WO2020059986A1 - 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오르메틸 치환 방사성의약품의 제조방법 - Google Patents

선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오르메틸 치환 방사성의약품의 제조방법 Download PDF

Info

Publication number
WO2020059986A1
WO2020059986A1 PCT/KR2019/002862 KR2019002862W WO2020059986A1 WO 2020059986 A1 WO2020059986 A1 WO 2020059986A1 KR 2019002862 W KR2019002862 W KR 2019002862W WO 2020059986 A1 WO2020059986 A1 WO 2020059986A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
substituted
fluoromethyl
fluorine
precursor
Prior art date
Application number
PCT/KR2019/002862
Other languages
English (en)
French (fr)
Inventor
이병철
육영청
조병민
Original Assignee
주식회사 바이오이미징코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오이미징코리아 filed Critical 주식회사 바이오이미징코리아
Priority to JP2021516680A priority Critical patent/JP2022500482A/ja
Priority to CN201980061840.XA priority patent/CN112752740A/zh
Priority to EP19862024.7A priority patent/EP3842405A4/en
Publication of WO2020059986A1 publication Critical patent/WO2020059986A1/ko
Priority to US17/206,979 priority patent/US20210205482A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/001Acyclic or carbocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0404Lipids, e.g. triglycerides; Polycationic carriers
    • A61K51/0406Amines, polyamines, e.g. spermine, spermidine, amino acids, (bis)guanidines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0402Organic compounds carboxylic acid carriers, fatty acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled

Definitions

  • the present invention relates to a method for preparing a [ 18 F] fluormethyl substituted radiopharmaceutical using a selective azide substitution reaction, and more specifically, an unreacted precursor material in the synthesis process of fluorine-18-labeled fluormethyl substituted radiopharmaceutical. Separation of high performance liquid chromatography (HPLC), while reducing manufacturing time and high label yield and cost in radiopharmaceutical synthesis through selective azide substitution reaction and precursor scavenger effect on back It relates to a method for preparing a fluorine-18-labeled fluoromethyl-substituted radiopharmaceutical using a selective azide substitution reaction and precursor elimination that can produce a high-quality radiopharmaceutical without a purification process.
  • HPLC high performance liquid chromatography
  • Positron Emission Tomography is an imaging device mainly used in nuclear medicine and provides information on the diagnosis and treatment effects of diseases by showing the distribution and activity of non-invasively injected radiopharmaceuticals in vivo.
  • Fluorine-18 is the most widely used radioactive isotope in PET due to its moderate half-life and reactivity of 110 minutes.
  • One is the late-stage radiofluorination of the target compound with bioactivity in the final step of the reaction, and the other is effectively using a building block already labeled with fluorine-18. It is a method to introduce into a target compound.
  • the method of labeling fluorine-18 was used to overcome the limitations of the fluorine-18 labeling reaction in the past 10 years, but it still has limitations such as the instability of the precursor and the complexity of synthesis, and time consumption in separation and purification processes. It still remains.
  • the method using a building block is commercially available and has the advantage of being easily synthesized, so the study was conducted as an alternative method of the fluorine-18 labeling reaction.
  • the development of a building block labeled with fluorine-18 through high label yield, purity, and a concise method under appropriate conditions is large in terms of scalability in that it can then be introduced into various bioactive molecules using the building block. There are advantages.
  • the [ 18 F] fluoromethyl group is introduced into elements such as oxygen, nitrogen, phosphorus, and sulfur of the biologically active molecule to change the structure of the existing compound with the least amount of chemistry and The least change in biological properties. For this reason, it shows the structural properties of [ 18 F] fluoromethyl group and deuterium substituted [ 18 F] fluoromethyl group through a building block labeled with fluorine-18 in various radiopharmaceuticals and candidate substances, as shown in Figure 1. have.
  • the [ 18 F] fluoromethyl tosylate building block is less volatile than the [ 18 F] fluoromethyl bromide, allowing separation using HPLC, and thus has an advantage of showing a fluorine-18 label yield of 70% or more.
  • fluorine-18 was introduced into bis (tosyloxy) methane- d 2 substituted with deuterium instead of hydrogen of the methyl group on one side [ 18 F] fluoromethyltosylate- d 2 was also developed.
  • the desired radiopharmaceutical is prepared with a side reaction and low yield due to the excess bistosiloxymethane present in the reaction compound. Have no choice but to.
  • the present fluorine-18 labeled precursor, bistosiloxymethane is a small amount of about ⁇ mol, but is present at a concentration much higher than that of [ 18 F] fluoromethyl tosylate to be used in the next step of the substitution reaction.
  • HPLC separation process is not only cumbersome in the preparation process (more than 30 minutes), but also long labeling time (more than 30 minutes) and low labeling yield through this, and under GMP. It causes many limitations in the radiopharmaceutical manufacturing process.
  • An object of the present invention is to provide a method for preparing a radioactive drug useful for labeling F-18 having a half-life longer than C-11.
  • a bistosiloxymethane compound having a reactivity existing after fluorine-18 labeling bistosyloxymethane or bistosiloxymethane substituted with deuterium- d 2 ) so that the HPLC separation process essential for the synthesis of radiopharmaceuticals can be omitted.
  • [ 18 F] fluoromethyltosylate compound [ 18 F] fluoromethyl
  • methyl tosylate compound ([18 F] methyl tosylate, fluoro, methyl tosylate or a deuterium-substituted [18 F] fluoro - d 2) with [18 F] fluoro next step in which the radiopharmaceutical synthesis replacing the essential
  • a precursor remover guanidine-based heterocycle series, isocyanate series
  • a method for preparing a fluorine-18-labeled fluoromethyl-substituted radiopharmaceutical using a selective azide substitution reaction is obtained through 18 O (p, n) 18 F reaction from cyclotron [ 18 F]
  • a first step of obtaining fluoride The [18 F] fluoride by separation by the use of acetonitrile the reaction solution with a K 2.2.2 and K 2 CO 3 dissolved in [18 F] F - / H 2 18 O Step 2 to obtain a solution;
  • the [18 F] F - / H 2 O solution was heated to 18 to a third step of obtaining the K 2.2.2 / K 18 F;
  • a fourth step of obtaining the first precursor solution by putting the K 2.2.2 / K 18 F and the bistosiloxymethane compound together in a reaction vessel and adding the reaction solution to react;
  • a fifth preparation of [ 18 F] fluoromethyltosylate compound by cooling the first precursor solution and adding an azide compound
  • the second step of obtaining the [ 18 F] F- / H 2 18 O solution may be performed in a Chromafix-HCO 3 cartridge or quaternary methyl ammonium (QMA) anion exchange cartridge.
  • the third step of obtaining K 2.2.2 / K 18 F may be performed at a temperature of 50 to 180 ° C in a nitrogen gas atmosphere.
  • the fourth step of obtaining the first precursor solution is to put the K 2.2.2 / K 18 F and the bistosiloxymethane compound together in a reaction vessel, and to react at 80 to 180 ° C. for 1 to 30 minutes by adding the reaction solution. Can be performed.
  • the azide reagent is an azide-containing compound, and the azide compound is tetrabutyl azide ( n Bu 4 NN 3 ), sodium azide (NaN 3 ), potassium azide (KN 3 ), lithium azide (LiN 3 ) And so on.
  • the azide substitution reaction of the fifth step may be performed at a temperature of 40 to 100 ° C for 2 to 10 minutes.
  • the alkylation reaction may be performed by O-, N-, S-, or P- alkylation reaction.
  • step 6 after the cartridge separation process using a cartridge filled with C18 substituted silica is further performed, the process proceeds to step 6 or without the cartridge separation process. It can be done by going to step 6.
  • the sixth step of obtaining a second precursor solution after the selective azide substitution reaction is performed by O-, N-, S-, P- alkylation reaction, and the product where the alkylation reaction is performed includes a quaternary amine.
  • a mixed solvent of water and an organic solvent may be used.
  • the precursor scavenger may be a scavenger selected from the group consisting of guanidine-based heterocycle-based scavengers and isocyanate-based scavengers.
  • the manufacturing method may further include a cartridge separation step of separating the fluorine-18-labeled fluoromethyl-substituted radiopharmaceutical through a cartridge filled with silica and C18-substituted silica to increase purity.
  • the cartridge separation step may be performed using a mixed solvent containing at least two solvents.
  • the manufacturing method can be performed in an automated synthesis device and a cassette system.
  • a method for preparing a fluorine-18-labeled fluoromethyl-substituted radiopharmaceutical using a selective azide substitution reaction includes two tosylate compounds (excess) present in the reaction mixture after the fluorine-18 labeling of the bistosiloxymethane compound
  • the bistosyloxymethane compound and a very small amount of [ 18 F] fluoromethyltosylate compound are reacted with an azide, only an excess of the bistosyloxymethane compound is subjected to an azide substitution reaction, and fluorine-18 is labeled [ 18 F] Fluoromethyltosylate compound can be kept stable.
  • FIG. 1 is a view showing the chemical structure of a fluorine-18-labeled fluoromethyl-substituted radiopharmaceutical that can be prepared by synthesis of [ 18 F] fluoromethyltosylate compound according to an embodiment of the present invention.
  • FIG. 2 is a method for preparing a fluorine-18-labeled fluoromethyl-substituted radiopharmaceutical using [ 18 F] fluoromethyltosylate compound synthesis and precursor elimination through a selective azide substitution reaction according to an embodiment of the present invention
  • ( B) is a diagram showing the manufacturing method (A) of a fluorine-18-fluorinemethyl-substituted radiopharmaceutical that requires a previously reported HPLC separation process.
  • Figure 3 is a selective azide substitution reaction according to an embodiment of the present invention after the reaction of each reactant bistosiloxymethane ( 2a ) and fluoromethyltosylate ( 1a ) samples of the same amount of 2a and 1a after the azide substitution reaction
  • FIG. A shows the 1 H nuclear magnetic resonance apparatus (NMR, Nuclear Magnetic Resonance, DMF- d 7 ) spectrum of the obtained reaction mixture.
  • (B) is 1 H NMR of the reaction mixture obtained after the azide substitution reaction at 65 ° C. in the presence of NaN 3 and the same equivalents of 1a and 2a for 0 minutes, 5 minutes, 10 minutes, and 15 minutes, respectively (B). It is a diagram showing the spectrum.
  • Figure 4 is a compound obtained after azide substitution reaction of 0 minutes, 5 minutes, 10 minutes and 15 minutes in the same equivalent of 1a and 2a in the presence of 65 °C, NaN 3 performed in Figure 3 according to an embodiment of the present invention HPLC drawing.
  • (b) Spectrum showing the peak of 1a , T R 6.1 min;
  • Peak of 2a , T R 8.1 min)
  • B) is the equivalent of reactants over time during the azide substitution reaction ( 1a and 2a ) The amount of change is expressed as a percentage.
  • Figure 6 performs an azide substitution reaction and a precursor removal reaction according to a method for preparing a fluorine-18-labeled fluoromethyl-substituted radiopharmaceutical using a selective azide substitution reaction and precursor elimination according to an embodiment of the present invention.
  • a [18 F] is a view showing a chromatogram obtained by the radio-TLC scanner of 6a.
  • FIG. 8 is a diagram of [ 18 F] 1a before azide substitution in a method for preparing a fluoromethyl-substituted radiopharmaceutical labeled with fluorine-18 using selective azide substitution and precursor elimination according to an embodiment of the present invention. It is a diagram showing the HPLC chromatogram of the reaction mixture (crude mixture) (B) of the reaction mixture (A) and [ 18 F] 1a after the azide substitution reaction.
  • FIG. 9 is a reaction of [ 18 F] 6a before adding a precursor remover in a method for preparing a fluoromethyl-substituted fluoromethyl-substituted radiopharmaceutical using a selective azide substitution reaction and precursor elimination according to an embodiment of the present invention. It is a diagram showing the HPLC chromatogram of the reaction mixture (crude mixture) (B) of [ 18 F] 1a after adding the mixture (A) and the precursor remover.
  • a method for preparing a fluorine-18-labeled fluoromethyl-substituted radiopharmaceutical using a selective azide substitution reaction is obtained through 18 O (p, n) 18 F reaction from cyclotron [ 18 F]
  • a first step of obtaining fluoride The [18 F] fluoride by separation by the use of acetonitrile the reaction solution with a K 2.2.2 and K 2 CO 3 dissolved in [18 F] F - / H 2 18 O Step 2 to obtain a solution;
  • the [18 F] F - / H 2 O solution was heated to 18 to a third step of obtaining the K 2.2.2 / K 18 F;
  • a fourth step of obtaining the first precursor solution by putting the K 2.2.2 / K 18 F and the bistosiloxymethane compound together in a reaction vessel and adding the reaction solution to react;
  • a fifth preparation of [ 18 F] fluoromethyltosylate compound by cooling the first precursor solution and adding an azide compound
  • the second step of obtaining the [ 18 F] F- / H 2 18 O solution may be performed in a Chromafix-HCO 3 cartridge or quaternary methyl ammonium (QMA) anion exchange cartridge.
  • the third step of obtaining K 2.2.2 / K 18 F may be performed at a temperature of 50 to 180 ° C in a nitrogen gas atmosphere.
  • the fourth step of obtaining the first precursor solution is to put the K 2.2.2 / K 18 F and the bistosiloxymethane compound together in a reaction vessel, and to react at 80 to 180 ° C. for 1 to 30 minutes by adding the reaction solution. Can be performed.
  • the azide reagent is an azide-containing compound, and the azide compound is tetrabutyl azide ( n Bu 4 NN 3 ), sodium azide (NaN 3 ), potassium azide (KN 3 ), lithium azide (LiN 3 ) And so on.
  • the azide substitution reaction of the fifth step may be performed at a temperature of 40 to 100 ° C for 2 to 10 minutes.
  • the alkylation reaction may be performed by O-, N-, S-, or P- alkylation reaction.
  • step 6 after the cartridge separation process using a cartridge filled with C18 substituted silica is further performed, the process proceeds to step 6 or without the cartridge separation process. It can be done by going to step 6.
  • the sixth step of obtaining a second precursor solution after the selective azide substitution reaction is performed by O-, N-, S-, P- alkylation reaction, and the product where the alkylation reaction is performed includes a quaternary amine.
  • a mixed solvent of water and an organic solvent may be used.
  • the precursor scavenger may be a scavenger selected from the group consisting of guanidine-based heterocycle-based scavengers and isocyanate-based scavengers.
  • the manufacturing method may further include a cartridge separation step of separating the fluorine-18-labeled fluoromethyl-substituted radiopharmaceutical through a cartridge filled with silica and C18-substituted silica to increase purity.
  • the cartridge separation step may be performed using a mixed solvent containing at least two solvents.
  • the manufacturing method can be performed in an automated synthesis device and a cassette system.
  • FIG. 1 is a diagram showing the chemical structure of a fluorine-18-labeled fluoromethyl-substituted radiopharmaceutical that can be prepared by the synthesis of [ 18 F] fluoromethyltosylate compound according to an embodiment of the present invention
  • FIG. 2 shows a method for preparing a fluorine-18-labeled fluoromethyl-substituted radiopharmaceutical using [ 18 F] fluoromethyltosylate compound synthesis and precursor elimination through a selective azide substitution reaction according to an embodiment of the present invention.
  • FIG. 3 shows selective according to an embodiment of the present invention.
  • the same equivalents of 2a and 1a as the samples of each reactant bistosiloxymethane ( 2a ) and fluoromethyltosylate ( 1a ) were obtained after the azide substitution reaction.
  • (B) is 1 H NMR of the reaction mixture obtained after the azide substitution reaction at 65 ° C. in the presence of NaN 3 and the same equivalents of 1a and 2a for 0 minutes, 5 minutes, 10 minutes, and 15 minutes, respectively, in (B). A diagram showing the spectrum is shown.
  • FIG. 6 shows fluorine-18 using selective azide substitution reaction and precursor elimination according to an embodiment of the present invention.
  • Preparation of labeled fluoromethyl-substituted radiopharmaceuticals Azide there is a diagram showing a chromatogram obtained by the radio-TLC scanner of a [18 F] 6a performs a substitution reaction and elimination reaction precursor is shown in accordance with the.
  • FIG. 7 [ 18 F] 1a and 1a were simultaneously injected in a method for preparing a fluoromethyl-substituted radiopharmaceutical labeled with fluorine-18 using a selective azide substitution reaction and precursor elimination according to an embodiment of the present invention.
  • a diagram showing an HPLC chromatogram of a radioligand is shown
  • FIG. 8 shows a fluorine-18-labeled fluoromethyl-substituted radiopharmaceutical using a selective azide substitution reaction and precursor elimination according to an embodiment of the present invention.
  • FIG. 9 shows fluorine-18-labeled fluoromethyl substituted radiopharmaceuticals using selective azide substitution reaction and precursor elimination according to an embodiment of the present invention.
  • a method for preparing a fluoromethyl-substituted radiopharmaceutical containing fluorine-18 using a selective azide substitution reaction and precursor elimination according to the present invention is 18 O (p, n) 18 F reaction from cyclotron.
  • the method for preparing a fluoromethyl-substituted radiopharmaceutical labeled with fluorine-18 using the selective azide substitution reaction and precursor elimination according to the present invention is the synthesis of the first fluorine-18-labeled fluoromethyl substituted radiopharmaceutical.
  • selective azide substitution is performed on the bistosiloxymethane compound present in excess in the reaction mixture to make inertness in the second fluormethyl substitution process, and also to remove the reaction mixture present in excess during the substitution reaction (scavenger).
  • the bistosiloxymethane compound may be a compound having the structure as in Formula 1 below.
  • the [ 18 F] fluoromethyl tosylate compound may include [ 18 F] fluoromethyl tosylate or deuterium substituted [ 18 F] fluoromethyl tosylate- d 2 as in Formula 2 below. .
  • a third step of obtaining the K 2.2.2 / K 18 F is [18 F] F at 50 to 180 °C temperature of the nitrogen gas atmosphere is preferably carried out by completely removing / H 2 18 O in the water solution.
  • the K 2.2.2 / K 18 F and the bistosiloxymethane compound are put together in a reaction vessel, and an acetonitrile reaction solution is added thereto for 1 to 30 minutes at 80 to 180 ° C. It is preferably carried out.
  • the bistosiloxymethane compound may be bistosiloxymethane of Formula 1 or bistosiloxymethane- d 2 in which deuterium is substituted.
  • the azide substitution reaction of the fifth step is an azide compound, for example, tetrabutyl azide ( n Bu 4 NN 3 ) is added to the first precursor solution to perform at a temperature of 40 to 100 ° C. for 2 to 10 minutes. Can be.
  • an azide compound for example, tetrabutyl azide ( n Bu 4 NN 3 ) is added to the first precursor solution to perform at a temperature of 40 to 100 ° C. for 2 to 10 minutes. Can be.
  • the alkylation reaction may be performed by, for example, an O-, N-, S-, or P- alkylation reaction as in Formula 3 below.
  • R aromatic or aliphatic functional groups
  • X hydrogen or deuterium substituted methyl group
  • the precursor scavenger is a guanidine-based heterocycle-based scavenger and an isocyanate-based (for example, MTBD (7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene, resin bound isocyanate, benzyl isocyanate, etc.) may be used selected from the group consisting of a scavenger.
  • an isocyanate-based for example, MTBD (7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene, resin bound isocyanate, benzyl isocyanate, etc.
  • the manufacturing method may further include a cartridge separation step of separating the fluoromethyl-substituted radiopharmaceutical labeled with fluorine-18 through a cartridge filled with silica and C18-substituted silica to increase purity.
  • the mixed solvent that can be used in the cartridge separation step is, for example, acetonitrile, acetonitrile / water mixed solution, ethyl acetate / hexane mixed solution, acetonitrile / hexane mixed solution, methanol / hexane mixed solution, ethanol / It may be a mixed solution of hexane.
  • the manufacturing method may be performed in an automated synthesis device and a cassette system, and the automated synthesis device includes commercially available GE Health healthcare's TRACERLab FX-FN, GE TRACERLab FX N Pro, and the cassette system of Trasis AllinOne, Simens. Explore TM One, FASTlab TM series from GE Health healthcare, etc. can be used.
  • the automated synthesis device includes commercially available GE Health healthcare's TRACERLab FX-FN, GE TRACERLab FX N Pro, and the cassette system of Trasis AllinOne, Simens. Explore TM One, FASTlab TM series from GE Health healthcare, etc. can be used.
  • the remaining excess bistosiloxymethane compound ( 2a-b) before the azide substitution reaction was measured to be 1.3 ⁇ 0.3 ⁇ mol and 1.4 ⁇ 0.3 ⁇ mol, respectively, when measured using a calibration curve.
  • the optimized condition of the azide substitution reaction is to add nBu 4 NN 3 (24 mg, 84.4 ⁇ mol) in an acetonitrile solvent and then react for 5 minutes at 80 ° C.
  • nBu 4 NN 3 24 mg, 84.4 ⁇ mol
  • the results of performing the O -alkylation reaction using 4-phenylphenol as a precursor in order to compare the method for preparing a fluoromethyl-substituted radiopharmaceutical with an azide-substituted reaction condition to a manufacturing method condition without an azide-substituted reaction are as follows. Same as (Scheme 2). Under the conditions using an azide substitution reaction (Root B), the final compound can be obtained with high radiochemical yield (72.0%, considering half-life). On the other hand, when a relatively large amount of precursor remains (Root A) due to the absence of an azide substitution reaction, it shows a very low radiochemical yield (27.8%, considering half-life).
  • Ditosylate or ditosylate-d 2 (400 mg, 1.12 mmol) was dissolved in acetonitrile (5 mL), then cesium fluoride (256 mg, 1.68 mmol), hexaethylene glycol (0.45 mL, 1.80 mmol) ) And reacted at 85 ° C for 10 hours. After the reaction, the mixture was extracted with dichloromethane and water, and the organic solvent layer was separated, and water was removed and filtered through sodium sulfate. The solvent of the received solution was removed and separated using a flash column to obtain a colorless liquid 1a-b.
  • tert-butyl (tert-butoxycarbonyl) -D-tyrosinate 50 mg, 0.15 mmol
  • fluoromethyl tosylate or fluoromethyltosylate-d 2 35 mg, 0.17 mmol
  • dimethylacetamide After dissolving in (1.5 mL), cesium carbonate (146 mg, 0.45 mmol) 1,4,7,10,13,16-hexaoctacyclooctadecane (18-crown-6, 158 mg, 0.60 mmol) was added. And react at 80 ° C for 1 hour.
  • [ 18 F] fluoride was produced using 18 O (p, n) 18 F reaction.
  • [18 F] F - / H 2 18 O using acetonitrile and water with K 2 CO 3 dissolved 2.2.2 and K are separated by a chromafix-HCO 3 cartridge. The separated solution is completely removed by using nitrogen gas at 50 to 180 ° C.
  • Bistosiloxymethane or bistosiloxymethane- d 2 was added to K 2.2.2 / K 18 F from which water was removed, dissolved in a mixture of acetonitrile and water, and reacted at 80 to 180 ° C for 1 to 30 minutes. .
  • the radiochemical conversion yield is measured using a radio-TLC scanner. The amount of excess bistosiloxymethane compound remaining was determined by HPLC analysis.
  • n Bu 4 NN 3 was added for an azide substitution reaction, followed by 2 to 10 minutes at a temperature of 40 to 100 ° C.
  • the reaction mixture was separated from [ 18 F] fluoromethyltosylate ([ 18 F] 1a-b ) using a cartridge filled with C18 substituted silica.
  • tert -butyl ( tert -butoxycarbonyl) -D -tyrosinate, cesium carbonate, 1,4,7,10,13,16-hexaoxacyclooctadecane was dissolved in acetonitrile and added. After reacting for 5 to 15 minutes at 50 to 150 o C.
  • reaction mixture was cooled to room temperature, and MTBD (20 mL) was added to the reaction mixture, followed by mixing at 0 to 80 ° C for 1 to 10 minutes.
  • MTBD 20 mL
  • the reaction mixture was separated using a silica Sep-Pak cartridge and separated once more using a cartridge filled with C18 substituted silica.
  • n Bu 4 NN 3 was added for an azide substitution reaction, followed by 2 to 10 minutes at a temperature of 40 to 100 ° C.
  • the reaction mixture was separated by [ 18 F] fluoromethyltosylate ([ 18 F] 1a-b ) using a cartridge filled with C18 substituted silica.
  • 2-Dimethylaminoethanol was dissolved in acetonitrile and water and added to the separated compound, and then reacted at 50 to 150 ° C for 5 to 15 minutes. After the reaction was completed, after cooling to room temperature, the reaction mixture was separated using an ion exchange cartridge.
  • the present invention through the 18 O (p, n) 18 F reaction from a cyclotron [18 F] a first step of obtaining a fluoride, wherein the [18 F] fluoride for the acetonitrile 2.2.2 K and K 2 CO 3 is dissolved the separation using the nitrile reaction solution [18 F] F - / H 2 18 O step 2 to obtain a solution, wherein the [18 F] F - / H 2 O solution is heated to 18 K 2.2.2 / K 18 F a
  • Optional azide substitution reaction comprising the seventh step of preparing a fluoromethyl-substituted radiopharmaceutical labeled with fluorine-18 without an HPLC separation process by adding a precursor remover (precursor scavenger) to the precursor solution to remove unreacted precursors It relates to a method for producing a fluoromethyl-substituted radiopharmaceutical labeled with fluorine-18.
  • the excess of bistosiloxymethane compound present in the reaction mixture is deactivated through a selective azide substitution reaction, and the next step of bioactive molecular precursor and [ 18 F] fluoromethyltosyl It is possible to synthesize fluoromethyl-substituted fluoromethyl-substituted radiopharmaceuticals with high radiochemical purity even when the separation and purification process of HPLC is omitted while remarkably improving the alkylation yield between the rate compounds. The manufacturing cost can be reduced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 사이클로트론으로부터 18O(p, n)18F 반응을 통해 [18F]플루오라이드를 얻는 제1단계, 상기 [18F]플루오라이드를 K2.2.2 와 K2CO3 가 용해된 아세토니트릴 반응용액을 사용하여 분리함으로써 [18F]F-/H2 18O 용액을 얻는 제2단계, 상기 [18F]F-/H2 18O 용액을 가열하여 K2.2.2/K18F를 얻는 제3단계, 상기 K2.2.2/K18F와 비스토실록시메탄 화합물을 함께 반응용기에 넣고, 반응용매를 첨가하여 반응시킴으로써, 제1 전구체 용액을 얻는 제4단계, 상기 제1 전구체 용액을 냉각시키고 아자이드 시약을 첨가하여 아자이드 치환반응을 수행함으로써, [18F]플루오로메틸토실레이트 화합물을 얻는 제5단계, 상기 [18F]플루오로메틸토실레이트 화합물에 생물활성분자 전구체를 첨가하여 알킬레이션 반응시킴으로써, 제2 전구체 용액을 얻는 제6단계 및 상기 제2 전구체 용액에 전구체 제거제(precursor scavenger)를 첨가하여 미반응 전구체를 제거함으로써, 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품를 HPLC 분리공정 없이 제조하는 제7단계를 포함하는 선택적 아자이드 치환반응을 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법에 관한 것이다. 본 발명에 따르면 방사성의약품의 합성과정에서 반응 혼합물에 존재하는 과량의 비스토실록시메탄 화합물에 대해 선택적 아자이드 치환반응을 통해 비 활성화 시키고 다음 단계의 생물활성분자 전구체와 [18F]플루오로메틸토실레이트 화합물간의 알킬레이션 수율을 현저히 증진시키면서 HPLC의 분리 정제 과정을 생략하여도 방사화학적 순도가 높은 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품을 합성할 수 있어, HPLC 공정으로 인한 제조시간 및 제조비용을 절감할 수 있다.

Description

선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오르메틸 치환 방사성의약품의 제조방법
본 발명은 선택적 아자이드 치환반응을 이용한 [18F]플루오르메틸 치환 방사성의약품의 제조방법에 관한 것으로 더욱 상세하게는, 플루오린-18이 표지 된 플루오르메틸 치환 방사성의약품의 합성과정에서 미반응 전구체 물질 등에 대해 선택적 아자이드 치환반응과 전구체 제거제(scavenger) 효과를 통해 방사성의약품 합성에 있어 제조시간과 높은 표지 수율 및 비용을 절감할 수 있으면서도, 거의 필수적인 액체크로마토그래피(HPLC, High Performance Liquid Chromatography)의 분리 정제 과정을 생략하여도 순도가 높은 우수한 품질의 방사성의약품을 제조할 수 있는 선택적 아자이드 치환반응과 전구체 제거화을 이용한 플루오린-18이 표지 된 플루오르메틸 치환 방사성의약품의 제조방법에 관한 것이다.
양전자단층촬영(PET, Positron Emission Tomography)은 핵의학에서 주로 사용되는 영상장비로 비침습적으로 생체 내에 주입 된 방사성의약품의 분포 및 활성 정도를 보여줌으로써 질병의 진단 및 치료 효과에 대한 정보를 제공한다. 플루오린-18은 110분의 적절한 반감기와 반응성으로 인해 PET에서 가장 널리 사용되고 있는 방사성동위원소이다. 플루오린-18이 표지 된 방사성의약품을 제조하는 방법은 두 가지로 나눌 수 있다. 하나는 반응의 마지막 단계에서 생물활성을 갖는 목적 화합물에 플루오린-18을 표지 하는 방법(late-stage radiofluorination)이고 다른 하나는 이미 플루오린-18이 표지 된 빌딩 블록(building block)을 이용하여 효과적으로 목적 화합물에 도입하는 방법이다.
마지막 단계에서 플루오린-18을 표지 하는 방법은 지난 10년 간 플루오린-18 표지 반응의 한계를 극복하고자 사용하였으나 여전히 전구체의 불안정성 및 합성의 복잡성, 분리 및 정제 과정에서의 시간 소비 등의 한계점이 여전히 남아 있다. 이러한 이유에서 빌딩 블록을 사용하는 방법은 구매가 가능하며 쉽게 합성이 가능하다는 장점이 있어 플루오린-18 표지 반응의 대안적인 방법으로 연구가 이루어졌다. 또한 적절한 조건에서 높은 표지 수율, 순도 및 간결한 방법을 통한 플루오린-18을 표지 한 빌딩 블록을 개발하면 이후에는 이 빌딩 블록을 이용하여 다양한 생물활성 분자에 도입할 수 있다는 이용의 확장성 면에서 큰 장점이 있다.
특히, 기존에 개발되었던 방사성의약품 및 보고된 방사성추적자 중에서 [18F]플루오로콜린 (종양 영상용), [18F]플루오로메틸 트리페닐포스포늄 양이온 (심장 영상용), S-[18F]플루오로알킬레이티드 다이아릴구아니딘(N-메틸-D-아스파트산염 수용체)의 경우, 화학적으로 전구체의 합성 및 안정성의 문제 때문에 마지막 단계에서 플루오린-18을 표지 하는 방법은 사용할 수 없다. 이러한 경우 빌딩 블록을 이용한 플루오린-18 표지 방사성의약품 제조 방법이 유일한 전략적 표지 방법이다.
플루오린-18이 표지 된 빌딩 블록들 중 [18F]플루오로메틸기는 생물 활성 분자의 산소, 질소, 인, 황 등의 원소에 도입되어 기존 화합물의 구조를 가장 적게 변형시켜 기존 화합물의 화학 및 생물학적 성질의 변화가 가장 적다. 이러한 이유로 도면 1과 같이 다양한 방사성의약품 및 후보물질 등에서 플루오린-18을 표지 된 빌딩 블록을 통해 [18F]플루오로메틸기 및 중수소가 치환된 [18F]플루오로메틸기가 도입된 구조적 특성을 나타내고 있다.
최근까지 방사성의약품 제조에서 [18F]플루오로메틸기 치환반응으로 이용되는 대표적인 빌딩 블록은 [18F]플루오로메틸 브로마이드이다. 하지만 [18F]플루오로메틸 브로마이드의 경우 낮은 끓는점(19 도)으로 인한 높은 휘발성 때문에 플루오린-18 표지 반응에서 다루기 어렵고, 체내 피폭 및 표지 수율의 손실이 크다는 단점이 있다. 이러한 단점을 극복하기 위하여 2005년 Neal 그룹에서 비스토실록시메탄(bis(tosyloxy)methane)에 한쪽 토실기에 플루오린-18을 표지 한 [18F]플루오로메틸 토실레이트를 개발하였다. [18F]플루오로메틸 토실레이트 빌딩 블록은 [18F]플루오로메틸 브로마이드에 비해 휘발성이 적어 HPLC를 이용한 분리공정이 가능하여 플루오린-18 표지 수율이 70% 이상을 나타내는 장점을 갖는다. 게다가 [18F]플루오로메틸토실레이트이 갖는 체내 안정성을 증진하고자 메틸기의 수소 대신 중수소가 치환된 비스토실록시메탄(bis(tosyloxy)methane-d 2)에 플루오린-18을 한쪽에 도입시킨 [18F]플루오로메틸토실레이트-d 2도 개발되었다. 이러한 [18F]플루오로메틸 토실레이트 화합물을 HPLC를 이용한 분리 정제과정을 거치지 않고 다음 치환반응에 사용된다면, 반응 화합물에 존재 하는 과량의 비스토실록시메탄 때문에 부반응 및 낮은 수율로 목적 방사성의약품을 제조 할 수 밖에 없다. 이때 존재하는 플루오린-18 표지 전구체인 비스토실록시메탄은 μmol 정도의 작은 양이지만 다음 단계의 치환 반응에 사용될 [18F]플루오로메틸 토실레이트보다 상대적으로 훨씬 높은 농도로 존재한다. 결과적으로 생물활성 분자에 [18F]플루오로메틸기를 HPLC 분리공정 없이 사용하고자 한다면 과량의 비스토실록시메탄 전구체가 최종 방사성의약품 합성수율과 함께 최종 분리과정에도 심각하게 영향을 줄 수 있다.
따라서, 기존의 방법으로 [18F]플루오로메틸이 도입된 방사성의약품을 제조하고자 한다면 한번 이상의 HPLC 분리공정이 필요하게 된다. 먼저 순수한 [18F]플루오로메틸토실레이트를 얻기 위해서는 HPLC를 이용해야 하고 경우에 따라서 분리한 [18F]플루오로메틸토실레이트를 생물활성분자에 도입한 후에 또 한번의 HPLC 분리공정이 요구된다. 이러한 방사성의약품 제조과정 중의 HPLC 분리공정은, 준비과정(30분이상 소요)에서의 번거로움뿐만번거로움 뿐만 아니라 긴 표지 시간(추가 30분 이상 소요)과 이를 통한 낮은 표지 수율이 초래되고 더불어 GMP 하의 방사성의약품 제조 과정에서 많은 한계점을 가져오는 원인이 된다.
따라서, 이러한 HPLC 분리 과정이 갖는 문제점을 극복하면서 짧은 표지 공정 및 분리공정을 통한 효과적으로 플루오린-18을 표지 할 수 있는 방사성의약품의 제조방법이 요구되고 있다.
본 발명의 목적은 C-11보다 긴 반감기를 가진 F-18를 표지 하는 유용한 방사성의약품의 제조방법을 제공하는 것이다.
또한, 방사성의약품 합성에 있어서 필수적인 HPLC 분리과정을 생략할 수 있도록 플루오린-18 표지 후 존재하는 반응성을 갖는 비스토실록시메탄 화합물(비스토실록시메탄 또는 중수소가 치환된 비스토실록시메탄-d 2) 전구체만을 선택적인 아자이드 치환 반응을 이용하여 비활성화 시킬 수 있어 다음 치환반응에서 목적 방사성의약품의 높은 표지 수율을 유도하는 빌딩 블락인 [18F]플루오로메틸토실레이트 화합물([18F]플루오로메틸토실레이트 또는 중수소 치환 [18F]플루오로메틸토실레이트-d 2) 제조방법을 제공하는 것이다.
또한, 다음 단계의 [18F]플루오로메틸토실레이트 화합물([18F]플루오로메틸토실레이트 또는 중수소 치환 [18F]플루오로메틸토실레이트-d 2)을 치환시킨 방사성의약품 합성에 있어서 필수적인 HPLC 분리과정을 생략할 수 있도록 전구체 제거제 (구아니딘 기반 헤테로사이클 계열, 아이소시아네이트 계열)를 이용하고 카트리지 분리만으로 플루오린-18이 표지 된 높은 순도의 방사성의약품을 합성할 수 있는 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위하여 본 발명에 따른 선택적 아자이드 치환반응을 이용한 플루오린-18 표지 플루오로메틸 치환 방사성의약품의 제조방법은 사이클로트론으로부터 18O(p, n)18F 반응을 통해 [18F]플루오라이드를 얻는 제1단계; 상기 [18F]플루오라이드를 K2.2.2 와 K2CO3 가 용해된 아세토니트릴 반응용액을 사용하여 분리함으로써 [18F]F-/H2 18O 용액을 얻는 제2단계; 상기 [18F]F-/H2 18O 용액을 가열하여 K2.2.2/K18F를 얻는 제3단계; 상기 K2.2.2/K18F와 비스토실록시메탄 화합물을 함께 반응 용기에 넣고, 반응 용액을 첨가하여 반응시킴으로써, 제1 전구체 용액을 얻는 제4단계; 상기 제1 전구체 용액을 냉각시키고 아자이드 화합물을 첨가하여 제1 전구체 용액에 존재하는 비스토실록시메탄 화합물에만 아자이드 치환반응을 수행함으로써, [18F]플루오로메틸토실레이트 화합물을 준비하는 제5단계; 상기 [18F]플루오로메틸토실레이트 화합물에 생물활성분자를 첨가하여 알킬레이션 반응시킴으로써, 제2 전구체 용액을 얻는 제6단계; 및 상기 제2 전구체 용액에 전구체 제거제(precursor scavenger)를 첨가하여 미반응 전구체를 제거함으로써, 순수한 플루오린-18이 표지 된 플루오로메틸 치환 방사성리간드를 제조 또는 상기 미반응 전구체 제거 이후의 생성물이 4차 아민을 포함하는 경우 물과 유기용매 혼합 용매를 이용하는 별도의 HPLC 분리공정이 없는 플루오린-18이 표지 된 플루오로메틸 치환 방사성리간드를 제조하는 제7단계를 포함하는 것으로 구성된다.
상기 [18F]F-/H2 18O 용액을 얻는 제2단계는 Chromafix-HCO3 카트리지 또는 quaternary methyl ammonium (QMA) 음이온 교환 카트리지에서 수행될 수 있다.
상기 K2.2.2/K18F를 얻는 제3단계는 질소가스 분위기의 50 내지 180℃ 온도에서 수행될 수 있다.
상기 제1 전구체 용액을 얻는 제4단계는 상기 K2.2.2/K18F와 비스토실록시메탄 화합물을 함께 반응용기에 넣고, 반응용액을 첨가하여 80 내지 180℃ 에서 1 내지 30분간 반응 시키는 것으로 수행될 수 있다.
상기 아자이드 시약은 아자이드 포함 화합물로서, 아자이드 화합물은 테트라뷰틸아자이드(nBu4NN3), 소듐아자이드(NaN3), 포타슘아자이드(KN3), 리튬아자이드(LiN3) 등 일 수 있다.
상기 제5 단계의 아자이드 치환반응은 40 내지 100℃ 온도에서 2 내지 10분 동안 수행될 수 있다.
상기 제2 전구체 용액을 얻는 제6단계는 알킬레이션 반응은 O-, N-, S-, P- 알킬레이션 반응으로 수행될 수 있다.
상기 [18F]플루오로메틸토실레이트 화합물을 얻는 제5단계는 C18이 치환된 실리카가 충진된 카트리지를 이용한 카트리지 분리과정을 더 거친 후, 상기 6단계로 넘어가거나 또는 상기 카트리지 분리과정이 없이 상기 6단계로 넘어가는 것으로 수행될 수 있다.
상기 선택적 아자이드 치환반응 후 제2 전구체 용액을 얻는 제6단계는 O-, N-, S-, P- 알킬레이션 반응으로 수행되며, 상기 알킬레이션 반응이 수행된 생성물이 4차 아민을 포함하는 경우 물과 유기용매 혼합 용매를 이용할 수 있다.
상기 전구체 제거제(scavenger)는 구아니딘 기반 헤테로사이클 계열 스케빈저 및 아이소시아네이트 계열 스케빈저로 이루어진 군에서 선택된 스케빈저일 수 있다.
상기 제조방법은 상기 플루오린-18이 표지된표지 된 플루오로메틸 치환 방사성의약품을 실리카 및 C18이 치환된 실리카가 충진된 카트리지를 통해 분리하여 순도를 높이는 카트리지 분리단계를 더 포함할 수 있다.
상기 카트리지 분리단계는 적어도 2가지 용매를 포함하는 혼합용매를 사용하여 수행될 수 있다.
상기 제조방법은 자동화 합성장치 및 카세트 시스템에서 수행될 수 있다.
본 발명에 따른 선택적 아자이드 치환반응을 이용한 플루오린-18 표지 플루오로메틸 치환 방사성의약품의 제조방법은 비스토실록시메탄 화합물의 플루오린-18 표지 후에 반응 혼합물에 존재하는 두 개의 토실레이트 화합물(과량의 비스토실록시메탄 화합물과 극소량의 [18F]플루오로메틸토실레이트 화합물)을 아자이드로 반응시에 선택적으로 과량의 비스토실록시메탄 화합물만을 아자이드 치환 반응시키고 플루오린-18이 표지 된 [18F]플루오로메틸토실레이트 화합물은 안정하게 유지할 수 제조과정과 함께 다음 단계의 알킬레이션에서 사용되는 생물활성분자를 제거화 분리공정을 통해 플루오린-18 표지 플루오르메틸 치환 방사성의약품 제조과정에서 필수 HPLC 분리공정을 생략 가능하여 방사성의약품의 제조시간 및 높은 표지 수율 및 비용을 절감할 수 있으면서, GMP 수준의 순도가 높은 우수한 품질의 방사성의약품을 제공할 수 있다.
도 1은 본 발명의 일실시예에 따른 [18F]플루오로메틸토실레이트 화합물 합성에 의해 제조될 수 있는 플루오린-18 표지 플루오로메틸 치환 방사성의약품의 화학 구조를 도시하는 도면이다.
도 2는 본 발명의 일실시예에 따른 선택적 아자이드 치환반응을 통한 [18F]플루오로메틸토실레이트 화합물 합성과 전구체 제거화를 이용한 플루오린-18 표지 플루오로메틸 치환 방사성의약품의 제조방법(B)과 종래 보고 된 HPLC 분리공정을 필요로 하는 플루오린-18 플루오린메틸 치환 방사성의약품의 제조방법(A)을 나타낸 도면이다.
도 3은 본 발명의 일실시예에 따른 선택적 아자이드 치환반응 전에 각각의 반응물 비스토실록시메탄(2a)과 플루오로메틸토실레이트(1a) 샘플과 동일 당량의 2a1a를 아자이드 치환 반응 후에 얻은 반응 혼합물의 1H 핵자기공명장치(NMR, Nuclear Magnetic Resonance, DMF-d 7) 스펙트럼을 나타낸 도면(A)이다. 여기서, (B)는 아자이드 치환반응으로 65℃, NaN3의 존재 하에 동일한 당량의 1a2a가 각각 0 분, 5 분, 10 분 및 15 분간 아자이드 치환반응 후 얻은 반응 혼합물의 1H NMR 스펙트럼 모습을 나타낸 도면이다.
도 4는 본 발명의 일실시예에 따른 도면 3에서 수행한 65℃, NaN3의 존재 하에 1a2a가 동일한 당량에서 각각 0 분, 5 분, 10 분 및 15 분간 아자이드 치환반응 후 얻은 화합물의 HPLC 도면이다. 여기서, (A)는 HPLC 조건하(Xterra RP-C18; 70-30% 아세토니트릴-물; 유속 3 mL / min)에서 세 개의 두드러진 피크들((a) 시스템 피크, TR = 4.0 분; (b) 1a의 피크, TR = 6.1 분; (c) 2a의 피크, TR = 8.1 분)을 보여주는 스펙트럼이며, (B)는 아자이드 치환반응 동안 시간에 따른 동일 당량의 반응물 (1a2a) 변화량을 백분율로 나타낸다.
도 5은 본 발명의 일실시예에 따른 선택적 아자이드 치환반응을 이용한 [18F]플루오로메틸 치환 방사성의약품의 제조방법에서 비스토실록시메탄(2a)에 플루오린-18 표지 반응 수행 후 얻어진 [18F]플루오로메틸토실레이트([18F]1a)와 4-페닐페놀의 알킬화 반응을 통한 4-페닐페놀([18F]4a) 합성 결과(A)와 플루오린-18 표지 반응 수행 후 얻어진 [18F]플루오로메틸토실레이트([18F]1a)가 함유한 반응 혼합물에 선택적 아자이드 치환반응을 수행 후 4-페닐페놀의 알킬화 반응을 통한 4-페닐페놀([18F]4a) 합성 결과 (B)를 radio-TLC 스캐너에서 얻어진 크로마토그램을 나타낸 도면이다.
도 6은 본 발명의 일실시예에 따른 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법에 따른 아자이드 치환반응 및 전구체 제거 반응을 수행한 [18F]6a의 radio-TLC 스캐너에서 얻어진 크로마토그램을 나타낸 도면이다.
도 7은 본 발명의 일실시예에 따른 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법에서 [18F]1a1a를 동시 주입한 방사성리간드의 HPLC 크로마토그램을 나타낸 도면이다.
도 8는 본 발명의 일실시예에 따른 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법에서 아자이드 치환반응 전의 [18F]1a의 반응 혼합물(crude mixture)(A)과 아자이드 치환반응 후의 [18F]1a의 반응 화합물(crude mixture)(B)의 HPLC 크로마토그램을 나타낸 도면이다.
도 9은 본 발명의 일실시예에 따른 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법에서 전구체 제거제 첨가 전의 [18F]6a의 반응 혼합물(crude mixture)(A)와 전구체 제거제 첨가 후의 [18F]1a의 반응 혼합물(crude mixture)(B)의 HPLC 크로마토그램을 나타낸 도면이다.
상기 목적을 달성하기 위하여 본 발명에 따른 선택적 아자이드 치환반응을 이용한 플루오린-18 표지 플루오로메틸 치환 방사성의약품의 제조방법은 사이클로트론으로부터 18O(p, n)18F 반응을 통해 [18F]플루오라이드를 얻는 제1단계; 상기 [18F]플루오라이드를 K2.2.2 와 K2CO3 가 용해된 아세토니트릴 반응용액을 사용하여 분리함으로써 [18F]F-/H2 18O 용액을 얻는 제2단계; 상기 [18F]F-/H2 18O 용액을 가열하여 K2.2.2/K18F를 얻는 제3단계; 상기 K2.2.2/K18F와 비스토실록시메탄 화합물을 함께 반응 용기에 넣고, 반응 용액을 첨가하여 반응시킴으로써, 제1 전구체 용액을 얻는 제4단계; 상기 제1 전구체 용액을 냉각시키고 아자이드 화합물을 첨가하여 제1 전구체 용액에 존재하는 비스토실록시메탄 화합물에만 아자이드 치환반응을 수행함으로써, [18F]플루오로메틸토실레이트 화합물을 준비하는 제5단계; 상기 [18F]플루오로메틸토실레이트 화합물에 생물활성분자를 첨가하여 알킬레이션 반응시킴으로써, 제2 전구체 용액을 얻는 제6단계; 및 상기 제2 전구체 용액에 전구체 제거제(precursor scavenger)를 첨가하여 미반응 전구체를 제거함으로써, 순수한 플루오린-18이 표지 된 플루오로메틸 치환 방사성리간드를 제조 또는 상기 미반응 전구체 제거 이후의 생성물이 4차 아민을 포함하는 경우 물과 유기용매 혼합 용매를 이용하는 별도의 HPLC 분리공정이 없는 플루오린-18이 표지 된 플루오로메틸 치환 방사성리간드를 제조하는 제7단계를 포함하는 것으로 구성된다.
상기 [18F]F-/H2 18O 용액을 얻는 제2단계는 Chromafix-HCO3 카트리지 또는 quaternary methyl ammonium (QMA) 음이온 교환 카트리지에서 수행될 수 있다.
상기 K2.2.2/K18F를 얻는 제3단계는 질소가스 분위기의 50 내지 180℃ 온도에서 수행될 수 있다.
상기 제1 전구체 용액을 얻는 제4단계는 상기 K2.2.2/K18F와 비스토실록시메탄 화합물을 함께 반응용기에 넣고, 반응용액을 첨가하여 80 내지 180℃ 에서 1 내지 30분간 반응 시키는 것으로 수행될 수 있다.
상기 아자이드 시약은 아자이드 포함 화합물로서, 아자이드 화합물은 테트라뷰틸아자이드(nBu4NN3), 소듐아자이드(NaN3), 포타슘아자이드(KN3), 리튬아자이드(LiN3) 등 일 수 있다.
상기 제5 단계의 아자이드 치환반응은 40 내지 100℃ 온도에서 2 내지 10분 동안 수행될 수 있다.
상기 제2 전구체 용액을 얻는 제6단계는 알킬레이션 반응은 O-, N-, S-, P- 알킬레이션 반응으로 수행될 수 있다.
상기 [18F]플루오로메틸토실레이트 화합물을 얻는 제5단계는 C18이 치환된 실리카가 충진된 카트리지를 이용한 카트리지 분리과정을 더 거친 후, 상기 6단계로 넘어가거나 또는 상기 카트리지 분리과정이 없이 상기 6단계로 넘어가는 것으로 수행될 수 있다.
상기 선택적 아자이드 치환반응 후 제2 전구체 용액을 얻는 제6단계는 O-, N-, S-, P- 알킬레이션 반응으로 수행되며, 상기 알킬레이션 반응이 수행된 생성물이 4차 아민을 포함하는 경우 물과 유기용매 혼합 용매를 이용할 수 있다.
상기 전구체 제거제(scavenger)는 구아니딘 기반 헤테로사이클 계열 스케빈저 및 아이소시아네이트 계열 스케빈저로 이루어진 군에서 선택된 스케빈저일 수 있다.
상기 제조방법은 상기 플루오린-18이 표지된표지 된 플루오로메틸 치환 방사성의약품을 실리카 및 C18이 치환된 실리카가 충진된 카트리지를 통해 분리하여 순도를 높이는 카트리지 분리단계를 더 포함할 수 있다.
상기 카트리지 분리단계는 적어도 2가지 용매를 포함하는 혼합용매를 사용하여 수행될 수 있다.
상기 제조방법은 자동화 합성장치 및 카세트 시스템에서 수행될 수 있다.
본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
이하, 본 발명에 대해 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 일실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 일실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
도 1에는 본 발명의 일실시예에 따른 [18F]플루오로메틸토실레이트 화합물 합성에 의해 제조될 수 있는 플루오린-18 표지 플루오로메틸 치환 방사성의약품의 화학 구조를 도시하는 도면이 도시되어 있고, 도 2에는 본 발명의 일실시예에 따른 선택적 아자이드 치환반응을 통한 [18F]플루오로메틸토실레이트 화합물 합성과 전구체 제거화를 이용한 플루오린-18 표지 플루오로메틸 치환 방사성의약품의 제조방법(B)과 종래 보고 된 HPLC 분리공정을 필요로 하는 플루오린-18 플루오린메틸 치환 방사성의약품의 제조방법(A)을 나타낸 도면이 도시되어 있으며, 도 3에는 본 발명의 일실시예에 따른 선택적 아자이드 치환반응 전에 각각의 반응물 비스토실록시메탄(2a)과 플루오로메틸토실레이트(1a) 샘플과 동일 당량의 2a1a를 아자이드 치환 반응 후에 얻은 반응 혼합물의 1H 핵자기공명장치(NMR, Nuclear Magnetic Resonance, DMF-d 7) 스펙트럼을 나타낸 도면(A)이다. 여기서, (B)는 아자이드 치환반응으로 65℃, NaN3의 존재 하에 동일한 당량의 1a2a가 각각 0 분, 5 분, 10 분 및 15 분간 아자이드 치환반응 후 얻은 반응 혼합물의 1H NMR 스펙트럼 모습을 나타낸 도면이 도시되어 있다.
도 4에는 본 발명의 일실시예에 따른 도면 3에서 수행한 65℃, NaN3의 존재 하에 1a2a가 동일한 당량에서 각각 0 분, 5 분, 10 분 및 15 분간 아자이드 치환반응 후 얻은 화합물의 HPLC 도면이 도시되어 있다. 여기서, (A)는 HPLC 조건하(Xterra RP-C18; 70-30% 아세토니트릴-물; 유속 3 mL / min)에서 세 개의 두드러진 피크들((a) 시스템 피크, TR = 4.0 분; (b) 1a의 피크, TR = 6.1 분; (c) 2a의 피크, TR = 8.1 분)을 보여주는 스펙트럼이며, (B)는 아자이드 치환반응 동안 시간에 따른 동일 당량의 반응물 (1a2a) 변화량을 백분율로 나타낸다. 도 5에는 본 발명의 일실시예에 따른 선택적 아자이드 치환반응을 이용한 [18F]플루오로메틸 치환 방사성의약품의 제조방법에서 비스토실록시메탄(2a)에 플루오린-18 표지 반응 수행 후 얻어진 [18F]플루오로메틸토실레이트([18F]1a)와 4-페닐페놀의 알킬화 반응을 통한 4-페닐페놀([18F]4a) 합성 결과(A)와 플루오린-18 표지 반응 수행 후 얻어진 [18F]플루오로메틸토실레이트([18F]1a)가 함유한 반응 혼합물에 선택적 아자이드 치환반응을 수행 후 4-페닐페놀의 알킬화 반응을 통한 4-페닐페놀([18F]4a) 합성 결과 (B)를 radio-TLC 스캐너에서 얻어진 크로마토그램을 나타낸 도면이 도시되어 있으며, 도 6에는 본 발명의 일실시예에 따른 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법에 따른 아자이드 치환반응 및 전구체 제거 반응을 수행한 [18F]6a의 radio-TLC 스캐너에서 얻어진 크로마토그램을 나타낸 도면이 도시되어 있다.
도 7에는 본 발명의 일실시예에 따른 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법에서 [18F]1a1a를 동시 주입한 방사성리간드의 HPLC 크로마토그램을 나타낸 도면이 도시되어 있고, 도 8에는 본 발명의 일실시예에 따른 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법에서 아자이드 치환반응 전의 [18F]1a의 반응 혼합물(crude mixture)(A)과 아자이드 치환반응 후의 [18F]1a의 반응 화합물(crude mixture)(B)의 HPLC 크로마토그램을 나타낸 도면이 도시되어 있으며, 도 9에는 본 발명의 일실시예에 따른 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법에서 전구체 제거제 첨가 전의 [18F]6a의 반응 혼합물(crude mixture)(A)과 전구체 제거제 첨가 후의 [18F]1a의 반응 혼합물(crude mixture)(B)의 HPLC 크로마토그램을 나타낸 도면이 도시되어 있다.
이들 도면을 참조하면, 본 발명에 따른 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법은 사이클로트론으로부터 18O(p, n)18F 반응을 통해 [18F]플루오라이드를 얻는 제1단계, 상기 [18F]플루오라이드를 K2.2.2 와 K2CO3 가 용해된 아세토니트릴 반응용액을 사용하여 분리함으로써 [18F]F-/H2 18O 용액을 얻는 제2단계, 상기 [18F]F-/H2 18O 용액을 가열하여 K2.2.2/K[18F]F를 얻는 제3단계, 상기 K2.2.2/K[18F]F와 비스토실록시메탄 화합물(2a-b)을 함께 반응용기에 넣고, 반응용매를 첨가하여 반응시킴으로써, 제1 전구체 용액을 얻는 제4단계, 상기 제1 전구체 용액을 냉각시키고 아자이드 화합물을 첨가하여 제1 전구체 용액에 존재하는 비스토실록시메탄 화합물에만 아자이드 치환반응을 수행함으로써, [18F]플루오로메틸토실레이트 화합물을 준비하는 제5단계, 상기 [18F]플루오로메틸토실레이트 화합물에 생물활성분자를 첨가하여 알킬레이션 반응시킴으로써, 제2 전구체 용액을 얻는 제6단계 및 상기 제2 전구체 용액에 전구체 제거제(precursor scavenger)를 첨가하여 미반응 전구체를 제거함으로써, HPLC 분리공정이 없이 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품을 제조하는 제7단계를 포함하는 것으로 구성될 수 있다.
즉, 본 발명에 따른 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법은 첫 번째 플루오린-18이 표지 된 플루오르메틸 치환 방사성의약품의 합성과정에서 반응 혼합물에 과량으로 존재하는 비스토실록시메탄 화합물에 대해 선택적 아자이드 치환을 수행하여 두 번째 플루오르메틸 치환과정에 비활성을 갖게 하고 또한 치환 반응시 과량으로 존재하는 반응 혼합물을 제거제 (scavenger)를 통해 선택적으로 반응함으로써, 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품 합성에 있어 필수적인 HPLC 분리 정제 과정 없이 개선된 방사화학적 수율과 높은 방사화학적 순도로 방사성의약품을 합성할 수 있을 뿐만 아니라 제조시간과 비용을 절감할 수 있다. 여기서, 상기 비스토실록시메탄 화합물은 아래 화학식 1과 같은 구조를 갖는 화합물일 수 있다.
[화학식 1]
Figure PCTKR2019002862-appb-I000001
또한, 상기 [18F]플루오로메틸토실레이트 화합물은 아래 화학식 2와 같은 [18F]플루오로메틸토실레이트 또는 중수소가 치환된 [18F]플루오로메틸토실레이트-d 2를 포함할 수 있다.
[화학식 2]
Figure PCTKR2019002862-appb-I000002
한편, 상기 [18F]F-/H2 18O 용액을 얻는 제2단계는 Cchromafix-HCO3 카트리지 또는 quaternary methyl ammonium (QMA) 음이온 교환 카트리지에서 [18F]플루오라이드를 K2.2.2 와 K2CO3 가 용해된 아세토니트릴 반응용액을 혼합하여 분리하는 것으로 수행될 수 있다.
상기 K2.2.2/K18F를 얻는 제3단계는 질소가스 분위기의 50 내지 180℃ 온도에서 [18F]F-/H2 18O 용액의 수분을 완전히 제거하는 것으로 수행되는 것이 바람직하다.
상기 제1 전구체 용액을 얻는 제4단계는 상기 K2.2.2/K18F와 비스토실록시메탄 화합물을 함께 반응용기에 넣고, 아세토니트릴 반응용액을 첨가하여 80 내지 180℃ 에서 1 내지 30분 시키는 것으로 수행되는 것이 바람직하다. 여기서, 상기 비스토실록시메탄 화합물은 상기 화학식 1의 비스토실록시메탄 또는 중수소가 치환된 비스토실록시메탄-d 2를 사용할 수 있다.
상기 제5 단계의 아자이드 치환반응은 아자이드 화합물로서 예를 들어, 테트라뷰틸아자이드(nBu4NN3)를 상기 제1 전구체 용액에 첨가하여 40 내지 100℃ 온도에서 2 내지 10분 동안 수행될 수 있다.
상기 제2 전구체 용액을 얻는 제6단계는 알킬레이션 반응은 예를 들어, 아래 화학식 3과 같은 O-, N-, S-, P- 알킬레이션 반응으로 수행될 수 있다.
[화학식 3]
Figure PCTKR2019002862-appb-I000003
R = 방향족 또는 지방족 작용기들
X = 수소 또는 중수소가 치환된 메틸기
상기 전구체 제거제(precursor scavenger)는 구아니딘 기반 헤테로사이클 계열 스케빈저 및 아이소시아네이트 계열 (예를 들어, MTBD(7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene, resin bound isocyanate, benzyl isocyanate 등)스케빈저로 이루어진 군에서 선택된 제거제를 사용할 수 있다.
한편, 상기 제조방법은 상기 플루오린-18으로 표지 된 플루오로메틸 치환 방사성의약품을 실리카 및 C18이 치환된 실리카가 충진된 카트리지를 통해 분리하여 순도를 높이는 카트리지 분리단계를 더 포함할 수 있다. 이러한 카트리지 분리단계에서 사용될 수 있는 혼합용매는 예를 들어, 아세토니트릴, 아세토니트릴/물 혼합용액, 에틸아세테이트/헥세인 혼합용액, 아세토니트릴/헥세인 혼합용액, 메탄올/헥세인 혼합용액, 에탄올/헥세인 혼합용액 일 수 있다.
상기 제조방법은 자동화 합성장치 및 카세트 시스템에서 수행될 수 있으며, 자동화 합성장치는 상업적으로 이용 가능한 GE Health healthcare의 TRACERLab FX-FN, GE TRACERLab FX N Pro 등이 있으며 카세트 시스템은 Trasis의 AllinOne, Simens의 ExploreTM One, GE Health healthcare의 FASTlabTM series 등을 사용할 수 있다.
<실시예 1>
이하, 실시예를 통해 본 발명에 따른 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오로메틸 치환 방사성의약품의 제조방법을 통해 제조된 방사성의약품서 F-19 및 F-18를 이용한 실험과정에 대해 아래에 상세히 설명하였다.
<실험 1>
Figure PCTKR2019002862-appb-I000004
동일한 당량(4.9 mmol) 의 1a2a를 NMR 용매인 DMF-d 7에 녹인 후 NaN3 (2.5 당량, 12.3 mmol)를 처리한 후 65 도에서 반응한다. 시간에 따라 5, 10, 15분 마다 NMR과 HPLC를 이용하여 아자이드 화합물을 처리하지 않은 0분의 결과와 비교하여 결과를 분석하였다. 아자이드 음이온(N3 -)이 1a2a사이에서 경쟁적으로 반응할 것이며 보다 상대적으로 메틸기의 카본에 전자가 풍부한 비스토실록시메탄에 아자이드 치환 반응이 먼저 일어날 것이라 예상하였다. 예상한 결과대로 아자이드 화합물에 비스토실록시메탄의 반응성이 플루오로메틸토실레이트 보다 월등히 높음을 확인하였다. 이러한 두 개의 토실기와 한 개의 토실기를 갖는 화합물간의 아자이드의 선택적인 반응에 대한 결과는 도3에 정리되어 있다. 1a는 5분에서 매우 안정한 반면에 2a는 매우 빠르게 아자이드가 도입되어 디아지드메탄이 되는 것을 확인할 수 있었다. NMR 결과 상 15분이 되었을 때, 2a가 전부 디아지드메탄이 되는 것을 확인할 수 있다. 이 결과를 통해 NaN3 가 매우 강력하고 선택적인 친핵체로 작용하는 것을 확인할 수 있었고 디아지드메탄 합성의 중간체로 생길 수 있는 부산물인 아지도메틸토실레이트는 확인할 수 없었다. HPLC 분석은 1a2a 검량 곡선을 이용하여 분석하였다. 도 4A에서 보이는 것처럼, 세 개의 피크 중 첫 번째 피크 (TR = 4.0 min) 는 시스템 피크이고 두 번째 피크 (TR = 6.1) 는 1a, 세 번째 피크 (TR = 8.1 min)는 2a 임을 확인하였다. 결과는 마찬가지로 2a의 아자이드 치환 반응이 월등히 짧은 시간에서 빠르게 일어나며 상대적으로 1a에서는 아지아드 치환 반응이 거의 진행되지 않는다. UV 값으로 남은 1a의 양을 계산하였을 때 10 분까지 94 %가 안정하게 남아있었고 대조적으로 2a는 10분 만에 96.1%가 디아지도메탄으로 바뀌는 것을 확인하였다. 40분에선 1a는 90%가 안정하게 남아있던 반면에 2a는 99.9% 이상 사라지는 것을 확인하였다.
< 실험 2>
Figure PCTKR2019002862-appb-I000005
표 1 다양한 아자이드 화합물을 이용한 선택적 아자이드 치환 반응 (n >3)
Figure PCTKR2019002862-appb-I000006
선택적인 아자이드 치환 반응에 대한 다양한 아자이드계 시약, 용매, 온도의 영향을 알아보기 위해 위의 실험을 진행하였다. 반응 결과는 표 1 에 정리되어 있다. 서로 다른 아자이드계 시약(12.3 mmol)들에 들과 (12.3 mmol) 같은 당량의 1a2a (4.9 mmol)를 DMF에 녹여서 65 도 에서 10 분간 반응하여 화합물이 변하는 경향성을 확인하였다. 표의 1-3, 5 번에서 KN32a에서 3a로 변환됨이 가장 높음을 보여주고 있으며, 이때 1a는 높은 안정성을 나타냈다. 사용된 반응 용매들에서 중수소가 치환 된 1b1a에 비해 미세하게 안정성이 높음을 확인할 수 있었다. 아자이드 시약을 2배로 사용하여도 1a의 안정성은 영향을 받지 않지만 (7 번) 높은 온도에서는 1a가 영향을 받는다(4 번). nBu4NN3가 다른 아자이드계 시약들보다 대부분의 용매에서 잘 녹기 때문에 사용하였고 1a는 DMA와 DMF에서 높은 안정성을 보여주지만 2a가 완벽하게 3a로 변하지 않는다. 이 한계점을 극복하기 위하여 6배의 nBu4NN3 를 사용하였다(10 번). 벤젠이나 1,4-다이옥세인과 같은 비극성 용매에서도 nBu3NN3는 높은 선택성을 보여 주었다 (12, 13 번). 그러나 1a의 안정성의 경우 벤젠에서 더 감소하는 것을 보여주었다. t-뷰탄올과 메탄올에서는 아자이드 치환 반응의 능력이 떨어지는 것을 확인하였다(14, 15 번).
< 실험 3>
표 2 선택적 아자이드 치환반응을 이용한 18플루오린 표지 결과a
Figure PCTKR2019002862-appb-I000007
비스토실록시메탄 화합물(2a-b) 부터 [18F]플루오르메틸토실레이트 화합물([18F]1a-b)을 합성하는 반응은 위의 서술된 지방족 친핵성 치환반응의 일반적인 표지 조건에서 이루어졌다. Radio-TLC 스캐너에서 확인한 [18F]플루오르메틸 토실레이트 화합물([18F]1a-b)의 방사화학적 변환 수율은 각각 94.5 ± 1.6%, 96.9 ± 2.5 % 이었고(Table 2) HPLC로 분리한 후 측정한 방사화학적 수율은 70.3 ± 6.4% ([18F]1a) 과 72.1 ± 4.2% ([18F]1b)였다. 아자이드 치환 반응 전의 남아 있는 과량의 비스토실록시메탄 화합물(2a-b)을 검량 곡선을 이용하여 측정하였을 때 각각 1.3 ± 0.3 μmol, 1.4 ± 0.3 μmol로 측정되었다. 아자이드 치환 반응의 최적화된 조건은 아세토니트릴 용매 하에서 nBu4NN3 (24 mg, 84.4 μmol)를 넣어준 후 80 oC에서 5 분간 반응하는 것이다. 그 결과, HPLC 시스템을 이용하여 확인하였을 때, 과량의 2a-b는 전부 사라지는 것을 확인하였고 상대적으로 한 개의 토실기를 가지는 [18F]1a-b는 99% 이상 안정한 것을 확인하였다.
< 실험 4>
직접적 O-알킬레이션 방법 (Route A) 과 선택적 아자이드 치환반응 (Route B)의 비교.
Figure PCTKR2019002862-appb-I000008
아자이드 치환 반응 조건을 통한 플로오르메틸 치환 방사성의약품 제조방법을 아자이드 치환 반응을 사용하지 않은 제조방법 조건과 비교하고자 전구체로서 4-페닐페놀을 사용하여 O-알킬레이션 반응을 수행한 결과는 다음과 같다 (Scheme 2). 아자이드 치환 반응을 사용한 조건 (루트 B)에서는 최종 화합물을 높은 방사화학적 수율로 얻을 수 있다 (72.0%, 반감기 고려). 반면에 아자이드 치환반응을 사용하지 않아 상대적으로 과량의 전구체가 남아있는 경우 (루트 A) 매우 낮은 방사화학적 수율을 보여준다 (27.8%, 반감기 고려). 아자이드 치환 반응을 이용하지 않은 경우 HPLC 분리 정제가 필요하지만, 아자이드 치환 반응을 사용한 경우 C-18 치환 실리카가 충진된 카트리지 분리 만으로 충분히 순도 높게 분리할 수 있다. HPLC 로 분석한 결과에서 아자이드 치환 반응을 이용하지 않은 경우, 아자이드 치환 반응에서는 볼 수 없는 부산물 ([1,1'-biphenyl]-4-yloxy)methyl 4-methylbenzenesulfonate)이 생성된 것을 확인하였다.
< 실험 5>
본 발명 방법을 이용한 [18F]fluoromethyl tyrosine 합성 (선택적 아자이드화 반응 & MTBD 스케빈져로 전구체 제거)
Figure PCTKR2019002862-appb-I000009
아자이드 치환 반응과 전구체 제거를 사용하는 방법을 [18F]플루오로메틸 타이로신 합성에 적용한 결과는 다음과 같다. 아자이드 치환 반응을 이용하여 [18F]플루오르메틸 토실레이트([18F]1a-b)를 합성하였고 99.5 % 이상의 [18F]플루오르메틸 토실레이트([18F]1a-b)가 O-알킬레이션 반응에 참여하였다. 표지 반응 후, 반응 혼합물에 전구체를 첨가하여 남아있는 과량의 전구체(5) 와 상온에서 반응하여 이온 형태를 만들게 하였고 반응 후 전구체가 남아 있는 양은 1.8%이하 임을 확인하였다. 최종 목적 화합물 [18F]6a-b는 실리카 및 C18이 치환된 실리카가 충진된 카트리지만을 이용하여 깨끗하게 분리하였으며 각각의 방사화학적 수율은 다음과 같다 (78.7%, 78.3%).
<제조예 1> 비스토실록시메탄 화합물의 제조
Figure PCTKR2019002862-appb-I000010
디브로모메탄 (500 uL, 7.12 mmol) 과 실버 p-톨루설폰네이트 (4.17 g, 14.95 mmol)를 아세토니트릴 (8 mL) 에 녹인 후 16시간 동안 환류시킨다. 반응이 끝난 후, 물과 디클로로메탄으로 추출하고 유기 용매 층만을 분리하여 소듐설페이트로 물을 제거하고 걸러준다. 받은 용액의 용매를 제거하고 나면 흰색 고체 2a-b가 얻어진다.
Anal. Calculated for (C15H16O6S2, 2a): C, 50.55; H, 4.53; O, 26.93; S, 17.99 %. MS (ESI) m/z 357.24 (M + H+); m.p. 119.9-122.1 oC. 1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 8.4 Hz, 3H), 7.24 (d, J = 8.4 Hz, 4H), 5.81 (s, 2H), 2.45 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 145.2, 133.1, 129.6, 127.8, 87.79, 21.6.
Anal. Calculated for (C15H14D2O6S2, 2b): C, 50.27; H, 5.06; O, 26.78; S, 17.89 %. MS (ESI) m/z 359.24 (M + H)+; m.p. 121.1-122.8 oC. 1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 8.4 Hz, 4H), 7.24 (d, J = 8.4 Hz, 4H), 2.45 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 145.2, 133.1, 129.57, 127.8, 21.5.
<제조예 2> 플루오로메틸토실레이트 화합물의 제조
Figure PCTKR2019002862-appb-I000011
디토실레이트 또는 디토실레이트-d2 (400 mg, 1.12 mmol)를 아세토니트릴 (5 mL)에 녹인 후, 세슘플로라이드 (256 mg, 1.68 mmol), 헥사에틸렌글라이콜 (0.45 mL, 1.80 mmol) 을 첨가하고 85 oC 에서 10 시간 반응한다. 반응 후에 디클로로메탄과 물을 이용하여 추출하고 유기 용매 층만을 분리하여 소듐설페이트로 물을 제거하고 걸러준다. 받은 용액의 용매를 제거하고 플래쉬 컬럼을 이용하여 분리하여 무색 액체인 1a-b가 얻어진다.
Anal. Calculated for (C8H9FO3S, 1a): C, 47.05; H, 4.44; F, 9.30; O, 23.50; S, 15.70 %. MS (ESI) m/z 227.3 (M + Na)+; 1H NMR (400 MHz, CDCl3) δ 7.59 (d, J = 8.4 Hz, 3H), 7.24 (d, J = 8.4 Hz, 4H), 5.81 (s, 2H), 2.45 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 145.2, 133.1, 129.6, 127.8, 87.79, 21.6. CAS Registry No. provided by the author: 114435-86-8.
Anal. Calculated for (C8H7D2FO3S, 1b): C, 46.59; H, 5.37; F, 9.21; O, 23.27; S, 15.55 %. MS (ESI) m/z 229.3 (M + Na)+; 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 2.45 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 145.4, 133.7, 129.8, 127.7, 21.5. CAS Registry No. provided by the author: 1180485-67-9.
<제조예 3> 1-Phenyl-4-(fluoromethoxy)benzene의 제조
Figure PCTKR2019002862-appb-I000012
4-페닐페놀 (300 mg, 1.76 mmol)를 아세토니트릴 (5 mL)에 녹인 후 플루오로메틸 토실레이트 (359 mg, 1.76 mmol), 세슘 카보네이트 (1.15 g, 3.52 mmol) 1,4,7,10,13,16-헥사오사사이클로옥타데케인 (1.16 g, 3.52 mmol)를 첨가하고 65 oC에서 16시간 동안 반응한다. 반응 후에 디클로로메탄과 물을 이용하여 추출하고 유기 용매 층만을 분리하여 소듐설페이트로 물을 제거하고 걸러준다. 받은 용액의 용매를 제거하고 플래쉬 컬럼을 이용하여 분리하여 (에틸 아세테이트: 헥세인 = 1:4) 흰색 고체인 생성물이 얻어진다.
Anal. Calculated for (C13H11FO): C, 77.21; H, 5.48; F, 9.39; O, 7.91%. MS (ESI) m/z 203.1 (M + H)+; m.p. 74.9-76.3 oC; 1H NMR (400 MHz, CDCl3) δ 7.57 (m, 4H), 7.45 (t, J = 14.8 Hz, 2H), 7.35 (t, J = 14.8 Hz, 2H), 7.17 (m, 2H), 5.76 (d, J = 54 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 156.1, 140.3, 136.5, 128.6, 128.2, 126.9, 116.8, 100.6 (d, J = 218.1 Hz). CAS Registry No. provided by the author: 956707-10-1.
<제조예 4> tert-Butyl (R)-2-((tert-butoxycarbonyl)amino)-3-(4-(fluoromethoxy)phenyl)propanoate and tert-butyl (R)-2-((tert-butoxycarbonyl)amino)-3-(4-(fluoromethoxy-d2)phenyl)propanoate (6a-b)의 제조
Figure PCTKR2019002862-appb-I000013
tert-뷰틸 (tert-뷰톡시카보닐)-D-타이로시네이트 (50 mg, 0.15 mmol) 와 플루오로메틸 토실레이트 또는 플루오르메틸토실레이트-d2 (35 mg, 0.17 mmol)를 디메틸아세트아마이드 (1.5 mL)에 녹인 후, 세슘 카보네이트 (146 mg, 0.45 mmol) 1,4,7,10,13,16-헥사옥사이클로옥타데케인 (18-crown-6, 158 mg, 0.60 mmol)를 첨가하고 80 oC 에서 1시간 동안 반응한다. 반응 후에 디클로로메탄과 물을 이용하여 추출하고 유기 용매 층만을 분리하여 소듐설페이트로 물을 제거하고 걸러준다. 받은 용액의 용매를 제거하고 플래쉬 컬럼을 이용하여 분리하여 (에틸 아세테이트: 헥세인 = 1:4) 밝은 노란 액체인 생성물이 얻어진다.
Anal. Calculated for (C19H28FNO5, 6a): C, 61.77; H, 7.64; F, 5.14; N, 3.79; O, 21.65. MS (ESI) m/z 370.2 (M + H)+; 1H NMR (400 MHz, CDCl3) δ 7.13 (d, J = 8.6 Hz, 2H), 7.00 (d, J = 8.6 Hz, 2H), 5.69 (d, J = 52 Hz, 2H), 5.04 - 4.90 (m, 1H), 4.50 - 4.33 (m, 1H), 3.09 - 2.94 (m, 2H), 1.41 (d, 18H); 13C NMR (100 MHz, CDCl3) δ170.7, 155.6, 154.9, 131.4, 130.6, 116.4, 100.7 (d, J = 218.1 Hz), 81.9, 79.5, 54.7, 37.5, 28.2, 27.8.
Anal. Calculated for (C19H26D2FNO5, 6b): C, 61.44; H, 8.14; F, 5.11; N, 3.77; O, 21.54. MS (ESI) m/z 372.2 (M + H)+; 1H NMR (400 MHz, CDCl3) δ 7.13 (d, J = 8.6 Hz, 2H), 7.00 (d, J = 8.6 Hz, 2H), CD2 (not observed), 5.04 - 4.90 (m, 1H), 4.49 - 4.35 (m, 1H), 3.09 - 2.94 (m, 2H), 1.42 (d, 18H); 13C NMR (100 MHz, CDCl3) δ170.7, 155.6, 154.9, 131.4, 130.6, 116.4, CD2 (not observed), 81.9, 79.5, 54.7, 37.5, 28.2, 27.8.
<제조예 5> [18F]플루오르메틸토실레이트 화합물 ([18F]1a-b) 합성
Figure PCTKR2019002862-appb-I000014
[18F]플루오라이드는 18O(p, n)18F 반응을 이용하여 생산하였다. [18F]F-/H2 18O는 K2.2.2 와 K2CO3 가 녹아있는 아세토니트릴과 물을 사용하여 chromafix-HCO3 카트리지를 통해 분리한다. 분리한 용액은 50 내지 180℃에서 질소 가스를 이용하여 물을 완전히 제거한다. 물이 제거된 K2.2.2/K18F에 비스토실록시메탄 또는 비스토실록시메탄-d 2를 반응용기에 넣고 아세토니트릴과 물 혼합용매로 녹인 후 80 내지 180℃ 에서 1 내지 30분간 반응한다. 반응 후, radio-TLC 스캐너를 이용하여 방사화학적 변환 수율을 측정한다. 남아 있는 과량의 비스토실록시메탄 화합물의 양은 HPLC 분석을 통하여 측정하였다.
<제조예 6> 1-Phenyl-4-([18F]fluoromethoxy)benzene ([18F]4)의 제조
Figure PCTKR2019002862-appb-I000015
[18F]플루오르메틸토실레이트 합성 반응 후, 아자이드 치환반응(nBu4NN3)을 거친후에거친 후에 바로 O-[18F]플루오르메틸레이션을 진행하였다. 반응 후 radio-TLC 스캐너를 이용하여 방사화학적수율을 측정하였다. 얻어진 혼합물은 아세토니트릴/물 (v/v = 60/40) 조건에서 HPLC로 분리하였다 (TR = 15.3 min for [18F]4). 얻어진 생성물은 tC18이 치환된 실리카가 충진된 카트리지를 이용하여 최종화합물을 얻었다.
<제조예 7> tert-Butyl (R)-2-((tert-butoxycarbonyl)amino)-3-(4-([18F]fluoromethoxy)phenyl)propanoate analogs ([18F]6a-b)의 제조
Figure PCTKR2019002862-appb-I000016
[18F]플루오르메틸토실레이트 합성 반응 후, 아자이드 치환 반응을 위하여 nBu4NN3 를 첨가 한 후 40 내지 100℃ 온도에서 2 내지 10분 하였다. 반응 혼합물은 C18이 치환된 실리카가 충진된 카트리지를 이용하여 [18F]플루오르메틸토실레이트 ([18F]1a-b)를 분리하였다. 분리한 화합물에 tert-뷰틸 (tert-뷰톡시카보닐)-D-타이로시네이트, 세슘카보네이트, 1,4,7,10,13,16-헥사옥사사이클로옥타데케인 을 아세토니트릴 에 녹여 첨가한 후 50 내지 150 oC에서 5 내지 15 분 반응하였다. 반응 종료 후에 상온으로 식힌 다음, MTBD (20 mL)를 반응물에 첨가한 후 0 내지 80 oC 에서에서 1 내지 10분간 섞어주었다. 반응 혼합물은 silica Sep-Pak 카트리지를 이용하여 분리하였고 C18이 치환된 실리카가 충진된 카트리지를 이용하여 한 번 더 분리하였다.
<제조예 8> [18F]Fluoromethyl-dimethyl-2-hydroxyethylammonium ([18F]Fluorocholine)의 제조
본 발명을 따라 [18F]플루오르메틸토실레이트 합성 반응 후, 아자이드 치환 반응을 위하여 nBu4NN3 를 첨가 한 후 40 내지 100℃ 온도에서 2 내지 10분 하였다. 반응 혼합물은 C18이 치환된 실리카가 충진 된 카트리지 이용하여 [18F]플루오르메틸토실레이트 ([18F]1a-b)를 분리하였다. 분리한 화합물에 2-디메틸아미노에탄올 을 아세토니트릴 과 물 혼합용액에 녹여 첨가한 후 50내지 150 oC에서 5 내지 15 분 반응하였다. 반응 종료 후에 상온으로 식힌 다음, 반응 혼합물은 이온교환 카트리지를 이용하여 분리하였다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
본 발명은 사이클로트론으로부터 18O(p, n)18F 반응을 통해 [18F]플루오라이드를 얻는 제1단계, 상기 [18F]플루오라이드를 K2.2.2 와 K2CO3 가 용해된 아세토니트릴 반응용액을 사용하여 분리함으로써 [18F]F-/H2 18O 용액을 얻는 제2단계, 상기 [18F]F-/H2 18O 용액을 가열하여 K2.2.2/K18F를 얻는 제3단계, 상기 K2.2.2/K18F와 비스토실록시메탄 화합물을 함께 반응용기에 넣고, 반응용매를 첨가하여 반응시킴으로써, 제1 전구체 용액을 얻는 제4단계, 상기 제1 전구체 용액을 냉각시키고 아자이드 시약을 첨가하여 아자이드 치환반응을 수행함으로써, [18F]플루오로메틸토실레이트 화합물을 얻는 제5단계, 상기 [18F]플루오로메틸토실레이트 화합물에 생물활성분자 전구체를 첨가하여 알킬레이션 반응시킴으로써, 제2 전구체 용액을 얻는 제6단계 및 상기 제2 전구체 용액에 전구체 제거제(precursor scavenger)를 첨가하여 미반응 전구체를 제거함으로써, 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품를 HPLC 분리공정 없이 제조하는 제7단계를 포함하는 선택적 아자이드 치환반응을 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법에 관한 것이다.
본 발명에 따르면 방사성의약품의 합성과정에서 반응 혼합물에 존재하는 과량의 비스토실록시메탄 화합물에 대해 선택적 아자이드 치환반응을 통해 비 활성화 시키고 다음 단계의 생물활성분자 전구체와 [18F]플루오로메틸토실레이트 화합물간의 알킬레이션 수율을 현저히 증진시키면서 HPLC의 분리 정제 과정을 생략하여도 방사화학적 순도가 높은 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품을 합성할 수 있어, HPLC 공정으로 인한 제조시간 및 제조비용을 절감할 수 있다.

Claims (10)

  1. 사이클로트론으로부터 18O(p, n)18F 반응을 통해 [18F]플루오라이드를 얻는 제1단계;
    상기 [18F]플루오라이드를 K2.2.2 와 K2CO3 가 용해된 아세토니트릴 반응용액을 사용하여 분리함으로써 [18F]F-/H2 18O 용액을 얻는 제2단계;
    상기 [18F]F-/H2 18O 용액을 가열하여 K2.2.2/K18F를 얻는 제3단계;
    상기 K2.2.2/K18F와 비스토실록시메탄 화합물을 함께 반응용기에 넣고, 반응 용매와 함께 반응시킴으로써, 제1 전구체 용액을 얻는 제4단계;
    상기 제1 전구체 용액을 냉각시키고 아자이드 시약을 첨가하여 아자이드 치환반응을 수행함으로써, [18F]플루오로메틸토실레이트 화합물을 얻는 제5단계;
    상기 [18F]플루오로메틸토실레이트 화합물에 생물활성분자를 첨가하여 알킬레이션 반응시킴으로써, [18F]플루오로메틸이 치환 방사성리간드를 함유하는 제2 전구체 용액을 얻는 제6단계; 및
    상기 제2 전구체 용액에 전구체 제거제(precursor scavenger)를 첨가하여 미반응 전구체를 제거함으로써, 순수한 플루오린-18이 표지 된 플루오로메틸 치환 방사성리간드를 제조 또는 상기 미반응 전구체 제거 이후의 생성물이 4차 아민을 포함하는 경우 물과 유기용매 혼합 용매를 이용하는 플루오린-18이 표지 된 플루오로메틸 치환 방사성리간드를 제조하는 제7단계;
    를 포함하는 선택적 아자이드 치환반응을 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법.
  2. 제1항에 있어서,
    상기 제1 전구체 용액을 얻는 제4단계는 상기 K2.2.2/K18F와 비스토실록시메탄 화합물을 함께 반응용기에 넣고, 반응용액을 첨가하여 80 내지 180℃ 에서 1 내지 30분간 반응 시키는 것으로 수행되는 선택적 아자이드 치환반응을 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법.
  3. 제1항에 있어서,
    상기 아자이드 시약은 아자이드 포함 화합물인 선택적 아자이드 치환반응을 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법.
  4. 제1항에 있어서,
    상기 제5 단계의 아자이드 치환반응은 40 내지 100℃ 온도에서 2 내지 10분 동안 수행되는 선택적 아자이드 치환반응을 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법.
  5. 제1항에 있어서,
    상기 [18F]플루오로메틸토실레이트 화합물을 얻는 제5단계는 C18이 치환된 실리카가 충진된 카트리지를 이용한 카트리지 분리과정을 더 거친 후, 상기 6단계로 넘어가거나 또는 상기 카트리지 분리과정이 없이 상기 6단계로 넘어가는 것으로 수행되는 선택적 아자이드 치환반응을 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법.
  6. 제1항에 있어서,
    상기 선택적 아자이드 치환반응 후 제2 전구체 용액을 얻는 제6단계는 O-, N-, S-, P- 알킬레이션 반응으로 수행되며, 상기 알킬레이션 반응이 수행된 생성물이 4차 아민을 포함하는 경우 물과 유기용매 혼합 용매를 이용하는 선택적 아자이드 치환반응을 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법.
  7. 제1항에 있어서,
    상기 전구체 제거제(precursor scavenger)는 구아니딘 기반 헤테로사이클 계열 스케빈저 및 아이소시아네이트 계열 스케빈저로 이루어진 군에서 선택된 스케빈저인 선택적 아자이드 치환반응을 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법.
  8. 제1항에 있어서,
    상기 제조방법은 상기 플루오린-18이 표지된 플루오로메틸 치환 방사성의약품을 실리카 및 C18이 치환된 실리카가 충진 된 카트리지를 통해 분리하여 순도를 높이는 카트리지 분리단계를 더 포함하는 선택적 아자이드 치환반응을 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법.
  9. 제9항에 있어서,
    상기 카트리지 분리단계는 적어도 2가지 용매를 포함하는 혼합용매를 사용하여 수행되는 선택적 아자이드 치환반응을 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법.
  10. 제1항에 있어서,
    상기 제조방법은 자동화 합성장치 및 카세트 시스템에서 수행되는 선택적 아자이드 치환반응을 이용한 플루오린-18이 표지 된 플루오로메틸 치환 방사성의약품의 제조방법.
PCT/KR2019/002862 2018-09-21 2019-03-13 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오르메틸 치환 방사성의약품의 제조방법 WO2020059986A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021516680A JP2022500482A (ja) 2018-09-21 2019-03-13 選択的アジド置換反応および前駆体除去を用いたフッ素−18標識フルオロメチル置換放射性医薬品の製造方法
CN201980061840.XA CN112752740A (zh) 2018-09-21 2019-03-13 利用选择性叠氮化合物取代反应和前体清除化的标记有氟-18的氟甲基取代放射性医药品的制备方法
EP19862024.7A EP3842405A4 (en) 2018-09-21 2019-03-13 PROCESS FOR THE PREPARATION OF FLUORO-18 LABELED FLUOROMETHYL SUBSTITUTED RADIOPHARMACEUTICALS USING A SELECTIVE AZIDE SUBSTITUTION REACTION AND PRECURSOR WASH
US17/206,979 US20210205482A1 (en) 2018-09-21 2021-03-19 Method for preparing fluorine-18-labeled fluoromethyl-substituted radiopharmaceuticals using selective azide substitution reaction and precursor scavenging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0113473 2018-09-21
KR1020180113473A KR102137001B1 (ko) 2018-09-21 2018-09-21 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오르메틸 치환 방사성의약품의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/206,979 Continuation US20210205482A1 (en) 2018-09-21 2021-03-19 Method for preparing fluorine-18-labeled fluoromethyl-substituted radiopharmaceuticals using selective azide substitution reaction and precursor scavenging

Publications (1)

Publication Number Publication Date
WO2020059986A1 true WO2020059986A1 (ko) 2020-03-26

Family

ID=69887361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002862 WO2020059986A1 (ko) 2018-09-21 2019-03-13 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오르메틸 치환 방사성의약품의 제조방법

Country Status (6)

Country Link
US (1) US20210205482A1 (ko)
EP (1) EP3842405A4 (ko)
JP (1) JP2022500482A (ko)
KR (1) KR102137001B1 (ko)
CN (1) CN112752740A (ko)
WO (1) WO2020059986A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140069001A (ko) * 2011-08-25 2014-06-09 피라말 이미징 에스에이 [18f]플루오로메틸 브로마이드의 단순화된 방사합성
KR20140076575A (ko) * 2011-10-14 2014-06-20 지이 헬쓰케어 리미티드 18f―표지된 생분자의 합성 방법
JP5595903B2 (ja) * 2007-04-11 2014-09-24 メルク エ カンパニー 18f標識葉酸
KR20140113622A (ko) * 2011-05-13 2014-09-24 (주)퓨쳐켐 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8741261B2 (en) * 2003-12-18 2014-06-03 Ge Healthcare Limited Methods for carbon isotope labeling synthesis by transition metal-promoted carbonylation via isocyanate using azides and carbon-isotope monoxide
WO2010131745A1 (ja) * 2009-05-15 2010-11-18 独立行政法人理化学研究所 18f標識アジド化合物、18f標識化用試薬及びそれを用いたアルキン化合物の18f標識方法
CN101648899B (zh) * 2009-09-15 2012-02-22 中国医学科学院北京协和医院 Pet显像剂l-5-18fetp的合成方法
EP2845608A1 (en) * 2013-09-09 2015-03-11 Trasis S.A. Method for purification of 18F-labeled choline analogues
KR101602912B1 (ko) * 2013-09-13 2016-03-11 주식회사 바이오이미징코리아 [18f]플루오르메틸기가 도입된 뇌신경염증 표적 양성자방출단층촬영 방사성추적자, 이의 합성 및 그를 이용한 생물학적 결과 평가 방법
US11242314B2 (en) * 2016-01-11 2022-02-08 Washington University Synthesizing pet tracers using [F-18]sulfonyl fluoride as a source of [F-18]fluoride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5595903B2 (ja) * 2007-04-11 2014-09-24 メルク エ カンパニー 18f標識葉酸
KR20140113622A (ko) * 2011-05-13 2014-09-24 (주)퓨쳐켐 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법
KR20140069001A (ko) * 2011-08-25 2014-06-09 피라말 이미징 에스에이 [18f]플루오로메틸 브로마이드의 단순화된 방사합성
KR20140076575A (ko) * 2011-10-14 2014-06-20 지이 헬쓰케어 리미티드 18f―표지된 생분자의 합성 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAS, no. 1180485-67-9
KIM, HYE LAN ET AL.: "F-18 labeled RGD probes based on bioorthogonal strain-promoted dick reaction for PET imaging", ACS MEDICINAL CHEMISTRY LETTERS, vol. 6, 2015, pages 402 - 407, XP055250584, DOI: 10.1021/ml500464f *
See also references of EP3842405A4

Also Published As

Publication number Publication date
US20210205482A1 (en) 2021-07-08
JP2022500482A (ja) 2022-01-04
KR20200034142A (ko) 2020-03-31
EP3842405A1 (en) 2021-06-30
EP3842405A4 (en) 2022-06-22
CN112752740A (zh) 2021-05-04
KR102137001B1 (ko) 2020-07-24

Similar Documents

Publication Publication Date Title
Gao et al. An improved synthesis of dopamine D2/D3 receptor radioligands [11C] fallypride and [18F] fallypride
EP3160962B1 (en) Method for producing fused heterocyclic compound
ES2608848T3 (es) Procedimiento de preparación de derivados 4&#39;&#39;-sustituidos de 9-desoxo-9a-aza-9a-homoeritromicina A
JP6563401B2 (ja) 放射性ヨウ素化化合物
CH387636A (fr) Procédé de préparation de nouvelles phénothiazines
EP2885294B1 (en) Synthesis of an antiviral compound
WO2020059986A1 (ko) 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오르메틸 치환 방사성의약품의 제조방법
WO2012050263A1 (en) Novel method of preparing endoxifen
JP2017078066A (ja) グルタミン酸誘導体の新規前駆体
WO2012050315A2 (ko) Fp-cit 전구체로서의 아제티디늄 염, 이의 선택적 제조방법 및 fp-cit 의 합성
BR112021016472A2 (pt) Método para preparar um composto de fórmula 1, método para preparar um composto de fórmula 4, e processo para melhorar um rendimento ou uma pureza óptica
JP2011522027A (ja) アミノ酸の新規かつ効率的な合成方法
CN101977890B (zh) 光学活性氟胺类的制造方法
CN101687783B (zh) 4-(三氯甲硫基)苯胺类及其制造方法、以及4-(三氟甲硫基)苯胺类的制造方法
WO2023063466A1 (ko) 세라마이드 화합물의 제조방법
WO2013115483A1 (ko) 수소이온 농도가 조절된 플루오린-18의 용리액의 제조방법 및 이를 이용한 플루오린-18의 표지방법
WO2022080812A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조 방법
WO2013141437A1 (ko) 고순도 에스 메토프롤롤의 제조방법
WO2017111403A2 (ko) 불소-18 동위원소를 함유하는 방사성 화합물의 제조방법
WO2023219199A1 (ko) Fp-cit 전구체의 제조방법 및 이에 의해 제조된 fp-cit 전구체를 이용한 [18f]fp-cit의 제조방법
UA58517C2 (uk) 2-тіотіазолідин-5-они як проміжні сполуки для одержання 2-імідазолін-5-онів, спосіб їх одержання та подальшого перетворення
WO2015060657A1 (en) A method for preparing an intermediate of iopromide
WO2024034767A1 (ko) 유기 키랄 촉매 화합물을 이용한 나이트로소 화합물의 질소 선택적 키랄 알돌 반응 생성물의 제조방법
WO2008157271A1 (en) Deuterium-enriched escitalopram
US20120101302A1 (en) Novel precursor molecules for f-18 labelled pet tracers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516680

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019862024

Country of ref document: EP

Effective date: 20210321