KR20150039707A - 복합 센서 및 복합 센서 모듈 - Google Patents

복합 센서 및 복합 센서 모듈 Download PDF

Info

Publication number
KR20150039707A
KR20150039707A KR20147027680A KR20147027680A KR20150039707A KR 20150039707 A KR20150039707 A KR 20150039707A KR 20147027680 A KR20147027680 A KR 20147027680A KR 20147027680 A KR20147027680 A KR 20147027680A KR 20150039707 A KR20150039707 A KR 20150039707A
Authority
KR
South Korea
Prior art keywords
substrate
image sensor
thermal image
sensor
distance image
Prior art date
Application number
KR20147027680A
Other languages
English (en)
Other versions
KR101994508B1 (ko
Inventor
후미카즈 오지마
미츠히토 마세
나오토 사쿠라이
Original Assignee
하마마츠 포토닉스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 하마마츠 포토닉스 가부시키가이샤 filed Critical 하마마츠 포토닉스 가부시키가이샤
Publication of KR20150039707A publication Critical patent/KR20150039707A/ko
Application granted granted Critical
Publication of KR101994508B1 publication Critical patent/KR101994508B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0275Control or determination of height or distance or angle information for sensors or receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0859Sighting arrangements, e.g. cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • G01J2005/123Thermoelectric array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

복합 센서(11)에서는, 열 화상 센서(16)의 배열 영역 R1과 거리 화상 센서(31)의 배열 영역 R2가 적층 방향에서 보았을 때 겹치도록 배치되어 있다. 이 때문에, 열 화상과 거리 화상을 동축에서 취득하는 것이 가능해져, 열 화상과 거리 화상 사이의 화상 불일치를 억제할 수 있다. 추가로, 복합 센서(11)에서는, 제1 기판(13)과 제2 기판(14)의 적층에 의해서 형성되는 밀봉체 S1에 의해서 열 화상 센서(16)의 주위의 공간이 진공 상태로 밀봉되어 있다. 이것에 의해, 거리 화상 센서(31)의 주위에서 발생하는 열이 열 화상 센서(16) 측에 영향을 미치는 것을 방지할 수 있다. 이것에 더하여, 열 화상 센서(16)를 배열하는 기판과 거리 화상 센서(31)를 배열하는 기판이 별체로 되어 있으므로, 설계의 자유도를 확보할 수 있다.

Description

복합 센서 및 복합 센서 모듈{COMPOSITE SENSOR AND COMPOSITE SENSOR MODULE}
본 발명은 복합 센서 및 복합 센서 모듈에 관한 것이다.
종래, 사람의 출입 등을 감지하는 인체 감지 기능을 가지는 센서가 알려져 있다. 이러한 센서에서는, 충분한 검출 정확도가 요구되지만, 서모 파일이나 보로 미터 어레이라고 하는 열 화상 센서만을 이용했을 경우에서는, 예를 들면 멀리 있는 어른과 가까이에 있는 아이를 판별할 수 없는 경우가 있었다. 여기서, 예를 들면 특허 문헌 1~3에 기재된 기술에서는, 열 화상 센서와 거리 화상 센서를 조합한 복합 센서가 제안되어 있다.
특허 문헌 1: 일본국 특개 2001-318165호 공보 특허 문헌 2: 일본국 특표 2011-514709호 공보 특허 문헌 3: 일본국 특개 2011-232606호 공보
상술한 것 같은 복합 센서에서는, 검지 대상물을 정밀도 좋게 검지하기 위해서, 열 화상과 거리 화상의 사이에 화상 불일치를 억제하는 것이 필요해지고 있다. 또, 외란(外亂)의 영향 등을 배제하여, 열 화상 센서 및 거리 화상 센서의 감도를 향상시키는 것도 필요해지고 있다. 추가로, 열 화상 센서 및 거리 화상 센서를 배열하는 관계상, 각각의 센서에 최적인 제조 방법의 실시나, 신호의 판독 회로 등을 배치하기 위한 설계를 허용하는 자유도를 확보하는 것도 요구된다.
본 발명은 상기 과제의 해결을 위해서 이루어진 것으로, 센서의 감도를 충분히 향상시킬 수 있고, 또한 제조·배치의 자유도를 확보할 수 있는 복합 센서를 제공하는 것을 목적으로 한다.
상기 과제의 해결을 위하여, 본 발명에 따른 복합 센서는, 복수의 열전 소자로 이루어진 열(熱) 화상 센서가 배열된 제1 기판과, 입사광에 따라 전하를 발생시키는 전하 발생 영역과, 미리 부여되는 전하 전송 신호에 기초하여 전하 발생 영역에서 발생한 전하를 소정의 전하 수집 영역에 전송하는 전송 전극을 가지는 거리 화상 센서가 배열된 제2 기판을 구비하고, 제2 기판은, 열 화상 센서의 배열 영역과 거리 화상 센서의 배열 영역이 적층 방향에서 보았을 때 겹치도록 제1 기판에 적층되고, 제1 기판과 제2 기판의 적층에 의해, 제1 기판을 상판(top plate)으로 하여 열 화상 센서의 주위의 공간을 밀봉하는 밀봉체가 형성되어 있는 것을 특징으로 하고 있다.
이 복합 센서에서는, 열 화상 센서의 배열 영역과 거리 화상 센서의 배열 영역이 적층 방향에서 보았을 때 겹치도록 배치되어 있다. 이 때문에, 열 화상과 거리 화상을 동축(同軸)에서 취득하는 것이 가능해져, 열 화상과 거리 화상 사이의 화상 불일치를 억제할 수 있다. 따라서 검지 대상물을 정밀도 좋게 검지할 수 있다. 또, 연산에 필요로 하는 시간의 단축 및 시간 분해능의 향상이 도모된다. 추가로, 이 복합 센서에서는, 제1 기판과 제2 기판의 적층에 의해서 형성되는 밀봉체에 의해서 열 화상 센서의 주위의 공간이 밀봉되어 있다. 이것에 의해, 거리 화상 센서의 주위에서 발생하는 열이 열 화상 센서측에 영향을 미치는 것을 방지할 수 있어, 열 화상 센서의 감도를 향상시킬 수 있다. 이것에 더하여, 열 화상 센서를 배열하는 기판과 거리 화상 센서를 배열하는 기판이 별체(別體)로 되어 있으므로, 센서에 최적인 제조 방법의 실시나, 신호의 판독 회로 등을 배치하기 위한 설계의 자유도를 확보할 수 있다.
또, 제2 기판에 있어서의 거리 화상 센서의 배열 피치는, 제1 기판에 있어서의 열 화상 센서의 배열 피치보다도 작게 되어 있는 것이 바람직하다. 거리 화상 센서에는, 전송 전극 등의 구성요소가 포함되어 있고, 이들 구성요소가 열 화상 센서를 차폐하는 차폐체가 되는 것을 생각할 수 있다. 이 때문에, 거리 화상 센서의 배열 피치가 열 화상 센서의 배열 피치와 동등 이상이면, 열 화상 센서의 한 화소당 차폐의 영향이 커져, 열 화상의 화질이 열화될 우려가 있다. 따라서 거리 화상 센서의 배열 피치를 열 화상 센서의 배열 피치보다도 작게 함으로써, 열 화상 센서의 한 화소당 차폐의 영향이 억제되어, 열 화상의 화질을 담보할 수 있다.
또, 밀봉체의 내벽면에는, 중(中) 적외 영역의 광을 통과시키는 광학 필터막이 형성되어 있는 것이 바람직하다. 이것에 의해, 공기 중의 수분이나 이산화탄소 등의 흡수에 의해서 영향을 받기 쉬운 파장 대역의 광을 컷할 수 있어, 열 화상 센서의 감도를 한층 향상시킬 수 있다.
또, 밀봉체의 내부는, 진공 상태로 되어 있는 것이 바람직하다. 거리 화상 센서의 주위에서 발생하는 열이 열 화상 센서측에 영향을 미치는 것을 한층 확실히 방지할 수 있다.
또, 본 발명에 따른 복합 센서 모듈은, 상기 복합 센서와, 제2 기판에 있어서의 거리 화상 센서의 배열 영역이 결상면(結像面)이 되도록 배치된 렌즈를 구비한 것을 특징으로 하고 있다.
이 복합 센서 모듈에서는, 복합 센서에 있어서, 열 화상 센서의 배열 영역과 거리 화상 센서의 배열 영역이 적층 방향에서 보았을 때 겹치도록 배치되어 있다. 이 때문에, 열 화상과 거리 화상을 동축에서 취득하는 것이 가능해져, 열 화상과 거리 화상 사이의 화상 불일치를 억제할 수 있어, 검지 대상물을 정밀도 좋게 검지할 수 있다. 또, 연산에 필요로 하는 시간의 단축 및 시간 분해능의 향상이 도모된다. 추가로, 이 복합 센서 모듈에서는, 제1 기판과 제2 기판의 적층에 의해서 형성되는 밀봉체에 의해서 열 화상 센서의 주위의 공간이 밀봉되어 있다. 이것에 의해, 거리 화상 센서의 주위에서 발생하는 열이 열 화상 센서측에 영향을 미치는 것을 방지할 수 있어, 열 화상 센서의 감도를 향상시킬 수 있다. 이것에 더하여, 열 화상 센서를 배열하는 기판과 거리 화상 센서를 배열하는 기판이 별체로 되어 있으므로, 센서에 최적인 제조 방법의 실시나, 신호의 판독 회로 등을 배치하기 위한 설계의 자유도를 확보할 수 있다.
본 발명에 의하면, 센서의 감도를 충분히 향상시킬 수 있고, 또한 제조·배치의 자유도를 확보할 수 있다.
도 1은 본 발명의 제1 실시 형태에 따른 복합 센서 모듈을 나타내는 단면도이다.
도 2는 복합 센서의 평면도이다.
도 3은 열 화상 센서의 평면도이다.
도 4는 거리 화상 센서의 회로도이다.
도 5는 도 1에 도시된 복합 센서의 제조 공정을 나타내는 도면이다.
도 6은 도 5의 후속 공정을 나타내는 도면이다.
도 7은 본 발명의 제2 실시 형태에 따른 복합 센서 모듈을 나타내는 단면도가다.
도 8는 도 7에 도시된 복합 센서의 제조 공정을 나타내는 도면이다.
도 9는 도 8의 후속 공정을 나타내는 도면이다.
이하, 도면을 참조하면서, 본 발명에 따른 복합 센서 및 복합 센서 모듈의 매우 적합한 실시 형태에 대해 상세하게 설명한다.
[제1 실시 형태]
도 1은 본 발명의 제1 실시 형태에 따른 복합 센서 모듈을 나타내는 단면도가다. 동 도면에 도시된 바와 같이, 복합 센서 모듈(1)은 복합 센서(11)와, 렌즈(12)를 구비하여 구성되어 있다. 이 복합 센서 모듈(1)은 열 화상 및 거리 화상에 기초하여, 소정 에어리어 안으로의 사람의 출입 등을 감지하는 인체 감지 센서로서 이용되는 모듈이다.
사용시에 있어서, 복합 센서 모듈(1)에는, 예를 들면 레이저나 발광 다이오드와 같은 광원(2)과, 광원(2)을 고주파 구동하는 광원 구동 회로(3)와, 광원 구동 회로(3)의 구동 클록을 출력하는 제어 회로(4)를 포함하는 광원 유닛(5)이 접속된다. 광원(2)에서는, 방형파(方形波) 혹은 정현파(正弦波)의 광 강도 변조가 이루어진 변조파가 출사된다. 이 변조파는, 검지 대상물 K의 표면에서 반사되어, 렌즈(12)를 통과하여 복합 센서(11)에 입사된다. 또, 광원(2)으로부터 출사된 광은, 가시광선은 아니고 또한 Si에 대한 감도를 충분히 얻을 수 있는 파장 대역인 것이 바람직하고, 예를 들면 파장 800nm 정도의 근적외광이 선택된다. 또한, 제어 회로(4)로부터의 구동 클록에 동기한 방형파 혹은 정현파의 변조 신호(전하 전송 신호)는, 서로 역상(逆相)으로 후술의 거리 화상 센서(31)의 전송 전극(43, 43)에 주어진다.
렌즈(12)는, 예를 들면 ZnSe로 이루어진 결상(結像) 렌즈이며, 후술하는 거리 화상 센서(31)의 배열 영역 R2가 결상면이 되도록 배치되어 있다. 렌즈(12)로부터는, 예를 들면 파장 0.5㎛~21.8㎛의 대역의 광이 통과하여, 복합 센서(11)에 입사된다. 또한, 렌즈(12)의 재질은 ZnSe 외, ZnS나 As2S3 등을 이용할 수도 있다.
다음으로, 복합 센서(11)에 대해 설명한다.
도 1 및 도 2에 도시된 바와 같이, 복합 센서(11)는, 열 화상 센서(16)가 매트릭스 모양으로 배열된 제1 기판(13)과 제1 기판(13)보다도 한층 작게 형성되고, 거리 화상 센서(31)가 매트릭스 모양으로 배열된 제2 기판(14)을 구비하고 있다. 제1 기판(13) 및 제2 기판(14)은, 모두 Si에 의해서 두께 300㎛ 정도로 형성되어 있고, 예를 들면 파장 1.2㎛~21.8㎛의 대역의 광이 통과하도록 되어 있다.
제1 기판(13)의 일면측에는, 열 화상 센서(16)의 배열 영역 R1가 대략 사각형 모양으로 설정되어 있다. 또, 배열 영역 R1의 외측에는, 당해 배열 영역 R1을 둘러싸도록 열 화상 센서(16)용의 전극 패드(17)가 배열되어 있다. 전극 패드(17)는, 와이어(18)에 의해서 패키지측의 배선 회로에 전기적으로 접속되어 있다. 제1 기판(13)의 일면측은, 전극 패드(17)의 형성 위치를 제외하고, 예를 들면 SiO2로 이루어진 절연막(19)으로 덮인 상태로 되어 있다.
제1 기판(13)에 배열되는 열 화상 센서(16)는, 예를 들면 서모 파일이나 보로 미터라고 하는 파장 의존성을 가지지 않는 센서로서, 복수의 열전 소자를 가지고 있다. 열 화상 센서(16)의 각 화소는, 도 3에 도시된 바와 같이, 대략 구형(矩形)의 수광부(20)와, 수광부(20)의 대향하는 2개의 모서리부에서부터 수광부(20)의 변(邊)을 따라서 서로 반대 방향이 되도록 연장되는 연결부(21, 21)와, 연결부(21, 21)의 선단(先端) 부분에 각각 마련되는 지지주(支持柱)(22, 22)를 가지고 있다.
이것에 의해, 도 1에 도시된 바와 같이, 수광부(20)는, 절연막(19)으로부터 약간 이간된 상태로 제1 기판(13)의 일면측에 입설(入設)되어 있다. 또, 도 2에 도시된 바와 같이, 서로 이웃하는 열 화상 센서(16, 16) 사이의 배열 피치(수광부(20)의 중심간의 거리) W1은, 예를 들면 60㎛ 정도로 되어 있다. 또한, 수광부(20)의 형성 영역에 대응하여, 절연막(19)상에 Al 등으로 이루어진 광반사층을 마련해도 좋다. 이 경우, 광반사층에 의해서 누설광을 수광부(20)에 입사시키는 것이 가능해져, 열 화상 센서(16)의 감도를 보다 향상시킬 수 있다.
한편, 제2 기판(14)의 일면측에는, 도 1에 도시된 바와 같이, 예를 들면 열 화상 센서(16)의 배열 영역 R1과 동등한 크기로, 거리 화상 센서(31)의 배열 영역 R2가 대략 사각형 모양으로 설정되어 있다. 또, 배열 영역 R2의 외측에는, 평면시에 있어서 열 화상 센서(16)용의 전극 패드(17)보다도 내측 위치에서, 당해 배열 영역 R2를 둘러싸도록 거리 화상 센서(31)용의 전극 패드(32)가 배열되어 있다. 전극 패드(32)는, 전극 패드(17)와 마찬가지로, 와이어(33)에 의해서 패키지측의 배선 회로에 전기적으로 접속되어 있다. 제2 기판(14)의 일면측은, 전극 패드(32)의 형성 위치를 제외하고, 예를 들면 SiO2로 이루어진 절연막(34)으로 덮인 상태로 되어 있다.
제2 기판(14)의 다른 면측에는, 예를 들면 Si의 이방성 에칭이나 드라이 에칭에 의해서, 열 화상 센서(16)의 배열 영역 R1에 대응하는 크기의 단면 대략 정사각형 모양의 오목부(36)가 형성되어 있다. 오목부(36)의 내벽면에는, 중 적외 영역의 광을 통과시키는 광학 필터막(37)이 마련되어 있다. 보다 구체적으로는, 광학 필터막(37)은, 예를 들면 Ge와 ZnS의 다층막에 의해서 구성되어, 8㎛~14㎛ 정도의 대역의 광만을 통과시키게 되어 있다. 또, 제2 기판(14)의 다른 면측에 있어서, 오목부(36)의 가장자리에는, 예를 들면 SiO2로 이루어진 절연막(38)이 마련되어 있다.
이상과 같은 제2 기판(14)은, 오목부(36)가 제1 기판(13)측을 향하도록 하면서, 또한 열 화상 센서(16)의 배열 영역 R1과 거리 화상 센서(31)의 배열 영역 R2가 적층 방향에서 보았을 때 겹치도록 제1 기판(13)에 적층되어 있다. 또, 제2 기판(14)의 적층에 의해, 오목부(36)의 내벽면과 제1 기판(13)의 일면측에 의해서, 제1 기판(13)을 상판으로 하여 열 화상 센서(16)의 주위의 공간을 밀봉하는 밀봉체 S1이 형성되어 있다. 제1 기판(13)과 제2 기판(14)의 적층에는, 예를 들면 진공 분위기하에서의 상온 접합(接合)이 이용된다. 따라서 열 화상 센서(16)가 수용되는 밀봉체 S1의 내부 공간은, 진공 상태로 되어 있다.
제2 기판(14)에 배열되는 거리 화상 센서(31)는, 이른바 전하 배분형 거리 화상 센서이다. 거리 화상 센서(31)의 각 화소는, 도 4에 도시된 바와 같이, 입사광에 따라 전하를 발생시키는 수광부(전하 발생 영역)(41)와, 미리 부여되는 전하 전송 신호에 기초하여 수광부(41)에서 발생한 전하를 전하 수집 영역(42, 42)에 전송하는 한 쌍의 전송 전극(43, 43)을 가지고 있다.
수광부(41)는 렌즈(12)를 통과한 광이 입사하는 부분이며, 도 2에 도시된 바와 같이, 열 화상 센서(16)의 하나의 수광부(20)에 대해서 2×2가 되도록 배치되어 있다. 이것에 의해, 서로 이웃하는 거리 화상 센서(31, 31) 사이의 배열 피치(수광부(41)의 중심간의 거리) W2는, 상술한 열 화상 센서(16, 16) 사이의 배열 피치 W1의 1/2 이하로 되어 있다. 또, 배열 영역 R2에 있어서, 수광부(41)를 제외한 부분에는, 예를 들면 Al로 이루어진 차광부(44)가 형성되어 있다. 차광부(44)는 수광부(41)에 상당하는 부분이 개구되도록 절연막(34)상에 형성되어 있고, 차광부(44)에 대한 개구 부분의 비는, 예를 들면 20%~50% 정도로 되어 있다.
전하 수집 영역(42, 42)은, 도 4에 도시된 바와 같이, 고농도의 P형 반도체 영역의 표면측에 저농도로 형성된 P형 반도체 영역의 더욱 표면측에 형성된 한 쌍의 고농도의 N형 반도체 영역이다. N형 반도체 영역은, 전기적으로 중성인 상태에서 전자를 캐리어로서 가지고 있고, 캐리어가 빠진 경우에는 양(positive)으로 이온화된다. 따라서 전하 수집 영역(42, 42)은, 크게 하향으로 오목한 형태로 되어, 포텐셜 우물을 구성한다. 전하 수집 영역(42, 42)에는 소스 팔로워 앰프(46, 46)가 각각 전기적으로 접속되어 있다.
전송 전극(43, 43)은 수광부(41)와 전하 수집 영역(42, 42)의 사이에 배치되어 있다. 전송 전극(43, 43)에는, 제어 회로(4)로부터의 구동 클록에 동기한 방형파 혹은 정현파의 변조 신호(전하 전송 신호)가 서로 역상이 되도록 부여된다. 부여되는 변조 신호가 하이 레벨로 된 쪽의 전송 전극(43)의 바로 아래에는, 수광부(41)보다도 포텐셜이 낮은 영역이 형성된다. 이것에 의해, 수광부(41)에서 발생한 전자가 전송 전극(43)에 의해서 전송되어, 대응하는 전하 수집 영역(42)에 배분되어 축적된다.
전하 수집 영역(42, 42)에 축적된 전하는, 소스 팔로워 앰프(46, 46)로부터의 출력으로서 증폭 회로 등을 통해서 제어 회로(4)에 입력된다. 제어 회로(4)는, 소스 팔로워 앰프(46, 46)로부터의 출력에 기초하여, 예를 들면 L=(1/2)×c×{Q2/(Q1+Q1)}×T0에 의해 거리를 산출한다. 이 식에 있어서, c는 광속, Q1은 전송 전극 VTX1측의 출력 신호(위상 0°의 출력 신호), Q2는 전송 전극 VTX2측의 출력 신호(위상 180°의 출력 신호), T0는 펄스 폭이다.
이어서, 복합 센서(11)의 제조 공정에 대해 설명한다.
복합 센서(11)를 제조함에 있어서는, 도 5 (a)에 도시된 바와 같이, 제1 기판(13) 및 제2 기판(14)을 각각 별체로 준비한다. 제1 기판(13)에는, 전극 패드(17) 및 절연막(19)을 미리 패턴 형성함과 아울러, 열 화상 센서(16)를 배열 영역 R1에 배열한다. 또, 제2 기판(14)에는, Si의 이방성 에칭이나 드라이 에칭에 의해서 오목부(36)를 형성한 후, 증착 등에 의해서 광학 필터막(37)을 오목부(36)의 내벽면에 형성한다. 그 후, 전극 패드(32), 절연막(34, 38), 차광부(44), 및 거리 화상 센서(31)의 각 구성요소를 미리 패턴 형성한다.
다음으로, 도 5 (b)에 도시된 바와 같이, 오목부(36)가 제1 기판(13)측을 향하도록 하면서, 또한 열 화상 센서(16)의 배열 영역 R1과 거리 화상 센서(31)의 배열 영역 R2가 적층 방향에서 보았을 때 겹치도록, 상온 접합에 의해서 제1 기판(13)상에 제2 기판(14)을 적층한다. 이것에 의해, 제1 기판(13)을 상판으로 하여 열 화상 센서(16)의 주위의 공간을 밀봉하는 밀봉체 S1이 형성된다. 또, 제1 기판(13)으로의 제2 기판(14)의 상온 접합을 진공 분위기하에서 행함으로써, 밀봉체 S1의 내부 공간을 진공 상태로 할 수 있다.
제1 기판(13)으로의 제2 기판(14)의 적층을 행한 후, 도 6 (a)에 도시된 바와 같이, 제1 기판(13) 및 제2 기판(14)에 있어서의 소정의 절단 예정선을 따라서 레이저를 조사함으로써, 제1 기판(13) 및 제2 기판(14)의 내부에 개질층(改質層)(48)을 형성한다. 또한, 작업성의 관점에서는, 제1 기판(13)에 대한 개질층(48)의 형성을 먼저 실시해, 제2 기판(14)에 대한 개질층(48)의 형성을 행하는 것이 바람직하다.
개질층(48)을 형성한 후, 예를 들면 제2 기판(14)의 다른 면측에 확장 시트( expanded sheet)(49)를 부착한다. 그리고 확장 시트(49)를 면내 방향으로 신장시킴으로써, 도 6 (b)에 도시된 바와 같이, 개질층(48)을 따라서 제1 기판(13) 및 제2 기판(14)을 절단한다. 이것에 의해, 복합 센서(11)의 각 소자가 서로 분리되어, 도 1에 도시된 복합 센서(11)가 얻어진다.
이상 설명한 것처럼, 이 복합 센서(11)에서는, 열 화상 센서(16)의 배열 영역 R1과 거리 화상 센서(31)의 배열 영역 R2가 적층 방향에서 보았을 때 겹치도록 배치되어 있다. 이 때문에, 열 화상과 거리 화상을 동축에서 취득하는 것이 가능해져, 열 화상과 거리 화상 사이의 화상 불일치를 억제할 수 있다. 따라서 검지 대상물을 정밀도 좋게 검지할 수 있다. 또, 연산에 필요로 하는 시간의 단축 및 시간 분해능의 향상이 도모된다.
추가로, 이 복합 센서(11)에서는, 제1 기판(13)과 제2 기판(14)의 적층에 의해서 형성되는 밀봉체 S1에 의해서 열 화상 센서(16)의 주위의 공간이 진공 상태로 밀봉되어 있다. 이것에 의해, 거리 화상 센서(31)의 주위에서 발생하는 열이 열 화상 센서(16) 측에 영향을 미치는 것을 방지할 수 있어, 열 화상 센서(16)의 감도를 향상시킬 수 있다. 이것에 더하여, 열 화상 센서(16)를 배열하는 기판과 거리 화상 센서(31)를 배열하는 기판이 별체로 되어 있으므로, 센서에 최적인 제조 방법의 실시나, 신호의 판독 회로 등을 배치하기 위한 설계의 자유도를 확보할 수 있다.
또, 복합 센서(11)에서는, 제2 기판(14)에 있어서의 거리 화상 센서(31)의 배열 피치 W2는, 제1 기판(13)에 있어서의 열 화상 센서(16)의 배열 피치 W1 보다도 작게 되어 있다. 거리 화상 센서(31)에는, 전송 전극(43) 등의 구성요소가 포함되어 있고, 이들 구성요소가 열 화상 센서(16)를 차폐하는 차폐체가 되는 것을 생각할 수 있다. 이 때문에, 거리 화상 센서(31)의 배열 피치 W2가 열 화상 센서(16)의 배열 피치 W1과 동등 이상이면, 열 화상 센서(16)의 한 화소당의 차폐의 영향이 커져, 열 화상의 화질이 열화될 우려가 있다. 따라서 거리 화상 센서(31)의 배열 피치 W2를 열 화상 센서(16)의 배열 피치 W1 보다도 작게 함으로써, 열 화상 센서(16)의 한 화소당의 차폐의 영향이 억제되어, 열 화상의 화질을 담보할 수 있다.
또, 복합 센서(11)에서는, 중 적외 영역의 광을 통과시키는 광학 필터막(37)이 밀봉체 S1의 내벽면에 형성되어 있다. 이것에 의해, 공기 중의 수분이나 이산화탄소 등의 흡수에 의해서 영향을 받기 쉬운 파장 대역의 광을 컷할 수 있어, 열 화상 센서(16)의 감도를 한층 향상시킬 수 있다.
[제2 실시 형태]
도 7은 본 발명의 제2 실시 형태에 따른 복합 센서 모듈(50)을 나타내는 단면도이다. 동 도면에 도시된 바와 같이, 제2 실시 형태에 따른 복합 센서 모듈(50)은, 복합 센서(51)에 있어서의 제1 기판(13)과 제2 기판(14)의 접합 구조가 제1 실시 형태와 다르다.
보다 구체적으로는, 복합 센서(51)에서는, 제2 기판(14)의 다른 면측에 오목부(36)를 마련하지 않고, 제2 기판(14)의 다른 면측은 평탄면(平坦面)으로 되어 있다. 또, 광학 필터막(37)은, 제2 기판(14)의 다른 면측의 전면(全面)에 걸쳐서 형성되어 있다. 제1 기판(13)과 제2 기판(14)의 접합에 있어서는, 박재(52) 및 리드재(53)가 이용되어 있다. 박재(52)는 버퍼 메탈에 저융점 금속을 조합한 층으로, 예를 들면 Ti/Pt/Au 혹은 Cr/Ni/Au 등으로 이루어진다. 박재(箔材)(52)는 제1 기판(13)의 일면측과 제2 기판(14)의 다른 면측에 있어서, 예를 들면 전극 패드(32)와 겹치는 위치에 각각 환상(環狀)으로 배치되어 있다.
리드재(53)는, 예를 들면 코바르(kovar)로 이루어진 환상의 금속재이다. 리드재(53)는, 제1 기판(13)측의 박재(52)와 제2 기판측의 박재(52)의 사이에 끼워져 접합되어 있다. 이 리드재(53)의 개재(介在)에 의해, 제1 기판(13)과 제2 기판(14)은 리드재(53)의 두께에 대응하는 공간이 형성되어 있다. 그리고 제1 기판(13)의 일면측과 제2 기판(14)의 다른 면측과 리드재(53)에 의해서, 제1 기판(13)을 상판으로 하여 열 화상 센서(16)의 주위의 공간을 밀봉하는 밀봉체 S2가 형성되어 있다. 밀봉체 S2의 내부 공간은, 제1 실시 형태와 마찬가지로 진공 상태로 되어 있다.
이 복합 센서(51)를 제조함에 있어서는, 도 8 (a)에 도시된 바와 같이, 제1 기판(13) 및 제2 기판(14)을 각각 별체로 준비한다. 제1 기판(13)에는, 전극 패드(17), 절연막(19), 및 박재(52)를 미리 패턴 형성함과 아울러, 열 화상 센서(16)를 배열 영역 R1에 배열한다. 또, 제2 기판(14)에는, 예를 들면 증착 등에 의해서 광학 필터막(37)을 다른 면측에 형성한 후, 전극 패드(32), 절연막(34), 박재(52), 차광부(44), 및 거리 화상 센서(31)의 각 구성요소를 미리 패턴 형성한다.
다음으로, 도 8 (b)에 도시된 바와 같이, 열 화상 센서(16)의 배열 영역 R1과 거리 화상 센서(31)의 배열 영역 R2가 적층 방향에서 보았을 때 겹치도록 한 상태에서 박재(52, 52) 사이에 리드재(53)를 배치하고, 제1 기판(13)상에 제2 기판(14)을 적층한다. 이것에 의해, 제1 기판(13)을 상판으로 하여 열 화상 센서(16)의 주위의 공간을 밀봉하는 밀봉체 S2가 형성된다. 이 접합을 진공 분위기하에서 행함으로써, 밀봉체 S2의 내부 공간을 진공 상태로 할 수 있다.
제1 기판(13)으로의 제2 기판(14)의 적층을 행한 후, 도 9 (a)에 도시된 바와 같이, 제1 기판(13) 및 제2 기판(14)에 있어서의 소정의 절단 예정선을 따라서 레이저를 조사함으로써, 제1 기판(13) 및 제2 기판(14)의 내부에 개질층(54)을 형성한다. 또한, 작업성의 관점에서는, 제1 기판(13)에 대한 개질층(54)의 형성을 먼저 실시하고, 제2 기판(14)에 대한 개질층(54)의 형성을 행하는 것이 바람직하다.
개질층(54)을 형성한 후, 예를 들면 제2 기판(14)의 다른 면측에 확장 시트(49)를 부착한다. 그리고 확장 시트(49)를 면내 방향으로 신장시킴으로써, 도 9 (b)에 도시된 바와 같이, 개질층(54)을 따라서 제1 기판(13) 및 제2 기판(14)을 절단한다. 이것에 의해, 복합 센서(51)의 각 소자가 서로 분리되어, 도 7에 도시된 복합 센서(51)가 얻어진다.
이상과 같은 복합 센서(51)에 있어서도, 열 화상 센서(16)의 배열 영역 R1과 거리 화상 센서(31)의 배열 영역 R2가 적층 방향에서 보았을 때 겹치도록 배치되어 있다. 이 때문에, 열 화상과 거리 화상을 동축에서 취득하는 것이 가능해져, 열 화상과 거리 화상 사이의 화상 불일치를 억제할 수 있다. 따라서 검지 대상물을 정밀도 좋게 검지할 수 있다. 또, 연산에 필요로 하는 시간의 단축 및 시간 분해능의 향상이 도모된다.
또, 복합 센서(51)에 있어서도, 제1 기판(13)과 제2 기판(14)의 적층에 의해서 형성되는 밀봉체 S2에 의해서 열 화상 센서(16)의 주위의 공간이 진공 상태로 밀봉되어 있다. 이것에 의해, 거리 화상 센서(31)의 주위에서 발생하는 열이 열 화상 센서(16) 측에 영향을 미치는 것을 방지할 수 있어, 열 화상 센서(16)의 감도를 향상시킬 수 있다. 이것에 더하여, 열 화상 센서(16)를 배열하는 기판과 거리 화상 센서(31)를 배열하는 기판이 별체로 되어 있으므로, 센서에 최적인 제조 방법의 실시나, 신호의 판독 회로 등을 배치하기 위한 설계의 자유도를 확보할 수 있다.
또, 복합 센서(51)에 있어서도, 제2 기판(14)에 있어서의 거리 화상 센서(31)의 배열 피치 W2는, 제1 기판(13)에 있어서의 열 화상 센서(16)의 배열 피치 W1 보다도 작게 되어 있다. 따라서 열 화상 센서(16)의 한 화소당의 차폐의 영향이 억제되어, 열 화상의 화질을 담보할 수 있다. 추가로, 밀봉체 S2내의 광학 필터막(37)에 의해, 공기 중의 수분이나 이산화탄소 등의 흡수에 의해서 영향을 받기 쉬운 파장 대역의 광을 컷할 수 있어, 열 화상 센서(16)의 감도를 한층 향상시킬 수 있다.
1, 50: 복합 센서 모듈, 11, 51: 복합 센서,
12: 렌즈, 13: 제1 기판,
14: 제2 기판, 16: 열 화상 센서,
31: 거리 화상 센서, 37: 광학 필터막,
41: 수광부(전하 발생 영역), 42: 전하 수집 영역,
43: 전송 전극, R1: 열 화상 센서의 배열 영역,
R2: 거리 화상 센서의 배열 영역, S1, S2: 밀봉체,
W1: 열 화상 센서의 배열 피치, W2: 거리 화상 센서의 배열 피치.

Claims (5)

  1. 복수의 열전(熱電) 소자로 이루어진 열 화상 센서가 배열된 제1 기판과,
    입사광에 따라 전하를 발생시키는 전하 발생 영역과, 미리 부여되는 전하 전송 신호에 기초하여 상기 전하 발생 영역에서 발생한 전하를 소정의 전하 수집 영역에 전송하는 전송 전극을 가지는 거리 화상 센서가 배열된 제2 기판을 구비하고,
    상기 제2 기판은, 상기 열 화상 센서의 배열 영역과 상기 거리 화상 센서의 배열 영역이 적층 방향에서 보았을 때 겹치도록 상기 제1 기판에 적층되고,
    상기 제1 기판과 상기 제2 기판의 적층에 의해, 상기 제1 기판을 상판으로 하여 상기 열 화상 센서의 주위의 공간을 밀봉하는 밀봉체가 형성되어 있는 것을 특징으로 하는 복합 센서.
  2. 청구항 1에 있어서,
    상기 제2 기판에 있어서의 상기 거리 화상 센서의 배열 피치는, 상기 제1 기판에 있어서의 상기 열 화상 센서의 배열 피치보다도 작게 되어 있는 것을 특징으로 하는 복합 센서.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 밀봉체의 내벽면에는, 중(中) 적외 영역의 광을 통과시키는 광학 필터막이 형성되어 있는 것을 특징으로 하는 복합 센서.
  4. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 밀봉체의 내부는, 진공 상태로 되어 있는 것을 특징으로 하는 복합 센서.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 기재된 복합 센서와,
    상기 제2 기판에 있어서의 상기 거리 화상 센서의 배열 영역이 결상면(結像面)이 되도록 배치된 렌즈를 구비한 것을 특징으로 하는 복합 센서 모듈.
KR1020147027680A 2012-08-01 2013-04-16 복합 센서 및 복합 센서 모듈 KR101994508B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2012-171340 2012-08-01
JP2012171340A JP5909421B2 (ja) 2012-08-01 2012-08-01 複合センサ及び複合センサモジュール
PCT/JP2013/061296 WO2014020950A1 (ja) 2012-08-01 2013-04-16 複合センサ及び複合センサモジュール

Publications (2)

Publication Number Publication Date
KR20150039707A true KR20150039707A (ko) 2015-04-13
KR101994508B1 KR101994508B1 (ko) 2019-06-28

Family

ID=50027645

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147027680A KR101994508B1 (ko) 2012-08-01 2013-04-16 복합 센서 및 복합 센서 모듈

Country Status (7)

Country Link
US (1) US9476773B2 (ko)
EP (1) EP2881761B1 (ko)
JP (1) JP5909421B2 (ko)
KR (1) KR101994508B1 (ko)
CN (1) CN104508441B (ko)
TW (1) TWI576982B (ko)
WO (1) WO2014020950A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110914993B (zh) 2017-07-25 2023-08-15 索尼半导体解决方案公司 固态摄像装置
WO2020254152A1 (en) * 2019-06-18 2020-12-24 Ams International Ag Time of flight sensors with light directing elements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318165A (ja) 2000-05-08 2001-11-16 Seiko Precision Inc センサモジュール
WO2007086424A1 (ja) * 2006-01-25 2007-08-02 Hamamatsu Photonics K.K. 赤外線吸収体および熱型赤外線検出器
JP2009014459A (ja) * 2007-07-03 2009-01-22 Hamamatsu Photonics Kk 裏面入射型測距センサ及び測距装置
JP2011514709A (ja) 2008-02-01 2011-05-06 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 三次元アクティブ画像処理デバイス
JP2011232606A (ja) 2010-04-28 2011-11-17 Univ Of Tokyo 光学素子及び撮像装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214668A (ja) * 1997-11-20 1999-08-06 Nikon Corp 固体撮像装置、並びに受光素子
WO2007086421A1 (ja) 2006-01-26 2007-08-02 National University Corporation Hokkaido University 硬組織再生治療に用い得るハニカム状多孔質体
US8264673B2 (en) 2007-07-03 2012-09-11 Hamamatsu Photonics K.K. Back-illuminated distance measuring sensor and distance measuring device
JP5136110B2 (ja) 2008-02-19 2013-02-06 ソニー株式会社 固体撮像装置の製造方法
JP5620087B2 (ja) 2009-11-30 2014-11-05 浜松ホトニクス株式会社 距離センサ及び距離画像センサ
JP5589605B2 (ja) 2010-06-25 2014-09-17 セイコーエプソン株式会社 焦電型検出器、焦電型検出装置及び電子機器
CN102564601A (zh) * 2010-12-22 2012-07-11 精工爱普生株式会社 热式光检测装置、电子设备、热式光检测器及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318165A (ja) 2000-05-08 2001-11-16 Seiko Precision Inc センサモジュール
WO2007086424A1 (ja) * 2006-01-25 2007-08-02 Hamamatsu Photonics K.K. 赤外線吸収体および熱型赤外線検出器
JP2009014459A (ja) * 2007-07-03 2009-01-22 Hamamatsu Photonics Kk 裏面入射型測距センサ及び測距装置
JP2011514709A (ja) 2008-02-01 2011-05-06 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 三次元アクティブ画像処理デバイス
JP2011232606A (ja) 2010-04-28 2011-11-17 Univ Of Tokyo 光学素子及び撮像装置

Also Published As

Publication number Publication date
US9476773B2 (en) 2016-10-25
JP5909421B2 (ja) 2016-04-26
KR101994508B1 (ko) 2019-06-28
JP2014032045A (ja) 2014-02-20
TW201407746A (zh) 2014-02-16
WO2014020950A1 (ja) 2014-02-06
TWI576982B (zh) 2017-04-01
EP2881761A1 (en) 2015-06-10
EP2881761B1 (en) 2017-05-17
CN104508441B (zh) 2017-03-08
CN104508441A (zh) 2015-04-08
US20150211935A1 (en) 2015-07-30
EP2881761A4 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
JP5651746B2 (ja) イメージセンシング装置
CN108140125B (zh) 光学指纹成像系统和面阵传感器
US9587978B2 (en) Infrared sensor
WO2011129307A1 (ja) 赤外線センサの製造方法
US9054012B2 (en) Radiation detection apparatus and method of manufacturing the same
US11243118B2 (en) Electromagnetic wave sensor
JP2011220938A (ja) 赤外線センサの製造方法
KR101994508B1 (ko) 복합 센서 및 복합 센서 모듈
US20170122799A1 (en) Infrared sensor
JP2010251496A (ja) イメージセンサー
JP4740022B2 (ja) 光センサ及び物体検出方法
JP2011174763A (ja) 赤外線検出器
US10852194B2 (en) Light detector
US20220399466A1 (en) Graphene photodetector and photodetector array using same
JP2008277710A (ja) 受光素子およびそれを備えた表示装置
CN214122965U (zh) 自发光显示屏下光学指纹识别装置
TW202246840A (zh) 晶圓
JP4244125B2 (ja) 光電式エンコーダ
JP2012009707A (ja) 光センサー及び光センサーの製造方法
KR20080113623A (ko) 와이드 스펙트럼 영상 소자 및 그 제조방법
JP6160167B2 (ja) 分光センサー及びその製造方法
KR20230114680A (ko) 광학 디바이스
JP2014196909A (ja) 分光センサー及びその製造方法
JPH03136369A (ja) 密着イメージセンサ
JP2012127881A (ja) 赤外線センサおよび赤外線センサアレイ

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant