KR20150019091A - 반도체 소자 및 그 제조 방법 - Google Patents

반도체 소자 및 그 제조 방법 Download PDF

Info

Publication number
KR20150019091A
KR20150019091A KR20130095490A KR20130095490A KR20150019091A KR 20150019091 A KR20150019091 A KR 20150019091A KR 20130095490 A KR20130095490 A KR 20130095490A KR 20130095490 A KR20130095490 A KR 20130095490A KR 20150019091 A KR20150019091 A KR 20150019091A
Authority
KR
South Korea
Prior art keywords
region
semiconductor pattern
transistor
channel region
pattern
Prior art date
Application number
KR20130095490A
Other languages
English (en)
Other versions
KR102069609B1 (ko
Inventor
양정길
김상수
권태용
허성기
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020130095490A priority Critical patent/KR102069609B1/ko
Priority to US14/274,861 priority patent/US9466601B2/en
Priority to DE102014110425.0A priority patent/DE102014110425B4/de
Priority to TW103127010A priority patent/TWI714520B/zh
Priority to TW108139294A priority patent/TW202005054A/zh
Priority to CN201410393679.5A priority patent/CN104377197B/zh
Priority to CN201910747785.1A priority patent/CN110400803B/zh
Publication of KR20150019091A publication Critical patent/KR20150019091A/ko
Priority to US15/249,518 priority patent/US9711506B2/en
Priority to US15/615,643 priority patent/US10177150B2/en
Application granted granted Critical
Publication of KR102069609B1 publication Critical patent/KR102069609B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0924Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L2029/7858Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET having contacts specially adapted to the FinFET geometry, e.g. wrap-around contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

반도체 소자가 제공된다. 제 1 영역 및 제 2 영역을 포함하는 기판이 제공되고, 상기 제 1 영역 상에 제공되고 상기 기판으로부터 돌출된 제 1 채널 영역을 포함하는 제 1 트랜지스터 및 상기 제 2 영역 상에 제공되고 제 2 채널 영역 및 상기 기판과 상기 제 2 채널 영역 사이로 연장되는 게이트 전극을 포함하는 제 2 트랜지스터가 제공된다. 상기 제 1 채널 영역은 상기 제 2 채널 영역과 다른 물질을 포함하는 하부 반도체 패턴 및 상기 제 2 채널 영역과 같은 물질을 포함하는 상부 반도체 패턴을 포함한다.

Description

반도체 소자 및 그 제조 방법{SEMICONDUCTOR DEVICE AND METHOD FOR FORMING THE SAME}
본 발명은 반도체 소자 및 그 제조 방법에 관한 것으로, 전계 효과 트랜지스터를 포함하는 반도체 소자 및 그 제조 방법에 관한 것이다.
소형화, 다기능화 및/또는 낮은 제조 단가 등의 특성들로 인하여 반도체 소자는 전자 산업에서 중요한 요소로 각광 받고 있다. 반도체 소자들은 논리 데이터를 저장하는 반도체 기억 소자, 논리 데이터를 연산 처리하는 반도체 논리 소자, 및 기억 요소와 논리 요소를 포함하는 하이브리드(hybrid) 반도체 소자 등으로 구분될 수 있다. 전자 산업이 고도로 발전함에 따라, 반도체 소자의 특성들에 대한 요구가 점점 증가되고 있다. 예컨대, 반도체 소자에 대한 고 신뢰성, 고속화 및/또는 다기능화 등에 대하여 요구가 점점 증가되고 있다. 이러한 요구 특성들을 충족시키기 위하여 반도체 소자 내 구조들은 점점 복잡해지고 있으며, 또한, 반도체 소자는 점점 고집적화 되고 있다.
본 발명이 해결하고자 하는 과제는 용이하게 핀 전계 효과 트랜지스터와 게이트-올-어라운드 전계 효과 트랜지스터를 동시에 형성할 수 있는 방법을 제공하는데 있다.
본 발명이 해결하고자 하는 다른 과제는 고전압 영역에는 바디 콘택이 가능한 핀 전계 효과 트랜지스터를 제공하고 저전압 영역에는 단채널 효과를 완화할 수 있는 게이트-올-어라운드 전계 효과 트랜지스터를 제공하는데 있다.
본 발명이 해결하고자 하는 또 다른 과제는 PMOSFET 영역에는 (110)면이 우세한 핀 전계 효과 트랜지스터를 제공하고 NMOSFET 영역에는 (100)면이 우세한 게이트-올-어라운드 전계 효과 트랜지스터를 제공하는데 있다.
상기 과제를 달성하기 위한 본 발명에 따른 반도체 소자는 제 1 영역 및 제 2 영역을 포함하는 기판; 상기 제 1 영역 상에 제공되고 상기 기판으로부터 돌출된 제 1 채널 영역을 포함하는 제 1 트랜지스터; 및 상기 제 2 영역 상에 제공되고 제 2 채널 영역 및 상기 기판과 상기 제 2 채널 영역 사이로 연장되는 게이트 전극을 포함하는 제 2 트랜지스터를 포함하고, 상기 제 1 채널 영역은 상기 제 2 채널 영역과 다른 물질을 포함하는 하부 반도체 패턴 및 상기 제 2 채널 영역과 같은 물질을 포함할 수 있다.
상기 하부 반도체 패턴은 상기 상부 반도체 패턴과 식각 선택성이 있는 물질을 포함할 수 있다.
상기 제 2 채널 영역의 하면은 상기 상부 반도체 패턴과 상기 하부 반도체 패턴 사이의 계면과 실질적으로 동일 레벨일 수 있다.
상기 제 1 트랜지스터는 PMOS트랜지스터이고 상기 제 2 트랜지스터는 NMOS트랜지스터일 수 있다.
상기 제 1 채널 영역의 측벽은 (110) 결정면이고, 상기 제 2 채널 영역의 상면 및 하면은 (100) 결정면일 수 있다.
상기 제 1 트랜지스터는 동작 전압이 1V 이상인 고전압 트랜지스터이고 상기 제 2 트랜지스터는 동작 전압이 1V 미만인 저전압 트랜지스터일 수 있다.
상기 하부 반도체 패턴은 상기 기판의 상면과 접할 수 있다.
상기 하부 반도체 패턴 및 상기 상부 반도체 패턴은 각각 복수 개로 제공되고, 상기 하부 반도체 패턴들 및 상기 상부 반도체 패턴들은 교대로 반복하여 배치될 수 있다.
상기 제 2 채널 영역은 복수 개로 제공되고, 상기 제 2 채널 영역들은 상기 상부 반도체 패턴들과 동일 레벨일 수 있다.
상기 하부 반도체 패턴의 두께는 상기 상부 반도체 패턴의 두께보다 두꺼울 수 있다.
상기 하부 반도체 패턴의 폭은 상기 상부 반도체 패턴의 폭보다 좁을 수 있다.
상기 제 2 트랜지스터는 상기 제 2 채널 영역을 사이에 두고 상호 이격된 소스 영역 및 드레인 영역을 포함하고, 상기 소스 영역의 하부 및 상기 드레인 영역의 하부는 상기 하부 반도체 패턴과 동일한 물질을 포함할 수 있다.
반도체층; 상기 반도체층으로부터 돌출된 제 1 채널 영역을 포함하는 제 1 트랜지스터; 및 게이트 전극을 사이에 두고 상기 반도체층과 이격된 제 2 채널 영역을 포함하는 제 2 트랜지스터를 포함하고, 상기 제 1 채널 영역은 상기 반도체층과 직접 접할 수 있다.
상기 제 1 채널 영역은 하부 반도체 패턴 및 상기 하부 반도체 패턴 상의 상부 반도체 패턴을 포함하고, 상기 하부 반도체 패턴은 상기 상부 반도체 패턴과 식각 선택성 있는 물질을 포함할 수 있다.
상기 하부 반도체 패턴 및 상기 하부 반도체 패턴은 각각 복수 개로 제공되고, 상기 하부 반도체 패턴들 및 상기 상부 반도체 패턴들은 교대로 반복하여 배치될 수 있다
상기 제 2 채널 영역은 복수 개로 제공되고, 상기 제 2 채널 영역들은 상기 상부 반도체 패턴들과 동일 레벨일 수 있다.
상기 하부 반도체 패턴의 두께는 상기 상부 반도체 패턴의 두께보다 두꺼울 수 있다.
상기 하부 반도체 패턴의 폭은 상기 상부 반도체 패턴의 폭보다 좁을 수 있다.
상기 제 2 트랜지스터는 상기 제 2 채널 영역을 사이에 두고 상호 이격된 소스 영역 및 드레인 영역을 포함하고, 상기 소스 영역의 하부 및 상기 드레인 영역의 하부는 상기 하부 반도체 패턴과 동일한 물질을 포함할 수 있다.
상기 제 1 트랜지스터는 PMOSFET이고 상기 제 2 트랜지스터는 NMOSFET일 수 있다.
상기 제 1 채널 영역의 측벽은 (110) 결정면이고, 상기 제 2 채널 영역의 상면 및 하면은 (100) 결정면일 수 있다.
상기 제 1 트랜지스터는 동작 전압이 1V 이상인 고전압 트랜지스터이고 상기 제 2 트랜지스터는 동작 전압이 1V 미만인 저전압 트랜지스터일 수 있다.
제 1 영역 및 제 2 영역을 포함하는 기판을 준비하는 것; 상기 제 1 영역 및 상기 제 2 영역 상에 제 1 반도체층 및 제 2 반도체층을 차례로 형성하는 것; 상기 제 1 및 제 2 반도체층을 패터닝하여 하부 반도체 패턴 및 상부 반도체 패턴 패턴을 상기 제 1 영역 및 상기 제 2 영역에 각각 형성하는 것; 상기 제 2 영역 상의 하부 반도체 패턴을 선택적으로 제거하여 갭 영역을 형성하는 것; 및 상기 제 1 영역 및 상기 제 2 영역 각각에 게이트 전극을 형성하는 것을 포함할 수 있다.
상기 제 1 반도체층 및 상기 제 2 반도체층은 상기 기판을 씨드층으로 하는 에피택시얼 공정에 의하여 형성될 수 있다.
상기 제 2 영역 상의 게이트 전극은 상기 갭 영역으로 연장될 수 있다.
상기 갭 영역을 형성하는 것은 상기 제 1 영역을 덮는 마스크 패턴을 형성하는 것을 더 포함할 수 있다.
상기 갭 영역을 형성한 후, 상기 제 2 영역 상의 상기 상부 반도체 패턴이 라운드된 표면을 갖도록 표면 가공 공정을 하는 것을 더 포함할 수 있다.
상기 제 1 반도체층 및 상기 제 2 반도체층은 각각 복수 개로 제공되고, 상기 제 1 반도체층들 및 상기 제 2 반도체층들은 교대로 반복하여 형성될 수 있다.
상기 갭 영역은 상기 제 2 영역 상의 제 2 반도체층들이 패터닝된 제 2 반도체 패턴들 사이에 복수개가 형성될 수 있다.
상기 제 1 영역 상의 상부 반도체 패턴의 폭은 상기 제 2 영역 상의 상부 반도체 패턴의 폭보다 넓게 형성되고, 상기 제 1 영역 상의 하부 반도체 패턴은 상기 갭 영역의 형성 시에 그 일부가 제거되어 상기 제 1 영역 상의 상부 반도체 패턴의 폭보다 좁아질 수 있다.
상기 제 2 영역 상의 하부 반도체 패턴의 양 단부들의 측벽을 덮는 층간 절연막을 형성하는 것을 더 포함하고, 상기 갭 영역의 형성 시, 상기 제 2 영역 상의 하부 반도체 패턴의 양 단부들은 잔류할 수 있다.
상기 제 1 반도체층은 상기 제 2 반도체층보다 두껍게 형성될 수 있다.
본 발명의 일 실시예에 따르면, 용이하게 핀 전계 효과 트랜지스터와 게이트-올-어라운드 전계 효과 트랜지스터를 동시에 형성할 수 있다.
본 발명의 일 실시예에 따르면, 고전압 영역에는 바디 콘택이 가능한 핀 전계 효과 트랜지스터를 제공하고 저전압 영역에는 단채널 효과를 완화할 수 있는 게이트-올-어라운드 전계 효과 트랜지스터를 제공할 수 있다.
본 발명의 일 실시예에 따르면, PMOSFET 영역에는 (110)면이 우세한 핀 전계 효과 트랜지스터를 제공하고 NMOSFET 영역에는 (100)면이 우세한 게이트-올-어라운드 전계 효과 트랜지스터를 제공할 수 있다.
도 1 내지 도 7는 본 발명의 일 실시예에 따른 반도체 소자의 제조 방법을 설명하기 위한 사시도들이다.
도 8a는 도 7의 A-A'선 및 B-B'선에 따른 단면도이다. 도 8b는 도 7의 C-C'선 및 D-D'선에 따른 단면도이다.
도 9는 본 발명의 다른 실시예에 따른 반도체 소자의 제조 방법을 설명하기 위한 사시도이다.
도 10a 및 도 10b는 본 발명의 다른 실시예에 따른 반도체 소자를 설명하기 위한 도면들, 도 10a는 도 7의 A-A'선 및 B-B'선에 따른 단면도이고 도 10b는 도 7의 C-C'선 및 D-D'선에 따른 단면도이다.
도 11 내지 도 17는 본 발명의 또 다른 실시예에 따른 반도체 소자의 제조 방법을 설명하기 위한 사시도들이다.
도 18a는 도 17의 A-A'선 및 B-B'선에 따른 단면도이다. 도 18b는 도 17의 C-C'선 및 D-D'선에 따른 단면도이다.
도 19는 본 발명의 또 다른 실시예에 따른 반도체 소자의 제조 방법을 설명하기 위한 사시도이다.
도 20a 및 도 20b는 본 발명의 또 다른 실시예에 따른 반도체 소자를 설명하기 위한 도면들, 도 20a는 도 17의 A-A'선 및 B-B'선에 따른 단면도이고 도 20b는 도 17의 C-C'선 및 D-D'선에 따른 단면도이다.
도 21은 본 발명의 또 다른 실시예에 따른 반도체 소자를 설명하기 위한 사시도이다.
도 22a는 도 21의 A-A'선 및 B-B'선에 따른 단면도이고, 도 22b는 도 21의 C-C'선 및 D-D'선에 따른 단면도이다.
도 23a 및 도 23b는 본 발명의 또 다른 실시예에 따른 반도체 소자를 설명하기 위한 도면들, 도 23a는 도 21의 A-A'선 및 B-B'선에 따른 단면도이고 도 23b는 도 21의 C-C'선 및 D-D'선에 따른 단면도이다.
도 24 내지 도 29, 및 도 31은 본 발명의 또 다른 실시예에 따른 반도체 소자의 제조 방법을 설명하기 위한 사시도들이다.
도 30a는 도 29의 A-A'선 및 B-B'선에 따른 단면도이다. 도 30b는 도 29의 C-C'선 및 D-D'선에 따른 단면도이다.
도 32a는 도 31의 A-A'선 및 B-B'선에 따른 단면도이다. 도 32b는 도 31의 C-C'선 및 D-D'선에 따른 단면도이다.
도 33은 본 발명의 실시예들에 따른 반도체 소자를 포함하는 시모스 에스램 셀(CMOS RAM cell)의 등가 회로도이다.
도 34는 본 발명의 실시예들에 따른 반도체 소자를 포함하는 전자 시스템의 블록도이다.
도 35는 본 발명의 실시예들에 따른 전자 시스템이 모바일 폰에 적용되는 예를 도시한다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전문에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 명세서에서, 도전성막, 반도체막, 또는 절연성막 등의 어떤 물질막이 다른 물질막 또는 기판"상"에 있다고 언급되는 경우에, 그 어떤 물질막은 다른 물질막 또는 기판상에 직접 형성될 수 있거나 또는 그들 사이에 또 다른 물질막이 개재될 수도 있다는 것을 의미한다. 또 본 명세서의 다양한 실시예들에서 제 1, 제 2, 제 3 등의 용어가 물질막 또는 공정 단계를 기술하기 위해서 사용되었지만, 이는 단지 어느 특정 물질막 또는 공정 단계를 다른 물질막 또는 다른 공정 단계와 구별시키기 위해서 사용되었을 뿐이며, 이 같은 용어들에 의해서 한정되어서는 안된다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
또한, 본 명세서에서 기술하는 실시예들은 본 발명의 이상적인 예시도인 단면도 및/또는 평면도들을 참고하여 설명될 것이다. 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 따라서, 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 따라서, 본 발명의 실시예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다. 예를 들면, 직각으로 도시된 식각 영역은 라운드지거나 소정 곡률을 가지는 형태일 수 있다. 따라서, 도면에서 예시된 영역들은 개략적인 속성을 가지며, 도면에서 예시된 영역들의 모양은 소자의 영역의 특정 형태를 예시하기 위한 것이며 발명의 범주를 제한하기 위한 것이 아니다.
도 1 내지 도 7는 본 발명의 일 실시예에 따른 반도체 소자의 제조 방법을 설명하기 위한 사시도들이다. 도 8a는 도 7의 A-A'선 및 B-B'선에 따른 단면도이다. 도 8b는 도 7의 C-C'선 및 D-D'선에 따른 단면도이다.
도 1을 참조하여, 기판(100) 상에 제 1 반도체층(110) 및 제 2 반도체층(120)이 차례로 형성될 수 있다. 상기 기판(100)은 제 1 영역 및 제 2 영역을 포함할 수 있다. 본 실시예에 있어서, 상기 제 1 영역은 상대적으로 높은 동작 전압이 인가되는 고전압 트랜지스터가 형성되는 고전압 영역(HR)이고 상기 제 2 영역은 상대적으로 낮은 동작 전압이 인가되는 저전압 트랜지스터가 형성되는 저전압 영역(LR)일 수 있다. 본 명세서에서, 고전압 트랜지스터는 동작 전압이 1V 이상인 트랜지스터를 지칭하고, 저전압 트랜지스터는 동작 전압이 1V 미만인 트랜지스터를 지칭할 수 있다. 상기 기판(100)은 실리콘, 게르마늄, 실리콘-게르마늄 등을 포함하는 반도체 기판일 수 있다.
상기 제 1 반도체층(110)은 상기 제 2 반도체층(120)에 대하여 식각 선택성을 갖는 물질을 포함할 수 있다. 즉, 소정의 식각 레서피를 사용하여 상기 제 1 반도체층(110)을 식각하는 공정에서, 상기 제 1 반도체층(110)은 상기 제 2 반도체층(120)의 식각을 최소화하면서 식각될 수 있는 물질로 형성될 수 있다. 이러한 식각 선택성(etch selectivity)은 상기 제 2 반도체층(120)의 식각 속도에 대한 상기 제 1 반도체층(110)의 식각 속도의 비율을 통해 정량적으로 표현될 수 있다. 일 실시예에 따르면, 상기 제 1 반도체층(110)은 상기 제 2 반도체층(120)에 대하여 1:10 내지 1:200의 식각 선택비를 제공할 수 있는 물질들 중의 하나일 수 있다. 일 예로, 상기 제 1 반도체층(110) 및 상기 제 2 반도체층(120)은 다음 표 1 중 선택된 하나 일 수 있다.
제 1 반도체층 제 2 반도체층
예 1 SiGe Si
예 2 SiGe Ge
예 3 GeSn Ge
예 4 InP InGaAs
예 5 InP InAs
예 6 InAlAs InGaAs
예 7 InAlAs InAs
예 8 InGaP InGaAs
예 9 InGaP InAs
예 10 InAs InGaSb
예 11 InAs InSb
상기 제 1 반도체층(110) 및 상기 제 2 반도체층(120)은 상기 기판(100)을 씨드층(seed layer)으로 하는 에피택시얼 성장(epitaxial growth) 공정에 의하여 형성될 수 있다. 일 예로, 상기 에피택시얼 성장 공정은 화학 기상 증착(Chemical Vapor Deposition: CVD) 공정 또는 분자 빔 에피택시(Molecular Beam Epitaxy: MBE) 공정 일 수 있다. 상기 제 1 반도체층(110) 및 상기 제 2 반도체층(120)은 동일 챔버에서 연속적으로 형성될 수 있다. 상기 제 1 반도체층(110) 및 상기 제 2 반도체층(120)은 상기 기판(100) 상에 선택적으로 성장(selective epitaxial growth)되지 않고 상기 기판(100)의 전면에 콘포멀하게 성장될 수 있다.
본 실시예에 있어서, 상기 제 1 반도체층(110)과 상기 제 2 반도체층(120)은 실질적으로 동일한 두께로 형성될 수 있으나, 이에 한정되지 않는다.
상기 제 2 반도체층(120) 상에 제 1 마스크 패턴들(181, 182)이 형성될 수 있다. 설명의 간소화를 위하여 상기 고전압 영역(HR) 상의 제 1 마스크 패턴(181) 및 상기 저전압 영역(LR) 상의 제 2 마스크 패턴(182)을 동일한 형상으로 도시하였으나, 이에 한정되지 않는다. 상기 제 1 마스크 패턴들(181, 182)은 x 방향으로 서로 이격된 양 단부들(edge portions:EP)의 폭이 양 단부들(EP) 사이의 중앙부(center portion:CP)보다 클 수 있다. 상기 제 1 마스크 패턴들(181, 182)은 포토 레지스트, 실리콘 질화막, 실리콘 산화막, 및 실리콘 산화질화막 중 적어도 하나를 포함할 수 있다. 상기 제 1 마스크 패턴들(181, 182)은 CVD 공정으로 형성될 수 있다.
도 2를 참조하여, 상기 제 1 마스크 패턴들(181, 182)을 식각 마스크로 패터닝 공정이 수행될 수 있다. 그 결과, 상기 고전압 영역(HR) 상에 제 1 하부 반도체 패턴(111) 및 상기 제 1 하부 반도체 패턴(111) 상의 제 1 상부 반도체 패턴(121)이 형성되고, 상기 저전압 영역(LR) 상에 제 2 하부 반도체 패턴(112) 및 상기 제 2 하부 반도체 패턴(112) 상의 제 2 상부 반도체 패턴(122)이 형성될 수 있다. 상기 제 1 하부 반도체 패턴(111) 및 제 1 상부 반도체 패턴(121)은 상기 고전압 영역(HR) 상의 제 1 마스크 패턴(181)의 형상을 따라 양 단부들의 폭이 중심부보다 크게 형성될 수 있다. 상기 제 2 하부 반도체 패턴(112) 및 제 2 상부 반도체 패턴(122)은 상기 저전압 영역(LR) 상의 제 1 마스크 패턴(182)의 형상을 따라 양 단부들의 폭이 중심부보다 크도록 형성될 수 있다. 상기 패터닝 공정은 건식 및/또는 습식 식각 공정을 포함할 수 있다. 일 예로, 상기 패터닝 공정은 이방성 건식 식각 공정을 포함할 수 있다. 상기 패터닝 공정 후, 상기 제 1 마스크 패턴들(181, 182)은 제거될 수 있다. 일 예로 상기 제 1 마스크 패턴들(181, 182)의 제거 공정은 애싱 공정 또는 습식 식각 공정을 포함할 수 있다.
도 3을 참조하여, 상기 기판(100) 상에 상기 제 1 상부 반도체 패턴(121)의 상면 및 상기 제 2 상부 반도체 패턴(122)의 상면을 노출하는 층간 절연막(185)이 형성될 수 있다. 상기 층간 절연막(185)의 형성 공정은 CVD 공정에 의하여 상기 기판(100) 상에 절연막을 형성한 후, 평탄화 공정에 의하여 상기 제 1 상부 반도체 패턴(121)의 상면 및 상기 제 2 상부 반도체 패턴(122)의 상면을 노출하는 공정을 포함할 수 있다. 일 예로, 상기 층간 절연막(185)은 실리콘 산화물, 실리콘 질화물, 및 실리콘 산화질화물 중 적어도 하나를 포함할 수 있다.
도 4를 참조하여, 상기 층간 절연막(185)이 형성된 결과물 상에, 상기 제 1 상부 반도체 패턴(121)의 양 단부들 및 상기 제 2 상부 반도체 패턴(122)의 양 단부들을 덮는 제 2 마스크 패턴들(183)이 형성될 수 있다. 상기 제 2 마스크 패턴들(183)은 상기 제 1 상부 반도체 패턴(121)의 중앙부 및 상기 제 2 상부 반도체 패턴(122)의 중앙부를 노출할 수 있다. 상기 제 2 마스크 패턴들(183)은 포토 레지스트, 실리콘 산화물, 실리콘 질화물, 및 실리콘 산화질화물 중 적어도 하나를 포함할 수 있다.
도 5를 참조하여, 상기 제 2 마스크 패턴들(183)에 의하여 노출된 상기 층간 절연막(185)의 일부가 제거될 수 있다. 일 예로, 상기 제거 공정은 상기 제 2 마스크 패턴들(183)을 식각 마스크로하는 건식 및/또는 습식 식각 공정을 포함할 수 있다. 상기 제거 공정은 상기 제 1 하부 반도체 패턴(111), 상기 제 1 상부 반도체 패턴(121), 상기 제 2 하부 반도체 패턴(112), 및 상기 제 2 상부 반도체 패턴(122)의 식각을 최소화하며 상기 제 2 마스크 패턴들(183)에 의하여 노출된 상기 층간 절연막(185)을 제거할 수 있는 식각 레시피로 수행될 수 있다. 그 결과, 상기 층간 절연막(185)이 제거된 부분에 리세스 영역(RS)이 형성될 수 있다. 상기 고전압 영역(HR) 상에서, 상기 리세스 영역(RS)은 상기 제 2 마스크 패턴들(183)에 의하여 덮힌 상기 층간 절연막(185)의 측벽, 상기 기판(100)의 상면, 제 1 하부 반도체 패턴(111)의 측벽, 상기 제 1 상부 반도체 패턴(121)의 측벽에 의하여 정의된 영역일 수 있다. 상기 저전압 영역(LR) 상에서, 상기 리세스 영역(RS)은 상기 제 2 마스크 패턴들(183)에 의하여 덮힌 상기 층간 절연막(185)의 측벽, 상기 기판(100)의 상면, 제 2 하부 반도체 패턴(112)의 측벽, 상기 제 2 상부 반도체 패턴(122)의 측벽에 의하여 정의된 영역일 수 있다. 즉, 상기 리세스 영역(RS)은 상기 고전압 영역(HR)에서 상기 제 1 하부 반도체 패턴(111)의 측벽 및 상기 제 1 상부 반도체 패턴(121)의 측벽을 노출하고, 상기 저전압 영역(LR)에서 상기 제 2 하부 반도체 패턴(112)의 측벽 및 상기 제 2 상부 반도체 패턴(122)의 측벽을 노출할 수 있다. 상기 리세스 영역(RS)의 형성 후, 상기 제 2 마스크 패턴들(183)은 제거될 수 있다.
도 6을 참조하여, 상기 고전압 영역(HR)을 덮는 제 3 마스크 패턴(184)이 형성될 수 있다. 일 예로, 상기 제 3 마스크 패턴(184)은 실리콘 질화물, 실리콘 산화물, 및 실리콘 산화질화물 중 적어도 하나를 포함할 수 있다. 상기 제 3 마스크 패턴(184)은 상기 저전압 영역(LR)을 노출할 수 있다.
상기 제 3 마스크 패턴(184)에 의하여 노출된 상기 저전압 영역(LR) 상의 제 2 하부 반도체 패턴(112)의 일부가 제거되어 상기 리세스 영역(RS)이 상기 제 2 상부 반도체 패턴(122) 아래로 연장된 갭 영역(GA)이 형성될 수 있다. 그 결과, 상기 제 2 하부 반도체 패턴(112)은 상기 층간 절연막(185)에 의하여 그 측벽이 덮여 있는 부분이 잔류된 잔류 반도체 패턴들(113)이 될 수 있다. 즉, 상기 잔류 반도체 패턴들(113)은 상기 제 2 상부 반도체 패턴(122)의 양 단부들 아래에 잔류하고, 상기 양 단부들 사이의 중앙부에는 잔류하지 않을 수 있다. 상기 갭 영역(GA)은 상기 제 2 상부 반도체 패턴(122)의 하면 및 상기 잔류 반도체 패턴들(113)의 측벽에 의하여 정의된 영역일 수 있다.
상기 제거 공정은 상기 제 2 상부 반도체 패턴(122)의 식각을 최소화하며 상기 제 2 하부 반도체 패턴(112)을 제거할 수 있는 선택적 식각 레시피로 수행될 수 있다. 일 예로, 상기 제 2 상부 반도체 패턴(122)이 실리콘을 포함하고, 상기 제 2 하부 반도체 패턴(112)이 실리콘-게르마늄을 포함하는 경우, 상기 식각 공정은 과초산(peracetic acid)을 포함하는 식각액을 사용하여 수행될 수 있다. 상기 식각액은 불산(HF) 수용액 및 순수(deionized water)을 더 포함할 수 있다. 상기 고전압 영역(HG)은 상기 제 3 마스크 패턴(184)에 의하여 덮여있으므로, 상기 식각 공정으로부터 보호될 수 있다. 상기 제 3 마스크 패턴(184)은 상기 식각 공정 이후 제거될 수 있다.
도 7, 도 8a 및 도 8b를 참조하여, 상기 고전압 영역(HR)에 제 1 게이트 절연막(GD1) 및 제 1 게이트 전극(GE1)이 차례로 형성되고, 상기 저전압 영역(LR)에 제 2 게이트 절연막(GD2) 및 제 2 게이트 전극(GE2)이 차례로 형성될 수 있다. 상기 제 1 게이트 절연막(GD1) 및 상기 제 1 게이트 전극(GE1)은 상기 제 1 상부 반도체 패턴(121)의 연장방향과 실질적으로 수직한 방향(y 방향)으로 연장할 수 있고, 상기 제 2 게이트 절연막(GD2) 및 상기 제 2 게이트 전극(GE2)은 상기 제 2 상부 반도체 패턴(122)의 연장 방향과 실질적으로 수직한 방향(y 방향)으로 연장할 수 있다. 상기 제 1 게이트 전극(GE1)은 상기 제 1 상부 반도체 패턴(121)의 중앙부를 덮고 양 단부를 노출할 수 있다. 상기 제 2 게이트 전극(GE2)은 상기 제 2 상부 반도체 패턴(122)의 중앙부를 덮고 양 단부를 노출할 수 있다.
상기 제 1 게이트 절연막(GD1) 및 상기 제 1 게이트 전극(GE1)은 상기 제 1 하부 반도체 패턴(111) 및 상기 제 1 상부 반도체 패턴(121)의 측벽을 따라 연장될 수 있다. 상기 제 2 게이트 절연막(GD2) 및 상기 제 2 게이트 전극(GE2)은 상기 갭 영역(GA)으로 연장되어 상기 제 2 상부 반도체 패턴(122)의 하면을 덮을 수 있다.
상기 제 1 게이트 절연막(GD1) 및 상기 제 2 게이트 절연막(GD2)은 실리콘 산화막을 포함할 수 있다. 다른 실시예에 있어서, 상기 제 1 게이트 절연막(GD1) 및 상기 제 2 게이트 절연막(GD2)은 실리콘 산화막보다 높은 유전 상수를 갖는 고유전체 물질을 포함할 수 있다. 일 예로, 상기 제 1 게이트 절연막(GD1) 및 상기 제 2 게이트 절연막(GD2)은 HfO2, ZrO2 또는 Ta2O5을 포함할 수 있다. 상기 제 1 게이트 절연막(GD1) 및 상기 제 2 게이트 절연막(GD2)은 동일한 물질로 형성될 수 있으나, 이에 한정되지 않는다.
상기 제 1 게이트 전극(GE1) 및 상기 제 2 게이트 전극(GE2)은 도핑된 실리콘, 도전성 금속 질화물, 및 금속 중 적어도 하나를 포함할 수 있다. 상기 제 1 게이트 전극(GE1)과 상기 제 2 게이트 전극(GE2)은 동일한 물질로 형성될 수 있으나, 이에 한정되지 않는다. 일 예로, 상기 제 1 게이트 전극(GE1) 및 상기 제 2 게이트 전극(GE2)은 일함수가 서로 다를 수 있다.
상기 제 1 및 제 2 게이트 절연막들(GD1, GD2) 및 상기 제 1 및 제 2 게이트 전극들(GE1, GE2)은 증착 공정 및 패터닝 공정에 의하여 형성될 수 있다. 일 예로, 상기 증착 공정은 CVD 또는 스퍼터링 공정일 수 있다. 다른 실시예에 있어서, 상기 제 1 및 제 2 게이트 절연막들(GD1, GD2) 및 상기 제 1 및 제 2 게이트 전극들(GE1, GE2)은 더미 패턴을 이용한 리플레이스(replacement) 공정에 의하여 형성될 수 있다. 일 예로, 상기 제 1 및 제 2 상부 반도체 패턴들(121, 122)을 덮는 더미 패턴이 형성된 후, 상기 더미 패턴은 상기 제 1 및 제 2 게이트 절연막들(GD1, GD2) 및 상기 제 1 및 제 2 게이트 전극들(GE1, GE2)로 교체될 수 있다. 이 경우, 상기 제 1 및 제 2 게이트 전극들(GE1, GE2)의 형성은 다마신(damascene) 공정을 포함할 수 있다.
도 1 내지 도 7을 참조하여 설명된 공정들의 결과, 상기 고전압 영역(HR)에 제 1 트랜지스터(TR1)가 형성되고 상기 저전압 영역(LR)에 제 2 트랜지스터(TR2)가 형성될 수 있다. 상기 제 1 트랜지스터(TR1)는 상기 기판(100)으로부터 돌출된 핀(fin) 형태의 제 1 채널 영역(CH1)을 포함하는 핀 전계 효과 트랜지스터(Fin FET)일 수 있다. 상기 제 2 트랜지스터(TR2)는 상기 기판(100)과 이격되고 상기 제 2 게이트 전극(GE2)에 의하여 그의 외주면이 둘러싸인 제 2 채널 영역(CH2)을 포함하는 게이트-올-어라운드(Gate-All-Around) 전계 효과 트랜지스터일 수 있다. 본 발명의 일 실시예에 따르면, 선택적 에피 성장(selective epitaxial growth) 및/또는 SOI(silicon on insulator) 기판의 사용 없이 용이하게 핀 전계 효과 트랜지스터와 게이트-올-어라운드 전계 효과 트랜지스터를 동시에 형성할 수 있다.
도 7, 도 8a, 및 도 8b를 다시 참조하여, 본 발명의 일 실시예에 따른 반도체 소자가 설명된다. 본 발명의 일 실시예에 따른 반도체 소자는 기판(100)의 고전압 영역(HR) 상의 제 1 트랜지스터(TR1) 및 상기 기판(100)의 저전압 영역(LR) 상의 제 2 트랜지스터(TR2)를 포함할 수 있다. 상기 기판(100)은 실리콘, 게르마늄, 실리콘-게르마늄 등을 포함하는 반도체 기판일 수 있다. 상기 제 1 트랜지스터(TR1)는 동작 전압이 1V 이상인 상대적으로 고전압(high Vdd)이 인가되는 고전압 트랜지스터일 수 있고, 상기 제 2 트랜지스터(TR2)는 동작 전압이 1V 미만인 상대적으로 저전압(lowh Vdd)이 인가되는 저전압 트랜지스터일 수 있다. 상기 제 1 트랜지스터(TR1)의 문턱 전압은 상기 제 2 트랜지스터(TR2)의 문턱 전압보다 클 수 있다. 일 예로, 상기 제 1 트랜지스터(TR1)는 반도체 소자의 입출력 트랜지스터(I/O transistor)일 수 있고, 상기 제 2 트랜지스터(TR2)는 반도체 소자의 로직 셀(logic cell)을 구성하는 트랜지스터일 수 있다. 상기 제 1 트랜지스터(TR1)와 상기 제 2 트랜지스터(TR2)는 모두 NMOSFET이거나 모두 PMOSFET일 수 있다. 다른 실시예에 있어서, 상기 제 1 트랜지스터(TR1) 및 상기 제 2 트랜지스터(TR2) 중 하나는 NMOSFET이고 다른 하나는 PMOSFET일 수 있다.
상기 제 1 트랜지스터(TR1)는 상기 기판(100)으로부터 z 방향으로 돌출된 핀 부분(Fin portion: FN) 포함할 수 있다. 상기 핀 부분(FN)은 제 1 채널 영역(CH1)을 사이에 두고 x 방향으로 상호 이격된 제 1 소스/드레인 영역들(SD1)을 포함할 수 있다. 상기 제 1 채널 영역(CH1)은 상기 제 1 소스/드레인 영역들(SD1)보다 폭이 좁을 수 있다.
상기 핀 부분(FN)은 상기 기판(100) 상에 차례로 적층된 제 1 하부 반도체 패턴(111) 및 제 1 상부 반도체 패턴(121)을 포함할 수 있다. 즉, 상기 제 1 채널 영역(CH1)은 상기 제 1 하부 반도체 패턴(111) 및 상기 제 1 상부 반도체 패턴(121)을 포함할 수 있다. 상기 제 1 하부 반도체 패턴(111)의 물질 및 제 1 상부 반도체 패턴(121)의 물질은 각각 표 1의 제 1 반도체층의 물질 및 제 2 반도체층의 물질에 상응할 수 있다. 즉, 상기 제 1 하부 반도체 패턴(111)은 상기 제 1 상부 반도체 패턴(121)에 대하여 식각 선택성을 갖는 물질을 포함할 수 있다.
상기 제 1 채널 영역(CH1) 상에 제 1 게이트 절연막(GD1) 및 제 1 게이트 전극(GE1)이 차례로 제공될 수 있다. 상기 제 1 게이트 절연막(GD1) 및 상기 제 1 게이트 전극(GE1)은 상기 제 1 채널 영역(CH1)의 측벽 및 상면을 따라 연장될 수 있다. 상기 제 1 게이트 절연막(GD1)은 실리콘 산화막을 포함할 수 있다. 다른 실시예에 있어서, 상기 제 1 게이트 절연막(GD1)은 실리콘 산화막보다 높은 유전 상수를 갖는 고유전체 물질을 포함할 수 있다. 일 예로, 상기 제 1 게이트 절연막(GD1)은 HfO2, ZrO2 또는 Ta2O5을 포함할 수 있다. 상기 제 1 게이트 전극(GE1)은 도핑된 실리콘, 도전성 금속 질화물, 및 금속 중 적어도 하나를 포함할 수 있다.
상기 제 1 채널 영역(CH1)은 상기 기판(100)과 직접 연결될 수 있다. 즉, 상기 제 1 하부 반도체 패턴(111)의 하면은 상기 기판(100)의 상면과 접할 수 있다. 따라서, 상기 제 1 트랜지스터(TR1)의 채널은 바디(body), 즉, 상기 기판(100)에 전기적으로 연결될 수 있다. 이와 같은 바디 콘택 구조는 상기 제 1 트랜지스터(TR1)의 동작 시 발생되는 핫 캐리어 효과(Hot Carrier Effect)를 완화할 수 있다. 일반적으로, 집적도의 증가에 따라 채널 길이가 짧아지는 경우, 드레인 접합에서 캐리어들에 가해지는 최대 전계는 증가된다. 그 결과 캐리어들은 충돌 이온화(Impact Ionization)를 일으킬 수 있을 정도로 충분히 큰 운동에너지를 갖는 핫 캐리어가 될 수 있다. 이와 같은 핫 캐리어들은 이차 전자-정공 쌍(secondary electron-hole pair)을 생성하고, 생성된 이차 전자-정공 쌍에 의하여 트랜지스터의 특성이 열화될 수 있다. 본 발명의 제 1 트랜지스터(TR1)는 상대적으로 고전압이 인가되는 트랜지스터로, 이와 같은 핫 캐리어 효과에 취약하다. 본 발명의 일 실시예에 따르면, 상기 제 1 채널 영역(CH1)은 상기 기판(100)에 접속되고, 그 결과 핫 캐리어들에 의하여 생성된 전하들이 상기 기판(100)으로 용이하게 배출될 수 있다.
상기 제 2 트랜지스터(TR2)는 상기 제 2 게이트 전극(GE2) 및 상기 제 2 게이트 절연막(GD2)을 사이에 두고 상기 기판(100)과 이격된 제 2 채널 영역(CH2)을 포함할 수 있다. 일 예로, 상기 제 2 채널 영역(CH2)의 단면은 사각형일 수 있으나 이에 한정되지 않는다. 상기 제 2 채널 영역(CH2) 상에 제 2 게이트 절연막(GD2) 및 제 2 게이트 전극(GE2)이 차례로 제공될 수 있다. 상기 제 2 게이트 절연막(GD2) 및 상기 제 2 게이트 전극(GE2)은 제 2 상부 반도체 패턴(122)과 상기 기판(100) 사이의 갭 영역(GA)으로 연장될 수 있다. 즉, 상기 제 2 게이트 절연막(GD2) 및 상기 제 2 게이트 전극(GE2)은 상기 제 2 채널 영역(CH2)의 상면, 하면, 및 측면을 덮을 수 있다. 상기 제 2 게이트 절연막(GD2) 및 상기 제 2 게이트 전극(GE2)은 상기 제 2 채널 영역(CH2)의 외주면을 둘러싸고, 상기 제 2 채널 영역(CH2)은 상기 제 2 게이트 전극(GE2)을 관통할 수 있다. 상기 제 2 채널 영역(CH2)의 하면은 상기 제 1 상부 반도체 패턴(121)과 상기 제 1 하부 반도체 패턴(111) 사이의 계면과 실질적으로 동일 레벨일 수 있다.
상기 제 2 게이트 절연막(GD2)은 실리콘 산화막을 포함할 수 있다. 다른 실시예에 있어서, 상기 제 2 게이트 절연막(GD2)은 실리콘 산화막보다 높은 유전 상수를 갖는 고유전체 물질을 포함할 수 있다. 일 예로, 상기 제 2 게이트 절연막(GD2)은 HfO2, ZrO2 또는 Ta2O5을 포함할 수 있다. 상기 제 2 게이트 전극(GE2)은 도핑된 실리콘, 도전성 금속 질화물, 및 금속 중 적어도 하나를 포함할 수 있다. 일 실시예에 있어서, 상기 제 2 게이트 전극(GE2)은 상기 제 1 게이트 전극(GE1)과 일함수가 다를 수 있다.
상기 제 2 트랜지스터(TR2)는 상기 제 2 채널 영역(CH2)을 사이에 두고 x 방향으로 상호 이격된 제 2 소스/드레인 영역들(SD2)을 포함할 수 있다. 상기 제 2 채널 영역(CH2)은 상기 제 2 소스/드레인 영역들(SD2)보다 폭이 좁을 수 있다. 상기 제 2 소스/드레인 영역들(SD2)은 상기 기판(100) 상에 차례로 적층된 잔류 반도체 패턴들(113) 및 상기 잔류 반도체 패턴들(113) 상의 제 2 상부 반도체 패턴(122)을 포함할 수 있다. 상기 잔류 반도체 패턴들(113)은 상기 제 2 게이트 전극(GE2)을 사이에 두고 x 방향으로 상호 이격될 수 있다. 상기 잔류 반도체 패턴들(113) 및 제 2 상부 반도체 패턴(122)의 물질은 각각 표 1의 제 1 반도체층 및 제 2 반도체층의 물질에 상응할 수 있다. 즉, 상기 잔류 반도체 패턴들(113)은 상기 제 2 상부 반도체 패턴(122)에 대하여 식각 선택성을 갖는 물질을 포함할 수 있다. 상기 제 2 소스/드레인 영역들(SD2)의 하부, 즉, 상기 잔류 반도체 패턴들(113)은 상기 제 1 하부 반도체 패턴(111)과 동일한 물질을 포함할 수 있고, 상기 제 2 상부 반도체 패턴(122)은 상기 제 1 상부 반도체 패턴(121)과 동일한 물질을 포함할 수 있다. 즉, 상기 제 1 채널 영역(CH1)은 상기 제 2 채널 영역(CH2)과 동일한 물질을 포함하는 제 1 하부 반도체 패턴(111) 및 상기 제 2 채널 영역(CH2)과 다른 물질을 포함하는 제 1 상부 반도체 패턴(121)을 포함할 수 있다.
상기 제 2 트랜지스터(TR2)는 게이트-올-어라운드(Gate-All-Around)구조일 수 있다. 일 예로, 상기 제 2 채널 영역(CH2)은 그의 폭이 수 나노미터에서 수십 나노미터 사이인 나노 와이어 또는 나노 튜브일 수 있다. 이와 같은 상기 제 2 채널 영역(CH2)의 구조는 제 2 트랜지스터(TR2)의 단 채널 효과(short channel effect)를 완화할 수 있다. 즉, 상기 제 2 채널 영역(CH2)은 그의 상면 및 측면뿐 아니라 하면까지 상기 제 2 트랜지스터(TR2)의 채널로 사용될 수 있어, 채널 폭이 증가된다. 일반적으로, 집적도의 증가에 따라 채널 폭이 짧아지고 그에 따라 게이트에 의하여 제어되는 채널 영역에 있는 전하의 양이 감소된다. 그 결과, 트랜지스터의 문턱 전압이 증가될 수 있다. 본 발명의 일 실시예에 따르면, 상기 제 2 채널 영역(CH2)은 게이트-올-어라운드 구조를 가지며, 그 결과 단 채널 효과를 완화할 수 있다.
도 9는 본 발명의 다른 실시예에 따른 반도체 소자의 제조 방법을 설명하기 위한 사시도이다. 도 10a 및 도 10b는 본 발명의 다른 실시예에 따른 반도체 소자를 설명하기 위한 도면들, 도 10a는 도 7의 A-A'선 및 B-B'선에 따른 단면도이고 도 10b는 도 7의 C-C'선 및 D-D'선에 따른 단면도이다. 설명의 간소화를 위하여 중복된 구성에 대한 설명은 생략된다.
도 9, 도 10a 및 도 10b를 참조하여, 본 발명의 다른 실시예에 따른 반도체 소자의 제 2 트랜지스터(TR2)는 라운드된 표면을 갖는 제 2 채널 영역(CH2)을 포함할 수 있다. 일 예로, 상기 제 2 채널 영역(CH2)의 단면은 원형 또는 타원형일 수 있다. 도 9에 도시된 바와 같이, 도 6을 참조하여 설명된 결과물 상에 표면 가공 공정을 수행하여 라운드된 표면을 갖는 제 2 상부 반도체 패턴(123)이 형성될 수 있다. 일 예로, 상기 표면 가공 공정은 도 6의 결과물을 HCl을 포함하는 가스에 노출시키는 공정 및 H2 분위기에서 어닐링하는 공정을 포함할 수 있다.
도 11 내지 도 17는 본 발명의 또 다른 실시예에 따른 반도체 소자의 제조 방법을 설명하기 위한 사시도들이다. 도 18a는 도 17의 A-A'선 및 B-B'선에 따른 단면도이다. 도 18b는 도 17의 C-C'선 및 D-D'선에 따른 단면도이다.
도 11을 참조하여, 기판(100) 상에 제 1 반도체층(110) 및 제 2 반도체층(120)이 차례로 형성될 수 있다. 상기 기판(100)은 제 1 영역 및 제 2 영역을 포함할 수 있다. 본 실시예에 있어서, 상기 제 1 영역은 PMOSFET 영역(PR)일 수 있고 상기 제 2 영역은 NMOSFET 영역(NR)일 수 있다. 상기 기판(100)은 실리콘, 게르마늄, 실리콘-게르마늄 등을 포함하는 반도체 기판일 수 있다.
상기 제 1 반도체층(110)은 상기 제 2 반도체층(120)에 대하여 식각 선택성을 갖는 물질을 포함할 수 있다. 즉, 소정의 식각 레서피를 사용하여 상기 제 1 반도체층(110)을 식각하는 공정에서, 상기 제 1 반도체층(110)은 상기 제 2 반도체층(120)의 식각을 최소화하면서 식각될 수 있는 물질로 형성될 수 있다. 이러한 식각 선택성(etch selectivity)은 상기 제 2 반도체층(120)의 식각 속도에 대한 상기 제 1 반도체층(110)의 식각 속도의 비율을 통해 정량적으로 표현될 수 있다. 일 실시예에 따르면, 상기 제 1 반도체층(110)은 상기 제 2 반도체층(120)에 대하여 1:10 내지 1:200의 식각 선택비를 제공할 수 있는 물질들 중의 하나일 수 있다. 일 예로, 상기 제 1 반도체층(110) 및 상기 제 2 반도체층(120)은 상기 표 1 중 선택된 하나 일 수 있다.
상기 제 1 반도체층(110) 및 상기 제 2 반도체층(120)은 상기 기판(100)을 씨드층(seed layer)으로 하는 에피택시얼 성장(epitaxial growth) 공정에 의하여 형성될 수 있다. 일 예로, 상기 에피택시얼 성장 공정은 화학 기상 증착(Chemical Vapor Deposition: CVD) 공정 또는 분자 빔 에피택시(Molecular Beam Epitaxy: MBE) 공정 일 수 있다. 상기 제 1 반도체층(110) 및 상기 제 2 반도체층(120)은 동일 챔버에서 연속적으로 형성될 수 있다. 상기 제 1 반도체층(110) 및 상기 제 2 반도체층(120)은 상기 기판(100) 상에 선택적으로 성장(selective epitaxial growth)되지 않고 상기 기판(100)의 전면에 콘포멀하게 성장될 수 있다. 본 실시예에 있어서, 상기 제 1 반도체층(110)은 상기 제 2 반도체층(120)보다 두껍게 형성될 수 있다.
상기 제 2 반도체층(120) 상에 제 1 마스크 패턴들(181, 182)이 형성될 수 있다. 설명의 간소화를 위하여 상기 PMOSFET 영역(PR) 상의 제 1 마스크 패턴(181) 및 상기 NMOSFET 영역(NR) 상의 제 2 마스크 패턴(182)을 동일한 형상으로 도시하였으나, 이에 한정되지 않는다. 상기 제 1 마스크 패턴들(181, 182)은 x 방향으로 서로 이격된 양 단부들(edge portions:EP)의 폭이 양 단부들(EP) 사이의 중앙부(center portion:CP)보다 클 수 있다. 상기 제 1 마스크 패턴들(181, 182)은 포토 레지스트, 실리콘 질화막, 실리콘 산화막, 및 실리콘 산화질화막 중 적어도 하나를 포함할 수 있다. 상기 제 1 마스크 패턴들(181, 182)은 CVD 공정으로 형성될 수 있다.
도 12를 참조하여, 상기 제 1 마스크 패턴들(181, 182)을 식각 마스크로 패터닝 공정이 수행될 수 있다. 그 결과, 상기 PMOSFET 영역(PR) 상에 제 1 하부 반도체 패턴(111) 및 상기 제 1 하부 반도체 패턴(111) 상의 제 1 상부 반도체 패턴(121)이 형성되고, 상기 NMOSFET 영역(NR) 상에 제 2 하부 반도체 패턴(112) 및 상기 제 2 하부 반도체 패턴(112) 상의 제 2 상부 반도체 패턴(122)이 형성될 수 있다. 상기 제 1 하부 반도체 패턴(111) 및 제 1 상부 반도체 패턴(121)은 상기 PMOSFET 영역(PR) 상의 제 1 마스크 패턴(181)의 형상을 따라 양 단부들의 폭이 중심부보다 크게 형성될 수 있다. 상기 제 2 하부 반도체 패턴(112) 및 제 2 상부 반도체 패턴(122)은 상기 NMOSFET 영역(NR) 상의 제 1 마스크 패턴(182)의 형상을 따라 양 단부들의 폭이 중심부보다 크도록 형성될 수 있다. 상기 패터닝 공정은 건식 및/또는 습식 식각 공정을 포함할 수 있다. 일 예로, 상기 패터닝 공정은 이방성 건식 식각 공정을 포함할 수 있다. 상기 패터닝 공정 후, 상기 제 1 마스크 패턴들(181, 182)은 제거될 수 있다. 일 예로 상기 제 1 마스크 패턴들(181, 182)의 제거 공정은 애싱 공정 또는 습식 식각 공정을 포함할 수 있다.
도 13을 참조하여, 상기 기판(100) 상에 상기 제 1 상부 반도체 패턴(121)의 상면 및 상기 제 2 상부 반도체 패턴(122)의 상면을 노출하는 층간 절연막(185)이 형성될 수 있다. 상기 층간 절연막(185)의 형성 공정은 CVD 공정에 의하여 상기 기판(100) 상에 절연막을 형성한 후, 평탄화 공정에 의하여 상기 제 1 상부 반도체 패턴(121)의 상면 및 상기 제 2 상부 반도체 패턴(122)의 상면을 노출하는 공정을 포함할 수 있다. 일 예로, 상기 층간 절연막(185)은 실리콘 산화물, 실리콘 질화물, 및 실리콘 산화질화물 중 적어도 하나를 포함할 수 있다.
도 14를 참조하여, 상기 층간 절연막(185)이 형성된 결과물 상에, 상기 제 1 상부 반도체 패턴(121)의 양 단부들 및 상기 제 2 상부 반도체 패턴(122)의 양 단부들을 덮는 제 2 마스크 패턴들(183)이 형성될 수 있다. 상기 제 2 마스크 패턴들(183)은 상기 제 1 상부 반도체 패턴(121)의 중앙부 및 상기 제 2 상부 반도체 패턴(122)의 중앙부를 노출할 수 있다. 상기 제 2 마스크 패턴들(183)은 포토 레지스트, 실리콘 산화물, 실리콘 질화물, 및 실리콘 산화질화물 중 적어도 하나를 포함할 수 있다.
도 15를 참조하여, 상기 제 2 마스크 패턴들(183)에 의하여 노출된 상기 층간 절연막(185)의 일부가 제거될 수 있다. 일 예로, 상기 제거 공정은 상기 제 2 마스크 패턴들(183)을 식각 마스크로하는 건식 및/또는 습식 식각 공정을 포함할 수 있다. 상기 제거 공정은 상기 제 1 하부 반도체 패턴(111), 상기 제 1 상부 반도체 패턴(121), 상기 제 2 하부 반도체 패턴(112), 및 상기 제 2 상부 반도체 패턴(122)의 식각을 최소화하며 상기 제 2 마스크 패턴들(183)에 의하여 노출된 상기 층간 절연막(185)을 제거할 수 있는 식각 레시피로 수행될 수 있다. 그 결과, 상기 층간 절연막(185)이 제거된 부분에 리세스 영역(RS)이 형성될 수 있다. 상기 PMOSFET 영역(PR) 상에서, 상기 리세스 영역(RS)은 상기 제 2 마스크 패턴들(183)에 의하여 덮힌 상기 층간 절연막(185)의 측벽, 상기 기판(100)의 상면, 제 1 하부 반도체 패턴(111)의 측벽, 상기 제 1 상부 반도체 패턴(121)의 측벽에 의하여 정의된 영역일 수 있다. 상기 NMOSFET 영역(NR) 상에서, 상기 리세스 영역(RS)은 상기 제 2 마스크 패턴들(183)에 의하여 덮힌 상기 층간 절연막(185)의 측벽, 상기 기판(100)의 상면, 제 2 하부 반도체 패턴(112)의 측벽, 상기 제 2 상부 반도체 패턴(122)의 측벽에 의하여 정의된 영역일 수 있다. 즉, 상기 리세스 영역(RS)은 상기 PMOSFET 영역(PR)에서 상기 제 1 하부 반도체 패턴(111)의 측벽 및 상기 제 1 상부 반도체 패턴(121)의 측벽을 노출하고, 상기 NMOSFET 영역(NR)에서 상기 제 2 하부 반도체 패턴(112)의 측벽 및 상기 제 2 상부 반도체 패턴(122)의 측벽을 노출할 수 있다. 상기 리세스 영역(RS)의 형성 후, 상기 제 2 마스크 패턴들(183)은 제거될 수 있다.
도 16을 참조하여, 상기 PMOSFET 영역(PR)을 덮는 제 3 마스크 패턴(184)이 형성될 수 있다. 일 예로, 상기 제 3 마스크 패턴(184)은 실리콘 질화물, 실리콘 산화물, 및 실리콘 산화질화물 중 적어도 하나를 포함할 수 있다. 상기 제 3 마스크 패턴(184)은 상기 NMOSFET 영역(NR)을 노출할 수 있다.
상기 제 3 마스크 패턴(184)에 의하여 노출된 상기 NMOSFET 영역(NR) 상의 제 2 하부 반도체 패턴(112)의 일부가 제거되어 상기 리세스 영역(RS)이 상기 제 2 상부 반도체 패턴(122) 아래로 연장된 갭 영역(GA)이 형성될 수 있다. 그 결과, 상기 제 2 하부 반도체 패턴(112)은 상기 층간 절연막(185)에 의하여 그 측벽이 덮여 있는 부분이 잔류된 잔류 반도체 패턴들(113)이 될 수 있다. 즉, 상기 잔류 반도체 패턴들(113)은 상기 제 2 상부 반도체 패턴(122)의 양 단부들 아래에 잔류하고, 상기 양 단부들 사이의 중앙부에는 잔류하지 않을 수 있다. 상기 갭 영역(GA)은 상기 제 2 상부 반도체 패턴(122)의 하면 및 상기 잔류 반도체 패턴들(113)의 측벽에 의하여 정의된 영역일 수 있다.
상기 제거 공정은 상기 제 2 상부 반도체 패턴(122)의 식각을 최소화하며 상기 제 2 하부 반도체 패턴(112)을 제거할 수 있는 선택적 식각 레시피로 수행될 수 있다. 일 예로, 상기 제 2 상부 반도체 패턴(122)이 실리콘을 포함하고, 상기 제 2 하부 반도체 패턴(112)이 실리콘-게르마늄을 포함하는 경우, 상기 식각 공정은 과초산(peracetic acid)을 포함하는 식각액을 사용하여 수행될 수 있다. 상기 식각액은 불산(HF) 수용액 및 순수(deionized water)을 더 포함할 수 있다. 상기 고전압 영역(HG)은 상기 제 3 마스크 패턴(184)에 의하여 덮여있으므로, 상기 식각 공정으로부터 보호될 수 있다. 상기 제 3 마스크 패턴(184)은 상기 식각 공정 이후 제거될 수 있다.
도 17, 도 18a 및 도 18b를 참조하여, 상기 PMOSFET 영역(PR)에 제 1 게이트 절연막(GD1) 및 제 1 게이트 전극(GE1)이 차례로 형성되고, 상기 NMOSFET 영역(NR)에 제 2 게이트 절연막(GD2) 및 제 2 게이트 전극(GE2)이 차례로 형성될 수 있다. 상기 제 1 게이트 절연막(GD1) 및 상기 제 1 게이트 전극(GE1)은 상기 제 1 상부 반도체 패턴(121)의 연장방향과 실질적으로 수직한 방향(y 방향)으로 연장할 수 있고, 상기 제 2 게이트 절연막(GD2) 및 상기 제 2 게이트 전극(GE2)은 상기 제 2 상부 반도체 패턴(122)의 연장 방향과 실질적으로 수직한 방향(y 방향)으로 연장할 수 있다. 상기 제 1 게이트 전극(GE1)은 상기 제 1 상부 반도체 패턴(121)의 중앙부를 덮고 양 단부를 노출할 수 있다. 상기 제 2 게이트 전극(GE2)은 상기 제 2 상부 반도체 패턴(122)의 중앙부를 덮고 양 단부를 노출할 수 있다.
상기 제 1 게이트 절연막(GD1) 및 상기 제 1 게이트 전극(GE1)은 상기 제 1 하부 반도체 패턴(111) 및 상기 제 1 상부 반도체 패턴(121)의 측벽을 따라 연장될 수 있다. 상기 제 2 게이트 절연막(GD2) 및 상기 제 2 게이트 전극(GE2)은 상기 갭 영역(GA)으로 연장되어 상기 제 2 상부 반도체 패턴(122)의 하면을 덮을 수 있다.
상기 제 1 게이트 절연막(GD1) 및 상기 제 2 게이트 절연막(GD2)은 실리콘 산화막을 포함할 수 있다. 다른 실시예에 있어서, 상기 제 1 게이트 절연막(GD1) 및 상기 제 2 게이트 절연막(GD2)은 실리콘 산화막보다 높은 유전 상수를 갖는 고유전체 물질을 포함할 수 있다. 일 예로, 상기 제 1 게이트 절연막(GD1) 및 상기 제 2 게이트 절연막(GD2)은 HfO2, ZrO2 또는 Ta2O5을 포함할 수 있다. 상기 제 1 게이트 절연막(GD1) 및 상기 제 2 게이트 절연막(GD2)은 동일한 물질로 형성될 수 있으나, 이에 한정되지 않는다.
상기 제 1 게이트 전극(GE1) 및 상기 제 2 게이트 전극(GE2)은 도핑된 실리콘, 도전성 금속 질화물, 및 금속 중 적어도 하나를 포함할 수 있다. 상기 제 1 게이트 전극(GE1)과 상기 제 2 게이트 전극(GE2)은 동일한 물질로 형성될 수 있으나, 이에 한정되지 않는다. 일 예로, 상기 제 1 게이트 전극(GE1) 및 상기 제 2 게이트 전극(GE2)은 일함수가 서로 다를 수 있다.
상기 제 1 및 제 2 게이트 절연막들(GD1, GD2) 및 상기 제 1 및 제 2 게이트 전극들(GE1, GE2)은 증착 공정 및 패터닝 공정에 의하여 형성될 수 있다. 일 예로, 상기 증착 공정은 CVD 또는 스퍼터링 공정일 수 있다. 다른 실시예에 있어서, 상기 제 1 및 제 2 게이트 절연막들(GD1, GD2) 및 상기 제 1 및 제 2 게이트 전극들(GE1, GE2)은 더미 패턴을 이용한 리플레이스(replacement) 공정에 의하여 형성될 수 있다. 일 예로, 상기 제 1 및 제 2 상부 반도체 패턴들(121, 122)을 덮는 더미 패턴이 형성된 후, 상기 더미 패턴은 상기 제 1 및 제 2 게이트 절연막들(GD1, GD2) 및 상기 제 1 및 제 2 게이트 전극들(GE1, GE2)로 교체될 수 있다. 이 경우, 상기 제 1 및 제 2 게이트 전극들(GE1, GE2)의 형성은 다마신(damascene) 공정을 포함할 수 있다.
도 11 내지 도 17을 참조하여 설명된 공정들의 결과, 상기 PMOSFET 영역(PR)에 제 1 트랜지스터(TR1)가 형성되고 상기 NMOSFET 영역(NR)에 제 2 트랜지스터(TR2)가 형성될 수 있다. 상기 제 1 트랜지스터(TR1)는 상기 기판(100)으로부터 돌출된 핀(fin) 형태의 제 1 채널 영역(CH1)을 포함하는 핀 전계 효과 트랜지스터(Fin FET)일 수 있다. 상기 제 2 트랜지스터(TR2)는 상기 기판(100)과 이격되고 상기 제 2 게이트 전극(GE2)에 의하여 그의 외주면이 둘러싸인 제 2 채널 영역(CH2)을 포함하는 게이트-올-어라운드(Gate-All-Around) 전계 효과 트랜지스터일 수 있다. 본 발명의 일 실시예에 따르면, 선택적 에피 성장(selective epitaxial growth) 및/또는 SOI(silicon on insulator) 기판의 사용 없이 용이하게 핀 전계 효과 트랜지스터와 게이트-올-어라운드 전계 효과 트랜지스터를 동시에 형성할 수 있다.
도 17, 도 18a, 및 도 18b를 다시 참조하여, 본 발명의 일 실시예에 따른 반도체 소자가 설명된다. 본 발명의 일 실시예에 따른 반도체 소자는 기판(100)의 PMOSFET 영역(PR) 상의 제 1 트랜지스터(TR1) 및 상기 기판(100)의 NMOSFET 영역(NR) 상의 제 2 트랜지스터(TR2)를 포함할 수 있다. 상기 기판(100)은 실리콘, 게르마늄, 실리콘-게르마늄 등을 포함하는 반도체 기판일 수 있다. 상기 제 1 트랜지스터(TR1)는 PMOS 트랜지스터일 수 있고, 상기 제 2 트랜지스터(TR2)는 NMOS 트랜지스터일 수 있다.
상기 제 1 트랜지스터(TR1)는 상기 기판(100)으로부터 z 방향으로 돌출된 핀 부분(Fin portion: FN) 포함할 수 있다. 상기 핀 부분(FN)은 제 1 채널 영역(CH1)을 사이에 두고 x 방향으로 상호 이격된 제 1 소스/드레인 영역들(SD1)을 포함할 수 있다. 상기 제 1 채널 영역(CH1)은 상기 제 1 소스/드레인 영역들(SD1)보다 폭이 좁을 수 있다.
상기 핀 부분(FN)은 상기 기판(100) 상에 차례로 적층된 제 1 하부 반도체 패턴(111) 및 제 1 상부 반도체 패턴(121)을 포함할 수 있다. 즉, 상기 제 1 채널 영역(CH1)은 상기 제 1 하부 반도체 패턴(111) 및 상기 제 1 상부 반도체 패턴(121)을 포함할 수 있다. 상기 제 1 하부 반도체 패턴(111)의 물질 및 제 1 상부 반도체 패턴(121)의 물질은 각각 표 1의 제 1 반도체층의 물질 및 제 2 반도체층의 물질에 상응할 수 있다. 즉, 상기 제 1 하부 반도체 패턴(111)은 상기 제 1 상부 반도체 패턴(121)에 대하여 식각 선택성을 갖는 물질을 포함할 수 있다.
상기 제 1 채널 영역(CH1) 상에 제 1 게이트 절연막(GD1) 및 제 1 게이트 전극(GE1)이 차례로 제공될 수 있다. 상기 제 1 게이트 절연막(GD1) 및 상기 제 1 게이트 전극(GE1)은 상기 제 1 채널 영역(CH1)의 측벽 및 상면을 따라 연장될 수 있다. 상기 제 1 게이트 절연막(GD1)은 실리콘 산화막을 포함할 수 있다. 다른 실시예에 있어서, 상기 제 1 게이트 절연막(GD1)은 실리콘 산화막보다 높은 유전 상수를 갖는 고유전체 물질을 포함할 수 있다. 일 예로, 상기 제 1 게이트 절연막(GD1)은 HfO2, ZrO2 또는 Ta2O5을 포함할 수 있다. 상기 제 1 게이트 전극(GE1)은 도핑된 실리콘, 도전성 금속 질화물, 및 금속 중 적어도 하나를 포함할 수 있다.
상기 제 1 채널 영역(CH1)은 상기 기판(100)과 직접 연결될 수 있다. 즉, 상기 제 1 하부 반도체 패턴(111)의 하면은 상기 기판(100)의 상면과 접할 수 있다. 따라서, 상기 제 1 트랜지스터(TR1)의 채널은 바디(body), 즉, 상기 기판(100)에 전기적으로 연결될 수 있다. 이와 같은 바디 콘택 구조는 상기 제 1 트랜지스터(TR1)의 동작 시 발생되는 핫 캐리어 효과(Hot Carrier Effect)를 완화할 수 있다.
상기 제 2 트랜지스터(TR2)는 상기 제 2 게이트 전극(GE2) 및 상기 제 2 게이트 절연막(GD2)을 사이에 두고 상기 기판(100)과 이격된 제 2 채널 영역(CH2)을 포함할 수 있다. 일 예로, 상기 제 2 채널 영역(CH2)의 단면은 측면에 비하여 상면 및 하면이 넓은 직사각형일 수 있으나 이에 한정되지 않는다. 다른 실시예에 있어서, 상기 제 2 채널 영역(CH2)은 도 8b에 도시된 형상과 동일할 수 있다.
상기 제 2 채널 영역(CH2) 상에 제 2 게이트 절연막(GD2) 및 제 2 게이트 전극(GE2)이 차례로 제공될 수 있다. 상기 제 2 게이트 절연막(GD2) 및 상기 제 2 게이트 전극(GE2)은 제 2 상부 반도체 패턴(122)과 상기 기판(100) 사이의 갭 영역(GA)으로 연장될 수 있다. 즉, 상기 제 2 게이트 절연막(GD2) 및 상기 제 2 게이트 전극(GE2)은 상기 제 2 채널 영역(CH2)의 상면, 하면, 및 측면을 덮을 수 있다. 상기 제 2 게이트 절연막(GD2) 및 상기 제 2 게이트 전극(GE2)은 상기 제 2 채널 영역(CH2)의 외주면을 둘러싸고, 상기 제 2 채널 영역(CH2)은 상기 제 2 게이트 전극(GE2)을 관통할 수 있다. 상기 제 2 채널 영역(CH2)의 하면은 상기 제 1 상부 반도체 패턴(121)과 상기 제 1 하부 반도체 패턴(111) 사이의 계면과 실질적으로 동일 레벨일 수 있다.
상기 제 2 게이트 절연막(GD2)은 실리콘 산화막을 포함할 수 있다. 다른 실시예에 있어서, 상기 제 2 게이트 절연막(GD2)은 실리콘 산화막보다 높은 유전 상수를 갖는 고유전체 물질을 포함할 수 있다. 일 예로, 상기 제 2 게이트 절연막(GD2)은 HfO2, ZrO2 또는 Ta2O5을 포함할 수 있다. 상기 제 2 게이트 전극(GE2)은 도핑된 실리콘, 도전성 금속 질화물, 및 금속 중 적어도 하나를 포함할 수 있다. 일 실시예에 있어서, 상기 제 2 게이트 전극(GE2)은 상기 제 1 게이트 전극(GE1)과 일함수가 다를 수 있다.
상기 제 2 트랜지스터(TR2)는 상기 제 2 채널 영역(CH2)을 사이에 두고 x 방향으로 상호 이격된 제 2 소스/드레인 영역들(SD2)을 포함할 수 있다. 상기 제 2 채널 영역(CH2)은 상기 제 2 소스/드레인 영역들(SD2)보다 폭이 좁을 수 있다. 상기 제 2 소스/드레인 영역들(SD2)은 상기 기판(100) 상에 차례로 적층된 잔류 반도체 패턴들(113) 및 상기 잔류 반도체 패턴들(113) 상의 제 2 상부 반도체 패턴(122)을 포함할 수 있다. 상기 잔류 반도체 패턴들(113)은 상기 제 2 게이트 전극(GE2)을 사이에 두고 x 방향으로 상호 이격될 수 있다. 상기 잔류 반도체 패턴들(113) 및 제 2 상부 반도체 패턴(122)의 물질은 각각 표 1의 제 1 반도체층 및 제 2 반도체층의 물질에 상응할 수 있다. 즉, 상기 잔류 반도체 패턴들(113)은 상기 제 2 상부 반도체 패턴(122)에 대하여 식각 선택성을 갖는 물질을 포함할 수 있다. 상기 제 2 소스/드레인 영역들(SD2)의 하부, 즉, 상기 잔류 반도체 패턴들(113)은 상기 제 1 하부 반도체 패턴(111)과 동일한 물질을 포함할 수 있고, 상기 제 2 상부 반도체 패턴(122)은 상기 제 1 상부 반도체 패턴(121)과 동일한 물질을 포함할 수 있다. 즉, 상기 제 1 채널 영역(CH1)은 상기 제 2 채널 영역(CH2)과 동일한 물질을 포함하는 제 1 하부 반도체 패턴(111) 및 상기 제 2 채널 영역(CH2)과 다른 물질을 포함하는 제 1 상부 반도체 패턴(121)을 포함할 수 있다.
상기 제 2 트랜지스터(TR2)는 게이트-올-어라운드(Gate-All-Around)구조일 수 있다. 일 예로, 상기 제 2 채널 영역(CH2)은 그의 폭이 수 나노미터에서 수십 나노미터 사이인 나노 와이어 또는 나노 튜브일 수 있다. 이와 같은 상기 제 2 채널 영역(CH2)의 구조는 제 2 트랜지스터(TR2)의 단 채널 효과(short channel effect)를 완화할 수 있다.
상기 제 1 채널 영역(CH1)은 전체 표면적 중 상면보다 측벽의 비율이 크다. 상기 제 1 채널 영역(CH1)의 측벽은 (110) 결정면일 수 있다. 상기 제 2 채널 영역(CH2)은 상기 제 1 채널 영역(CH1)에 비하여 전체 표면적 중 상면 및 하면의 비율이 크다. 상기 제 2 채널 영역(CH2)의 상면 및 하면은 (100) 결정면일 수 있다. 캐리어의 이동도(mobility:μ) 캐리어의 종류 및 격자의 배향에 따라 다음과 같다.
μelectron (100)> μelctron (111)> μelectron (110)
μhole (110) > μhole (111) > μhole (100)
즉, 전자의 경우 (100)면에서 가장 이동도가 높고, 홀의 경우 (110) 면에서 가장 이동도가 높다. 본 발명의 제 1 트랜지스터(TR1)는 PMOS 트랜지스터로 홀(hole)이 다수 캐리어이다. 따라서, (110)면인 측벽의 비율이 상대적으로 큰 상기 제 1 채널 영역(CH1)에 의하여 상기 제 1 트랜지스터(TR1)의 이동도가 증가될 수 있다. 본 발명의 제 2 트랜지스터(TR2)는 NMOS 트랜지스터로 전자(electron)가 다수 캐리어이다. 따라서, (100)면인 상면 및 하면의 비율이 상기 제 1 채널 영역(CH1)보다 큰 상기 제 2 채널 영역(CH2)에 의하여 제 2 트랜지스터(TR2)의 이동도가 증가될 수 있다.
도 20a 및 도 20b는 본 발명의 또 다른 실시예에 따른 반도체 소자를 설명하기 위한 도면들, 도 20a는 도 17의 A-A'선 및 B-B'선에 따른 단면도이고 도 20b는 도 17의 C-C'선 및 D-D'선에 따른 단면도이다. 도 19는 본 발명의 또 다른 실시예에 따른 반도체 소자의 제조 방법을 설명하기 위한 사시도이다. 설명의 간소화를 위하여 중복된 구성에 대한 설명은 생략된다.
도 20a 및 도 20b를 참조하여, 본 발명의 또 다른 실시예에 따른 반도체 소자의 제 2 트랜지스터(TR2)는 라운드된 표면을 갖는 제 2 채널 영역(CH2)을 포함할 수 있다. 일 예로, 상기 제 2 채널 영역(CH2)의 단면은 타원형일 수 있다. 도 19에 도시된 바와 같이, 도 16을 참조하여 설명된 결과물 상에 표면 가공 공정을 수행하여 라운드된 표면을 갖는 제 2 상부 반도체 패턴(123)이 형성될 수 있다. 일 예로, 상기 표면 가공 공정은 도 6의 결과물을 HCl을 포함하는 가스에 노출시키는 공정 및 H2 분위기에서 어닐링하는 공정을 포함할 수 있다.
도 21은 본 발명의 또 다른 실시예에 따른 반도체 소자를 설명하기 위한 사시도이다. 도 22a는 도 21의 A-A'선 및 B-B'선에 따른 단면도이고, 도 22b는 도 21의 C-C'선 및 D-D'선에 따른 단면도이다. 설명의 간소화를 위하여 중복된 구성에 대한 설명은 생략된다.
본 발명의 일 실시예에 따른 반도체 소자는 기판(100)의 제 1 영역(R1) 상의 제 1 트랜지스터(TR1) 및 상기 기판(100)의 제 2 영역(R2) 상의 제 2 트랜지스터(TR2)를 포함할 수 있다. 상기 기판(100)은 실리콘, 게르마늄, 실리콘-게르마늄 등을 포함하는 반도체 기판일 수 있다. 일 예로, 상기 제 1 영역(R1)은 고전압 영역이고 상기 제 2 영역(R2)은 저전압 영역일 수 있다. 다른 실시예에서, 상기 제 1 영역(R1)은 PMOSFET 영역이고 상기 제 2 영역(R2)은 NMOSFET 영역일 수 있다.
상기 제 1 트랜지스터(TR1)는 상기 기판(100)으로부터 z 방향으로 돌출된 핀 부분(Fin portion: FN) 포함할 수 있다. 상기 핀 부분(FN)은 제 1 채널 영역(CH1)을 사이에 두고 x 방향으로 상호 이격된 제 1 소스/드레인 영역들(SD1)을 포함할 수 있다. 상기 제 1 채널 영역(CH1)은 상기 제 1 소스/드레인 영역들(SD1)보다 폭이 좁을 수 있다.
상기 핀 부분(FN)은 상기 기판(100) 상에 제 1 하부 반도체 패턴들(111, 115, 117) 및 제 1 상부 반도체 패턴들(121, 125, 128)이 교대로 반복 적층된 구조일 수 있다. 설명의 간소화를 위하여 상기 제 1 하부 반도체 패턴들(111, 115, 117) 및 상기 제 1 상부 반도체 패턴들(121, 125, 128)은 3회 반복하여 적층된 것으로 도시하였으나, 이에 한정되지 않으며 2회이거나 4회 이상 반복하여 적층될 수 있다. 상기 제 1 하부 반도체 패턴들(111, 115, 117)의 물질 및 제 1 상부 반도체 패턴들(121, 125, 128)의 물질은 각각 표 1의 제 1 반도체층의 물질 및 제 2 반도체층의 물질에 상응할 수 있다. 즉, 상기 제 1 하부 반도체 패턴들(111,115,117)은 상기 제 1 상부 반도체 패턴들(121,125,128)에 대하여 식각 선택성을 갖는 물질을 포함할 수 있다.
상기 제 1 채널 영역(CH1) 상에 제 1 게이트 절연막(GD1) 및 제 1 게이트 전극(GE1)이 차례로 제공될 수 있다. 상기 제 1 게이트 절연막(GD1) 및 상기 제 1 게이트 전극(GE1)은 상기 제 1 채널 영역(CH1)의 측벽 및 상면을 따라 연장될 수 있다. 상기 제 1 게이트 절연막(GD1)은 실리콘 산화막을 포함할 수 있다. 다른 실시예에 있어서, 상기 제 1 게이트 절연막(GD1)은 실리콘 산화막보다 높은 유전 상수를 갖는 고유전체 물질을 포함할 수 있다. 일 예로, 상기 제 1 게이트 절연막(GD1)은 HfO2, ZrO2 또는 Ta2O5을 포함할 수 있다. 상기 제 1 게이트 전극(GE1)은 도핑된 실리콘, 도전성 금속 질화물, 및 금속 중 적어도 하나를 포함할 수 있다.
상기 제 1 채널 영역(CH1)은 상기 기판(100)과 직접 연결될 수 있다. 즉, 상기 제 1 하부 반도체 패턴(111)의 하면은 상기 기판(100)의 상면과 접할 수 있다. 따라서, 상기 제 1 트랜지스터(TR1)의 채널은 바디(body), 즉, 상기 기판(100)에 전기적으로 연결될 수 있다. 이와 같은 바디 콘택 구조는 상기 제 1 트랜지스터(TR1)의 동작 시 발생되는 핫 캐리어 효과(Hot Carrier Effect)를 완화할 수 있다.
상기 제 2 트랜지스터(TR2)는 상기 제 2 게이트 전극(GE2) 및 상기 제 2 게이트 절연막(GD2)을 사이에 두고 상기 기판(100)과 이격된 제 2 채널 영역(CH2)을 포함할 수 있다. 상기 제 2 채널 영역(CH2)은 제 2 상부 반도체 패턴들(122, 126,129)을 포함할 수 있다. 설명의 간소화를 위하여 상기 제 2 상부 반도체 패턴들(122, 126,129)은 세 층이 도시되었으나 이에 한정되지 않고, 2층이거나 4층 이상일 수 있다. 상기 제 2 상부 반도체 패턴(122)과 상기 기판(100) 사이 및 상기 제 2 상부 반도체 패턴들(122, 125, 129) 사이에 갭 영역들(GA)이 제공될 수 있다. 상기 제 2 채널 영역(CH2) 상에 제 2 게이트 절연막(GD2) 및 제 2 게이트 전극(GE2)이 차례로 제공될 수 있다. 상기 제 2 게이트 절연막(GD2) 및 상기 제 2 게이트 전극(GE2)은 상기 갭 영역들(GA)으로 연장될 수 있다.
상기 제 2 게이트 절연막(GD2)은 실리콘 산화막을 포함할 수 있다. 다른 실시예에 있어서, 상기 제 2 게이트 절연막(GD2)은 실리콘 산화막보다 높은 유전 상수를 갖는 고유전체 물질을 포함할 수 있다. 일 예로, 상기 제 2 게이트 절연막(GD2)은 HfO2, ZrO2 또는 Ta2O5을 포함할 수 있다. 상기 제 2 게이트 전극(GE2)은 도핑된 실리콘, 도전성 금속 질화물, 및 금속 중 적어도 하나를 포함할 수 있다.
상기 제 2 트랜지스터(TR2)는 상기 제 2 채널 영역(CH2)을 사이에 두고 x 방향으로 상호 이격된 제 2 소스/드레인 영역들(SD2)을 포함할 수 있다. 상기 제 2 채널 영역(CH2)은 상기 제 2 소스/드레인 영역들(SD2)보다 폭이 좁을 수 있다. 상기 제 2 소스/드레인 영역들(SD2)은 상기 기판(100) 상에 교대로 반복 적층된 잔류 반도체 패턴들(113, 116, 118) 및 상기 제 2 상부 반도체 패턴들(122, 126, 129)을 포함할 수 있다. 상기 잔류 반도체 패턴들(113, 116, 118) 각각은 상기 제 2 게이트 전극(GE2)을 사이에 두고 x 방향으로 상호 이격될 수 있다. 상기 잔류 반도체 패턴들(113, 116, 118) 및 제 2 상부 반도체 패턴들(122, 126, 129)의 물질은 각각 표 1의 제 1 반도체층 및 제 2 반도체층의 물질에 상응할 수 있다. 즉, 상기 잔류 반도체 패턴들(113, 116, 118)은 상기 제 2 상부 반도체 패턴들(122, 126, 129)에 대하여 식각 선택성을 갖는 물질을 포함할 수 있다.
상기 제 2 트랜지스터(TR2)는 게이트-올-어라운드(Gate-All-Around)구조일 수 있다. 일 예로, 상기 제 2 채널 영역(CH2)은 그의 폭이 수 나노미터에서 수십 나노미터 사이인 나노 와이어들 또는 나노 튜브들일 수 있다. 이와 같은 상기 제 2 채널 영역(CH2)의 구조는 제 2 트랜지스터(TR2)의 단 채널 효과(short channel effect)를 완화할 수 있다.
상기 제 1 트랜지스터(TR1)는 복수의 제 1 하부 반도체 패턴들(111, 115,117) 및 복수의 제 1 상부 반도체 패턴들(121, 125,128)을 포함하므로, (110)면을 갖는 측벽의 비율이 증가될 수 있고 그 결과, 전하의 이동도가 증대될 수 있다. 상기 제 2 트랜지스터(TR2)는 복수의 제 2 상부 반도체 패턴들(122, 126,129)을 포함하므로, (100)면을 갖는 상면 및 하면의 비율이 증가될 수 있고 그 결과, 전하의 이동도가 증대될 수 있다. 그에 따라 상기 제 1 트랜지스터(TR1) 및 상기 제 2 트랜지스터(TR2)의 온-커런트(On-Current)가 향상될 수 있다.
도 23a 및 도 23b는 본 발명의 또 다른 실시예에 따른 반도체 소자를 설명하기 위한 도면들, 도 23a는 도 21의 A-A'선 및 B-B'선에 따른 단면도이고 도 23b는 도 21의 C-C'선 및 D-D'선에 따른 단면도이다. 설명의 간소화를 위하여 중복된 구성에 대한 설명은 생략된다.
도 23a 및 도 23b를 참조하여, 본 발명의 또 다른 실시예에 따른 반도체 소자의 제 2 트랜지스터(TR2)는 라운드된 표면을 갖는 제 2 채널 영역(CH2)을 포함할 수 있다. 상기 제 2 채널 영역(CH2)은 복수의 제 2 상부 반도체 패턴들(123, 127, 124)을 포함할 수 있다. 일 예로, 상기 제 2 채널 영역(CH2)의 단면은 타원형일 수 있다. 상기 제 2 채널 영역(CH2)의 라운드된 표면은 표면 가공 공정을 수행하여 형성될 수 있다. 일 예로, 상기 표면 가공 공정은 HCl을 포함하는 가스에 노출시키는 공정 및 H2 분위기에서 어닐링하는 공정을 포함할 수 있다.
도 24 내지 도 29 및 도 31은 본 발명의 또 다른 실시예에 따른 반도체 소자의 제조 방법을 설명하기 위한 사시도들이다. 도 30a는 도 29의 A-A'선 및 B-B'선에 따른 단면도이다. 도 30b는 도 29의 C-C'선 및 D-D'선에 따른 단면도이다. 도 32a는 도 31의 A-A'선 및 B-B'선에 따른 단면도이다. 도 32b는 도 31의 C-C'선 및 D-D'선에 따른 단면도이다.
도 24를 참조하여, 기판(100) 상에 제 1 반도체층(110) 및 제 2 반도체층(120)이 차례로 형성될 수 있다. 상기 기판(100)은 제 1 영역(R1) 및 제 2 영역(R2)을 포함할 수 있다. 일 실시예에 있어서, 상기 제 1 영역(R1)은 고전압 트랜지스터 영역이고 상기 제 2 영역(R2)은 저전압 트랜지스터 영역일 수 있다. 다른 실시예에 있어서, 상기 제 1 영역(R1)은 PMOSFET 영역이고 상기 제 2 영역(R2)은 NMOSFET 영역일 수 있다. 상기 기판(100)은 실리콘, 게르마늄, 실리콘-게르마늄 등을 포함하는 반도체 기판일 수 있다.
상기 제 1 반도체층(110)은 상기 제 2 반도체층(120)에 대하여 식각 선택성을 갖는 물질을 포함할 수 있다. 즉, 소정의 식각 레서피를 사용하여 상기 제 1 반도체층(110)을 식각하는 공정에서, 상기 제 1 반도체층(110)은 상기 제 2 반도체층(120)의 식각을 최소화하면서 식각될 수 있는 물질로 형성될 수 있다. 이러한 식각 선택성(etch selectivity)은 상기 제 2 반도체층(120)의 식각 속도에 대한 상기 제 1 반도체층(110)의 식각 속도의 비율을 통해 정량적으로 표현될 수 있다. 일 실시예에 따르면, 상기 제 1 반도체층(110)은 상기 제 2 반도체층(120)에 대하여 1:10 내지 1:200의 식각 선택비를 제공할 수 있는 물질들 중의 하나일 수 있다. 일 예로, 상기 제 1 반도체층(110) 및 상기 제 2 반도체층(120)은 상기 표 1 중 선택된 하나 일 수 있다.
상기 제 1 반도체층(110) 및 상기 제 2 반도체층(120)은 상기 기판(100)을 씨드층(seed layer)으로 하는 에피택시얼 성장(epitaxial growth) 공정에 의하여 형성될 수 있다. 일 예로, 상기 에피택시얼 성장 공정은 화학 기상 증착(Chemical Vapor Deposition: CVD) 공정 또는 분자 빔 에피택시(Molecular Beam Epitaxy: MBE) 공정 일 수 있다. 상기 제 1 반도체층(110) 및 상기 제 2 반도체층(120)은 동일 챔버에서 연속적으로 형성될 수 있다. 상기 제 1 반도체층(110) 및 상기 제 2 반도체층(120)은 상기 기판(100) 상에 선택적으로 성장(selective epitaxial growth)되지 않고 상기 기판(100)의 전면에 콘포멀하게 성장될 수 있다.
상기 제 2 반도체층(120) 상에 제 1 마스크 패턴들(181, 182)이 형성될 수 있다. 상기 제 1 마스크 패턴들(181, 182)은 x 방향으로 서로 이격된 양 단부들(edge portions:EP)의 폭이 양 단부들(EP) 사이의 중앙부(center portion:CP)보다 클 수 있다. 상기 제 1 영역(R1) 상의 제 1 마스크 패턴(181)의 중앙부(CP)의 폭(W1)은 상기 제 2 영역(R2) 상의 제 1 마스크 패턴(182)의 중앙부(CP)의 폭(W2)보다 클 수 있다. 상기 제 1 마스크 패턴들(181, 182)은 포토 레지스트, 실리콘 질화막, 실리콘 산화막, 및 실리콘 산화질화막 중 적어도 하나를 포함할 수 있다. 상기 제 1 마스크 패턴들(181, 182)은 CVD 공정으로 형성될 수 있다.
도 25를 참조하여, 상기 제 1 마스크 패턴들(181, 182)을 식각 마스크로 패터닝 공정이 수행될 수 있다. 그 결과, 상기 제 1 영역(R1) 상에 제 1 하부 반도체 패턴(111) 및 상기 제 1 하부 반도체 패턴(111) 상의 제 1 상부 반도체 패턴(121)이 형성되고, 상기 제 2 영역(R2) 상에 제 2 하부 반도체 패턴(112) 및 상기 제 2 하부 반도체 패턴(112) 상의 제 2 상부 반도체 패턴(122)이 형성될 수 있다. 상기 제 1 하부 반도체 패턴(111) 및 제 1 상부 반도체 패턴(121)은 상기 제 1 영역(R1) 상의 제 1 마스크 패턴(181)의 형상을 따라 양 단부들의 폭이 중심부보다 크게 형성될 수 있다. 상기 제 2 하부 반도체 패턴(112) 및 제 2 상부 반도체 패턴(122)은 상기 제 2 영역(R2) 상의 제 1 마스크 패턴(182)의 형상을 따라 양 단부들의 폭이 중심부보다 크도록 형성될 수 있다. 상기 패터닝 공정은 건식 및/또는 습식 식각 공정을 포함할 수 있다. 일 예로, 상기 패터닝 공정은 이방성 건식 식각 공정을 포함할 수 있다. 상기 패터닝 공정 후, 상기 제 1 마스크 패턴들(181, 182)은 제거될 수 있다. 일 예로 상기 제 1 마스크 패턴들(181, 182)의 제거 공정은 애싱 공정 또는 습식 식각 공정을 포함할 수 있다.
도 26을 참조하여, 상기 제 1 상부 반도체 패턴(121)의 상면 및 상기 제 2 상부 반도체 패턴(122)의 상면을 노출하는 층간 절연막(185)이 형성될 수 있다. 상기 층간 절연막(185)의 형성 공정은 CVD 공정에 의하여 상기 기판(100) 상에 절연막을 형성한 후, 평탄화 공정에 의하여 상기 제 1 상부 반도체 패턴(121)의 상면 및 상기 제 2 상부 반도체 패턴(122)의 상면을 노출하는 공정을 포함할 수 있다. 일 예로, 상기 층간 절연막(185)은 실리콘 산화물, 실리콘 질화물, 및 실리콘 산화질화물 중 적어도 하나를 포함할 수 있다.
도 27을 참조하여, 상기 층간 절연막(185)이 형성된 결과물 상에, 상기 제 1 상부 반도체 패턴(121)의 양 단부들 및 상기 제 2 상부 반도체 패턴(122)의 양 단부들을 덮는 제 2 마스크 패턴들(183)이 형성될 수 있다. 상기 제 2 마스크 패턴들(183)은 상기 제 1 상부 반도체 패턴(121)의 중앙부 및 상기 제 2 상부 반도체 패턴(122)의 중앙부를 노출할 수 있다. 상기 제 2 마스크 패턴들(183)은 포토 레지스트, 실리콘 산화물, 실리콘 질화물, 및 실리콘 산화질화물 중 적어도 하나를 포함할 수 있다.
도 28을 참조하여, 상기 제 2 마스크 패턴들(183)에 의하여 노출된 상기 층간 절연막(185)의 일부가 제거될 수 있다. 일 예로, 상기 제거 공정은 상기 제 2 마스크 패턴들(183)을 식각 마스크로하는 건식 및/또는 습식 식각 공정을 포함할 수 있다. 상기 제거 공정은 상기 제 1 하부 반도체 패턴(111), 상기 제 1 상부 반도체 패턴(121), 상기 제 2 하부 반도체 패턴(112), 및 상기 제 2 상부 반도체 패턴(122)의 식각을 최소화하며 상기 제 2 마스크 패턴들(183)에 의하여 노출된 상기 층간 절연막(185)을 제거할 수 있는 식각 레시피로 수행될 수 있다. 그 결과, 상기 층간 절연막(185)이 제거된 부분에 리세스 영역(RS)이 형성될 수 있다. 상기 제 1 영역(R1) 상에서, 상기 리세스 영역(RS)은 상기 제 2 마스크 패턴들(183)에 의하여 덮힌 상기 층간 절연막(185)의 측벽, 상기 기판(100)의 상면, 제 1 하부 반도체 패턴(111)의 측벽, 상기 제 1 상부 반도체 패턴(121)의 측벽에 의하여 정의된 영역일 수 있다. 상기 제 2 영역(R2) 상에서, 상기 리세스 영역(RS)은 상기 제 2 마스크 패턴들(183)에 의하여 덮힌 상기 층간 절연막(185)의 측벽, 상기 기판(100)의 상면, 제 2 하부 반도체 패턴(112)의 측벽, 상기 제 2 상부 반도체 패턴(122)의 측벽에 의하여 정의된 영역일 수 있다. 즉, 상기 리세스 영역(RS)은 상기 제 1 영역(R1)에서 상기 제 1 하부 반도체 패턴(111)의 측벽 및 상기 제 1 상부 반도체 패턴(121)의 측벽을 노출하고, 상기 제 2 영역(R2)에서 상기 제 2 하부 반도체 패턴(112)의 측벽 및 상기 제 2 상부 반도체 패턴(122)의 측벽을 노출할 수 있다.
도 29, 도 30a, 및 도 30b를 참조하여, 상기 제 2 마스크 패턴(183)에 의하여 노출된 상기 제 1 영역(R1) 상의 제 1 하부 반도체 패턴(111) 및 상기 제 2 영역(R2) 상의 제 2 하부 반도체 패턴(112)이 식각될 수 있다. 상기 식각 공정은 상기 제 2 하부 반도체 패턴(112)의 중앙부가 상기 제 2 상부 반도체 패턴(122) 아래에서 완전히 제거되나, 상기 제 1 하부 반도체 패턴(111)의 중앙부의 일부 상기 제 1 상부 반도체 패턴(121) 아래에 잔류될 때까지 수행될 수 있다. 상기 제 1 하부 반도체 패턴(111)은 상기 제 2 하부 반도체 패턴(112)보다 폭이 크고, 그 결과, 상기 제 1 하부 반도체 패턴(111)은 그 일부가 상기 제 1 상부 반도체 패턴(121) 아래에 잔류되어 하부 패턴(119)이 될 수 있다. 상기 하부 패턴(119)은 상기 상부 반도체 패턴(121)보다 폭이 좁을 수 있다. 이와는 달리, 상기 제 2 상부 반도체 패턴(122)의 중앙부는 상기 제 2 상부 반도체 패턴(122) 아래에서 완전히 제거되어 상기 리세스 영역(RS)이 상기 제 2 상부 반도체 패턴(122) 아래로 연장된 갭 영역(GA)이 형성될 수 있다. 그 결과, 상기 제 2 하부 반도체 패턴(112)은 상기 층간 절연막(185)에 의하여 그 측벽이 덮여 있는 부분이 잔류된 잔류 반도체 패턴들(113)이 될 수 있다.
상기 제거 공정은 상기 제 1 상부 반도체 패턴(121) 및 상기 제 2 상부 반도체 패턴(122)의 식각을 최소화하며 상기 제 1 하부 반도체 패턴(111) 및 상기 제 2 하부 반도체 패턴(112)을 제거할 수 있는 선택적 식각 레시피로 수행될 수 있다. 일 예로, 상기 제 1 상부 반도체 패턴(121) 및 상기 제 2 상부 반도체 패턴(122)이 실리콘을 포함하고, 상기 제 1 하부 반도체 패턴(111) 및 상기 제 2 하부 반도체 패턴(112)이 실리콘-게르마늄을 포함하는 경우, 상기 식각 공정은 과초산(peracetic acid)을 포함하는 식각액을 사용하여 수행될 수 있다. 상기 식각액은 불산(HF) 수용액 및 순수(deionized water)을 더 포함할 수 있다.
도 31, 도 32a 및 도 32b를 참조하여, 상기 제 1 영역(R1)에 제 1 게이트 절연막(GD1) 및 제 1 게이트 전극(GE1)이 차례로 형성되고, 상기 제 2 영역(R2)에 제 2 게이트 절연막(GD2) 및 제 2 게이트 전극(GE2)이 차례로 형성될 수 있다. 상기 제 1 게이트 절연막(GD1) 및 상기 제 1 게이트 전극(GE1)은 상기 제 1 상부 반도체 패턴(121)의 연장방향과 실질적으로 수직한 방향(y 방향)으로 연장할 수 있고, 상기 제 2 게이트 절연막(GD2) 및 상기 제 2 게이트 전극(GE2)은 상기 제 2 상부 반도체 패턴(122)의 연장 방향과 실질적으로 수직한 방향(y 방향)으로 연장할 수 있다. 상기 제 1 게이트 전극(GE1)은 상기 제 1 상부 반도체 패턴(121)의 중앙부를 덮고 양 단부를 노출할 수 있다. 상기 제 2 게이트 전극(GE2)은 상기 제 2 상부 반도체 패턴(122)의 중앙부를 덮고 양 단부를 노출할 수 있다.
상기 제 1 게이트 절연막(GD1) 및 상기 제 2 게이트 절연막(GD2)은 실리콘 산화막을 포함할 수 있다. 다른 실시예에 있어서, 상기 제 1 게이트 절연막(GD1) 및 상기 제 2 게이트 절연막(GD2)은 실리콘 산화막보다 높은 유전 상수를 갖는 고유전체 물질을 포함할 수 있다. 일 예로, 상기 제 1 게이트 절연막(GD1) 및 상기 제 2 게이트 절연막(GD2)은 HfO2, ZrO2 또는 Ta2O5을 포함할 수 있다. 상기 제 1 게이트 절연막(GD1) 및 상기 제 2 게이트 절연막(GD2)은 동일한 물질로 형성될 수 있으나, 이에 한정되지 않는다.
상기 제 1 게이트 전극(GE1) 및 상기 제 2 게이트 전극(GE2)은 도핑된 실리콘, 도전성 금속 질화물, 및 금속 중 적어도 하나를 포함할 수 있다. 상기 제 1 게이트 전극(GE1)과 상기 제 2 게이트 전극(GE2)은 동일한 물질로 형성될 수 있으나, 이에 한정되지 않는다. 일 예로, 상기 제 1 게이트 전극(GE1) 및 상기 제 2 게이트 전극(GE2)은 일함수가 서로 다를 수 있다.
상기 제 1 및 제 2 게이트 절연막들(GD1, GD2) 및 상기 제 1 및 제 2 게이트 전극들(GE1, GE2)은 증착 공정 및 패터닝 공정에 의하여 형성될 수 있다. 일 예로, 상기 증착 공정은 CVD 또는 스퍼터링 공정일 수 있다. 다른 실시예에 있어서, 상기 제 1 및 제 2 게이트 절연막들(GD1, GD2) 및 상기 제 1 및 제 2 게이트 전극들(GE1, GE2)은 더미 패턴을 이용한 리플레이스(replacement) 공정에 의하여 형성될 수 있다. 일 예로, 상기 제 1 및 제 2 상부 반도체 패턴들(121, 122)을 덮는 더미 패턴이 형성된 후, 상기 더미 패턴은 상기 제 1 및 제 2 게이트 절연막들(GD1, GD2) 및 상기 제 1 및 제 2 게이트 전극들(GE1, GE2)로 교체될 수 있다. 이 경우, 상기 제 1 및 제 2 게이트 전극들(GE1, GE2)의 형성은 다마신(damascene) 공정을 포함할 수 있다.
도 31, 도 32a, 및 도 32b를 다시 참조하여, 본 발명의 또 다른 실시예에 따른 반도체 소자가 설명된다. 본 발명의 또 다른 실시예에 따른 반도체 소자는 기판(100)의 제 1 영역(R1) 상의 제 1 트랜지스터(TR1) 및 상기 기판(100)의 제 2 영역(R2) 상의 제 2 트랜지스터(TR2)를 포함할 수 있다. 상기 기판(100)은 실리콘, 게르마늄, 실리콘-게르마늄 등을 포함하는 반도체 기판일 수 있다.
상기 제 1 트랜지스터(TR1)는 상기 기판(100)으로부터 z 방향으로 돌출된 돌출부(ON)를 포함할 수 있다. 상기 돌출부(ON)는 제 1 채널 영역(CH1)을 사이에 두고 x 방향으로 상호 이격된 제 1 소스/드레인 영역들(SD1)을 포함할 수 있다. 상기 제 1 채널 영역(CH1)은 상기 제 1 소스/드레인 영역들(SD1)보다 폭이 좁을 수 있다.
상기 돌출부(ON)은 상기 기판(100) 상에 차례로 적층된 하부 패턴(119) 및 제 1 상부 반도체 패턴(121)을 포함할 수 있다. 즉, 상기 제 1 채널 영역(CH1)은 상기 하부 패턴(119) 및 상기 제 1 상부 반도체 패턴(121)을 포함할 수 있다. 상기 하부 패턴(119)의 물질 및 제 1 상부 반도체 패턴(121)의 물질은 각각 표 1의 제 1 반도체층의 물질 및 제 2 반도체층의 물질에 상응할 수 있다. 즉, 상기 하부 패턴(119)은 상기 제 1 상부 반도체 패턴(121)에 대하여 식각 선택성을 갖는 물질을 포함할 수 있다.
상기 제 1 채널 영역(CH1) 상에 제 1 게이트 절연막(GD1) 및 제 1 게이트 전극(GE1)이 차례로 제공될 수 있다. 상기 제 1 게이트 절연막(GD1) 및 상기 제 1 게이트 전극(GE1)은 상기 제 1 채널 영역(CH1)의 측벽 및 상면을 따라 연장될 수 있다. 상기 제 1 게이트 절연막(GD1)은 실리콘 산화막을 포함할 수 있다. 다른 실시예에 있어서, 상기 제 1 게이트 절연막(GD1)은 실리콘 산화막보다 높은 유전 상수를 갖는 고유전체 물질을 포함할 수 있다. 일 예로, 상기 제 1 게이트 절연막(GD1)은 HfO2, ZrO2 또는 Ta2O5을 포함할 수 있다. 상기 제 1 게이트 전극(GE1)은 도핑된 실리콘, 도전성 금속 질화물, 및 금속 중 적어도 하나를 포함할 수 있다.
상기 제 1 채널 영역(CH1)은 상기 기판(100)과 직접 연결될 수 있다. 즉, 상기 제 1 하부 반도체 패턴(111)의 하면은 상기 기판(100)의 상면과 접할 수 있다. 따라서, 상기 제 1 트랜지스터(TR1)의 채널은 바디(body), 즉, 상기 기판(100)에 전기적으로 연결될 수 있다. 이와 같은 바디 콘택 구조는 상기 제 1 트랜지스터(TR1)의 동작 시 발생되는 핫 캐리어 효과(Hot Carrier Effect)를 완화할 수 있다.
상기 하부 패턴(119)의 폭은 상기 제 1 상부 반도체 패턴(121)의 폭보다 작을 수 있다. 그 결과, 상기 제 1 게이트 전극(GE1)은 상기 제 1 상부 반도체 패턴(121)의 하면의 일부를 덮을 수 있다.
상기 제 2 트랜지스터(TR2)는 상기 제 2 게이트 전극(GE2) 및 상기 제 2 게이트 절연막(GD2)을 사이에 두고 상기 기판(100)과 이격된 제 2 채널 영역(CH2)을 포함할 수 있다. 상기 제 2 채널 영역(CH2) 상에 제 2 게이트 절연막(GD2) 및 제 2 게이트 전극(GE2)이 차례로 제공될 수 있다. 상기 제 2 게이트 절연막(GD2) 및 상기 제 2 게이트 전극(GE2)은 제 2 상부 반도체 패턴(122)과 상기 기판(100) 사이의 갭 영역(GA)으로 연장될 수 있다.
상기 제 2 게이트 절연막(GD2)은 실리콘 산화막을 포함할 수 있다. 다른 실시예에 있어서, 상기 제 2 게이트 절연막(GD2)은 실리콘 산화막보다 높은 유전 상수를 갖는 고유전체 물질을 포함할 수 있다. 일 예로, 상기 제 2 게이트 절연막(GD2)은 HfO2, ZrO2 또는 Ta2O5을 포함할 수 있다. 상기 제 2 게이트 전극(GE2)은 도핑된 실리콘, 도전성 금속 질화물, 및 금속 중 적어도 하나를 포함할 수 있다. 일 실시예에 있어서, 상기 제 2 게이트 전극(GE2)은 상기 제 1 게이트 전극(GE1)과 일함수가 다를 수 있다.
상기 제 2 트랜지스터(TR2)는 상기 제 2 채널 영역(CH2)을 사이에 두고 x 방향으로 상호 이격된 제 2 소스/드레인 영역들(SD2)을 포함할 수 있다. 상기 제 2 채널 영역(CH2)은 상기 제 2 소스/드레인 영역들(SD2)보다 폭이 좁을 수 있다. 상기 제 2 소스/드레인 영역들(SD2)은 상기 기판(100) 상에 차례로 적층된 잔류 반도체 패턴들(113) 및 상기 잔류 반도체 패턴들(113) 상의 제 2 상부 반도체 패턴(122)을 포함할 수 있다. 상기 잔류 반도체 패턴들(113)은 상기 제 2 게이트 전극(GE2)을 사이에 두고 x 방향으로 상호 이격될 수 있다. 상기 잔류 반도체 패턴들(113) 및 제 2 상부 반도체 패턴(122)의 물질은 각각 표 1의 제 1 반도체층 및 제 2 반도체층의 물질에 상응할 수 있다. 즉, 상기 잔류 반도체 패턴들(113)은 상기 제 2 상부 반도체 패턴(122)에 대하여 식각 선택성을 갖는 물질을 포함할 수 있다. 상기 제 2 소스/드레인 영역들(SD2)의 하부, 즉, 상기 잔류 반도체 패턴들(113)은 상기 제 1 하부 반도체 패턴(111)과 동일한 물질을 포함할 수 있고, 상기 제 2 상부 반도체 패턴(122)은 상기 제 1 상부 반도체 패턴(121)과 동일한 물질을 포함할 수 있다. 즉, 상기 제 1 채널 영역(CH1)은 상기 제 2 채널 영역(CH2)과 동일한 물질을 포함하는 제 1 하부 반도체 패턴(111) 및 상기 제 2 채널 영역(CH2)과 다른 물질을 포함하는 제 1 상부 반도체 패턴(121)을 포함할 수 있다.
상기 제 2 트랜지스터(TR2)는 게이트-올-어라운드(Gate-All-Around)구조일 수 있다. 일 예로, 상기 제 2 채널 영역(CH2)은 그의 폭이 수 나노미터에서 수십 나노미터 사이인 나노 와이어 또는 나노 튜브일 수 있다. 이와 같은 상기 제 2 채널 영역(CH2)의 구조는 제 2 트랜지스터(TR2)의 단 채널 효과(short channel effect)를 완화할 수 있다.
도 33은 본 발명의 실시예들에 따른 반도체 소자를 포함하는 시모스 에스램 셀(CMOS RAM cell)의 등가 회로도이다. 도 33을 참조하여, 상기 시모스 에스램 셀은 한 쌍의 구동 트랜지스터들(driver transistors: TD1, TD2), 한 쌍의 전송 트랜지스터들(transfer transistors: TT1, TT2), 및 한 쌍의 부하 트랜지스터들(load transistors: TL1, TL2)을 포함할 수 있다. 상기 구동 트랜지스터들(TD1, TD2)은 풀다운 트랜지스터(pull-down transistor)일 수 있고, 상기 전송 트랜지스터들(TT1, TT2)은 패스 트랜지스터(pass transistor)일 수 있고, 상기 부하 트랜지스터들(TL1, TL2)은 풀업 트랜지스터(pull-up transistor)일 수 있다. 상기 구동 트랜지스터들(TD1, TD2) 및 상기 전송 트랜지스터들(TT1, TT2)은 NMOS 트랜지스터들일 수 있고, 상기 부하 트랜지스터들(TL1, TL2)은 PMOS 트랜지스터들일 수 있다. 본 발명의 실시예에 따른 제 1 트랜지스터(TR1)는 상기 구동 트랜지스터들(TD1, TD2), 상기 전송 트랜지스터들(TT1, TT2), 및 상기 부하 트랜지스터들(TL1, TL2) 중 하나이고, 본 발명의 실시예에 따른 제 2 트랜지스터(TR2) 상기 구동 트랜지스터들(TD1, TD2), 상기 전송 트랜지스터들(TT1, TT2), 및 상기 부하 트랜지스터들(TL1, TL2) 중 하나로 상기 제 1 트랜지스터(TR1)와 다른 트랜지스터일 수 있다.
상기 제 1 구동 트랜지스터(TD1)와 상기 제 1 전송 트랜지스터(TT1)는 서로 직렬로 연결될 수 있다. 상기 제 1 구동 트랜지스터(TD1)의 소스 영역은 접지선(Vss)에 전기적으로 연결되고, 상기 제 1 전송 트랜지스터(TT1)의 드레인 영역은 제 1 비트 라인(BL1)에 전기적으로 연결될 수 있다. 상기 제 2 구동 트랜지스터(TD2)와 상기 제 2 전송 트랜지스터(TT2)는 직렬로 연결될 수 있다. 상기 제 2 구동 트랜지스터(TD2)의 소스 영역은 상기 접지선(Vss)에 전기적으로 연결되고, 상기 제 2 전송 트랜지스터(TT2)의 드레인 영역은 제 2 비트 라인(BL2)에 전기적으로 연결될 수 있다.
상기 제 1 부하 트랜지스터(TL1)의 소스 영역 및 드레인 영역은 각각 전원선(Vcc) 및 상기 제 1 구동 트랜지스터(TD1)의 드레인 영역에 전기적으로 연결될 수 있다. 상기 제 2 부하 트랜지스터(TL2)의 소스 영역 및 드레인 영역은 상기 전원선(Vcc) 및 상기 제 2 구동 트랜지스터(TD2)의 드레인 영역에 전기적으로 연결될 수 있다. 상기 제 1 부하 트랜지스터(TL1)의 드레인 영역, 상기 제 1 구동 트랜지스터(TD1)의 드레인 영역 및 상기 제 1 전송 트랜지스터(TT1)의 소스 영역은 제 1 노드(N1)에 해당한다. 상기 제 2 부하 트랜지스터(TL2)의 드레인 영역, 상기 제 2 구동 트랜지스터(TD2)의 드레인 영역 및 상기 제 2 전송 트랜지스터(TT2)의 소스 영역은 제 2 노드(N2)에 해당한다. 상기 제 1 구동 트랜지스터(TD1)의 게이트 전극 및 상기 제 1 부하 트랜지스터(TL1)의 게이트 전극은 상기 제 2 노드(N2)에 전기적으로 연결되고, 상기 제 2 구동 트랜지스터(TD2)의 게이트 전극 및 상기 제 2 부하 트랜지스터(TL2)의 게이트 전극은 상기 제 1 노드(N1)에 전기적으로 연결될 수 있다. 상기 제 1 및 제 2 전송 트랜지스터들(TT1, TT2)의 게이트 전극들은 워드라인(WL)에 전기적으로 연결될 수 있다. 상기 제 1 구동 트랜지스터(TD1), 상기 제 1 전송 트랜지스터(TT1), 및 상기 제 1 부하 트랜지스터(TL1)는 제 1 하프 셀(H1)을 구성하고, 상기 제 2 구동 트랜지스터(TD2), 상기 제 2 전송 트랜지스터(TT2), 및 상기 제 2 부하 트랜지스터(TL2)는 제 2 하프 셀(H2)을 구성할 수 있다.
본 발명은 에스램에 한정되지 않으며 디램(DRAM), 엠램(MRAM) 또는 다른 반도체 소자 및 그 제조 방법에 적용될 수 있다.
도 34는 본 발명의 실시예들에 따른 반도체 소자를 포함하는 전자 시스템의 블록도이다.
도 34를 참조하면, 본 발명의 실시예에 따른 전자 시스템(1100)은 컨트롤러(1110), 입출력 장치(1120, I/O), 기억 장치(1130, memory device), 인터페이스(1140) 및 버스(1150, bus)를 포함할 수 있다. 상기 컨트롤러(1110), 입출력 장치(1120), 기억 장치(1130) 및/또는 인터페이스(1140)는 상기 버스(1150)를 통하여 서로 결합 될 수 있다. 상기 버스(1150)는 데이터들이 이동되는 통로(path)에 해당한다.
상기 컨트롤러(1110)는 마이크로프로세서, 디지털 신호 프로세스, 마이크로컨트롤러, 및 이들과 유사한 기능을 수행할 수 있는 논리 소자들 중에서 적어도 하나를 포함할 수 있다. 상기 입출력 장치(1120)는 키패드(keypad), 키보드 및 디스플레이 장치 등을 포함할 수 있다. 상기 기억 장치(1130)는 데이터 및/또는 명령어등을 저장할 수 있다. 상기 인터페이스(1140)는 통신 네트워크로 데이터를 전송하거나 통신 네트워크로부터 데이터를 수신하는 기능을 수행할 수 있다. 상기 인터페이스(1140)는 유선 또는 무선 형태일 수 있다. 예컨대, 상기 인터페이스(1140)는 안테나 또는 유무선 트랜시버등을 포함할 수 있다. 도시하지 않았지만, 상기 전자 시스템(1100)은 상기 컨트롤러(1110)의 동작을 향상시키기 위한 동작 메모리로서, 고속의 디램 및/또는 에스램등을 더 포함할 수도 있다. 본 발명의 실시예들에 따른 반도체 소자는 상기 기억 장치(1130) 내에 제공되거나, 상기 컨트롤러(1110), 상기 입출력 장치(1120, I/O) 등의 일부로 제공될 수 있다.
상기 전자 시스템(1100)은 개인 휴대용 정보 단말기(PDA, personal digital assistant) 포터블 컴퓨터(portable computer), 웹 타블렛(web tablet), 무선 전화기(wireless phone), 모바일 폰(mobile phone), 디지털 뮤직 플레이어(digital music player), 메모리 카드(memory card), 또는 정보를 무선환경에서 송신 및/또는 수신할 수 있는 모든 전자 제품에 적용될 수 있다.
상기 전자 시스템(도 34의 1100)은 다양한 전자기기들의 전자 제어 장치에 적용될 수 있다. 도 35는 상기 전자 시스템(도 34의 1100)이 모바일 폰(800)에 적용되는 예를 도시한다. 그 밖에, 상기 전자 시스템(도 34의 1100)은 휴대용 노트북, MP3 플레이어, 네비게이션(Navigation), 고상 디스크(Solid state disk; SSD), 자동차 또는 가전 제품(Household appliances)에 적용될 수 있다.
이상, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예에는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
100: 기판
111: 제 1 하부 반도체 패턴
112: 제 2 하부 반도체 패턴
121: 제 1 상부 반도체 패턴
122, 123 제 2 상부 반도체 패턴
181, 182, 183, 184: 마스크 패턴
GA: 갭 영역
GD1, GD2: 게이트 절연막
GE1, GE2: 게이트 전극
SD1, SD2: 소스/드레인 영역들

Claims (20)

  1. 제 1 영역 및 제 2 영역을 포함하는 기판;
    상기 제 1 영역 상에 제공되고 상기 기판으로부터 돌출된 제 1 채널 영역을 포함하는 제 1 트랜지스터; 및
    상기 제 2 영역 상에 제공되고 제 2 채널 영역 및 상기 기판과 상기 제 2 채널 영역 사이로 연장되는 게이트 전극을 포함하는 제 2 트랜지스터를 포함하고,
    상기 제 1 채널 영역은 상기 제 2 채널 영역과 다른 물질을 포함하는 하부 반도체 패턴 및 상기 제 2 채널 영역과 같은 물질을 포함하는 상부 반도체 패턴을 포함하는 반도체 소자.
  2. 제 1 항에 있어서,
    상기 하부 반도체 패턴은 상기 상부 반도체 패턴과 식각 선택성이 있는 물질을 포함하는 반도체 소자.
  3. 제 1 항에 있어서,
    상기 제 2 채널 영역의 하면은 상기 상부 반도체 패턴과 상기 하부 반도체 패턴 사이의 계면과 실질적으로 동일 레벨인 반도체 소자.
  4. 제 1 항에 있어서,
    상기 제 1 트랜지스터는 PMOS트랜지스터이고 상기 제 2 트랜지스터는 NMOS트랜지스터인 반도체 소자.
  5. 제 4 항에 있어서,
    상기 제 1 채널 영역의 측벽은 (110) 결정면이고, 상기 제 2 채널 영역의 상면 및 하면은 (100) 결정면인 반도체 소자.
  6. 제 1 항에 있어서,
    상기 제 1 트랜지스터는 동작 전압이 1V 이상인 고전압 트랜지스터이고 상기 제 2 트랜지스터는 동작 전압이 1V 미만인 저전압 트랜지스터인 반도체 소자.
  7. 제 6 항에 있어서,
    상기 하부 반도체 패턴은 상기 기판의 상면과 접하는 반도체 소자.
  8. 제 1 항에 있어서,
    상기 하부 반도체 패턴 및 상기 상부 반도체 패턴은 각각 복수 개로 제공되고,
    상기 복수 개의 하부 반도체 패턴들 및 상기 복수 개의 상부 반도체 패턴들은 교대로 반복하여 배치되는 반도체 소자.
  9. 제 8 항에 있어서,
    상기 제 2 채널 영역은 복수 개로 제공되고,
    상기 복수 개의 제 2 채널 영역들은 상기 복수 개의 상부 반도체 패턴들과 동일 레벨인 반도체 소자.
  10. 제 1 항에 있어서,
    상기 하부 반도체 패턴의 폭은 상기 상부 반도체 패턴의 폭보다 좁은 반도체 소자.
  11. 제 1 항에 있어서,
    상기 제 2 트랜지스터는 상기 제 2 채널 영역을 사이에 두고 상호 이격된 소스 영역 및 드레인 영역을 포함하고,
    상기 소스 영역의 하부 및 상기 드레인 영역의 하부는 상기 하부 반도체 패턴과 동일한 물질을 포함하는 반도체 소자.
  12. 반도체층;
    상기 반도체층으로부터 돌출된 제 1 채널 영역을 포함하는 제 1 트랜지스터; 및
    게이트 전극을 사이에 두고 상기 반도체층과 이격된 제 2 채널 영역을 포함하는 제 2 트랜지스터를 포함하고,
    상기 제 1 채널 영역은 상기 반도체층과 직접 접하는 반도체 소자.
  13. 제 12 항에 있어서,
    상기 제 1 채널 영역은 하부 반도체 패턴 및 상기 하부 반도체 패턴 상의 상부 반도체 패턴을 포함하고,
    상기 하부 반도체 패턴은 상기 상부 반도체 패턴과 식각 선택성 있는 물질을 포함하는 반도체 소자.
  14. 제 13 항에 있어서,
    상기 제 2 트랜지스터는 상기 제 2 채널 영역을 사이에 두고 상호 이격된 소스 영역 및 드레인 영역을 포함하고,
    상기 소스 영역의 하부 및 상기 드레인 영역의 하부는 상기 하부 반도체 패턴과 동일한 물질을 포함하는 반도체 소자.
  15. 제 12 항에 있어서,
    상기 제 1 트랜지스터는 PMOSFET이고 상기 제 2 트랜지스터는 NMOSFET인 반도체 소자.
  16. 제 12 항에 있어서,
    상기 제 1 채널 영역의 측벽은 (110) 결정면이고, 상기 제 2 채널 영역의 상면 및 하면은 (100) 결정면인 반도체 소자.
  17. 제 12 항에 있어서,
    상기 제 1 트랜지스터는 동작 전압이 1V 이상인 고전압 트랜지스터이고 상기 제 2 트랜지스터는 동작 전압이 1V 미만인 저전압 트랜지스터인 반도체 소자.
  18. 제 1 영역 및 제 2 영역을 포함하는 기판을 준비하는 것;
    상기 제 1 영역 및 상기 제 2 영역 상에 제 1 반도체층 및 제 2 반도체층을 차례로 형성하는 것;
    상기 제 1 및 제 2 반도체층을 패터닝하여 하부 반도체 패턴 및 상부 반도체 패턴 패턴을 상기 제 1 영역 및 상기 제 2 영역에 각각 형성하는 것;
    상기 제 2 영역 상의 하부 반도체 패턴을 선택적으로 제거하여 갭 영역을 형성하는 것; 및
    상기 제 1 영역 및 상기 제 2 영역 각각에 게이트 전극을 형성하는 것을 포함하는 반도체 소자의 제조 방법.
  19. 제 18 항에 있어서,
    상기 제 1 반도체층 및 상기 제 2 반도체층은 상기 기판을 씨드층으로 하는 에피택시얼 공정에 의하여 형성되는 반도체 소자의 제조 방법.
  20. 제 18 항에 있어서,
    상기 제 2 영역 상의 게이트 전극은 상기 갭 영역으로 연장되는 반도체 소자의 제조 방법.
KR1020130095490A 2013-08-12 2013-08-12 반도체 소자 및 그 제조 방법 KR102069609B1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020130095490A KR102069609B1 (ko) 2013-08-12 2013-08-12 반도체 소자 및 그 제조 방법
US14/274,861 US9466601B2 (en) 2013-08-12 2014-05-12 Semiconductor device and method of fabricating the same
DE102014110425.0A DE102014110425B4 (de) 2013-08-12 2014-07-24 Halbleitervorrichtung
TW108139294A TW202005054A (zh) 2013-08-12 2014-08-07 半導體元件
TW103127010A TWI714520B (zh) 2013-08-12 2014-08-07 半導體元件
CN201410393679.5A CN104377197B (zh) 2013-08-12 2014-08-12 半导体器件及其制造方法
CN201910747785.1A CN110400803B (zh) 2013-08-12 2014-08-12 半导体器件
US15/249,518 US9711506B2 (en) 2013-08-12 2016-08-29 Semiconductor device and method of fabricating the same
US15/615,643 US10177150B2 (en) 2013-08-12 2017-06-06 Semiconductor device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130095490A KR102069609B1 (ko) 2013-08-12 2013-08-12 반도체 소자 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20150019091A true KR20150019091A (ko) 2015-02-25
KR102069609B1 KR102069609B1 (ko) 2020-01-23

Family

ID=52388952

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130095490A KR102069609B1 (ko) 2013-08-12 2013-08-12 반도체 소자 및 그 제조 방법

Country Status (5)

Country Link
US (3) US9466601B2 (ko)
KR (1) KR102069609B1 (ko)
CN (2) CN104377197B (ko)
DE (1) DE102014110425B4 (ko)
TW (2) TW202005054A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929235B1 (en) 2016-09-29 2018-03-27 Samsung Electronics Co., Ltd. Semiconductor device and method for fabricating the same
US10431585B2 (en) 2016-12-16 2019-10-01 Samsung Electronics Co., Ltd. Semiconductor devices with multi-gate structure and method of manufacturing the same
KR20190114695A (ko) * 2018-03-30 2019-10-10 아주대학교산학협력단 터널링 전계 효과 트랜지스터 및 이의 제조 방법

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9735153B2 (en) * 2014-07-14 2017-08-15 Samsung Electronics Co., Ltd. Semiconductor device having fin-type field effect transistor and method of manufacturing the same
US9306019B2 (en) * 2014-08-12 2016-04-05 GlobalFoundries, Inc. Integrated circuits with nanowires and methods of manufacturing the same
US9431483B1 (en) * 2015-03-16 2016-08-30 United Microelectronics Corp. Nanowire and method of fabricating the same
US9837470B2 (en) 2015-04-10 2017-12-05 SK Hynix Inc. Method of manufacturing a semiconductor integrated circuit device including a transistor with a vertical channel
US9496259B2 (en) 2015-04-14 2016-11-15 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET semiconductor device having fins with stronger structural strength
KR102449901B1 (ko) 2015-06-23 2022-09-30 삼성전자주식회사 집적회로 소자 및 그 제조 방법
US9853101B2 (en) * 2015-10-07 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Strained nanowire CMOS device and method of forming
US20200258740A1 (en) * 2015-11-16 2020-08-13 Taiwan Semiconductor Manufacturing Company, Ltd. Method for Forming Stacked Nanowire Transistors
US9899387B2 (en) * 2015-11-16 2018-02-20 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-gate device and method of fabrication thereof
KR102434993B1 (ko) * 2015-12-09 2022-08-24 삼성전자주식회사 반도체 소자
US9660033B1 (en) 2016-01-13 2017-05-23 Taiwan Semiconductor Manufactuing Company, Ltd. Multi-gate device and method of fabrication thereof
US10622356B2 (en) 2016-01-19 2020-04-14 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method of manufacturing the same
KR102461174B1 (ko) 2016-02-26 2022-11-01 삼성전자주식회사 반도체 소자
KR102413610B1 (ko) 2016-03-02 2022-06-24 삼성전자주식회사 레이아웃 디자인 시스템, 이를 이용한 반도체 장치 및 그 제조 방법
US9640540B1 (en) * 2016-07-19 2017-05-02 Taiwan Semiconductor Manufacturing Co., Ltd. Structure and method for an SRAM circuit
US9748251B1 (en) * 2016-11-15 2017-08-29 Globalfoundries Inc. Methods of forming semiconductor devices using semi-bidirectional patterning
EP3340308B1 (en) * 2016-12-22 2022-09-07 IMEC vzw Method for forming transistors on a substrate
US10103237B2 (en) * 2017-02-28 2018-10-16 International Business Machines Corporation Inverted MOSFET with scaling advantage
US10164112B2 (en) * 2017-04-14 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
CN108807386B (zh) * 2017-04-28 2023-04-07 三星电子株式会社 半导体器件
US10193090B2 (en) 2017-06-20 2019-01-29 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and a semiconductor device
US10276728B2 (en) * 2017-07-07 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device including non-volatile memory cells
KR102388463B1 (ko) * 2017-08-21 2022-04-20 삼성전자주식회사 채널 패턴을 포함하는 반도체 소자 및 그 제조 방법
DE102018108598A1 (de) * 2017-08-31 2019-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Halbleiterbauelement und Verfahren
US10804367B2 (en) * 2017-09-29 2020-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. Gate stacks for stack-fin channel I/O devices and nanowire channel core devices
US11233152B2 (en) 2018-06-25 2022-01-25 Intel Corporation Self-aligned gate endcap (SAGE) architectures with gate-all-around devices
US10861750B2 (en) 2018-07-02 2020-12-08 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and a semiconductor device
KR102472571B1 (ko) 2018-07-20 2022-12-01 삼성전자주식회사 반도체 소자
US11621354B2 (en) 2018-09-05 2023-04-04 Intel Corporation Integrated circuit structures having partitioned source or drain contact structures
US11398474B2 (en) 2018-09-18 2022-07-26 Intel Corporation Neighboring gate-all-around integrated circuit structures having disjoined epitaxial source or drain regions
US11276691B2 (en) * 2018-09-18 2022-03-15 Intel Corporation Gate-all-around integrated circuit structures having self-aligned source or drain undercut for varied widths
US10910375B2 (en) * 2018-09-28 2021-02-02 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method of fabrication thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090170251A1 (en) * 2007-12-31 2009-07-02 Been-Yih Jin Fabrication of germanium nanowire transistors
US20100187503A1 (en) * 2009-01-29 2010-07-29 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method thereof

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100517126B1 (ko) 2003-04-21 2005-10-18 재단법인서울대학교산학협력재단 양자점 크기를 조절할 수 있는 단전자 트랜지스터와동일한 soi기판에 집적할 수 있는 단전자 트랜지스터및 이중게이트 mosfet과 그 각각의 제조방법
US6911383B2 (en) 2003-06-26 2005-06-28 International Business Machines Corporation Hybrid planar and finFET CMOS devices
KR100604908B1 (ko) 2004-10-11 2006-07-28 삼성전자주식회사 이종의 게이트 절연막을 구비하는 씬-바디 채널 씨모스소자 및 그 제조방법
US7518195B2 (en) 2004-10-21 2009-04-14 Commissariat A L'energie Atomique Field-effect microelectronic device, capable of forming one or several transistor channels
KR20070006441A (ko) 2005-07-08 2007-01-11 삼성전자주식회사 혼성 cmosfet 및 그 제조방법
US7737532B2 (en) 2005-09-06 2010-06-15 Taiwan Semiconductor Manufacturing Company, Ltd. Hybrid Schottky source-drain CMOS for high mobility and low barrier
US20070102756A1 (en) * 2005-11-10 2007-05-10 Bohumil Lojek FinFET transistor fabricated in bulk semiconducting material
KR100707208B1 (ko) * 2005-12-24 2007-04-13 삼성전자주식회사 Gaa 구조의 핀-펫 및 그 제조 방법
WO2007115954A1 (en) 2006-04-07 2007-10-18 Koninklijke Philips Electronics N.V. Co-integration of multi-gate fet with other fet devices in cmos technology
US8004038B2 (en) * 2006-05-22 2011-08-23 Taiwan Semiconductor Manufacturing Company, Ltd. Suppression of hot-carrier effects using double well for thin gate oxide LDMOS embedded in HV process
WO2008029394A2 (en) 2006-09-03 2008-03-13 Starget Concept Ltd. Detachable tracks for sliding doors and windows
JP4310399B2 (ja) 2006-12-08 2009-08-05 株式会社東芝 半導体装置及びその製造方法
KR100871832B1 (ko) 2007-04-12 2008-12-03 한국과학기술원 3차원 전면 게이트 구조를 갖는 비휘발성 디램 셀과 그제조방법 및 그 구동방법
JP4966153B2 (ja) * 2007-10-05 2012-07-04 株式会社東芝 電界効果トランジスタおよびその製造方法
KR20090081603A (ko) * 2008-01-24 2009-07-29 삼성전자주식회사 3차원 트랜지스터의 자기정렬 제조방법
FR2950481B1 (fr) * 2009-09-18 2011-10-28 Commissariat Energie Atomique Realisation d'un dispositif microelectronique comprenant des nano-fils de silicium et de germanium integres sur un meme substrat
CN101719501B (zh) 2009-12-01 2011-07-20 中国科学院上海微系统与信息技术研究所 混合晶向反型模式全包围栅cmos场效应晶体管
US8026521B1 (en) 2010-10-11 2011-09-27 Monolithic 3D Inc. Semiconductor device and structure
US8183104B2 (en) 2010-07-07 2012-05-22 Hobbs Christopher C Method for dual-channel nanowire FET device
US8753942B2 (en) * 2010-12-01 2014-06-17 Intel Corporation Silicon and silicon germanium nanowire structures
US8551833B2 (en) * 2011-06-15 2013-10-08 International Businesss Machines Corporation Double gate planar field effect transistors
US8580624B2 (en) * 2011-11-01 2013-11-12 International Business Machines Corporation Nanowire FET and finFET hybrid technology
US8722472B2 (en) 2011-12-16 2014-05-13 International Business Machines Corporation Hybrid CMOS nanowire mesh device and FINFET device
CN106847811B (zh) 2011-12-20 2021-04-27 英特尔公司 减小的接触电阻的自对准接触金属化
KR101401632B1 (ko) 2012-02-20 2014-06-03 주식회사 제노스 풍선 카테터 및 그 제조방법
US9214360B2 (en) * 2013-05-01 2015-12-15 Globalfoundries Inc. Methods of patterning features having differing widths

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090170251A1 (en) * 2007-12-31 2009-07-02 Been-Yih Jin Fabrication of germanium nanowire transistors
US20100187503A1 (en) * 2009-01-29 2010-07-29 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929235B1 (en) 2016-09-29 2018-03-27 Samsung Electronics Co., Ltd. Semiconductor device and method for fabricating the same
US10347718B2 (en) 2016-09-29 2019-07-09 Samsung Electronics Co., Ltd. Semiconductor device and method for fabricating the same
US10756179B2 (en) 2016-09-29 2020-08-25 Samsung Electronics Co., Ltd. Semiconductor device and method for fabricating the same
US11164943B2 (en) 2016-09-29 2021-11-02 Samsung Electronics Co., Ltd. Semiconductor device and method for fabricating the same
US11640973B2 (en) 2016-09-29 2023-05-02 Samsung Electronics Co., Ltd. Semiconductor device and method for fabricating the same
US10431585B2 (en) 2016-12-16 2019-10-01 Samsung Electronics Co., Ltd. Semiconductor devices with multi-gate structure and method of manufacturing the same
US10923476B2 (en) 2016-12-16 2021-02-16 Samsung Electronics Co., Ltd. Semiconductor devices and method of manufacturing the same
US11367723B2 (en) 2016-12-16 2022-06-21 Samsung Electronics Co., Ltd. Semiconductor devices and method of manufacturing the same
US11894379B2 (en) 2016-12-16 2024-02-06 Samsung Electronics Co., Ltd. Semiconductor devices and method of manufacturing the same
KR20190114695A (ko) * 2018-03-30 2019-10-10 아주대학교산학협력단 터널링 전계 효과 트랜지스터 및 이의 제조 방법

Also Published As

Publication number Publication date
TWI714520B (zh) 2021-01-01
US10177150B2 (en) 2019-01-08
CN110400803A (zh) 2019-11-01
DE102014110425A1 (de) 2015-02-12
US20160372474A1 (en) 2016-12-22
US9466601B2 (en) 2016-10-11
TW201511226A (zh) 2015-03-16
KR102069609B1 (ko) 2020-01-23
TW202005054A (zh) 2020-01-16
CN104377197A (zh) 2015-02-25
US9711506B2 (en) 2017-07-18
US20170271335A1 (en) 2017-09-21
CN104377197B (zh) 2019-09-10
US20150041899A1 (en) 2015-02-12
DE102014110425B4 (de) 2023-08-03
CN110400803B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
KR102069609B1 (ko) 반도체 소자 및 그 제조 방법
USRE49988E1 (en) Integrated circuit devices
US11251312B2 (en) Semiconductor device
US9825034B2 (en) Semiconductor device and method of fabricating the same
KR101894221B1 (ko) 전계 효과 트랜지스터 및 이를 포함하는 반도체 장치
KR102083627B1 (ko) 반도체 소자 및 그 제조 방법
US10276694B2 (en) Semiconductor device and method of fabricating the same
KR20140122096A (ko) 반도체 장치 및 그 제조 방법
US9461148B2 (en) Semiconductor device and method of fabricating the same
US9034714B2 (en) Method for fabricating semiconductor device
KR20140094335A (ko) 반도체 장치 및 그 제조 방법
KR102274734B1 (ko) 반도체 장치 및 그 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right