KR20140032335A - 수소화 후에 초임계수 처리에 의해 중질 탄화수소 원료물질로부터 황을 제거하는 방법 - Google Patents

수소화 후에 초임계수 처리에 의해 중질 탄화수소 원료물질로부터 황을 제거하는 방법 Download PDF

Info

Publication number
KR20140032335A
KR20140032335A KR1020137007597A KR20137007597A KR20140032335A KR 20140032335 A KR20140032335 A KR 20140032335A KR 1020137007597 A KR1020137007597 A KR 1020137007597A KR 20137007597 A KR20137007597 A KR 20137007597A KR 20140032335 A KR20140032335 A KR 20140032335A
Authority
KR
South Korea
Prior art keywords
water
petroleum
product stream
reactor
stream
Prior art date
Application number
KR1020137007597A
Other languages
English (en)
Other versions
KR101877079B1 (ko
Inventor
기-혁 최
아쇼크 케이. 푸네타
모하메드 알. 알-도사리
사미에르 알리 감디
Original Assignee
사우디 아라비안 오일 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사우디 아라비안 오일 컴퍼니 filed Critical 사우디 아라비안 오일 컴퍼니
Publication of KR20140032335A publication Critical patent/KR20140032335A/ko
Application granted granted Critical
Publication of KR101877079B1 publication Critical patent/KR101877079B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/32Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions in the presence of hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1033Oil well production fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water

Abstract

초임계수를 이용하여 석유 공급원료를 개량하기 위한 방법 및 장치가 제공된다. 상기 방법은 다음의 단계를 포함한다: (1) 석유 공급원료를 가열하고 가압하는 단계; (2) 물 공급물을 물의 초임계점 위로 가열하고 가압하는 단계; (3) 가열되고 가압된 석유 공급원료와 가열되고 가압된 물 공급물을 조합하여 조합된 공급물을 생성하는 단계; (4) 조합된 공급물을 수열 반응기에 공급하여 1차 생성물 스트림을 생성하는 단계; (5) 1차 생성물 스트림을 후-처리 공정 유닛에 공급하여 2차 생성물 스트림을 생성하는 단계; 및 (6) 2차 생성물 스트림을 처리되고 개량된 석유 스트림과 물 스트림으로 분리하는 단계.

Description

수소화 후에 초임계수 처리에 의해 중질 탄화수소 원료물질로부터 황을 제거하는 방법{SULFUR REMOVAL FROM HEAVY HYDROCARBON FEEDSTOCKS BY SUPERCRITICAL WATER TREATMENT FOLLOWED BY HYDROGENATION}
본 발명은 석유 제품을 개량하기 위한 방법 및 장치에 관한 것이다. 더 상세하게는, 본 명세서에 기술된 본 발명은 초임계수(supercritical water)를 이용하여 처리함으로써 석유 제품을 개량하기 위한 방법 및 장치에 관한 것이다.
석유는 에너지 및 화학약품을 위해 필수적인 공급원이다. 동시에, 석유 및 석유계 제품은 또한 공기 및 수질 오염에 대한 주요 원인이다. 석유 및 석유계 제품으로 유발된 오염에 관한 증가하는 우려를 다루기 위해, 많은 국가들은 석유 제품, 특히 석유 정제 공정 및 휘발유 연료 내 황 함량과 같은 연료 내 특정 오염원의 허용 농도에 대한 엄격한 규제를 적용해왔다. 예를 들면, 자동차용 휘발유 연료는 미국 내에서 10 ppm 황 미만의 최대 총 황 함량을 가지도록 규제되고 있다.
앞서 언급한 바와 같이, 일상의 삶에서의 그 중요성으로 인해, 석유에 대한 수요는 꾸준히 증가하고 있으며 석유 및 석유계 제품에 부과되는 규제는 더 엄격해지고 있다. 현재 정제되고 전세계에 걸쳐 사용되는 입수가능한 석유 공급원, 가령, 원유 및 석탄은 훨씬 많은 양의 불순물(예컨대, 원소 황 및 황을 함유하는 화합물, 질소 및 금속)을 함유한다. 게다가, 현재의 석유 공급원은 전형적으로 다량의 중질 탄화수소 분자를 포함하며, 이들은 이후 운송용 연료로서 궁극적으로 사용되기 위해 수소화분해(hydrocracking)와 같은 고비용의 공정을 통해 경질의 탄화수소 분자로 전환되어야 한다.
석유 개량을 위한 현재의 종래 기술은 수소처리 및 수소화분해와 같은 방법에서 촉매의 존재에서 수소를 사용하는 수소화 방법을 포함한다. 코킹(coking) 및 비스브레이킹(visbreaking)과 같이, 수소의 부재에서 수행되는 열적 방법이 또한 공지되어 있다.
석유 개량을 위한 종래의 방법은 여러 한계 및 단점을 안고 있다. 예를 들면, 수소화 방법은 전형적으로 바람직한 개량 및 전환을 얻기 위해 외부 공급원으로부터의 다량의 수소 기체를 필요로 한다. 이들 방법은 또한 중질 공급원료 및/또는 혹독한 조건의 경우에 전형적으로 나타나는 바와 같이, 전형적으로 촉매의 미숙 또는 빠른 비활성화로 인한 어려움이 있으며, 따라서 촉매의 재생 및/또는 새로운 촉매의 부가를 요구하며, 이에 따라 공정 유닛의 중지시간을 야기한다. 열적 방법은 흔히 부산물로서의 다량의 코크스의 생성 그리고 황 및 질소와 같은 불순물을 제거하기에 제한된 능력으로 인한 어려움이 있다. 이는 다시 안정화를 요할 수 있는 다량의 올레핀 및 디올레핀의 생성을 유발한다. 게다가, 열적 방법은 험한 조건(고온 및 고압)을 위해 적합한 특수 장비를 필요로 하고, 외부 수소 공급원을 필요로 하며, 상당한 에너지의 투입을 필요로 하고, 이에 따라 증가된 복잡성 및 비용을 야기한다.
본 발명은 석유 공급원료를 함유하는 탄화수소를 개량하기 위한 방법 및 장치를 제공한다.
한 양상에서, 석유 공급원료를 개량하기 위한 공정이 제공된다. 상기 공정은 가압되고 가열된 석유 공급원료를 제공하는 단계를 포함한다. 석유 공급원료는 약 10℃ 내지 250℃의 온도 및 적어도 약 22.06 MPa의 압력으로 제공된다. 상기 공정은 또한 가압되고 가열된 물 공급물을 제공하는 단계를 포함한다. 물은 약 250℃ 내지 650℃의 온도 및 적어도 약 22.06 MPa의 압력으로 제공된다. 상기 가압되고 가열된 석유 공급원료 및 가압되고 가열된 물 공급물은 조합되어 조합된 석유 및 물 공급 스트림을 형성한다. 상기 조합된 석유 및 물 공급 스트림은 수열(hydrothermal) 반응기에 공급되어 1차 생성물 스트림을 생성한다. 반응기는 약 380℃ 내지 550℃의 온도에서 유지되며 반응기 내에서 조합된 석유 및 물 스트림의 체류 시간은 약 1초 내지 120 분이다. 반응기에서 처리된 후, 1차 생성물 스트림은 후-처리 공정으로 송달된다. 후-처리 공정은 약 50℃ 내지 350℃의 온도에서 유지되며 1차 생성물 스트림은 상기 후 처리 공정 내에서 약 1 분 내지 90 분의 체류 시간을 갖는다. 2차 생성물 스트림이 후-처리 공정으로부터 수집되고, 상기 2차 생성물 스트림은 다음 특징 중 적어도 한 가지를 가진다: (1) 1차 생성물 스트림 내 경질 탄화수소의 농도에 비해 더 높은 경질 탄화수소의 농도 및/또는 (2) 1차 생성물 스트림 내 황, 질소 및/또는 금속의 농도에 비해 낮아진 황, 질소 및/또는 금속의 농도.
또다른 양상에서, 초임계수를 이용하여 석유 공급물을 개량하기 위한 방법이 제공된다. 상기 공정은 다음의 단계를 포함한다: (1) 석유 공급원료를 가열하고 가압하는 단계; (2) 물 공급물을 초임계 조건까지 가열하고 가압하는 단계; (3) 가열되고 가압된 석유 공급원료 및 초임계수 공급물을 조합하여 조합된 공급물을 생성하는 단계; (4) 조합된 석유 및 초임계수 공급물을 수열 반응기에 공급하여 1차 생성물 스트림을 생성하는 단계; (5) 1차 생성물 스트림을 후-처리 공정 유닛에 공급하여 2차 생성물 스트림을 생성하는 단계; 및 (6) 2차 생성물 스트림을 개량된 석유 스트림과 물 스트림으로 분리하는 단계.
특정 구체예에서, 물은 약 374℃ 초과의 온도 및 약 22.06 MPa 초과의 압력까지 가열된다. 대안적으로, 수열 반응기는 약 400℃ 초과의 온도로 유지된다. 대안적인 구체예에서, 수열 반응기는 약 25 MPa 초과의 압력으로 유지된다. 특정 구체예에서, 후 처리 공정 유닛은 탈황 유닛이다. 또다른 구체예에서, 후-처리 공정 유닛은 수열 유닛이다. 임의로, 후-처리 공정 유닛은 관-유형 반응기이다. 특정 구체예에서, 후-처리 공정 유닛은 약 50°내지 350℃의 온도로 유지된다. 임의로, 후-처리 공정 유닛은 후-처리 촉매를 포함한다.
도 1은 본 발명에 따라 석유 공급원료를 개량하기 위한 공정의 한 구체예의 다이어그램이다.
도 2는 본 발명에 따라 석유 공급원료를 개량하기 위한 공정의 또다른 구체예의 다이어그램이다.
비록 이어지는 상세한 설명이 예시의 목적을 위해 많은 구체적인 세부내용을 포함하지만, 당해 분야의 숙련가는 이어지는 세부내용에 대한 많은 예, 변화 및 변형이 본 발명의 범위 및 사상 내에 있음을 파악할 것임이 이해된다. 그러므로, 본 명세서에 기술된 본 발명의 예시적인 구체예는 청구된 발명에 대해 일반성을 전혀 잃지 않으며, 그에 제한됨을 나타내지 않고 제시된다.
한 양상에서, 본 발명은 석유 공급원료를 함유하는 탄화수소를 개량하기 위한 방법을 제공한다. 더 구체적으로는, 특정 구체예에서, 본 발명은 수소의 부가 또는 외부적인 공급을 요하지 않고, 감소된 코크스 생성을 가지며, 원소 황과 같은 불순물 및 황, 질소 및 금속을 함유하는 화합물의 상당한 제거를 가지는 공정에 의한, 초임계수를 이용하여 석유 공급원료를 개량하기 위한 방법을 제공한다. 게다가, 본 명세서에 기술된 방법은 더 높은 API 비중, 더 높은 중급 증류물 수율 (원유 내에 존재하는 중급 증류물에 비해), 그리고 석유 공급원료에 존재하는 불포화 화합물의 수소화를 비롯한, 석유제품에서의 다양한 다른 개선을 야기한다.
수소화분해는 탄소-탄소 결합이 분해됨으로써 복잡한 유기 분자 또는 중질 탄화수소가 더 단순한 분자로 분해되는 화학적 공정이다 (예컨대, 중질 탄화수소가 경질 탄화수소로 분해됨). 전형적으로, 수소화분해 공정은 높은 온도와 촉매를 필요로 한다. 수소화분해는 결합의 분해가 고압 및 첨가된 수소 기체에 의해 보조되는 공정이며, 여기서, 중질 또는 복잡한 탄화수소가 경질의 탄화수소로 감소되거나 전환되는 것 외에도, 첨가된 수소는 또한 석유 공급물에 함유된 탄화수소에 존재하는 적어도 일부의 황 및/또는 질소를 제거하기 위해 작용할 수 있다.
한 양상에서, 본 발명은 초임계수를 반응 매체, 촉매, 및 석유를 개량하기 위한 수소의 공급원으로서 사용한다. 물의 임계점은 대략 374℃ 및 22.06 MPa의 반응 조건에서 얻어진다. 상기 조건을 넘으면, 물의 액체 및 기체상 경계가 사라지며, 유체는 유체 및 기체 물질의 특징을 모두 갖는다. 초임계수는 유체와 같이 가용성 물질을 용해시킬 수 있고 기체와 같이 우수한 확산성을 갖는다. 온도 및 압력의 조절은 초임계수의 특성이 더욱 액체 또는 기체와 유사해지도록 지속적으로 "조정"할 수 있다. 초임계수는 또한 준-임계수에 비해 증가된 산성도, 감소된 밀도 및 더 낮은 극성을 가지며, 이에 의해 물에서 수행될 수 있는 화학의 가능한 범위를 크게 확장시킨다. 특정 구체예에서, 온도 및 압력을 제어함으로써 얻을 수 있는 다양한 특성으로 인해, 초임계수는 유기 용매를 필요로 하지 않으며 유기 용매 없이 사용될 수 있다.
초임계수는 다양한 예상치못한 특성들을 가지며, 초임계 경계 이상에 도달하게 되면, 준임계수와 매우 상이하다. 초임계수는 유기 화합물에 대한 매우 높은 용해성을 가지며 기체와의 무한한 혼화성을 지닌다. 또한, 근-임계수(즉, 물의 임계점에 매우 근접하나, 이를 넘지 않는 온도 및 압력에서의 물)는 매우 높은 해리 상수를 갖는다. 이는 근-임계 조건에서 물이 매우 산성임을 의미한다. 이러한 높은 산성도는 다양한 반응을 위한 촉매로서 사용될 수 있다. 더욱이, 라디칼 화학종은 케이지 효과(cage effect)를 통해 초임계수에 의해 안정화될 수 있다(즉, 하나 이상의 물 분자가 라디칼을 둘러싸고 있는 조건이 라디칼의 상호작용을 방지함). 라디칼 화학종의 안정화는 라디칼-간 축합반응을 방지하고 따라서, 본 발명에서 생성되는 코크스의 양을 줄이는 것으로 생각된다. 예를 들면, 코크스 생성은 가령 폴리에틸렌에서와 같은 라디칼-간 축합반응을 통해 유발될 수 있다. 특정 구체예에서, 초임계수는 스팀 재형성 반응 및 물-기체 시프트 반응을 통해 수소를 생성할 수 있고, 이 수소는 이후 석유를 개량하기 위해 사용될 수 있다.
본 발명은 석유 공급원료를 개량하는 방법을 개시한다. 본 발명은 수소의 외부적 공급 없이 및 별도로 외부에서 제공되는 촉매에 대한 필요 없이 수열 개량을 위해 초임계수를 사용하는 것을 포함한다. 본 명세서에 사용된, "개량" 또는 "개량된" 석유 또는 탄화수소는 석유 또는 탄화수소 원유에 비해서 더 높은 API 비중, 더 높은 중급 증류물 수율, 더 낮은 황 함량, 더 낮은 질소 함량, 또는 더 낮은 금속 함량 중 적어도 한 가지를 갖는 석유 또는 탄화수소 생성물을 지칭한다.
석유 공급원료는 불순물 (가령, 예를 들어, 원소 황, 황을 함유하는 화합물, 질소 및 금속, 및 이들의 조합) 및/또는 중질 탄화수소를 포함하는 임의의 탄화수소 크루드(crude)를 포함할 수 있다. 본 명세서에 사용된, 중질 탄화수소는 약 360℃ 초과의 비등점을 가지는 탄화수소를 지칭하며, 방향족 탄화수소와 더불어 알칸 및 알켄을 포함할 수 있다. 일반적으로, 석유 공급원료는 전체 범위 원유, 최상급 원유, 오일 정제소로부터의 생성물 스트림, 정제 스팀 분해 공정으로부터의 생성물 스트림, 액화 석탄, 오일 또는 타르 샌드로부터 회수된 액체 생성물, 역청, 오일 셰일, 아스팔텐, 생물질로부터 유래한 탄화수소(가령 예를 들면, 바이오디젤), 등으로부터 선택될 수 있다.
도 1을 참조하면, 상기 공정은 석유 공급원료(102)를 제공하는 단계를 포함한다. 임의로, 상기 공정은 석유 공급원료(102)를 가열하고 가압하여 가열되고 가압된 석유 공급원료를 제공하는 단계를 포함한다. 석유 공급원료(102)를 공급하기 위해 펌프(미도시됨)가 제공될 수 있다. 특정 구체예에서 석유 공급원료(102)는 최대 약 250℃, 대안적으로 약 50 내지 200℃, 또는 대안적으로 약 100 내지 175℃의 온도까지 가열된다. 특정한 다른 구체예에서, 석유 공급원료(102)은 약 10℃만큼 낮은 온도에서 제공될 수 있다. 바람직하게는, 석유 공급원료를 가열하는 단계는 제한적이며, 석유 공급원료가 가열되는 온도는 가능한한 낮게 유지된다. 석유 공급원료(102)는 대기압 초과, 바람직하게는 약 15 MPa 이상, 대안적으로 약 20 MPa 초과, 또는 대안적으로 약 22 MPa 초과의 압력까지 가압될 수 있다.
상기 공정은 또한 물 공급물(104)을 제공하는 단계를 포함한다. 물 공급물(104)은 바람직하게는 물의 초임계점 부근 또는 이를 초과하는 온도 및 압력까지 가열되고 가압되어 (즉, 약 374℃ 부근 또는 이를 초과하는 온도까지 가열되고 약 22.06 MPa 부근 또는 이를 초과하는 압력까지 가압되어), 가열되고 가압된 물 공급물을 제공한다. 특정 구체예에서, 물 공급물(104)은 약 23 내지 30 MPa의 압력까지, 대안적으로 약 24 내지 26 MPa의 압력까지 가압된다. 물 공급물(104)은 약 250℃ 초과, 임의로 약 250 내지 650℃, 대안적으로 약 300 내지 600℃, 또는 약 400 내지 550℃의 온도까지 가열된다. 특정 구체예에서, 물은 물이 그의 초임계 상태가 되게 하는 온도 및 압력까지 가열되고 가압된다.
석유 공급원료(102) 및 물 공급물(104)은 스트립 가열기, 수중 가열기, 관형 로(furnace), 열 교환기, 및 유사 장치를 포함하지만, 이에 제한되지 않는 공지된 수단을 이용하여 가열될 수 있다. 전형적으로, 석유 공급원료 및 물 공급물은 비록 두 공급스트림을 모두 가열하기 위해 단일 가열기가 사용될 수 있음이 이해되지만, 개별적인 가열 장치를 이용하여 가열된다. 특정 구체예에서, 도 2에 나타난 바와 같이, 물 공급물(104)은 열 교환기(114)를 이용하여 가열된다. 석유 공급원료(102) 및 물 공급물(104)의 부피 비는 약 1:10 내지 10:1, 임의로 약 1:5 내지 5:1, 또는 임의로 약 1:2 내지 2:1일 수 있다.
석유 공급원료(102) 및 물 공급물(104)은 석유 및 물 공급물을 혼합하기 위한 수단(106)에 공급되어 조합된 석유 및 물 공급 스트림(108)을 생성하고, 여기서 물 공급물은 물의 초임계점 부근 또는 이를 초과하는 온도 및 압력에서 공급된다. 석유 공급원료(102) 및 물 공급물(104)은 예를 들면, 밸브, 티 피팅(tee fitting) 등과 같은 공지된 수단에 의해 조합될 수 있다. 임의로, 석유 공급원료(102) 및 물 공급물(104)은 물의 초임계점 위의 온도 및 압력으로 유지되는 더 큰 고정 용기에서 조합될 수 있다. 임의로, 석유 공급원료(102) 및 물 공급물(104)은 기계적 교반기, 등과 같은 혼합 수단을 비롯한 더 큰 용기에 공급될 수 있다. 특정 바람직한 구체예에서, 석유 공급원료(102) 및 물 공급물(104)은 이들이 조합되는 장소에서 충분히 혼합된다. 임의로, 혼합 수단 또는 고정 용기는 고압을 유지하기 위한 수단 및/또는 조합된 석유 및 물 스트림을 가열하기 위한 수단을 포함할 수 있다.
가열되고 가압된 조합된 석유 및 물 공급 스트림(108)은 수송 라인을 통해 수열 반응기(110)에 주입된다. 수송 라인은 예를 들면, 관 또는 노즐과 같이, 적어도 물의 초임계점 위의 온도 및 압력을 유지하기 위해 작동가능한 공급 스트림을 공급하기 위한 임의의 공지된 수단일 수 있다. 수송 라인은 단열될 수 있거나 임의로 열 교환기를 포함할 수 있다. 바람직하게는, 수송 라인은 15 MPa 초과, 바람직하게는 20 MPa 초과의 압력에서 작동되도록 구성된다. 수송 라인은 수열 반응기(110)의 배치에 따라 수평이거나 수직일 수 있다. 수송 라인 내에서의 가열되고 가압된 반응 공급물(108)의 체류 시간은 약 0.1 초 내지 10 분, 임의로 약 0.3 초 내지 5 분, 또는 임의로 약 0.5 초 내지 1 분일 수 있다.
수열 반응기(110)는 본 발명에서 요구되는 고온 및 고압 적용을 위해 적합한 물질로 구성되고 교반기, 등이 임의로 구비된 공지된 유형의 반응기, 가령, 관 유형 반응기, 용기 유형 반응기일 수 있다. 수열 반응기(110)는 수평, 수직이거나 수평적 및 수직적 반응존을 가지는 조합된 반응기일 수 있다. 수열 반응기(110)는 바람직하게는 고체 촉매를 포함하지 않는다. 수열 반응기(110)의 온도는 약 380 내지 550℃, 임의로 약 390 내지 500℃, 또는 임의로 약 400 내지 450℃로 유지될 수 있다. 수열 반응기(110)는 당해 분야에 공지된 바와 같이 예를 들면, 스트립 가열기, 수중 가열기, 관형 로, 등과 같은 하나 이상의 가열 장치를 포함할 수 있다. 수열 반응기(110) 내에서 가열되고 가압된 조합된 공급 스트림의 체류 시간은 약 1 초 내지 120 분, 임의로 약 1 분 내지 60 분, 또는 임의로 약 2 분 내지 30 분일 수 있다.
초임계수 및 석유 공급물 (즉, 조합된 석유 및 물 공급 스트림)의 반응은 다음 중 적어도 하나를 달성하기 위해 가동된다: 열적 반응에 의한 석유 공급물의 분해, 이성질화, 알킬화, 수소화, 탈수소화, 불균등화, 이량체화 및/또는 올리고머화. 이론에 구속됨 없이, 초임계수는 탄화수소를 스팀 개질(steam reform)하여, 이를 통해 수소, 일산화탄소, 이산화탄소 탄화수소, 및 물을 생성시키는 기능을 하는 것으로 생각된다. 이러한 과정은 반응기 내 수소의 주요 공급원이며, 이를 통해 외부적 수소를 공급할 필요를 없앤다. 따라서, 바람직한 구체예에서, 석유 공급물의 초임계 열 처리는 수소의 외부적 공급원 없이 그리고 외부에서 공급된 촉매 없이 이루어진다. 탄화수소의 분해는 메탄, 에탄 및 프로판을 포함하지만 이에 제한되지 않는 더 작은 탄화수소 분자를 생성한다.
수열 반응기(110)는 석유 공급원료(102)에 존재하는 탄화수소보다 더 경질인 탄화수소, 바람직하게는, 메탄, 에탄 및 프로판, 그리고 물을 포함하는 1차 생성물 스트림을 생성한다. 앞서 언급한 대로, 더 경질인 탄화수소는 분해되어, 석유 공급물(102)에 존재하는 더 중질인 탄화수소보다 더 낮은 비등점을 가지는 분자가 된 탄화수소를 지칭한다.
1차 생성물 스트림(112)은 이후 추가적인 처리를 위해 후-처리 장치(132)에 공급될 수 있다. 특정 구체예에서, 후-처리 장치(132)는 지방족 황 화합물을 비롯한 황을 제거하기 위해 가동된다. 후-처리 장치(132)는 1차 생성물 스트림에 존재하는 임의의 탄화수소의 추가적인 분해 또는 정제를 야기하는 임의의 공정일 수 있고, 상기 후-처리 장치는 임의의 공지된 반응기 유형 가령 예를 들면, 관 유형 반응기, 교반 수단이 구비된 용기 유형 반응기, 고정층, 충전층, 슬러리층 또는 유동층 반응기, 또는 유사 장치일 수 있다. 임의로, 후-처리 장치(132)는 수평 반응기, 수직 반응기, 또는 수평 및 수직 반응존을 모두 가지는 반응기일 수 있다. 임의로, 후 처리 장치(132)는 후-처리 촉매를 포함한다.
후 처리 장치(132) 내에서 유지되는 온도는 바람직하게는 약 50°내지 350℃, 임의로 약 100°내지 300℃, 또는 임의로 약 120°내지 200℃이다. 대안적인 구체예에서, 후 처리 장치(132)는 물의 임계점 미만인 온도 및 압력으로 유지되지만 (즉, 후-처리 장치(132)는 약 374℃ 미만의 온도 및 약 22 MPa 미만의 압력으로 유지됨), 물이 액체 상으로 유지되도록 유지된다.
특정 바람직한 구체예에서, 후-처리 장치(132)는 외부적 열 공급에 대한 필요 없이 가동된다. 특정 구체예에서, 1차 생성물 스트림(112)은 스트림의 1차적인 냉각 또는 감압없이 후-처리 장치(132)에 직접 공급된다. 특정 구체예에서, 1차 생성물 스트림(112)은 혼합물의 1차적인 분리없이 후-처리 장치(132)에 공급된다. 후-처리 장치(132)는 물에 노출시 바람직하게는 비교적 천천히 비활성화하는 내-수성 촉매를 포함한다. 따라서, 1차 생성물 스트림(112)은 후-처리 장치(132)에서 반응이 진행되기 위한 충분한 열을 유지한다. 바람직하게는, 물이 후-처리 장치(132) 내 촉매의 표면에 흡착되지 않을 수 있도록 충분한 열이 유지된다.
다른 구체예에서, 후-처리 장치(132)는 후-처리 촉매를 포함하는 반응기이고 수소 기체의 외부적 공급을 필요로 하지 않는다. 다른 구체예에서, 후-처리 장치(132)는 후-처리 촉매 및 수소 기체를 주입하기 위한 유입구를 포함하는 수열 반응기이다. 대안적인 구체예에서, 후-처리 장치(132)는 후-처리 촉매를 포함하는 탈황, 탈질소 또는 금속제거 유닛 중에서 선택되며, 이는 1차 생성물 스트림(112)에 존재하는 탄화수소를 탈황, 탈질소, 금속제거 및/또는 수소전환하기에 적합하다. 또다른 구체예에서, 후-처리 장치(132)는 수소 기체 및 후-처리 촉매를 사용하는 수소화탈황 유닛이다. 대안적으로, 특정 구체예에서, 후-처리 장치(132)는 후-처리 촉매를 사용하지 않는 반응기일 수 있다. 특정한 다른 구체예에서, 후-처리 장치(132)는 수소 또는 다른 기체의 외부적 공급 없이 가동된다.
특정 구체예에서, 후-처리 촉매는 탈황 또는 금속제거를 위해 적합할 수 있다. 특정 구체예에서, 후-처리 촉매는 황 및/또는 질소 함유 화합물이 황 또는 질소를 포함하지 않는 화합물로 전환되지만, 동시에 황을 황화수소로서 및/또는 질소를 암모니아로서 배출할 수 있는 활성 부위를 제공한다. 후-처리 장치(132)가 물이 그의 초임계 상태 또는 그 부근에 있도록 가동되는 다른 구체예에서, 후-처리 촉매는 탄소-황 및 탄소-질소 결합을 분해하는 것뿐 아니라 불포화 탄소-탄소 결합의 포화를 위해 유용한 수소를 포획할 수 있거나, 탄화수소 분자간 수소 전달을 촉진할 수 있는 활성 부위를 제공할 수 있다.
후-처리 촉매는 지지체 물질 및 활성 화학종을 포함할 수 있다. 임의로, 후-처리 촉매는 또한 촉진제 및/또는 개질제를 포함할 수 있다. 바람직한 구체예에서, 후-처리 촉매 지지체 물질은 산화 알루미늄, 산화 규소, 이산화 티타늄, 산화 마그네슘, 산화 이트륨, 산화 란탄, 산화 세륨, 산화 지르코늄, 활성탄, 또는 유사 물질, 또는 이들의 조합으로 이루어진 군에서 선택된다. 후-처리 촉매 활성 화학종은 IB족, IIB족, IVB족, VB족, VIB족, VIIB족 및 VIIIB족 금속으로 이루어진 군에서 선택된 1 내지 4가지 금속을 포함한다. 특정 바람직한 구체예에서, 후-처리 촉매 활성 화학종은 코발트, 몰리브덴 및 니켈로 이루어진 군에서 선택된다. 임의로, 후-처리 촉매 촉진제 금속은 IA족, IIA족, IIIA족 및 VA족 원소로 이루어진 군에서 선택된 1 내지 4가지 원소 중에서 선택된다. 예시적인 후-처리 촉매 촉진제 원소는 붕소 및 인을 포함한다. 임의로, 후-처리 촉매 개질제는 VIA족 및 VIIA족 원소로 이루어진 군에서 선택된 1 내지 4가지 원소를 포함한다. 지지체 물질 및 활성 화학종, 그리고 어느 한 임의적 촉진제 또는 개질제 원소를 포함하는 후-처리 촉매의 전반적인 형상은 바람직하게는 펠렛 모양, 구형, 압출형, 플레이크, 패브릭, 벌집형 등, 및 이들의 조합이다.
한 구체예에서, 임의의 후-처리 촉매는 활성탄 지지체 상에 산화 몰리브덴을 포함할 수 있다. 한 예시적인 구체예에서, 후-처리 촉매는 다음과 같이 제조될 수 있다. 적어도 1000 m2/g, 바람직하게는 약 1500 m2/g의 표면적을 가지는 활성탄 지지체를 사용하기 전에 적어도 약 110℃의 온도에서 건조한다. 약 0.033g/mL의 농도를 가지는 헵타몰리브덴산 암모늄 4수화물의 40 mL 용액에 대략 40g의 건조 활성탄을 부가하고, 혼합물을 대기 조건 하에서 실온에서 교반하였다. 교반 후에, 샘플을 대기 조건 하에서 약 110℃의 온도에서 건조하였다. 건조된 샘플을 이후 대기 조건 하에서 약 320℃의 온도에서 약 3시간 동안 열처리하였다. 수득된 생성물을 분석하였고 대략 10% 로딩의 MoO3, 및 약 500 내지 1000 m2/g의 비표면적을 가지는 것이 나타났다.
특정 구체예에서, 촉매는 시판되는 촉매일 수 있다. 예시적인 구체예에서, 촉매는 산화 금속이다. 특정 바람직한 구체예에서, 촉매는 많은 시판되는 수소화탈황 촉매에 있어서 전형적인 바와 같이, 완전히 황화된 형태가 아니다. 한 바람직한 구체예에서, 후-처리 촉매는 따뜻하거나 뜨거운 물(예컨대, 약 40℃ 초과의 온도의 물)에 노출될 경우에 안정하다. 게다가, 특정 구체예에서, 촉매 미분의 발생이 바람직하지 않다고 일반적으로 이해되는 바와 같이, 후-처리 촉매가 높은 충격 강도 및 높은 내마모성을 가지는 것이 바람직하다.
후-처리 장치(132)는 수열 반응기에서 흔히 발생하는, 황화수소(초임계수와의 반응에 의한 석유 공급원료의 탈황 도중 방출됨)와 올레핀 및 디올레핀(초임계수와의 반응에 의한 석유 공급원료의 분해 도중 생성됨)의 재조합 반응의 결과로서 형성될 수 있는 메르캅탄, 티올, 티오에테르, 및 다른 유기-황 화합물을 특정하게 제거하도록 구성되고 가동될 수 있다. 상기 재조합 반응으로부터 새로이 형성된 황 화합물의 제거는 촉매, 및 특정 구체예에서는, 물 (초임계수)의 보조를 받는, 탄소-황 결합의 해리를 거칠 수 있다. 후 처리 장치가 1차 생성물 스트림(112)로부터의 황을 제거하기 위해 구성되고 후 처리 장치(132)가 수열 반응기(110) 뒤에 배치된 구체예에서, 황화수소와 같은 적어도 일부의 더 경질인 황 화합물이 제거될 수 있고, 이를 통해 후 처리 촉매의 가동 수명이 연장될 수 있다.
특정 구체예에서, 후-처리 장치(132)에 대한 어떠한 외부적 수소 기체의 공급도 필요하지 않다. 대안적으로, 수소 기체의 외부적 공급이 후-처리 장치(132)에 공급된다. 다른 구체예에서, 수소 기체는 초임계수의 제조의 부산물로서 생성되며 1차 생성물 스트림(112)의 구성성분으로서 후-처리 장치(132)에 공급된다. 비록 특정 구체예에서, 생성된 수소 기체의 양은 비교적 적을 수 있지만, 수소 기체는 중심 수열 반응기에서 스팀 재형성 (탄화수소 원유(CxHy)가 물(H2O)과 반응하여 일산화탄소(CO) 또는 이산화탄소(CO2) 및 수소 기체(H2)를 생성함), 또는 물-기체 시프트 반응 (여기서 CO 및 H2O가 반응하여 CO2 및 H2를 형성함)에 의해 생성될 수 있다.
특정 구체예에서, 수열 반응기(110)를 떠나는 1차 생성물 스트림(112)은 물 재활용 스트림 및 탄화수소 생성물 스트림으로 분리될 수 있고, 탄화수소 생성물 스트림은 이후 추가적인 처리를 위해 후 처리 장치(132)에 공급될 수 있다.
후 처리 장치(132) 내 온도는 단열재, 가열 장치, 열 교환기, 또는 이들의 조합을 이용하여 유지될 수 있다. 단열재를 사용하는 구체예에서, 단열재는 플라스틱 폼(foam), 섬유 유리 블록, 섬유 유리 패브릭 및 당해 분야에 공지된 다른 것들 중에서 선택될 수 있다. 가열 장치는 스트립 가열기, 수중 가열기, 관형 로, 및 당해 분야에 공지된 기타 장치 중에서 선택될 수 있다. 도 2를 참조하여, 열 교환기(114)가 사용되는 특정 구체예에서, 열 교환기는 냉각된 처리된 스트림(130)이 생성되고 후 처리 장치(132)에 공급되도록 가압된 석유 공급원료(102), 가압된 물(104), 가압되고 가열된 석유 공급원료, 또는 가압되고 가열된 석유 물과 조합되어 사용될 수 있다.
특정 구체예에서, 후-처리 장치(132)에서 1차 생성물 스트림(112)의 체류 시간은 약 1 초 내지 90 분, 임의로 약 1 분 내지 60 분, 또는 임의로 약 2 분 내지 30 분일 수 있다. 후-처리 장치 공정은 정상-상태 공정으로서 가동될 수 있거나, 대안적으로 일괄식(batch) 공정으로서 가동될 수 있다. 후-처리 공정이 일괄식 공정인 특정 구체예에서, 둘 이상의 후-처리 장치가 나란히 사용될 수 있고, 이를 통해 공정의 연속적인 진행을 가능하게 한다. 촉매의 비활성화는 촉매 표면 상에의 탄화수소의 강한 흡착, 물 내로의 용해로 인한 촉매의 손실, 활성 상(phase)의 소결에 의해, 또는 다른 수단에 의해 야기될 수 있다. 재생은 연소에 의해 그리고 촉매에 손실 부분을 첨가함으로써 달성될 수 있다. 특정 구체예에서, 재생은 초임계수를 이용하여 달성될 수 있다. 후-처리 촉매의 비활성화가 비교적 빠른 특정 구체예에서, 공정을 연속적으로 가동시키기 위해 복수의 후 처리 장치가 사용될 수 있다 (예를 들면, 하나의 후 처리 장치를 재생에, 하나의 후 처리 장치를 가동에). 병행된 후-처리 장치의 사용은 공정이 가동되는 동안 후-처리 장치에서 사용되는 후-처리 촉매가 재생될 수 있게 한다.
후 처리 장치(132)는 탄화수소(122) 및 물(124)을 포함할 수 있는 2차 생성물 스트림(134)을 제공한다. 2차 생성물 스트림(134)이 탄화수소(122) 및 물(124)을 모두 포함하는 구체예에서, 2차 생성물 스트림은 탄화수소 및 물을 분리하기에 적합한 분리 유닛(118)으로 공급되어 이를 통해 재사용하기에 적절한 물 스팀 및 탄화수소 생성물 스트림을 생성할 수 있다. 특정 구체예에서, 후 처리 장치(132)는 또한 탄화수소 증기 스트림(120)을 생성할 수 있고, 상기 스트림은 또한 물(124)과 액체 탄화수소(122)로부터 분리될 수 있다. 증기 생성물은 메탄, 에탄, 에틸렌, 프로판, 프로필렌, 일산화탄소, 수소, 이산화탄소, 및 황화수소를 포함할 수 있다. 특정 구체예에서, 탄화수소 생성물 스트림(134)은 바람직하게는 더 적은 함량의 적어도 하나의 황, 황 함유 화합물, 질소 함유 화합물, 금속 및 금속 함유 화합물을 가지며, 이들은 후-처리 장치(132)에 의해 제거되었다. 다른 구체예에서, 탄화수소 생성물 스트림(122)은 더 높은 농도의 경질 탄화수소를 갖는다 (즉, 후-처리 장치(132)는 처리된 스트림(112)에 존재하는 적어도 일부의 중질 탄화수소를 분해하기 위해 가동된다). 특정 구체예에서, 후 처리 장치는 존재하는 특정한 불안정한 탄화수소를 분해하는 것이 가능하여, 이를 통해 경질 분획 탄화수소의 증가를 통해 탄화수소 생성물 스트림의 비등점을 감소시킨다.
특정 구체예에서, 1차 생성물 스트림(112)을 후 처리 장치(132)에 공급하기 전에, 1차 생성물 스트림은 냉각 수단(114)으로 공급되어 냉각된 처리된 스트림(130)을 생산할 수 있다. 예시적인 냉각 장치는 칠러, 열 교환기, 또는 당해 분야에 공지된 다른 유사 장치 중에서 선택될 수 있다. 특정 바람직한 구체예에서, 냉각 장치는 열 교환기(114)일 수 있고, 여기서 처리된 스트림이 냉각되고 석유 공급원료, 가압된 석유 공급원료, 물 공급물, 가압된 물 공급물, 가압된, 가열된 석유 공급원료, 또는 가압되고 가열된 석유 물이 가열되도록 1차 생성물 스트림(112) 및 석유 공급원료, 가압된 석유 공급원료, 물 공급물, 가압된 물 공급물, 가압되고 가열된 석유 공급원료 또는 가압되고 가열된 석유 물(104) 중 어느 하나가 열 교환기에 공급된다. 특정 구체예에서, 냉각된 1차 생성물 스트림(130)의 온도는 약 5 내지 150℃, 임의로 약 10 내지 100℃, 또는 임의로 약 25 내지 70℃이다. 특정 구체예에서, 열 교환기(114)는 각각 공급 석유 및 물 스트림(102) 및/또는 (104)의 가열에서, 그리고 1차 생성물 스트림(112)의 냉각에서 사용될 수 있다.
특정 구체예에서, 냉각된 1차 생성물 스트림(130)은 감압되어 감압된 1차 생성물 스트림을 생성할 수 있다. 생성물 라인을 감압하기 위한 예시적인 장치는 당해 분야에 공지된 바와 같이, 압력 조절 밸브, 모세관, 또는 유사 장치 중에서 선택될 수 있다. 특정 구체예에서, 감압된 1차 생성물 스트림은 약 0.1 MPa 내지 0.5 MPa, 임의로 약 0.1 MPa 내지 0.2 MPa의 압력을 가질 수 있다. 감압된 1차 생성물 스트림(134)은 이후 분리기(118)에 공급되고 분리되어 기체(120) 및 액체 상 스트림을 생성할 수 있고, 액체 상 탄화수소 함유 스트림은 분리되어 물 재사용 스트림(124) 및 탄화수소 함유 생성물 스트림(122)을 생성할 수 있다.
특정 구체예에서, 후 처리 장치(132)는 냉각기 및 감압 장치 둘 다의 상류에 배치될 수 있다. 대안적인 구체예에서, 후 처리 장치(132)는 냉각기의 하류 및 감압 장치의 상류에 배치될 수 있다.
본 발명 및 후-처리 장치(132)을 포함시키는 것의 한 가지 장점은 수열 반응기(110)의 전반적인 크기가 감소될 수 있는 점이다. 이는 부분적으로 황 함유 화학종의 제거가 후-처리 장치(132)에서 달성되어, 이를 통해 수열 반응기(110) 내에서 석유 공급원료와 초임계수의 체류 시간이 감소될 수 있다는 사실 때문이다. 부가적으로, 후-처리 장치(132)의 사용은 또한 물의 임계점보다 훨씬 높은 온도 및 압력에서 수열 반응기(110)를 가동시켜야 할 필요성을 없앤다.
실시예 1
전체 범위 아랍산 중질 원유 및 탈이온수를 개별적인 펌프를 이용하여 약 25 MPa의 압력까지 가압한다. 표준 조건에서 원유 및 물의 체적유량은 각각 약 3.1 및 6.2 mL/분이다. 원유 및 물 공급물을 개별적 가열 요소를 이용하여 각각 약 150℃ 및 약 450℃의 온도까지 예열하고, 0.083 인치의 내부 직경을 가지는 단순 티 피팅을 포함하는 혼합 장치에 공급한다. 조합된 원유 및 물 공급 스트림을 물의 임계 온도 위인 약 377℃로 유지한다. 중심 수열 반응기는 수직으로 배향되며 약 200 mL의 내부 부피를 갖는다. 반응기 내 조합된 원유 및 물 공급 스트림의 온도를 약 380℃로 유지한다. 수열 반응기 생성물 스트림을 칠러를 이용하여 냉각하여 대략 60℃의 온도를 가지는 냉각된 생성물 스트림을 생성한다. 냉각된 생성물 스트림을 배압 조절기로 대기압까지 감압시킨다. 냉각된 생성물 스트림을 기체, 오일 및 수상 생성물로 분리한다. 오일 및 물의 총 액체 수율은 약 100 wt%이다. 표 1은 전체 범위 아랍산 중질 원유 및 최종 생성물의 대표적인 특성을 보여준다.
실시예 2
전체 범위 아랍산 중질 원유 및 탈이온수를 펌프를 이용하여 약 25 MPa의 압력까지 가압한다. 표준 조건에서 원유 및 물의 체적 유량은 각각 약 3.1 및 6.2 ml/분이다. 석유 및 물 스트림을 원유가 약 150℃의 온도를 가지고 물이 약 450℃의 온도를 가지도록 개별적인 가열기를 이용하여 예열하고, 0.083 인치의 내부 직경을 가지는 단순 티 피팅인 조합 장치에 공급하여 조합된 석유 및 물 공급 스트림을 생성한다. 조합된 석유 및 물 공급 스트림을 물의 임계 온도 위인 약 377℃의 온도로 유지하고, 약 200 ml의 내부 부피를 가지며 수직으로 배향된 중심 수열 반응기에 공급한다. 수열 반응기 내 조합된 석유 및 물 공급 스트림의 온도는 약 380℃로 유지된다. 1차 생성물 스트림을 수열 반응기로부터 제거하고 칠러를 이용하여 냉각하여 약 200℃의 온도를 가지는 냉각된 1차 생성물 스트림을 생성하고, 상기 스트림을 약 67 mL의 내부 부피를 가지는 수직으로 배향된 관형 반응기인 후 처리 장치에 공급한다. 후 처리 장치의 온도를 약 100℃로 유지한다. 따라서, 후 처리 장치는 1차 생성물 스트림이 흐르는 과정 동안 200℃ 내지 100℃의 온도 구배를 갖는다. 수소 기체는 후-처리 장치에 별도로 공급되지 않는다. 후 처리 반응기는 산화몰리브덴 및 활성탄을 포함하는 구형의 전매등록된 촉매를 포함하며, 상기 촉매는 반건조(incipient wetting) 방법으로 제조할 수 있다. 후 처리 장치는 배압 조절기로 대기압까지 감압된 2차 생성물 스트림을 생성한다. 2차 생성물 스트림을 이후 기체 및 액체 상으로 분리한다. 오일 및 물의 총 액체 수율은 약 100 wt%이다. 2차 생성물 스트림의 액체-상을 해유화제 및 원심분리 머신을 이용하여 오일 및 물 상으로 분리한다. 표 1은 후 처리된 최종 생성물의 대표적인 특성을 보여준다.
실시예 3
전체 범위 아랍산 중질 원유 및 탈이온수를 펌프를 이용하여 약 25 MPa의 압력까지 가압한다. 표준 조건에서 원유 및 물의 체적 유량은 각각 약 3.1 및 6.2 ml/분이다. 석유 및 물 스트림을 원유가 약 150℃의 온도를 가지고 물이 약 450℃의 온도를 가지도록 개별적인 가열기를 이용하여 예열하고, 0.083 인치의 내부 직경을 가지는 단순 티 피팅인 조합 장치에 공급하여 조합된 석유 및 물 공급 스트림을 생성한다. 조합된 석유 및 물 공급 스트림을 물의 임계 온도 위인 약 377℃의 온도로 유지하고 약 200 ml의 내부 부피를 가지고 수직으로 배향된 중심 수열 반응기에 공급한다. 수열 반응기 내 조합된 석유 및 물 공급 스트림의 온도를 약 380℃로 유지한다. 1차 생성물 스트림을 수열 반응기로부터 제거하고 칠러를 이용하여 냉각하여 약 200℃의 온도를 가지는 냉각된 1차 생성물 스트림을 생성하고, 상기 스트림을 약 67 mL의 내부 부피를 가지며 수직으로 배향된 관형 반응기인 후 처리 장치에 공급한다. 후 처리 장치의 온도를 약 100℃로 유지한다. 따라서, 후 처리 장치는 1차 생성물 스트림이 흐르는 과정 동안 200℃ 내지 100℃의 온도 구배를 갖는다. 수소 기체는 후-처리 장치에 별도로 공급되지 않는다. 후 처리 반응기는 촉매가 없다. 후 처리 장치는 배압 조절기로 대기압까지 감압된 2차 생성물 스트림을 생성한다. 2차 생성물 스트림을 이후 기체 및 액체 상으로 분리한다. 오일 및 물의 총 액체 수율은 약 100 wt%이다. 2차 생성물 스트림의 액체-상을 해유화제 및 원심분리 머신을 이용하여 오일 및 물 상으로 분리한다. 표 1은 후 처리된 최종 생성물의 대표적인 특성을 보여준다.
표 1. 공급원료 및 생성물의 특성
총 황 API 비중 증류, T80(℃)
전체 범위 아랍산(Arabian) 중질유 2.94 wt% 황 21.7 716
실시예 1 2.30 wt% 황 23.5 639
실시예 2 1.74 wt% 황 23.7 637
실시예 3 1.72 wt.% 황 23.7 636
표 1에 나타난 바와 같이, 초임계수를 이용하는 수열 반응기로 이루어진 1차 공정은 중량으로 약 22%의 총 황의 감소를 야기한다. 그 반면에, 촉매가 있거나 촉매가 없는 후 처리 장치의 사용은 중량으로 대략 41%의 전반적인 감소에 대하여 중량으로 대략 추가적인 19%의 존재하는 황의 제거를 야기한다. 후 처리 장치는 또한 초임계 수소화처리 단독과 비교할 때 API 비중의 경미한 증가 및 T80 증류 온도의 경미한 감소를 야기한다. API 비중은 (141.5/60℉에서 비중) - 131.5로서 정의된다. 일반적으로, API 비중이 높을수록, 탄화수소는 더 경질이다. T80 증류 온도는 80%의 오일이 증류된 때의 온도로서 정의된다.
특정 구체예에서, 후-처리 장치는 존재하는 촉매 없이 가동될 수 있다. 그러한 경우에, 후-처리는 열 처리 장치처럼 작용하며 여기서 물은 화학적 과정(수열반응(Aquathermolysis)으로 공지됨)을 유발하기 위해 초가열될 수 있다. 물을 이용한 수열반응은 티올의 분해에 있어서 효과적이다.
비록 본 발명이 상세하게 기술되었지만, 본 발명의 원리 및 범위에서 벗어나지 않고 다양한 변화, 치환, 및 변형이 여기에 만들어질 수 있음이 이해되어야 한다. 따라서, 본 발명의 범위는 하기의 청구범위 및 이들의 적절한 법적 균등물에 의해 결정되어야 할 것이다.
단수 형태인 "a", "an" 및 "the"는 문맥에서 달리 분명하게 명시하지 않는 한 복수의 지시 대상을 포함한다.
임의로 또는 임의적으로는 이어서 기술되는 사건 또는 상황이 일어날 수 있거나 일어나지 않을 수 있음을 의미한다. 상기 기재는 사건 또는 상황이 일어나는 경우 및 일어나지 않는 경우를 포함한다.
본 명세서에서 범위는 약 하나의 특정한 값, 및/또는 내지 약 또다른 특정한 값으로 표현될 수 있다. 그러한 범위가 표현된 경우에, 또다른 구체예는 상기 범위 내의 모든 조합을 비롯하여 하나의 특정한 값 및/또는 내지 또다른 특정한 값인 것으로 이해되어야 한다.
본 명세서 전반에 걸쳐, 특허 또는 간행물이 언급되는 경우에, 이들 대상의 개시는 그 전체로, 이들 대상이 본 명세서에서 언급된 내용에 상반되는 경우를 제외하고는, 본 발명이 속하는 분야의 수준을 더 자세히 설명하기 위해 본 명세서 내에 참고 문헌으로 포함되는 것으로 의도된다.

Claims (23)

  1. 다음의 단계를 포함하는 석유 공급원료를 개량하기 위한 방법:
    가압되고 가열된 석유 공급원료를 제공하는 단계, 여기서 상기 석유 공급원료는 약 10℃ 내지 250℃의 온도 및 약 22.06 MPa 이상의 압력으로 유지됨;
    가압되고 가열된 물 공급물을 제공하는 단계, 여기서 상기 물 공급물은 약 250℃ 내지 650℃의 온도 및 약 22.06 MPa 이상의 압력으로 유지됨;
    상기 가압되고 가열된 석유 공급원료와 상기 가압되고 가열된 물 공급물을 조합하여 조합된 석유 및 물 공급 스트림을 형성하는 단계;
    상기 조합된 석유 및 물 공급 스트림을 수열 반응기에 공급하여 1차 생성물 스트림을 생성하는 단계, 여기서 상기 반응기는 380℃ 내지 550℃의 온도로 유지되고, 상기 조합된 석유 및 물 공급 스트림은 조합된 석유 및 물 공급 스트림에 존재하는 탄화수소를 분해하기 위해 가동되는 체류 시간 동안 수열 반응기 내부에 유지됨;
    1차 생성물 스트림을 후-처리 공정으로 송달하여 2차 생성물 스트림을 생성하는 단계, 여기서 상기 후-처리 공정은 약 50℃ 내지 350℃의 온도로 유지됨;
    상기 후 처리 공정으로부터 2차 생성물 스트림을 수집하는 단계, 상기 2차 생성물 스트림은 탄화수소 생성물 및 물을 포함하며, 여기서 탄화수소 생성물은 석유 공급원료에 비해 감소된 황 함량을 가짐.
  2. 제1항에 있어서, 수열 반응기를 물이 초임계 상태에 있도록 하는 온도 및 압력으로 유지하는 단계를 추가로 포함하는 방법.
  3. 제1항 또는 제2항 중 어느 한 항에 있어서, 후-처리 공정은 후-처리 촉매를 추가로 포함하는 방법.
  4. 제3항에 있어서, 후-처리 촉매는 VIB족, 및 VIIIB족 원소로 이루어진 군에서 선택된 활성 화학종을 포함하는 방법.
  5. 제3항 또는 제4항 중 어느 한 항에 있어서, 후-처리 촉매는 탈황 촉매인 방법.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 후-처리 공정을 물이 준-임계 상태에 있도록 하는 온도 및 압력으로 유지하는 단계를 추가로 포함하는 방법.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 후-처리 공정을 약 50 내지 350℃의 온도로 유지하는 단계를 추가로 포함하는 방법.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 조합된 석유 및 물 공급 스트림을 수송 라인을 통해 수열 반응기에 공급하는 단계를 추가로 포함하는 방법이되, 여기서 수송 라인 내에서의 조합된 석유 및 물 공급 스트림의 체류 시간은 약 0.1 초 내지 10 분인 방법.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 수열 반응기 내에서의 석유 공급원료의 개량은 외부적인 수소 기체가 없는 방법.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 수열 반응기 내에서의 석유 공급원료의 개량은 외부적인 촉매가 없는 방법.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 석유 공급물 대 물 공급물의 비는 약 2:1 내지 1:2인 방법.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 수열 반응기 내 조합된 석유 및 물 스트림의 체류 시간은 1 초 내지 120 분인 방법.
  13. 제1항 내지 제11항 중 어느 한 항에 있어서, 수열 반응기 내 조합된 석유 및 물 스트림의 체류 시간은 2 분 내지 30 분인 방법.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서, 수소가 후-처리 장치에 공급되지 않는 방법.
  15. 다음의 단계를 포함하는 석유를 개량하기 위한 방법:
    (1) 가열되고 가압된 석유 공급원료를 제공하는 단계;
    (2) 물 공급물을 제공하는 단계, 여기서 상기 물 공급물은 초임계 상태에 있음;
    (3) 가열되고 가압된 석유 공급원료와 초임계수 공급물을 조합하여 조합된 석유 및 초임계수 공급물을 생성하는 단계;
    (4) 석유 및 초임계수 조합된 공급물을 수열 반응기에 공급하여 1차 생성물 스트림을 생성하는 단계;
    (5) 1차 생성물 스트림을 후-처리 공정 유닛에 공급하여 2차 생성물 스트림을 생성하는 단계; 및
    (6) 2차 생성물 스트림을 개량된 석유 스트림과 물 스트림으로 분리하는 단계, 여기서 상기 개량된 석유 스트림은 석유 공급원료에 비해 감소된 황 함량을 가짐.
  16. 제15항에 있어서, 수열 반응기는 물을 그의 초임계 상태로 유지하기에 충분한 온도 및 압력으로 유지되는 방법.
  17. 제15항 내지 제16항 중 한 항에 있어서, 석유 공급원료와 초임계수의 접촉 시간은 0.1 초 내지 1 분인 방법.
  18. 제15항 내지 제17항 중 한 항에 있어서, 석유 공급원료와 초임계수의 접촉 시간은 0.5 초 내지 10 초인 방법.
  19. 제15항 내지 제18항 중 한 항에 있어서, 수열 반응기는 약 400°를 초과하는 온도로 유지되는 방법.
  20. 제15항 내지 제19항 중 한 항에 있어서, 후 처리 공정 유닛은 약 374℃ 미만의 온도로 유지되는 방법.
  21. 제15항 내지 제20항 중 한 항에 있어서, 수소는 후-처리 장치에 공급되지 않는 방법.
  22. 다음의 단계를 포함하는 석유 공급원료를 개량하기 위한 방법:
    석유 공급원료 및 물 혼합물을 반응존에 제공하는 단계, 여기서 상기 반응존은 물의 초임계점을 대략 초과하는 온도 및 압력으로 유지되며, 상기 반응존은 외부에서 공급된 수소를 포함하지 않음;
    석유 공급물과 초임계수를 반응존에서 1차 반응 시간 동안 접촉되게 하여 1차 반응기 생성물 스트림을 생성하는 단계, 여기서 상기 반응 시간은 적어도 일부의 석유 공급원료를 개량하기 위해 가동될 수 있음;
    1차 반응기 생성물 스트림을 2차 반응기에 공급하고 1차 반응기 생성물 스트림을 탄화수소 개량 촉매와 접촉시켜 개량된 탄화수소를 포함하는 2차 반응기 생성물 스트림을 생성하는 단계, 여기서 상기 2차 반응기는 물의 초임계점 미만의 온도 및 압력으로 유지되며, 여기서 반응 생성물과 촉매는 반응 생성물에 존재하는 적어도 일부의 황 함유 화합물을 제거하기에 충분한 2차 반응 시간동안 접촉됨; 및
    2차 반응기 생성물 스트림을 개량된 탄화수소 생성물 스트림과 물 스트림으로 분리하는 단계.
  23. 다음을 포함하는, 석유 공급원료를 개량하기 위한 시스템:
    석유 공급원료;
    물 공급물;
    상기 석유 공급원료 및 물 공급물을 가열하고 가압하기 위한 수단, 여기서 상기 물 공급물을 가열하고 가압하기 위한 수단은 초임계수를 생성하기 위해 가동될 수 있음;
    1차 수열 반응기, 상기 1차 수열 반응기는 석유 공급원료 및 물 공급물과 유체소통(fluid communication)되며, 물을 그의 초임계 상태로 유지하기 위해 충분한 반응기 온도 및 압력으로 유지하기 위해 가동될 수 있음;
    2차 수열 반응기, 상기 2차 수열 반응기는 1차 수열 반응기의 유출구를 가짐; 및
    2차 수열 반응기의 유출구와 유체소통되는 분리기, 상기 분리기는 물 및 탄화수소 함유 액체를 분리하도록 구성됨.
KR1020137007597A 2010-09-14 2011-09-12 수소화 후에 초임계수 처리에 의해 중질 탄화수소 원료물질로부터 황을 제거하는 방법 KR101877079B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/881,807 US9382485B2 (en) 2010-09-14 2010-09-14 Petroleum upgrading process
US12/881,807 2010-09-14
PCT/US2011/051183 WO2012037011A1 (en) 2010-09-14 2011-09-12 Sulfur removal from heavy hydrocarbon feedstocks by supercritical water treatment followed by hydrogenation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020187018972A Division KR101988813B1 (ko) 2010-09-14 2011-09-12 수소화 후에 초임계수 처리에 의해 중질 탄화수소 원료물질로부터 황을 제거하는 방법

Publications (2)

Publication Number Publication Date
KR20140032335A true KR20140032335A (ko) 2014-03-14
KR101877079B1 KR101877079B1 (ko) 2018-07-10

Family

ID=44658884

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020137007597A KR101877079B1 (ko) 2010-09-14 2011-09-12 수소화 후에 초임계수 처리에 의해 중질 탄화수소 원료물질로부터 황을 제거하는 방법
KR1020187018972A KR101988813B1 (ko) 2010-09-14 2011-09-12 수소화 후에 초임계수 처리에 의해 중질 탄화수소 원료물질로부터 황을 제거하는 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020187018972A KR101988813B1 (ko) 2010-09-14 2011-09-12 수소화 후에 초임계수 처리에 의해 중질 탄화수소 원료물질로부터 황을 제거하는 방법

Country Status (9)

Country Link
US (2) US9382485B2 (ko)
EP (1) EP2616525B1 (ko)
JP (1) JP5784733B2 (ko)
KR (2) KR101877079B1 (ko)
CN (2) CN107880933B (ko)
BR (1) BR112013005885A2 (ko)
ES (1) ES2627489T3 (ko)
MX (1) MX355693B (ko)
WO (1) WO2012037011A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180094971A (ko) * 2015-12-15 2018-08-24 사우디 아라비안 오일 컴퍼니 고품위 코크스 생산을 위한 초임계수 경질화 공정
KR20190133410A (ko) 2018-05-23 2019-12-03 (주)일신오토클레이브 저급원유 스트림의 처리공정
KR20200103805A (ko) * 2018-02-12 2020-09-02 사우디 아라비안 오일 컴퍼니 열수적으로 업그레이드된 중질 오일로부터의 올레핀의 제거

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074111A (ja) * 2012-10-03 2014-04-24 Jgc Corp 炭化水素油の処理方法及び炭化水素油の処理装置
AU2012397689C1 (en) * 2012-12-28 2016-09-29 Mitsubishi Heavy Industries Engineering, Ltd. CO shift catalyst, CO shift reactor, and method for purifying gasification gas
US20160010003A1 (en) * 2013-03-01 2016-01-14 Industrial Process Technologies (Pty) Ltd Method and apparatus for upgrading a hydrocarbon
US20140246195A1 (en) * 2013-03-01 2014-09-04 Conocophillips Company Supercritical boiler for oil recovery
US9914885B2 (en) * 2013-03-05 2018-03-13 Saudi Arabian Oil Company Process to upgrade and desulfurize crude oil by supercritical water
US10144874B2 (en) * 2013-03-15 2018-12-04 Terrapower, Llc Method and system for performing thermochemical conversion of a carbonaceous feedstock to a reaction product
US9505678B2 (en) * 2014-05-12 2016-11-29 Saudi Arabian Oil Company Process to produce aromatics from crude oil
US9926497B2 (en) * 2015-10-16 2018-03-27 Saudi Arabian Oil Company Method to remove metals from petroleum
US10066172B2 (en) 2015-12-15 2018-09-04 Saudi Arabian Oil Company Supercritical water upgrading process to produce paraffinic stream from heavy oil
US10011790B2 (en) * 2015-12-15 2018-07-03 Saudi Arabian Oil Company Supercritical water processes for upgrading a petroleum-based composition while decreasing plugging
KR20180094073A (ko) * 2015-12-15 2018-08-22 사우디 아라비안 오일 컴퍼니 석유의 업그레이드를 위한 초임계 반응기 시스템 및 방법
US10603657B2 (en) 2016-04-11 2020-03-31 Saudi Arabian Oil Company Nano-sized zeolite supported catalysts and methods for their production
US11084992B2 (en) 2016-06-02 2021-08-10 Saudi Arabian Oil Company Systems and methods for upgrading heavy oils
US10106748B2 (en) 2017-01-03 2018-10-23 Saudi Arabian Oil Company Method to remove sulfur and metals from petroleum
US10577546B2 (en) 2017-01-04 2020-03-03 Saudi Arabian Oil Company Systems and processes for deasphalting oil
US10815434B2 (en) * 2017-01-04 2020-10-27 Saudi Arabian Oil Company Systems and processes for power generation
US10752847B2 (en) * 2017-03-08 2020-08-25 Saudi Arabian Oil Company Integrated hydrothermal process to upgrade heavy oil
US10703999B2 (en) 2017-03-14 2020-07-07 Saudi Arabian Oil Company Integrated supercritical water and steam cracking process
US10689587B2 (en) 2017-04-26 2020-06-23 Saudi Arabian Oil Company Systems and processes for conversion of crude oil
KR102472273B1 (ko) 2017-07-17 2022-12-02 사우디 아라비안 오일 컴퍼니 중질유 개질에 이은 증기 분해에 의한 중질유 처리 시스템 및 방법
US10246642B2 (en) 2017-08-25 2019-04-02 Saudi Arabian Oil Company Process to produce blown asphalt
US11021659B2 (en) 2018-02-26 2021-06-01 Saudi Arabia Oil Company Additives for supercritical water process to upgrade heavy oil
US11286434B2 (en) * 2018-02-26 2022-03-29 Saudi Arabian Oil Company Conversion process using supercritical water
US10927313B2 (en) * 2018-04-11 2021-02-23 Saudi Arabian Oil Company Supercritical water process integrated with visbreaker
US10526552B1 (en) 2018-10-12 2020-01-07 Saudi Arabian Oil Company Upgrading of heavy oil for steam cracking process
US11149213B2 (en) 2019-12-27 2021-10-19 Saudi Arabian Oil Company Method to produce light olefins from crude oil
US11141706B2 (en) 2020-01-23 2021-10-12 Saudi Arabian Oil Company Supercritical water and ammonia oxidation system and process
US11162035B2 (en) * 2020-01-28 2021-11-02 Saudi Arabian Oil Company Catalytic upgrading of heavy oil with supercritical water
KR20210121723A (ko) * 2020-03-31 2021-10-08 현대오일뱅크 주식회사 초임계 추출을 이용한 중질유의 탈황 방법
US11384294B1 (en) 2021-01-04 2022-07-12 Saudi Arabian Oil Company Systems and processes for treating disulfide oil
US11466221B2 (en) 2021-01-04 2022-10-11 Saudi Arabian Oil Company Systems and processes for hydrocarbon upgrading
EP4063470A1 (en) * 2021-03-24 2022-09-28 Paul Scherrer Institut Process for catalytic supercritical water gasification equipped with several sulfur removal steps
US20220372378A1 (en) * 2021-05-24 2022-11-24 Saudi Arabian Oil Company Catalyst and process to upgrade heavy oil
CN113214860A (zh) * 2021-06-18 2021-08-06 华东理工大学 用于重油减粘裂化的方法
US11866447B2 (en) 2022-02-03 2024-01-09 Saudi Arabian Oil Company Reactive deasphalting process
US11866653B1 (en) 2022-11-03 2024-01-09 Saudi Arabian Oil Company Processes and systems for upgrading crude oil

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2623596A (en) 1950-05-16 1952-12-30 Atlantic Refining Co Method for producing oil by means of carbon dioxide
NL262029A (ko) * 1960-03-09
US3989618A (en) 1974-05-31 1976-11-02 Standard Oil Company (Indiana) Process for upgrading a hydrocarbon fraction
US3983027A (en) 1974-07-01 1976-09-28 Standard Oil Company (Indiana) Process for recovering upgraded products from coal
US3948754A (en) 1974-05-31 1976-04-06 Standard Oil Company Process for recovering and upgrading hydrocarbons from oil shale and tar sands
US3948755A (en) 1974-05-31 1976-04-06 Standard Oil Company Process for recovering and upgrading hydrocarbons from oil shale and tar sands
US3960706A (en) * 1974-05-31 1976-06-01 Standard Oil Company Process for upgrading a hydrocarbon fraction
US4005005A (en) 1974-05-31 1977-01-25 Standard Oil Company (Indiana) Process for recovering and upgrading hydrocarbons from tar sands
US4118797A (en) 1977-10-25 1978-10-03 Energy And Minerals Research Co. Ultrasonic emulsifier and method
US4243514A (en) 1979-05-14 1981-01-06 Engelhard Minerals & Chemicals Corporation Preparation of FCC charge from residual fractions
US4543190A (en) 1980-05-08 1985-09-24 Modar, Inc. Processing methods for the oxidation of organics in supercritical water
US4448251A (en) 1981-01-08 1984-05-15 Uop Inc. In situ conversion of hydrocarbonaceous oil
US4550198A (en) 1982-11-04 1985-10-29 Georgia Tech Research Institute Purification of terephthalic acid by supercritical fluid extraction
US4446012A (en) 1982-12-17 1984-05-01 Allied Corporation Process for production of light hydrocarbons by treatment of heavy hydrocarbons with water
US4443325A (en) 1982-12-23 1984-04-17 Mobil Oil Corporation Conversion of residua to premium products via thermal treatment and coking
US4483761A (en) 1983-07-05 1984-11-20 The Standard Oil Company Upgrading heavy hydrocarbons with supercritical water and light olefins
US4684372A (en) 1983-11-02 1987-08-04 Petroleum Fermentations N.V. Combustion of viscous hydrocarbons
AU3478884A (en) * 1983-11-03 1985-05-09 Chevron Research Company Two-stage hydroconversion of resid
US4529037A (en) 1984-04-16 1985-07-16 Amoco Corporation Method of forming carbon dioxide mixtures miscible with formation crude oils
US4543177A (en) 1984-06-11 1985-09-24 Allied Corporation Production of light hydrocarbons by treatment of heavy hydrocarbons with water
US4564439A (en) * 1984-06-29 1986-01-14 Chevron Research Company Two-stage, close-coupled thermal catalytic hydroconversion process
US4592220A (en) 1984-08-07 1986-06-03 Rca Corporation System and method for the in press adjustment of workpiece holding force
US4839326A (en) * 1985-04-22 1989-06-13 Exxon Research And Engineering Company Promoted molybdenum and tungsten sulfide catalysts, their preparation and use
US4818370A (en) 1986-07-23 1989-04-04 Cities Service Oil And Gas Corporation Process for converting heavy crudes, tars, and bitumens to lighter products in the presence of brine at supercritical conditions
US4753666A (en) 1986-07-24 1988-06-28 Chevron Research Company Distillative processing of CO2 and hydrocarbons for enhanced oil recovery
US4733724A (en) 1986-12-30 1988-03-29 Texaco Inc. Viscous oil recovery method
US4840725A (en) 1987-06-19 1989-06-20 The Standard Oil Company Conversion of high boiling liquid organic materials to lower boiling materials
US4813370A (en) 1988-04-21 1989-03-21 Capamaggio Scott A Bookmarker
US5110443A (en) 1989-02-14 1992-05-05 Canadian Occidental Petroleum Ltd. Converting heavy hydrocarbons into lighter hydrocarbons using ultrasonic reactor
US4951561A (en) 1989-06-06 1990-08-28 Kraft General Foods, Inc. Apparatus for fluid-solid bed processing
US5096567A (en) 1989-10-16 1992-03-17 The Standard Oil Company Heavy oil upgrading under dense fluid phase conditions utilizing emulsified feed stocks
US4971661A (en) 1989-10-20 1990-11-20 Texaco Chemical Company Purification of propylene oxide using an aqueous acetone extractive distillatin agent
US5851381A (en) 1990-12-07 1998-12-22 Idemitsu Kosan Co., Ltd. Method of refining crude oil
WO1994011054A1 (en) 1992-11-09 1994-05-26 Sipin Anatole J Controlled fluid transfer system
US5496464A (en) 1993-01-04 1996-03-05 Natural Resources Canada Hydrotreating of heavy hydrocarbon oils in supercritical fluids
IT1263961B (it) 1993-02-24 1996-09-05 Eniricerche Spa Procedimento per la deasfaltazione e la demetallazione di residui petroliferi
US5316659A (en) 1993-04-02 1994-05-31 Exxon Research & Engineering Co. Upgrading of bitumen asphaltenes by hot water treatment
US5720551A (en) 1994-10-28 1998-02-24 Shechter; Tal Forming emulsions
FR2727634A1 (fr) 1994-12-06 1996-06-07 Electrolyse L Procede en milieu reducteur de transformation chimique de structures chimiques complexes dans un fluide supercritique
US5674405A (en) 1995-07-28 1997-10-07 Modar, Inc. Method for hydrothermal oxidation
US5725054A (en) 1995-08-22 1998-03-10 Board Of Supervisors Of Louisiana State University And Agricultural & Mechanical College Enhancement of residual oil recovery using a mixture of nitrogen or methane diluted with carbon dioxide in a single-well injection process
US5885440A (en) 1996-10-01 1999-03-23 Uop Llc Hydrocracking process with integrated effluent hydrotreating zone
US5778977A (en) 1997-01-03 1998-07-14 Marathon Oil Company Gravity concentrated carbon dioxide for process
US6268447B1 (en) 1998-12-18 2001-07-31 Univation Technologies, L.L.C. Olefin polymerization catalyst
US6016867A (en) 1998-06-24 2000-01-25 World Energy Systems, Incorporated Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
DE19835479B4 (de) 1998-08-06 2007-06-06 Kjeld Andersen Verfahren zum katalytischen Entfernen von Metallverbindungen aus Schwerölen
JP2000104311A (ja) 1998-09-30 2000-04-11 Matsushita Electric Works Ltd 衛生洗浄装置
JP2000109850A (ja) 1998-10-07 2000-04-18 Mitsubishi Materials Corp 重質油の発電設備用流体燃料への転換方法及びその装置
JP3489478B2 (ja) 1999-03-31 2004-01-19 三菱マテリアル株式会社 超臨界水を用いた炭化水素資源の転換方法
JP2001192676A (ja) 2000-01-11 2001-07-17 Mitsubishi Materials Corp 炭化水素資源等の高効率転換方法
NZ522206A (en) 2000-04-24 2004-05-28 Shell Int Research Method for the production of hydrocarbons and synthesis gas from a hydrocarbon - containing formation
FR2814967B1 (fr) 2000-10-10 2003-11-14 Commissariat Energie Atomique Procede et dispositif pour l'oxydation en eau supercritique de matieres
US6475396B1 (en) 2000-11-14 2002-11-05 Hydroprocessing, Llc Apparatus and method for applying an oxidant in a hydrothermal oxidation process
US20020086150A1 (en) 2000-12-28 2002-07-04 Hazlebeck David A. System and method for hydrothermal reactions-two layer liner
US7081196B2 (en) 2001-05-10 2006-07-25 Mark Cullen Treatment of crude oil fractions, fossil fuels, and products thereof with sonic energy
JP3791363B2 (ja) 2001-08-07 2006-06-28 株式会社日立製作所 重質油の軽質化方法
JP3724438B2 (ja) 2002-03-08 2005-12-07 株式会社日立製作所 超臨界水による重質油の処理方法と処理装置及び重質油処理装置を備えた発電システム
JP3669340B2 (ja) 2002-03-27 2005-07-06 株式会社日立製作所 石油の精製方法と精製装置および発電プラント
JP3669341B2 (ja) * 2002-03-28 2005-07-06 株式会社日立製作所 重質油の改質方法と改質装置
NO20033230D0 (no) 2003-07-16 2003-07-16 Statoil Asa Fremgangsmåte for utvinning og oppgradering av olje
JP4098181B2 (ja) 2003-08-05 2008-06-11 株式会社日立製作所 重質油の処理方法及び重質油類処理システム
US7435330B2 (en) 2003-10-07 2008-10-14 Hitachi, Ltd. Heavy oil reforming method, an apparatus therefor, and gas turbine power generation system
JP4942911B2 (ja) 2003-11-28 2012-05-30 東洋エンジニアリング株式会社 水素化分解触媒、重質油を水素化分解する方法
US7144498B2 (en) 2004-01-30 2006-12-05 Kellogg Brown & Root Llc Supercritical hydrocarbon conversion process
JP4555010B2 (ja) 2004-07-15 2010-09-29 株式会社日立製作所 改質燃料焚きガスタービン及びその運転方法
US7381320B2 (en) 2004-08-30 2008-06-03 Kellogg Brown & Root Llc Heavy oil and bitumen upgrading
JP2006104311A (ja) 2004-10-05 2006-04-20 Mitsubishi Materials Corp 未利用重質油の改質方法及びその装置。
SE528840C2 (sv) 2004-11-15 2007-02-27 Chematur Eng Ab Reaktor och förfarande för överkritisk vattenoxidation
SE529006C2 (sv) 2004-11-15 2007-04-03 Chematur Eng Ab Förfarande och system för överkritisk vattenoxidation av en ström som innehåller oxiderbart material
US7947165B2 (en) 2005-09-14 2011-05-24 Yeda Research And Development Co.Ltd Method for extracting and upgrading of heavy and semi-heavy oils and bitumens
DE102006008809B4 (de) 2006-02-25 2008-04-24 Junghans Microtec Gmbh Mechanischer Raketenzünder
CN101077980A (zh) * 2006-05-26 2007-11-28 华东理工大学 超临界水改质减压渣油制备轻质油的方法
US20070289898A1 (en) 2006-06-14 2007-12-20 Conocophillips Company Supercritical Water Processing of Extra Heavy Crude in a Slurry-Phase Up-Flow Reactor System
US7730958B2 (en) 2006-08-31 2010-06-08 David Randolph Smith Method and apparatus to enhance hydrocarbon production from wells
CN101134908B (zh) * 2006-08-31 2012-07-18 中国石油化工股份有限公司 一种烃油在移动床反应器内非临氢催化吸附脱硫的方法
CN101161625A (zh) 2006-10-12 2008-04-16 高化环保技术有限公司 用均相mc型催化剂和o2/co2混合物制备有机酸或其衍生物的方法
US20080099378A1 (en) 2006-10-31 2008-05-01 Chevron U.S.A. Inc. Process and reactor for upgrading heavy hydrocarbon oils
US20080099376A1 (en) 2006-10-31 2008-05-01 Chevron U.S.A. Inc. Upgrading heavy hydrocarbon oils
US20080099377A1 (en) 2006-10-31 2008-05-01 Chevron U.S.A. Inc. Process for upgrading heavy hydrocarbon oils
US20080099374A1 (en) * 2006-10-31 2008-05-01 Chevron U.S.A. Inc. Reactor and process for upgrading heavy hydrocarbon oils
GB2458054B (en) 2006-12-27 2011-06-08 Univ Case Western Reserve Situated simulation for training, education, and therapy
EP2222819B1 (en) 2007-11-28 2021-04-28 Saudi Arabian Oil Company Process to reduce acidity of crude oil
US20090166261A1 (en) * 2007-12-28 2009-07-02 Chevron U.S.A. Inc. Upgrading heavy hydrocarbon oils
CN101724450B (zh) * 2008-10-28 2013-05-01 中国石油化工股份有限公司 一种重油改质的方法
CN101735852A (zh) * 2008-11-20 2010-06-16 中国石油化工股份有限公司 一种近临界水条件下的重油悬浮床加氢方法
US8394260B2 (en) 2009-12-21 2013-03-12 Saudi Arabian Oil Company Petroleum upgrading process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180094971A (ko) * 2015-12-15 2018-08-24 사우디 아라비안 오일 컴퍼니 고품위 코크스 생산을 위한 초임계수 경질화 공정
KR20200103805A (ko) * 2018-02-12 2020-09-02 사우디 아라비안 오일 컴퍼니 열수적으로 업그레이드된 중질 오일로부터의 올레핀의 제거
KR20190133410A (ko) 2018-05-23 2019-12-03 (주)일신오토클레이브 저급원유 스트림의 처리공정

Also Published As

Publication number Publication date
JP2013540855A (ja) 2013-11-07
CN107880933B (zh) 2019-04-05
BR112013005885A2 (pt) 2016-05-10
US9382485B2 (en) 2016-07-05
KR101877079B1 (ko) 2018-07-10
MX355693B (es) 2018-04-26
US20120061294A1 (en) 2012-03-15
KR20180082611A (ko) 2018-07-18
CN107880933A (zh) 2018-04-06
ES2627489T3 (es) 2017-07-28
EP2616525B1 (en) 2017-03-08
CN103180415A (zh) 2013-06-26
US20160272901A1 (en) 2016-09-22
JP5784733B2 (ja) 2015-09-24
CN103180415B (zh) 2017-09-22
MX2013002831A (es) 2013-06-28
US9957450B2 (en) 2018-05-01
KR101988813B1 (ko) 2019-06-12
EP2616525A1 (en) 2013-07-24
WO2012037011A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
US9957450B2 (en) Petroleum upgrading process
US9951283B2 (en) Petroleum upgrading and desulfurizing process
EP3592829B1 (en) Integrated hydrothermal process to upgrade heavy oil
EP2616174B1 (en) Sulphur removal from hydrocarbon by means of super critical water and hydrogen donor.
KR20150008385A (ko) 석유화학제품을 생산하기 위한 원유의 통합된 수소화공정, 스팀 열분해 및 슬러리 수소화공정
JP2011502204A (ja) 重油および/または石炭残油分解装置の触媒濃度増加方法
EP3665256A1 (en) Process to produce blown asphalt

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant