KR20150127122A - 금속 옥사이드 tft 안정성 개선 - Google Patents

금속 옥사이드 tft 안정성 개선 Download PDF

Info

Publication number
KR20150127122A
KR20150127122A KR1020157026172A KR20157026172A KR20150127122A KR 20150127122 A KR20150127122 A KR 20150127122A KR 1020157026172 A KR1020157026172 A KR 1020157026172A KR 20157026172 A KR20157026172 A KR 20157026172A KR 20150127122 A KR20150127122 A KR 20150127122A
Authority
KR
South Korea
Prior art keywords
layer
channel interface
metal oxide
substrate
thin film
Prior art date
Application number
KR1020157026172A
Other languages
English (en)
Inventor
태 케이. 원
최수용
임동길
박범수
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20150127122A publication Critical patent/KR20150127122A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Abstract

본원에는 수소가 감소된 실리콘-함유 층들이 도입된 금속 옥사이드 박막 트랜지스터, 및 이를 제조하는 방법이 기술된다. 박막 트랜지스터는 기판, 금속 옥사이드 반도체 층, 실질적으로 수소 부재의 채널 계면층, 및 채널 계면층 위에 형성된 실리콘을 포함하는 캡 층을 포함할 수 있다. 박막 트랜지스터를 제조하는 방법은 기판 위에 금속 옥사이드 반도체 층을 증착시키고, SiF4를 포함하는 증착 가스를 활성화시켜 활성화된 증착 가스를 생성시키고, 활성화된 증착 가스를 기판으로 전달하여 SiOF를 포함하는 채널 계면층을 증착시키고, 채널 계면층 및 금속 옥사이드 박막 트랜지스터 층 위에 캡 층을 증착시키는 것을 포함할 수 있다.

Description

금속 옥사이드 TFT 안정성 개선{METAL OXIDE TFT STABILITY IMPROVEMENT}
본원에 기술된 구체예들은 일반적으로 유전체 및 패시베이션 층들에서 수소를 감소시키는 것에 관한 것이다. 보다 상세하게, 본원에 기술된 구체예들은 일반적으로 금속 옥사이드 박막 트랜지스터들(TFT)에서 사용하기 위한 실리콘-함유 층들에서 수소를 감소시키는 것에 관한 것이다.
금속 옥사이드 반도체들, 예를 들어 아연 옥사이드(ZnO) 및 인듐 갈륨 아연 옥사이드(IGZO)는 이들의 높은 캐리어 이동성(carrier mobility), 낮은 가공 온도들, 및 광학적 투명성으로 인하여 소자(device) 제작을 위해 매력적이다. 금속 옥사이드 반도체들로부터 제조된 TFT들(MO-TFT)은 광학 디스플레이(optical display)들을 위한 활성-매트릭스 어드레싱 방식들(active-matrix addressing scheme)에서 특히 유용하다. 금속 옥사이드 반도체들의 낮은 가공 온도는 저렴한 플라스틱 기판들, 예를 들어 폴리에틸렌 테레프탈레이트(PET) 및 폴리에틸렌 나프탈레이트(PEN) 상에서 디스플레이 후면(display backplane)의 형성을 가능하게 한다. 옥사이드 반도체 TFT의 투명성은 픽셀 천공들의 개선 및 보다 밝은 디스플레이를 야기시킨다.
MO-TFT의 안정성 및 성능은 MO-TFT 자체에 혼입되고 접촉 층들에 혼입되는 둘 모두에 혼입되는 바와 같은, 수소 함량에 대해 매우 민감하다. 접촉 층들은 채널 계면층(channel interface layer) 또는 벌크 층(bulk layer)을 포함할 수 있다. 접촉 층들은 CVD 증착된 막들, 예를 들어 실리콘 옥사이드(SiO), 실리콘 옥시니트라이드(SiON), 실리콘 니트라이드(SiN), 등을 포함한다. 여러 반도체들에서, 삽입 수소(interstitial hydrogen)(층들 사이의 수소)는 양쪽성 불순물(첨가되는 반도체 물질에 따라 공여체(donor) 또는 수용체(acceptor)로서 작용할 수 있는 불순물)로서 작용하는 것으로 확인되었다. 이에 따라, p-타입 물질들에서, 수소는 일반적으로 공여체로서 작용하며, n-타입 물질들에서, 수소는 일반적으로 수용체로서 작용한다. 그러나, MO-TFT에서, 수소는 유해할 수 있다. 통상적인 플라즈마 강화 화학적 증기 증착(PECVD) 막들은 막에서 매우 높은 수소 함량을 형성시킨다. 예를 들어, 통상적인 PECVD에 의해 증착된 SiO는 대략 4% 수소를 함유하며, 통상적인 PECVD에 의해 증착된 SiN은 대략 35% 수소를 함유한다. 통상적인 PECVD 막의 수소 함량은 전압/광 바이어스 조건들 하에서 높은 문턱값 전압 이동(Vth 이동)을 유발시킨다.
이에 따라, 당해 분야에서 MO-TFT와 함께 사용하기 위한 막들에서 수소 함량을 낮추는 것이 요구되고 있다.
본원에 기술된 구체예들은 일반적으로 MO-TFT와 함께 사용하기 위한 실질적으로 수소 부재 막들, 및 이를 제조하는 방법들에 관한 것이다. 일 구체예에서, 박막 트랜지스터는 기판; 기판 표면의 일부 위에 형성된 금속 옥사이드 반도체 층; 비정질 금속 옥사이드 층과 접촉한 실리콘 옥시플루오라이드(SiOF)를 포함하는 채널 계면층으로서, 실질적으로 수소가 존재하지 않는 채널 계면층; 및 계면층 위에 형성된 실리콘을 포함하는 캡 층을 포함할 수 있다.
다른 구체예에서, 박막 트랜지스터를 제조하는 방법은 가공 챔버에 기판을 정위시키고; 기판 표면의 일부 위에 금속 옥사이드 반도체 층을 증착시키되, 금속 옥사이드 반도체 층이 아연 옥사이드를 포함하고; MW-PECVD를 이용하여 SiF4를 포함하는 증착 가스를 활성화시켜 활성화된 증착 가스를 생성시키되, 증착 가스가 수소를 포함하지 않고; 활성화된 증착 가스를 기판으로 전달하여 금속 옥사이드 박막 트랜지스터 층 위에 SiOF를 포함하는 채널 계면층을 증착시키고; 채널 계면층 및 금속 옥사이드 박막 트랜지스터 층 위에 캡 층을 증착시키는 것을 포함한다.
본 발명의 상기 열거된 특징들이 상세히 이해될 수 있는 방식으로 앞서 간략히 요약된 본 발명의 보다 구체적인 설명이 구체예들을 참조로 하여 이루어질 수 있는데, 이러한 구체예들 중 일부는 첨부된 도면들에 예시되어 있다.
그러나, 첨부된 도면들은 본 발명의 단지 전형적인 구체예들을 도시하는 것이므로 본 발명의 범위를 제한하는 것으로 간주되지 않아야 한다는 것이 주목되어야 하는데, 이는 본 발명이 다른 균등하게 유효한 구체예들을 허용할 수 있기 때문이다.
도 1은 본 발명의 일 구체예에 따른 개략적인 MW-PECVD 챔버의 단면도이다.
도 2a 내지 2h는 일 구체예에 따른 가공의 다양한 스테이지들에서 수소 부재 채널 계면층을 갖는 MO-TFT 막 스택(film stack)의 단면도들이다.
도 3은 일 구체예에 따른, MO-TFT 막 스택을 증착시키는 방법의 흐름도이다.
이해를 용이하게 하기 위해, 동일한 참조 번호들은 가능한 경우에, 도면들에서 공통인 동일한 구성요소들을 명시하기 위해 사용된다. 일 구체예에 기술된 구성요소들이 특정 인용 없이 다른 구체예들에서 유익하게 사용될 수 있는 것으로 고려된다.
보다 높은 안정성의 MO-TFT 구조물들, 및 이를 제조하는 방법들이 본원에 기술된다. MO-TFT 구조물들에서 수소의 공여체 활성으로 인하여, 채널 계면층 및 캡 층을 포함할 수 있는, MO-TFT 층 및 캡슐화 층(encapsulation layer) 둘 모두에서의 수소 농도는 제한되어야 한다. 이를 달성하기 위하여, 패시베이션 층은 마이크로파 PECVD (MW-PECVD)에 의해 활성화되는 증착 가스를 사용하여 증착될 수 있다. 본원의 구체예들에서, MW-PECVD에 의해 활성화된 가스들은 MW-PECVD에 의해 직접적으로 점화되거나 불활성 가스 또는 증착 가스의 성분 가스로부터 형성된 원거리 플라즈마(remote plasma)를 전달시킴에 의한 증착 가스의 활성화와 같이, 간접적으로 활성화되는 가스들을 포함할 수 있다. 하나 이상의 구체예들에서, 패시베이션 층은 적어도 채널 계면층 및 캡 층을 포함하는 다층 구조물일 수 있다. 채널 계면층은 최하부 층으로서, 패시베이션 층과 금속 옥사이드 반도체 사이에 계면을 형성한다. 통상적인 채널 계면층들은 고도로 다공성의 실리콘 함유 유전체 층들, 예를 들어 실리콘 옥시플루오라이드(SiOF)를 포함할 수 있다. 캡 층은 채널 계면층 위에 형성되고, 다공성 채널 계면층을 시일링하는 역할을 한다. 통상적인 캡 층들은 조밀한 실리콘 함유 유전체 층들, 예를 들어 실리콘 옥사이드(SiOx), 실리콘 옥시니트라이드(SiON) 및 실리콘 니트라이드(SiN)를 포함할 수 있다. 오버레이 층들(overlying layer)의 증착은 표준 PECVD를 이용한 균등한 증착 보다 MW-PECVD를 사용할 때에 보다 낮은 온도에서 일어날 뿐만 아니라 얻어진 층에 수소 혼입이 또한 감소된다. 본원에 기술된 구체예들은 하기 도면들을 참조로 하여 보다 명확하게 기술된다.
하기에 기술되는 구체예들은 AKT America, Inc.(Applied Materials, Inc.(Santa Clara, CA.)의 자회사)로부터 입수 가능한 PECVD 챔버에서 실행될 수 있다. 본 발명이 다른 제조업체들로부터 입수 가능한 장비를 포함하는, 다른 챔버들에서 또한 적용 가능한 것으로 이해될 것이다.
도 1은 일 구체예에 따른 개략적 MW-PECVD 챔버의 단면도이다. 공정 챔버(100)는 공정 챔버(100)로부터 기판(102)을 제거하지 않고 기판(102) 상에서 하나 이상을 막들을 증착시킬 수 있도록 구성된다. 하기 설명이 MW-PECVD 챔버, 특히 마이크로파 및 가스 공급 소스들이 수평 증착 공정을 위해 수평으로 정위된 기판 서셉터(susceptor) 위에 배치되어 있는 수평-타입 챔버를 참조로 하여 이루어지지만, 본 발명이 공정 챔버의 챔버 벽들에 수직으로 부착된 마이크로파 라인 소스들, 및 수직 배열로 기판을 지지하기 위한 수직으로 정위된 기판 서셉터를 구비한 이러한 수직-타입 증착 챔버들에 적용될 수 있는 것으로 이해된다. 또한, 도면들 및 대응하는 설명이 오로지 예시적인 것이며, 단일 구체예에 기술된 임의의 개개 하드웨어 특징이 본 명세서에 기술되는 임의의 다른 구체예들과 결합될 수 있다는 것이 주지되어야 한다.
기판(102)은 특히, 금속, 플라스틱, 유기 물질, 실리콘, 유리, 석영, 또는 폴리머 물질들의 얇은 시트일 수 있다. 일 구체예에서, 기판(102)은 그 위에 실리콘-함유 층이 증착될 유리 기판이다. 다른 구체예들에서, 기판(102)은 도핑되거나 달리 개질된 유리 기판, 예를 들어 그 위에 MO-TFT 층이 형성된 유리 기판일 수 있다.
공정 챔버(100)는 일반적으로, 그 안의 공정 부피(199)를 규정하는, 챔버 벽들(104), 챔버 바닥(106) 및 챔버 뚜껑(108)을 포함한다. 공정 부피(199)는 진공 시스템(109)에 연결되고, 그 안에 배치된 기판 서셉터(110)를 구비한다. 공정 부피(199)는, 기판(102)이 공정 챔버(100) 안으로 그리고 밖으로 이동될 수 있도록, 슬릿 밸브 개구(112)를 통해 접근된다. 챔버 벽들(104), 챔버 바닥(106), 및 챔버 뚜껑(108)은 알루미늄 또는 플라즈마 가공을 위해 양립 가능한 다른 물질의 단일 블록으로부터 제작될 수 있다. 챔버 뚜껑(108)은 챔버 벽들(104)에 의해 지지되고, 공정 챔버(100)를 제공하기 위해 제거될 수 있다. 기판 서셉터(110)는 기판 서셉터(110)를 상승시키고 하강시키기 위해 구동기(actuator)(114)에 연결될 수 있다.
기판 서셉터(110)는 기판 서셉터(110)를 요망되는 온도로 유지시키기 위해 임의적으로 가열 및/또는 냉각 부재들, 예를 들어 저항성 가열기(198) 및/또는 냉각 유체 도관들(196)을 포함할 수 있다. 리프트 핀(lift pin)들(116)은 기판 서셉터(110) 상에 배치되기 전에 그리고 기판 서셉터(110)로부터 제거된 후에 기판(102)을 제어 가능하게 지지하기 위해 기판 서셉터(110)를 통해 이동 가능하게 배치된다.
본 발명에 따른 공정 챔버(100)의 주요 구성성분들은 특히, 가스 공급 소스(120) 및 마이크로파 소스(126)를 포함할 수 있다. 마이크로파 소스(126)는 가스 공급 소스(120)의 길이 방향에 대해 평행하도록 구성된 하나 이상의 마이크로파 안테나들(128)을 포함할 수 있다. 가스 공급 소스(120)는 마이크로파 소스(126)와 기판(102) 사이에 위치될 수 있다.
가스 공급 소스(120)는 가스 소스(122A) 및/또는 가스 소스(122B)로부터 하나 이상의 전구체 가스들 및/또는 캐리어 가스들을 수용하도록 구성된 다수의 가스 공급 라인들(121)을 포함할 수 있다. 마이크로파 소스(126)는 가스 공급 소스(120)와 공정 챔버(100)의 상부(예를 들어, 챔버 뚜껑(108)) 사이에 위치될 수 있다. 마이크로파 소스(126)는 일반적으로 마이크로파 안테나들(128) 및 마이크로파 안테나들(128)에 연결된 커플링 메카니즘(130)을 포함한다. 마이크로파 소스(126)는 지면에 연결될 수 있다. 단지 하나의 마이크로파 안테나(128)가 도시되어 있지만, 마이크로파 안테나들(128)의 수가 기판의 크기에 따라 증가될 수 있다는 것이 고려된다.
마이크로파 공급원(132)은 마이크로파 소스(126)에 연결되고, 마이크로파 전력(microwave power)을 안테나들(128)로 전달할 수 있다. 공정, 예를 들어 증착 공정 동안의 작업에서, 마이크로파는 마이크로파 안테나들(128)을 따라 이동하고, 전자기 에너지를 공정 부피 내에서 플라즈마를 점화시키는 플라즈마 에너지로 전환시킴으로써 고 감쇠(high attenuation)를 통해 진행한다. 플라즈마에 의해 형성되는 라디칼 종들은 가스 공급 라인들(121)에서 나오는 반응성 전구체들(예를 들어, SiH4, SiF4, N2O, O2, N2 또는 이들의 조합물)을 해리시키는데, 이는 기판(102) 쪽으로 지향되고(화살표들(124)에 의해 지시되는 바와 같음), 기판 서셉터(110)에 의해 유지되는 기판(102) 상에 막(예를 들어, SiOx, 실리콘 옥시니트라이드(SiON), SiN 또는 SiOF)을 형성시키기 위해 기판 표면을 가로질러 균일하게 분포된다. 증착 동안 챔버 내의 압력은 진공 시스템(109)에 의해 조절된다.
도 2a 내지 2h는 일 구체예에 따른 MO-TFT의 개략적 예시이다. 도 2a에 도시된 바와 같이, MO-TFT는 기판(202) 위에 전도성 층(204)을 증착시킴으로써 제작된다. 기판(202)을 위해 사용될 수 있는 적합한 물질들은 유리, 플라스틱, 및 반도체 웨이퍼들을 포함하지만, 이로 제한되지 않는다. 전도성 층(204)을 위해 사용될 수 있는 적합한 물질들은 크롬, 몰리브덴, 구리, 알루미늄, 텅스텐, 티탄, 및 이들의 조합물들을 포함하지만, 이로 제한되지 않는다. 전도성 층(204)은 물리적 증기 증착(PVD) 또는 다른 적합한 증착 방법들, 예를 들어 전기도금, 무전해 도금 또는 화학적 증기 증착(CVD)에 의해 형성될 수 있다.
도 2b에서, 전도성 층(204)은 게이트 전극(205)을 형성시키기 위해 패턴화된다. 전도성 층(204)은 전도성 층(204) 위에 포토리소그래픽 마스크(photolithographic mask) 또는 하드 마스크(hard mask) 중 어느 하나를 형성시키고 전도성 층(204)를 에칭제에 노출시킴으로써 패턴화될 수 있다. 전도성 층(204)은 전도성 층(204)의 노출된 부분들을 습윤 에칭제에 또는 에칭 플라즈마에 노출시킴으로써 패턴화될 수 있다. 일 구체예에서, 에칭 플라즈마는 SF6, O2, Cl2, 또는 이들의 조합물들로부터 선택된 가스들을 포함할 수 있다.
도 2c에 도시된 바와 같이, 게이트 전극(205)이 형성된 후에, 게이트 유전체 층(206)은 그 위에 증착된다. 게이트 유전체 층(206)은 SiOF, SiN, SiOx, 및 실리콘 옥시니트라이드(SiON)를 포함할 수 있다. 추가적으로, 단일 층으로서 도시되어 있지만, 게이트 유전체 층(206)이 다층을 포함할 수 있다는 것이 고려되며, 이들 각각은 상이한 화학적 조성을 포함할 수 있다. 게이트 유전체 층(206)을 증착시키는 적합한 방법들은 콘포말한 증착 방법, 예를 들어 MW-PECVD, PECVD, CVD 및 원자층 증착(ALD)을 포함한다. 게이트 유전체 층(206)은 최소한의 수소를 갖도록 증착되어야 한다. 일 구체예에서, 게이트 유전체 층(206)은 MW-PECVD에 의해 증착된 SiOF의 적어도 하나의 층으로 이루어진다. 이러한 구체예에서, SiOF 층은 1 원자% 미만의 수소 농도, 예를 들어 검출 가능하지 않은 수소를 갖는다.
도 2d에 도시된 바와 같이, 고이동성 활성층(208)은 반도체 층으로서 증착된다. 고이동성 활성층(208)을 위해 사용될 수 있는 적합한 물질들은 IGZO 및 아연 옥사이드를 포함한다. 활성층(208)은 적합한 증착 방법들, 예를 들어 PVD에 의해 증착될 수 있다. 일 구체예에서, PVD는 로터리 캐소드(rotary cathode)에 DC 바이어스를 인가하는 것을 포함할 수 있다.
도 2e 및 2f에 도시된 바와 같이, 전도성 층(210)은 활성층(208) 위에 증착될 수 있다. 전도성 층(210)은 PVD 또는 다른 적합한 증착 방법들, 예를 들어 전기도금, 무전해 도금 또는 CVD에 의해 형성될 수 있다. 도 2f에서, 전도성 층(210)은 백 채널 에치 공정(back channel etch process)에 의해 소스 전극(211) 및 드레인 전극(212)을 형성시키기 위해 패턴화된다. 패턴화는 전도성 층(210) 위에 포토리소그래픽 마스크 또는 하드 마스크 중 어느 하나를 형성시키고, 전도성 층(210)의 노출된 부분들을 에칭제에 노출시킴으로써 일어날 수 있다. 전도성 층(210)은 전도성 층(210)의 노출된 부분들을 습윤 에칭제에 또는 에칭 플라즈마에 노출시킴으로써 패턴화될 수 있다. 일 구체예에서, 전도성 층(210)은 에칭제들, 예를 들어 SF6, O2, 및 이들의 조합물들을 포함하는 에칭 플라즈마로 마스크에 의해 덮혀지지 않은 전도성 층(210)의 구역들을 에칭시킴으로써 패턴화될 수 있다. 소스 전극(211) 및 드레인 전극(212)을 형성 시에, 활성층(208)의 부분은 노출되어 노출된 부분(214)을 형성시킨다. 노출된 부분(214)은 소스 전극(211)과 드레인 전극(212) 사이에 있다. 소스 전극(211)과 드레인 전극(212) 사이의 구역은 활성 채널(216)로서 지칭된다. 결합된 게이트 전극(205), 게이트 유전체 층(206), 고이동성 활성층(208), 소스 전극(211) 및 드레인 전극(212)은 본원에서 금속 옥사이드 박막 트랜지스터 (MO-TFT) 층(250)으로서 지칭된다.
도 2g에서, 채널 계면층(218)은 활성 채널(216), 소스 전극(211) 및 드레인 전극(212) 위에 증착된다. 일 구체예에서, 활성층(208)의 노출된 부분(214)과 접촉되는 채널 계면층(218)은 저 수소 함유 옥사이드, 예를 들어 SiOF이다. 채널 계면층(218)은 20Å 내지 3000Å의 두께로 증착될 수 있다. 채널 계면층(218)으로서 SiOF를 사용하는 구체예들에서, 수소 농도는 대략 0이며, 이에 따라, 활성층(208)의 노출된 부분(214)과 수소의 상호작용을 방해한다. SiOF는 SiF4 및 N2O, O2 불활성 캐리어 가스 또는 이들의 조합물들을 포함하는 증착 가스를 사용하는 MW-PECVD를 사용하여 증착될 수 있다. 도시된 바와 같이, 채널 계면층(218)의 증착은 활성 채널(216), 소스 전극(211) 및 드레인 전극(212)의 표면을 가로질러 실질적으로 콘포말하다. 저 수소 함유 옥사이드, 상세하게 SiOF가 MW-PECVD를 사용하여 증착되는 것으로 기술되지만, SiOF 층을 증착시키기 위해 다른 증착 방법들이 적용 가능하다. 일 구체예에서, CCP-PECVD는 본원에 기술된 증착 가스들(예를 들어, SiF4 및 N2O)을 사용하여 SiOF 층을 증착시키기 위해 사용된다.
도 2h에서, 캡 층(220)은 채널 계면층(218)의 표면 위에 형성된다. 채널 계면층(218)은 낮은 수소를 가지지만, 일반적으로 낮은 막 밀도로 인해 소자 상에 단일 층으로서 사용되지 못한다. 일부 SiOF의 다공성 특성으로 인한 낮은 막 밀도는 수소가 환경으로부터 채널 계면층(218)으로 확산되게 할 수 있다. 수소 확산을 방지하기 위하여, 캡 층(220)은 일반적으로 채널 계면층(218) 위에 형성되고, 저 수소 함유 옥사이드(예를 들어, SiOx, SiON, SiN 또는 이들의 조합물들)의 하나 이상의 추가 층들을 포함할 수 있다. 캡 층(220)은 50Å 내지 3000Å, 예를 들어, 100Å 내지 1000Å의 두께로 증착될 수 있다. 채널 계면층(218) 및 캡 층(220)이 단일 층으로서 기술되지만, 채널 계면층(218) 또는 캡 층(220)의 추가 구체예들은 하나 초과의 층을 포함할 수 있으며, 이러한 층들은 임의 이전 층과는 다른 화학적 조성을 가질 수 있다.
실리콘 옥사이드가 캡 층(220)으로서 사용될 때에, 실리콘 옥사이드는 MW-PECVD, PECVD 또는 PVD에 의해 증착될 수 있다. PVD와 관련한 플라즈마 손상 및 PEVCD로부터 혼입되는 수소는 MW-PECVD를 사용하여 감소되거나 방지될 수 있다. 일 구체예에서, MW-PECVD는 SiO2 캡 층을 증착시키기 위해 사용된다. MW-PECVD 증착은 고도로 콘포말한 증착 결과들, 증착된 막들에 대한 낮은 플라즈마 손상, 및 증착된 층에서 수소 농도의 감소를 제공한다. MW-PECVD 실리콘 옥사이드는 대개 소스 가스들로서 SiH4+O2 또는 SiH4+N2O로 증착되며, 여기서 전자는 후자 보다 더욱 양호한 막 품질을 제공한다.
도 3은 일 구체예에 따른 MO-TFT 막 스택(film stack)을 증착시키는 방법의 흐름도이다. 본 방법(300)은 단계 (302)에서와 같이, 가공 챔버에 정위되는 기판으로 개시한다. 적합한 기판 물질들은 유리, 석영, 사파이어, 게르마늄, 플라스틱 또는 이들의 복합물들을 포함할 수 있지만, 이로 제한되지 않는다. 추가적으로, 기판은 비교적 강성 기판 또는 가요성 기판일 수 있다. 또한, 임의 적합한 기판 크기가 가공될 수 있다. 적합한 기판 크기들의 예들은 약 2000 제곱센티미터 이상, 예를 들어 약 4000 제곱센티미터 이상, 예를 들어 약 10000 제곱센티미터 이상의 표면적을 갖는 기판을 포함한다. 일 구체예에서, 약 50000 제곱센티미터 이상의 표면적을 갖는 기판이 가공될 수 있다. 하기에 기술되는 구체예들은 5500 제곱센티미터 기판에 관한 것이다.
금속 옥사이드 반도체 층은 단계 (304)에서와 같이, 기판 표면의 일부 위에 증착된다. 금속 옥사이드 반도체 층은 결합된 게이트 전극, 게이트 유전체 층, 고이동성 활성층, 소스 전극 및 드레인 전극을 포함하는 도 2를 참조로 하여 기술되는 바와 같이 증착될 수 있다. 고이동성 활성층은 비정질 금속 옥사이드 층, 예를 들어 IGZO 또는 다른 아연 옥사이드 층일 수 있다. 게이트 유전체 층은 저 수소 유전체 층, 예를 들어 MW-PECVD에 의해 증착된 SiOx 또는 RF 플라즈마를 이용한 PECVD일 수 있다. 다른 구체예들에서, 게이트 유전체 층은 박막 트랜지스터들과 함께 사용하기 위해 당해 분야에 공지된 바와 같이 SiOx, SiN, SiON 또는 다른 유전체로 이루어질 수 있다.
SiF4를 포함하는 증착 가스는 이후에 단계 (306)에서와 같이, 활성화된 증착 가스를 형성시키기 위해 PECVD 또는 MW-PECVD를 사용하여 활성화된다. MW-PECVD 또는 표준 PECVD 중 어느 하나에 의해 SiOF를 증착시킬 때에, 증착 가스들은 SiF4, SiH4, N2O, O2 또는 이들의 조합물들을 포함할 수 있다. 일 구체예에서, SiOF는 SiF4, SiH4 및 O2를 포함하는 증착 가스를 사용하는 RF PECVD에 의해 증착된다. 이러한 구체예에서, SiH4는 MW 플라즈마와 비교하여 RF 플라즈마의 비교적 낮은 전자 밀도를 보정하고, 이에 따라 SiOF 층을 형성시킬 것으로 여겨진다.
본원의 구체예들에서 사용되는 마이크로파 전력은 비교적 높은 전력, 예를 들어 3000W 내지 5000W의 마이크로파 전력, 예를 들어 4000W의 마이크로파 전력일 수 있다. 마이크로파 전력은 하나 이상의 안테나들, 예를 들어 6개의 안테나들에 의해 지향될 수 있다. 안테나들은 기판에 도달할 때까지 플라즈마를 유지시키기 위해 정위될 수 있다.
활성화된 증착 가스는 이후에 단계 (308)에서와 같이 금속 옥사이드 반도체 층 위에 SiOF를 포함하는 채널 계면층을 증착시키기 위해 기판에 전달된다. 활성화된 증착 가스는 금속 옥사이드 반도체 층 위에 채널 계면층을 증착시키기 위해 기판에 전달될 수 있다. 채널 계면층은 활성 채널 및 소스 전극 및 드레인 전극 위에 콘포멀하게 증착되어, 수소 부재 채널 계면층을 형성시킬 것이다. SiOF를 포함하는 채널 계면층은 고도로 다공성이고, 이에 따라 증착된 층은 임의 후속 층들의 증착 이전에 수소 부재 조건들로 유지되어야 한다. 채널 계면층은 20Å 내지 3000Å의 두께를 가질 수 있다. MW-PECVD를 사용하여 채널 계면층을 증착할 때에, 증착을 위한 온도는 200℃ 내지 350℃, 예를 들어 230℃ 내지 330℃일 수 있다. 채널 계면층은 하나 초과의 층을 포함할 수 있으며, 예를 들어 채널 계면층은 세 개의 층들을 포함할 수 있다.
캡 층은 이후에 단계 (310)에서와 같이, 채널 계면층 및 금속 옥사이드 반도체 층 위에 증착된다. 캡 층은 SiOx, SiON, SiN 또는 이들의 조합물들로 이루어진 층일 수 있다. 캡 층은 50Å 내지 3000Å의 두께를 가질 수 있다. 캡 층은, 채널 계면층과 같이, 하나 초과의 층을 포함할 수 있다. 또한, 캡 층의 각 층은 캡 층의 임의 다른 층과는 상이한 조성을 가질 수 있다. 일 구체예에서, 캡 층은 채널 계면층 위에 형성된 SiO 층, SiO 층 위에 형성된 SiN 층, 및 SiN 층 위에 형성된 SiO 층을 포함한다. 또한, 캡 층의 층들 각각은 캡 층에서 다른 층들과는 다른 두께를 가질 수 있다.
캡 층은 실리콘 함유 전구체 및 산화 전구체를 사용하여 증착된다. 실리콘-함유 전구체들은 실리콘 하이드라이드들, 예를 들어 SiH4를 포함할 수 있다. 실리콘-함유 전구체는 SiOx 막의 증착을 위해 가공 챔버로 흘려보낼 수 있다. 예시적인 챔버에서, 실리콘 하이드라이드들, 예를 들어 SiH4에 대한 유량들은 100 sccm 내지 500 sccm일 수 있으며, 예를 들어 유량들은 150 sccm 내지 450 sccm일 수 있으며, 예를 들어 유량은 350 sccm일 수 있다. 캡 층이 MW-PECVD를 사용하여 증착될 때에, 증착 온도는 100℃ 내지 350℃일 수 있으며, 예를 들어, 온도는 130℃ 내지 200℃, 예를 들어 130℃일 수 있다.
산화 전구체는 이원자 산소(O2), 오존(O3), 산화질소(N2O) 또는 다른 산화 가스들을 포함할 수 있다. 산화 전구체는 실리콘 하이드라이드들 및 실리콘 할라이드들과 함께 가공 챔버로 흘려보낼 수 있다. 상술된 챔버와 같은 예시적인 챔버에서, 실리콘 하이드라이드들로 증착될 때에 O2, O3 또는 N2O에 대한 유량들은 2000 내지 5000 sccm일 수 있으며, 예를 들어 3500 sccm의 유량일 수 있다. 다른 구체예에서, 실리콘 할라이드들로 증착될 때에 O2 또는 O3에 대한 유량들은 5000 내지 7000 sccm, 예를 들어 5500 sccm의 유량일 수 있다. 다른 구체예, 실리콘 할라이드들로 증착될 때에 N2O에 대한 유량들은 3000 내지 7000 sccm, 예를 들어 4000 sccm의 유량일 수 있다.
보다 낮은 온도, 예를 들어 100℃ 내지 350℃, 예를 들어 130℃ 내지 200℃의 온도를 사용함으로써, 거의 수소-부재 및 핀홀-부재 층은 실란(SiH4) 및 일부 산화 전구체들을 사용하는 유해 효과들 중 일부를 방지하면서, 마이크로파 활성화된 전구체들로부터 증착될 수 있다. 온도는 바람직하게 실리콘 테트라플루오라이드(SiF4)를 사용할 때에 더욱 높을 것이며, 보다 높은 품질 및 보다 높은 증착 속도를 위해 SiOF는 200℃ 내지 350℃, 예를 들어 230℃ 내지 330℃의 온도에서 증착될 수 있다.
MW-PECVD는 RF 플라즈마를 사용한 PECVD에 의해 증착된 균등한 층들 보다 증착된 층에서 보다 낮은 수소 농도를 형성시킨다. 이론으로 한정하고자 하는 것은 아니지만, MW 플라즈마는 RF 플라즈마 보다 높은 전자 밀도를 유도한다. MW 플라즈마의 보다 높은 전자 밀도는 증착 가스들에서 약한 Si-H, N-H, O-H 결합들을 파괴시키는데 기여한다. 이러한 결합들을 파괴함으로써, 막 형성 동안 SiOx, SiOF, 또는 SiN 막에서 수소 증착은 동일한 층들의 RF 플라즈마 증착과 비교하여 감소된다. 표준 구체예들에서, RF PECVD 막들은 높은 수소 함량, 예를 들어 SiO 막에서 대략 4% 및 SiN 막에서 대략 35%를 갖는 반면, MW-PECVD 막들은 매우 적은 비교 수소 함량, 예를 들어 SiO 막에서 대략 1%, 및 SiN 막에서 대략 16%를 갖는다.
증착된 실리콘 옥사이드 SiOx는 SiO2, SiO, 또는 이들의 조합물들을 포함할 수 있다. SiOx 층의 형성은 다른 인자들 중에서 온도, 압력, 반응물 가스의 유량 및 인가된 마이크로파 전력의 양과 같은 증착 인자들에 의해 조절될 수 있다. 핀-홀-부재 SiOx 층들은 MO-TFT 보존성을 유지하는데 도움을 준다. 핀홀 밀도는 RF 전력과 강력하게 연관되고 압력과 약하게 연관된다.
캡 층은 수소 함유 종들이 다공성 SiOF 층을 침투하는 것을 방지하는 역할을 한다. 이론으로 한정하고자 하는 것은 아니지만, 수소 농도의 감소는 기판 상의 다양한 특성(feature)들, 예를 들어 게이트들의 형성에서 중요하다. 수소는 SiOx에서 아주 흔한 불순물이고, 옥사이드에서 고정된 전하의 원인인 것으로 여겨진다. 작업 동안 수소의 방출은 고유 유전 파괴를 초래할 수 있는 트랩 발생과 같은 결함들의 형성의 원인인 것으로 여겨진다. 또한, MO-TFT 층으로의 수소 혼입은 높은 문턱값 전압 이동을 형성시키는 것으로 여겨진다. 이와 같이, 감소된 수소 농도는 이러한 결함들의 방지에 대해 중요한 것으로 여겨진다.
결론
본원에 기술된 구체예들은 유전체 및 패시베이션 층들에서 감소된 수소를 갖는 MO-TFT의 형성에 관한 것이다. 금속 옥사이드들, 예를 들어 IGZO 및 아연 옥사이드들은 수소의 존재에 대해 민감하다. 수소가 다수의 유전체 층들에서 아주 흔한 불순물이기 때문에, 수소의 감소는 MO-TFT 안정성 및 일관성에 대해 중요하다. 마이크로파 플라즈마를 사용함으로써, 현저하게 낮은 수소 농도를 갖는 실리콘 함유 층들, SiOF, SiOx 및 SiN은 MO-TFT 형성의 다양한 스테이지들에서 증착될 수 있다. 채널 계면층은 실질적으로 SiOF를 포함할 수 있다. 후속하는 고밀도의 층들, 예를 들어 SiOx는 채널 계면층으로의 수소 확산을 방지하기 위해 캡 층으로서 증착될 수 있다.
상술된 것은 본 발명의 구체예들에 관한 것이지만, 본 발명의 다른 및 추가의 구체예들은 본 발명의 기본 범위를 벗어나지 않으면서 고안될 수 있으며, 본 발명의 범위는 하기 청구범위에 의해 결정된다.

Claims (15)

  1. 기판;
    기판 표면의 일부 위에 형성된 금속 옥사이드 반도체 층;
    금속 옥사이드 박막 트랜지스터 층과 접촉한 실리콘 옥시플루오라이드(SiOF)를 포함하는 채널 계면층으로서, 1 원자% 미만의 수소를 포함하는 채널 계면층(channel interface layer); 및
    채널 계면층 위에 형성된 실리콘을 포함하는 캡 층(cap layer)을 포함하는 박막 트랜지스터.
  2. 제1항에 있어서, 캡 층이 실리콘 니트라이드 또는 실리콘 옥사이드를 포함하는 박막 트랜지스터.
  3. 제2항에 있어서, 캡 층이 실리콘 니트라이드를 포함하고, 16 원자% 미만의 수소를 함유하는 박막 트랜지스터.
  4. 제1항에 있어서, 기판이 투명한 기판을 포함하는 박막 트랜지스터.
  5. 제1항에 있어서, 채널 계면층이 하나 초과의 층을 포함하며, 채널 계면의 하나 이상의 층이 SiOF를 포함하는 박막 트랜지스터.
  6. 제1항에 있어서, 채널 계면층 및 캡 층 각각이 20Å 내지 3000Å인 박막 트랜지스터.
  7. 제1항에 있어서, 캡 층이 두 개 이상의 층들을 포함하는 박막 트랜지스터.
  8. 제1항에 있어서, 금속 옥사이드 반도체 층이 SiOF로 이루어진 게이트 유전체 층 위에 추가로 증착되는 박막 트랜지스터.
  9. 가공 챔버에서 기판을 정위시키고;
    기판 표면의 일부 위에 금속 옥사이드 반도체 층을 증착시키되, 금속 옥사이드 박막 트랜스지터 층이 아연 옥사이드를 포함하고;
    SiF4를 포함하는 증착 가스를 활성화시켜 활성화된 증착 가스를 생성시키고;
    활성화된 증착 가스를 기판으로 전달하여 금속 옥사이드 반도체 층 위에 SiOF를 포함하는 채널 계면층을 증착시키되, 채널 계면층이 1 원자% 미만의 수소를 함유하고;
    채널 계면층 및 금속 옥사이드 반도체 층 위에 캡 층을 증착시키는 것을 포함하는, 박막 트랜지스터를 제조하는 방법.
  10. 제9항에 있어서, 채널 계면층이 250℃ 미만의 온도들에서 증착되는 방법.
  11. 제9항에 있어서, 캡 층이 SiH4, O2, N2O 또는 이들의 조합물들을 포함하는 증착 가스 혼합물을 사용하여 증착되는 방법.
  12. 제9항에 있어서, 캡 층이 SiH4, SiF4, NH3, N2, H2 또는 이들의 조합물들을 포함하는 증착 가스 혼합물을 사용하여 증착되는 방법.
  13. 제9항에 있어서, 채널 계면층이 1 원자% 미만의 수소를 포함하는 방법.
  14. 제9항에 있어서, 캡 층이 실리콘 니트라이드 또는 실리콘 옥사이드를 포함하는 방법.
  15. 제9항에 있어서, 기판 위에 SiOF를 포함하는 게이트 유전체 층을 증착시키는 것을 추가로 포함하는 방법.
KR1020157026172A 2013-03-01 2014-02-05 금속 옥사이드 tft 안정성 개선 KR20150127122A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361771257P 2013-03-01 2013-03-01
US61/771,257 2013-03-01
PCT/US2014/014951 WO2014133722A1 (en) 2013-03-01 2014-02-05 Metal oxide tft stability improvement

Publications (1)

Publication Number Publication Date
KR20150127122A true KR20150127122A (ko) 2015-11-16

Family

ID=51428690

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157026172A KR20150127122A (ko) 2013-03-01 2014-02-05 금속 옥사이드 tft 안정성 개선

Country Status (6)

Country Link
US (1) US20150380561A1 (ko)
JP (1) JP2016510171A (ko)
KR (1) KR20150127122A (ko)
CN (1) CN105144391A (ko)
TW (1) TW201442238A (ko)
WO (1) WO2014133722A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170142899A (ko) * 2016-06-17 2017-12-28 도쿄엘렉트론가부시키가이샤 성막 방법 및 tft의 제조 방법
KR20200017633A (ko) 2018-08-09 2020-02-19 이기용 옷걸이
US10629624B2 (en) 2016-08-23 2020-04-21 Samsung Display Co., Ltd. Thin film transistor array panel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3011373B1 (de) * 2013-06-20 2017-11-15 Merck Patent GmbH Verfahren zur steuerung der optischen eigenschaften von uv-filterschichten
US9793252B2 (en) 2015-03-30 2017-10-17 Emagin Corporation Method of integrating inorganic light emitting diode with oxide thin film transistor for display applications
TWI559026B (zh) * 2015-06-24 2016-11-21 財團法人工業技術研究院 抗反射結構及其製造方法
US10134878B2 (en) 2016-01-14 2018-11-20 Applied Materials, Inc. Oxygen vacancy of IGZO passivation by fluorine treatment
KR20210125155A (ko) * 2020-04-07 2021-10-18 삼성디스플레이 주식회사 표시 장치의 제조방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125675A (ja) * 1996-10-17 1998-05-15 Sony Corp 低誘電率酸化シリコン系絶縁膜の形成方法およびこれを用いた半導体装置
US6949481B1 (en) * 2003-12-09 2005-09-27 Fasl, Llc Process for fabrication of spacer layer with reduced hydrogen content in semiconductor device
JP2005310966A (ja) * 2004-04-20 2005-11-04 Fujitsu Ltd 基板処理方法及びプログラム
US8420456B2 (en) * 2007-06-12 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing for thin film transistor
KR101412761B1 (ko) * 2008-01-18 2014-07-02 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
US8258511B2 (en) * 2008-07-02 2012-09-04 Applied Materials, Inc. Thin film transistors using multiple active channel layers
JP5679143B2 (ja) * 2009-12-01 2015-03-04 ソニー株式会社 薄膜トランジスタならびに表示装置および電子機器
US8759917B2 (en) * 2010-01-04 2014-06-24 Samsung Electronics Co., Ltd. Thin-film transistor having etch stop multi-layer and method of manufacturing the same
US8552425B2 (en) * 2010-06-18 2013-10-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8441010B2 (en) * 2010-07-01 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2012024114A2 (en) * 2010-08-20 2012-02-23 Applied Materials, Inc. Methods for forming a hydrogen free silicon containing dielectric film
JP5224012B2 (ja) * 2010-12-08 2013-07-03 日新電機株式会社 シリコン酸窒化膜の形成方法及び半導体デバイス
CN103270578B (zh) * 2010-12-30 2016-10-26 应用材料公司 使用微波等离子体的薄膜沉积
CN102683422B (zh) * 2012-03-21 2016-03-23 京东方科技集团股份有限公司 氧化物薄膜晶体管及制作方法、阵列基板、显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170142899A (ko) * 2016-06-17 2017-12-28 도쿄엘렉트론가부시키가이샤 성막 방법 및 tft의 제조 방법
US10629624B2 (en) 2016-08-23 2020-04-21 Samsung Display Co., Ltd. Thin film transistor array panel
KR20200017633A (ko) 2018-08-09 2020-02-19 이기용 옷걸이

Also Published As

Publication number Publication date
WO2014133722A1 (en) 2014-09-04
US20150380561A1 (en) 2015-12-31
CN105144391A (zh) 2015-12-09
JP2016510171A (ja) 2016-04-04
TW201442238A (zh) 2014-11-01

Similar Documents

Publication Publication Date Title
KR20150127122A (ko) 금속 옥사이드 tft 안정성 개선
TWI514475B (zh) 形成無氫含矽介電層的方法
US10249819B2 (en) Methods of forming semiconductor structures including multi-portion liners
EP2449579B1 (en) Methods of forming oxide layers on substrates
CN103828061B (zh) 使用氩气稀释来沉积含硅层的方法
US6825134B2 (en) Deposition of film layers by alternately pulsing a precursor and high frequency power in a continuous gas flow
US8435843B2 (en) Treatment of gate dielectric for making high performance metal oxide and metal oxynitride thin film transistors
TWI522490B (zh) 利用微波電漿化學氣相沈積在基板上沈積膜的方法
CN103545318B (zh) 半导体装置及其制造方法
US9935183B2 (en) Multilayer passivation or etch stop TFT
US7988875B2 (en) Differential etch rate control of layers deposited by chemical vapor deposition
TWI693715B (zh) 半導體裝置及其製造方法
US20130005081A1 (en) METHOD OF IGZO AND ZNO TFT FABRICATION WITH PECVD SiO2 PASSIVATION
EP2195849A1 (en) Oxide semiconductor device including insulating layer and display apparatus using the same
JP2004193409A (ja) 絶縁膜の形成方法
KR101876011B1 (ko) 산화물 박막 트랜지스터 및 그 제조방법
US10748759B2 (en) Methods for improved silicon nitride passivation films
US20080241355A1 (en) Thin film transistor devices having high electron mobility and stability
KR20130019903A (ko) 박막 트랜지스터 및 그 제조 방법
CN113964187B (zh) 主动元件基板及主动元件基板的制造方法
US20240047291A1 (en) High density plasma cvd for display encapsulation application
CN111052397A (zh) 薄膜晶体管及其制造方法

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination