손상 방지를 통한 발광효율 감소의 목적 및 효과만 가진다.
그러나 본 발명은 도 7과 같은 종래의 초소형 전극 어셈블리와 다르게 서로 다른 두 전극이 동일평면상에 이격되어 형성되고(도 3 참조), 상기 두 전극이 형성된 동일평면과 평행하게 초소형 LED 소자가 누워서 연결되기 때문에 종래의 초소형 전극 어셈블리에서는 발생하지 않았던 초소형 LED 소자의 활성층과 전극간의 접촉에 따른 전기적 단락 문제가 필연적으로 발생할 수 밖에 없다. 따라서 이를 방지하기 위해 초소형 LED 소자는 소자의 외부면에 적어도 활성층 부분의 외부면 전체를 덮는 절연피막이 필요할 수 있다.
나아가, 본 발명에 따른 초소형 전극 어셈블리에 포함되는 초소형 LED 소자와 같이 제1 반도체층, 활성층, 제2 반도체층이 순차적으로 수직으로 배열되는 구조의 초소형 LED 소자에서 활성층은 반드시 외부에 노출될 수 밖에 없다. 또한, 이러한 구조의 LED 소자에서 활성층의 위치는 상기 소자의 길이방향으로 정중앙에만 위치하는 것이 아니고, 특정 반도체층 쪽으로 치우쳐 형성될 수 있어 전극과 활성층이 접촉할 가능성이 더욱 높아질 수 있다. 이에 따라 상기 절연피막은 소자에서 활성층의 위치에 관계없이 소자가 서로 다른 두 전극과 전기적으로 연결될 수 있게 함으로써 본 발명의 목적을 달성하는데 있어 보다 유리한 이점이 있다.
구체적으로 도 8은 본 발명의 바람직한 일구현예에 따른 제1 전극과 제2 전극에 연결된 초소형 LED 소자의 평면도 및 수직단면도를 나타낸다. 도 8에서 A-A 단면도와 같이 제1 초소형 LED 소자(121a, 121b, 121c) 중 활성층(121b)은 제1 초소형 LED 소자(121)의 중앙부에 위치하지 않고 왼쪽으로 많이 치우쳐 있으며, 이 경우 활성층(121b)의 일부가 전극(131)에 접촉될 가능성이 높아져 전기적 단락이 발생할 수 있으며, 이는 초소형 LED 전극어셈블리의 불량을 유발하는 원인이 될 수 있다. 상기와 같은 문제점을 해결하기 위해 본 발명에 포함되는 초소형 LED 소자는 활성층을 포함하는 외부면에 절연피막이 코팅될 수 있으며, 상기 절연피막으로 인해 도 8의 제1 초소형 LED 소자(121)와 같이 활성층(121b)이 전극(131)에 걸쳐 있어도 단락이 발생하지 않을 수 있다.
상기 절연피막(30)은 바람직하게는 질화규소(Si3N4), 이산화규소(SiO2), 산화알루미늄(Al2O3), 산화하프늄(HfO2), 산화이트륨(Y2O3) 및 이산화티타늄(TiO2) 중 어느 하나 이상을 포함할 수 있으며, 보다 바람직하게는 상기 성분으로 이루어지나 투명한 것일 수 있으며, 다만 이에 한정되지 않는다. 투명한 절연피막의 경우 상기의 절연피막(30)의 역할을 하는 동시에 절연피막을 코팅함으로써 만일하나 발생할 수 있는 발광효율의 감소를 최소화할 수 있다.
한편, 본 발명의 바람직한 일구현예에 따르면, 상기 절연피막(30)은 초소형 LED 소자의 제1 전극층(11) 및 제2 전극층(12) 중 어느 하나 이상의 전극층에는 절연피막이 코팅되지 않을 수 있고, 보다 바람직하게는 두 전극층(11, 12) 모두 절연피막이 코팅되지 않을 수 있다. 이는 상기 두 전극층(11, 12)과 서로 다른 전극간에는 전기적으로 연결이 되어야 하는데 만일 두 전극층(11, 12)에 절연피막(30)이 코팅되는 경우 전기적 연통을 방해할 수 있어 초소형 LED의 발광이 감소되거나 전기적으로 연통되지 않아 발광 자체가 되지 않을 수 있는 문제점이 있다. 다만, 초소형 LED 소자의 두 전극층(11, 12)과 서로 다른 전극간에 전기적 연통이 있는 경우 초소형 LED 소자의 발광에 문제가 없을 수 있어 상기 두 전극층(11, 12)의 끝단부를 제외한 나머지 전극층(11, 12) 부분에는 절연피막(30)을 포함할 수 있다.
한편, 본 발명의 바람직한 일구현예에 따르면, 상기 초소형 LED 소자는 소자 상호간 응집을 방지하기 위하여 절연피막 외부면에 코팅된 소수성 피막을 포함할 수 있다.
구체적으로 도 6에서 절연피막(30) 외부면에 코팅된 소수성 피막(40)을 확인할 수 있다. 본 발명의 바람직한 일구현예에 따르면, 상기 초소형 LED 소자는 상기 절연피막(30) 위에 소수성 피막(40)을 더 포함할 수 있다. 상기 소수성 피막(40)은 초소형 LED 소자의 표면에 소수성 특성을 갖게 하여 LED 소자들 간에 응집현상을 방지하기 위한 것으로서 초소형 LED 소자가 용매에 혼합될 때 초소형 LED 소자간에 응집을 최소화 하여 독립된 초소형 소자의 특성 저해 문제를 제거하고, 전원을 전극라인에 인가시에 보다 용이하게 각각의 초소형 LED 소자가 위치정렬 할 수 있다.
상기 소수성 피막(40)은 상기 절연피막(30) 상에 형성될 수 있다. 이 경우 사용 가능한 소수성 피막은 절연피막 상에 형성되어 초소형 LED 소자들 간에 응집현상을 방지할 수 있는 것이라면 제한 없이 사용될 수 있으며, 바람직하게는 옥타데실트리크로로실리란(octadecyltrichlorosilane, OTS)과 플루오로알킬트리크로로실란(fluoroalkyltrichlorosilane), 퍼플루오로알킬트리에톡시실란(perfluoroalkyltriethoxysilane) 등과 같은 자기조립 단분자막(SAMs, self-assembled monolayers)과 테프론(teflon), Cytop 등과 같은 플루오로 폴리머 (fluoropolymer) 등을 단독 또는 혼합하여 사용할 수 있으나 이에 제한되는 것은 아니다.
한편, 본 발명에 따른 초소형 LED 전극어셈블리에 포함되는 초소형 LED 소자의 길이는 초소형 LED 소자와 서로 다른 두 전극 간에 전기적 연결을 위해 하기의 관계식 1을 만족할 수 있다. 만일 초소형 LED 소자가 전극라인에 자기정렬한 상태라도 전기적으로 연결되지 않을 경우 전극라인에 전원을 인가해도 전기적으로 연결되지 않은 초소형 LED 소자는 발광하지 않아 본 발명의 목적을 달성할 수 없는 치명적인 문제점이 있을 수 있다.
[관계식 1]
0.5Z ≤ H < X + Y + 2Z 이며, 바람직하게는 상기 관계식 1은 Z ≤ H < X + Y + 2Z 를 만족할 수 있고, 보다 바람직하게는 Z ≤ H ≤ X + Y + Z 를 만족할 수 있으며, 이때, 상기 X, Y, Z는 100nm〈X≤10㎛, 100nm〈Y≤10㎛, 100nm〈Z≤10㎛일 수 있다. 상기 X는 전극라인에 포함되는 제1 전극 폭의 길이이며, 상기 Y는 제2 전극 폭의 길이이고, 상기 Z는 제1 전극과 상기 제1 전극과 인접한 제2 전극간 간격의 거리이며, 상기 H는 초소형 LED 소자의 길이에 해당한다. 여기서 상기 제1 전극 및 제2 전극이 각각 복수개일 경우 상기 두 전극 간의 간격 거리(Z)은 동일하거나 상이할 수 있다.
상기 초소형 LED 소자가 서로 다른 두 전극과 전기적으로 연결되는 부분은 초소형 LED 소자의 제1 전극층 및 제1 도전성 반도체층 중 어느 하나 이상의 층(또는 제2 도전성 반도체층 및 제2 전극층 중 어느 하나 이상의 층)일 수 있다.
만일 초소형 LED 소자의 길이가 서로 다른 두 전극간의 간격보다 현저히 작을 경우 초소형 LED 소자는 서로 다른 두 전극에 동시에 연결되기 어려울 수 있다. 이에 따라 본 발명에 따른 초소형 LED 소자의 길이는 상기 관계식 1 중 0.5Z ≤ H 를 만족하는 초소형 LED 소자일 수 있다. 만일 관계식 1 중 0.5Z ≤ H 를 만족하지 못하는 경우 초소형 LED 소자가 제1 전극과 제2 전극에 전기적으로 연결되지 못하고 제1 전극 및 제2 전극 중 어느 하나의 전극에만 초소형 LED 소자가 연결되는 문제점이 있을 수 있다. 보다 바람직하게는 도 8과 같이 제2 초소형 LED 소자(122)가 제1 전극(111)과 제2 전극(131) 사이의 전극 사이에 끼어 전기적으로 연결될 수 있어 본 발명에 포함되는 초소형 LED 소자는 관계식 1 중 Z ≤ H 을 만족하는 LED 소자일 수 있다.
한편, 초소형 LED 소자의 길이(H)가 제1 전극의 폭 길이(X), 제2 전극의 폭 길이(Y) 및 제1, 2 전극 사이의 전극간격 거리(Z)을 고려하여 길어질 경우 도 8의 제3 초소형 LED 소자(123)의 양 끝단부가 아닌 부분이 제1 전극(112)과 제2 전극(132)에 각각 독립적으로 연결될 수 있다. 만일 제3 초소형 LED 소자(123)의 활성층이 소자의 중앙부에 위치하지 않고, 소자의 외부면에 적어도 활성층 부분의 외부면을 덮는 절연피막이 코팅되어 있지 않다면 전극(112 또는 132)과 제3 초소형 LED 소자(123)간의 전기적 단락의 원인이 될 수 있다. 그러나 본 발명에 따른 초소형 LED 소자는 외부면에 적어도 활성층 부분의 외부면 전체를 덮는 절연피막을 포함하고 있어서 도 8의 제3 초소형 LED 소자(123)와 같이 초소형 LED 소자의 양 끝단부가 아닌 부분이 전극과 연결되는 경우에도 전기적 단락이 발생하지 않으면서 동시에 전기적으로 연결될 수 있다.
다만, 초소형 LED 소자의 길이(H)가 제1 전극의 폭 길이(X), 제2 전극의 폭 길이(Y) 및 제1, 2 전극 사이의 전극간격 거리(Z)을 동시에 고려하여 더 길어져 상기 관계식 1 중 H < X + Y + 2Z을 만족하지 못하는 경우 전기적으로 연결되지 않은 초소형 LED 소자가 초소형 LED 전극 어셈블리에 포함되는 문제점이 있을 수 있다.
구체적으로 도 8에서 제4 초소형 LED 소자(124)는 두 개의 제2 전극(132, 133) 및 한 개의 제1 전극(112)에 동시에 연결되고 있는데, 이러한 경우에 해당하는 초소형 LED 소자의 길이(H)는 상기 관계식 1 중 H < X + Y + 2Z을 불만족 하는 경우이다. 이러한 경우에 상기 제4 초소형 LED 소자(124)는 활성층과 제2 전극(132, 133) 또는 제1 전극(112)이 접촉되어 전기적 단락이 발생할 수 있는 문제점이 있다. 만일 상기 제4 초소형 LED 소자(124)가 활성층 외부면에 코팅된 절연피막을 포함하여 전기적 단락의 문제점이 제거된다 하더라도, 두 개의 제2 전극(132, 133)에 제4 초소형 LED 소자(124)의 양 끝단이 각각 연결됨에 따라 실질적으로 전기적으로는 연결되지 않은 초소형 LED 전극어셈블리가 제조될 수 있는 문제점이 있고, 이러한 제4 초소형 LED 소자(124)는 전극라인에 전원인가 시에도 발광하지 않는 문제점이 있을 수 있다.
또한, 만일 초소형 LED 소자의 길이(H)가 상기 제4 초소형 LED 소자(124)보다 길어져 초소형 LED 소자의 양 끝단부가 제1 전극(111) 및 제2 전극(133)에 연결되어 전기적으로 연결된다 하더라도, 초소형 LED 소자의 길이가 길어지면 광효율이 저하될 수 있어 목적하는 초소형 LED 전극 어셈블리를 제조할 수 없는 문제점이 있을 수 있다.
이에 따라 초소형 LED 소자의 길이(H)는 관계식 1 중 H < X + Y + 2Z을 만족할 수 있다.
한편, 초소형 LED 소자의 길이(H)가 관계식 1 중 X + Y + Z < H < X + Y + 2Z 을 만족하더라도, 초소형 LED 소자의 활성층이 특정한 도전성 반도체층 쪽으로 치우쳐 형성(도 8의 125b 참조)될 경우 전극과 연결되는 초소형 LED 소자의 부분이 전극층 및/또는 도전성 반도체층이 아닌 절연피막이 코팅된 활성층의 경우 절연피막으로 인해 전기적 단락이 발생하지는 않지만 초소형 LED 소자가 전극라인에 전기적으로 연결되지 않을 수 있는 문제점이 있을 수 있다.
구체적으로 도 8에서 제5 초소형 LED 소자(125)는 제1 전극(111) 및 제2 전극(131)에 동시에 연결되어 있다. 그러나 도 8에서 B-B의 단면도를 살펴 보면 제1 전극(111)에 연결된 제5 초소형 LED 소자(125)의 외부면 위치는 활성층(125c) 부분이고, 전극층(125a) 및 도전성 반도체층(125b)은 제1 전극(111)에 연결되지 않았음을 확인할 수 있다. 이러한 경우 제5 초소형 LED 소자(125)의 활성층(125c) 부분에 절연피막이 코팅되어 있어 전기적 단락은 발생하지 않지만 전극층(125a) 및 도전성 반도체층(125b)은 제1 전극(111)에 전기적으로 연결되지 않아 제5 초소형 LED 소자(125)는 전극라인에 전원 인가 시에 발광되지 않는 문제점이 있을 수 있다.
또한, 초소형 LED 소자의 길이(H)가 관계식 1 중 X + Y + Z < H < X + Y + 2Z 을 만족하고, 초소형 LED 소자가 전극에 전기적으로 연결된 상태인 경우에도 목적하는 광량을 발광하는 초소형 LED 전극 어셈블리를 구현할 수 없는 경우 있을 수 있다. 구체적으로 도 8에서 제6 초소형 LED 소자(126)는 제1 전극(111) 및 제2 전극(131)에 전기적으로 연결되어 있어 전극라인에 전원 인가시에 발광에는 문제가 없을 수 있으나, 제1 전극(111) 및 제2 전극(131)에 수직하여 정렬되어 실장되지 않고, 비스듬히 실장됨에 따라 1개의 초소형 LED 소자가 실장을 위해 차지하는 전극라인 면적이 증가하고, 이에 따라 전극라인 중 한정된 면적의 초소형 LED 소자 실장 영역에 실장 시킬 수 있는 초소형 LED 소자의 개수가 감소함에 따라 목적하는 광량을 발광하는 초소형 LED 전극 어셈블리 구현이 어려울 수 있는 문제점이 있을 수 있다.
이에 따라 본 발명의 바람직한 일구현예에 따르면, 초소형 LED 소자의 길이(H)는 관계식 1 중 H ≤ X + Y + Z를 만족할 수 있다. 이 경우 초소형 LED 소자에서 길이방향으로 절연피막이 코팅된 활성층의 위치에 상관없이 전기적으로 단락이 없는 동시에 전기적으로 연결된 초소형 LED 전극어셈블리를 구현할 수 있고, 1개의 초소형 LED 소자가 차지하는 전극라인 면적이 감소하여 한정된 면적의 전극라인에 실장될 수 있는 초소형 LED 소자의 개수가 증가할 수 있어 목적하는 초소형 LED 소자의 구현에 매우 유리할 수 있다.
한편, 제1 전극 및 제2 전극을 포함하는 전극라인에 초소형 LED 소자를 포함하는 용액을 투입하는 본 발명에 따른 (1) 단계는 1-1) 베이스 기판, 상기 베이스 기판상에 형성된 제1 전극 및 상기 제1 전극과 동일평면상에 이격되어 형성된 제2 전극을 포함하는 전극라인을 제조하는 단계; 1-2) 상기 베이스 기판상에 초소형 LED 소자가 실장될 수 있는 전극라인 영역을 둘러싸는 절연 격벽(barrier)을 형성시키는 단계; 및 1-3) 상기 절연 격벽으로 둘러싸인 전극라인 영역에 복수개의 초소형 LED 소자를 투입하는 단계;를 포함할 수 있다.
먼저, 1-1) 단계로써 베이스 기판, 상기 베이스 기판상에 형성된 제1 전극 및 상기 제1 전극과 동일평면상에 이격되어 형성된 제2 전극을 포함하는 전극라인을 제조하는 단계를 포함할 수 있다. 1-1)단계의 전극을 형성하는 구체적인 방법은 상술한 바와 같은바 이하 생략한다.
다음으로 1-2) 단계로써 상기 베이스 기판상에 초소형 LED 소자가 실장될 수 있는 전극라인 영역을 둘러싸는 절연 격벽(barrier)을 형성시키는 단계를 포함할 수 있다.
상기 절연 격벽은 후술될 1-3) 단계에서 초소형 LED 소자가 전극라인에 투입될 때, 초소형 LED 소자가 실장될 전극라인 영역 이외로 초소형 LED 소자가 퍼지는 것을 방지하여 목적하는 전극라인 영역에 초소형 LED 소자가 집중하여 배치될 수 있도록 하는 역할을 담당한다.
상기 절연 격벽은 후술되는 제조공정을 통해 제조될 수 있으나, 절연격벽의 제조방법은 이에 한정되는 것은 아니다.
구체적으로 도 9은 본 발명의 바람직한 일구현예에 따른 베이스기판(100) 및 상기 베이스기판(100)상에 형성된 전극라인에 절연격벽(107)을 형성시키는 제조공정을 나타내는 모식도로써, 상술한 도 2f와 같이 베이스기판(100)상에 증착된 전극라인(103a, 103b)을 제조한 후 절연 격벽(107)을 제조할 수 있다.
먼저, 도 9a와 같이 베이스기판(100) 및 상기 베이스기판(100)상에 형성된 전극라인(103a, 103b)상에 도 9b와 같이 절연층(104)을 형성시킬 수 있다. 상기 절연층(104) 후술하는 공정을 거친 이후 절연 격벽을 형성하는 층으로써, 상기 절연층(104)의 재질은 당업계에서 통상적으로 사용하는 절연물질일 수 있고, 바람직하게는 이산화규소(SiO2), 질화규소(Si3N4), 산화알루미늄(Al2O3), 산화하프늄(HfO2), 산화이트륨(Y2O3) 및 이산화티타늄(TiO2) 등 무기 절연물과 다양한 투명 폴리머 절연물 중 어느 하나 이상일 수 있다. 상기 절연층(104)을 베이스기판(100) 및 상기 베이스기판(100)상에 형성된 전극라인(103a, 103b)상에 무기물 절연층을 코팅하는 경우에는 방법은 화학기상증착법, 원자층증착법, vacuum 증착법, e-빔 증착법 및 스핀코팅 방법 중 어느 하나의 방법에 의할 수 있고 바람직하게는 화학기상증착법일 수 있지만 이에 한정되는 것은 아니며, 폴리머 절연층을 코팅하는 방법은 스핀코팅, 스프레이코팅 및 스크린 프린팅 등의 방법 중 어느 하나의 방법에 의할 수 있고 바람직하게는 스핀코팅일 수 있지만 이에 한정되는 것은 아니며, 구체적인 코팅방법은 당업계의 공지된 방법에 의할 수 있다. 코팅되는 절연층(104)의 두께는 초소형 LED가 넘치지 않고 후공정에 영향이 없도록 초소형 LED 반경의 1/2 이상이며 통상적으로 후공정에 영향이 없을 수 있는 두께로서 바람직하게는 0.1 ~ 100㎛일 수 있고, 보다 바람직하게는 0.3 ~ 10㎛일 수 있다. 만일 상기 범위를 만족하지 못하는 경우 후공정에 영향을 미쳐 초소형 LED 전극 어셈블리를 포함하는 제품의 제조를 어렵게 하는 문제점이 있으며, 초소형 LED 소자의 직경보다 절연층의 두께가 너무 얇을 경우 절연격벽을 통한 초소형 LED 소자의 퍼짐성 방지 효과의 달성이 미비할 수 있고, 초소형 LED 소자를 포함하는 용액이 절연격벽 밖으로 넘치는 문제점이 있을 수 있다.
이후 상기 절연층(104) 상에 광 레지스트(PR, photo resist)(105)를 코팅할 수 있다. 상기 광 레지스트는 당업계에서 통상적으로 사용하는 광 레지스트일 수 있다. 상기 광 레지스트를 절연층(104)상에 코팅하는 방법은 스핀코팅, 스프레이코팅 및 스크린 프린팅 중 어느 하나 일 수 있고, 바람직하게는 스핀코팅일 수 있지만 이에 한정되는 것은 아니며, 구체적인 방법은 당업계의 공지된 방법에 의할 수 있다. 코팅시키는 광 레지스트(105)의 두께는 식각 시 사용되는 마스크로 코팅되는 절연층 두께보다 두꺼운 것이 바람직하며, 이에 따라 광 레지스트(105)의 두께는 1 ~ 20㎛ 일 수 있다. 다만, 코팅되는 광 레지스트(105)의 두께는 이후 목적에 따라 달리 변경하여 실시할 수 있다.
상기와 같이 절연층(104) 상에 광 레지스트(105)층을 형성시킨 이후 절연 격벽의 수평단면 형상에 상응하는 마스크(106)를 도 9c와 같이 광 레지스트(105)층에 올려놓고, 상기 마스크(106) 상부에서 자외선을 노광할 수 있다.
이후 노광된 광 레지스트층을 통상적인 광 레지스트 용매에 침지시켜 제거하는 단계를 거칠 수 있고, 이를 통해 도 9d와 같이 초소형 LED 소자가 실장될 전극라인의 영역에 해당하는 노광된 광 레지스트층 부분을 제거할 수 있다.
다음으로 광레지스트층이 제거되어 절연층이 노출된 영역에 대해 에칭을 통해 노출된 절연층 부분을 제거하는 단계를 수행할 수 있다. 상기 에칭은 ?에칭(wet ethching) 또는 드라이 에칭(dry ethching)을 통해 수행할 수 있으며, 바람직하게는 드라이 에칭에 의할 수 있다. 상기 에칭법의 구체적인 방법은 당업계에 공지된 방법에 의할 수 있다. 상기 드라이 에칭은 구체적으로 플라즈마 에칭, 스퍼터 에칭, 반응성 이온 에칭 및 반응성 이온빔 에칭 중 어느 하나 이상의 방법에 의한 것일 수 있다. 다만, 구체적 에칭 방법은 상기 기재에 제한되는 것은 아니다. 에칭을 통해 노출된 절연층을 제거하면 도 9e와 같이 베이스 기판(100) 및 전극라인(103a, 103b)이 노출될 수 있다.
다음으로 도 9f와 같이 아세톤, N-메틸피롤리돈 (1-Methyl-2-pyrrolidone, NMP) 및 디메틸설폭사이드(Dimethyl sulfoxide, DMSO) 중 어느 하나의 광 레지스트 제거제를 이용하여 베이스기판(100)상에 코팅된 광 레지스트(105)층을 제거하면 베이스기판(100)상에 초소형 LED 소자가 실질적으로 실장되는 영역(도 9의 P)을 제외한 영역에 절연 격벽(104')을 제조할 수 있다.
다음으로 1-3) 단계로써 상기 절연 격벽으로 둘러싸인 전극라인 영역에 복수개의 초소형 LED 소자를 투입하는 단계를 포함할 수 있다.
구체적으로 도 10는 본 발명의 바람직한 일구현예에 따른 초소형 LED 전극어셈블리의 제조공정 사시도로써, 도 10a와 같이 베이스기판(100) 상에 형성된 절연격벽(150)으로 둘러싸인 전극라인(110, 130) 영역에 복수개의 초소형 LED 소자를 투입할 수 있다. 이 경우 도 1a의 경우에 비해 초소형 LED 소자를 목적하는 전극라인 영역에 직접적으로 위치시킬 수 있다. 또한, 후술한 (2) 단계에서 용매의 투입으로 인해 초소형 LED 소자가 전극라인의 외곽으로 퍼져 초소형 LED 소자를 실장시키려 목적하지 않은 전극라인 영역 및/또는 전극라인이 없는 영역에 초소형 LED 소자가 위치하는 것을 방지할 수 있는 이점이 있다.
상기 초소형 LED 소자를 전극라인에 투입하는 방법은 본 발명에서 특별히 한정하지 않으며, 이에 대한 비제한적인 예로써, 초소형 LED 소자를 코어부 및 상기 코어부를 감싸는 폴리머 쉘부를 포함하는 코어쉘 구조의 입자를 통해 초소형 LED 소자를 전극라인에 투입할 수도 있다. 이때, 상기 쉘부를 형성하는 폴리머 성분의 구체적 종류는 코어부에 담지될 초소형 LED 소자에 영향이 없는 것인 경우 제한없이 사용될 수 있으며, 다만, 바람직하게는 후술할 (2) 단계에서 투입될 용매에 의해 용해 가능한 폴리머를 사용함이 바람직할 수 있다. 또한, 상기 입자의 직경, 형상은 목적에 따라 변경될 수 있으며, 본 발명에서 특별히 한정하지 않는다. 한편, 도 10b 및 도 10c에 대한 설명은 이하 본 발명에 따른 (2) 단계 설명에서 도 1b 및 도 1c의 설명과 동일한바 구체적인 설명은 후술되는 내용으로 대신한다.
다음으로 본 발명에 따른 (2) 단계로써, 상기 제1 전극과 제2 전극에 복수개의 초소형 LED 소자들을 동시에 연결시키기 위하여 상기 전극라인에 용매를 투입하고, 전극라인에 전원을 인가하여 복수개의 초소형 LED 소자들을 자기정렬 시키는 단계를 포함한다.
구체적으로 도 1b는 초소형 LED 소자(120)가 랜덤하게 분산된 전극라인(110, 130)에 용매(140)를 투입하고, 전원을 인가하는 공정에 대한 사시도로써, 먼저 용매(140)에 대해 먼저 설명한다.
상기 용매(140)는 초소형 LED 소자(120)에 물리적, 화학적 손상을 가하지 않으면서, 초소형 LED 소자의 분산, 이동을 원활히 할 수 있고, 동시에 쉽게 기화 시킬 수 있는 등 제거가 용이한 용매인 경우 제한 없이 사용될 수 있다. 다만, 바람직하게는 아세톤, 물, 알코올 및 톨루엔으로 이루어진 군에서 선택된 어느 하나 이상일 수 있고, 보다 바람직하게는 아세톤일 수 있다.
상기 용매(140)는 상술한 (1) 단계에서 투입되는 초소형 LED 소자 100 중량부에 대해 100 내지 12,000 중량부로 투입될 수 있다. 만일 12,000 중량부를 초과하여 용매가 투입될 경우 용매의 양이 너무 많아 초소형 LED 소자가 용매에 의해 목적하는 전극라인 영역 이외의 곳으로 퍼져나감에 따라 전극라인에서 목적하는 실장영역에 실장되는 초소형 LED 소자의 개수가 적어질 수 있는 문제점이 있으며, 만일 100 중량부 미만으로 투입되는 경우 초소형 LED 소자들 개개의 이동이나 정렬이 방해를 받을 수 있는 문제점이 있을 수 있다.
다음으로 전극라인에 초소형 LED 소자를 자기정렬 시키는 방법에 대해 설명한다.
본 발명에 따른 초소형 LED 전극어셈블리에 포함된 복수개의 초소형 LED 소자들은 제1 전극과 제2 전극에 전원을 인가함으로써 자기정렬되어 도 1c와 같이 제1 전극과 제2 전극에 동시에 연결된다.
만일 일반적인 LED 소자라면 직접적으로 물리적으로 배치하여 동일평면상 이격되어 형성된 서로 다른 전극에 동시에 연결시킬 수 있다. 예를 들어 평면전극의 서로 다른 전극 사이에 수동으로 일반적인 LED 소자를 눕혀서 배열할 수도 있을 것이다.
그러나 본 발명과 같이 초소형 LED 소자들은 이를 직접적으로 물리적으로 배치하는 것이 어려우므로 동일평면상에 이격된 서로 다른 초소형 전극에 동시에 연결시킬 수 없는 문제점이 있다. 또한, 초소형 LED 소자가 원통형인 경우 이를 단순히 전극에 투입한다고 하여 자기정렬되지 않고 원통형의 형상에 의해 전극 위에서 굴러서 이동하는 문제점이 있을 수 있다. 이에 따라 본 발명은 전극라인에 전원을 인가함으로써 초소형 LED 소자들이 스스로 서로 다른 두 전극에 동시에 연결되게 함으로써 상기의 문제점을 해결할 수 있다.
바람직하게는 상기 전원은 진폭과 주기를 갖는 변동하는 전원일 수 있으며, 그 파형은 싸인파와 같은 정현파 또는 정현파가 아닌 파형들로 구성된 펄스파일 수 있다. 그 예로서 교류전원을 인가하거나, 또는 직류전원을 초당 1000 회 동안 제1 전극에 0V, 30V, 0V, 30V, 0V, 30V 반복하여 인가하고 제2 전극에는 제1 전극과 상반되게 30V, 0V, 30V, 0V, 30V, 0V를 반복하여 인가함으로써 진폭과 주기를 갖는 변동하는 전원을 만들 수도 있다.
바람직하게 상기 전원의 전압(진폭)은 0.1V 내지 1000 V 일 수 있으며, 주파수는 10 Hz 내지 100 GHz 일 수 있다. 자기정렬 되는 초소형 LED 소자들은 용매에 포함되어 전극라인에 투입되는데 상기 용매는 전극 위로 떨어지면서 동시에 증발할 수 있고, 초소형 LED 소자들은 두 전극의 전위차에 의해 형성된 전기장의 유도에 의해 초소형 LED 소자에 비대칭적으로 전하가 유도되므로 초소형 LED 소자의 양 끝이 마주보고 있는 서로 다른 두 전극 사이에 자기정렬할 수 있다. 바람직하게 초소형 LED 소자는 5 내지 120 초 동안 전원을 인가함으로써 서로 다른 두 전극에 동시에 연결될 수 있다.
한편, 상기 (2)단계에서 제1 전극과 제2 전극에 동시에 연결되는 초소형 LED 소자의 개수(N)는 상기 (2) 단계에서 조절 가능한 여러 개의 변수에 의존할 수 있다. 상기 변수는 인가되는 전원의 전압(V), 전원의 주파수(F, Hz), 초소형 LED 소자가 포함된 용액의 농도(C, 초소형 LED 중량%), 두 전극 사이의 간격 거리(Z), 초소형 LED의 종횡비(AR, 여기서 AR = H/D이며 D는 초소형 LED의 직경임) 일 수 있다. 이에 따라 제1 전극과 제2 전극에 동시에 연결되는 초소형 LED 소자의 개수(N)는 전압(V), 주파수(F), 초소형 LED 소자가 포함된 용액의 농도(C) 및 초소형 LED의 종횡비(AR)에 비례할 수 있고 두 전극 사이의 간격 거리(Z)에 반비례할 수 있다.
이는 초소형 LED 소자들은 두 전극의 전위차에 의해 형성된 전기장의 유도에 의해 서로 다른 두 전극 사이에 자기정렬 하는 것인바, 전기장의 세기가 클수록 전극에 연결되는 초소형 LED 소자의 개수가 증가할 수 있으며 상기 전기장의 세기는 두 전극의 전위차(V)에 비례할 수 있고 두 전극 사이의 간격 거리(Z)에 반비례할 수 있다.
다음으로 초소형 LED 소자가 포함된 용액의 농도(C, 초소형 LED 중량%)의 경우 농도가 증가할수록 전극에 연결되는 LED 소자의 개수가 증가할 수 있다.
다음으로 전원의 주파수(F, Hz) 경우 주파수에 따라서 초소형 LED 소자에 형성되는 전하 차이가 달라지므로 주파수가 증가하면 두 전극에 연결되는 초소형 LED 소자의 개수가 증가할 수 있다. 다만, 어느 값 이상이 되면 전하 유도가 사라질 수 있으므로 전극에 연결되는 초소형 LED 소자 개수가 감소할 수 있다.
마지막으로 초소형 LED 소자의 종횡비로써 종횡비가 커지면 전기장에 의한 유도 전하가 커지므로 더 많은 개수의 초소형 LED 소자가 정렬될 수 있다. 또한, 초소형 LED 소자가 정렬될 수 있는 공간적인 측면에서 한정된 면적의 전극라인을 고려 시, 초소형 LED 소자의 길이가 고정된 상태에서 초소형 LED 소자의 직경이 작아짐으로써 종횡비가 커질 경우 한정된 전극라인에 연결될 수 있는 초소형 LED 소자의 개수가 증가할 수 있다.
본 발명은 상술한 여러 인자들을 조절하여 목적에 따라 전극에 연결되는 LED 소자의 개수를 조절할 수 있는 이점이 있다.
한편, 초소형 LED 소자의 종횡비에 따라 본 발명에 따른 (2) 단계에서 전극라인에 전원을 인가해도 초소형 LED 소자의 자기정렬이 어려운 경우가 있을 수 있다. 이에 따라 본 발명이 바람직한 일구현예에 따르면, 본 발명에 포함되는 초소형 LED 소자의 종횡비는 1.2 ~ 100일 수 있고, 보다 바람직하게는 1.2 ~ 50일 수 있으며, 보다 더 바람직하게는 1.5 ~ 20, 특히 바람직하게는 1.5 ~ 10일 수 있다. 만일 초소형 LED 소자의 종횡비가 1.2 미만의 경우 전원을 전극라인에 인가해도 초소형 LED 소자가 자기정렬하지 않을 수 있는 문제점이 있고, 만일 종횡비가 100을 초과하면 자기정렬시키기 위해 필요한 전원의 전압은 낮아질 수 있으나 건식에칭에 의해 초소형 LED소자를 제조시 에칭공정의 한계상 종횡비 100을 초과하는 소자를 제조하기 어려울 수 있다.
바람직하게는 상기 (2)단계에서 초소형 LED 소자가 실질적으로 실장될 수 있는 전극라인(단위전극)의 면적 100 × 100㎛2 당 초소형 LED 소자의 개수는 2 내지 100,000 개 일 수 있고 보다 더 바람직하게는 10 내지 10.000 개 일 수 있다. 초소형 LED 전극어셈블리당 복수개의 초소형 LED 소자를 포함함으로써 복수개 중 일부의 불량으로 인한 초소형 LED 전극어셈블리의 기능저하 또는 기능상실을 최소화할 수 있다. 또한, 만일 초소형 LED 소자가 100,000 개를 초과하여 포함할 경우 제조단가가 상승하며, 초소형 LED 소자들의 정렬에 문제점이 있을 수 있다.
한편, 본 발명의 바람직한 일구현예에 따른 초소형 LED 전극어셈블리 제조방법은 상술한 (2) 단계에 이후에 (3) 단계로써, 제1 전극 및 2 전극과 초소형 LED 소자의 연결부분에 금속오믹층을 형성하는 단계; 를 포함할 수 있다.
연결부위에 금속오믹층을 형성하는 이유는 복수개의 초소형 LED가 연결된 서로 다른 두 전극에 전원을 인가하면 초소형 LED 소자들이 발광을 하는데, 이때 전극과 초소형 LED 소자 간에 큰 저항이 발생할 수 있는바 이와 같은 저항을 줄이기 위해 금속오믹층을 형성하는 단계를 포함할 수 있다.
구체적으로 금속오믹층은 다음과 같은 공정으로 형성될 수 있으나 반드시 하기의 공정으로만 형성할 수 있는 것은 아니며 통상의 금속오믹층을 형성하는 방법이라면 제한 없이 사용될 수 있다.
먼저, 상기 (2)단계를 거친 초소형 LED 전극어셈블리 상부에 광 레지스트를 2 내지 3 ㎛ 두께로 코팅할 수 있다. 상기 코팅은 바람직하게는 스핀 코팅, 스프레이코팅 및 스크린프린팅 중 어느 하나의 방법에 의할 수 있으나 이에 제한되는 것은 아니다. 이후에 초소형 LED 전극어셈블리의 베이스기판 아래에서 코팅한 광 레지스트층 방향으로 자외선을 조사하여 전극 상부의 광 레지스트층을 제외한 나머지 부분의 광 레지스트층을 경화시키고 이후 통상적인 광 레지스트 용매를 이용하여 경화되지 않은 전극 상부의 광 레지스트층을 제거할 수 있다.
광 레지스트가 제거된 전극 상부에 바람직하게는 금 또는 은을 진공증착 또는 전기화학 증착하거나 금 나노크리스탈 또는 은 나노크리스탈을 전기분무(electric spay)하여 코팅할 수 있으나 상기 증착되는 물질과 증착방법은 상기에 제한되는 것은 아니다. 상기의 코팅되는 금속층의 두께는 바람직하게는 5 내지 100 nm 일 수 있으나 이에 한정되는 것은 아니다.
이후 아세톤, N-메틸피롤리돈 (1-Methyl-2-pyrrolidone, NMP) 및 디메틸설폭사이드(Dimethyl sulfoxide, DMSO) 중 어느 하나의 광 레지스트 제거제(PR stripper)를 이용해 전극이 아닌 부분의 금속층을 광 레지스트와 함께 제거할 수 있고, 상기 제거 후에 500 내지 600℃로 열처리를 통해 초소형 LED 소자의 절연피막이 코팅되지 않은 양쪽 끝단과 전극사이에 금속오믹층을 형성할 수 있다.
한편, 본 발명은 베이스 기판; 상기 베이스 기판상에 형성된 제1 전극 및 상기 제1 전극과 동일평면상에 이격되어 형성된 제2 전극을 포함하는 전극라인; 및 상기 제1 전극과 제2 전극에 동시에 연결된 복수개의 초소형 LED 소자;를 포함한다.
본 발명의 바람직한 일구현예에 따르면, 상기 제1 전극의 폭 길이(X), 2 전극의 폭 길이(Y), 제1 전극과 상기 제1 전극에 인접한 제2 전극 간의 간격 거리(Z) 및 초소형 LED 소자의 길이(H)는 하기의 관계식 1을 만족할 수 있다.
[관계식 1]
0.5Z ≤ H < X + Y + 2Z 이며, 여기서 100nm〈X≤10μm, 100nm〈Y≤10μm, 100nm〈Z≤10μm이다.
상기 베이스 기판, 제1 전극 및 제2 전극을 포함하는 전극라인, 초소형 LED 소자 및 상기 관계식 1에 대한 구체적인 설명은 본 발명에 따른 제조방법의 설명과 동일한 바 이하 생략하며, 제조방법에서 설명되지 않은 부분을 중심으로 설명한다.
구체적으로 도 11은 본 발명의 바람직한 일구현예에 따라 제조된 초소형 LED 전극어셈블리에 대한 사시도 및 부분확대도로서 베이스기판(400)상에 형성된 제1 전극(410, 411), 상기 제1 전극(410, 411)과 동일평면상에 이격되어 형성된 제2 전극(430, 431)과 제1 전극과 제2 전극에 동시에 연결된 복수개의 초소형 LED 소자(420)를 포함할 수 있다.
상기 제1 전극(411)과 제2 전극(431)을 동일평면상에 위치시킴으로써 얻게 되는 이점은 나노단위 크기의 초소형 LED 소자의 경우 전극과 3차원 형상으로 직립하여 연결시키기 매우 어렵기 때문에 전극을 동일평면상에 위치시키면 초소형 LED 소자를 눕혀서 연결시킬 수 있어 초소형 LED 소자를 반드시 직립시켜 전극에 결합시킬 필요가 없다.
또한, 전극이 동일평면상에 이격되어 형성됨에 따라 베이스 기판에 초소형 LED 소자가 누워서 연결될 수 있고, 이를 통해 초소형 LED 소자의 광추출 효율(extraction efficiency)을 현저히 향상시킬 수 있다. 보다 더 바람직하게는 초소형 LED 소자들은 베이스기판에 대하여 평행하게 누워있을 수 있다.
구체적으로 도 11에서 제1 전극(412)과 제2 전극(432)에 초소형 LED(421)가 동시에 연결되어 있으며 베이스기판에 대해서 평행하게 누워있는 형상임을 알 수 있다.
더 구체적으로 도 12a는 본 발명의 바람직한 일구현예에 따른 초소형 LED 전극어셈블리에 대한 SEM 사진을 나타낸다. 상기 SEM 사진의 대상이 된 본 발명의 바람직한 일구현예의 경우 제1 전극의 폭은 3 ㎛, 제2 전극의 폭은 3 ㎛이며 전극간의 간격은 2 ㎛ 이었고 전극의 두께는 2㎛ 이었다. 또한, 전극과 연결하는 초소형 LED는 길이가 2㎛ 이고 반경은 500 nm 이고, 전극에 연결시키기 위해 투입된 페이스트 농도는 아세톤 100 중량부에 대해 상기 초소형 LED가 1.0 중량부로 혼합되었다. 나아가, 초소형 LED 소자를 전극에 자기 정렬시키기 위해 전압 VAC = 30 V, 주파수 500 kHz 인 교류전원을 1 분 동안 인가하였다.
상기 SEM 사진을 통해 확인할 수 있듯이 초소형 LED가 제1 전극, 제2 전극에 걸쳐서 있거나 상기 두 전극 사이에 끼어서 연결되고 있고 연결되었을 때의 LED 소자가 누워있는 형상임을 확인할 수 있다.
또한, 도 12b 및 도 12c는 본 발명의 바람직한 일구현예에 따른 초소형 LED 전극어셈블리에 대한 청색 전계 발광 사진으로써, 도 12b는 명실에서, 도 12c는 암실에서 촬영한 사진이다. 상기 사진의 대상이 된 본 발명의 바람직한 일구현예의 경우 가로 × 세로 0.6 cm × 0.7 cm의 면적에 형성된 복수개의 초소형 LED 전극어셈블리를 포함하는 단위전극으로 상기 초소형 LED 전극어셈블리에 포함된 초소형 LED 소자가 점으로 발광하는 모습을 잘 보여 줄 뿐만 아니라 이들이 합쳐져서 면 발광을 하고 있는 것을 나타내고 있다.
이는 초소형 LED 소자를 사용해서 넓은 면적의 전극 위에 다수의 초소형 LED 소자를 쉽게 조립하여 면 발광을 구현 할 수 있는 것을 문헌상 최초로 보여 줄 뿐만 아니라 전극의 사이즈 조절을 통해서 다양한 형태의 점광원, 선광원, 면광원의 응용이 가능하다는 사실을 잘 보여주고 있다. 또한 점광원을 색 세포 수준으로 줄여서 집적할 경우 디스플레이로의 응용도 가능하다는 사실을 잘 보여 주고 있다. 이와 더불어 기판을 투명한 베이스기판을 사용할 경우 투명 광원과 디스플레이로 응용하여 구현할 수 있다. 나아가 플렉서블(flexible)한 베이스 기판을 사용할 경우 유연한 광원이나 유연한 디스플레이로 구현할 수 있음을 보여주고 있다.
따라서 본 발명 바람직한 일구현예에 따른 상호 교번적 전극 위에 초소형 LED 소자를 베이스 기판에 평행하게 조립하여 제작한 누워 있는 초소형 LED 소자는 광추출효율이 매우 우수한 고효율 LED 소자이며, 상기 초소형 LED 소자를 포함하여 점광원 뿐만 아니라 면광원, 선광원 및 색세포 등의 다양한 형태로 구현 할 수 있다는 사실을 문헌상 최초로 보여 주고 있다.
또한, 상기 도 12b 및 도 12c의 대상이 된 본 발명의 바람직한 일구현예의 경우 초소형 LED 소자와 전극 간에 금속오믹층을 포함하지 않은 상태로써, 금속오믹층을 더 형성시켜 초소형 LED 소자와 전극간의 저항을 더 줄인다면 발광효율은 더 증가할 수 있다.
나아가, 도 13은 본 발명의 바람직한 일구현예에 따른 초소형 LED 전극어셈블리의 전계 발광 스펙트럼으로써, 본 발명의 바람직한 일구현예의 전계 발광하는 모습을 스펙트로포토미터로 측정한 결과이다. 상기 전계 발광하는 청색 초소형 LED 소자는 웨이퍼(wafer) 기판을 사용해서 제작한 초소형 LED 소자로 초소형 LED 소자를 제작하기 위해서 사용한 여러 가지 건식식각 공정과 레이져 리프트 오프(laser lift-off) 공정을 거친 초소형 LED 소자가 서로 다른 전극의 사이에 자기조립 된 이후에도 도 13의 발광 스펙트럼과 같이 원래의 청색 발광을 잘 유지하고 있다는 사실을 보여주고 있다.
이는 제1 전극층, 제1 도전성 반도체층, 활성층, 제2 도전성 반도체층, 제2 전극층이 순차적으로 배열된 초소형 LED 소자를 제작하는 공정 중에 발생할 수 있는 결함(defect)들이 최소화 되었다는 사실을 간접적으로 보여주고 있다. 즉 청색 웨이퍼(wafer)를 사용해서 초소형 LED 소자를 제작하는 과정에서 상기 웨이퍼 기판에 존재하는 응력과 결함(defect)들이 LED 소자의 사이즈를 초소형으로 줄이는 공정과 에칭 공정을 통해서 제거되어 결정성이 우수한 초소형 LED 소자가 제작되었으며, 상기 결정성이 우수한 초소형 LED 소자가 서로 다른 전극에 자기정렬된 상태에서도 우수하게 발광하고 있다는 것을 보여주고 있다.
한편 본 발명의 초소형 LED 소자는 베이스 기판에 평행하게 “누워있는” 형상으로 전극에 연결되는데 이로써 본 발명 초소형 LED 전극어셈블리는 현저히 우수한 광추출효율을 가질 수 있다. 일반적으로 LED 소자의 성능은 외부 양자효율로 평가하게 된다.
외부 양자효율이란 LED 소자로 단위 시간동안 주입되는 캐리어(carrier)의 수에 대한 단위시간동안 LED의 외부 즉, 대기로 빠져나가는 광자(photon) 수의 비로 나타내어진다. 이러한 외부 양자효율은 내부 양자효율 및 광추출효율 간에 하기의 관계식이 성립한다.
[관계식] 외부광자효율 = 내부광자효율 × 광추출효율
내부광자효율이란 LED 소자로 단위시간 동안 주입되는 캐리어의 수에 대한 단위시간 동안 활성층에서 방출되는 광자의 수의 비를 의미하며, 광추출효율은 단위시간 동안 활성층에서 방출되는 광자의 수에 대해 단위시간 동안 대기로 빠져나가는 광자수의 비를 의미한다. 결국 LED 소자의 성능을 향상시키기 위해서는 이들의 효율을 향상시키는 것이 중요하다.
그러나 광추출효율의 측면에서 현재 박막 형태의 초소형 LED 소자의 상부와 하부전극 또는 n 도전성 반도체층과 p 도전성 반도체층을 통하여 공기 중으로 방사되는 빛의 추출효율은 매우 낮은 편이다. 이는 박막 형태의 LED 소자에서 발생한 광은 고굴절 반도체층과 저굴절 공기층의 계면에서 굴절률 차이에 의하여 대부분이 전반사 되므로 반도체 층에 갇히게 되고 이로 인해서 광이 추출되는 방향으로 활성층에서 발생한 빛의 상당량이 빠져 나오지 못하고 LED 소자 내부에서 재흡수 되거나 열로 사라지기 때문이고 이는 기존 박막형 구조를 사용하여 LED 소자를 제조하는 것에 기인한다.
본 발명에서는 이러한 문제점을 해결하기 위해 초소형 LED 소자를 눕혀 전극에 연결함으로써 고굴절 반도체 층과 공기층 사이의 평탄한 계면을 없애 주므로, 전반사가 일어날 수 있는 확률을 최소화하므로 초소형 LED 소자에서 발생한 빛이 외부로 추출되지 못하고 내부로 갇히게 되는 빛을 최소화하여 대부분의 빛이 외부로 방출되게 하였다. 이로써 종래의 광추출 저하 문제를 해결한 초소형 LED 전극어셈블리를 제공할 수 있다.
구체적으로 도 14는 본 발명의 바람직한 일구현예에 포함된 초소형 LED 소자의 TEM 사진으로써 도 14a는 원기둥 형상의 초소형 LED 소자의 전체 모습을 보여주는 TEM 사진이며, 도 15b는 초소형 LED 소자의 표면에 대한 고해상도 TEM사진이다. 도 15b에서 확인할 수 있듯이 초소형 LED를 제작하기 위해서 건식식각 공정과 레이져 리프트 오프(laser lift-off) 공정을 거친 후에도 초소형 LED 소자 표면 부근의 InGaN 결정의 원자 배열이 규칙적으로 잘 배열되어 있음을 알 수 있다. 이를 통해 여러 가지 제조공정을 통해서 얻어진 초소형 LED 소자의 결정성이 매우 우수하다는 것을 직접적으로 보여주고 있으며 이로써 고효율 초소형 LED 소자의 제작이 가능하다는 사실을 잘 보여 주고 있다. 즉, 제작된 초소형 LED 소자의 결정성이 매우 우수하므로 내부 양자효율이 우수한 동시에 초소형 LED 소자가 서로 다른 전극 사이에 수평으로 정렬되어 광 추출효율이 우수하므로 내부 양자 효율 및 외부 양자 효율이 우수한 고효율 LED 소자가 포함된 초소형 LED 전극어셈블리의 구현이 가능하다는 사실을 직접적으로 보여 주고 있다.
상기 초소형 LED 전극어셈블리는 단위 전극 즉 초소형 LED 소자를 한번에 배열하여 독립적으로 구동 할 수 있는 두 전극이 배치된 배열 영역이 단수 또는 복수개로 포함될 수 있으며 상기 단위전극의 면적은 1㎛2 내지 100 cm2 이고, 보다 더 바람직하게는 10㎛2 내지 100 mm2 일 수 있으나 이에 한정되는 것은 아니다.
만일 초소형 LED 전극어셈블리에 포함된 단위 전극 면적이 1 ㎛2 미만인 경우 단위 전극의 제조가 어려울 수 있으며, 초소형 LED의 길이를 더 줄여야 하므로 초소형 LED 제조에도 문제점이 있을 수 있다. 만일 100 cm2를 초과하는 경우 포함되는 초소형LED 소자의 개수가 많아져 제조단가가 상승할 수 있고 정렬되는 초소형 LED의 분포의 불균일성 문제점이 있을 수 있다.
바람직하게는 상기 초소형 LED 전극어셈블리의 면적 100 x 100㎛2 당 초소형 LED 소자의 개수는 2 내지 100,000 개 일 수 있고 보다 더 바람직하게는 10 내지 10.000 개 일 수 있다. 초소형 LED 전극어셈블리당 복수개의 초소형 LED 소자를 포함함으로써 복수개 중 일부의 불량으로 인한 초소형 LED 전극어셈블리의 기능저하 또는 기능상실을 최소화할 수 있다. 또한, 만일 초소형 LED 소자가 100.000 개를 초과하여 포함할 경우 제조단가가 상승하며, 초소형 LED 소자들의 정렬에 문제점이 있을 수 있다. 상기 “초소형 LED 전극어셈블리의 면적”은 초소형 LED가 실질적으로 실장될 수 있는 전극영역의 면적을 의미한다.
이상에서 본 발명에 대하여 구현예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명의 구현예를 한정하는 것이 아니며, 본 발명의 실시 예가 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 본 발명의 구현예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.
<실시예 1>
석영(Quartz) 재질의 두께 800 ㎛ 베이스 기판상에 도 3과 같은 전극라인을 제조하였다. 이때 상기 전극라인에서 제1 전극의 폭은 3 ㎛, 제2 전극의 폭은 3 ㎛, 상기 제1 전극과 인접한 제2 전극간의 간격은 2 ㎛, 전극의 두께는 0.2㎛ 이었으며, 제1 전극 및 제2 전극의 재질은 타이타늄/골드 이고, 상기 전극라인에서 초소형 LED 소자가 실장되는 영역의 면적은 4.2 x 1072이었다. 이후 상기 베이스 기판상에 도 9와 같은 절연 격벽을 형성시켰으며, 상기 절연 격벽의 재질은 이산화규소이고, 베이스기판에서 상기 절연 격벽 끝단까지의 높이는 0.1 ㎛이며, 상기 전극라인에서 초소형 LED 소자가 실장되는 영역(면적 4.2 x 1072)을 제외하고 절연 격벽을 베이스기판상에 형성시켰다.
이후 하기 표 1과 같은 스펙을 갖고, 도 6과 같은 구조를 가지며, 초소형 LED 소자의 활성층 부분 외부면에 하기 표 1과 같은 절연피막이 0.02㎛의 두께로 코팅된 초소형 LED 소자를 상술한 절연격벽에 의해 둘러싸인 초소형 LED가 실장되는 영역에 투입하였다. 이후 초소형 LED 소자가 투입된 영역에 아세톤을 투입하고, 이때 상기 투입된 아세톤은 초소형 LED 소자 100 중량부에 대해 아세톤을 10,000 중량부가 되도록 투입하였다. 상기 용매의 투입과 동시에 전극라인에 전압 VAC = 30 V, 주파수 950 kHz 인 교류전원을 1분 동안 인가하여 초소형 LED 전극어셈블리를 제조하였다.
재질 길이(㎛) 직경(㎛)
제1 전극층 크롬 0.03 0.6
제1 도전성반도체층 n-GaN 1.64 0.6
활성층 InGaN 0.1 0.6
제2 도전성 반도체층 p-GaN 0.2 0.6
제2 전극층 크롬 0.03 0.6
절연피막 산화알루미늄 - 0.02(두께)
초소형 LED 소자 - 2 0.62
<실시예 2>
실시예 1과 동일하게 실시하여 제조하되, 절연격벽을 형성시키지 않고, 절연 격벽이 없는 베이스 기판상에 형성된 전극라인에 초소형 LED 소자를 떨어뜨려 초소형 LED 전극어셈블리를 제조하였다.
<실시예 3>
실시예 1과 동일하게 실시하여 제조하되, 초소형 LED 소자의 활성층을 부분의 외부면에 절연피막이 없는 초소형 LED 소자를 이용하여 초소형 LED 전극 어셈블리를 제조하였다.
<비교예 1>
실시예 1과 동일하게 실시하여 제조하되, 초소형 LED 소자를 투입하는 대신에 초소형 LED 소자 100 중량부에 대해 아세톤 10,000 중량부를 혼합한 용액을 투입하고, 이후 전극라인에 전원을 인가하여 초소형 LED 전극 어셈블리를 제조하였다.
<실험예 1>
실시예 및 비교예에서 제조된 초소형 전극어셈블리에 대해 전극라인에 전압 VAC = 30 V, 주파수 950 kHz 인 교류전원을 1분 동안 인가하여 청색을 발광하는 초소형 LED 소자의 개수를 광학현미경을 통해 관찰하여 하기 표 2에 나타내었다.
청색 발광하는 초소형 LED 소자의 개수
실시예1 8945
실시예2 4508
실시예3 2792
비교예1 8604
구체적으로 상기 표 2를 통해 확인할 수 있듯이, 초소형 LED 소자의 활성층에 절연피막을 포함하지 않은 초소형 LED 소자를 포함하는 전극어셈블리인 실시예 3의 경우 실시예 1 및 2 보다 청색 발광하는 초소형 LED 소자의 개수가 현저히 적었으며, 이를 통해 초소형 LED 소자의 활성층이 전극과 접촉되어 전기적 단락이 많이 발생했음을 확인할 수 있다.
또한, 절연 격벽이 없는 전극라인상에 초소형 LED 소자를 투입한 실시예 2의 경우 청색 발광하는 초소형 LED 소자의 개수가 실시예 1에 비해 적었으며, 이를 통해 절연 격벽이 없는 전극라인에 초소형 LED 소자를 투입하면 초소형 LED 소자가 실장될 수 없는 전극라인 외각으로 초소형 LED 소자가 분산됨에 따라 전극라인에 전기적으로 연결되는 초소형 LED 소자의 개수가 감소했음을 알 수 있다.
또한, 초소형 LED 소자를 용액상태로 투입한 비교예 1의 경우 초소형 LED 소자를 먼저 투입하고, 나중에 용매를 적가하면서 전원을 인가한 실시예 1에 비해 청색 발광하는 초소형 LED 소자의 개수가 적은 것을 확인할 수 있다.
<실험예 2>
초소형 LED 소자의 종횡비에 따른 초소형 LED 소자를 자기정렬시키는데 요구되는 전압을 측정하였다. 이때 초소형 LED 소자의 종횡비는 하기 표 3과 같이 변경하여 제조한 초소형 LED 소자를 사용하였고, 초소형 LED 소자가 자기정렬을 시작하는 최소 전압을 측정하여 하기 표 3에 나타내었다.
길이(H, ㎛) 직경(D, ㎛) 종횡비(AR=H/D) 인가전압(V)
실시예 4 2 2 1 -
실시예 5 2 1.7 1.2 262
실시예 6 2 1.5 1.3 136
실시예 7 2 1.2 1.7 73
실시예 8 2 1 2 53
실시예 9 2 0.8 2.5 40
실시예 10 2 0.4 5 23
실시예 11 2 0.2 10 15
구체적으로 상기 표 3에서 확인할 수 있듯이, 초소형 LED 소자의 종횡비가 작아질수록 초소형 LED 소자를 자기정렬 시키기 위해 필요한 전원의 전압이 현저히 상승함을 확인할 수 있고, 초소형 LED 소자의 종횡비가 1.2 미만인 실시예 4의 경우 전원의 전압을 높여도 초소형 LED 소자를 전극에 자기정렬시킬 수 없었다. 또한, 초소형 LED 소자의 종횡비가 각각 1.2, 1.3인 실시예 5 및 실시예 6의 경우 초소형 LED 소자를 자기정렬시키기 위해 필요한 전압이 실시예 7에 비해 현저히 증가된 것을 확인할 수 있다.
<실험예 3>
실시예 1 및 비교예 1에서 제조된 초소형 전극어셈블리에 대해 1500배로 확대하여 광학현미경 사진을 촬영하였고, 그 결과를 실시예 1은 도 15, 비교예 1은 도 16에 각각 나타내었다.
도 15를 통해 확인할 수 있듯이 실시예 1의 경우 외곽으로 몰리지 않고 목적한 전극 부분으로 더 집중적으로 초소형 LED 소자가 자기정렬된 것에 반하여 도 16의 비교예 1은 초소형 LED 소자가 목적한 전극영역의 가운데 보다 외곽으로 초소형 LED 소자가 퍼져 자기정렬 되었고 초소형 LED 소자 간에 뭉침현상이 매우 심한 것을 확인할 수 있다.

Claims (14)

  1. (1) 베이스 기판, 상기 베이스 기판상에 형성된 제1 전극 및 상기 제1 전극과 동일평면상에 이격되어 형성된 제2 전극을 포함하는 전극라인에 복수개의 초소형 LED 소자를 투입하는 단계; 및
    (2) 상기 제1 전극과 제2 전극에 복수개의 초소형 LED 소자들을 동시에 연결시키기 위하여 상기 전극라인에 용매를 투입하고, 전극라인에 전원을 인가하여 복수개의 초소형 LED 소자들을 자기정렬시키는 단계;를 포함하는 초소형 LED 전극어셈블리 제조방법.
  2. 제1항에 있어서,
    상기 (1)단계의 제1 전극 및 제2 전극은 소용돌이(spiral) 배치 및 상호 교번적(interdigitated) 배치 중 어느 하나의 배치로 이격되어 있는 것을 특징으로 하는 초소형 LED 전극어셈블리 제조방법.
  3. 제1항에 있어서, 상기 초소형 LED 소자는
    제1 도전성 반도체층;
    상기 제1 도전성 반도체층상에 형성된 활성층; 및
    상기 활성층상에 형성된 제2 도전성 반도체층;을 포함하는 것을 특징으로 하는 초소형 LED 전극어셈블리 제조방법.
  4. 제3항에 있어서,
    상기 초소형 LED 소자는 초소형 LED 소자의 활성층과 전극라인이 접촉되어 발생하는 단락을 방지하기 위해 적어도 활성층 부분의 외부면 전체를 덮는 절연피막;을 외부면에 더 포함하는 것을 특징으로 하는 초소형 LED 전극어셈블리 제조방법.
  5. 제4항에 있어서,
    상기 초소형 LED 소자는 소자 상호간 응집을 방지하기 위하여 초소형 LED 소자의 절연피막 외부면에 코팅된 소수성 피막을 더 포함하는 것을 특징으로 하는 초소형 LED 전극어셈블리 제조방법.
  6. 제3항 내지 제5항 중 어느 한 항에 있어서,
    상기 초소형 LED 소자는 제1 도전성 반도체층 하부에 형성된 제1 전극층 및 제2 도전성 반도체층 상부에 형성된 제2 전극층을 포함하는 것을 특징으로 하는 초소형 LED 전극어셈블리 제조방법.
  7. 제6항에 있어서,
    상기 초소형 LED 소자의 제1 전극층 및 제2 전극층은 절연피막이 코팅되지 않은 것을 특징으로 하는 초소형 LED 전극어셈블리 제조방법.
  8. 제1항에 있어서,
    상기 초소형 LED 소자의 길이는 100 nm 내지 10㎛이고, 종횡비는 1.2 ~ 100인 것을 특징으로 하는 초소형 LED 전극어셈블리 제조방법.
  9. 제1항에 있어서,
    상기 제1 전극의 폭 길이(X), 2 전극의 폭 길이(Y), 제1 전극과 상기 제1 전극과 인접한 제2 전극 간의 간격거리(Z) 및 초소형 LED 소자의 길이(H)는 하기의 관계식 1을 만족하는 초소형 LED 전극어셈블리 제조방법.
    [관계식 1]
    0.5Z ≤ H < X + Y + 2Z 이며, 상기 X, Y, Z는 100nm〈X≤10㎛, 100nm〈Y≤10㎛, 100nm〈Z≤10㎛ 이다.
  10. 제1항에 있어서, 상기 (1)단계는
    1-1) 베이스 기판, 상기 베이스 기판상에 형성된 제1 전극 및 상기 제1 전극과 동일평면상에 이격되어 형성된 제2 전극을 포함하는 전극라인을 제조하는 단계;
    1-2) 상기 베이스 기판상에 초소형 LED 소자가 실장되는 전극라인 영역을 둘러싸는 절연 격벽(barrier)을 형성시키는 단계; 및
    1-3) 상기 절연 격벽으로 둘러싸인 전극라인 영역에 복수개의 초소형 LED 소자를 투입하는 단계;를 포함하는 것을 특징으로 하는 초소형 LED 전극어셈블리 제조방법.
  11. 제1항에 있어서,
    상기 (2)단계에서 인가되는 전원의 전압은 0.1V 내지 1000 V 이며, 주파수는 10 Hz 내지 100 GHz 인 것을 특징으로 하는 초소형 LED 전극어셈블리 제조방법.
  12. 제1항에 있어서,
    상기 (2)단계에서 제1 전극과 제2 전극에 동시에 연결되는 초소형 LED 소자의 개수는 초소형 LED 소자가 실장 되는 전극라인의 면적 100 ×100㎛2 당 2 내지 100,000 개인 것을 특징으로 하는 초소형 LED 전극어셈블리 제조방법.
  13. 제1항에 있어서,
    상기 제1 전극의 폭 길이(X), 2 전극의 폭 길이(Y), 제1 전극과 상기 제1 전극과 인접한 제2 전극 간의 간격거리(Z) 및 초소형 LED 소자의 길이(H)는 하기의 관계식 1을 만족하는 초소형 LED 전극어셈블리 제조방법.
    [관계식 1]
    Z ≤ H ≤ X + Y + Z 이며, 상기 X, Y, Z는 100nm〈X≤10㎛, 100nm〈Y≤10㎛, 100nm〈Z≤10㎛이다.
  14. 제1항에 있어서, 상기 (2)단계 이후에
    (3) 제1 전극 및 제2 전극 중 어느 하나 이상의 전극과 초소형 LED 소자의 연결부분에 금속오믹층을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 초소형 LED 전극어셈블리 제조방법.
KR1020140085384A 2014-07-08 2014-07-08 초소형 led 전극어셈블리의 제조방법 KR101628345B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140085384A KR101628345B1 (ko) 2014-07-08 2014-07-08 초소형 led 전극어셈블리의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140085384A KR101628345B1 (ko) 2014-07-08 2014-07-08 초소형 led 전극어셈블리의 제조방법

Publications (2)

Publication Number Publication Date
KR20160006339A true KR20160006339A (ko) 2016-01-19
KR101628345B1 KR101628345B1 (ko) 2016-06-09

Family

ID=55305946

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140085384A KR101628345B1 (ko) 2014-07-08 2014-07-08 초소형 led 전극어셈블리의 제조방법

Country Status (1)

Country Link
KR (1) KR101628345B1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180072909A (ko) * 2016-12-21 2018-07-02 삼성디스플레이 주식회사 발광 장치 및 이를 구비한 표시 장치
WO2018124424A1 (ko) * 2017-01-02 2018-07-05 주식회사 루멘스 Led 디스플레이 장치
US10145518B2 (en) 2015-11-17 2018-12-04 Samsung Display Co., Ltd. Nano-scale light-emitting diode (LED) electrode assembly emitting polarized light, method of manufacturing the same, and polarized LED lamp having the same
US10249603B2 (en) 2016-06-14 2019-04-02 Samsung Display Co., Ltd. Pixel structure, display device including the pixel structure, and method of manufacturing the pixel structure
CN111091766A (zh) * 2016-02-26 2020-05-01 三星显示有限公司 包括超小型发光二极管模块的显示装置
KR102295710B1 (ko) * 2020-07-07 2021-08-27 광운대학교 산학협력단 외부 광원의 빛을 조사하여 일방향의 극성 배열성이 향상된 초소형 led 전극 어셈블리 및 그 제조방법
KR102309119B1 (ko) * 2020-07-09 2021-10-05 광운대학교 산학협력단 점멸성의 외부 광원의 빛을 조사하여 일방향의 극성 배열성이 향상된 초소형 led 전극 어셈블리 및 그 제조방법
KR20220020306A (ko) * 2020-10-23 2022-02-18 삼성디스플레이 주식회사 Led 전극 어셈블리 및 이의 제조 방법
WO2022080514A1 (ko) * 2020-10-13 2022-04-21 엘지전자 주식회사 디스플레이 장치
WO2023287140A1 (ko) * 2021-07-15 2023-01-19 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
WO2024058365A1 (ko) * 2022-09-13 2024-03-21 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102574603B1 (ko) 2016-07-15 2023-09-07 삼성디스플레이 주식회사 발광장치 및 그의 제조방법
KR102592276B1 (ko) 2016-07-15 2023-10-24 삼성디스플레이 주식회사 발광장치 및 그의 제조방법
KR102621662B1 (ko) * 2017-01-09 2024-01-09 삼성디스플레이 주식회사 발광 소자 및 이의 제조 방법
KR102441566B1 (ko) 2017-08-07 2022-09-07 삼성디스플레이 주식회사 발광 장치 및 발광 장치의 제조 방법
KR102415812B1 (ko) 2017-09-22 2022-07-01 삼성디스플레이 주식회사 발광 장치 및 발광 장치의 제조 방법
KR102367805B1 (ko) * 2020-09-15 2022-02-25 (주)에스티아이 디스플레이 제조를 위한 초소형 led 프린팅 장치
KR20220038229A (ko) 2020-09-18 2022-03-28 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050065680A (ko) * 2002-11-19 2005-06-29 다니엘즈 존 유기 및 무기 광 활성 장치들
KR20120122159A (ko) * 2011-04-28 2012-11-07 국민대학교산학협력단 초소형 led 소자 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050065680A (ko) * 2002-11-19 2005-06-29 다니엘즈 존 유기 및 무기 광 활성 장치들
KR20120122159A (ko) * 2011-04-28 2012-11-07 국민대학교산학협력단 초소형 led 소자 및 그 제조방법

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11112070B2 (en) 2015-11-17 2021-09-07 Samsung Display Co., Ltd. Nano-scale light-emitting diode (LED) electrode assembly emitting polarized light, method of manufacturing the same, and polarized led lamp having the same
US11635176B2 (en) 2015-11-17 2023-04-25 Samsung Display Co., Ltd. Nano-scale light-emitting diode (LED) electrode assembly emitting polarized light, method of manufacturing the same, and polarized LED lamp having the same
US10145518B2 (en) 2015-11-17 2018-12-04 Samsung Display Co., Ltd. Nano-scale light-emitting diode (LED) electrode assembly emitting polarized light, method of manufacturing the same, and polarized LED lamp having the same
US10641439B2 (en) 2015-11-17 2020-05-05 Samsung Display Co., Ltd. Nano-scale light-emitting diode (LED) electrode assembly emitting polarized light, method of manufacturing the same, and polarized LED lamp having the same
US11538799B2 (en) 2016-02-26 2022-12-27 Samsung Display Co., Ltd. Display including nanoscale LED module
CN111091766B (zh) * 2016-02-26 2022-06-10 三星显示有限公司 包括超小型发光二极管模块的显示装置
CN111091766A (zh) * 2016-02-26 2020-05-01 三星显示有限公司 包括超小型发光二极管模块的显示装置
US10879223B2 (en) 2016-02-26 2020-12-29 Samsung Display Co., Ltd. Display including nanoscale LED module
US11424230B2 (en) 2016-06-14 2022-08-23 Samsung Display Co., Ltd. Pixel structure and display device including the pixel structure
US10249603B2 (en) 2016-06-14 2019-04-02 Samsung Display Co., Ltd. Pixel structure, display device including the pixel structure, and method of manufacturing the pixel structure
US11424229B2 (en) 2016-06-14 2022-08-23 Samsung Display Co., Ltd. Pixel structure, display device including the pixel structure, and method of manufacturing the pixel structure
KR20180072909A (ko) * 2016-12-21 2018-07-02 삼성디스플레이 주식회사 발광 장치 및 이를 구비한 표시 장치
US10210795B2 (en) 2017-01-02 2019-02-19 Lumens Co., Ltd. LED display module
WO2018124424A1 (ko) * 2017-01-02 2018-07-05 주식회사 루멘스 Led 디스플레이 장치
KR102295710B1 (ko) * 2020-07-07 2021-08-27 광운대학교 산학협력단 외부 광원의 빛을 조사하여 일방향의 극성 배열성이 향상된 초소형 led 전극 어셈블리 및 그 제조방법
KR102309119B1 (ko) * 2020-07-09 2021-10-05 광운대학교 산학협력단 점멸성의 외부 광원의 빛을 조사하여 일방향의 극성 배열성이 향상된 초소형 led 전극 어셈블리 및 그 제조방법
WO2022080514A1 (ko) * 2020-10-13 2022-04-21 엘지전자 주식회사 디스플레이 장치
KR20220020306A (ko) * 2020-10-23 2022-02-18 삼성디스플레이 주식회사 Led 전극 어셈블리 및 이의 제조 방법
WO2023287140A1 (ko) * 2021-07-15 2023-01-19 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
WO2024058365A1 (ko) * 2022-09-13 2024-03-21 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법

Also Published As

Publication number Publication date
KR101628345B1 (ko) 2016-06-09

Similar Documents

Publication Publication Date Title
KR101490758B1 (ko) 초소형 led 전극어셈블리 및 이의 제조방법
KR101628345B1 (ko) 초소형 led 전극어셈블리의 제조방법
KR101436123B1 (ko) 초소형 led를 포함하는 디스플레이 및 이의 제조방법
CN110112125B (zh) 利用超小型发光二极管电极组件的发光二极管灯
US11855239B2 (en) Electrode assembly having lower electrode directly on the surface of a base substrate, a first electrode on the lower electrode, and the second electrode formed on and spaced apart from the first electrode
KR101730929B1 (ko) 선택적 금속오믹층을 포함하는 초소형 led 전극어셈블리 제조방법
KR101627365B1 (ko) 편광을 출사하는 초소형 led 전극어셈블리, 이의 제조방법 및 이를 포함하는 led 편광램프
KR101874993B1 (ko) 전기적 컨택이 향상된 초소형 led 전극 어셈블리 및 이의 제조방법
KR101770632B1 (ko) 자가 조립형 초소형 led 전극어셈블리 제조용 용매 및 이를 통해 자가 조립형 초소형 led 전극어셈블리를 제조하는 방법
KR101782889B1 (ko) 휘도가 향상된 풀-컬러 led 디스플레이 및 그 제조방법
KR102524797B1 (ko) 전기적 컨택이 향상된 초소형 led 전극 어셈블리 및 이의 제조 방법
KR101730927B1 (ko) 휘도가 향상된 초소형 led 전극어셈블리 및 그 제조방법
US20210335903A1 (en) Full-color light emitting diode display having improved luminance and method of manufacturing the same
US11869920B2 (en) Ultra-small LED electrode assembly having improved luminance and method of manufacturing the same
KR102295710B1 (ko) 외부 광원의 빛을 조사하여 일방향의 극성 배열성이 향상된 초소형 led 전극 어셈블리 및 그 제조방법
KR102583708B1 (ko) 초소형-led 유연 스킨 패치 및 이의 제조방법
TW202414855A (zh) 超薄型fin LED元件及包括其的油墨組合物

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190507

Year of fee payment: 4