KR20140113622A - 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법 - Google Patents
18f-표지 pet 방사성의약품의 전구체 및 그 제조방법 Download PDFInfo
- Publication number
- KR20140113622A KR20140113622A KR1020140112162A KR20140112162A KR20140113622A KR 20140113622 A KR20140113622 A KR 20140113622A KR 1020140112162 A KR1020140112162 A KR 1020140112162A KR 20140112162 A KR20140112162 A KR 20140112162A KR 20140113622 A KR20140113622 A KR 20140113622A
- Authority
- KR
- South Korea
- Prior art keywords
- formula
- compound
- substituted
- unsubstituted
- methyl
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/04—1,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/0404—Lipids, e.g. triglycerides; Polycationic carriers
- A61K51/0406—Amines, polyamines, e.g. spermine, spermidine, amino acids, (bis)guanidines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/0493—Steroids, e.g. cholesterol, testosterone
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B59/00—Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B59/00—Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
- C07B59/007—Steroids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C201/00—Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
- C07C201/06—Preparation of nitro compounds
- C07C201/12—Preparation of nitro compounds by reactions not involving the formation of nitro groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C205/00—Compounds containing nitro groups bound to a carbon skeleton
- C07C205/27—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups
- C07C205/35—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C205/36—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton to carbon atoms of the same non-condensed six-membered aromatic ring or to carbon atoms of six-membered aromatic rings being part of the same condensed ring system
- C07C205/37—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton to carbon atoms of the same non-condensed six-membered aromatic ring or to carbon atoms of six-membered aromatic rings being part of the same condensed ring system the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/34—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
- C07C229/36—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings with at least one amino group and one carboxyl group bound to the same carbon atom of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/12—Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/16—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
- C07C233/24—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
- C07C233/25—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/45—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
- C07C233/46—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
- C07C233/47—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C303/00—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
- C07C303/26—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
- C07C303/30—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reactions not involving the formation of esterified sulfo groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C309/00—Sulfonic acids; Halides, esters, or anhydrides thereof
- C07C309/63—Esters of sulfonic acids
- C07C309/64—Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms
- C07C309/65—Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms of a saturated carbon skeleton
- C07C309/66—Methanesulfonates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/18—Preparation of ethers by reactions not forming ether-oxygen bonds
- C07C41/22—Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of halogens; by substitution of halogen atoms by other halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
- C07C43/02—Ethers
- C07C43/20—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
- C07C43/225—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/56—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
- C07D233/60—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/04—1,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
- C07D249/06—1,2,3-Triazoles; Hydrogenated 1,2,3-triazoles with aryl radicals directly attached to ring atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J1/00—Normal steroids containing carbon, hydrogen, halogen or oxygen, not substituted in position 17 beta by a carbon atom, e.g. estrane, androstane
- C07J1/0051—Estrane derivatives
- C07J1/0059—Estrane derivatives substituted in position 17 by a keto group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J43/00—Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton
- C07J43/003—Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton not condensed
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Optics & Photonics (AREA)
- Pharmacology & Pharmacy (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
본 발명은 양전자방출 단층촬영술(PET)용 방사성의약품의 전구체, 그 제조방법과 응용에 관한 것으로, 더욱 상세하게는 4가 유기염의 이탈기를 갖는 전구체, 그 제조방법 및 이를 이용하여 단일 단계로 18F를 도입함으로써 짧은 제조시간 내에 원하는 PET 방사성의약품을 높은 방사화학적 수율로 제조하는 방법에 관한 것이다. 본 발명의 4가 유기염 이탈기를 포함하는 전구체는 기존의 다단계의 복잡한 방사성의약품 제조를 단일 단계로 단순화시킬 수 있으며, 과량의 상전이 촉매가 필요 없어 생산 비용을 절감할 수 있고, 반응 후 화합물 분리가 용이하고, 반응속도가 빠른 장점이 있다. 이러한 특징은 자동화 합성 시스템에 의한 PET 방사성의약품 대량생산에 적합하다.
Description
본 발명은 양전자방출 단층촬영술(PET) 방사성의약품의 전구체, 그 제조방법과 응용에 관한 것으로, 더욱 상세하게는 4가 유기염의 이탈기를 갖는 전구체, 그 제조방법 및 이를 이용하여 단일 단계로 18F를 도입함으로써 짧은 제조시간 내에 원하는 18F-표지 PET 방사성의약품을 높은 방사화학적 수율로 제조하는 방법에 관한 것이다.
인체를 실시간 영상화하는 핵의학 분자영상 기법인 양전자방출 단층촬영술(Positron Emission Tomography, PET)은 질병 초기에 일어나는 인체 내 생화학적, 생리학적 변화를 검출할 수 있는 효과적인 인체영상 기법으로 의료영상 시장에서 가장 가파른 성장세를 보이고 있다. 새로운 질병에 대한 초기 PET 의약품 연구에서 양전자방출 방사성 동위원소인 11C이 사용되고 있는데, 비교적 표지가 용이하고 유기물의 기본 골격인 탄소이라는 장점을 보유하기 때문이다. 하지만 11C는 반감기가 20분으로 짧기 때문에 상업적으로 사용하기엔 적합하지 않다는 단점이 있다.
한편, 다른 방사성 동위원소인 18F은 싸이클로트론으로부터 쉽게 대량 생산 가능하다는 점 등의 여러 우수한 특성들이 있고, 특히 110분의 비교적 긴 반감기로 인해 최근 상업적으로 이용 가능한 핵종으로 주목 받고 있다. 이러한 18F의 유용성 때문에, 기존에 개발된 11C 표지 화합물을 18F-표지 화합물로 대체하거나, 새롭게 개발된 질병-표적 화합물에 18F을 도입하는 방안으로 [18F]플루오로프로필 작용기를 도입하는 방법이 일반화되어 있다. 하지만 [18F]플루오로프로필 작용기가 도입된 방사성의약품은 표적 물질에 대한 결합력이 감소되는 경향을 나타내고, 친유성의 증가로 일부 조직에서 높은 섭취가 이루어지고, 비특이적 결합의 증가로 선택성이 감소되어 영상이 나빠지는 문제점이 있다. [18F]플루오로프로필 작용기 대신 [11C]메틸기와 구조적으로 유사한 [18F]플루오로메틸기를 도입하면 이러한 문제점을 해결할 수 있다.
[18F]플루오로메틸기를 도입하는 기존의 방법은 [18F]플루오로메틸화 시약을 사용하는 것이다. 이러한 시약은 일반적으로 이탈기를 두 개 이상 갖는 메탄 화합물에 18F을 표지함으로 얻어낼 수 있다. 이를 전구체와 친핵성 치환반응시키면 원하는 [18F]플루오로메틸기가 도입된 방사성의약품을 제조할 수 있다. 하지만 상기 방법은 18F 표지에 두 단계의 합성 과정이 필요하며 따라서 과정이 복잡하고 제조시간이 길어지는 단점이 있다. 제조 과정이 복잡하면 상업화에 필수적 요소인 자동화 합성 시스템 구현이 어렵게 된다.
본 발명의 목적은 18F-표지 PET 방사성의약품 제조를 위한 4가 유기염 전구체를 제공하는 것이다.
본 발명의 다른 목적은 18F-표지 PET 방사성의약품 제조를 위한 4가 유기염 전구체의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 4가 유기염 전구체를 이용하는 친핵성 플루오르화 반응을 제공하는 것이다.
본 발명의 또 다른 목적은 4가 유기염 전구체의 친핵성 플루오르화 반응을 통해 제조한 18F-표지 PET 방사성의약품을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 4가 유기염 이탈기를 포함하는 전구체를 제공한다.
상기 화학식 1에서,
R1은 18F이 표지된 방사성추적자에서 -X-CH2-18F 부분을 제외한 부분으로, C1-C1000의 탄화수소기이고, 상기 C1-C1000의 탄화수소기는 주쇄의 탄소가 산소, 질소, 황, 인 또는 이들의 조합으로 치환 또는 비치환될 수 있고, 주쇄의 수소가 할로겐으로 치환 또는 비치환될 수 있고,
X는 산소, 황, 또는 -C(O)-이고,
이탈기는 치환된 또는 비치환된 C2-C50의 4가 암모늄염이다.
바람직하게는, 화학식 1에서,
R1은 C1-C200의 탄화수소기이고, 상기 C1-C200의 탄화수소기는 주쇄의 탄소가 산소, 질소, 황, 인 또는 이들의 조합으로 치환 또는 비치환될 수 있고, 주쇄의 수소가 할로겐으로 치환 또는 비치환될 수 있고,
X는 산소, 황, 또는 -C(O)-이고,
A, B, C, D 및 E는 서로 독립적으로 질소, 산소, 황 또는 탄소로서,
(i) 각 탄소의 수소는 R2 또는 R3로 치환 또는 비치환될 수 있고,
(ii) 각 질소의 경우, R2 또는 R3로 치환 또는 비치환될 수 있고,
R2와 R3는 서로 독립적으로 C1-C20의 탄화수소기로서, 주쇄의 탄소가 산소, 질소, 황 또는 이들의 조합으로 치환 또는 비치환될 수 있고, 주쇄의 수소가 할로겐으로 치환 또는 비치환될 수 있고,
Y는 할로겐 음이온, 설포네이트 음이온, BF4 -, PF6 -, SbF6 -, N(SO2CF3)2 - 및 N(CN)2 -로 이루어지는 군으로부터 선택되고,
n은 0 또는 1이다.
바람직하게는, 화학식 1에서,
R1은 C1-C100의 탄화수소기이고, 상기 C1-C100의 탄화수소기는 주쇄의 탄소가 산소, 질소, 황, 인 또는 이들의 조합으로 치환 또는 비치환될 수 있고, 주쇄의 수소가 할로겐으로 치환 또는 비치환될 수 있고,
X는 산소, 황, 또는 -C(O)-이고,
이탈기는
4가 양이온의 고리 내 하나의 질소가 R3으로 치환되며 각 탄소는 서로 독립적으로 R2로 치환 또는 비치환될 수 있고,
R2 및 R3는 C1-C20의 탄화수소기로서 주쇄의 탄소가 산소, 질소, 황 또는 이들의 조합으로 치환 또는 비치환될 수 있고, 주쇄의 수소가 할로겐으로 치환 또는 비치환될 수 있고,
Y는 서로 독립적으로 트리플루오로메탄설포네이트(CF3SO3 -), 파라톨루엔설포네이트, 메탄설포네이트 및 파라니트로벤젠설포네이트로 이루어지는 군으로부터 선택된다.
바람직하게는, 화학식 1에서,
X는 산소, 황, 또는 -C(O)-이고,
이탈기는
4가 양이온의 고리 내 하나의 질소가 R3으로 치환되며 각 탄소는 서로 독립적으로 R2로 치환 또는 비치환될 수 있고, R2 및 R3는 서로 독립적으로 C1 -4 직쇄 또는 분지쇄 알킬기, 예컨대, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, iso-부틸, t-부틸 등, 페닐, , , 및 로 이루어지는 군으로부터 선택되고,
Y는 서로 독립적으로 트리플루오로메탄설포네이트(CF3SO3 -), 파라톨루엔설포네이트, 메탄설포네이트 및 파라니트로벤젠설포네이트로 이루어지는 군으로부터 선택된다.
바람직하게는, 화학식 1로 표시되는 전구체는,
4-tert-부틸-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
4-메톡시카보닐-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
4-[3,5-디(트리플루오르메틸)페닐]-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
4-(4-메톡시페닐)-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
3-메틸-4-페닐-1-(2-페닐에테인-2-온-1-일)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
4-tert-부틸-3-메틸-1-[(페닐싸이오)메틸]-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
3-메틸-1-((2-나프톡시)메틸)-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
3-메틸-1-[3-(2-나프톡시)-n-프로필]옥시메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
1-[1-메틸설포닐옥시-3-(2-나프틸)-2-옥시프로필]옥시메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
3-메틸-(2-나프틸)메틸옥시메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
3-메틸-1-((2-나프톡시)메틸)-4-페닐이미다졸륨 트리플루오로메탄설포네이트;
(S)-1-(4-(2-BOC-아미노-2-(t-부톡시카보닐)에틸)페닐옥시메틸)-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
1-(4-바이페닐)옥시메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
1-(4-브로모-2-메틸페닐)옥시메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
1-(3,4-디메톡시페닐)옥시메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
3-메틸-1-(4-니트로페닐)옥시메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
1-(4-아세틸아미노페닐)옥시메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트;
1-(3-O-에스트로닐)메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트; 및
3-아세토나프틸-1-메틸이미다졸륨으로 이루어지는 군으로부터 선택될 수 있다.
또한, 본 발명은 화학식 1로 표시되는 4가 유기염 이탈기를 포함하는 전구체의 제조방법은 화학식 1의 하위 개념에 따라 여러 가지 제법으로 제공될 수 있고, 구체적으로는 하기 제법 1 내지 4로 제공될 수 있다.
제법 1:
구체적으로 하기 반응식 1로 표시되는 바와 같이,
화학식 2으로 표시되는 화합물로부터 화학식 3의 아지도 화합물을 합성하는 단계 (단계 1);
단계 1에서 얻은 화학식 3의 아지도 화합물과 화학식 4로 표시되는 알킨 화합물간의 [3+2]고리화첨가반응을 통해 화학식 5의 화합물을 합성하는 단계 (단계 2);
단계 2에서 얻은 화학식 5의 화합물을 화학식 6으로 표시되는 알킬화 시약을 이용하여 화학식 1-a의 유기염을 합성하는 단계 (단계 3)를 포함하는 화학식 1-a의 화합물 제조방법을 제공한다.
[반응식 1]
상기 반응식 1에서, R1, R2, R3 및 Y는 상기 정의한 바와 같고, Z는 염소, 브롬, 요오드, R4SO3 - 이다. 여기서 R4는 C1-C20 탄화수소기로서 주쇄의 탄소가 산소, 질소, 황 또는 이들의 조합으로 치환 또는 비치환될 수 있고, 주쇄의 수소가 할로겐으로 치환 또는 비치환될 수 있다.
본 발명의 4가 유기염 이탈기를 포함하는 전구체의 제조방법에 있어서, 상기 반응식 1의 단계 1은 화학식 2로 표시되는 화합물로부터 화학식 3의 아지도 화합물을 합성하는 단계이고, 여기서 사용되는 시약과 반응용매는 통상적으로 적용되는 유기화학반응을 이용할 수 있다. 상기 반응식 1의 단계 2는 단계 1에서 얻은 화학식 3의 아지도 화합물과 화학식 4로 표시되는 알킨 화합물간의 구리(I)-촉매하의 알킨/아자이드 [3+2]고리화첨가반응 (Copper(I)-catalyzed Alkyne/Azide [3+2]Cycloaddition, CuAAC)을 통해 온화한 조건에서 화학식 5의 화합물을 합성하는 단계이고, 여기서 화학식 2와 3의 화합물은 상업적으로 구매가 가능하거나 통상적인 방법으로 합성이 가능한 화합물이고, 사용되는 반응용매는 아지도 화합물과 알킨 화합물간의 구리(I)-촉매하의 알킨/아자이드 [3+2]고리화첨가반응에서 통상적으로 사용되는 용매를 사용할 수 있다. 상기 반응식 1의 단계 3은 단계 2에서 얻은 화학식 5의 1,2,3-트리아졸 화합물을 화학식 6으로 표시되는 알킬화 시약을 이용하여 화학식 1-a의 유기염을 합성하는 단계이고, 여기서 화학식 6으로 표시되는 화합물은 상업적으로 구매가 가능하거나 통상적인 방법으로 합성이 가능한 화합물이고, 사용되는 반응용매는 유기염 제조 반응에서 통상적으로 사용되는 용매를 사용할 수 있다.
제법 2:
구체적으로 하기 반응식 2로 표시되는 바와 같이,
화학식 7로 표시되는 화합물과 화학식 8로 표시되는 화합물간의 친핵성 치환반응을 통해 화학식 5의 화합물을 합성하는 단계 (단계 1); 및
단계 1에서 얻은 화학식 5의 화합물을 화학식 6으로 표시되는 알킬화 시약을 이용하여 화학식 1-b의 유기염을 합성하는 단계 (단계 2)를 포함하는 화학식 1-b의 화합물의 제조방법을 제공한다.
[반응식 2]
상기 반응식 2에서, R1, R2, R3, A, B, C, D, E, X, Y 및 n은 상기 정의한 바와 같고, Z는 상기 제법 1에서 정의한 바와 같다.
본 발명의 4가 유기염 이탈기를 포함하는 화학식 1의 전구체 화합물의 제조방법에 있어서, 상기 반응식 2의 단계 1은 화학식 7로 표시되는 화합물과 화학식 8로 표시되는 화합물간의 친핵성 치환반응을 통해 화학식 5의 화합물을 합성하는 단계이고, 여기서 화학식 7과 8로 표시되는 화합물은 상업적으로 구매가 가능하거나 통상적인 방법으로 합성이 가능한 화합물이고, 사용되는 반응용매는 친핵성 치환반응에서 통상적으로 사용되는 용매를 사용할 수 있다. 상기 반응식 2의 단계 2는 단계 1에서 얻은 화학식 5의 화합물을 화학식 6으로 표시되는 알킬화 시약을 이용하여 화학식 1-b의 유기염을 합성하는 단계이고, 여기서 화학식 6으로 표시되는 화합물은 상업적으로 구매가 가능하거나 통상적인 방법으로 합성이 가능한 화합물이고, 사용되는 반응용매는 유기염 제조 반응에서 통상적으로 사용되는 용매를 사용할 수 있다.
제법 3:
구체적으로 하기 반응식 3으로 표시되는 바와 같이,
화학식 7로 표시되는 화합물과 화학식 9로 표시되는 화합물간의 친핵성 치환반응을 통해 화학식 1-b의 화합물을 합성하는 단계 (단계 1)를 포함하는 화학식 1-b의 화합물의 제조방법을 제공한다.
[반응식 3]
상기 반응식 3에서, R1, R2, R3, A, B, C, D, E, X, Y 및 n은 상기 정의한 바와 같고, Z는 상기 제법 1에서 정의한 바와 같다.
본 발명의 4가 유기염 이탈기를 포함하는 화학식 1의 전구체 화합물의 제조방법에 있어서, 상기 반응식 3의 단계 1은 화학식 7로 표시되는 화합물과 화학식 9로 표시되는 화합물간의 친핵성 치환반응을 통해 화학식 1의 화합물을 합성하는 단계이고, 여기서 화학식 7로 표시되는 화합물은 상업적으로 구매가 가능하거나 통상적인 방법으로 합성이 가능한 화합물이고, 화학식 9로 표시되는 화합물은 상기 제법 2의 화학식 8로 표시되는 화합물을 화학식 6으로 표시되는 알킬화 시약과 반응시켜 합성할 수 있다. 단계 1에서 사용되는 반응용매는 유기염 제조 반응에서 통상적으로 사용되는 용매를 사용할 수 있다.
제법 4:
구체적으로 하기 반응식 4로 표시되는 바와 같이,
화학식 10으로 표시되는 화합물과 화학식 11로 표시되는 화합물간의 친핵성 치환반응을 통해 화학식 1-b의 화합물을 합성하는 단계 (단계 1)를 포함하는 화학식 1-b의 화합물 제조방법을 제공한다.
[반응식 4]
상기 반응식 4에서, R1, R2, R3, A, B, C, D, E, X, Y 및 n은 상기 정의한 바와 같다.
본 발명의 4가 유기염 이탈기를 포함하는 화학식 1의 전구체 화합물의 제조방법에 있어서, 상기 반응식 4의 단계 1은 화학식 10으로 표시되는 화합물과 화학식 11로 표시되는 화합물간의 친핵성 치환반응을 통해 화학식 1-b의 유기염을 합성하는 단계이고, 여기서 화학식 10과 11로 표시되는 화합물은 상업적으로 구매가 가능하거나 통상적인 방법으로 합성이 가능한 화합물이고, 사용되는 반응용매는 유기염 제조 반응에서 통상적으로 사용되는 용매를 사용할 수 있다.
또한, 본 발명은 하기 반응식 5와 같이 상기 화학식 1로 표시되는 4가 유기염 이탈기를 포함하는 화합물과 화학식 MF로 표시되는 플루오르염을 반응시키는 것을 특징으로 하는 18F-표지 화합물의 제조방법(친핵성 플루오르화 반응)과 화학식 12로 표시되는 18F-표지 화합물을 제공한다.
[반응식 5]
상기 반응식 5에서, R1, X 및 이탈기는 상기 화학식 1에서 정의한 바와 같고, M은 Li, Na, K, Rb 및 Cs로 이루어지는 군으로부터 선택되는 금속 양이온; 4가 암모늄 양이온이고; 또는 4가 포스포늄 양이온이고, F는 18F이다.
본 발명에 따른 화학식 1의 4가 유기염 이탈기를 포함하는 화합물은 도 1에 나타낸 바와 같이 다양한 금속염 또는 유기염 형태의 플루오라이드 음이온과의 친핵성 플루오르화 반응에서 전구체로 사용될 수 있다. 도 1에서 중간체 화합물은 4가 유기염 전구체가 금속염 또는 유기염 형태의 플루오라이드 음이온과 상호작용하여 음이온 교환이 일어나 생성되며, 이는 분자 내 친핵성 플루오르화 반응을 통해 빠르게 생성물인 화학식 12의 F-표지 화합물로 전환된다. 여기서 친핵성 플루오르화 반응(F가 18F임)은 통상적으로 사용되는 반응조건에서 수행될 수 있다.
나아가, 본 발명은 상기 반응식 5의 생성물인 18F-표지 화합물을 제공한다.
본 발명의 전구체는 18F-플루오로메틸기를 간단한 한 단계 정으로 방사성 의약품에 도입할 수 있다. 또한, 4가 유기염을 활성화된 이탈기를 전구체에 도입하여 한 단계 공정으로 18F-플루오로메틸기를 제조함으로써 기존의 다단계의 복잡한 합성을 단순화시키는 효과가 있다. 또한 전구체의 이탈기에 포함된 4가 유기염이 상전이 촉매 역할을 하기 때문에 일반적인 친핵성 [18F]플루오르화 반응에 요구되는 추가적인 과량의 상전이 촉매가 필요 없어 생산 비용을 절감할 수 있고, 반응 후 화합물 분리가 용이한 장점이 있다. 이러한 전구체 내의 4가 유기염에 의한 상전이 촉매 작용은 분자내 친핵성 플루오르화 반응을 유도하여 일반적인 분자간 친핵성 플루오르화 반응에 비해 반응속도가 훨씬 빠른 장점이 있다. 이러한 특징은 자동화 합성 시스템에 의한 [18F]방사성의약품 대량생산에 적합하다.
도 1은 본 발명의 4가 유기염 이탈기를 갖는 전구체를 이용하여 단일 단계로 18F-표지화합물을 제조하는 반응식이다.
이하, 본 발명을 제조예와 실시예에 의해 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 이에 한정되는 것은 아니다.
제조예 1: 2-(아지도메톡시)나프탈렌(3a)의 제조
단계 1:
2-나프톨 (7a, 1.15 g, 8.0 mmol)을 헥사메틸포스포라마이드 (hexamethylphosphoramide, HMPA, 40 mL)에 녹인 후, 소듐하이드라이드 (NaH, 352 mg, 8.8 mmol)을 첨가한 뒤 30분 동안 상온에서 교반하고 클로로메틸-메틸 설파이드 (0.737 mL, 8.8. mmol)을 첨가한 다음 실온에서 16시간 동안 교반시켰다. 물을 가하여 반응을 종결시킨 다음, 에틸 아세테이트로 유기화합물을 추출하였다. 추출된 에틸 아세테이트 용액을 무수 황산 나트륨으로 처리한 뒤 컬럼 크로마토그래피 (20% 에틸아세테이트/n-헥산)를 수행하여 설파이드 중간체(13, 410 mg, 25%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.26 (s, 3H), 5.22 (s, 2H), 7.20-7.16 (m, 2H), 7.34 (t, J = 7.6 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.73 (m, 3H).
단계 2:
단계 1에서 얻어진 설파이드 화합물 (13, 410 mg, 2.0 mmol)을 디클로로메탄에 녹인 뒤 설퍼릴클로라이드 (1.0 M SO2Cl2/CH2Cl2 용액, 2.4 mL, 2.4 mmol)를 천천히 가해준 뒤 30분 동안 교반시킨 다음 용매와 반응 잔여물을 감압하여 제거하였다. 남은 유기물을 디메틸포름아미드(DMF) 용매에 다시 녹인 후 소듐 아자이드(NaN3, 650 mg, 10 mmol)을 넣고 12시간 동안 교반시켰다. 물을 가하여 반응을 종결시키고, 에틸 아세테이트로 유기화합물을 추출하였다. 추출된 에틸 아세테이트 용액을 무수 황산 나트륨으로 처리한 뒤 컬럼 크로마토그래피 (10% 에틸아세테이트/n-헥산)를 수행하여 목적화합물인 2-(아지도메톡시)나프탈렌 (3a, 279 mg, 70%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 5.27 (s, 2H), 7.21 (dd, J = 9.0 Hz, J = 2.5 Hz, 2H), 7.30 (d, J = 2.5 Hz, 1H), 7.40-7.37 (m, 1H), 7.48-7.45 (m, 2H), 7.75 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 9.0 Hz, 2H).
제조예 2: 2-아지도아세토페논 (3b)의 제조
2-브로모아세토페논 (10a, 1.97 g, 10.0 mmol)을 아세토니트릴 (40 mL)에 녹인 후 소듐 아자이드 (NaN3, 650 mg, 11.0 mmol)을 넣고 12시간 동안 교반시켰다. 물을 가하여 반응을 종결시키고, 디클로로메탄으로 유기화합물을 추출하였다. 추출된 디클로로메탄 용액을 무수 황산 나트륨으로 처리한 뒤 컬럼 크로마토그래피 (10% 에틸아세테이트/n-헥산)를 수행하여 목적화합물인 2-아지도아세토페논 (3b, 2.11 g, 100%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 4.56 (s, 2H), 7.49 (t, J = 6.2 Hz, 2H), 7.62 (t, J = 6.0 Hz, 1H), 7.90 (d, J = 7.6 Hz, 2H).
제조예 3: 아지도메틸 페닐 설파이드 (3c)의 제조
브로모메틸 페닐 설파이드 (10b, 1.58 g, 10.0 mmol)을 디메틸포름아마이드 (40 mL)에 녹인 후 소듐 아자이드 (NaN3, 1.3 g, 20.0 mmol)을 넣고 12시간 동안 교반시켰다. 물을 가하여 반응을 종결시키고, 에틸아세테이트로 유기화합물을 추출하였다. 추출된 에틸아세테이트 용액을 무수 황산 나트륨으로 처리한 뒤 컬럼 크로마토그래피 (1% 에틸아세테이트/n-헥산)를 수행하여 목적화합물인 아지도메틸 페닐 설파이드 (3c, 1.62g, 98%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 4.54 (s, 2H), 7.37-7.25 (m, 3H), 7.45 (d, J = 8.0 Hz, 2H).
실시예
1: 4-
tert
-부틸-3-
메틸
-1-((2-
나프톡시
)
메틸
)-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트
(1a)의 제조
단계 1:
상기 제조예 1의 단계 2에서 얻은 화합물 2-(아지도메톡시)나프탈렌 (3a, 390 mg, 2.0 mmol)과 3,3-다이메틸-1-부틴 (4a, 246 mg, 3.0 mmol)을 아세토니트릴 (8 mL)에 녹인 후 요오드화 구리 (77 mg, 0.4 mmol)와 트리에틸아민 (0.056 mL, 0.4 mmol)을 가하고 상온에서 2시간 동안 교반한 다음 감압하여 농축한 후 컬럼 크로마토그래피 (1% 메탄올/디클로로메탄)를 수행하여 목적화합물 4-tert-부틸-1-((2-나프톡시)메틸) -1,2,3-트리아졸 (5a, 477 mg, 85%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 1.35 (s, 9H), 6.30 (s, 2H), 7.19 (dd, J = 9.0 Hz, J = 2.5 Hz, 1H), 7.40-7.38 (m, 1H), 7.46-7.44 (m, 2H), 7.51 (s, 1H), 7.76 (t, J = 8.0 Hz, 3H);
13C NMR (125 MHz, CDCl3) δ 158.8, 154.3, 134.3, 130.14, 130.05, 127.8, 127.5, 126.9, 124.9, 118.7, 118.6, 109.9, 76.2, 31.0, 30.4.
단계 2:
단계 1에서 얻은 4-tert-부틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸 (5a, 477 mg, 1.69 mmol)을 아세토니트릴 (7.0 mL)에 녹이고 메틸 트리플루오로메탄설포네이트 (6a, MeOTf, 0.278 mL, 2.5 mmol)를 가한 뒤, 0℃에서 30분간 교반시킨 뒤, 용매를 감압하에 제거하여 목적화합물 4-tert-부틸-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1a, 580 mg, 77%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 1.46 (s, 9H), 4.35 (s, 3H), 6.60 (s, 2H), 7.22 (dd, J = 9.0, 2.5 Hz, 1H), 7.42-7.39 (m, 1H), 7.49-7.45 (m, 2H), 7.77 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 8.5 Hz, 2H), 8.60 (s, 1H);
13C NMR (125 MHz, CDCl3) d 153.1, 152.3, 134.1, 130.6, 130.4, 128.4, 127.8, 127.6, 127.2, 125.4, 120.8 (q, J = 319 Hz), 118.0, 110.2, 79.2, 40.9, 31.6, 28.4.
실시예
2: 4-
메톡시카보닐
-3-
메틸
-1-((2-
나프톡시
)
메틸
)-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트 (1b)의 제조
단계 1:
실시예 1의 단계 1에서 사용한 3,3-다이메틸-1-부틴 (4a) 대신에 메틸프로피오레이트 (4b, 252 mg, 3.0 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 4-메톡시카보닐-1-((2-나프톡시)메틸)-1,2,3-트리아졸 (5b, 346 mg, 61%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 3.94 (s, 3H), 6.41 (s, 2H), 7.17 (dd, J = 9.0 Hz, J = 2.5 Hz, 1H), 7.36 (d, J = 2.5 Hz, 1 H), 7.42-7.39 (m, 1H), 7.49-7.45 (m, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.79-7.77 (m, 2H), 8.34 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 161.0, 153.6, 141.0, 134.1, 130.5, 130.3, 127.9, 127.6, 127.4, 127.1, 125.2, 118.3, 110.2, 76.7, 52.5.
단계 2:
실시예 1의 단계 2에서 사용한 4-tert-부틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸 (5a) 대신에 4-메톡시카보닐-1-((2-나프톡시)메틸)-1,2,3-트리아졸 (5b, 346 mg, 1.22 mmol)을 사용하는 것을 제외하고는 동일한 방법으로 진행하여 4-메톡시카보닐-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1b, 513 mg, 94%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 3.96 (s, 3H), 4.35 (s, 3H), 6.70 (s, 2H), 7.22 (dd, J = 9.0 Hz, 2.5 Hz, 1H), 7.41 (td, J = 7.8, 1.2 Hz, 1H), 7.47 (td, J = 7.3, 1.3 Hz, 1H), 7.51 (d, J = 2.5 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 9.0 Hz, 2H), 9.26 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 155.4, 152.9, 134.1, 133.8, 133.3, 130.8, 130.7, 127.8, 127.7, 127.3, 125.6, 120.7 (t, J = 318 Hz), 118.0, 110.9, 80.3, 54.3, 41.5.
실시예
3: 4-[3,5-디(
트리플루오르메틸
)
페닐
]-3-
메틸
-1-((2-
나프톡시
)
메틸
)-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트
(1c)의 제조
단계 1:
실시예 1의 단계 1에서 사용한 3,3-다이메틸-1-부틴 (4a) 대신에 1-에틴일-3,5-비스(트리플루오르메틸)벤젠 (4c, 530㎕, 3.0 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 4-[3,5-디(트리플루오르메틸)페닐]-1-((2-나프톡시)메틸)-1,2,3-트리아졸 (5c, 700 mg, 80%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 6.45 (s, 2H), 7.20 (dd, J = 9.0 Hz, J = 2.5 Hz, 1H), 7.41-7.38 (m, 1H), 7.43 (d, J = 2.5 Hz, 1 H), 7.49-7.45 (m, 1H), 7.80-7.75 (m, 3H), 7.83 (s, 1H), 8.19 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 134.2, 132.6, 132.4, 132.3, 130.4, 130.2, 127.9, 127.4, 127.1, 125.9, 125.2, 124.4, 122.2, 122.1, 120.7, 118.4, 109.9, 76.5.
단계 2:
실시예 1의 단계 2에서 사용한 4-tert-부틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸 (5a) 대신에 4-[3,5-디(트리플루오르메틸)페닐]-1-((2-나프톡시)메틸)-1,2,3-트리아졸 (5c, 700 mg, 1.60 mmol)을 사용하는 것을 제외하고는 동일한 방법으로 진행하여 4-[3,5-디(트리플루오르메틸)페닐]-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1c, 860 mg, 89%)을 얻었다.
1H NMR (500 MHz, MeOD) δ 4.36 (s, 3H), 6.81 (s, 2H), 7.35 (dd J = 9.0 Hz, 2.5 Hz, 1H), 7.43 (td, J = 7.0 Hz, 1.0 Hz, 1H), 7.50 (td, J = 7.0 Hz, 1.0 Hz, 1H), 7.64 (d, J = 2.5 Hz, 1H), 7.85 (t, J = 7.0 Hz, 2H), 7.73 (d, J = 9.0 Hz, 1H), 8.33 (s, 1H), 8.36 (s, 2H);
13C NMR (125 MHz, MeOD) δ 153.2, 141.2, 134.2, 132.7 (q, J = 34 Hz), 130.6, 130.4 (d, J = 3 Hz), 130.2, 127.4, 127.1, 126.7, 125.4 (q, J = 4 Hz), 125.0, 124.9, 123.9, 121.8, 120.4 (q, J = 317 Hz), 117.8, 110.7, 79.8, 38.4.
실시예
4: 4-(4-
메톡시페닐
)-3-
메틸
-1-((2-
나프톡시
)
메틸
)-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트 (1d)의 제조
단계 1:
실시예 1의 단계 1에서 사용한 3,3-다이메틸-1-부틴 (4a) 대신에 4-에틴일아니솔 (4d, 252 mg, 3.0 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 4-(4-메톡시페닐)-1-((2-나프톡시)메틸)-1,2,3-트리아졸 (5d, 391 mg, 59%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 3.83 (s, 3H), 6.39 (s, 2H), 7.00-6.93 (m, 2H), 7.20 (dd, J = 9.0 Hz, J = 2.5 Hz, 1H), 7.27 (d, J = 9.0 Hz, 1 H), 7.40-7.37 (m, 1H), 7.47-7.44 (m, 2H), 7.78-7.72 (m, 5H), 7.93 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 134.3, 133.9, 130.3, 130.2, 129.9, 127.8, 127.5, 127.4, 127.3, 127.0, 125.0, 123.0, 118.7, 118.6, 114.5, 110.1, 76.5, 55.5.
단계 2:
실시예 1의 단계 2에서 사용한 4-tert-부틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸 (5a) 대신에 4-(4-메톡시페닐)-1-((2-나프톡시)메틸) -1,2,3-트리아졸 (5d, 391 mg, 1.18 mmol)을 사용하는 것을 제외하고는 동일한 방법으로 진행하여 4-(4-메톡시페닐)-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1d, 521 mg, 89%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 3.82 (s, 3H), 4.25 (s, 3H), 6.65 (s, 2H), 7.03-7.00 (m, 2H), 7.25 (dd, J = 9.0, 2.5 Hz, 1H), 7.42 (td, J = 7.5, 1.0 Hz, 1H), 7.53-7.47 (m, 4H), 7.79 (d, J = 8.5 Hz, 1H), 7.83 (t, J = 9.0 Hz, 2H), 8.76 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 162.7, 153.1, 144.1, 134.2, 131.3, 130.8, 130.6, 128.5, 127.8, 127.7, 118.0, 115.5, 113.5, 110.5, 79.6, 55.7, 38.9.
실시예
5: 3-
메틸
-4-
페닐
-1-(2-
페닐에테인
-2-온-1-일)-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트
(1e)의 제조
단계 1:
2-아지도아세토페논 (3b, 322 mg, 2.0 mmol)과 페닐아세틸렌 (4e, 225 mg, 2.2 mmol)을 아세토니트릴 (8 mL)에 녹인 후 요오드화 구리 (77 mg, 0.4 mmol)와 트리에틸아민 (0.056 mL, 0.4 mmol)을 가하고 상온에서 2시간 동안 교반한 다음 감압하여 농축한 후 컬럼 크로마토그래피 (1% 메탄올/디클로로메탄)를 수행하여 목적화합물 4-페닐-1-(2-페닐에테인-2-온-1-일)-1,2,3-트리아졸 (5e, 520 mg, 83%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 5.90 (s, 2H), 7.35 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.4 Hz, 2H), 7.55 (t, J = 7.8Hz, 2H), 7.68 (t, J = 7.4 Hz, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.95 (s, 1H), 8.03 (t, J = 8.4 Hz, 2H).
단계 2:
단계 1에서 얻은 4-페닐-1-(2-페닐에테인-2-온-1-일)-1,2,3-트리아졸 (5e, 520 mg, 1.67 mmol)을 아세토니트릴 (7.0 mL)에 녹이고 메틸 트리플루오로메탄설포네이트 (6a, MeOTf, 0.278 mL, 2.5 mmol)를 가한 뒤, 0℃에서 30분간 교반시킨 뒤, 용매를 감압하여 목적화합물 3-메틸-4-페닐-1-(2-페닐에테인-2-온-1-일)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1e, 694 mg, 87%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 4.31 (s, 3H), 6.43 (s, 2H), 7.55-7.72 (m, 8H), 8.04 (d, J = 6.0 Hz, 2H), 8.76 (s, 1H).
실시예
6: 4-
tert
-부틸-3-
메틸
-1-[(
페닐싸이오
)
메틸
]-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트
(1f)의 제조
단계 1:
상기 제조예 3에서 얻은 화합물 아지도메틸 페닐 설파이드 (3c, 330 mg, 2.0 mmol)과 3,3-다이메틸-1-부틴 (4a, 246 mg, 3.0 mmol)을 아세토니트릴 (8 mL)에 녹인 후 요오드화 구리 (77 mg, 0.4 mmol)와 트리에틸아민 (0.056 mL, 0.4 mmol)을 가하고 상온에서 2시간 동안 교반시킨 다음 감압하여 농축한 후 컬럼 크로마토그래피 (1% 메탄올/디클로로메탄)를 수행하여 목적화합물 4-tert-부틸-1-[(페닐싸이오)메틸]-1,2,3-트라이아졸 (5f, 411 mg, 83%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 1.23 (s, 9H), 5.90 (s, 2H), 7.45-7.34 (m, 5H), 7.76 (s, 1H).
단계 2:
단계 1에서 얻은 4-tert-부틸-1-[(페닐싸이오)메틸]-1,2,3-트라이아졸 (5f, 411 mg, 1.66 mmol)을 아세토니트릴 (7.0 mL)에 녹이고 메틸 트리플루오로메탄설포네이트 (6a, MeOTf, 0.278 mL, 2.5 mmol)를 가한 뒤, 0℃에서 30분간 교반시킨 뒤, 용매를 감압하여 목적화합물 4-tert-부틸-3-메틸-1-[(페닐싸이오)메틸]-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1f, 615 mg, 90%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 1.46 (s, 9H), 4.28 (s, 3H), 5.93 (s, 2H), 7.43-7.38 (m, 5H), 8.17 (s, 1H).
실시예
7: 3-
메틸
-1-((2-
나프톡시
)
메틸
)-4-
페닐
-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트
(1g)의 제조
단계 1:
2-나프톨 (7a, 720 mg, 5.0 mmol)과 포타슘카보네이트 (2.07 g, 15 mmol)을 아세토니트릴 (20 mL)에 녹인 후, 1-(클로로메틸)-4-페닐-1,2,3-트리아졸 (8a, 1.45 g, 7.5 mmol)을 첨가한 뒤 80도 가열조건에서 5시간 동안 교반시켰다. 물을 가하여 반응을 종결시킨 다음, 에틸아세테이트로 유기화합물을 추출하였다. 추출된 에틸아세테이트 용액을 무수 황산 나트륨으로 처리한 뒤 컬럼 크로마토그래피 (30% 에틸아세테이트/n-헥산)를 수행하여 4-페닐-1-((2-나프톡시)메틸)-1,2,3-트리아졸 (5g, 1.13 g, 75%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 6.40 (s, 2H), 7.20 (dd, J = 9.0 Hz, J = 2.5 Hz, 1H), 7.26 (d, J = 9.5 Hz, 1H), 7.47-7.31 (m, 6H), 7.79-7.76 (m, 3H), 7.83-7.81 (m, 2H), 8.01 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 134.2, 133.9, 130.3, 130.2, 129.9, 129.0, 128.6, 127.8, 127.5, 127.0, 126.03, 125.94, 125.0, 119.6, 118.5, 110.1, 76.5.
단계 2:
단계 1에서 얻은 4-페닐-1-((2-나프톡시)메틸)-1,2,3-트리아졸 (5g, 1.13 g, 3.75 mmol)을 아세토니트릴 (15.0 mL)에 녹이고 메틸 트리플루오로메탄설포네이트 (6a, MeOTf, 0.618 mL, 5.63 mmol)를 가한 뒤, 0℃에서 30분간 교반시킨 다음, 용매를 감압하에 제거하여 목적화합물 4-페닐-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1g, 1.68 g, 96%)를 얻었다.
1H NMR (500 MHz, CDCl3) d 3.81 (s, 3H), 6.35 (s, 2H), 7.22 (dd, J = 9. 0 Hz, 2. 0 Hz, 1H), 7.40-7.35 (m, 3H), 7.54-7.43 (m, 6H), 7.75 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 9.0 Hz, 1H), 7.85 (t, J = 8.5 Hz, 1H), 9.63 (s, 1H);
13C NMR (125 MHz, CDCl3) d 152.8, 138.3, 136.6, 134.3, 131.1, 130.6, 130.4, 129.64, 129.60, 127.7, 127.2, 125.3, 124.5, 120.9 (d, J = 319 Hz), 118.4, 118.1, 110.3, 76.0, 35.1.
실시예
8: 3-
메틸
-1-[3-(2-
나프톡시
)-
n
-프로필]
옥시메틸
-4-
페닐
-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트
(1h)의 제조
단계 1:
3-(2-나프톡시)프로판올 (7b, 1.01 g, 5.0 mmol)과 포타슘-tert-부톡사이드 (1.69 g, 15 mmol)을 테트라하이드로퓨란 (20 mL)에 녹인 후, 1-(클로로메틸)-4-페닐-1,2,3-트리아졸 (8a, 1.16 g, 6.0 mmol)을 첨가한 뒤 상온에서 3시간 동안 교반시켰다. 물을 가하여 반응을 종결시킨 다음, 디클로로메탄으로 유기화합물을 추출하였다. 추출된 디클로로메탄 용액을 무수 황산 나트륨으로 처리한 뒤 컬럼 크로마토그래피 (30% 에틸아세테이트/n-헥산)를 수행하여 1-[3-(2-나프톡시)-n-프로필]옥시메틸-4-페닐-1,2,3-트리아졸 (5h, 1.25 g, 70%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.10 (q, J = 6.0 Hz, 2H), 3.79 (t, J = 6.3 Hz, 2H), 4.12 (t, J = 6.3 Hz, 2H), 5.74 (s, 2H), 7.05 (dd, J = 9.0 Hz, J = 2.5 Hz, 1H), 7.09 (d, J = 2.5 Hz, 1H), 7.38-7.31 (m, 4H), 7.44-7.41 (m, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.68 (d, J = 8.5 Hz, 1H), 7.76-7.73 (m, 3H), 7.87 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 156.9, 148.9, 134.7, 130.4, 129.6, 129.2, 129.0, 128.5, 127.8, 126.9, 126.5, 126.0, 123.8, 119.3, 118.9, 106.8, 79.3, 66.5, 64.2, 29.3.
단계 2:
단계 1에서 얻은 1-[3-(2-나프톡시)-n-프로필]옥시메틸-4-페닐-1,2,3-트리아졸 (5h, 1.25 mg, 3.5 mmol)을 아세토니트릴 (14.0 mL)에 녹이고 메틸 트리플루오로메탄설포네이트 (6a, MeOTf, 0.57 mL, 5.25 mmol)를 가한 뒤, 0℃에서 30분간 교반시킨 뒤, 용매를 감압하에 제거하고 목적화합물 3-메틸-1-[3-(2-나프톡시)-n-프로필]옥시메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1h, 1.4 g, 76%)를 얻었다.
1H NMR (500 MHz, CDCl3) d 2.11 (q, J = 5.8 Hz, 2H), 4.01-3.99 (m, 5H), 4.08 (t, J = 5.5 Hz, 2H), 5.95 (s, 2H), 7.01 (dd, J = 9.0, 2.5 Hz, 1H), 7.07 (d, J = 2.5 Hz, 1H), 7.44-7.26 (m, 7H), 7.51-7.48 (m, 1H), 7.62 (d, J = 9.0 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 8.68 (s, 1H),;
13C NMR (125 MHz, CDCl3) d 156.7, 143.8, 134.7, 132.0, 129.71, 129.66, 129.5, 129.1, 128.3, 127.8, 126.9, 126.8, 12.0, 121.7, 120.8 (d, J = 318 Hz), 118.6, 106.8, 83.6, 68.2, 63.7, 38.7, 29.1
실시예
9: 1-[1-
메틸설포닐옥시
-3-(2-
나프틸
)-2-
옥시프로필
]
옥시메틸
-3-
메틸
-4-
페닐
-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트
(1i)의 제조
실시예 8에서 사용한 3-(2-나프톡시)프로판올 (7b) 대신에 2-하이드록시-3-(2-나프탈렌일옥시)프로필 메탄설포네이트 (7c, 889 mg, 3.0 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 1-[1-메틸설포닐옥시-3-(2-나프틸)-2-옥시프로필]옥시메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1i, 1.39 g, 75%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.99 (s, 3H), 4.15 (s, 3H), 4.31-4.22 (m, 2H), 4.43 (d, J = 5.5 Hz, 2H), 4.69-4.67 (m, 1H), 6.22 (q, J = 9.3 Hz, 2H), 7.07 (dd, J = 8.8, 2.8 Hz, 1H), 7.13 (d, J = 2.5 Hz, 1H), 7.43 (td, J = 7.5 Hz, 1.0 Hz, 1H), 7.52-7.48 (m, 4H), 7.57-7.54 (m, 1H), 7.69 (d, J = 9.0 Hz, 2H), 7.23 (t, J = 8.0 Hz, 2H), 8.91 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 155.9, 143.9, 134.5, 132.1, 129.9, 129.8, 129.6, 129.5, 128.8, 127.8, 127.2, 126.9, 124.4, 122.0, 120.9 (d, J = 319 Hz), 118.3, 107.5, 82.8, 78.5, 69.7, 67.2, 38.8, 37.4.
실시예
10: 3-
메틸
-(2-
나프틸
)
메틸옥시메틸
-4-
페닐
-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트
(1j)의 제조
실시예 8에서 사용한 3-(2-나프톡시)프로판올 (7b) 대신에 나프탈렌메탄올 (7d, 475 mg, 3.0 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 3-메틸-(2-나프틸)메틸옥시메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1j, 1.09 g, 76%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 3.96 (s, 3H), 4.88 (s, 2H), 5.94 (s, 2H), 7.24 (d, J = 7.5 Hz, 2H), 7.45-7.32 (m, 6H), 7.68 (d, J = 8.5 Hz, 1H), 7.76-7.71 (m, 3H), 8.48 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 143.39, 143.38, 133.1, 132.9, 131.8, 129.5, 129.3, 128.3, 128.2, 128.1, 127.69, 127.67, 126.61, 126.55, 125.9, 124.6, 121.59, 121.58, 120.8 (q, J = 319 Hz), 82.7, 73.9, 38.5.
실시예
11: (S)-1-(4-(2-
BOC
-아미노-2-(t-
부톡시카보닐
)에틸)
페닐옥시메틸
)-4-페닐-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트
(1k)의 제조
단계 1:
N-BOC-L-타이로신 tert-부틸 에스터 (7e, 0.79 g, 2.35 mmol)를 아세톤 (23 mL) 에 용해시킨 후 세슘카보네이트 (2.00g, 5.87 mmol), 1-(클로로메틸)-4-페닐-1,2,3-트리아졸 (8a, 0.46 g, 2.59 mmol)를 차례로 가하고 50℃에서 6시간 동안 교반하였다. 이 반응물을 감압증류 하고 에틸 아세테이트로 희석한 뒤 여과한다. 그 여액을 1.0 노르말 염산 수용액, 물, 포화 염화나트륨 수용액 순으로 세척한다. 세척한 유기층을 무수 황산 나트륨으로 건조하고 농축 후 컬럼 크로마토그래피 (SiO2 , 20% 에틸아세테이트/헥산)를 시행하여 흰색 고체 화합물 (S)-1-(4-(2-BOC-아미노-2-(t-부톡시카보닐)에틸)페닐오시메틸)-4-페닐-1,2,3-트리아졸 (5k, 1.07 g, 2.16 mmol, 92%)을 얻었다.
1H NMR (400 MHz, CDCl3) δ 1.38 (s, 18H), 2.99 (s, 2H), 4.39 (d, J = 6.4 Hz, 1H), 5.03 (d, J = 8 Hz, 1H), 6.23 (s, 3H), 7.09 (d, J = 8 Hz, 2H), 7.33 (d, J = 6.4 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.82 (d, J = 7.6 Hz, 2H), 7.97 (s, 1H),
단계 2:
상기 단계 1에서 얻은 (S)-1-(4-(2-BOC-아미노-2-(t-부톡시카보닐)에틸)페닐오시메틸)-4-페닐-1,2,3-트리아졸 (5k, 0.47 g, 0.96 mmol)를 아세토니트릴 (2.5mL)에 녹인 후 메틸 트리플루오르메탄설포네이트 (6a, 53 ㎕, 0.48 mmol) 을 가하고 90분 동안 상온에서 교반한다. 이 반응물을 농축한 후 컬럼 크로마토그래피 (SiO2, 5% 메탄올/디클로로메탄)를 시행하여 목적화합물 (S)-1-(4-(2-BOC-아미노-2-(t-부톡시카보닐)에틸)페닐옥시메틸)-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1k, 0.22 g, 0.34 mmol, 70%) 얻었다.
1H NMR (400 MHz, CDCl3) δ 1.40 (s, 18H), 3.04-2.98 (m, 2H), 4.30 (s, 3H) 4.37 (d, J = 6.0 Hz, 1H), 5.00 (d ,J = 8.0 Hz, 1H), 6.54 (s,2H), 7.03 (d, J = 8.8 Hz, 1H), 7.14 (d, J = 8.4 Hz, 2H), 7.61-7.54 (m, 5H), 8.70 (s,1H).
실시예
12: 3-
메틸
-1-((2-
나프톡시
)
메틸
)-4-
페닐이미다졸륨
트리플루오로메탄설포네이트
(1l)의 제조
단계 1:
2-나프톨 (7a, 720 mg, 5.0 mmol)과 포타슘카보네이트 (2.07 g, 15 mmol)을 아세토니트릴 (20 mL)에 녹인 후, 1-(클로로메틸)-4-페닐-이미다졸 (8b, 1.44 g, 7.5 mmol)을 첨가한 뒤 80℃ 가열조건에서 5시간 동안 교반시켰다. 물을 가하여 반응을 종결시킨 다음, 에틸아세테이트로 유기화합물을 추출하였다. 추출된 에틸아세테이트 용액을 무수 황산 나트륨으로 처리한 뒤 컬럼 크로마토그래피 (20% 에틸아세테이트/n-헥산)를 수행하여 4-페닐-1-((2-나프톡시)메틸)이미다졸 (5l, 931 mg, 62%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 5.94 (s, 2H), 7.13 (dd, J = 9.2 Hz, J = 2.4 Hz, 1H), 7.28-7.24 (m, 2H), 7.43-7.36 (m, 4H), 7.48 (td, J = 7.4 Hz, J = 1.2 Hz, 1H), 7.71 (d, J = 1.2 HZ, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.81-7.77 (m, 4H).
단계 2:
단계 1에서 얻은 4-페닐-1-((2-나프톡시)메틸)이미다졸 (5l, 931 mg, 3.10 mmol)을 아세토니트릴 (15.0 mL)에 녹이고 메틸 트리플루오로메탄설포네이트 (6a, MeOTf, 0.51 mL, 4.65 mmol)를 가한 뒤, 0℃에서 30분간 교반시킨 뒤, 용매를 감압하에 제거하여 목적화합물 4-페닐-3-메틸-1-((2-나프톡시)메틸)이미다졸륨 트리플루오로메탄설포네이트 (1l, 734 mg, 51%)를 얻었다.
1H NMR (500 MHz, CDCl3) d 3.78 (s, 3H), 6.33 (s, 2H), 7.21 (dd, J = 8.8, 2.3 Hz, 1H),7.38-7.34 (m, 3H), 7.52-7.41 (m, 6H), 7.73 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 9.0 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 9.57 (s, 1H);
13C NMR (125 MHz, CDCl3) d 152.9, 138.1, 136.5, 134.3, 131.0, 130.6, 130.3, 129.6, 129.5, 127.72, 127.69, 127.1, 125.2, 124.5, 120.9 (q, J = 319 Hz), 118.5, 118.2, 110.3, 76.0, 35.1.
실시예
13: 3-
메틸
-1-((2-
나프톡시
)
메틸
)-4-
페닐
-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트
(1g)의 제조
2-나프톨 (7a, 288 mg, 2.0 mmol)과 포타슘카보네이트 (829 mg, 6.0 mmol)을 아세토니트릴 (8 mL)에 녹인 후, 1-(클로로메틸)-4-페닐-3-메틸-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (9a, 858 mg, 2.4 mmol)을 첨가한 뒤 80℃ 가열조건에서 5시간 동안 교반시켰다. 물을 가하여 반응을 종결시킨 다음, 디클로로메탄으로 유기화합물을 추출하였다. 추출된 디클로로메탄 용액을 무수 황산 나트륨으로 처리한 뒤 컬럼 크로마토그래피 (5% 메탄올/디클로로메탄)를 수행하여 상기 실시예 7과 동일한 목적화합물 4-페닐-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1g, 577 mg, 62%)를 얻었다.
1H NMR (500 MHz, CDCl3) d 3.81 (s, 3H), 6.35 (s, 2H), 7.22 (dd, J = 9. 0 Hz, 2. 0 Hz, 1H), 7.40-7.35 (m, 3H), 7.54-7.43 (m, 6H), 7.75 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 9.0 Hz, 1H), 7.85 (t, J = 8.5 Hz, 1H), 9.63 (s, 1H);
13C NMR (125 MHz, CDCl3) d 152.8, 138.3, 136.6, 134.3, 131.1, 130.6, 130.4, 129.64, 129.60, 127.7, 127.2, 125.3, 124.5, 120.9 (d, J = 319), 118.4, 118.1, 110.3, 76.0, 35.1.
실시예
14: 1-(4-
바이페닐
)
옥시메틸
-3-
메틸
-4-
페닐
-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트
(1m)의 제조
실시예 12에서 사용한 2-나프톨 (7a) 대신에 4-페닐페놀 (7f, 510 mg, 3.0 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 1-(4-바이페닐)옥시메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1m, 1.28 g, 87%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 4.26 (s, 3H), 6.56 (s, 2H), 7.19 (q, J = 5.0 Hz, 1H), 7.19 (d, J = 9.0 Hz, 1H), 7.32 (td, J = 7.5, 1.3 Hz, 1H), 7.41 (t, J = 7.8 Hz, 2H), 7.61-7.50 (m, 9H), 7.80 (t, J = 8.5 Hz, 2H), 8.79 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 154.8, 144.0, 140.0, 137.4, 132.3, 129.9, 129.7, 129.0, 128.9, 128.8, 127., 121.7, 120.8 (q, J = 319 Hz), 116.6, 79.7, 39.1.
실시예
15: 1-(4-
브로모
-2-
메틸페닐
)
옥시메틸
-3-
메틸
-4-
페닐
-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트
(1n)의 제조
실시예 12에서 사용한 2-나프톨 (7a) 대신에 4-브로모-2-메틸페놀 (7g, 561 mg, 3.0 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 1-(4-바이페닐)옥시메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1n, 1.14 g, 75%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.20 (s, 3H), 4.28 (s, 3H), 7.04 (d, J = 9.5 Hz, 2H), 7.31-7.27 (m, 2H), 7.61-7.53 (m, 5H), 8.83 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 152.8, 144.0, 134.5, 132.3, 130.5, 130.4, 129.9, 129.7, 128.9, 121.7, 120.7 (q, J = 319 Hz), 116.6, 115.3, 79.6, 39.1, 16.1.
실시예
16: 1-(3,4-
디메톡시페닐
)
옥시메틸
-3-
메틸
-4-
페닐
-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트 (1o)의 제조
실시예 12에서 사용한 2-나프톨 (7a) 대신에 3,4-디메톡시페놀 (7h, 462 mg, 3.0 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 1-(3,4-디메톡시페닐)옥시메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1o, 927 mg, 65%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 3.79 (s, 3H), 3.82 (s, 3H), 4.24 (s, 3H), 6.43 (s, 2H), 6.62 (dd, J = 8.5, 2.8 Hz, 1H), 6.68 (s, 1H), 6.76 (d, J = 8.5 Hz, 1H), 7.58-7.48 (m, 5H), 8.72 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 105.2, 149.4, 146.0, 143.8, 132.2, 129.8, 129.5, 128.6, 121.7, 120.7 (q, J = 319 Hz), 111.7, 106.8, 102.4, 80.6, 56.3, 56.2, 39.0.
실시예
17: 3-
메틸
-1-(4-
니트로페닐
)
옥시메틸
-4-
페닐
-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트
(1p)의 제조
실시예 12에서 사용한 2-나프톨 (7a) 대신에 4-니트로페놀 (7i, 417 mg, 3.0 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 3-메틸-1-(4-니트로페닐)옥시메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1p, 898 mg, 65%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 4.36 (s, 3H), 6.79 (s, 2H), 7.41 (d, J = 9.5 Hz, 2H), 7.72-7.64 (m, 5H), 8.30 (d, J = 9.5 Hz, 2H);
13C NMR (125 MHz, CDCl3) δ 160.1, 144.2, 143.8, 131.8, 129.4, 129.2, 125.7, 122.1, 120.4 (d, J = 317 Hz, only two peaks of quartet of CF3-C were shown), 116.3, 78.5, 38.3.
실시예
18: 1-(4-
아세틸아미노페닐
)
옥시메틸
-3-
메틸
-4-
페닐
-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트
(1q)의 제조
실시예 12에서 사용한 2-나프톨 (7a) 대신에 3-아세트아미노페놀 (7j, 453 mg, 3.0 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 1-(4-아세틸아미노페닐)옥시메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1q, 1.08 g, 76%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.09 (s, 3H), 6.41 (s, 2H) 4.26 (s, 3H), 6.72 (dd, J = 8.3, 2.3 Hz, 1H), 7.20-7.15 (m, 2H), 7.63-7.49 (m, 5H), 7.66 (d, J = 8.0 Hz, 1H), 8.70 (s, 1H), 8.93 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 170.0, 155.4, 144.1, 140.9, 132.5, 130.8, 130.0, 129.7, 128.3, 121.7, 120.7 (q, J = 318 Hz), 116.0, 112.5, 106.6, 80.1, 39.2, 24.5.
실시예
19: 1-(3-
O
-
에스트로닐
)
메틸
-3-
메틸
-4-
페닐
-1,2,3-
트리아졸륨
트리플루오로메탄설포네이트
(1r)의 제조
실시예 12에서 사용한 2-나프톨 (7a) 대신에 에스트론 (7k, 811 mg, 3.0 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 1-(3-O-에스트로닐)메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1r, 1.26 g, 71%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 0.89 (s, 3H), 1.64-1.39 (m, 6H), 1.95-1.93 (m, 1H), 2.16-1.98 (m, 4H), 2.24-2.20 (m, 1H), 2.37-2.35 (m, 1H), 2.49 (dd, J = 19.0, 8.5 Hz, 2H), 2.92-2.90 (m, 2H), 4.27 (s, 3H), 6.50 (s, 2H), 6.88-6.87 (m, 2H), 7.24 (d, J = 9.5 Hz, 1H), 7.62-7.55 (m, 5H), 8.70 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 220.7, 153.5, 144.0, 139.3, 136.1, 132.3, 129.9, 129.7, 128.7, 127.2, 121.8, 120.8 (q, J = 319 Hz), 116.3, 113.5, 80.0, 50.6, 48.1, 44.2, 39.0, 38.3, 36.0, 31.7, 29.6, 26.5, 26.0, 21.7, 14.0.
실시예
20: 3-
아세트나프틸
-1-
메틸이미다졸륨
(1s)의 제조
2-브로모-2-아세토나프톤 (10a, 2.49 g, 10 mmol)을 아세토니트릴 (50 mL)에 녹인 후, 메틸이미다졸 (11a, 0.836 mL, 10.5 mmol)을 첨가한 뒤 80도 가열조건에서 12시간 동안 교반시켰다. 반응이 종결되면 반응 용매를 감압하여 제거한 후에 컬럼 크로마토그래피 (10% 메탄올/다이클로로메탄)를 수행하여 목적화합물 3-아세트나프틸-1-메틸이미다졸륨 (1s, 3.08 g, 93%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 4.02 (s, 3H), 6.15 (s, 2H), 7.68 (m, 4H), 7.99 (m, 4H), 8.74 (s, 1H), 9.01 (s, 1H);
13C NMR (125 MHz, CDCl3) δ 191.3, 139.5, 137.7, 134.0, 132.5, 130.9, 130.5, 130.0, 129.4, 129.0,128.7, 125.4, 124.6, 124.3, 56.3, 36.8.
실시예
21:
친핵성
플루오르화 반응
상기 실시예 1에서 얻은 4-tert-부틸-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1a, 0.5 mmol)와 테트라부틸암모늄 플루오라이드 (TBAF, 0.75 mmol)을 반응용기에 넣은 다음 아세토니트릴 (2.0 mL)을 가하여 녹인 뒤 80℃ 가열 조건에서 1시간 동안 교반시켰다. 물을 가하여 반응을 종결시킨 다음, 디클로로메탄으로 유기화합물을 추출하였다. 추출된 디클로로메탄 용액을 무수 황산 나트륨으로 처리한 뒤 컬럼 크로마토그래피 (2% 에틸아세테이트/헥산)를 수행하여 목적화합물인 2-플루오로메톡시나프탈렌의 (12a, 78 mg, 89%)를 얻었다.
1H NMR (500 MHz, CDCl3) δ 5.85 (d, J = 55.0 Hz, 2H), 7.29 (dd, J = 9.0, 2.5 Hz, 1H), 7.44 (t, J = 7.3 Hz, 1H), 7.52-7.49 (m, 2H), 7.81 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 9.0 Hz, 2H);
13C NMR (125 MHz, CDCl3) δ 154.9, 134.5, 130.5, 130.1, 128.0, 127.6, 126.9, 125.1, 118.8, 111.4, 101.1 (d, J = 218 Hz).
실시예
22: 다양한 유기용매 조건하에서 플루오르화 반응
상기 실시예 1에서 얻은 4-tert-부틸-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1a, 0.5 mmol)와 테트라부틸암모늄 플루오라이드 (TBAF, 196 mg, 0.75 mmol)을 사용하고 아세토니트릴 용매 대신에 tert-부탄올, 테트라하이드로퓨란, 디메틸포름아마이드와 같은 다양한 유기용매 (2.0 mL)를 사용하여 상기 실시예 20과 동일한 방법으로 플루오르화 반응을 진행시켰다. 각각의 반응에 대해 반응시간을 확인하였으며 플루오르화 반응에 대한 생성물인 2-플루오로메톡시나프탈렌의 생성량을 측정하였다. 측정된 결과는 하기 표 1에 나타내었다.
용매 | 시간 (분) | 수율 (%) |
MeCN | 60 | 89 |
t-BuOH | 60 | 81 |
THF | 40 | 85 |
DMF | 20 | 79 |
실시예
22: 다양한
플루오로화
시약을 사용한 반응
상기 실시예 1에서 얻은 4-tert-부틸-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1a, 0.5 mmol)을 사용하고 플루오로화 시약으로 테트라부틸암모늄 플루오라이드 대신에 세슘플루오라이드를 사용하여 상기 실시예 21과 동일한 방법으로 플루오르화 반응을 진행시켰다. 각각의 반응에 대해 반응시간을 확인하였으며 플루오르화 반응에 대한 생성물인 2-플루오로메톡시나프탈렌의 생성량을 측정하였다. 측정된 결과는 하기 표 2에 나타내었다.
MF (당량) | 시간 | 수율 (%) |
CsF (3.0) | 24 시간 | 38 |
TBAF (1.5) | 60 분 | 89 |
실시예
24: 2-(3-
플루오르메톡시
-
n
-
프로폭시
)나프탈렌 (12b)의 제조
실시예 21에서 사용한 4-tert-부틸-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1a) 대신에 3-메틸-1-[3-(2-나프톡시)-n-프로필]옥시메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1h, 262 mg, 0.5 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 2-(3-플루오르메톡시-n-프로폭시)나프탈렌 (12b, 90 mg, 77%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.19 (q, J = 6.1 Hz, 2H), 3.98 (td, J = 6.3, 2.0 Hz, 2H), 4.21 (t, J = 6.0 Hz, 2H), 5.30 (d, J = 56.0 Hz, 2H), 7.16-7.14 (m, 2H), 7.34 (td, J = 7.5, 1.2 Hz, 1H), 7.45 (td, J = 7.5, 2.0 Hz, 1H), 7.78-7.72 (m, 3H);
13C NMR (125 MHz, CDCl3) δ 154.9, 134.5, 130.5, 130.1, 128.0, 127.6, 126.9, 125.1, 118.8, 111.4, 101.1 (d, J = 218 Hz).
실시예
25: 2-(2-
플루오르메톡시
-3-
메탄설포닐옥시
-
n
-
프로폭시
)나프탈렌 (12c)의 제조
실시예 21에서 사용한 4-tert-부틸-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1a) 대신에 1-[1-메틸설포닐옥시-3-(2-나프틸)-2-옥시프로필]옥시메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1i, 310 mg, 0.5 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 2-(2-플루오르메톡시-3-메탄설포닐옥시-n-프로폭시)나프탈렌 (12c, 110 mg, 67%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 3.06 (s, 3H), 4.37-4.23 (m, 3H), 4.58-4.49 (m, 2H), 5.46 (ddd, J = 55.8, 17.5, 3.0 Hz, 2H), 7.16-7.14 (m, 2H), 7.37 (td, J = 8.0, 1.0 Hz, 1H), 7.47 (td, J = 8.3, 1.3 Hz, 1H), 7.76 (q, J = 9.00 Hz, 3H);
13C NMR (125 MHz, CDCl3) δ 156.1, 134.6, 130.0, 129.5, 127.9, 127.1, 126.9, 124.4, 118.7, 107.2, 103.8 (d, J = 216 Hz), 69.1, 67.0, 37.8.
실시예
26: (2-
플루오르메톡시
)-2-메틸나프탈렌 (12d)의 제조
실시예 21에서 사용한 4-tert-부틸-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1a) 대신에 3-메틸-(2-나프틸)메틸옥시메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1j, 240 mg, 0.5 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 (2-플루오르메톡시)-2-메틸나프탈렌 (12d, 75 mg, 79%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 4.95 (s, 2H), 5.40 (d, J = 56.4 Hz, 2H), 7.75 Hz, 2H), 7.51-7.47 (m, 3H), 7.87-7.83 (m, 4H);
13C NMR (125 MHz, CDCl3) δ 134.0, 133.4, 133.3, 128.6, 128.1, 127.9, 127.2, 126.5, 126.4, 125.9, 102.9 (d, J = 213 Hz), 72.0.
실시예
27: O-
플루오로메틸
-N-
BOC
-L-티로신-
tert
-부틸 에스터 (12e)의 제조
실시예 21에서 사용한 4-tert-부틸-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1a) 대신에 (S)-1-(4-(2-BOC-아미노-2-(t-부톡시카보닐)에틸)페닐옥시 메틸)-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1k, 0.22g, 0.36 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 O-플루오로메틸-N-BOC-L-티로신-tert-부틸 에스터 (12e, 75 mg, 60%)를 얻었다.
1H NMR (400 MHz, CDCl3) δ 1.42 (d, J = 4.0 Hz, 18H), 3.01-3.04 (m, 2H), 4.42 (d, J = 6.8 Hz, 1H), 4.98 (d, J = 6.8 Hz, 1H), 5.62 (s, 1H), 5.76 (s, 1H), 7.00 (d, J= 8.4 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H).
실시예
28: 4-
플루오르메톡시바이페닐
(12e)의 제조
실시예 21에서 사용한 4-tert-부틸-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1a) 대신에 1-(4-바이페닐)옥시메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1m, 246 mg, 0.5 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 4-플루오르메톡시바이페닐 (12f, 74 mg, 73%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 5.78 (d, J = 55.0 Hz, 2H), 7.21 (d, J = 9.0 Hz, 2H), 7.39 (td, J = 7.5, 1.0 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.61 (d, J = 8.5 Hz, 4H);
13C NMR (125 MHz, CDCl3) δ 156.59, 156.57, 140.7, 136.9, 129.1, 128.7, 127.4, 127.2, 117.23, 117.22, 101.0 (d, J = 218 Hz).
실시예
29: 5-
브로모
-2-
플루오르메톡시톨루엔
(12g)의 제조
실시예 21에서 사용한 4-tert-부틸-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1a) 대신에 1-(4-브로모-2-메틸페닐)옥시메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1n, 254 mg, 0.5 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 5-브로모-2-플루오르메톡시톨루엔 (12g, 91 mg, 83%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.24 (s, 3H), 5.70 (d, J = 54.5 Hz, 2H), 6.95 (d, J = 8.5 Hz, 1H) 7.31 (m, 2H);
13C NMR (125 MHz, CDCl3) δ 154.4, 133.9, 130.5, 130.0, 116.6, 116.0, 101.0 (d, J = 218 Hz), 16.2.
실시예
30: 4-
플루오르메톡시
-1,2-
디메톡시벤젠
(12h)의 제조
실시예 21에서 사용한 4-tert-부틸-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1a) 대신에 1-(3,4-디메톡시페닐)옥시메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1o, 238 mg, 0.5 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 4-플루오르메톡시-1,2-디메톡시벤젠 (12h, 70 mg, 75%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 3.84 (s, 3H), 3.85 (s, 3H), 5.64 (d, J = 55.0 Hz, 2H), 6.65-6.61 (m, 2H), 6.78 (d, J = 8.5 Hz, 1H);
13C NMR (125 MHz, CDCl3) δ 151.3, 149.8, 145.5, 111.6, 107.6, 102.6, 101.8 (d, J = 217 Hz), 56.4, 56.0.
실시예
31: 4-
플루오르메톡시
-1-니트로벤젠 (12i)의 제조
실시예 21에서 사용한 4-tert-부틸-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1a) 대신에 3-메틸-1-(4-니트로페닐)옥시메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1p, 230 mg, 0.5 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 4-플루오르메톡시-1-니트로벤젠 (12i, 62 mg, 72%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 5.79 (d, J = 53.0 Hz, 2H), 7.18-7.17 (m, 2H), 8.26-8.24 (m, 2H);
13C NMR (125 MHz, CDCl3) δ 161.3, 143.7, 126.1, 116.6, 99.8 (d, J = 221 Hz).
실시예
32:
N
-(3-
플루오르메톡시페닐
)
아세트아마이드
(12j)의 제조
실시예 21에서 사용한 4-tert-부틸-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1a) 대신에 1-(4-아세틸아미노페닐)옥시메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1q, 236 mg, 0.5 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 N-(3-플루오르메톡시페닐)아세트아마이드 (12j, 70 mg, 76%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 2.20 (s, 3H), 5.72 (d, J = 54.5 Hz, 2H), 6.85 (d, J = 7.0 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.29-7.26 (m, 1H), 7.41 (s, 1H), 7.46 (bs, 1H);
13C NMR (125 MHz, CDCl3) δ 168.7, 157.4, 139.5, 130.2, 115.0, 112.5, 108.7, 100.9 (d, J = 218 Hz), 24.9.
실시예
33: 3
-O-
플루오르메틸에스트론
(12j)의 제조
실시예 21에서 사용한 4-tert-부틸-3-메틸-1-((2-나프톡시)메틸)-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1a) 대신에 1-(3-O-에스트로닐)메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1r, 296 mg, 0.5 mmol)를 사용하는 것을 제외하고는 동일한 방법으로 진행하여 3-O-플루오르메틸에스트론 (12k, 125 mg, 83%)을 얻었다.
1H NMR (500 MHz, CDCl3) δ 0.89 (s, 3H), 1.66-1.39 (m, 7H), 2.16-1.93 (m, 5H), 2.25-2.20 (m, 1H), 2.40-2.36 (m, 1H), 2.48 (dd, J = 19.0, 8.5 Hz, 1H), 2.89 (t, J = 4.3 Hz, 2H), 5.66 (d, J = 55.0 Hz, 2H), 6.81 (d, J = 2.5 Hz, 1H), 6.86 (dd, J = 8.5, 2.5 Hz, 1H), 7.22 (d, J = 8.5 Hz, 4H);
13C NMR (125 MHz, CDCl3) δ 220.9, 155.1, 138.4, 135.2, 126.8, 117.0, 114.3, 101.1 (d, J = 217 Hz), 50.6, 48.2, 44.2, 38.4, 36.1, 31.8, 29.8, 26.7, 21.8, 14.1.
실시예
34: 3
-O-
[
18
F]-
플루오르메틸에스트론
([
18
F]12k)의 제조
크로마픽스 (Chromafix®)에 증류수 (2.0 mL)와 0.2 M 소듐 메탄설포네이트 수용액 (2.0 mL)을 차례대로 흘려주고 다시 증류수 (2.0 mL)를 이용하여 세척하였다. 싸이클로트론에서 생산된 [18F]플루오라이드 [18O]H2O 용액(1-10 mCi)을 서서히 흘려준 뒤 증류수(2.0 mL)를 이용하여 세척하였다. [18F]플루오라이드가 잡힌 카트리지에 메탄올(2.0 mL)을 흘려주어 수분을 제거하고 0.1 M 테트라부틸암모늄 메탄설포네이트 용액 (0.5 mL)을 흘려주어 [18F]플루오라이드 이온을 용출해 내었다. 100 oC로 가열하며 질소를 불어주어 용매를 제거한 뒤 1-(3-O-에스트로닐)메틸-3-메틸-4-페닐-1,2,3-트리아졸륨 트리플루오로메탄설포네이트 (1r, 5 mg)을 아세토니트릴 혹은 t-아밀알코올에 녹여 넣어준 다음 포타슘카보네이트 (3 mg)을 넣고 120도 가열조건에서 20분간 교반시켰다. Radio-TLC를 이용하여 각 반응의 수율을 측정하였고, 이를 하기 표3에 나타내었다.
아세토니트릴 | t-아밀알코올 | |
Radio-TLC (%) | 100 | 82 |
Claims (9)
- 제1항에 있어서,
상기 화학식 1에서,
R1은 C1-C200의 탄화수소기이고, 상기 C1-C200의 탄화수소기는 주쇄의 탄소가 산소, 질소, 황, 인 또는 이들의 조합으로 치환 또는 비치환될 수 있고, 주쇄의 수소가 할로겐으로 치환 또는 비치환될 수 있고,
X는 산소, 황, 또는 -C(O)-이고,
이탈기는 이고, 상기 이탈기에서,
A, B, C, D 및 E는 서로 독립적으로 질소, 산소, 황 또는 탄소로서,
(i) 각 탄소의 수소는 R2 또는 R3로 치환 또는 비치환될 수 있고,
(ii) 각 질소의 경우, R2 또는 R3로 치환 또는 비치환될 수 있고,
R2와 R3는 서로 독립적으로 C1-C20의 탄화수소기로서, 주쇄의 탄소가 산소, 질소, 황 또는 이들의 조합으로 치환 또는 비치환될 수 있고, 주쇄의 수소가 할로겐으로 치환 또는 비치환될 수 있고,
Y는 할로겐 음이온, 설포네이트 음이온, BF4 -, PF6 -, SbF6 -, N(SO2CF3)2 - 및 N(CN)2 -로 이루어지는 군으로부터 선택되고,
n은 0 또는 1인 것을 특징으로 하는 4가 유기염 이탈기를 포함하는 화합물.
- 제1항에 있어서,
상기 화학식 1에서,
R1은 C1-C100의 탄화수소기이고, 상기 C1-C100의 탄화수소기는 주쇄의 탄소가 산소, 질소, 황, 인 또는 이들의 조합으로 치환 또는 비치환될 수 있고, 주쇄의 수소가 할로겐으로 치환 또는 비치환될 수 있고,
X는 산소, 황, 또는 -C(O)-이고,
이탈기는
(i) 또는 중에서 선택되는 4가 양이온; 및
(ii) Y인 음이온으로 구성되는 염이고,
상기 4가 양이온의 고리 내 하나의 질소가 R3으로 치환되며 각 탄소는 서로 독립적으로 R2로 치환 또는 비치환될 수 있고,
R2 및 R3는 C1-C20의 탄화수소기로서 주쇄의 탄소가 산소, 질소, 황 또는 이들의 조합으로 치환 또는 비치환될 수 있고, 주쇄의 수소가 할로겐으로 치환 또는 비치환될 수 있고,
Y는 서로 독립적으로 트리플루오로메탄설포네이트(CF3SO3 -), 파라톨루엔설포네이트, 메탄설포네이트 및 파라니트로벤젠설포네이트로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 4가 유기염 이탈기를 포함하는 화합물.
- 하기 반응식 1로 표시되는 바와 같이,
화학식 2로 표시되는 화합물로부터 화학식 3의 아지도 화합물을 합성하는 단계 (단계 1);
단계 1에서 얻은 화학식 3의 아지도 화합물과 화학식 4로 표시되는 알킨 화합물간의 [3+2]고리화첨가반응을 통해 화학식 5의 화합물을 합성하는 단계 (단계 2);
단계 2에서 얻은 화학식 5의 화합물을 화학식 6으로 표시되는 알킬화 시약을 이용하여 화학식 1-a의 유기염을 합성하는 단계 (단계 3)를 포함하는 화학식 1-a의 화합물 제조방법.
[반응식 1]
상기 반응식 1에서, R1, R2, R3 및 Y는 제2항에서 정의한 바와 같고, Z는 R4SO3 - 이다. 여기서 R4는 C1-C20 탄화수소기로서 주쇄의 탄소가 산소, 질소, 황 또는 이들의 조합으로 치환 또는 비치환될 수 있고, 주쇄의 수소가 할로겐으로 치환 또는 비치환될 수 있다.
- 제1항의 화학식 1로 표시되는 4가 유기염 이탈기를 포함하는 화합물로부터 합성되는 18F-표지 화합물.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110045390 | 2011-05-13 | ||
KR1020110045390 | 2011-05-13 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120050050A Division KR101478140B1 (ko) | 2011-05-13 | 2012-05-11 | 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140113622A true KR20140113622A (ko) | 2014-09-24 |
KR101879181B1 KR101879181B1 (ko) | 2018-07-17 |
Family
ID=47177453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140112162A KR101879181B1 (ko) | 2011-05-13 | 2014-08-27 | 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9505799B2 (ko) |
KR (1) | KR101879181B1 (ko) |
CN (1) | CN103608337B (ko) |
WO (1) | WO2012157900A2 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020059986A1 (ko) * | 2018-09-21 | 2020-03-26 | 주식회사 바이오이미징코리아 | 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오르메틸 치환 방사성의약품의 제조방법 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101602912B1 (ko) * | 2013-09-13 | 2016-03-11 | 주식회사 바이오이미징코리아 | [18f]플루오르메틸기가 도입된 뇌신경염증 표적 양성자방출단층촬영 방사성추적자, 이의 합성 및 그를 이용한 생물학적 결과 평가 방법 |
CN106890345B (zh) * | 2015-12-17 | 2020-09-01 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种靶向线粒体的造影剂分子作为t2造影剂的用途 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040065076A (ko) * | 2003-01-15 | 2004-07-21 | 학교법인 인하학원 | 플루오린-18로 표지된 유기플루오로화합물의 제조방법 |
WO2006065038A1 (en) * | 2004-12-15 | 2006-06-22 | Futurechem Co., Ltd. | Method for preparation of organofluoro compounds in alcohol solvents |
KR20080016873A (ko) * | 2005-06-23 | 2008-02-22 | 해머스미쓰 이마네트 리미티드 | 영상화용 18f 또는 11c-표지화 알킬티오페닐 구아니딘 |
WO2009146343A1 (en) * | 2008-05-30 | 2009-12-03 | Merck & Co., Inc. | Novel substituted pyrazoles, 1,2,4-oxadiazoles, and 1,3,4-oxadiazoles |
WO2010007363A2 (en) * | 2008-07-15 | 2010-01-21 | Isis Innovation Limited | Preparation of fluorine-labelled compounds |
US20100111864A1 (en) * | 2007-04-11 | 2010-05-06 | Merck Eprova Ag | 18f-labelled folates |
WO2010096426A2 (en) * | 2009-02-20 | 2010-08-26 | Emory University | Compounds, compositions, methods of synthesis, and methods of treatment |
KR101478140B1 (ko) * | 2011-05-13 | 2014-12-31 | (주)퓨쳐켐 | 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060018966A1 (en) * | 2003-07-22 | 2006-01-26 | Lin Victor S | Antimicrobial mesoporous silica nanoparticles |
CN100560548C (zh) * | 2006-06-01 | 2009-11-18 | 郭启勇 | 采用离子液体作为相转移催化剂合成18f标记正电子放射性示踪剂的方法 |
EP1897885A1 (en) * | 2006-09-08 | 2008-03-12 | Bayer Schering Pharma Aktiengesellschaft | Compounds and methods for F labelled agents |
EP2220058A4 (en) * | 2007-12-11 | 2011-07-13 | Univ Colorado | HETEROARYL SALTS AND METHODS OF MAKING AND USING THEM |
-
2012
- 2012-05-11 CN CN201280023659.8A patent/CN103608337B/zh active Active
- 2012-05-11 US US14/117,271 patent/US9505799B2/en active Active
- 2012-05-11 WO PCT/KR2012/003713 patent/WO2012157900A2/ko active Application Filing
-
2014
- 2014-08-27 KR KR1020140112162A patent/KR101879181B1/ko active IP Right Grant
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040065076A (ko) * | 2003-01-15 | 2004-07-21 | 학교법인 인하학원 | 플루오린-18로 표지된 유기플루오로화합물의 제조방법 |
KR100549213B1 (ko) * | 2003-01-15 | 2006-02-03 | 학교법인 인하학원 | 플루오린-18로 표지된 유기플루오로화합물의 제조방법 |
WO2006065038A1 (en) * | 2004-12-15 | 2006-06-22 | Futurechem Co., Ltd. | Method for preparation of organofluoro compounds in alcohol solvents |
KR20080016873A (ko) * | 2005-06-23 | 2008-02-22 | 해머스미쓰 이마네트 리미티드 | 영상화용 18f 또는 11c-표지화 알킬티오페닐 구아니딘 |
US20100111864A1 (en) * | 2007-04-11 | 2010-05-06 | Merck Eprova Ag | 18f-labelled folates |
WO2009146343A1 (en) * | 2008-05-30 | 2009-12-03 | Merck & Co., Inc. | Novel substituted pyrazoles, 1,2,4-oxadiazoles, and 1,3,4-oxadiazoles |
WO2010007363A2 (en) * | 2008-07-15 | 2010-01-21 | Isis Innovation Limited | Preparation of fluorine-labelled compounds |
WO2010096426A2 (en) * | 2009-02-20 | 2010-08-26 | Emory University | Compounds, compositions, methods of synthesis, and methods of treatment |
KR101478140B1 (ko) * | 2011-05-13 | 2014-12-31 | (주)퓨쳐켐 | 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법 |
Non-Patent Citations (2)
Title |
---|
Nuclear Medicine and Biology 36 (2009) 155-162 * |
Nuclear Medicine and Molecular Imaging, 2009, Vol. 43, No. 1, pp. 1-9 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020059986A1 (ko) * | 2018-09-21 | 2020-03-26 | 주식회사 바이오이미징코리아 | 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오르메틸 치환 방사성의약품의 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
KR101879181B1 (ko) | 2018-07-17 |
US9505799B2 (en) | 2016-11-29 |
WO2012157900A2 (ko) | 2012-11-22 |
US20140194620A1 (en) | 2014-07-10 |
CN103608337B (zh) | 2016-07-06 |
CN103608337A (zh) | 2014-02-26 |
WO2012157900A3 (ko) | 2013-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2005317370B2 (en) | Method for preparation of organofluoro compounds in alcohol solvents | |
US8604213B2 (en) | Fluorination of aromatic ring systems | |
Zhang et al. | A practical route for synthesizing a PET ligand containing [18F] fluorobenzene using reaction of diphenyliodonium salt with [18F] F− | |
CA2840608C (en) | Fluorination of aromatic ring systems | |
KR101351878B1 (ko) | 18f 방사성의약품 제조를 위한 고체 지지체에 연결된 전구체 화합물, 이의 제조방법 및 응용 | |
KR101879181B1 (ko) | 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법 | |
Gao et al. | Concise and high-yield synthesis of T808 and T808P for radiosynthesis of [18F]-T808, a PET tau tracer for Alzheimer’s disease | |
US20110190505A1 (en) | Iodonium Cyclophanes for SECURE Arene Functionalization | |
JP5865351B2 (ja) | 合成方法 | |
CN103601645B (zh) | 1-(苯乙基氨基)丙烷-2-醇类化合物或其盐的制备方法 | |
KR101478140B1 (ko) | 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법 | |
Paramanik et al. | Catalytic nucleophilic fluorination by an imidazolium ionic liquid possessing trialkylphosphine oxide functionality | |
KR101407970B1 (ko) | 1,2,3-트리아졸륨 염을 갖는 설포네이트 화합물, 그 제조방법 및 이를 사용하는 분자내 친핵성 플루오르화반응 | |
CN100418966C (zh) | 8-碘代咪唑并[1,2-a]吡啶-3-乙酰胺类化合物及制备方法 | |
WO2009029633A1 (en) | Synthesis of [18f]-labelled alkyl mesylates using fluorous spe separation | |
CN103261152A (zh) | 前体化合物的工艺简化 | |
KR101214942B1 (ko) | 1,2,3-트리아졸기를 갖는 설포네이트 전구체, 이의 제조방법 및 이의 응용 | |
EP1960324B1 (en) | Method for the preparation of [18f]fluoroalkylhalides | |
US20210205482A1 (en) | Method for preparing fluorine-18-labeled fluoromethyl-substituted radiopharmaceuticals using selective azide substitution reaction and precursor scavenging | |
CN113072435B (zh) | 一种含烯基氟的3-羟基-1-茚酮衍生物的制备方法 | |
CN104725333A (zh) | 一种新的氮杂环庚烷衍生物的制备方法 | |
EP3643710A1 (en) | Production method for radiohalogen-labeled compound and production method for raidopharmaceutical | |
O'Duill | Late-stage fluorination and perfluoroalkylation | |
JPS59139345A (ja) | ジフエニルエ−テル誘導体の製法 | |
JPH0344074B2 (ko) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |