KR20150098570A - 기판 처리 장치, 위치 편차 보정 방법 및 기억 매체 - Google Patents

기판 처리 장치, 위치 편차 보정 방법 및 기억 매체 Download PDF

Info

Publication number
KR20150098570A
KR20150098570A KR1020150020278A KR20150020278A KR20150098570A KR 20150098570 A KR20150098570 A KR 20150098570A KR 1020150020278 A KR1020150020278 A KR 1020150020278A KR 20150020278 A KR20150020278 A KR 20150020278A KR 20150098570 A KR20150098570 A KR 20150098570A
Authority
KR
South Korea
Prior art keywords
substrate
wafer
reservoir
deviation
positional deviation
Prior art date
Application number
KR1020150020278A
Other languages
English (en)
Other versions
KR102291970B1 (ko
Inventor
나루아키 이이다
가츠히로 모리카와
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20150098570A publication Critical patent/KR20150098570A/ko
Application granted granted Critical
Publication of KR102291970B1 publication Critical patent/KR102291970B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/4189Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by the transport system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

본 발명은 기판 유지구에 기판이 유지되었을 때의 기판 유지구에 대한 기판의 위치 편차의 보정을 가능하게 하는 것을 과제로 한다.
기판 처리 장치는, 기판(W)을 배치할 수 있는 제1 저장소 및 제2 저장소(14B, 1420)와, 기판을 유지하는 기판 유지구(137)를 가지며, 적어도 제1 저장소와 제2 저장소의 사이에서 기판을 반송할 수 있는 기판 반송 장치(13)와, 기판 유지구에 유지된 기판의 위치를 검출하는 기판 위치 측정부(1413)를 포함하고, 기판 위치 측정부는, 기판 반송 장치(13)로부터 독립된 위치이며, 또한, 기판 반송 장치의 기판 유지구에 의해 유지된 기판을 반입하는 것이 가능한 위치에 설치되어 있다.

Description

기판 처리 장치, 위치 편차 보정 방법 및 기억 매체 {SUBSTRATE PROCESSING APPARATUS, POSITION DEVIATION CORRECTION METHOD AND STORAGE MEDIUM}
본 발명은, 기판 처리 장치에 설치되는 기판 반송 장치에 의해 반송되는 기판의 위치 결정 기술에 관한 것이다.
기판 처리 시스템은, 로드 포트 등으로 불리는 기판 반출 반입부를 갖고 있고, 여기에는 복수의 반도체 웨이퍼 등의 기판을 수용하는 FOUP나 캐리어 등으로 불리는 기판 반송 용기가 반입된다. 기판 반송 용기 내의 기판은, 기판 처리 시스템 내에 설치된 제1 기판 반송 장치에 의해 취출되어, 버퍼 등으로 불리는 기판 중간 저장소로 옮겨진다. 그 후, 기판은, 다수의 처리 유닛이 설치된 영역 내에 설치된 제2 기판 반송 장치에 의해 기판 중간 저장소로부터 취출되어 처리 유닛 내에 반송된다. 각 처리 유닛에서는 기판에 대하여 소정의 처리가 실시된다.
기판 반송 장치, 즉 기판 반송 로봇은, 예컨대 특허문헌 1에 기재되어 있는 바와 같이, 수평 방향(Y축)으로 주행 가능한 프레임과, 프레임을 따라서 상하 방향(Z축)으로 이동 가능한 승강체와, 승강체에 대하여 수직 방향 축선 둘레(θ축)에 회전 가능한 베이스와, 베이스에 대하여 수평 방향(X축)으로 진퇴 가능한 복수의 기판 유지구(픽, 포크 등으로 불림)를 갖고 있다. 이러한 직교 좌표계 로봇은, 베이스에 센서를 설치함으로써 기판 유지구와 기판의 상대적 위치 관계를 검출할 수 있고, 여기서 검출한 위치 편차분을 보정하여 반송 목적 장소에 기판을 배치하는 것이 가능하다. 이렇게 함으로써, 기판 반송 장치에 의한 기판의 반송 신뢰성이 향상된다.
그러나, 수평 다관절형 로봇에 있어서, 수평 다관절형 로봇 자체에 상기 기능을 갖는 센서를 설치하면, 센서를 지지하는 부재에 의해, 센서를 지지하는 부재를 피하기 때문에, 아암의 움직임이 제약되어 버리는 경우가 있다.
특허문헌 1 : 일본 특허 공개 제2013-165119호 공보
본 발명은, 기판 유지구와 기판의 상대적 위치 관계를 검출하는 부재에 의해 기판 반송 장치의 움직임이 제약되지 않고, 기판 반송 장치에 의한 기판의 반송 신뢰성을 향상시키는 기술을 제공하는 것을 목적으로 하고 있다.
상기 목적을 달성하기 위해, 본 발명은, 기판을 배치할 수 있는 제1 저장소 및 제2 저장소와, 기판을 유지하는 기판 유지구를 가지며, 적어도 상기 제1 저장소와 제2 저장소의 사이에서 기판을 반송할 수 있는 기판 반송 장치와, 상기 기판 유지구에 유지된 기판의 위치를 검출하는 기판 위치 측정부를 구비하고, 상기 기판 위치 측정부는, 상기 기판 반송 장치로부터 독립된 위치이며, 또한, 상기 기판 반송 장치의 기판 유지구에 의해 유지된 기판을 반입하는 것이 가능한 위치에 설치된 기판 처리 장치를 제공한다.
또한, 본 발명은, 기판을 배치할 수 있는 제1 저장소 및 제2 저장소와, 기판을 유지하는 기판 유지구를 가지며, 적어도 상기 제1 저장소와 제2 저장소의 사이에서 기판을 반송할 수 있는 기판 반송 장치와, 상기 기판 유지구에 유지된 기판의 위치를 검출하는 기판 위치 측정부를 구비하고, 상기 기판 위치 측정부가, 상기 기판 반송 장치로부터 독립된 위치이며, 또한, 상기 기판 반송 장치의 기판 유지구에 의해 유지된 기판을 반입하는 것이 가능한 위치에 설치되어 있는 기판 처리 장치에 있어서, 기판의 위치 편차를 보정하는 위치 편차 보정 방법에 있어서, 상기 제1 저장소로부터 상기 제2 저장소에 기판을 반송할 때에, 상기 기판 반송 장치에 의해 상기 기판 위치 측정부에 기판을 반입시키는 것과, 상기 기판 위치 측정부에 의해 상기 기판 유지부에 유지된 기판의 위치를 검출시키는 것과, 상기 검출된 기판의 위치에 기초하여, 상기 기판 유지구에 기판을 유지할 때의 상기 기판 유지구에 대한 기판의 목표 위치와, 상기 기판 유지구에 기판이 실제로 유지되었을 때의 상기 기판 유지구에 대한 기판의 실제 위치의 위치 편차를 구하는 것과, 구해진 위치 편차에 기초하여, 상기 기판 반송 장치에 상기 위치 편차를 상쇄하도록 상기 제2 저장소에 기판을 배치시키는 것을 포함하는 위치 보정 절차를 실행하는 것을 구비한 위치 편차 보정 방법을 제공한다. 또한 본 발명은, 상기 위치 편차 보정 방법을 실행하기 위한 프로그램을 저장한 기억 매체를 제공한다.
본 발명에 의하면, 기판 위치 측정부가 기판 반송 장치로부터 독립된 위치에 설치되어 있기 때문에, 기판 위치 측정부에 의해 기판 반송 장치의 움직임이 제약되지는 않는다. 이 때문에, 기판의 반송을 원활하게 행하면서, 기판 반송 장치에 의한 기판의 반송 신뢰성을 향상시킬 수 있다.
도 1은 발명의 일실시형태에 따른 기판 처리 시스템(기판 처리 장치)의 개략 구성을 나타내는 평면도이다.
도 2는 다관절 로봇으로서 구성된 제1 기판 반송 장치의 구성을 나타내는 사시도이다.
도 3은 제1 기판 반송 장치가 배치된 반출 반입 스테이션의 구성을 나타내는 평면도이다.
도 4는 제1 기판 반송 장치가 배치된 반출 반입 스테이션의 구성을 나타내는 측면도이다.
도 5는 전달부의 구성을 나타내는 세로 방향 단면도이다.
도 6은 측정 기능이 있는 전달 스테이지의 구성을 설명하기 위한 천장부를 제거한 사시도이다.
도 7은 통상 전달 스테이지의 구성을 설명하기 위한 천장부를 제거한 사시도이다.
도 8은 통상 전달 스테이지의 작용을 설명하기 위한 측면도이다.
도 9는 통상 전달 스테이지에 제1 및 제2 기판 반송 장치의 웨이퍼픽이 액세스하는 모습을 설명하기 위한 평면도이다.
도 10은 측정 기능이 있는 전달 스테이지의 작용을 설명하기 위한 측면도이다.
도 11은 웨이퍼의 위치 편차 및 그 보정을 위한 제1 절차를 설명하기 위한 플로우차트이다.
도 12는 웨이퍼의 위치 편차 및 그 보정을 위한 제1 절차를 설명하기 위한 플로우차트이다.
도 13은 2개의 웨이퍼픽을 갖는 제1 기판 반송 장치의 변형예를 나타내는 사시도이다.
도 14는 통상 전달 스테이지에 설치할 수 있는 과잉 위치 편차 검출 장치의 다른 구성예를 설명하기 위한 개략 평면도이다.
도 1은, 본 실시형태에 따른 기판 처리 시스템의 개략 구성을 나타내는 도면이다. 이하에서는, 위치 관계를 명확하게 하기 위해, 서로 직교하는 X축, Y축 및 Z축을 규정하고, Z축 정방향을 수직 상향 방향으로 한다.
도 1에 나타낸 바와 같이, 기판 처리 시스템(1)은, 반입 반출 스테이션(2)과 처리 스테이션(3)을 구비한다. 반입 반출 스테이션(2)과 처리 스테이션(3)은 인접하여 설치된다.
반입 반출 스테이션(2)은, 캐리어 배치부(11)와 반송부(12)를 구비한다. 캐리어 배치부(11)에는, 복수매의 웨이퍼(W)를 수평 상태로 수용하는 복수의 캐리어(C)가 배치된다.
반송부(12)는, 캐리어 배치부(11)에 인접하여 설치되며, 내부에 기판 반송 장치(13)와 전달부(14)를 구비한다. 기판 반송 장치(13)는, 웨이퍼(W)를 유지하는 기판 유지 기구를 구비한다. 또한, 기판 반송 장치(13)는, 수평 방향 및 수직 방향으로의 이동 및 수직축을 중심으로 하는 선회가 가능하며, 기판 유지 기구를 이용하여 캐리어(C)와 전달부(14)의 사이에서 웨이퍼(W)의 반송을 행한다.
처리 스테이션(3)은, 반송부(12)에 인접하여 설치된다. 처리 스테이션(3)은, 반송부(15)와 복수의 처리 유닛(16)을 구비한다. 복수의 처리 유닛(16)은, 반송부(15)의 양측에 나란히 설치된다.
반송부(15)는, 내부에 기판 반송 장치(17)를 구비한다. 기판 반송 장치(17)는, 웨이퍼(W)를 유지하는 기판 유지 기구를 구비한다. 또한, 기판 반송 장치(17)는, 수평 방향 및 수직 방향으로의 이동 및 수직축을 중심으로 하는 선회가 가능하며, 기판 유지 기구를 이용하여 전달부(14)와 처리 유닛(16)의 사이에서 웨이퍼(W)의 반송을 행한다.
처리 유닛(16)은, 기판 반송 장치(17)에 의해 반송되는 웨이퍼(W)에 대하여 소정의 기판 처리를 행한다.
또한, 기판 처리 시스템(1)은 제어 장치(4)를 구비한다. 제어 장치(4)는, 예를 들면 컴퓨터이며, 제어부(18)와 기억부(19)를 구비한다. 기억부(19)에는, 기판 처리 시스템(1)에 있어서 실행되는 각종 처리를 제어하는 프로그램이 저장된다. 제어부(18)는, 기억부(19)에 기억된 프로그램을 리드아웃하여 실행함으로써 기판 처리 시스템(1)의 동작을 제어한다.
또, 이러한 프로그램은, 컴퓨터에 의해 판독 가능한 기억 매체에 기록되어 있던 것으로, 그 기억 매체로부터 제어 장치(4)의 기억부(19)에 인스톨된 것이어도 좋다. 컴퓨터에 의해 판독 가능한 기억 매체로는, 예를 들면 하드디스크(HD), 플렉시블디스크(FD), 컴팩트디스크(CD), 마그넷옵티컬디스크(MO), 메모리카드 등이 있다.
상기와 같이 구성된 기판 처리 시스템(1)에서는, 우선 반입 반출 스테이션(2)의 기판 반송 장치(13)가, 캐리어 배치부(11)에 배치된 캐리어(C)로부터 웨이퍼(W)를 취출하고, 취출한 웨이퍼(W)를 전달부(14)에 배치한다. 전달부(14)에 배치된 웨이퍼(W)는, 처리 스테이션(3)의 기판 반송 장치(17)에 의해 전달부(14)로부터 취출되어 처리 유닛(16)에 반입된다.
처리 유닛(16)에 반입된 웨이퍼(W)는, 처리 유닛(16)에 의해 처리된 후, 기판 반송 장치(17)에 의해 처리 유닛(16)으로부터 반출되어 전달부(14)에 배치된다. 그리고, 전달부(14)에 배치된 처리가 끝난 웨이퍼(W)는, 기판 반송 장치(13)에 의해 캐리어 배치부(11)의 캐리어(C)로 복귀된다.
다음으로, 반입 반출 스테이션(2)의 구성을 상세히 설명한다. 도 1에 있어서 개략적으로 나타낸 기판 반송 장치(13)는, 본 실시형태에 있어서 실제로는 도 2에 나타낸 바와 같이 수평 다관절형 로봇(130)로서 형성되어 있다.
도 2∼도 4에 나타낸 바와 같이, 수평 다관절형 로봇(130)는, 반입 반출 스테이션(2)의 바닥면에 고정된 베이스(131)와, 베이스(131)에 수직 방향 축선 둘레(θ1)에 회전 가능하고 또한 상하 방향(Z)으로 이동(승강) 가능한 축(132)을 통해 부착된 제1 아암(133)과, 제1 아암(133)에 수직 방향 축선 둘레(θ2)에 회전 가능한 축(도 2에서는 보이지 않음)을 통해 부착된 제2 아암(134)과, 제2 아암(134)에 수직 방향 축선 둘레(θ3)에 회전 가능한 축(도 2에서는 보이지 않음)을 통해 부착된 웨이퍼픽(기판 유지구)(136)을 갖고 있다. 웨이퍼픽(136)은, 복수의 진공척(137)을 구비하고 있고, 웨이퍼(W)를 진공 흡착할 수 있다.
수평 다관절형 로봇(130)는, 상기 각 축(θ1, θ2, θ3, Z)에 관한 동작을 조합함으로써, 캐리어 배치부(11)에 배치된 임의의 캐리어(C)의 임의의 슬롯, 및 전달부(14)에 설치된 임의의 웨이퍼 저장소(후술하는 전달 스테이지(1410, 1420))에 액세스할 수 있다.
도 3 및 도 4에는, 캐리어 배치부(11)와 반송부(12) 사이에 설치되어 있는 벽, 캐리어(C)의 배치 위치에 대응하여 형성된 개구, 그 개구를 막는 셔터, 캐리어(C)의 덮개를 착탈하는 장치 등의 부재가 참조 부호 12A에 의해 개략적으로 나타나 있다. 이들 부재는 그 기술분야에서 주지이며, 설명은 생략한다.
다음으로, 전달부(14)의 구성에 관해 도 4∼도 10을 참조하여 설명한다.
도 4에 개략적으로 나타낸 바와 같이, 전달부(14)는, 하부 전달 유닛(14A), 상부 전달 유닛(14B)을 구비하고 있다. 하부 전달 유닛(14A)은, 캐리어(C)로부터 취출된 미처리의 웨이퍼(W)가 처리 유닛(16)에 반송되는 과정(왕로)에서 경유한다. 상부 전달 유닛(14B)은, 처리 유닛(16)에서 처리된 웨이퍼(W)가 캐리어(C)에 반송되는 과정(귀로)에서 경유한다. 이하에 있어서, 하부 전달 유닛(14A)의 구성을 대표하여 설명한다.
하부 전달 유닛(14A)은, 최하단의 측정 기능이 있는 전달 스테이지(1410)와, 아래로부터 2단째 및 그것보다 상측에 있는 통상 전달 스테이지(1420)를 갖고 있다.
도 5 및 도 6에 나타낸 바와 같이, 최하단의 측정 기능이 있는 전달 스테이지(1410)는 바닥판(1411)을 갖고 있고, 바닥판(1411)에는 복수(본 예에서는 3개)의 웨이퍼 지지핀(1412)이 부착되어 있다. 웨이퍼 지지핀(1412)의 선단에서 웨이퍼(W)의 하면이 지지된다. 웨이퍼 지지핀(1412)은, 반입 반출 스테이션(2)의 기판 반송 장치(13) 및 처리 스테이션(3)의 기판 반송 장치(17)가 바닥판(1411)의 상측 공간에 진입하여, 후술하는 웨이퍼(W)의 위치 편차 검출 및 위치 편차 보정이 행해질 때, 혹은 웨이퍼(W)를 웨이퍼 지지핀(1412)에 배치하거나 웨이퍼 지지핀(1412)으로부터 제거하려고 했을 때에, 웨이퍼픽(170)이 웨이퍼 지지핀(1412)에 충돌하지 않는 위치에 설치되어 있다.
또, 측정 기능이 있는 전달 스테이지(1410)의 웨이퍼 지지핀(1412) 상에는, 통상의 반송 루틴에서는 웨이퍼(W)가 배치되지는 않지만, 그 웨이퍼 지지핀(1412)에 대하여, 기판 반송 장치(13, 17)가 웨이퍼(W)를 배치하고 제거하는 것이 가능하다.
특히 도 6에 잘 나타나 있는 바와 같이, 측정 기능이 있는 전달 스테이지(1410)에는, 4개의 엣지 위치 검출 장치(1413)가 설치되어 있다. 각 엣지 위치 검출 장치(1413)는, 평행광을 상측을 향해서 출사하는 광조사기(1414)와, 광조사기(1414)로부터 출사된 광을 수광하는 라인 센서(1415)를 갖는다. 각 광조사기(1414)는 바닥판(1411)에 부착되어 있고, 각 라인 센서(1415)는 하나 위에 있는 통상 전달 스테이지(1420)의 바닥판(1421)(측정 기능이 있는 전달 스테이지(1410)의 천장판이기도 함)에 부착되어 있다.
엣지 위치 검출 장치(1413)는 적어도 3개소에 설치되어 있으면 되지만, 본 실시형태에서는 4개의 엣지 위치 검출 장치(1413)가 원주를 4등분한 위치에, 즉 90도의 각도 간격으로 배치되어 있다. 라인 센서(1415)는, 직선형으로 배열된 복수의 수광 소자로 이루어진 수광 소자 어레이(도시하지 않음)를 갖는다. 각 라인 센서(1415)의 수광 소자 어레이의 배열 방향은, 전혀 위치 편차가 없는 상태의 가상 웨이퍼(W)(도 6 중 일점쇄선으로 나타내는 웨이퍼(W)를 참조)의 반경 방향과 일치한다. 웨이퍼(W)가 측정 기능이 있는 전달 스테이지(1410)에 진입했을 때, 웨이퍼(W)가 광조사기(1414)로부터 출사된 광의 일부를 차단하고, 잔부가 라인 센서(1415)에 도달한다. 광이 입사하지 않는 수광 소자와 광이 입사하고 있는 수광 소자의 경계가, 웨이퍼(W)의 둘레 가장자리(엣지)(We)(도 8, 도 10을 참조)의 위치에 대응한다. 엣지 위치 검출 장치(1413)에 의해 웨이퍼(W)의 둘레 가장자리의 좌표, 예컨대 전달 스테이지(1410)의 중심(Tc)(도 5, 도 10을 참조)을 원점으로 하는 r-θ극 좌표계에서의 좌표(r, θ)를 특정할 수 있다. 「r」는 웨이퍼(W)의 위치 편차에 따라서 변화되는 변수이며, 「θ」는 각 엣지 위치 검출 장치(1413)의 배치 위치에 따라서 90n(deg)(n은 0, 1, 2 또는 3)으로 기재할 수 있는 상수이다. 또, 극좌표(r, θ)를, 전달 스테이지(1410)의 중심(Tc)을 원점으로 하는 X-Y 좌표계 상의 좌표로 변환하는 것은 용이하다.
원판형상의 웨이퍼(W)의 중심의 좌표는, 웨이퍼(W)의 둘레 가장자리 위의 3점의 좌표에 기초하여, 주지의 방법(예컨대 3점을 통과하는 원의 방정식)을 이용하여 기하학적 계산에 의해 구할 수 있는 것은 분명하다. 본 실시형태에서는, 4개의 엣지 위치 센서(145)가 있고, 웨이퍼(W)의 둘레 가장자리 위의 4점의 좌표를 특정할 수 있기 때문에, 당연히 웨이퍼의 중심(Wc)의 좌표를 구할 수 있다. 또한, 하나의 여분의 엣지 위치 센서(145)를 설치함으로써, 웨이퍼의 중심(Wc)의 좌표를 보다 적은 오차로 구할 수 있다.
또한, 도 7 및 도 8에 나타낸 바와 같이, 통상 전달 스테이지(1420)는 바닥판(1421)을 갖고 있고, 바닥판(1421)에는 복수(본 예에서는 3개)의 웨이퍼 지지핀(1422)이 부착되어 있다. 바닥판(1421)에는 또한 복수(본 예에서는 4개)의 가이드핀(1423)(웨이퍼 안내 부재)을 갖고 있다.
각 가이드핀(1423)은, 웨이퍼(W)가 전혀 위치 편차 없이 웨이퍼 지지핀(1422) 상에 배치되었을 때에, 웨이퍼(W)의 둘레 가장자리와의 사이에 소정의 간극(CL)이 형성되도록 배치되어 있다. 즉, 웨이퍼(W)의 직경을 DW로 했을 때, 직경이 DW+CL인 원이, 4개의 가이드핀(1423)의 내접원이 되도록 가이드핀(1423)이 배치되어 있다.
가이드핀(1423)의 상단부에는, 하측으로 갈수록 웨이퍼(W)의 둘레 가장자리에 근접하도록 경사진 경사면으로서 형성된(도시예에서는 원뿔대의 뿔면의 형상을 가짐) 가이드면(1424)이 형성되어 있다. 웨이퍼 지지핀(1422) 상에 웨이퍼(W)를 배치하려고 했을 때에, 가이드면(1424)에 웨이퍼(W)의 둘레 가장자리가 접한 경우, 웨이퍼(W)는 가이드면(1424) 위를 미끄러져 떨어져, 3개의 웨이퍼 지지핀(1422) 상에 적절하게 배치된다. 한편, 웨이퍼 지지핀(1422) 상에 웨이퍼(W)를 배치하려고 했을 때에, 가이드핀(1423)의 상단면(1425)에 웨이퍼(W)가 걸려 버린 경우에는, 그 웨이퍼(W)는 이미 3개의 웨이퍼 지지핀(1422) 상에 적절하게 배치되지 않는다(도 8에 있어서 파선으로 나타낸 웨이퍼(W)를 참조).
이 가이드면(1424)은, 그 가이드핀(1423)의 중심축선을 통과하는 웨이퍼(W)의 직경 방향으로 측정한 폭(SL)을 갖고 있다. 따라서, 웨이퍼(W) 중심으로부터 그 가이드핀(1423)으로 향하는 방향으로 측정한 웨이퍼(W)의 위치 편차량이, 상기 간극(CL)+폭(SL) 미만이라면, 그 웨이퍼(W)는 3개의 웨이퍼 지지핀(1422) 상에 적절하게 배치되고, 또한, 상기 방향으로 측정한 최종적인 웨이퍼(W)의 위치 편차량은 최대라도 CL 이내가 된다.
간극(CL)의 값은, 반송부(15)의 기판 반송 장치(17)의 웨이퍼 유지구가 통상 전달 스테이지(1420)로부터 웨이퍼를 인수하는 데 지장이 생기지 않을 정도의 값으로 설정된다. 일례로서, 웨이퍼(W)가 차세대 18 인치 웨이퍼인 경우, 간극(CL)은 예컨대 2∼3 mm이다. 가이드면(1424)의 형상 및 폭(SL)은, 웨이퍼(W)가 가이드면(1424) 위를 미끄러져 떨어질 때에 웨이퍼(W)의 엣지부(베벨부)에 문제가 되는 손상이 생기지 않도록 설정된다.
통상 전달 스테이지(1420)의 바닥판(1421)에는 또한, 가이드핀(1423)의 상단면(1425)에 웨이퍼(W)가 걸리는 것을 검출하는 걸림 센서(1426)가 설치된다. 걸림 센서(1426)는, 발광기(1427)와 수광기(1428)로 구성되어 있다. 발광기(1427)로부터 수광기(1428)를 향해서 평행광이 출사된다. 이 평행광의 광로(LP)는, 평면에서 볼 때 웨이퍼(W)의 직경 방향으로 연장되어 있고, 또한, 측면에서 볼 때(예컨대 도 8을 참조) 웨이퍼 지지핀(1422) 상에 적절하게 배치된 웨이퍼(W)의 상면에 평행하게 또한 그 상면에 매우 근접하여(예컨대 웨이퍼(W) 상면과 광로(LP)의 간극이 약 1 mm) 연장되어 있다. 이러한 위치 관계로 광로(LP)를 설정함으로써, 어느 가이드핀(1423)에 웨이퍼(W)가 걸린 경우라도, 그 걸림을 단 하나의 광로(LP)에 의해 검출할 수 있다.
인접하는 전달 스테이지(1410, 1420)의 바닥판(1411, 1421)끼리는, 양 바닥판 사이에 설치된 지주(1416, 1429)를 통해 결합되어 있다. 측정 기능이 있는 전달 스테이지(1410)의 바닥판(1411)과 그 바로 위의 통상 전달 스테이지(1420)의 바닥판(1421)의 간격은, 후술하는 엣지 위치 검출 장치(1413)에 의한 웨이퍼 엣지 위치 검출 조작을 행하는 스페이스를 확보하기 위해, 다른 통상 전달 스테이지(1420)에 대응하는 인접하는 바닥판(1421)끼리의 간격보다 넓게 되어 있다.
상부 전달 유닛(14B)은, 전술한 하부 전달 유닛(14A)과 동일한 구성으로 할 수 있다. 단, 처리 유닛(16)으로부터 기판 반송 장치(17)에 의해 취출된 웨이퍼의 웨이퍼픽(170) 상에서의 위치가 이후의 공정에 있어서 문제가 생길 정도로 위치가 어긋나 있는 경우는 통상은 없기 때문에, 상부 전달 유닛(14B)에는 측정 기능이 있는 전달 스테이지(1410)를 설치하지 않아도 좋다.
도 9에, 통상 전달 스테이지(1420)에 대하여, 기판 반송 장치(13)(즉 수평 다관절형 로봇(130)의 웨이퍼픽(136))가 액세스하는 모습과, 기판 반송 장치(17)의 웨이퍼픽(포크라고도 부름)(170)이 액세스하는 모습을 나타내고 있다.
평면에서 볼 때, 웨이퍼픽(170)은 대략 U자형이며, 웨이퍼(W)의 둘레 가장자리를 대강 따르는 원호형 윤곽 부분을 갖고 있다. 원호형 윤곽 부분으로부터 웨이퍼(W)를 향해서 지지 고리(171)가 돌출되어 있다. 3개의 지지 고리(171)의 각각의 상면이 웨이퍼(W)의 하면을 지지함으로써, 웨이퍼(W)가 웨이퍼픽(170)에 의해 유지된다. 이와 같이 웨이퍼(W) 둘레 가장자리부의 좁은 영역을 아래로부터 지지하는 형식의 웨이퍼픽(170)에서는, 웨이퍼(W)의 지정 위치에 대하여 실제 웨이퍼의 위치가 크게 어긋나면, 지지 고리(171)에 웨이퍼(W)가 걸리지 않게 되므로, 웨이퍼픽(170)이 웨이퍼(W)를 적절하게 지지할 수 없게 된다. 웨이퍼픽(170)에 의해 웨이퍼(W)가 적절하게 지지되기 위해 허용되는 웨이퍼(W)의 위치 편차는, 웨이퍼(W)의 직경 방향으로 예컨대 많아도 2∼3 mm이다.
한편, 웨이퍼픽(136)은, 예컨대 3개의 진공척(「진공 패드」 등으로도 불림)(137)에 의해 웨이퍼(W)의 하면을 흡착하여 웨이퍼(W)를 유지한다. 웨이퍼픽(136)은, 모든 진공척(137)이 웨이퍼(W)의 하면에 접해 있는 한, 가령 웨이퍼의 위치가 크게 어긋나 있다 하더라도, 웨이퍼(W)를 유지하는 것이 가능하다.
FOUP 등의 기판 반송 용기(도 1의 캐리어(C)에 대응) 내에 있어서는, 웨이퍼(W)는 매우 정밀하게 위치 결정되어 있는 것은 아니다. 그러나, 기판 반송 장치(13)(즉 수평 다관절형 로봇(130)의 웨이퍼픽(136))는, 웨이퍼(W)가 캐리어(C) 내에서의 기준 위치(예컨대 캐리어(C) 내에서의 웨이퍼(W)의 가동 범위의 중앙 위치)에 존재하고 있는 것으로서 웨이퍼(W)를 취출한다. 그리고, 수평 다관절형 로봇(130)의 웨이퍼픽(136)은, 기준 위치에 있는 웨이퍼(W)를 유지했다고 전제하고, 웨이퍼(W)를 통상 전달 스테이지(1420)에 배치한다. 따라서, 캐리어(C) 내에서 웨이퍼(W)의 위치 편차가 있으면, 그 위치 편차분만큼, 통상 전달 스테이지(1420) 상의 웨이퍼(W)의 위치가 어긋나게 된다. 또, 웨이퍼픽(136)이 웨이퍼(W)를 유지할 때에 웨이퍼(W)의 위치가 어긋날 가능성도 있다.
통상 전달 스테이지(1420) 상의 웨이퍼(W)의 위치가 허용 범위를 초과하여 어긋나면, 위치 편차에 대한 허용 범위가 좁은 웨이퍼픽(170)은, 통상 전달 스테이지(1420) 상의 웨이퍼(W)를 적절한 상태로 유지하여 취출할 수 없게 된다. 또한, 가령 웨이퍼(W)는, 기판 반송 장치(17)의 웨이퍼픽(170)이 기판 반송 장치(13)의 웨이퍼픽(136)과 마찬가지로 진공 흡착에 의해 웨이퍼(W)를 유지하는 타입이었다면, 웨이퍼픽(170)이 웨이퍼(W)를 통상 전달 스테이지(1420)로부터 취출할 수 없게 되는 것은 아니다. 그러나, 기판 반송 장치(13)가 캐리어(C)로부터 웨이퍼(W)를 취출할 때의 위치 편차는 기판 반송 장치(17)의 웨이퍼픽(170)으로 웨이퍼(W)를 유지할 때에도 이어지기 때문에, 상기 위치 편차가, 기판 반송 장치(17)가 처리 유닛(16)에 웨이퍼(W)를 반입할 때에 처리 유닛(16)의 기판 유지구의 셀프 얼라이먼트(셀프 센터링) 능력을 초과한 양이라면, 처리 유닛(16)에 웨이퍼(W)를 반입할 수 없게 된다.
상기 문제를 해결하기 위한 기판 반송 절차에 관해 이하에 설명한다.
[제1 절차]
제1 절차에 관해 도 10 및 도 11을 참조하여 설명한다.
우선, 수평 다관절형 로봇(130)의 웨이퍼픽(136)이 캐리어(C)로부터 웨이퍼(W)를 취출한다(도 11의 단계 S1).
웨이퍼(W)를 유지한 웨이퍼픽(136)은, 측정 기능이 있는 전달 스테이지(1410) 내에 진입한다. 또, 도 10에서는, 도면을 쉽게 볼 수 있는 것을 중시하고 있기 때문에, 측정 기능이 있는 전달 스테이지(1410)의 각 구성 부재의 위치 관계는 실제와는 약간 상이하다. 각 구성 부재의 실제 위치 관계는 도 6에 기재한 바와 같다. 웨이퍼픽(136)은, 웨이퍼(W)가 캐리어(C) 내에서의 기준 위치에 편차 없이 배치되어 있는 경우에, 웨이퍼(W)의 중심(Wc)이 측정 기능이 있는 전달 스테이지(1410)의 중심(Tc)과 일치하는 위치에서 정지한다. 이 때, 웨이퍼픽(136)은 웨이퍼(W)를 웨이퍼 지지핀(1412) 상에는 배치하지 않는다(이상, 도 11의 단계 S2).
이 상태로, 광조사기(1414)로부터 평행광이 출사된다. 또, 도 10에 있어서, 부호1413A는, 광조사기(1414)로부터 출사되는 평행광의 광로이다. 그리고, 웨이퍼의 둘레 가장자리(We)의 근방을 수직 방향으로 연장하는 일점쇄선은, 웨이퍼(W)의 중심(Wc)이 측정 기능이 있는 전달 스테이지(1410)의 중심(Tc)과 일치하고 있는 경우에, 웨이퍼의 둘레 가장자리(We)가 위치하는 위치이다.
도 10에서는, 캐리어(C) 내에서 웨이퍼(W)의 위치 편차가 있었기 때문에, 웨이퍼픽(136)이 웨이퍼(W)를 유지할 때의 웨이퍼픽(136)에 대한 웨이퍼(W)의 목표 위치에 대하여 웨이퍼(W)의 실제 위치가 어긋나 있고, 그 결과, 웨이퍼(W)의 중심(Wc)이 측정 기능이 있는 전달 스테이지(1410)의 중심(Tc)에 대하여 어긋나 있는 경우가 나타나 있다. 이 경우, 웨이퍼(W)의 둘레 가장자리(We)의 위치도 어긋난다. 웨이퍼(W)의 둘레 가장자리(We) 위의 4점의 좌표가 4개의 엣지 위치 검출 장치(1413)에 의해 각각 검출되고, 앞서 설명한 바와 같이 4개의 검출치에 기초하여 웨이퍼픽(136)에 유지된 웨이퍼(W)의 중심(Wc)의 좌표가 산출된다. 이에 따라, 측정 기능이 있는 전달 스테이지(1410)의 중심(Tc)에 대한 웨이퍼(W)의 중심(Wc)의 위치 편차의 방향과 양을 알 수 있다.
위치 편차의 방향과 양은, 예컨대 전달 스테이지(1410)의 중심(Tc)을 X-Y 직교 좌표계의 원점(0, 0)으로 하여, 웨이퍼(W)의 중심(Wc)의 좌표(예컨대 a, b)에 의해 표현할 수 있다. 또, r-θ극 좌표계를 이용할 수도 있지만, 이하에 있어서는 X-Y 직교 좌표계를 이용하여 설명한다(이상, 도 11의 단계 S3).
그 후, 웨이퍼픽(136)은, 웨이퍼(W)를 측정 기능이 있는 전달 스테이지(1410)의 영역 내에 존재하는 어떠한 것에도 접촉시키지 않고, 물론 웨이퍼(W)를 웨이퍼 지지핀(1412) 상에 배치하지도 않고, 전달 스테이지(1410)로부터 후퇴한다. 측정 기능이 있는 전달 스테이지(1410) 내에서의 상기 일련의 절차에 있어서 웨이퍼(W)가 웨이퍼 지지핀(1412) 상에 배치되지 않기 때문에, 배치하는 경우와 비교하여 소요 시간을 단축할 수 있고, 이에 따라 작업 처리량을 향상시킬 수 있다.
그 후, 웨이퍼픽(136)은, 통상 전달 스테이지(1420)에 진입하여, 웨이퍼 지지핀(1422) 상에 웨이퍼(W)를 배치한다. 이 때, 웨이퍼픽(136)은, 앞서 구한 측정 기능이 있는 전달 스테이지(1410)의 중심(Tc)에 대한 웨이퍼(W)의 중심(Wc)의 위치 편차를 상쇄하도록, 즉, 웨이퍼(W)의 웨이퍼 지지핀(1422) 상에 대한 제어상 배치 목표 위치를 X 방향으로 「-a」, Y 방향으로 「-b」만큼 어긋나게 하여, 웨이퍼 지지핀(1422) 상에 웨이퍼(W)를 배치한다(이상, 도 11의 단계 S4).
또, 본 실시형태에 있어서는, 물론, 측정 기능이 있는 전달 스테이지(1410) 및 통상 전달 스테이지(1420)의 중심은 공통의 수직선(Tc) 상에 위치하고 있다(도 2를 참조). 단, 측정 기능이 있는 전달 스테이지(1410) 및 통상 전달 스테이지(1420)의 중심은, 그 어긋남량이 정량적으로 파악되어 있다면, 어긋나 있어도 상관없다.
상기 절차에 따라서, 웨이퍼픽(136)은, 통상 전달 스테이지(1420)의 중심(Tc)과 웨이퍼(W)의 중심(Wc)이 일치하도록, 웨이퍼(W)를 웨이퍼 지지핀(1422) 상에 웨이퍼(W)를 배치할 수 있다. 이와 같이 웨이퍼 지지핀(1422) 상에 웨이퍼(W)가 적절한 위치에 배치된다면, 도 9에 기재한 바와 같은 기판 반송 장치(17)의 웨이퍼픽(170)을 적절하게 유지하고, 통상 전달 스테이지(1420)로부터 취출할 수 있다.
그 후에는, 전술한 바와 같이, 기판 반송 장치(17)에 의해 전달부(14)로부터 취출된 웨이퍼가 처리 유닛(16)에 반입된다.
처리 유닛(16)에 반입된 웨이퍼(W)는, 처리 유닛(16)에 의해 처리된 후, 기판 반송 장치(17)에 의해 처리 유닛(16)으로부터 반출되어, 전달부(14)의 상부 전달 유닛(14B) 내의 하나의 통상 전달 스테이지(1420)에 배치된다. 이어서, 웨이퍼(W)는, 기판 반송 장치(13)에 의해 상부 전달 유닛(14B) 내의 상기 하나의 통상 전달 스테이지(1420)로부터 취출되어, 캐리어 배치부(11)의 캐리어(C)로 복귀된다.
이 제1 절차에 있어서는, 캐리어(C)로부터 취출된 모든 웨이퍼(W)에 대하여 상기 절차가 적용된다. 따라서, 모든 웨이퍼(W)가 기판 반송 장치(17)의 웨이퍼픽(170) 상의 목표 위치에 정확하게 배치될 수 있게 된다고 하는 이점이 있다.
이 제1 절차를 실시하는 경우에는, 통상 전달 스테이지(1420)의 가이드핀(1423) 및 걸림 센서(1426)를 생략해도 괜찮다. 따라서, 전달부(14), 특히 하부 전달 유닛(14A)의 장치 비용을 그만큼 싸게 할 수 있다. 그러나, 웨이퍼(W)를 캐리어(C)로부터 취출하고 나서 통상 전달 스테이지(1420)에 배치하기까지의 소요 시간이, 측정 기능이 있는 전달 스테이지(1410)를 경유하는 시간만큼 길어진다. 따라서, 기판 처리 시스템의 작업 처리량을 중시한다면, 처리 유닛(16)에서의 웨이퍼(W)의 처리 시간이 긴 등, 웨이퍼(W)를 캐리어(C)로부터 취출하고 나서 통상 전달 스테이지(1420)에 배치할 때까지의 반송 공정이 율속 단계가 되지 않는 조건하에서 상기 제1 절차를 적용하는 것이 바람직하다.
[제2 절차]
전술한 바와 같이 제1 절차는 모든 웨이퍼(W)가 기판 반송 장치(17)의 웨이퍼픽(170) 상의 목표 위치에 매우 정확(실질적으로 편차량은 제로)하게 배치할 수 있다고 하는 이점이 있지만, 실제로는 그 정도의 정밀도까지는 필요하지 않은 경우도 많다. 일반적으로는, 편차량이 예컨대 1∼2 mm 정도라면 실질적 문제는 생기지 않는다. 이 정도의 편차라면, 통상은 웨이퍼픽(170)의 지지 고리(171) 상에 웨이퍼(W)는 문제없이 지지된다. 또한, 웨이퍼픽(170) 또는 처리 유닛(16)의 기판 유지구(미케니컬 척)가 셀프 얼라이먼트(셀프 센터링) 기능을 갖고 있다면, 이 정도의 편차는 처리 유닛(16) 내에서의 처리에 지장이 없을 정도로 해소 또는 저감할 수 있다. 상기를 전제로 한 제2 절차에 관해 이하에 설명한다.
제2 절차에서는, 수평 다관절형 로봇(130)의 웨이퍼픽(136)이 캐리어(C)로부터 웨이퍼(W)를 취출하고(도 12의 단계 S11), 그 후, 측정 기능이 있는 전달 스테이지(1410)를 경유하지 않고 웨이퍼(W)를 직접 통상 전달 스테이지(1420)에 반입하여, 웨이퍼 지지핀(1412) 상에 배치하는 것을 시도한다(도 12의 단계 S12).
이 때, 임의의 가이드핀(1423)의 방향에 관한 웨이퍼(W)의 위치 편차가 CL+SL(도 8을 참조) 미만이라면, 웨이퍼(W)는, 그 중심(Wc)이 통상 전달 스테이지(1420)의 중심(Tc)에 대하여 웨이퍼(W)의 반경 방향으로 최대라도 CL(예컨대 약 2∼3 mm)만큼 어긋난 상태로 지지핀(1422) 상에 배치되게 된다. 이 때 3개의 웨이퍼 지지핀(1422)의 모든 상면은 웨이퍼(W)의 하면에 접해 있다. 따라서 이 때, 걸림 센서(1426)의 광로(LP)를 웨이퍼(W)가 차단하지는 않는다.
걸림 센서(1426)에 의해 걸림이 검출되지 않는 경우(도 12의 단계 S13의 No), 웨이퍼(W)는 그대로 통상 전달 스테이지(1420)에 남겨지고(도 12의 단계 S14), 기판 반송 장치(17)의 웨이퍼픽(170)에 의해 통상 전달 스테이지(1420)로부터 반출되어 처리 유닛(16)에 반입된다.
웨이퍼(W)의 위치 편차량이 CL+SL을 초과하면, 도 8에 파선으로 나타낸 바와 같이 웨이퍼(W)가 가이드핀(1423)의 상단면(1425)에 걸린다. 또, CL+SL만큼 위치가 어긋난 웨이퍼(W)는, 가령 가이드핀(1423)이 없어 웨이퍼(W)를 웨이퍼 지지핀(1422)에 배치할 수 있다 하더라도, 웨이퍼 지지핀(1422) 상의 웨이퍼(W)는 웨이퍼픽(170)의 지지 고리(171) 상에 지지되지 않게 될 가능성이 크다.
웨이퍼(W)가 가이드핀(1423)에 걸리면, 걸림 센서(1426)의 광로(LP)를 웨이퍼(W)가 차단하고, 걸림이 생긴 것이 검출된다(도 12의 단계 S13의 Yes).
걸림이 생긴 것이 검출되면, 웨이퍼픽(136)은 그 웨이퍼(W)를 다시 유지하고, 측정 기능이 있는 전달 스테이지(1410)에 반입한다. 전달 스테이지(1410)에 있어서, 제1 절차와 동일하게 하여 웨이퍼(W)의 위치 편차량이 검출된다. 그 후, 웨이퍼픽(136)은, 통상 전달 스테이지(1420)에 진입하고, 제1 절차와절차게 하여, 웨이퍼(W)의 위치 편차를 상쇄하도록, 웨이퍼 지지핀(1422) 상에 웨이퍼(W)를 배치한다. 그 후의 웨이퍼(W)의 반송 절차는 제1 절차에서 설명한 것과 동일하다(도 12의 단계 S15).
이 제2 절차에서는, 소정량 이상의 위치 편차가 있는 웨이퍼(W)에 대해서만 위치 편차량의 검출 및 위치 수정을 행하고, 소정량 미만의 위치 편차만이 있는 웨이퍼(W)에 대해서는 측정 기능이 있는 전달 스테이지(1410)에 대한 반입이 행해지지 않기 때문에, 기판 처리 시스템의 작업 처리량 향상의 관점에서는 제1 절차보다 유리하다.
반송 대상의 모든 웨이퍼(W)에 대하여 상기 제1 절차를 상시 실행해도 좋다. 또한, 반송 대상의 모든 웨이퍼(W)에 상기 제2 절차를 상시 실행해도 좋다. 단, 상기 제2 절차는 하기와 같이 변경할 수 있다.
걸림 센서(1426)에 의해 연속하여 웨이퍼(W)의 걸림이 검출된 경우, 그 웨이퍼(W)를 수납하고 있는 캐리어(C)에서는, 예컨대 반송중의 진동 등의 이유로 인해, 모든 웨이퍼(W)의 위치가 크게 어긋나 있는 것이 예측된다. 이러한 경우에, 캐리어(C)로부터 취출한 웨이퍼(W)를 우선은 통상 전달 스테이지(1420)에 반입하는 절차를 실행하는 것은 바람직하지 않다. 그 이유는, (1) 측정 기능이 있는 전달 스테이지(1410)에 대한 반입을 행해야 할 확률이 높은 웨이퍼(W)를 통상 전달 스테이지(1420)에 반입하는 것은 반송 시간의 낭비라는 점, (2) 디바이스가 형성되어 있지 않은 이면이라고는 해도, 웨이퍼(W)가 기울어진 상태로 가이드핀(1423)에 충돌시키는 것은 바람직하지 않은 점을 들 수 있다.
따라서, 제2 절차를 실행하고 있을 때에, 걸림 센서(1426)에 의한 웨이퍼(W)의 걸림의 검출 빈도가 소정 빈도를 초과한 경우, 예컨대 연속하여 소정 매수의 웨이퍼(W)에 대하여 걸림이 검출된 경우, 혹은, 소정 매수의 웨이퍼(W)에 있어서 걸림이 검출된 웨이퍼의 비율이 소정치를 초과한 경우에는, 제2 절차로부터 제1 절차로 전환하는 것이 좋다.
제2 절차로부터 제1 절차로의 전환이 이루어진 후에는, 예컨대, 그 시점에서 웨이퍼(W)가 취출되고 있는 캐리어(C)로부터 모든 웨이퍼(W)가 취출될 때까지 제1 절차의 실행을 계속하고, 다른 캐리어(C)로부터 웨이퍼(W)가 취출되게 되었다면 제2 절차로 복귀할 수 있다. 혹은, 제1 절차의 실행에 의해 검출되는 웨이퍼(W)의 위치 편차량이, 복수의 웨이퍼에 있어서 소정치(통상 전달 스테이지(1420)에서 가이드핀(1423)에 웨이퍼(W)가 걸리지 않을 정도의 값) 이하로 안정된 경우에, 제2 절차로 복귀해도 좋다.
상기 설명에서는, 캐리어(C)로부터 웨이퍼(W)를 취출하여 처리 유닛(16)을 향해 반송하는 도중(왕로)에서의 웨이퍼(W)의 위치 보정에 관해 설명했지만, 처리 유닛(16)에 의해 처리된 웨이퍼(W)를 캐리어(C)를 향해서 반송하는 도중(귀로)에 웨이퍼(W)의 위치 보정을 행해도 좋다. 또, 이 때에는 귀로용의 상부 전달 유닛(14B)(하부 전달 유닛(14A)과 동일한 구성을 가짐)이 이용된다.
이 경우, 기판 반송 장치(17)의 웨이퍼픽(170)이 통상 전달 스테이지(1420)에 웨이퍼(W)를 반입할 때부터, 상기 제2 절차에 준한 절차를 실행할 수 있다. 즉, 웨이퍼픽(170)이 통상 전달 스테이지(1420)의 웨이퍼 지지핀(1412) 상에 대한 배치를 시도했을 때에, 걸림 센서(1426)에 의해 웨이퍼(W)의 걸림이 검출되지 않으면, 기판 반송 장치(13)의 웨이퍼픽(136)이 통상 전달 스테이지(1420)로부터 웨이퍼(W)를 취출하고, 그 웨이퍼(W)를 캐리어(C)에 반입한다.
한편, 걸림 센서(1426)에 의해 웨이퍼(W)의 걸림이 검출되었다면, 기판 반송 장치(13)의 웨이퍼픽(136)이 통상 전달 스테이지(1420)로부터 웨이퍼(W)를 취출하여 측정 기능이 있는 전달 스테이지(1410)에 반입하고(웨이퍼 지지핀(1412) 상에는 웨이퍼(W)를 배치하지 않음), 따라서 웨이퍼(W)의 위치 편차량이 정량적으로 측정되고, 이 위치 편차를 상쇄하도록 그 웨이퍼(W)를 캐리어(C)에 반입한다.
또, 귀로의 경우도, 전술한 제1 절차와 동일한 절차를 실행하는 것도 가능하다. 즉, 기판 반송 장치(17)의 웨이퍼픽(170)이, 측정 기능이 있는 전달 스테이지(1410)에 웨이퍼(W)를 반입하고(웨이퍼 지지핀(1412) 상에는 웨이퍼(W)를 배치하지 않음), 웨이퍼(W)의 위치 편차를 검출하고, 그 검출 결과에 기초하여, 위치 편차를 상쇄하도록 통상 전달 스테이지(1420)의 웨이퍼 지지핀(1422) 상에 웨이퍼(W)를 배치한다. 그 후, 기판 반송 장치(13)의 웨이퍼픽(136)이 통상 전달 스테이지(1420)로부터 웨이퍼(W)를 취출하고, 그 웨이퍼(W)를 캐리어(C)에 반입한다.
도 2에 나타낸 단 하나의 웨이퍼픽(136)을 갖는 기판 반송 장치(13(130)) 대신에, 도 13에 나타내는 복수의, 예컨대 2개의 웨이퍼픽(136, 136')을 갖는 기판 반송 장치(13'(130'))를 이용할 수 있다. 이들 2개의 웨이퍼픽(136, 136')은 동일 직선상에 있는 각각의 수직 방향 회동 축선 둘레(θ3, θ3')에 서로 독립적으로 회전할 수 있다. 즉, 예컨대 한쪽의 웨이퍼픽(136)에 의해 어떤 웨이퍼(W)의 배치 장소에 대하여 웨이퍼를 배치하거나 취출하려 하는 경우에는, 다른쪽의 웨이퍼픽(136')은 도 13에 나타낸 바와 같이 웨이퍼픽(136)과 반대 방향을 향하여 후퇴할 수 있다. 또한, 2장의 웨이퍼(W)를 동시에 캐리어(C)로부터 취출하려 하는 경우에는, 상측으로부터 볼 때 2개의 웨이퍼픽(136, 136')이 겹치는 위치 관계를 취할 수 있다. 상기 점을 제외하고, 도 13의 기판 반송 장치(13')는 도 2의 기판 반송 장치(13)와 동일한 구성이며, 중복 설명은 생략한다.
도 13에 나타내는 수평 다관절형 로봇(130')를 이용하는 경우의 제1 절차에 관해서 이하에 설명한다.
우선, 웨이퍼픽(136, 136')이 캐리어(C)로부터 2장의 웨이퍼(W)를 동시에 취출한다.
우선, 한쪽의 웨이퍼픽(예컨대 웨이퍼픽(136))이 측정 기능이 있는 전달 스테이지(1410) 내에 진입하고, 그 웨이퍼픽(136)이 유지하고 있는 웨이퍼(W)의 위치 편차가 측정된다. 이 일련의 동작중에, 다른쪽의 웨이퍼픽(136')은 웨이퍼픽(136)과 반대 방향을 향하여(도 13을 참조) 후퇴하고 있다.
다음으로, 웨이퍼픽(136)이 측정 기능이 있는 전달 스테이지(1410)로부터 후퇴한다. 이어서, 웨이퍼픽(136')이 측정 기능이 있는 전달 스테이지(1410) 내에 진입하고, 그 웨이퍼픽(136')이 유지하고 있는 웨이퍼(W)의 위치 편차가 측정된다. 이 일련의 동작중에, 웨이퍼픽(136)은 웨이퍼픽(136')과 반대 방향을 향하여 후퇴하고 있다.
다음으로, 웨이퍼픽(136)은, 상기 측정 결과에 기초하여, 유지하고 있는 웨이퍼(W)의 위치 편차를 상쇄하도록, 어떤 하나의 통상 전달 스테이지(1420)의 웨이퍼 지지핀(1422) 상에 웨이퍼(W)를 배치한다. 이 때 웨이퍼픽(136')은 웨이퍼픽(136)과 반대 방향을 향하여(도 13을 참조) 후퇴하고 있다.
다음으로, 웨이퍼픽(136')은, 상기 측정 결과에 기초하여, 유지하고 있는 웨이퍼(W)의 위치 편차를 상쇄하도록, 상기 통상 전달 스테이지(1420)에 인접하는 통상 전달 스테이지(1420)의 웨이퍼 지지핀(1422) 상에 웨이퍼(W)를 배치한다. 이 때 웨이퍼픽(136)은 웨이퍼픽(136')과 반대 방향을 향하여(도 13을 참조) 후퇴하고 있다.
그 후에는, 기판 반송 장치(17)의 웨이퍼픽(170)이 각 통상 전달 스테이지(1420)로부터 웨이퍼(W)를 순차적으로 취출해 가게 된다.
다음으로, 도 13에 나타내는 수평 다관절형 로봇(130')를 이용하는 경우의 제2 절차에 관해 이하에 설명한다.
우선, 웨이퍼픽(136, 136')이 캐리어(C)로부터 2장의 웨이퍼(W)를 동시에 취출한다.
다음으로, 웨이퍼픽(136, 136')이, 인접하는 통상 전달 스테이지(1420)의 각각의 웨이퍼 지지핀(1422) 상에, 웨이퍼(W)를 동시에 배치하려고 시도한다.
2장의 웨이퍼(W)가 함께 가이드핀(1423)에 걸리지 않고 웨이퍼 지지핀(1422) 상에 배치된 것이 검출되었다면, 이들 2장의 웨이퍼(W)는, 그 후 기판 반송 장치(17)의 웨이퍼픽(170)에 의해 순차적으로 취출되게 된다.
2장의 웨이퍼(W)가 함께 가이드핀(1423)에 걸린 것이 검출되었다면, 웨이퍼픽(136, 136')은 인접하는 2개의 통상 전달 스테이지(1420)에 있는 웨이퍼(W)를 동시에 취출하고, 그 후 제1 절차가 실행된다.
한쪽의 웨이퍼(W)가 가이드핀(1423)에 걸리지 않고 웨이퍼 지지핀(1422) 상에 배치되고, 다른쪽의 웨이퍼(W)가 가이드핀(1423)에 걸린 것이 검출되었다면, 웨이퍼픽(136, 136') 중 어느 한쪽(바람직하게는 걸림이 생긴 웨이퍼(W)를 통상 전달 스테이지(1420)에 반입한 웨이퍼픽(예컨대 웨이퍼픽(136))이 그 걸림이 생긴 웨이퍼(W)를 대응하는 통상 전달 스테이지(1420)로부터 취출한다. 이 때, 웨이퍼픽(136')은 웨이퍼픽(136)과 반대 방향을 향하여(도 13을 참조) 후퇴하고 있다. 걸림이 생기지 않은 웨이퍼(W)는 그대로 통상 전달 스테이지(1420)에서 대기하고, 기판 반송 장치(17)의 웨이퍼픽(170)에 의해 취출되는 것을 대기한다.
이어서, 통상 전달 스테이지(1420)로부터 취출된 웨이퍼(W)를 유지하고 있는 웨이퍼픽(136)이 측정 기능이 있는 전달 스테이지(1410) 내에 진입하고, 그 웨이퍼픽(136)이 유지하고 있는 웨이퍼(W)의 위치 편차가 측정된다. 이 일련의 동작중에, 다른쪽의 웨이퍼픽(136')은 웨이퍼픽(136)과 반대 방향을 향하여(도 13을 참조) 후퇴하고 있다.
다음으로, 웨이퍼픽(136)은, 상기 측정 결과에 기초하여, 유지하고 있는 웨이퍼(W)의 위치 편차를 상쇄하도록, 먼저 그 웨이퍼가 반입된 통상 전달 스테이지(1420)의 웨이퍼 지지핀(1422) 상에 웨이퍼(W)를 배치한다. 이 때 웨이퍼픽(136')은 웨이퍼픽(136)과 반대 방향을 향하여(도 13을 참조) 후퇴하고 있다. 그 후, 그 웨이퍼(W)는 그대로 통상 전달 스테이지(1420)에서 대기하고, 기판 반송 장치(17)의 웨이퍼픽(170)에 의해 취출되는 것을 대기한다.
상기 실시형태에 의하면, 제1 기판 반송 장치(13) 자체에 웨이퍼(W)의 위치 편차를 정량적으로 측정할 수 있는 디바이스를 장착할 수 없는 경우라도, 제1 기판 반송 장치(13)로부터 독립하여 별개로 설치된 측정 기능이 있는 전달 스테이지(1410)를 이용함으로써, 웨이퍼(W)의 위치 편차를 적확하게 파악하여, 그 위치 편차 데이터에 기초하여 웨이퍼(W)의 위치 편차를 확실하게 보정할 수 있다.
또한, 상기 실시형태에서는, 측정 기능이 있는 전달 스테이지(1410)에 설치된 엣지 위치 검출 장치(1413)에 의해, 웨이퍼(W)를 웨이퍼 지지 부재(예컨대 웨이퍼 지지핀(1412) 등) 상에 배치하지 않고, 웨이퍼(W)의 위치 편차가 검출된다. 이 때문에, 웨이퍼(W)를 웨이퍼 지지 부재를 배치하는 것에 기인하여 생기는 반송 시간의 낭비나, 웨이퍼(W)를 웨이퍼 지지 부재와 충돌시키는 것에 기인하여 생길 수 있는 웨이퍼(W) 하면의 손상 또는 파티클의 발생 등을 방지할 수 있다.
또한, 상기 실시형태에서는, 통상 전달 스테이지(1420)에 가이드핀(1423) 및 걸림 센서(1426)가 설치되어 있어, 웨이퍼 지지핀(1422) 상에 웨이퍼(W)를 배치할 때의 웨이퍼 지지핀(1422)에 대한 웨이퍼(W)의 목표 위치에 대한 웨이퍼의 실제 위치의 편차가 허용 범위 내에 있는지 여부를 정성적(가부 판단만이며, 정량적 측정은 하지 않음)으로 판정하는 과잉 위치 편차 검출이 행해진다(제2 절차의 경우). 이 과잉 위치 편차 검출(대강의 판단에 의한 가려냄)에 기초하여, 측정 기능이 있는 전달 스테이지(1410)에 대한 웨이퍼(W)의 반입의 필요 여부 판단, 혹은 과잉 위치 편차 검출의 생략의 필요 여부 판단을 행할 수 있기 때문에, 필요 없는 반송이나 필요 없는 위치 편차 계측에 쓸데없이 시간을 낭비하는 것을 방지할 수 있다.
또, 상기 실시형태에서는, 통상 전달 스테이지(1420)에서는 웨이퍼(W)가 가이드핀(1423)에 걸리는 것에 의해 웨이퍼(W)의 높이가 변화하는 것을 이용하여, 이 높이 변화를 검출함으로써, 웨이퍼(W)가 배치 허용 범위 내에 있는지 여부를 검출했지만, 이것에 한정되는 것은 아니다. 통상 전달 스테이지(1420) 사이에 스페이스를 충분히 확보할 수 있는 것이라면, 통상 전달 스테이지(1420)에 측정 기능이 있는 전달 스테이지(1410)에 설치한 엣지 위치 검출 장치(1413)를 설치하는 것도 가능하다. 혹은, 예컨대 도 14에 개략적으로 나타낸 바와 같이, 발광부와 수광부로 이루어진 검출기(1440)를 웨이퍼(W) 주위의 복수의, 예컨대 4개소에 설치하고, 수광부의 수광의 유무에 기초하여, 허용 범위 밖의 위치 편차의 유무를 판정해도 좋다. 이 경우, 예컨대 웨이퍼(W)가 허용 범위(원(WA)으로 나타냄)에 위치하고 있는 경우에는, 모든 검출기에 있어서 웨이퍼(W)가 발광부로부터 수광부로 향하는 수직 방향으로 연장되는 광로(Ld)를 완전하게는 차단하지 않도록, 또한, 허용 범위를 초과한 위치 편차가 생겼다면 광로(Ld)를 완전히 차단하도록 검출기를 설치한다. 그렇게 하면, 하나의 검출기에 있어서 수광이 없어진 것이 확인된다면, 웨이퍼(W)가 허용 범위 밖에 위치하고 있는, 즉 과잉 위치 편차가 있다는 것을 알 수 있다. 또, 도 14에 있어서 원(WO)은 목표 위치에 있는 웨이퍼(W)의 윤곽선을 나타내고 있다.
또한, 상기 실시형태에서는, 측정 기능이 있는 전달 스테이지(1410)가 통상 전달 스테이지(1420)와 일체화하여 단일 유닛이 형성되어 있지만, 이것에 한정되는 것은 아니다. 측정 기능이 있는 전달 스테이지(1410)와 통상 전달 스테이지(1420)는 가능한 한 근처에 배치하는 것이 바람직하지만, 측정 기능이 있는 전달 스테이지(1410)는, 기판 반송 장치(13)를 액세스할 수 있는 임의의 위치에 설치할 수 있다.
W : 기판
4 : 제어부
11, C : 기판의 제1 저장소(캐리어 배치부 및 캐리어)
13 : 기판 반송 장치
14 : 기판의 제2 저장소(전달부)
1413 : 기판 위치 측정부(엣지 위치 검출 장치)
1422 : 배치대(웨이퍼 지지핀)
1426, 1440 : 과잉 위치 편차 검출부(걸림 센서, 검출기)

Claims (12)

  1. 기판 처리 장치에 있어서,
    기판을 배치할 수 있는 제1 저장소 및 제2 저장소;
    기판을 유지하는 기판 유지구를 가지며, 적어도 상기 제1 저장소와 제2 저장소의 사이에서 기판을 반송할 수 있는 기판 반송 장치; 및
    상기 기판 유지구에 유지된 기판의 위치를 검출하는 기판 위치 측정부
    를 포함하고,
    상기 기판 위치 측정부는, 상기 기판 반송 장치로부터 독립된 위치로서 상기 기판 반송 장치의 기판 유지구에 의해 유지된 기판을 반입하는 것이 가능한 위치에 설치되는 것인, 기판 처리 장치.
  2. 제1항에 있어서,
    상기 제1 저장소로부터 상기 제2 저장소에 기판을 반송할 때에, 상기 기판 반송 장치에 의해 상기 기판 위치 측정부에 기판을 반입시키는 것과, 상기 기판 위치 측정부에 의해 상기 기판 유지부에 유지된 기판의 위치를 검출시키는 것과, 상기 검출된 기판의 위치에 기초하여, 상기 기판 유지구에 기판을 유지할 때의 상기 기판 유지구에 대한 기판의 목표 위치와 상기 기판 유지구에 기판이 실제로 유지되었을 때의 상기 기판 유지구에 대한 기판의 실제 위치의 위치 편차를 구하는 것과, 구해진 위치 편차에 기초하여, 상기 기판 반송 장치에 의해 상기 위치 편차를 상쇄하도록 상기 제2 저장소에 기판을 배치시키는 것을 포함하는 위치 보정 절차를 실행시키는 제어부를 더 포함하는 것인, 기판 처리 장치.
  3. 제1항 또는 제2항에 있어서,
    상기 기판 반송 장치는 다관절형 로봇인 것인, 기판 처리 장치.
  4. 제1항에 있어서,
    상기 제2 저장소에는 기판을 1장 배치 가능한 스테이지가 복수개 있고, 각각의 스테이지는 세로로 적층되어 있고, 상기 스테이지 중 적어도 하나에 기판 위치 측정부가 설치되어 있는 것인, 기판 처리 장치.
  5. 제1항에 있어서,
    상기 제2 저장소에는, 상기 제2 저장소에 기판이 배치되었을 때에 제2 저장소에 대한 기판의 실제 위치의 편차가 허용 범위 내에 있는지 여부를 검출하는 과잉 위치 편차 검출부를 포함하는 것인, 기판 처리 장치.
  6. 제1항에 있어서,
    상기 제1 저장소로부터 상기 제2 저장소에 기판을 반송할 때에, 상기 기판 반송 장치에 의해 상기 기판 위치 측정부에 기판을 반입시키는 것과, 상기 기판 위치 측정부에 의해 상기 기판 유지부에 유지된 기판의 위치를 검출시키는 것과, 상기 검출된 기판의 위치에 기초하여, 상기 기판 유지구에 기판을 유지할 때의 상기 기판 유지구에 대한 기판의 목표 위치와, 상기 기판 유지구에 기판이 실제로 유지되었을 때의 상기 기판 유지구에 대한 기판의 실제 위치의 위치 편차를 구하는 것과, 구해진 위치 편차에 기초하여, 상기 기판 반송 장치에 의해 상기 위치 편차를 상쇄하도록 상기 제2 저장소에 기판을 배치시키는 것을 포함하는 위치 보정 절차를 실행시키는 제어부를 포함하고,
    상기 제2 저장소에는, 상기 제2 저장소에 기판이 배치되었을 때에 제2 저장소에 대한 기판의 실제 위치의 편차가 허용 범위 내에 있는지 여부를 검출하는 과잉 위치 편차 검출부를 포함하고,
    상기 제어부는, 상기 위치 편차 보정 절차를 실행시키기 전에, 상기 기판 반송 장치에 의해 상기 기판을 상기 제2 저장소에 배치시킴과 동시에 상기 과잉 위치 편차 검출부에 의해 상기 허용 범위 밖의 위치 편차의 유무를 검출시키는 과잉 위치 편차 검출 절차를 실행시켜, 검출된 위치 편차가 허용 범위 밖인 경우에만 상기 위치 편차 보정 절차를 실행시키는 것인, 기판 처리 장치.
  7. 제6항에 있어서,
    상기 제어부는, 상기 과잉 위치 편차 검출 절차에 의해 상기 허용 범위 밖의 위치 편차가 미리 설정된 빈도 이상의 빈도로 검출된 경우에, 그 후 미리 설정된 기간 동안 상기 과잉 위치 편차 검출 절차를 실행하지 않고 상기 위치 편차 보정 절차를 실행시키는 것인, 기판 처리 장치.
  8. 제6항에 있어서,
    상기 제2 저장소에는 기판을 1장 배치 가능한 스테이지가 복수개 있고, 각각의 스테이지는 세로로 적층되어 있고, 상기 스테이지 중 적어도 하나에 기판 위치 측정부가 설치되어 있는 것인, 기판 처리 장치.
  9. 기판 처리 장치에서 기판의 위치 편차를 보정하는 위치 편차 보정 방법에 있어서,
    상기 기판 처리 장치는, 기판을 배치할 수 있는 제1 저장소 및 제2 저장소와, 기판을 유지하는 기판 유지구를 가지며, 적어도 상기 제1 저장소와 제2 저장소의 사이에서 기판을 반송할 수 있는 기판 반송 장치와, 상기 기판 유지구에 유지된 기판의 위치를 검출하는 기판 위치 측정부를 포함하고, 상기 기판 위치 측정부가, 상기 기판 반송 장치로부터 독립된 위치로서 상기 기판 반송 장치의 기판 유지구에 의해 유지된 기판을 반입하는 것이 가능한 위치에 설치되어 있으며,
    상기 위치 편차 보정 방법은,
    상기 제1 저장소로부터 상기 제2 저장소에 기판을 반송할 때에,
    상기 기판 반송 장치에 의해 상기 기판 위치 측정부에 기판을 반입시키는 단계;
    상기 기판 위치 측정부에 의해 상기 기판 유지부에 유지된 기판의 위치를 검출시키는 단계;
    상기 검출된 기판의 위치에 기초하여, 상기 기판 유지구에 기판을 유지할 때의 상기 기판 유지구에 대한 기판의 목표 위치와, 상기 기판 유지구에 기판이 실제로 유지되었을 때의 상기 기판 유지구에 대한 기판의 실제 위치의 위치 편차를 구하는 단계; 및
    구해진 위치 편차에 기초하여, 상기 기판 반송 장치에 의해 상기 위치 편차를 상쇄하도록 상기 제2 저장소에 기판을 배치시키는 단계
    를 포함하는, 위치 편차 보정 방법.
  10. 제9항에 있어서,
    상기 제2 저장소에 기판이 배치되었을 때에 상기 제2 저장소에 대한 기판의 실제 위치의 편차가 허용 범위 내에 있는지 여부를 검출하는 과잉 위치 편차 검출부가 상기 제2 저장소에 설치되어 있고,
    상기 위치 편차 보정 방법은,
    상기 위치 편차 보정 절차를 실행하기 전에, 상기 기판 반송 장치에 의해 상기 기판을 상기 제2 저장소에 배치시키는 것과, 상기 과잉 위치 편차 검출부에 의해 상기 허용 범위 밖의 위치 편차의 유무를 검출시키는 것을 포함하는 과잉 위치 편차 검출 절차를 더 포함하고,
    상기 과잉 위치 편차 검출 절차에 의해 검출된 위치 편차가 허용 범위 밖인 경우에만 상기 위치 편차 보정 절차가 실행되는 것인, 위치 편차 보정 방법.
  11. 제10항에 있어서,
    상기 과잉 위치 편차 검출 절차에 의해 상기 허용 범위 밖의 위치 편차가 미리 설정된 빈도 이상의 빈도로 검출된 경우에, 그 후 미리 설정된 기간 동안, 상기 과잉 위치 편차 검출 절차를 실행하지 않고 상기 위치 편차 보정 절차를 실행하는 것인, 위치 편차 보정 방법.
  12. 기판 처리 장치의 동작을 제어하는 제어 장치로서의 컴퓨터에 의해 실행됨으로써, 상기 컴퓨터가 상기 기판 처리 장치를 제어하여 제9항 내지 제11항 중 어느 한 항에 기재된 위치 편차 보정 방법을 실행하는 프로그램을 저장한, 기억 매체.
KR1020150020278A 2014-02-20 2015-02-10 기판 처리 장치, 위치 편차 보정 방법 및 기억 매체 KR102291970B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2014-030783 2014-02-20
JP2014030783A JP6199199B2 (ja) 2014-02-20 2014-02-20 基板処理装置、位置ずれ補正方法及び記憶媒体

Publications (2)

Publication Number Publication Date
KR20150098570A true KR20150098570A (ko) 2015-08-28
KR102291970B1 KR102291970B1 (ko) 2021-08-19

Family

ID=53798731

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150020278A KR102291970B1 (ko) 2014-02-20 2015-02-10 기판 처리 장치, 위치 편차 보정 방법 및 기억 매체

Country Status (4)

Country Link
US (1) US10042356B2 (ko)
JP (1) JP6199199B2 (ko)
KR (1) KR102291970B1 (ko)
TW (1) TWI596457B (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10520932B2 (en) * 2014-07-03 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd Transport system and method
JP6607744B2 (ja) * 2015-09-04 2019-11-20 リンテック株式会社 供給装置および供給方法
JP6877025B2 (ja) * 2016-03-23 2021-05-26 ヤマハファインテック株式会社 回路基板の検査方法、検査装置、及びプログラム
JP6741537B2 (ja) * 2016-09-28 2020-08-19 川崎重工業株式会社 ロボット、ロボットの制御装置、及び、ロボットの位置教示方法
CN108370740B (zh) * 2018-05-08 2023-06-27 石河子大学 一种打顶末端执行器以及含有该执行器的打顶机
JP7246256B2 (ja) * 2019-05-29 2023-03-27 東京エレクトロン株式会社 搬送方法及び搬送システム
CN112635350A (zh) * 2019-09-24 2021-04-09 沈阳新松机器人自动化股份有限公司 一种夹持式晶圆校准装置及校准方法
JP2022044512A (ja) * 2020-09-07 2022-03-17 株式会社Screenホールディングス 位置判定装置、基板搬送装置、位置判定方法および基板搬送方法
CN112757161B (zh) * 2020-12-31 2022-04-19 上海超硅半导体股份有限公司 一种抛光载具的修整方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218622A (ja) * 2009-06-29 2009-09-24 Canon Anelva Corp 基板処理装置及び基板処理装置における基板位置ずれ補正方法
US20120327428A1 (en) * 2011-06-27 2012-12-27 Infineon Technologies Ag Wafer Orientation Sensor
JP2013165119A (ja) 2012-02-09 2013-08-22 Tokyo Electron Ltd 基板処理装置及び基板処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4819167A (en) * 1987-04-20 1989-04-04 Applied Materials, Inc. System and method for detecting the center of an integrated circuit wafer
JP4389305B2 (ja) 1999-10-06 2009-12-24 東京エレクトロン株式会社 処理装置
US7572092B2 (en) * 2002-10-07 2009-08-11 Brooks Automation, Inc. Substrate alignment system
JP4047826B2 (ja) * 2004-03-25 2008-02-13 東京エレクトロン株式会社 縦型熱処理装置及び移載機構の自動教示方法
JP4917660B2 (ja) * 2009-10-05 2012-04-18 株式会社日立国際電気 基板処理装置、基板処理装置の制御方法、半導体デバイスの製造方法、装置状態遷移方法、基板処理装置の保守方法及び状態遷移プログラム
JP5757721B2 (ja) 2009-12-28 2015-07-29 株式会社日立国際電気 基板処理装置、基板処理装置の異常表示方法、搬送制御方法およびデータ収集プログラム
JP5573861B2 (ja) * 2012-02-16 2014-08-20 株式会社安川電機 搬送システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218622A (ja) * 2009-06-29 2009-09-24 Canon Anelva Corp 基板処理装置及び基板処理装置における基板位置ずれ補正方法
US20120327428A1 (en) * 2011-06-27 2012-12-27 Infineon Technologies Ag Wafer Orientation Sensor
JP2013165119A (ja) 2012-02-09 2013-08-22 Tokyo Electron Ltd 基板処理装置及び基板処理方法

Also Published As

Publication number Publication date
TWI596457B (zh) 2017-08-21
TW201543189A (zh) 2015-11-16
JP2015156437A (ja) 2015-08-27
KR102291970B1 (ko) 2021-08-19
US20150235888A1 (en) 2015-08-20
JP6199199B2 (ja) 2017-09-20
US10042356B2 (en) 2018-08-07

Similar Documents

Publication Publication Date Title
KR20150098570A (ko) 기판 처리 장치, 위치 편차 보정 방법 및 기억 매체
KR101877425B1 (ko) 기판 반송 장치, 기판 반송 방법 및 기억 매체
JP6670713B2 (ja) 基板処理装置及び基板搬送方法
US9541920B2 (en) Method for positioning a transfer unit, method for calculating positional deviation amount of an object to be processed, and method for correcting teaching data of the transfer unit
JP6415220B2 (ja) 基板処理装置および基板処理方法
US9696262B2 (en) Substrate processing apparatus, method of operating substrate processing apparatus, and storage medium
TWI425590B (zh) 基板處理裝置及其基板搬送方法
TW201624598A (zh) 基板處理裝置及基板處理方法
CN100407394C (zh) 基板处理装置及其搬送定位方法
TW201633442A (zh) 基板運送裝置及基板運送方法
US6519502B2 (en) Apparatus and method for positioning a cassette pod onto a loadport by an overhead hoist transport system
JP6478878B2 (ja) 基板処理装置及び基板搬送方法並びに基板搬送プログラムを記憶したコンピュータ読み取り可能な記憶媒体
KR101915878B1 (ko) 기판 주고받음 위치의 교시 방법 및 기판 처리 시스템
JP2012038922A (ja) 基板搬送装置、基板搬送方法及びその基板搬送方法を実行させるためのプログラムを記録した記録媒体
JP2011108958A (ja) 半導体ウェーハ搬送装置及びこれを用いた搬送方法
TWI794507B (zh) 自動教示方法及控制裝置
JP5384270B2 (ja) ローダ
KR20160114556A (ko) 어댑터 유닛 내장 로더실
KR20070031853A (ko) 종형 열처리 장치 및 이동 적재 기구의 자동 교시 방법
KR20220072236A (ko) 이송 장치
JP2017108063A (ja) 基板搬入方法、基板処理装置及び基板保持方法
KR20210086698A (ko) 기판 처리 장치 및 기판 반송 방법
US20220367223A1 (en) Substrate transport apparatus and substrate transport method
KR102264856B1 (ko) 용기 이송 장치
JP2018006500A (ja) 搬送対象物を搬送する搬送方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant