KR20150020334A - 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재,가스 센서 및 그 제조 방법 - Google Patents

금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재,가스 센서 및 그 제조 방법 Download PDF

Info

Publication number
KR20150020334A
KR20150020334A KR20130095125A KR20130095125A KR20150020334A KR 20150020334 A KR20150020334 A KR 20150020334A KR 20130095125 A KR20130095125 A KR 20130095125A KR 20130095125 A KR20130095125 A KR 20130095125A KR 20150020334 A KR20150020334 A KR 20150020334A
Authority
KR
South Korea
Prior art keywords
graphene
metal oxide
oxide semiconductor
nanostructure
gas sensor
Prior art date
Application number
KR20130095125A
Other languages
English (en)
Other versions
KR101521417B1 (ko
Inventor
김일두
최선진
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020130095125A priority Critical patent/KR101521417B1/ko
Publication of KR20150020334A publication Critical patent/KR20150020334A/ko
Application granted granted Critical
Publication of KR101521417B1 publication Critical patent/KR101521417B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0038Manufacturing processes for forming specific nanostructures not provided for in groups B82B3/0014 - B82B3/0033
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/487Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using electron radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

본 발명은 가스 센서용 부재, 이를 이용한 가스 센서 및 그 제조 방법에 관한 것으로서, 구체적으로는 광소결 공정을 이용하여 형성한 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재, 가스 센서 및 그 제조 방법에 관한 것이다.
본 발명은 금속산화물 반도체로 구성되는 복수의 나노 입자; 상기 복수의 나노 입자로 구성되는 1차원 또는 다차원 형상의 나노 구조체; 및 상기 나노 구조체의 표면에 결착하는 그래핀 촉매를 포함하여 구성되며, 상기 그래핀 촉매는 2차원의 평면 혹은 곡면 구조 그래핀 물질이 파쇄된 형상을 가지는 것을 특징으로 하는 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재를 구성함으로써, 간단한 검출 과정을 통하여 극미량의 가스를 검출해 낼 수 있는 높은 감도 특성과 함께, 다양한 가스에 대한 검출이 가능하도록 우수한 선택성을 가지고, 촉매로서 사용되는 그래핀 소재의 촉매 기능을 최대화할 수 있으며, 효율적인 공정으로 생산이 가능한 가스 센서용 부재, 가스 센서 및 그 제조 방법을 개시할 수 있는 효과를 갖는다.

Description

금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재,가스 센서 및 그 제조 방법 {Gas sensor and member using composite of metal oxide material semiconductor nano structure and graphene, and manufacturing method thereof}
본 발명은 가스 센서용 부재, 이를 이용한 가스 센서 및 그 제조 방법에 관한 것으로서, 구체적으로는 광소결 공정을 이용하여 형성한 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재, 가스 센서 및 그 제조 방법에 관한 것이다.
금속산화물 반도체는 특정 가스에 노출되었을 때, 그 표면에서의 흡착 및 탈착 반응을 통하여 상기 금속산화물 반도체의 전기전도도 내지는 저항값이 바뀌는 특성을 가지고 있고, 이러한 원리를 이용하여 특정 가스를 감지하는 화학 센서에 널리 이용되고 있다. 이에 대한 구체적인 예로서 유해 환경 가스인 SO2, NO, NO2, CO, CO2 등과 같은 가스를 감지하는 환경 가스 센서와 사람의 입에서 배출되는 날숨 가스인 아세톤, 톨루엔, H2S, NH3 등과 같은 휘발성 유기 화합물(Volatile Organic Compounds, VOCs) 가스를 감지하여 질병을 진단하는 날숨 센서 등을 들 수 있다.
특히, 최근 들어 질병의 조기 모니터링(monitoring)을 위해, 날숨 가스를 정밀하게 분석하는 가스 센서에 대한 관심이 크게 증대되고 있다. 사람의 날숨에 포함되어 있는 다종의 휘발성 유기화합물 가스들은 다양한 질병의 징후 인자(Bio marker)로 사용되고 있으며, 질병을 갖고 있는 사람들은 건강한 사람들과 비교할 때 상대적으로 높은 농도의 휘발성 유기화합물 가스를 날숨을 통해 배출하기 때문에, 그 농도를 정밀하게 분석해 냄으로써 질병의 유무를 판단할 수 있게 된다.
사람의 날숨에는 200 여종의 휘발성 유기 화합물 가스들이 방출되기 때문에, 날숨진단 센서에서는 우수한 선택성을 갖는 감지소재의 개발이 매우 중요하다. 또한 높은 감도와 우수한 선택성과 더불어, 센서의 반응속도와 회복속도 또한 중요한 인자이다. 왜냐하면 보통 사람의 경우 오랜 시간 동안 날숨을 불 수 없기 때문에, 날숨 센서로서 실용성을 가지기 위해서는 10 ~ 20 초 미만의 짧은 시간에 센서 측정이 완료되어야 하기 때문이다.
빠른 반응속도 특성을 나타내고 우수한 선택성을 가지는 감지소재를 제작하기 위하여, 최근 들어 나노촉매들이 결착된 나노구조체를 이용한 센서 개발이 활발히 이루어지고 있다. 금속산화물 반도체 기반 가스센서에서는 전류의 흐름이 중요하다. 과도한 전류가 흐르는 도체에서는 우수한 가스센서 특성을 기대할 수 없으며, 전류가 흐르지 않는 부도체의 경우 또한 우수한 가스센서 특성을 기대할 수 없다.
그래핀은 전기전도 특성(~64 mS/cm)이 매우 우수하여, 일정량 이상의 그래핀이 금속산화물 나노구조체와 복합화되어 감지소재로 사용이 되는 경우 감도 특성이 크게 떨어지게 된다. 이러한 감도 특성의 저하는 첨가된 그래핀이 그래핀 상호 간의 전기적 연결을 형성해 대부분의 전류가 그래핀을 통해 흐르게 되는 퍼콜레이션 (percolation) 특성으로 인하여, 측정하고자 하는 가스에 금속산화물 반도체-그래핀 복합 감지소재가 노출되었을 때, 금속산화물 반도체에서의 저항 변화가 크게 이루어지지 않아, 향상된 감지 특성을 나타내기 어렵기 때문이다.
따라서 금속산화물 반도체 나노구조체와 결착되는 그래핀의 크기가 센서 감지 특성에 중요한 역할을 하며, 그 결착 거동 및 결착된 그래핀의 크기를 손쉽게 조절할 수 있는 공정 기술이 필요하다.
가스감지 특성이 잘 나타나는 금속산화물 나노구조체 물질로는 주석산화물이 널리 사용되고 있다. 주석 산화물은 그래핀에 비하여 상대적으로 높은 저항(~ 수 kW - 수십 kW)을 나타내며, 표면에서 가스의 흡착 탈착 반응을 통해, 기본저항(base resistance)이 변화하면서 감도 특성이 전기적 신호로 나타나게 된다. 그러나 주석산화물 또한 특정가스에 대한 선택적 감지특성 및 반응속도 측면에서 개선이 필요하기 때문에 다양한 금속 촉매를 도포하여 그 특성들을 향상시키려는 노력이 시도되고 있다. 그래핀은 이러한 주석산화물의 선택적 가스감지 특성 및 빠른 반응속도 특성을 부여하기 위한 촉매로 사용될 수 있다. 그래핀의 도포량이 매우 적은 경우 그래핀의 촉매특성을 유도할 수 없다는 단점이 있으며, 그래핀 도포량이 상대적으로 많은 경우 우수한 전기전도 특성을 갖는 그래핀 촉매 간의 전기적 연결을 통하여 주석산화물 반도체의 전기적 특성변화를 감지하기 어렵다는 단점이 있다. 따라서 적당한 함량의 그래핀을 금속산화물 나노구조체와 복합시키는 기술이 필요하며, 그래핀을 이용한 촉매효과를 극대화하기 위해서는 넓은 2차원 구조를 가지는 그래핀 구조를 파쇄하여 불규칙한 형상으로 표면에 결착시키는 것이 바람직하다.
금속산화물 나노구조체에 적정량의 그래핀을 결착시키기 위해서는 그래핀 함량을 정밀하게 조절해야 한다는 점에서, 그 함량 조절의 어려움이 수반된다. 또한 2차원 구조의 판상구조를 가지는 그래핀의 경우, 금속산화물 나노구조체에 도포되는 과정에서 균일한 분산이 어려워 그래핀 촉매가 특정부분에 밀집되는 단점이 있다.
상기 그래핀 촉매의 함량조절 및 분산되어 금속산화물 나노구조체에 도포되는 어려움으로 인하여 손쉽게 파쇄된 그래핀 촉매를 균일하게 도포할 수 있는 공정 기술 개발이 필요하며, 또한 이를 통하여 보다 향상된 특성을 가지는 가스 센서용 부재 및 가스 센서를 개발할 수 있다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 간단한 검출 과정을 통하여 극미량의 가스를 검출해 낼 수 있는 높은 감도 특성과 함께, 다양한 가스에 대한 검출이 가능하도록 우수한 선택성을 가지고, 촉매로서 사용되는 그래핀 소재의 촉매 기능을 최대화할 수 있으며, 효율적인 공정으로 생산이 가능한 가스 센서용 부재, 이를 이용한 가스 센서 및 그 제조 방법을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위한 본 발명의 한 측면에 따른 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재 제조 방법은 (a) 복수의 금속산화물 반도체 나노 입자를 포함하여 구성되는 나노 구조체를 형성하는 단계; (b) 상기 나노 구조체에 그래핀 촉매 재료를 도포하는 단계; 및 (c) 상기 그래핀 촉매 재료가 도포된 나노 구조체에 광소결 공정을 거치는 단계를 포함하며, 상기 광소결 공정을 통하여 상기 그래핀 촉매 재료가 파쇄되어 상기 나노 구조체에 결착되는 것을 특징으로 한다.
여기서, 상기 (a) 단계에서, 화학적 합성 방법, 물리적 증착 방법 또는 전기방사법을 이용하여, 상기 나노 구조체를 형성할 수 있다.
또한, 상기 (b) 단계에서, 상기 그래핀 촉매 재료로서 단일층 그래핀, 다층 그래핀, 그래파이트(Graphite), 그래핀 산화물(Graphene Oxide), 또는 그래핀 양자점(Graphene Quantum Dots) 중 하나 혹은 둘 이상을 사용할 수 있다.
또한, 상기 (b) 단계에서, 상기 나노 구조체에 그래핀 촉매 재료를 도포함에 있어서, 스프레이 코팅, 드랍 코팅, 스크린 프린팅, 전기 방사를 통한 직접적인 코팅, 전사를 통한 코팅 중 하나의 방법을 이용할 수 있다.
또한, 상기 (b) 단계에서, 상기 그래핀 촉매 재료는 상기 금속산화물 반도체 나노 구조체에 대하여 0.001 wt% 내지 20 wt%의 범위 내에서 도포될 수 있다.
또한, 상기 (c) 단계에서, 제논(Xenon) 램프, 할로겐 램프, 나트륨 증기(Sodium-vapor) 램프, 수은 증기(Mercury-vapor) 램프 또는 레이져 중 어느 하나 또는 둘 이상을 함께 조사하여 광소결 공정을 진행할 수 있다.
또한, 상기 제논 램프를 이용하여 광소결 공정을 진행함에 있어, 광펄스(light pulse)를 1회 내지 30회의 범위 내에서, 켜짐 시간(On time)을 1 내지 100 밀리초(msec)의 범위 내에서, 꺼짐 시간(Off time)을 1 내지 100 밀리초(msec)의 범위 내에서, 전압은 0.1 내지 500 볼트(volt)의 범위 내에서 각각 조절함으로써, 최종 조사 에너지가 1 내지 100 J/cm2 의 범위 내에서 조사할 수 있다.
또한, 상기 전기방사법을 이용하여 상기 나노 구조체 중 나노섬유를 형성하는 경우, 상기 (a) 단계는, (a1) 금속산화물 전구체와 고분자가 용해되어 있는 방사 용액을 준비하는 단계; (a2) 상기 방사 용액을 전기방사하여, 상기 금속산화물 전구체와 상기 고분자가 복합된 복합 나노섬유를 형성하는 단계; 및 (a3) 상기 복합 나노섬유를 산화 분위기에서 열처리하여 금속산화물 반도체 나노섬유를 형성하는 단계를 포함할 수 있다.
본 발명의 다른 측면에 따른 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재는 금속산화물 반도체로 구성되는 복수의 성장 나노 입자의 배열을 포함하는 나노 구조체; 및 상기 나노 구조체의 표면에 결착하는 그래핀 촉매를 포함하여 구성되며, 상기 그래핀 촉매는 파쇄된 그래핀으로 이루어지는 것을 특징으로 한다.
여기서, 상기 그래핀 촉매는, 나노 입자, 나노 와이어(nano-wire), 나노 로드(nano-rod), 나노 조각 또는 그 복합 형상을 가지고, 그 크기는 1 nm 내지 500 nm의 범위 내에 있을 수 있다.
또한, 상기 나노 구조체는 그 표면에, 상기 복수의 나노 입자 사이에 가스가 드나들 수 있는 기공을 포함할 수 있다.
또한, 상기 나노 구조체는, 1차원의 나노섬유 형태를 가지거나, 평면 또는 곡면의 행태를 가지거나, 나노 튜브(tube) 형태를 가지거나, 중공(hollow sphere) 구조 내지 중공 반구(hollow hemisphere) 구조의 형태를 가지거나, 나노 입자 또는 나노 큐브(cube) 형태를 가지거나, 혹은 이중 둘 이상을 조합한 형태를 가질 수 있다.
또한, 상기 금속산화물 반도체는, ZnO, SnO2, WO3, Fe2O3, Fe3O4, NiO, TiO2, CuO, In2O3, Zn2SnO4, Li4Ti5O12, Li4Ti5O12, Co3O4, PdO, LaCoO3, NiCo2O4, Ca2Mn3O8, ZrO2, Al2O3, B2O3, V2O5, Cr3O4, CeO2, Pr6O11, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Ho2O3, Er2O3, Yb2O3, Lu2O3, Ag2V4O11, Ag2O, Li0 .3La0 .57TiO3, LiV3O8, RuO2, IrO2, MnO2, InTaO4, ITO, IZO, InTaO4, MgO, Li2MnO4, LiCoO2, LiMn2O4, Ga2O3, LiNiO2, CaCu3Ti4O12, Li(Ni,Mn,Co)O2, LiFePO4, Li(Mn, Co, Ni)PO4, Li(Mn,Fe)O2, Liy(Crx Mn2 -x)O4+z, LiCoMnO4, Ag3PO4, BaTiO3, NiTiO3, SrTiO3, Sr2Nb2O7, Sr2Ta2O7 , Ba0 .5Sr0 .5Co0 .8Fe0 .2O3 -7 중 하나 또는 둘 이상으로 구성될 수 있다.
또한, 상기 나노 구조체가 나노섬유의 형태를 가지는 경우, 상기 나노섬유의 직경은 50 nm 내지 3 μm의 범위를 가지고, 길이는 1 μm 내지 100 μm의 범위를 가질 수 있다.
본 발명에 따르면, 광소결 공정을 통하여 금속산화물 반도체 나노 구조체에 2차원 형상의 그래핀 소재를 파쇄하여 결착하여 복합체를 형성하고 가스 센서용 부재를 제작함으로써, 간단한 검출 과정을 통하여 극미량의 가스를 검출해 낼 수 있는 높은 감도 특성과 함께, 다양한 가스에 대한 검출이 가능하도록 우수한 선택성을 가지고, 촉매로서 사용되는 그래핀 소재의 촉매 기능을 최대화할 수 있으며, 효율적인 공정으로 생산이 가능한 가스 센서용 부재, 가스 센서 및 그 제조 방법을 개시할 수 있는 효과를 갖는다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 본 발명의 일 실시예에 따른 금속산화물 반도체 나노섬유와 그래핀의 복합체를 이용한 가스 센서용 부재의 모식도.
도 2는 본 발명의 일 실시예에 따른 전기방사법을 이용한 금속산화물 반도체 나노섬유와 그래핀의 복합체를 이용한 가스 센서 제조 방법의 순서도.
도 3은 본 발명의 일 실시예에 따른 주석산화물 전구체/고분자 복합 나노섬유의 주사전자현미경(SEM) 사진.
도 4는 본 발명의 일 실시예에 따른 주석산화물 전구체/고분자 복합 나노섬유의 열처리를 거친 후의 주사전자현미경 사진.
도 5는 본 발명의 일 실시예에 따른 주석산화물 반도체 나노섬유에 2차원 구조 그래핀 산화물을 도포한 후의 주사전자현미경 사진.
도 6은 본 발명의 일 실시예에 따른 주석산화물 반도체 나노섬유에 그래핀 산화물 0.5 wt%를 도포하고 광소결 공정을 거친 후의 주사전자현미경 사진.
도 7은 본 발명의 일 실시예에 따른 주석산화물 반도체 나노섬유에 그래핀 산화물 1 wt%를 도포하고 광소결 공정을 거친 후의 주사전자현미경 사진.
도 8은 본 발명의 일 실시예에 따른 주석산화물 반도체 나노섬유에 그래핀 산화물 2 wt%를 도포하고 광소결 공정을 거친 후의 주사전자현미경 사진.
도 9는 본 발명의 일 실시예에 따른 주석산화물 반도체 나노섬유에 그래핀 산화물 5 wt%를 도포하고 광소결 공정을 거친 후의 주사전자현미경 사진.
도 10은 본 발명의 일 실시예에 따른 주석산화물 반도체 나노섬유 및 0.5 wt%, 1 wt% 그래핀 산화물을 이용한 가스 센서의 250 °C에서 H2S 가스(1-5 ppm)에 대한 반응성 그래프.
도 11은 본 발명의 일 실시예에 따른 주석산화물 반도체 나노섬유 및 0.5 wt%, 1 wt% 그래핀 산화물을 이용한 가스 센서의 350 °C에서 아세톤 가스(1-5 ppm)에 대한 반응성 그래프.
도 12는 본 발명의 일 실시예에 따른 주석산화물 반도체 나노섬유 및 0.5 wt%, 1 wt% 그래핀 산화물을 이용한 가스 센서의 450 °C에서 톨루엔 가스(1-5 ppm)에 대한 반응성 그래프.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 이하에서는 특정 실시예들을 첨부된 도면을 기초로 상세히 설명하고자 한다.
본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되는 것은 아니며, 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
이하, 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재, 가스 센서 및 그 제조 방법에 대해서 첨부된 도면을 참조하여 자세히 설명한다.
본 발명은 종래 기술에서 금속산화물 반도체 나노 구조체, 특히 1차원 구조의 금속산화물 반도체 나노섬유(110)를 사용하여 가스 센서를 구성할 경우, 극미량의 가스를 검출하는데 필요한 고감도 특성 및, 응용 분야에 따라 다양하게 요구될 수 있는 다양한 가스에 대한 선택성을 갖추기 어렵고, 또한 이를 개선하기 위하여 금속 또는 금속산화물 촉매를 추가하는 경우 그 공정이 복잡해지고 시간과 비용이 많이 소모될 수 있고, 또 다른 개선 방법으로 과도한 양의 그래핀 촉매를 추가하는 경우 2차원 구조를 가지는 그래핀에 의하여 가스의 흡착이 차단되는 문제가 발생하는 바, 상기 그래핀 촉매의 2차원 구조를 파쇄하여 상기 금속산화물 반도체 나노 구조체에 결착시킬 경우, 가스가 금속산화물 반도체 나노 구조체에 쉽게 흡착할 수 있고, 이와 함께 그래핀에 의하여 촉매 기능을 개선할 수 있다는 점 등을 감안하여, 광소결 공정을 이용하여 상기 금속산화물 반도체 나노 구조체에 평면 또는 곡면의 2차원 구조 그래핀 촉매를 파쇄하여 결착시킴으로써, 간단한 검출 과정을 통하여 극미량의 가스를 검출해 낼 수 있는 높은 감도 특성과 함께, 다양한 가스에 대한 검출이 가능하도록 우수한 선택성을 가지고, 촉매로서 사용되는 그래핀 소재의 촉매 기능을 최대화할 수 있으며, 효율적인 공정으로 생산이 가능한 가스 센서용 부재, 가스 센서 및 그 제조 방법을 구현하는 것을 특징으로 하는 것이다.
도 1은 본 발명의 일 실시예에 따른 금속산화물 반도체 나노섬유(110)와 그래핀의 복합체를 이용한 가스 센서용 부재(100)의 모식도를 도시하고 있다. 전기방사를 통하여 제작된 금속산화물 반도체 나노섬유(110)의 표면은 다소 매끄러우면서 나노크기 수준의 작은 금속산화물 입자로 구성될 수 있다. 여기에 2차원 구조를 가지는 그래핀 촉매 재료를 도포한 후, 광소결 공정을 거치면 평면 혹은 곡면의 2차원 구조 그래핀 촉매 재료가 파쇄되어 나노 입자 형상(122), 나노 로드(nano-rod) 또는 나노 와이어(nano-wire) 형상(124), 나노 조각 형상 또는 그 복합 형상(126)을 가지는 그래핀 촉매(120)로 변형된다. 여기서, 나노 로드라 함은 그 직경이 나노 미터 단위를 가지는 막대 모양의 물체를 말하고, 나노 조각이라 함은 그 크기가 나노 미터 단위를 가지는 조각(fragment)를 말한다.
또한, 상기 금속산화물 반도체 나노섬유(110)는 그래핀 촉매 재료의 도포량에 따라 금속산화물 입자 성장의 차이를 보일 수 있다. 광소결에 의한 빛에너지의 열에너지 변환으로 금속산화물 나노섬유를 구성하는 나노입자의 입자성장이 관찰되는데, 그래핀의 함량에 따라서, 그래핀이 광소결 에너지를 흡수하게 됨에 따라, 입자성장의 정도가 달라지게 된다. 상기의 과정을 거쳐 전체적으로 나노섬유의 형상을 유지하면서도 미세한 금속산화물 입자가 성장(grain growth)된 형상의 입자를 포함하여 구성되는 금속산화물 반도체 나노섬유(110)를 형성하게 된다.
그런데, 그래핀은 탄소 원자의 평면 구조 결합을 통하여 형성되므로, 기본적으로 넓은 2차원의 평면 구조를 가지게 된다. 이에 따라, 이를 상기 금속산화물 반도체 나노섬유(110)에 결착시킬 경우, 상기 그래핀은 외부의 가스가 금속산화물 반도체 나노섬유(110)에 도달하여 흡착하는 것을 방해하게 된다. 따라서, 2차원 형상의 그래핀을 촉매로서 상기 금속산화물 반도체 나노섬유(110)에 결착하는 것만으로는 가스 감지 특성을 개선하는데 한계를 가지게 되고, 여기서 더 나아가 상기 2차원 형상의 그래핀 촉매 재료를 파쇄하여 분산시킴으로써 외부 가스가 상기 금속산화물 반도체 나노섬유(110)에 원활하게 접근하여 흡착할 수 있게 하고, 이와 함께 상기 그래핀의 촉매로서의 기능을 활성화하여, 가스 감지 성능을 더욱 개선할 수 있게 된다.
이때, 상기 그래핀 촉매 재료로서는 단일층 그래핀, 다층 그래핀, 그래파이트(Graphite), 그래핀 산화물(Graphene Oxide), 또는 그래핀 양자점(Graphene Quantum Dots) 중 하나를 사용하거나, 이 중 둘 이상을 혼합하여 사용하는 것도 가능하다. 상기 그래핀 촉매 재료가 파쇄되어 그래핀 촉매(120)로 상기 금속산화물 반도체 나노섬유(110)에 결착될 수 있는데, 이때 상기 그래핀 촉매(120)도 또한, 나노 입자, 나노 와이어(nano-wire), 나노 로드(nano-rod), 나노 조각의 형상을 가지거나 또는 위 형상들이 복합된 형상을 가질 수도 있다. 이때, 상기 그래핀 촉매(120)들의 크기는 촉매로서의 기능 및 외부 가스의 원활한 침투 내지 흡착을 고려할 때 1nm 내지 500nm의 범위 내에서 정하여 지는 것이 바람직하다.
또한, 상기 그래핀 촉매(120)의 비율을 결정함에 있어서는, 그래핀 촉매(120)에 의한 촉매 기능과 외부 가스의 원활한 침투 및 흡착을 고려하여, 상기 금속산화물 반도체 나노 구조체 대비 0.001 wt% 내지 20 wt%의 범위 내에서 선택하는 것이 적절하다.
상기 나노 구조체는 1차원의 나노섬유 형태에 한정되지 않고 금속산화물 입자들로 구성된 구조체라면 특정 구조에 제약을 두지 않으며, 보다 구체적으로는 평면 또는 곡면의 2차원 행태를 가지거나, 나노 튜브(nano-tube), 중공(hollow sphere) 구조 내지 중공 반구(hollow hemisphere) 구조의 형태, 나노 큐브(nano-cube) 또는 입자의 형태를 가지거나, 혹은 위와 같은 형태들 중 둘 이상을 조합한 형태를 가질 수도 있다.
상기 금속산화물 나노 입자를 구성하는 금속산화물 반도체는, 가스가 주입되었을 때 저항 변화를 나타내는 금속산화물 반도체라면 특별한 제한이 없이 사용될 수 있으나, 보다 구체적으로는, ZnO, SnO2, WO3, Fe2O3, Fe3O4, NiO, TiO2, CuO, In2O3, Zn2SnO4, Li4Ti5O12, Li4Ti5O12, Co3O4, PdO, LaCoO3, NiCo2O4, Ca2Mn3O8, ZrO2, Al2O3, B2O3, V2O5, Cr3O4, CeO2, Pr6O11, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Ho2O3, Er2O3, Yb2O3, Lu2O3, Ag2V4O11, Ag2O, Li0 .3La0 .57TiO3, LiV3O8, RuO2, IrO2, MnO2, InTaO4, ITO, IZO, InTaO4, MgO, Li2MnO4, LiCoO2, LiMn2O4, Ga2O3, LiNiO2, CaCu3Ti4O12, Li(Ni,Mn,Co)O2, LiFePO4, Li(Mn, Co, Ni)PO4, Li(Mn,Fe)O2, Liy(Crx Mn2 -x)O4+z, LiCoMnO4, Ag3PO4, BaTiO3, NiTiO3, SrTiO3, Sr2Nb2O7, Sr2Ta2O7 , Ba0 .5Sr0 .5Co0 .8Fe0 .2O3 -7 중 하나 또는 둘 이상으로 구성하는 것이 바람직하다.
상기 복수의 금속산화물 나노 입자는 상기 그래핀 촉매 재료의 파쇄를 위한 광소결 공정에서 성장을 통하여 불규칙한 형태 및 크기를 가지게 될 수 있고, 이러한 성장에 따라 미세한 입자로 구성되어 촘촘한 구조를 가져 기공이 형성되지 못했던 상기 나노 구조체가 불규칙한 입자의 성장에 따라 기공을 형성할 수 있게 되고, 이로 인하여 외부 가스가 흡착할 수 있는 비표면적이 넓어지게 되어, 가스 감지 성능이 개선될 수도 있다. 또한 상기 금속산화물 반도체 나노 구조체와 센서용 기판 간의 접착력을 강화시킬 수 있게 되어 기계적으로도 보다 안정적인 구조를 가질 수 있다.
특히, 상기 금속산화물 반도체 나노 구조체가 나노 섬유의 형상을 가질 경우, 상기 나노섬유의 직경은 50 nm 내지 3 μm의 범위를 가지고, 길이는 1 μm 내지 100 μm의 범위를 가지는 것이 가스 감지 성능 및 생산 공정의 측면에서 바람직하다.
또한, 광소결을 통하여 그래핀 촉매 재료를 파쇄하는 공정에서는 그래핀 촉매 재료의 도포량에 따라 상기 금속산화물 반도체 나노 구조체에 결착하는 양을 조절하여 촉매에 따른 특성 변화의 정도를 선택할 수도 있다. 또한, 이때 순간적인 광펄스를 이용함으로써 짧은 시간 내에 공정을 진행할 수 있고, 또한 추가 공정에 의한 기판 등의 손상을 방지할 수 있으며, 이에 더하여 다종의 금속산화물에 대하여 다양한 함량의 그래핀 촉매 재료를 도포한 후, 동시에 광소결 공정을 거침으로써 한꺼번에 다양한 금속산화물 나노 구조체-그래핀 복합 감지 소재를 이용한 다종의 가스 센서용 부재를 쉽고 빠르게 제작할 수 있다는 장점도 가질 수 있다.
도 2는 본 발명의 일 실시예에 따른 전기방사법을 이용한 금속산화물 반도체 나노섬유(110)와 그래핀의 복합체를 이용한 가스 센서 제조 방법의 순서도를 도시하고 있다. 도 2에서 볼 수 있는 바와 같이, 본 발명의 일 실시예에 따른 전기방사법을 이용한 금속산화물 반도체 나노섬유(110)를 이용한 가스 센서의 제조 방법은, 전기방사법을 이용하여 금속산화물 전구체/고분자의 복합 나노섬유를 형성하는 단계(S210), 상기 복합 나노섬유에 대한 열처리를 통하여 금속산화물 반도체 나노섬유(110)를 형성하는 단계(S220), 상기 금속산화물 반도체 나노섬유(110)를 센서위에 코팅하는 단계(S230), 상기 코팅된 금속산화물 반도체 나노섬유(110)에 그래핀 촉매(120) 재료를 도포하는 단계(S240), 및 광소결 공정을 통하여 금속산화물 반도체 나노섬유(110)와 그래핀의 복합체를 이용한 가스 센서를 형성하는 단계(S250)를 포함하여 구성될 수 있다.
먼저, 전기방사법을 이용하여 금속산화물 전구체/고분자의 복합 나노섬유를 형성하는 단계(S210)에 대하여 살핀다.
상기, 금속산화물 전구체/고분자의 복합 나노섬유를 형성하는 것은, 이를 이용하여 금속산화물 반도체 나노섬유(110)를 형성하기 위한 것이다. 그러나, 금속산화물 반도체 나노섬유(110)는 전기방사법을 이용하는 상기의 단계를 거치지 않고도, 화학적 합성 방법, 물리적 증착방법 등에 의한 성장 방법 등을 이용하여 제작될 수도 있으며, 이외에도 금속산화물 반도체 나노섬유(110)가 적절하게 형성될 수 있다면 다른 방법도 특별한 제한 없이 사용할 수 있다.
상기한 제작 방법들 중 다양한 금속산화물 반도체 나노섬유(110)를 손쉽게 만들 수 있는 전기방사법을 이용하는 방법이 많이 사용되고 있으며, 이하에서도 상기 전기방사법을 이용하여 상기 금속산화물 전구체/고분자의 복합 나노섬유를 형성한 후, 이를 이용하여 상기 금속산화물 반도체 나노섬유(110)를 형성하는 과정에 대하여 설명한다.
전기방사법을 이용하여 금속산화물 전구체/고분자의 복합 나노섬유를 형성하는 단계(S210)는 (a1) 금속산화물 전구체와 고분자가 용해되어 있는 방사 용액을 준비하는 단계 및 (a2) 상기 방사 용액을 전기방사하여, 상기 전구체와 상기 고분자가 복합된 복합 나노섬유를 형성하는 단계를 포함하여 구성될 수 있다
금속산화물 전구체는 열처리를 통해 금속산화물을 형성할 수 있는 금속이온을 포함하는 염, 예를 들면 유기산염, 할로겐염, 무기산염, 알콕시염, 설파이드염, 아미드염 등이 될 수 있다. 구체적으로, 아세테이트, 클로라이드, 아세틸아세토네이트, 나이트레이트, 메톡시드, 에톡시드, 부톡시드, 이소프로폭시드, 설파이드, 옥시트리이소프로폭시드, (에틸 또는 세틸에틸) 헥사노에이트, 부타노에이트, 에틸아미드, 아미드 등의 형태를 가지는 금속염 중에서 선택된 어느 하나 내지는 둘 이상의 혼합염이 사용될 수 있다.
또한, 상기 고분자는 PVAc(폴리비닐아세테이트), PVP(폴리비닐피롤리돈), PVA(폴리비닐알콜), PEO(폴리에틸렌 옥사이드), PANi(폴리아닐린), PAN(폴리아크릴로니트릴), PMMA(폴리메틸메타아크릴레이트), PAA(폴리아크릴산), 또는 PVC(폴리비닐클로라이드)가 될 수 있으며, 용매에 용해되어 고분자 나노섬유를 형성할 수 있는 고분자라면 특별한 제한없이 사용될 수 있다.
금속염을 녹일 수 있는 용매는 비점이 물보다 높은 용매, 바람직하게는 비점이 100 ~ 170 °C인 용매를 사용할 수 있다. 예를 들면, 디메틸포름아미드(DMF, 비점: 153 °C) 등을 들 수 있지만, 이에 한정되지는 않는다. 경우에 따라서는 비점이 물보다 낮은 용매를 사용할 수도 있다.
상기 방사 용액은 용질인 금속산화물 전구체 및 고분자의 함량, 및 용매의 함량을 조절하여 제조될 수 있다. 예를 들면, 방사 용액은 금속산화물 전구체를 5 ~ 30 중량비(wt%)의 범위 내에서, 고분자를 5 ~ 20 중량비(wt%)의 범위 내에서 포함하고 나머지 중량비에 해당하는 용매를 포함하여 구성될 수 있다. 상기 고분자와 상기 금속산화물 전구체를 모두 첨가한 후 교반하게 되는데, 교반 온도는 25 ~ 80 °C, 교반 시간은 1 ~ 48 시간이 될 수 있다.
방사 용액을 제조한 후 전기방사하여 상기 금속산화물 전구체와 상기 고분자가 복합화된 금속산화물 전구체/고분자 복합 나노섬유를 형성하게 된다. 전기방사법을 실시하기 위한 전기방사 장치는 방사 용액을 정량적으로 투입할 수 있는 정량 펌프에 연결된 분사 노즐, 고전압 발생기, 접지된 전도성 기판으로 구성된다. 전도성 기판은 금속판이고, 상기 금속판과 10 cm ~ 20 cm의 거리를 두고 떨어져 있는 방사 노즐(needle)을 이용하여 전기방사한다. 전기방사 시 작동 전압은 8 ~ 30 kV가 될 수 있다. 또한, 전기방사 시 방사 노즐의 구멍 크기, 토출 속도, 방사 용액에서 금속산화물 전구체의 농도, 방사 길이에 따라 나노섬유의 직경을 조절할 수 있다.
전기방사에 의해, 금속산화물 전구체와 상기 고분자가 복합화된 금속산화물 전구체/고분자 복합 나노섬유를 형성할 수 있고, 상기 복합 나노섬유는 웹(web)의 형태를 가질 수 있다.
다음으로, 상기 복합 나노섬유에 대한 열처리를 통하여 금속산화물 반도체 나노섬유(110)를 형성하는 단계(S220)에 대하여 살핀다.
전기방사 후, 형성된 금속산화물 전구체와 상기 고분자가 복합화된 금속산화물 전구체/고분자 복합 나노섬유를 열처리한다. 열처리는 복합 섬유 내에 포함된 고분자를 탄화시키거나 제거하는 동시에, 금속산화물 전구체를 산화시켜 금속산화물을 형성할 수 있게 한다. 전기방사와 열처리 공정을 이용하여 제작된 1차원 구조의 금속산화물 반도체 나노섬유(110)의 평균 직경은 50 nm ~ 3 μm가 될 수 있다.
상기한 나노섬유의 제조 방법은 제조된 상기 금속산화물 반도체 나노섬유(110)를 분쇄하는 단계를 더 포함할 수 있다. 나노섬유를 분쇄하는 과정에서 긴 나노섬유가 짧아져 나노로드(nano-rod) 형태를 가질 수도 있다.
이어서, 상기 금속산화물 반도체 나노섬유(110)를 센서 전극 위에 코팅하는 단계(S230)에 대하여 살핀다.
상기 금속산화물 반도체 나노섬유(110)를 센서 전극 위에 코팅함에 있어서, 스프레이 코팅, 드랍 코팅, 스크린 프린팅, 전기 방사를 통한 직접적인 코팅, 전사를 통한 코팅 중 하나의 방법을 이용할 수 있고, 이외에도 상기 금속산화물 반도체 나노섬유(110)를 센서 전극위에 적절하게 코팅할 수 있는 방법이라면 특별히 제한을 둘 이유가 없다.
다음으로, 상기 코팅된 금속산화물 반도체 나노섬유(110)에 그래핀 촉매(120) 재료를 도포하는 단계(S240)에 대하여 살핀다.
먼저 용매에 상기 그래핀 촉매(120) 재료를 분산 시킨 다음, 스프레이 코팅, 드랍 코팅, 스크린 프린팅, 전기 방사를 통한 직접적인 코팅, 전사를 통한 코팅 중 하나 또는 둘 이상의 방법을 이용하여, 상기 코팅된 금속산화물 반도체 나노섬유에 상기 그래핀 촉매(120) 재료를 도포할 수 있다. 이때, 상기 그래핀 촉매(120) 재료를 골고루 분산시키기 위하여 초음파분산 등의 방법을 이용하는 것도 가능하다.
마지막으로 광소결 공정을 통하여 금속산화물 반도체 나노섬유(110)와 그래핀의 복합체를 이용한 가스 센서를 형성하는 단계(S250)에 대하여 살핀다.
광소결(Intense Pulsed Light sintering) 공정은 제논 램프 등의 광원을 이용하여 원하는 파장 영역(또는 전 영역)의 빛을 일정 에너지로 1 msec 에서 수초, 더욱 바람직하게는 1 msec ~ 100 msec 동안 매우 짧은 시간 동안 가시 광선 영역의 빛이 조사되는 소결 방식으로 빛을 이용하여 짧은 시간 동안 물질 내부에 직접 소결을 할 수 있다는 점에서 금속염을 환원 또는 산화시키는 과정의 공정시간을 줄일 수 있고 또한 기타 공정으로 인한 오염을 줄일 수도 있다. 제논 램프(xenon lamp)를 이용한 광소결 과정은 순간적으로 조사된 에너지에 따라서 낮게는 450 °C 에서 높게는 6300 °C 의 온도까지 순간적으로 도달이 되기 때문에, 매우 짧은 펄스 동안에도 효과적인 소결을 유도할 수 있는 장점이 있다.
광소결 공정에서는 광펄스(Light Pulse), 켜짐 시간(On Time), 꺼짐 시간(Off Time), 전압(Voltage) 그리고 파장 영역 등이 중요한 조절 변수들이며, 최적화 과정을 거쳐 광소결 공정을 진행한다. 이때, 사용된 그래핀 촉매(120) 재료가 파쇄되어 금속산화물 반도체 나노섬유(110)에 효과적으로 결착될 수 있도록 적절한 광에너지 범위를 선정하는 것이 중요하며, 일반적으로 광에너지는 1 - 100 J/cm2 의 범위에서 사용된다.
또한 광소결 처리는 수초 이하에서 이루어질 수 있으므로 필요에 따라 여러번 반복적으로 펄스 형태로 제논 램프를 조사하여 광소결 처리를 할 수도 있다. 사용되는 물질에 따라서 1 회의 펄스 조사로도 소결이 이루어질 수 있으며, 소결이 잘 일어나지 않는 경우 30 회 정도까지 조사 횟수를 늘릴 수도 있다. 상기의 광소결 과정을 거치면 2차원 구조를 가지는 그래핀 촉매(120) 재료를 효과적으로 파쇄시킬 수 있으며, 동시에 상기 금속산화물 반도체 나노섬유(110)와 기판 간의 결착력을 높여 기계적 안정성을 부여할 수 있다. 제논 플래쉬(flash) 램프를 이용하지 않는, 일반적인 전기로(furnace) 소결의 경우, 승온과 고온 유지 그리고 로 냉각 등 오랜 시간이 소요가 되는 단점이 있으며, 그래핀 촉매 재료의 불규칙한 나노 입자(122), 나노 로드, 나노 와이어(124), 나노 조각 및 그 복합 형상(126)을 가지는 그래핀 촉매(120)를 형성하기 어려울 뿐만 아니라, 센서 칩 전체가 전기로 내부에 삽입 되어야 하기 때문에, 오염원에 노출될 염려가 있고, 또한 플라스틱 기판의 경우 기판의 손상이 이루어질 수도 있다.
특히 제논 플래쉬 램프를 이용한 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재의 제작에 있어서, 10 종 이상의 금속산화물에 그래핀 촉매(120) 재료가 도포된 어레이(array)들이 연속적으로 놓여져 있을 때, 한번의 광소결 조사로 다종의 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재를 제작할 수 있는 장점이 있으며, 센서 웨이퍼(wafer) 단위의 광소결 또한 가능하여, 수백종 내지는 수천종의 센서 어레이에 있어서도 펄스 타입의 광소결을 통해서 다종의 복합 소재를 손쉽고, 빠르게 제조할 수 있는 장점이 있다.
또한, 상기한 광소결 공정을 통하여 가스 감지 성능과 선택성이 뛰어난 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재를 보다 빠르고 손쉽게 제작할 수 있고, 대량으로 생산할 수 있다는 장점 및 금속산화물 반도체 나노 구조체와 기판 사이의 결착을 통한 기계적 안정성이라는 장점도 함께 얻을 수 있다.
특히, 금속산화물 반도체 나노 구조체 대비 그래핀 촉매(120) 재료의 도포량을 다양하게 하여 광소결 공정을 진행할 경우, 파쇄된 그래핀의 결착 정도 및 형상을 조절함으로써, 다양한 특성을 가지는 센서를 제작하는 것도 가능해 진다.
이렇게 광소결 공정을 통하여 제작된 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재(100)는 2차원 구조를 가지는 그래핀 촉매(120) 재료가 파쇄되어 가스가 쉽게 침투할 수 있을 뿐만 아니라, 파쇄된 그래핀 촉매(120)에 의한 촉매 작용을 이용하여 사람의 날숨 가스에 대한 우수한 감도 특성을 활용한 질병 감지 센서로서도 응용될 수 있다.
덧붙여, 광소결 공정에 있어서, 사용할 수 있는 램프는 제논 램프에 한정되지 아니하고, 이외에도 할로겐 램프, 나트륨 증기(Sodium-vapor) 램프, 수은 증기(Mercury-vapor) 램프 또는 레이져 중 어느 하나 또는 둘 이상을 함께 조사하여 공정을 진행하는 것도 가능하다.
아래에서는 실시예를 통하여 본 발명을 보다 상세히 설명한다. 다만, 이는 본 발명을 보다 상세히 설명하기 위한 일 실시예이며, 본 발명이 이에 한정되는 것은 아니다.
실시예 1: 주석산화물 반도체 나노섬유(110)의 제조 및 그래핀 산화물 도포 과정
중량 평균 분자량 1,300,000 g/mol을 가지는 PVP(Polyvinylpyrrolidone) (Aldrich) 0.2 g과 중량평균분자량 350,000 g/mol을 가지는 PMMA(Poly methyl methacrylate) 0.2 g을 3 ml의 Dimethyl formamide(DMF)(Aldrich)용액에 25 °C에서 녹인다.
이 용액에 주석산화물 전구체인 Tin acetate(IV) 0.4 g(Aldrich)과 아세트산 0.11 g(Junsei Chemical)을 넣고 25 °C에서 48 시간 동안 500 RPM으로 교반하여 방사 용액을 제조하였다. 전기방사 직전, 방사 용액을 5 분간 초음파 세척기에서 분산시키고 이를 12 ml 용량의 플라스틱 주사기에 넣는다.
상대 습도 30% 이하, 온도 15 °C 이하의 조건에서 1 ml/분의 토출 속도를 유지하며, 전기방사를 실시하였다. 주사 바늘은 집전판과 수직하고 10 cm의 거리를 유지하며 일정한 속도로 좌우로 움직였다. 스테인리스 판을 나노섬유 수거를 위해 주사 바늘 바로 아래쪽의 집전판 위에 위치시킨 후에, 주사 바늘에는 15 kV의 양극 전압을 걸고, 집전판은 접지를 하여 주석산화물 전구체/고분자 복합 섬유를 집전체 위에 수득하였다. 빠른 수율을 위해서는 수십 내지 수천 개의 주사 바늘(전기방사 노즐)을 사용하여 방사할 수도 있다.
1 시간 이상 방사 후 충분한 양의 나노섬유가 쌓였을 때, 스테인리스 판 위에 쌓인 주석산화물 전구체/고분자 복합 섬유를 공기 분위기(산화 분위기)에서 열처리하였다. 열처리는 Ney사의 Vulcan 3-550 소형 전기로에서 대기 분위기로 500 ℃까지 가열 후(승온 속도: 4 °C/분), 이를 1시간 유지시키고 하강 온도 4 °C/분으로 상온까지 냉각시켰다. 이때, 높은 열처리 온도로 인하여 나노섬유의 템플레이트(template)로 사용된 나노섬유 내부의 고분자는 타서 제거되고, 내부에 용해되어 있는 주석산화물 전구체들이 산화되어 주석산화물이 형성된다.
도 3은 본 발명의 일 실시예에 따른 실시예 1에서의 주석산화물 전구체/고분자 복합 나노섬유의 주사전자현미경(SEM) 사진이다. 나노섬유는 매끈한 표면 형상을 가짐과 동시에 직경은 약 500 ~ 700 nm의 분포를 가지는 것을 확인할 수 있다.
도 4는 본 발명의 일 실시예에 따른 실시예 1의 주석산화물 전구체/고분자 복합 나노섬유의 열처리를 거친 후의 주사전자현미경 사진이다. 도 3의 내부 고분자가 열처리를 거쳐 제거되었기 때문에 직경은 300 ~ 400 nm 로 수축된 분포를 나타낸다. 여기서 주석산화물을 구성하는 입자는 나노 크기 수준으로 매우 미세한 입자 크기를 가지며 입자 간의 응집을 통해 매우 치밀한 나노섬유 형상을 나타낸다.
이어서, 형성된 주석산화물 반도체 나노섬유(110)를 알루미나 기판 상단에 코팅하였다. 주석산화물 반도체 나노섬유(110)를 분산할 수 있는 적합한 용매에 분산한 후, 코팅 방법 중 하나인 드랍 코팅 방법을 사용하여 상기 기판상에 코팅하였다. 상기 드랍 코팅 방법 이외에, 바인더와 주석산화물 나노섬유를 페이스트(paste) 형태로 섞어서, 센서 전극 위에 스크린 프린팅한 후에, 열처리를 거쳐 제조할 수도 있다. 또한, 센서 전극 위에 균일하게 감지 소재를 코팅할 수 있는 방법이면 다른 코팅 방법이라도 특별한 제약없이 사용할 수 있다.
이어서, 그래핀 산화물의 도포를 위해서 20 ml의 물에 그래핀 산화물 20 mg이 분산된 용액을 이용하여 상기 센서 전극 위에 코팅된 주석산화물 반도체 나노섬유(110)의 상단에 도포하였다. 도포하는 방법으로 드랍 코팅 방법을 이용하여, 상기 금속산화물 반도체 나노섬유(110)의 상단에 코팅하였다. 그래핀 산화물의 코팅량은 주석산화물 대비 0.5, 1.0, 2.0, 5.0 wt%(중량비)가 되도록 주석산화물 상단에 도포하는 과정을 거쳤다.
도 5는 본 발명의 일 실시예에 따른 주석산화물 반도체 나노섬유(110)에 2차원 구조 그래핀 산화물을 도포한 후의 주사전자현미경 사진을 도시하고 있다. 광소결 공정 이전 단계로, 2차원 구조의 그래핀 산화물이 주석산화물 반도체 나노섬유(110)의 상단에 펼쳐져서 결착된 형상을 나타냄을 확인할 수 있다.
다음으로, 광펄스(Light Pulse) 3회, 켜짐 시간(On Time)을 15 msec, 꺼짐 시간(Off Time)을 30 msec, 전압(Voltage)은 310 V로 변수들을 조절하여 최종 파워가 30 J/cm2이 되도록 맞춘 후 광소결 공정을 실시하였다. 이때, 광소결 공정을 실시함에 있어 샘플과 광소결 렌즈의 거리는 7 mm로 유지하였다.
도 6은 본 발명의 일 실시예에 따른 주석산화물 반도체 나노섬유(110)를 알루미나 기판 상단에 코팅하여 주석산화물 대비 0.5 wt%의 2차원 구조 그래핀 산화물을 도포한 후, 30 J/cm2의 에너지로 광소결 공정을 거친 후의 주사전자현미경 사진이다. 광소결 공정을 거침으로 인하여 2차원 구조를 가지던 그래핀 산화물이 파쇄되어 나노 입자, 나노 로드, 나오 와이어, 나노 조각 및 그 복합 형상을 나타내는 것을 확인할 수 있으며, 부수적으로 주석산화물의 입자가 성장한 형상을 가지는 것을 알 수 있다.
도 7은 본 발명의 일 실시예에 따른 주석산화물 반도체 나노섬유(110)를 알루미나 기판 상단에 코팅하여 주석산화물 대비 1 wt%의 2차원 구조 그래핀 산화물을 도포한 후, 30 J/cm2의 에너지로 광소결 공정을 거친 후의 주사전자현미경 사진이다. 광소결 공정을 거침으로 인하여 2차원 구조를 가지던 그래핀 산화물이 파쇄되어 나노 입자, 나노 로드, 나오 와이어, 나노 조각 및 그 복합 형상을 나타내는 것을 확인할 수 있으며 2 wt%의 그래핀 산화물을 도포한 것에 비하여 더 많은 파쇄된 그래핀 산화물이 표면에 결착 및 응집을 이룬 것을 확인할 수 있다.
도 8은 본 발명의 일 실시예에 따른 주석산화물 반도체 나노섬유(110)를 알루미나 기판 상단에 코팅하여 주석산화물 대비 2 wt%의 2차원 구조 그래핀 산화물을 도포한 후, 30 J/cm2의 에너지로 광소결 공정을 거친 후의 주사전자현미경 사진이다. 광소결 공정을 거침으로 인하여 2차원 구조를 가지던 그래핀 산화물이 파쇄되어 나노 입자, 나노 로드, 나오 와이어, 나노 조각 및 그 복합 형상을 나타내는 것을 확인할 수 있으며 1 wt%의 그래핀 산화물을 도포한 것에 비하여 더 많은 파쇄된 그래핀 산화물이 표면에 결착 및 응집을 이룬 것을 확인할 수 있다.
도 9는 본 발명의 일 실시예에 따른 주석산화물 반도체 나노섬유(110)를 알루미나 기판 상단에 코팅하여 주석산화물 대비 5 wt%의 2차원 구조 그래핀 산화물을 도포한 후, 30 J/cm2의 에너지로 광소결 공정을 거친 후의 주사전자현미경 사진이다. 광소결 공정을 거침으로 인하여 2차원 구조를 가지던 그래핀 산화물이 파쇄되어 나노 입자, 나노 로드, 나오 와이어, 나노 조각 및 그 복합 형상을 나타내는 것을 확인할 수 있으며 2 wt%의 그래핀 산화물을 도포한 것에 비하여 더 많은 파쇄된 그래핀 산화물이 표면에 결착 및 응집을 이룬 것을 확인할 수 있다.
실험예 1. 금속산화물 반도체 나노섬유(110)와 그래핀의 복합체를 이용한 가스 센서 제조 및 특성 평가
날숨 센서를 제조하기 위하여, 주석산화물 반도체 나노섬유(110)를 에탄올에 분산시킨 후 10 분간 초음파 세척을 통한 분쇄 과정을 거친다. 분쇄 과정 중에서 제작된 주석산화물 반도체 나노섬유(110)는 길이 방향으로 더욱 짧아진 나노 로드(nano-rod)나 더욱 분쇄된 나노 입자 형태를 나타내기도 한다.
고르게 분쇄된 주석산화물 반도체 나노섬유(110)를 700 μm의 간격으로 떨어져 있는 두 평행한 금(Au) 전극이 형성된 3 mm x 3 mm 크기의 알루미나 기판 상부에 드랍 코팅(Drop Coating) 방법을 이용하여 코팅하였다. 코팅 과정은 마이크로 피펫을 이용하여 3 μl의 주석산화물 반도체 나노섬유(110)/에탄올 혼합액을 센서 전극이 형성된 알루미나 기판 상부에 도포한 후, 80 °C 핫플레이트 상에서 건조시키는 과정을 거쳤다. 이 과정을 2~3 회 반복하여 충분한 양의 주석산화물 반도체 나노섬유(110)가 알루미나 기판 상부에 코팅되도록 하였다.
광소결 공정은 실시예 1에 자세히 기술한 바와 같이, 알루미나 기판 상단에 코팅된 주석산화물 반도체 나노섬유(110)에 서로 다른 함량의 그래핀 산화물을 도포한 후, 광소결 공정을 거쳐 그래핀 산화물을 나노 입자, 나노 로드, 나노 와이어, 나노 조각 또는 그 복합 형상으로 변형시켜 주석산화물 반도체 나노섬유(110) 표면에 결착시켰다. 특성 비교를 위해, 주석산화물 반도체 나노섬유(110)에 그래핀 촉매 재료를 도포하지 않고 광소결 공정을 거치지 않은 상태로 센서를 제작한 후, 동일한 센서 측정 환경에서 비교 평가하였다.
날숨 센서 특성 평가는 사람의 입에서 나오는 기체와 유사한 습도인 85 ~ 95 RH%의 상대 습도에서 각각 구취 진단, 당뇨 진단 및 폐암 진단을 위한 지표 가스인 H2S, 아세톤, 톨루엔 가스의 농도를 5, 4, 3, 2, 1 ppm으로 변화시키면서, 센서 구동 온도를 각각 250, 350, 450 °C로 설정하여 각 가스에 대한 반응도 특성을 평가하였다. 본 실시예서는 휘발성 유기 화합물 가스의 대표적인 예인 황화수소(H2S), 아세톤 (CH3COCH3), 톨루엔 (C6H5CH3)에 대하여 실험예를 구성하였으나, 신장병의 바이오마커인 암모니아, 천식의 바이오마커인 NO 가스 등에 대해서도 유사한 방법으로 손쉽게 테스트를 진행할 수 있다.
도 10은 250 °C에서 H2S 가스의 농도가 5, 4, 3, 2, 1 ppm으로 감소할 때의 반응도(Rair/Rgas ,, 여기서 Rair는 공기가 주입될 때의 금속산화물 소재의 저항값, Rgas는 H2S 가스가 주입될 때의 금속산화물 소재의 저항값)를 시간에 따라 나타낸 것이다.
도 10에 나타난 바와 같이, 주석산화물 반도체 나노섬유(110)에 각각 그래핀 산화물 0.5, 1 wt%를 도포한 후, 30 J/cm2의 에너지로 광소결을 거쳐 형성된 주석산화물 반도체 나노섬유(110)와 그래핀의 복합체를 이용한 가스 센서는 광소결 처리를 거치지 않은 주석산화물 반도체 나노섬유(110)를 이용한 가스 센서에 비하여 각각 최대 8.11, 4.04 배 더 높은 반응 특성을 나타내는 것을 알 수 있다.
도 11은 350 °C에서 아세톤 가스의 농도가 5, 4, 3, 2, 1 ppm으로 감소할 때의 반응도 값을 시간에 따라 나타낸 것이다.
도 11에서 볼 수 있는 바와 같이, 주석산화물 반도체 나노섬유(110)에 각각 그래핀 산화물 0.5, 1 wt%를 도포한 후, 30 J/cm2의 에너지로 광소결을 거쳐 형성된 주석산화물 반도체 나노섬유(110)와 그래핀의 복합체를 이용한 가스 센서는 광소결 처리를 거치지 않은 주석산화물 반도체 나노섬유(110)를 이용한 가스 센서에 비하여 각각 최대 2.44, 2.52 배 더 높은 반응 특성을 나타내는 것을 알 수 있다.
도 12는 450 °C에서 톨루엔 가스의 농도가 5, 4, 3, 2, 1 ppm으로 감소할 때의 반응도 값을 시간에 따라 나타낸 것이다.
도 12에 나타난 바와 같이, 주석산화물 반도체 나노섬유(110)에 각각 그래핀 산화물 0.5, 1 wt%를 도포한 후, 30 J/cm2의 에너지로 광소결을 거쳐 형성된 주석산화물 반도체 나노섬유(110)와 그래핀의 복합체를 이용한 가스 센서는 광소결 처리를 거치지 않은 주석산화물 반도체 나노섬유(110)를 이용한 가스 센서에 비하여 각각 최대 1.86, 1.47 배 더 높은 반응 특성을 나타내는 것을 확인할 수 있다.
상기의 실험예에서는 휘발성 유기 화합물 가스를 예시로 하여 실험 결과를 보여주었지만, 대표적인 유해 환경 가스들인 H2, NOx, CO, SOx 등에 대해서도 우수한 센서 감지 특성을 기대할 수 있으며, 광소결 과정을 거쳐 제조된 입자가 성장된 다양한 금속산화물 반도체 가스 센서 부재들을 배열(array)화 함으로써, 유해 환경 가스 감지 및 날숨 진단의 반응 감도와 선택성을 높일 수도 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 기재된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의해서 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
100 : 금속산화물 반도체 나노섬유 가스 센서용 부재
110 : 금속산화물 반도체 나노섬유
120 : 그래핀 촉매
122 : 나노 입자 그래핀 촉매
124 : 나노 와이어 그래핀 촉매
126 : 복합 형상 그래핀 촉매

Claims (14)

  1. (a) 복수의 금속산화물 반도체 나노 입자를 포함하여 구성되는 나노 구조체를 형성하는 단계;
    (b) 상기 나노 구조체에 그래핀 촉매 재료를 도포하는 단계; 및
    (c) 상기 그래핀 촉매 재료가 도포된 나노 구조체에 광소결 공정을 거치는 단계를 포함하며,
    상기 광소결 공정을 통하여 상기 그래핀 촉매 재료가 파쇄되어 상기 나노 구조체에 결착되는 것을 특징으로 하는,
    금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재 제조 방법.
  2. 제 1항에 있어서,
    상기 (a) 단계에서,
    화학적 합성 방법, 물리적 증착 방법 또는 전기방사법을 이용하여,
    상기 나노 구조체를 형성하는 것을 특징으로 하는,
    금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재 제조 방법.
  3. 제 1항에 있어서,
    상기 (b) 단계에서,
    상기 그래핀 촉매 재료로서 단일층 그래핀, 다층 그래핀, 그래파이트(Graphite), 그래핀 산화물(Graphene Oxide), 또는 그래핀 양자점(Graphene Quantum Dots) 중 하나 혹은 둘 이상을 사용하는 것을 특징으로 하는,
    금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재 제조 방법.
  4. 제 1항에 있어서,
    상기 (b) 단계에서,
    상기 나노 구조체에 그래핀 촉매 재료를 도포함에 있어서,
    스프레이 코팅, 드랍 코팅, 스크린 프린팅, 전기 방사를 통한 직접적인 코팅, 전사를 통한 코팅 중 하나의 방법을 이용하는 것을 특징으로 하는,
    금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재 제조 방법.
  5. 제 1항에 있어서,
    상기 (b) 단계에서,
    상기 그래핀 촉매 재료는 상기 금속산화물 반도체 나노 구조체에 대하여 0.001 wt% 내지 20 wt%의 범위 내에서 도포되는 것을 특징으로 하는,
    금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재 제조 방법.
  6. 제 1항에 있어서,
    상기 (c) 단계에서,
    제논(Xenon) 램프, 할로겐 램프, 나트륨 증기(Sodium-vapor) 램프, 수은 증기(Mercury-vapor) 램프 또는 레이져 중 어느 하나 또는 둘 이상을 함께 조사하여 광소결 공정을 진행하는 것을 특징으로 하는,
    금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재 제조 방법.
  7. 제 6항에 있어서,
    상기 제논 램프를 이용하여 광소결 공정을 진행함에 있어,
    광펄스(light pulse)를 1회 내지 30회의 범위 내에서, 켜짐 시간(On time)을 1 내지 100 밀리초(msec)의 범위 내에서, 꺼짐 시간(Off time)을 1 내지 100 밀리초(msec)의 범위 내에서, 전압은 0.1 내지 500 볼트(volt)의 범위 내에서 각각 조절함으로써,
    최종 조사 에너지가 1 내지 100 J/cm2 의 범위 내에서 조사되는 것을 특징으로 하는,
    금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재 제조 방법.
  8. 제 2항에 있어서,
    상기 전기방사법을 이용하여 상기 나노 구조체 중 나노섬유를 형성하는 경우,
    상기 (a) 단계는,
    (a1) 금속산화물 전구체와 고분자가 용해되어 있는 방사 용액을 준비하는 단계;
    (a2) 상기 방사 용액을 전기방사하여, 상기 금속산화물 전구체와 상기 고분자가 복합된 복합 나노섬유를 형성하는 단계; 및
    (a3) 상기 복합 나노섬유를 산화 분위기에서 열처리하여 금속산화물 반도체 나노섬유를 형성하는 단계를 포함하는 것을 특징으로 하는,
    금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재 제조 방법.
  9. 금속산화물 반도체로 구성되는 복수의 성장 나노 입자의 배열을 포함하는 나노 구조체; 및
    상기 나노 구조체의 표면에 결착하는 그래핀 촉매를 포함하여 구성되며,
    상기 그래핀 촉매는 파쇄된 그래핀으로 이루어지는 것을 특징으로 하는,
    금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재.
  10. 제 9항에 있어서,
    상기 그래핀 촉매는,
    나노 입자, 나노 와이어(nano-wire), 나노 로드(nano-rod), 나노 조각 또는 그 복합 형상을 가지고,
    그 크기는 1 nm 내지 500 nm의 범위 내에 있는 것을 특징으로 하는,
    금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재.
  11. 제 9항에 있어서,
    상기 나노 구조체는 그 표면에,
    상기 복수의 나노 입자 사이에 가스가 드나들 수 있는 기공을 포함하는 것을 특징으로 하는,
    금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재.
  12. 제 9항에 있어서,
    상기 나노 구조체는,
    1차원의 나노섬유 형태를 가지거나, 평면 또는 곡면의 행태를 가지거나, 나노 튜브(tube) 형태를 가지거나, 중공(hollow sphere) 구조 내지 중공 반구(hollow hemisphere) 구조의 형태를 가지거나, 나노 입자 또는 나노 큐브(cube) 형태를 가지거나, 혹은 이중 둘 이상을 조합한 형태를 가지는 것을 특징으로 하는,
    금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재.
  13. 제 9항에 있어서,
    상기 금속산화물 반도체는,
    ZnO, SnO2, WO3, Fe2O3, Fe3O4, NiO, TiO2, CuO, In2O3, Zn2SnO4, Li4Ti5O12, Li4Ti5O12, Co3O4, PdO, LaCoO3, NiCo2O4, Ca2Mn3O8, ZrO2, Al2O3, B2O3, V2O5, Cr3O4, CeO2, Pr6O11, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Ho2O3, Er2O3, Yb2O3, Lu2O3, Ag2V4O11, Ag2O, Li0.3La0.57TiO3, LiV3O8, RuO2, IrO2, MnO2, InTaO4, ITO, IZO, InTaO4, MgO, Li2MnO4, LiCoO2, LiMn2O4, Ga2O3, LiNiO2, CaCu3Ti4O12, Li(Ni,Mn,Co)O2, LiFePO4, Li(Mn, Co, Ni)PO4, Li(Mn,Fe)O2, Liy(Crx Mn2 -x)O4+z, LiCoMnO4, Ag3PO4, BaTiO3, NiTiO3, SrTiO3, Sr2Nb2O7, Sr2Ta2O7, Ba0 .5Sr0 .5Co0 .8Fe0 .2O3 -7 중 하나 또는 둘 이상으로 구성되는 것을 특징으로 하는,
    금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재.
  14. 제 12항에 있어서,
    상기 나노 구조체가 나노섬유의 형태를 가지는 경우,
    상기 나노섬유의 직경은 50 nm 내지 3 μm의 범위를 가지고, 길이는 1 μm 내지 100 μm의 범위를 가지는 것을 특징으로 하는,
    금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재.
KR1020130095125A 2013-08-12 2013-08-12 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재,가스 센서 및 그 제조 방법 KR101521417B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130095125A KR101521417B1 (ko) 2013-08-12 2013-08-12 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재,가스 센서 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130095125A KR101521417B1 (ko) 2013-08-12 2013-08-12 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재,가스 센서 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20150020334A true KR20150020334A (ko) 2015-02-26
KR101521417B1 KR101521417B1 (ko) 2015-05-21

Family

ID=52579148

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130095125A KR101521417B1 (ko) 2013-08-12 2013-08-12 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재,가스 센서 및 그 제조 방법

Country Status (1)

Country Link
KR (1) KR101521417B1 (ko)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833707A (zh) * 2015-05-29 2015-08-12 南京信息工程大学 一种平面气敏传感元件及其制备方法
KR101686398B1 (ko) * 2015-07-15 2016-12-15 인하대학교 산학협력단 메탈-옥사이드-탄소 구조의 복합체
CN107748192A (zh) * 2017-10-12 2018-03-02 黄晓敏 一种多层石墨烯气体传感器
KR20180063471A (ko) * 2016-12-02 2018-06-12 한국과학기술원 2차원 다공성 금속산화물 나노시트 가스 감지 물질 및 그 제조 방법
KR20190136437A (ko) * 2018-05-30 2019-12-10 고려대학교 산학협력단 가스 검출용 복합체, 그 제조 방법, 상기 가스 검출용 복합체를 포함하는 가스 센서 및 그 제조 방법
KR20200039989A (ko) * 2018-10-08 2020-04-17 한국과학기술원 1차원 나노섬유 구조에 마약감지용 색변화 염료 물질이 결착된 마약 지시용 복합 고분자 나노섬유 멤브레인 색변화 센서 및 그 제조방법
KR20210008189A (ko) * 2019-07-10 2021-01-21 한국생산기술연구원 금속산화물 나노복합체의 제조방법
CN114014313A (zh) * 2022-01-06 2022-02-08 河北化工医药职业技术学院 一种石墨烯基气敏材料及其制备方法
KR20220073679A (ko) * 2020-11-26 2022-06-03 한국과학기술연구원 금속화합물-다층 그래핀으로 이루어진 핵-껍질 양자점을 포함하는 가스 센서 및 그 제조방법
EP4012809A1 (en) * 2020-12-09 2022-06-15 Gnanomat SL Catalyst and metal-air battery
WO2022239910A1 (ko) * 2021-05-13 2022-11-17 서울여자대학교 산학협력단 체취 휘발성 표지물질 기반 피부노화 진단을 위한 흡착제 및 이의 제조방법
KR20230042872A (ko) * 2021-09-23 2023-03-30 한국생산기술연구원 다공성 금속산화물 그래핀볼-촉매 구조의 에틸렌 검출용 이중 다공성 구조체 및 이를 이용한 센서
KR20230050077A (ko) 2021-10-07 2023-04-14 전남대학교산학협력단 금속 그래핀 복합 구조 히트파이프 및 이의 제조 방법
KR20230050531A (ko) 2021-10-07 2023-04-17 전남대학교산학협력단 금속 그래핀 복합 구조 히트스프레더 제조 방법 및 이에 의해 제조된 히트스프레더

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102065844B1 (ko) * 2018-06-13 2020-01-13 인천대학교 산학협력단 할로겐 히터를 이용한 3차원 그래핀 구조체 형성장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101195869B1 (ko) * 2010-07-30 2012-10-30 연세대학교 산학협력단 촉매 연소법을 이용한 다공성 플러렌의 합성방법
KR101255217B1 (ko) * 2010-12-07 2013-04-23 한국과학기술연구원 다공성 금속산화물 나노섬유 및 그 제조방법

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833707B (zh) * 2015-05-29 2018-03-30 南京信息工程大学 一种平面气敏传感元件及其制备方法
CN104833707A (zh) * 2015-05-29 2015-08-12 南京信息工程大学 一种平面气敏传感元件及其制备方法
KR101686398B1 (ko) * 2015-07-15 2016-12-15 인하대학교 산학협력단 메탈-옥사이드-탄소 구조의 복합체
KR20180063471A (ko) * 2016-12-02 2018-06-12 한국과학기술원 2차원 다공성 금속산화물 나노시트 가스 감지 물질 및 그 제조 방법
CN107748192A (zh) * 2017-10-12 2018-03-02 黄晓敏 一种多层石墨烯气体传感器
KR20190136437A (ko) * 2018-05-30 2019-12-10 고려대학교 산학협력단 가스 검출용 복합체, 그 제조 방법, 상기 가스 검출용 복합체를 포함하는 가스 센서 및 그 제조 방법
KR20200039989A (ko) * 2018-10-08 2020-04-17 한국과학기술원 1차원 나노섬유 구조에 마약감지용 색변화 염료 물질이 결착된 마약 지시용 복합 고분자 나노섬유 멤브레인 색변화 센서 및 그 제조방법
KR20210008189A (ko) * 2019-07-10 2021-01-21 한국생산기술연구원 금속산화물 나노복합체의 제조방법
KR20220073679A (ko) * 2020-11-26 2022-06-03 한국과학기술연구원 금속화합물-다층 그래핀으로 이루어진 핵-껍질 양자점을 포함하는 가스 센서 및 그 제조방법
WO2022123098A1 (es) * 2020-12-09 2022-06-16 Gnanomat S.L. Catalizador y batería de metal-aire
EP4012809A1 (en) * 2020-12-09 2022-06-15 Gnanomat SL Catalyst and metal-air battery
WO2022239910A1 (ko) * 2021-05-13 2022-11-17 서울여자대학교 산학협력단 체취 휘발성 표지물질 기반 피부노화 진단을 위한 흡착제 및 이의 제조방법
US11980867B2 (en) 2021-05-13 2024-05-14 Seoul Women's University Industry-University Cooperation Foundation Adsorbent for skin aging diagnosis based on body odor volatile marker and method for preparing same
KR20230042872A (ko) * 2021-09-23 2023-03-30 한국생산기술연구원 다공성 금속산화물 그래핀볼-촉매 구조의 에틸렌 검출용 이중 다공성 구조체 및 이를 이용한 센서
KR20230050077A (ko) 2021-10-07 2023-04-14 전남대학교산학협력단 금속 그래핀 복합 구조 히트파이프 및 이의 제조 방법
KR20230050531A (ko) 2021-10-07 2023-04-17 전남대학교산학협력단 금속 그래핀 복합 구조 히트스프레더 제조 방법 및 이에 의해 제조된 히트스프레더
CN114014313B (zh) * 2022-01-06 2022-03-22 河北化工医药职业技术学院 一种石墨烯基气敏材料及其制备方法
CN114014313A (zh) * 2022-01-06 2022-02-08 河北化工医药职业技术学院 一种石墨烯基气敏材料及其制备方法

Also Published As

Publication number Publication date
KR101521417B1 (ko) 2015-05-21

Similar Documents

Publication Publication Date Title
KR101521417B1 (ko) 금속산화물 반도체 나노 구조체와 그래핀의 복합체를 이용한 가스 센서용 부재,가스 센서 및 그 제조 방법
KR101400605B1 (ko) 광소결을 이용한 금속산화물-촉매 복합 소재와 그 제조 방법 및 이를 이용한 날숨 진단 및 유해환경 모니터링 센서
KR101753953B1 (ko) 나노입자 촉매가 포함된 아포페리틴을 이용하여 기능화된 1 차원 나노튜브 구조를 갖는 금속산화물 반도체 및 이를 이용한 가스센서용 부재, 가스센서 및 그 제조방법
KR101633549B1 (ko) 다결정 나노섬유, 마이크로입자 및 나노입자로 구성된 복합 금속산화물 감지소재, 이를 이용한 가스센서 및 그 제조 방법
KR101633554B1 (ko) 아포페리틴 내부에 포함된 이종의 나노입자 촉매로부터 기능화된 나노입자 촉매를 포함하는 금속산화물 반도체 나노섬유 및 이를 이용한 가스센서용 부재, 가스센서 및 그 제조방법
JP4523582B2 (ja) 金属酸化物ガスセンサの製造方法
KR101430398B1 (ko) 금속산화물 나노로드와 그래핀 복합체, 그의 제조 방법 및 이를 포함하는 센서
KR101552323B1 (ko) 페리틴을 이용한 나노 촉매를 포함하는 다공성 금속산화물 반도체 나노 구조체를 이용한 가스 센서용 부재, 가스 센서 및 그 제조 방법
KR101665911B1 (ko) 다결정 나노섬유, 마이크로입자 및 나노입자로 구성된 복합 금속산화물 감지소재, 이를 이용한 가스센서 및 그 제조 방법
KR101552326B1 (ko) 금속산화물 반도체 나노섬유와 이중 촉매를 이용한 가스 센서용 부재 및 그 제조 방법
KR101430397B1 (ko) 그래핀, 나노입자 및 금속산화물 나노로드의 복합체, 그의 제조 방법 및 이를 포함하는 센서
KR101559465B1 (ko) 입자 성장된 금속산화물 반도체 나노 구조체를 이용한 가스 센서용 부재,가스 센서 및 그 제조 방법
KR101719422B1 (ko) 나노입자가 분산된 에멀전 용액으로부터 기능화된 촉매를 포함하는 다공성 금속산화물 복합체 나노섬유 및 이를 이용한 가스 센서 및 그 제조 방법
Wei et al. Synthesis, characterization and acetone-sensing properties of bristlegrass-like ZnO nanostructure
KR101859832B1 (ko) 광소결을 통한 상변화 및 입성장 된 3차원 나노계층구조 금속산화물 감지층을 이용한 가스 센서용 부재, 가스 센서 및 그 제조 방법
KR101893267B1 (ko) 나노입자 촉매로부터 기능화된 상호 연결된 다차원 기공 구조를 가지는 금속산화물 반도체 나노섬유 기반 가스센서용 부재 및 그 제조방법
KR101893326B1 (ko) 나노입자 촉매로부터 기능화된 상호 연결된 다차원 기공 구조를 가지는 금속산화물 반도체 나노섬유 기반 가스센서용 부재 및 그 제조방법
KR101684738B1 (ko) 촉매가 결착된 희생층 템플레이트로부터 전사되어 얻어진 촉매를 포함하는 다공성 금속산화물 반도체 나노섬유 제조방법 및 이를 이용한 가스 센서
KR101539526B1 (ko) 다중 기공 분포 구조를 갖는 금속산화물 나노섬유, 이의 제조 방법 및 이를 포함하는 가스 센서
KR101714961B1 (ko) 촉매가 결착된 희생층 템플레이트로부터 전사되어 얻어진 촉매를 포함하는 다공성 금속산화물 반도체 나노섬유 제조방법 및 이를 이용한 가스 센서
KR101746301B1 (ko) 계층적 중공 구조를 갖는 복합 금속산화물 및 그 제조 방법
KR101829120B1 (ko) 나노 금속 촉매가 결착된 다공성 3차원 계층구조 촉매-금속산화물 복합 나노응집체, 이를 이용한 가스 센서용 부재 및 가스 센서용 부재의 제조 방법
KR102092452B1 (ko) 나노입자 촉매와 다중채널 기공이 포함된 금속산화물 나노섬유를 이용한 가스센서용 부재, 가스센서 및 그 제조방법
KR101738774B1 (ko) 다중 기공과 나노촉매를 포함하는 금속산화물 복합 나노튜브, 이의 제조 방법 및 이를 포함하는 가스 센서
Ksapabutr et al. Fundamentals of electrospinning and safety

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180425

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190429

Year of fee payment: 5