KR20130123942A - 소수성 모노리스형 실리카 에어로젤의 제조방법 - Google Patents

소수성 모노리스형 실리카 에어로젤의 제조방법 Download PDF

Info

Publication number
KR20130123942A
KR20130123942A KR1020120047484A KR20120047484A KR20130123942A KR 20130123942 A KR20130123942 A KR 20130123942A KR 1020120047484 A KR1020120047484 A KR 1020120047484A KR 20120047484 A KR20120047484 A KR 20120047484A KR 20130123942 A KR20130123942 A KR 20130123942A
Authority
KR
South Korea
Prior art keywords
hydrophobic
solution
wet gel
monolithic silica
alkylsilane
Prior art date
Application number
KR1020120047484A
Other languages
English (en)
Other versions
KR101409884B1 (ko
Inventor
서동진
양기석
최재욱
윤영현
이윤수
하정명
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020120047484A priority Critical patent/KR101409884B1/ko
Priority to US13/684,282 priority patent/US8889749B2/en
Publication of KR20130123942A publication Critical patent/KR20130123942A/ko
Application granted granted Critical
Publication of KR101409884B1 publication Critical patent/KR101409884B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/188Preparation; Treatments not provided for in C07F7/20 by reactions involving the formation of Si-O linkages
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/152Preparation of hydrogels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 알콕사이드 전구체를 이용하여 합성된 모노리스형 실리카 습윤젤을, 담금 용액인 알킬실란 용액에 침적하는 담금법으로 모노리스형 실리카 습윤젤의 표면 및 내부를 소수화하는 단계를 포함하는 소수성 모노리스형 실리카 에어로젤의 제조방법을 제공한다. 본 발명에 따르면, 소량의 알킬실란 화합물 사용으로 경제적이며 짧은 시간에 간단한 방법으로 모노리스형 실리카 에어로젤에 소수성을 부여할 수 있고, 소수성 모노리스형 실리카 에어로젤의 수축률을 감소시키며 반투명한 형태로도 제조가 가능할 뿐만 아니라 친수성 실리카 에어로젤과 비슷한 낮은 열전도도를 유지할 수 있고, 소수성 및 단열성이 우수하여 직접 단열재 판으로 활용 가능하다.

Description

소수성 모노리스형 실리카 에어로젤의 제조방법{PREPARATION METHOD OF HYDROPHOBIC MONOLITH TYPE SILICA AEROGEL}
본 발명은 모노리스형 실리카 에어로젤의 제조방법에 관한 것으로, 보다 구체적으로 알킬실란 용액에의 담금법으로 모노리스형 실리카 습윤젤을 소수화하는 모노리스형 실리카 에어로젤의 제조방법에 관한 것이다.
최근에 초경량 신소재로 주목받고 있는 실리카 에어로젤은 높은 다공성, 넓은 표면적, 낮은 밀도, 투명성, 낮은 열전도도 등의 물리적 성질로 인해 에너지 및 환경 분야에 무한한 응용가능성을 가진 소재이다. 따라서 다공성인 실리카 에어로젤은 단열재, 방음재, 저장소재, 자동차 및 우주항공 초경량 소재, 전기화학 소재, 전자소재 촉매, 촉매의 담체 등의 분야에 응용이 가능하며, 모든 산업의 핵심 소재로 활용이 기대되고 있다.
실리카 에어로젤의 다양한 응용 가능성 중 단열재로 활용하는 방안이 현재까지 상용화 가능성이 가장 기대되는 분야이다. 투명한 실리카 에어로젤은 단열창으로 활용이 가능하고, 불투명한 실리카 에어로젤은 다양한 분야에서 저온이나 고온 단열재로 매우 효과적으로 사용될 수 있다. 투명한 에어로젤은 태양광을 통과시키고 열을 효과적으로 차단하므로 채광용 창 등에 이용하면 에너지 절약형 창호 시스템을 구성할 수 있다. 현재 반투명 실리카 에어로젤 입자가 이중 창 내부에 채워진 스카이라이트(skylight) 천장 창호 시스템이 상업화되어 활용 보급되고 있으나 투명도에 한계가 있고 장기간 사용 시 에어로젤 입자가 중력에 의하여 아래쪽으로 몰리는 문제점이 있다. 모노리스(monolith) 형태의 투명 에어로젤을 이중 창 내부에 채워 단열창으로 활용할 수 있으나 실리카 에어로젤을 창 크기의 모노리스 형태로 제조해야 되므로 경제적인 관점에서 볼 때 특수 용도를 제외하고는 상업화에 어려움이 있다.
모노리스 형태의 친수성 실리카 에어로젤은 투명한 특성과 높은 단열성을 보이나 공기 중의 수분에 민감하여 장기간 노출시 에어로젤 표면 및 내부에 균열이 발생하여 원래의 높은 단열성을 유지하는데 어려움이 있다. 따라서 에어로젤의 상용화를 위해서는 대기 중의 수분 흡수를 방지할 수 있는 방안이 요구된다. 이를 위해 소수성을 갖는 에어로젤 제조 방법에 대한 많은 연구들이 진행되었으며, 다양한 방안들이 제안되었다.
소수성 실리카 에어로젤의 제조 방법은 다음과 같이 제안되었다. 먼저 대한민국 공개특허 제2011-0125773호에서는 테트라에톡시실란 전구체와 알코올 용매를 이용하여 솔용액을 제조하고 헥사메틸디실라젠을 젤 합성과정에 넣어 소수성 실리카 에어로젤을 제조하는 방법이 개시되어 있다. 이러한 제조방법은 실리카 에어로젤에 소수성을 부여하는 일반적인 방법이다. 하지만 실리카 에어로젤의 수축률이 급격히 증가하고 열전도도가 저하되는 결과를 보였다.
미국 특허 제5888425호에서는 실리케이트 리오젤을 제조하고 유기 용매로 치환한 다음 염소를 포함하지 않은 실릴화제를 이용한 알킬기 라디칼 반응으로 소수성처리를 하여 준임계 건조에 의해 소수성 실리카 에어로젤을 제조하는 방법이 개시되어 있다. WO98/02336호에서는 물유리와 산을 반응시켜 리오젤을 형성하고 유기 용매로 치환한 후 디실록산을 이용하여 실릴화 및 건조 공정을 거쳐 소수성 에어로젤을 제조하는 방법이 개시되어 있다. 상기 특허의 소수성 에어로젤의 제조에 있어 유기 용매의 치환 공정이 필수적이며, 소수화 하기 위하여 과량의 실릴화제를 사용하므로 비경제적인면이 있었다.
또한, 기존의 소수성 실리카 에어로젤의 제조 방법에서 소수화 하는 공정은 모노리스형 에어로젤에 적용하는데 어려움이 있고, 혼합용액의 pH를 조절하여 사용하므로 그 과정이 복잡하며, 환류 공정에서 사용되는 고비용의 부탄올과 알킬실란화제가 소수성 처리과정에 계속 사용되므로 비경제적인 방법이다. 또한 소수성 처리를 한 후 고온에서 건조과정을 수행함으로써 수축률이 크고 열전도도가 저하되는 문제가 있었다.
소수성 모노리스형 실리카 에어로젤의 활용도를 높이기 위하여 에어로젤의 변형을 최소화 하여 소수성을 부여한 형태로 제조하는 것이 매우 중요하다. 종래의 기술에서는 과량의 실릴화제를 사용하여 실리카 에어로젤을 소수화 하므로 비경제적이고, 그 과정에서 수축률이 증가하여 단열성이 감소하는 문제점이 발생하였다. 따라서 경제적인 방법으로 소수성을 부여하고 보다 단열 성능이 우수한 소수성 모노리스형 실리카 에어로젤 제조가 필요하다.
대한민국 공개특허 제2011-0125773호 미국 특허 제5888425호 WO 98/02336호
상기와 같은 문제점을 해결하기 위하여 본 발명은 알콕사이드 전구체를 이용하여 합성된 모노리스형 실리카 습윤젤을, 담금 용액인 알킬실란 용액에 침적하는 담금법으로 소수화함으로써, 간단하고 경제적인 방법으로 소수성 및 단열성이 우수한 소수성 모노리스형 실리카 에어로젤의 제조방법을 제공하고, 소수성 모노리스형 실리카 에어로젤의 소수화 정도의 조절방법을 제공하는 것을 목적으로 한다.
상기와 같은 목적을 해결하기 위하여 본 발명은 알콕사이드 전구체를 이용하여 합성된 모노리스형 실리카 습윤젤을, 담금 용액인 알킬실란 용액에 침적하는 담금법으로 모노리스형 실리카 습윤젤의 표면 및 내부를 소수화하는 단계를 포함하는 소수성 모노리스형 실리카 에어로젤의 제조방법을 제공한다.
본 발명의 일실시예에 있어서, 상기 제조방법은 알콕사이드 전구체를 이용하여 모노리스형 실리카 습윤젤을 합성하는 단계; 상기 모노리스형 실리카 습윤젤을 알킬실란 용액에 침적하는 담금법을 이용하여 습윤젤을 소수화하는 단계; 및 상기 소수화된 모노리스형 실리카 습윤젤을 초임계 건조하는 단계;를 포함할 수 있다.
본 발명의 일실시예에 있어서, 상기 알킬실란은 메틸트리메톡시실란, 에틸트리메톡시실란, 프로필트리메톡시실란, 헥사메틸디실란, 메톡시트리메틸실란, 트리에틸에톡시실란, 트리메틸클로로실란, 비닐트리에톡시실란 및 디메틸디에톡시실란으로 이루어진 군에서 선택되는 하나 이상일 수 있다.
본 발명의 일실시예에 있어서, 상기 알킬실란 용액의 용매는 메탄올, 디메틸포름아마이드 및 그 혼합물로 이루어진 군에서 선택되는 것일 수 있다.
본 발명의 일실시예에 있어서, 상기 알킬실란 용액은 3 내지 30부피%의 농도일 수 있다.
본 발명의 일실시예에 있어서, 상기 알킬실란 용액은 25 내지 80℃의 온도로 유지되는 것일 수 있다.
본 발명의 일실시예에 있어서, 상기 알킬실란 용액에의 침적 시간은 6시간 내지 48시간일 수 있다.
본 발명의 소수성 모노리스형 실리카 에어로젤의 제조방법은 소량의 알킬실란 화합물의 사용으로 경제적이며 짧은 시간에 간단한 방법으로 모노리스형 실리카 에어로젤에 소수성을 부여할 수 있다. 또한 소수성 모노리스형 실리카 에어로젤의 수축률을 감소시키며 반투명한 형태로도 제조가 가능할 뿐만 아니라 친수성 실리카 에어로젤과 비슷한 낮은 열전도도를 유지할 수 있고, 소수성 및 단열성이 우수하여 직접 단열재 판으로 활용 가능하다.
도 1은 본 발명의 일 실시예에 따른 소수성 모노리스형 실리카 에어로젤의 제조방법의 플로우차트이다.
도 2는 본 발명의 일 실시예에 따른 소수성 모노리스형 실리카 에어로젤의 물의 접촉각 측정 방법을 나타내는 사진이다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 상세히 설명하기로 한다.
본 발명은 알콕사이드 전구체를 이용하여 합성된 모노리스형 실리카 습윤젤을, 담금 용액인 알킬실란 용액에 침적하는 담금법으로 모노리스형 실리카 습윤젤의 표면 및 내부를 소수화하는 단계를 포함하는 소수성 모노리스형 실리카 에어로젤의 제조방법을 제공한다.
보다 구체적으로, 본 발명의 제조방법은 알콕사이드 전구체를 이용하여 모노리스형 실리카 습윤젤을 합성하는 단계; 상기 모노리스형 실리카 습윤젤을 알킬실란 용액에 침적하는 담금법을 이용하여 습윤젤을 소수화하는 단계; 및 상기 소수화된 모노리스형 실리카 습윤젤을 초임계 건조하는 단계;를 포함할 수 있다.
이하, 본 발명의 제조방법에 대하여 보다 구체적으로 설명한다.
먼저, 알콕사이드 전구체를 이용하여 모노리스형 실리카 습윤젤을 합성한다.
본 발명에서, 상기 알콕사이드 전구체는 이에 한정되는 것은 아니나, 예를 들어 테트라메톡시실란 전구체 및 테트라에톡시실란 전구체 중 하나 이상일 수 있다.
본 발명에서, 상기 모노리스형 실리카 습윤젤은 당업계에 공지된 어떠한 방법으로도 제조될 수 있으며, 예를 들어 공지된 솔-겔 합성방법으로 제조될 수 있으나 이에 한정되는 것은 아니다. 특히 모노리스 형태를 제조하기 위해서는 실리카 솔 용액에 젤화 촉매를 넣은 후 일정시간 혼합 후에 용액 상태에서 일정한 크기의 틀에 넣고 젤화를 진행시켜야 한다. 상기 솔-겔 합성방법은 Sol-Gel Science(C. J. Brinker and G. W. Scherer, New York, Academic press, 1990)를 비롯한 많은 서적 및 문헌에 개시되어 있다.
상기 실리카 습윤젤의 표면은 Si-OH 구조로 형성된다.
그 다음, 상기 모노리스형 실리카 습윤젤을 알킬실란 용액에 침적하는 담금법을 이용하여 습윤젤을 소수화한다.
본 발명에서, 상기 알킬실란은 특별히 한정되는 것은 아니나, 메틸트리메톡시실란, 에틸트리메톡시실란, 프로필트리메톡시실란, 헥사메틸디실란, 메톡시트리메틸실란, 트리에틸에톡시실란, 트리메틸클로로실란, 비닐트리에톡시실란 및 디메틸디에톡시실란으로 이루어진 군에서 선택되는 하나 이상일 수 있다. 바람직하게는 메틸트리메톡시실란, 에틸트리메톡시실란 및 프로필트리메톡시실란으로 이루어진 군에서 선택되는 하나 이상일 수 있다.
상기 알킬실란 용액의 용매는 유기용매이면 특별히 한정되는 것은 아니나, 메탄올, 디메틸포름아마이드 및 그 혼합물(메탄올/디메틸포름아마이드)로 이루어진 군에서 선택되는 것일 수 있다.
또한, 상기 알킬실란 용액은 3 내지 30부피%, 바람직하게는 5 내지 20부피%, 더욱 바람직하게는 15 내지 20부피%의 농도일 수 있다. 알킬실란 용액의 농도가 3부피% 미만이면 친수성을 나타내고, 그 이상 30부피% 까지는 소수성이 지속적으로 증가하나 30부피% 초과이면 값비싼 알킬실란 용액의 사용에 비하여 소수성 향상에 미치는 영향이 미미하다.
상기 알킬실란 용액은 25 내지 80℃, 바람직하게는 25 내지 70℃, 더욱 바람직하게는 50 내지 70℃의 온도로 유지되는 것일 수 있다. 온도가 25℃ 미만이면 일정 시간 내에 소수성을 나타내지 않으며, 80℃ 초과되면 담금 용액의 비등점에 가까우므로 적용할 수 없다.
상기 알킬실란 용액에의 침적 시간 즉, 담금 시간은 6시간 내지 48시간, 바람직하게는 24 내지 48시간일 수 있다. 침적 시간이 6시간 미만이면 소수성을 보이지 못하고, 48시간 초과이면 소수성 향상 효과가 미미하다.
상기 모노리스형 실리카 습윤젤을 알킬실란 용액에 침적하는 과정은 회분식 또는 연속식으로 처리되는 것일 수 있으나, 이에 한정되는 것은 아니다.
상기 모노리스형 실리카 습윤젤을 Rx-Si-(OR)(4-x) (R:알킬기) 구조의 알킬실란 화합물이 용해된 알킬실란 용액에 침적시켜 소수화하면, 습윤젤의 표면에 존재하는 Si-OH 및 알킬실란 화합물의 -OR기가 축합 반응하여 Si-O-Si(Rx(OR)(3-x))을 형성한다. 최종적으로 모노리스형 실리카 습윤젤 표면에 Si-O-Si-R 구조가 생성된다. 따라서 실리카 표면에 -R기가 치환되어 소수성 특성이 나타나게 되는 것이다. 이 때, 실리카 습윤젤의 표면 및 내부가 소수화된다.
본 발명에서 실리카 습윤젤의 합성 단계와 담금법을 이용한 소수화 단계는 분리된다. 양 단계가 동시에 진행되는 경우 본 발명에서 의도하는 효과를 얻을 수 없다. 이는 후술할 실험예 1에서 확인할 수 있다.
그 다음, 상기 소수화된 모노리스형 실리카 습윤젤을 초임계 건조하여 최종적인 소수성 모노리스형 실리카 에어로젤을 얻는다.
상기 제조된 소수성 모노리스형 실리카 에어로젤은 분쇄 후 소수성 실리카 에어로젤 분말로도 응용 가능하다.
즉, 본 발명의 제조방법에 의해 제조된 소수성 모노리스형 실리카 에어로젤은 모노리스형 실리카 습윤젤을 유기용매에 희석된 알킬실란 용액에 침적하여 소수성을 부여시켜 제조하는 것이다. 본 발명에 따른 제조방법의 모식도를 도 1에 나타내었다.
또한, 본 발명의 제조방법은 담금법을 이용하여 모노리스 에어로젤의 표면 전체 또는 표면 일부를 소수화함으로써, 모노리스형 실리카 에어로젤의 소수화 정도를 조절하는 것이 가능하다는 특징이 있다.
본 발명의 제조방법에 의해 제조된 소수성 모노리스형 실리카 에어로젤은 보다 간단하고 경제적인 방법에 의하여 비용이 적게 들 뿐만 아니라, 단열성 및 소수성이 우수하여 단열재판 등 다양한 분야에 활용될 수 있다.
이하의 실시를 통하여 본 발명이 더욱 상세하게 설명된다. 단, 실시예는 본 발명을 예시하기 위한 것으로서 이들만으로 본 발명의 범위가 한정되는 것은 아니다.
[실시예 1] 담금법을 이용한 소수성 모노리스형 실리카 에어로젤
테트라에톡시실란 전구체, 메탄올, 디메틸포름아마이드 용매를 1:6:4 비율의 몰비로 희석하고, 이에 물 4몰 및 암모니아수 0.005몰을 넣어 2시간 동안 가수분해 반응을 진행시켰다. 그 후, 불화암모늄 촉매를 이용하여 젤화 반응을 진행시켜 모노리스형 습윤젤을 제조하였고 24시간 동안 숙성시켰다. 별도의 메틸트리메톡시실란을 메탄올에 희석시켜 10중량%의 농도로 약 3L의 용액을 준비하고, 상기 제조된 습윤젤을 넣어 상온 25℃에서 24시간 동안 유지시키며 표면을 소수성 처리하였다. 처리된 습윤젤의 이산화탄소 치환 과정과 초임계 건조 과정을 거쳐 모노리스형 실리카 에어로젤을 최종적으로 얻을 수 있었다.
[비교예 1] 모노리스형 친수성 실리카 에어로젤
상기 실시예 1의 제조방법과 동일하나, 담금법으로 소수성 처리를 하는 단계를 생략한 것에만 차이가 있게 하였다. 그 결과 모노리스형 친수성의 실리카 에어로젤을 얻을 수 있었다.
상기 방법으로 제조된 모노리스형 친수성 실리카 에어로젤의 수축률, 물 접촉각 및 열전도도를 측정하였다. 각각의 결과를 하기 표 1에 나타내었다.
[비교예 2] co-precursor 방법을 이용한 소수성 모노리스형 실리카 에어로젤
상기 실시예 1의 제조방법과 동일하나, 메틸트리메톡시실란 0.6몰을 습윤젤 합성 과정에 주입하여 실리카 습윤젤의 합성과 담금법을 이용한 소수화 단계를 동시에 진행시키는 co-precursor 방법을 이용한 것에만 차이가 있게 하였다. 그 결과 소수성 모노리스형 실리카 에어로젤을 얻을 수 있었다.
[실험예 1]
상기 실시예 1, 비교예 1 및 2에서 제조한 모노리스형 실리카 에어로젤의 수축률을 측정하였고, 소수성 특성을 확인하기 위하여 물의 접촉각을 측정하였다. 또한 상기 실시예 1, 비교예 1 및 2의 모노리스형 실리카 에어로젤의 열전도도를 측정하기 위하여 열 흐름 미터(Heat Flow Meter) 방법을 이용하였다. 이때, Netzsch사의 Heat Flow Meter(Model: HFM 436/3/1 Lambda)를 이용하여 열전도도를 측정하였으며, 이 기기는 ISO 8301 측정방법과 ASTM C518 측정방법이 적용된 것으로, 0.005~0.5 W/m·K으로 측정할 수 있다. 이를 이용하여 상기 제조된 소수성 모노리스형 실리카 에어로젤의 열전도도를 측정하였다.
각각의 결과를 하기 표 1에 나타내었다. 하기 표 1은 실시예 1, 비교예 1 및 2에서 제조한 모노리스형 실리카 에어로젤의 수축률, 물 접촉각 및 열전도도를 나타낸 것이다.
  수축률(%) 물 접촉각(°) 열전도도(W/m·K)
실시예 1 24.2 121 0.0131
비교예 1 50.1 0 0.0137
비교예 2 54.6 99 0.0171
상기 표 1에서 확인할 수 있는 바와 같이, 담금법을 이용하여 소수성화한 모노리스형 실리카 에어로젤(실시예 1)의 수축률이 낮고 물 접촉각이 크며 열전도도가 우수한 것을 알 수 있었다.
[실시예 2] 담금 용액의 농도에 따른 소수성 모노리스형 실리카 에어로젤
상기 실시예 1의 제조방법과 동일하나, 담금 용액으로서 메틸트리메톡시실란 용액을 농도에 따라 4가지 용액(5, 10, 15, 20중량% 용액)으로 준비하여 각각의 용액을 사용한 담금법으로 모노리스형 실리카 에어로젤을 소수화하는 방법을 실시하였다.
상기 방법으로 제조된 소수성 모노리스형 실리카 에어로젤의 수축률, 물 접촉각 및 열전도도를 측정하였다. 하기 표 2는 담금 용액의 농도 5, 10, 15, 20중량%에서 소수화한 모노리스형 실리카 에어로젤의 수축률, 물 접촉각 및 열전도도를 나타낸 것이다.
담금 용액 농도(%) 수축률(%) 물 접촉각(°) 열전도도(W/m·K)
5 24.7 108 0.0126
10 24.2 121 0.0128
15 24.0 130 0.0131
20 24.2 136 0.0125
 상기 표 2 에서 확인할 수 있는 바와 같이, 담금 용액의 농도 변화에 따라 소수화한 모노리스형 실리카 에어로젤의 경우 수축률과 열전도도가 우수하게 유지되며, 담금 용액의 농도가 증가함에 따라 물 접촉각이 증가하는 것을 알 수 있었다.
[실시예 3]
실시예 3은 10중량% 메틸트리메톡시실란/메탄올의 담금 용액의 온도를 25-70℃(25 및 70℃)으로 변화하고 담금 시간을 변화하여(6 및 24시간) 모노리스형 실리카 에어로젤을 소수화하는 방법으로 실시예 1의 제조방법과 동일하다.
상기 방법으로 제조된 소수성 실리카 에어로젤의 수축률, 물 접촉각, 열전도도를 측정하였다. 하기 표 3은 담금 용액의 온도를 25 및 70℃로 하고 담금 시간을 6 및 24시간으로 변화시켜 소수화한 모노리스형 실리카 에어로젤의 수축률, 물 접촉각 및 열전도도를 나타낸 것이다.
담금 용액 온도(℃) 담금시간(h) 수축률(%) 물 접촉각(°) 열전도도(W/m·K)
RT(25) 24 24.2 121 0.0128
RT(25) 6 24.4 0 0.0128
70 6 18.7 123 0.0125
70 24 20.8 134 0.0133
 상기 표 3 에서 확인할 수 있는 바와 같이, 담금 용액의 온도를 변화하여 소수화한 모노리스형 실리카 에어로젤의 경우 담금 용액의 온도가 70℃로 증가함에 따라 수축률이 작아지고 물 접촉각이 커지며 열전도도가 우수하게 유지되는 것을 알 수 있다. 또한 담금 용액의 온도가 70℃에서 담금 시간을 6시간으로 하였을 경우 수축률이 작아지며, 물 접촉각은 상온에서 담금 시간을 24시간 동안 소수화 처리한 경우보다 큰 것을 알 수 있다. 따라서 담금 용액의 온도를 증가시킬 경우 담금 시간을 단축하여 모노리스형 실리카 에어로젤을 소수화 할 수 있었다.
[실시예 4]
실시예 4는 10중량% 메틸트리메톡시실란/메탄올의 담금 용액을 이용하여 담금 시간을 6-48시간(6, 12, 24, 48시간)으로 변화시켜 모노리스형 실리카 에어로젤을 소수화 하는 방법으로 합성 방법은 실시예 1의 제조방법과 동일하다.
상기 방법으로 제조된 소수성 모노리스형 실리카 에어로젤의 수축률, 물 접촉각 및 열전도도를 측정하였다. 하기 표 4는 담금 용액을 이용하여 6-48 시간(6, 12, 24, 48시간)동안 소수화한 모노리스형 실리카 에어로젤의 수축률, 물 접촉각 및 열전도도를 나타낸 것이다.
담금 시간(h) 수축률(%) 물 접촉각(°) 열전도도(W/m·K)
6 24.4 0 0.0128
12 22.3 103 0.0136
24 24.2 121 0.0128
48 22.6 139 0.0132
상기 표 4 에서 확인할 수 있는 바와 같이, 담금 시간을 변화하여 소수성화한 모노리스형 실리카 에어로젤은 담금 시간이 증가함에 따라 물 접촉각이 증가하며, 수축률과 열전도도가 우수하게 유지되는 것을 알 수 있었다.
[실시예 5]
실시예 5는 알킬실란 용액의 종류에 따라 담금법으로 모노리스형 실리카 에어로젤을 소수화 하는 방법으로 합성 방법은 실시예 1의 제조방법과 동일하다. 알킬실란 용액의 종류는 메틸트리메톡시실란, 에틸트리에메톡시실란, 프로필틸트리메톡시실란 용액으로 하였다.
상기 방법으로 제조된 소수성 모노리스형 실리카 에어로젤의 수축률, 물 접촉각 및 열전도도를 측정하였다. 하기 표 5는 담금 용액의 종류에 따라 소수화한 모노리스형 실리카 에어로젤의 수축률, 물 접촉각 및 열전도도를 나타낸 것이다.
담금 용액 수축률(%) 물 접촉각(°) 열전도도(W/m·K)
메틸트리메톡시실란 24.2 121 0.0128
에틸트리메톡시실란 33.0 122 0.0127
프로필트리메톡시실란 34.2 133 0.0131
 상기 표 5 에서 확인할 수 있는 바와 같이, 담금 용액의 종류를 달리하여 소수화한 모노리스형 실리카 에어로젤에서 메틸트리메톡시실란의 경우 가장 낮은 수축률과 낮은 물 접촉각을 보였으며, 프로필트리메톡시실란의 경우 가장 높은 물 접촉각을 보여주어 높은 소수성을 보였다. 담금 용액의 종류의 변화에 따른 열전도도는 우수하게 유지되는 것을 알 수 있었다.
[실시예 6]
실시예 6은 담금 용매의 종류에 따라 담금법으로 모노리형 실리카 에어로젤을 소수화하는 방법으로 합성 방법은 실시예 1의 제조방법과 동일하다. 용매의 종류는 메탄올, 디메틸포름아마이드, (메탄올/디메틸포름아마이드=6/4, 몰비) 혼합 용매로 하였다.
상기 방법으로 제조된 소수성 모노리스형 실리카 에어로젤의 수축률, 물 접촉각 및 열전도도를 측정하였다. 하기 표 6은 담금 용매의 종류에 따라 소수화한 모노리스형 실리카 에어로젤의 수축률, 물 접촉각 및 열전도도를 나타낸 것이다.
담금 용매 수축률(%) 물 접촉각(°) 열전도도(W/m·K)
메탄올 24.2 121 0.0128
메탄올/디메틸포름아마이드 20.8 126 0.0124
디메틸포름아마이드 18.3 133 0.0124
 상기 표 6 에서 확인할 수 있는 바와 같이, 담금 용매를 변화하여 소수화한 모노리스형 실리카 에어로젤에서 디메틸포름아마이드를 사용할 경우 수축률이 낮아지고 물 접촉각이 증가하였으며, 열전도도는 우수하게 유지되는 것을 알 수 있었다.

Claims (8)

  1. 알콕사이드 전구체를 이용하여 합성된 모노리스형 실리카 습윤젤을, 담금 용액인 알킬실란 용액에 침적하는 담금법으로 모노리스형 실리카 습윤젤을 소수화하는 단계를 포함하는 소수성 모노리스형 실리카 에어로젤의 제조방법.
  2. 제 1항에 있어서,
    상기 제조방법은
    알콕사이드 전구체를 이용하여 모노리스형 실리카 습윤젤을 합성하는 단계;
    상기 모노리스형 실리카 습윤젤을 알킬실란 용액에 침적하는 담금법을 이용하여 습윤젤을 소수화하는 단계; 및
    상기 소수화된 모노리스형 실리카 습윤젤을 초임계 건조하는 단계;를 포함하는 소수성 모노리스형 실리카 에어로젤의 제조방법.
  3. 제 1항에 있어서,
    상기 알킬실란은 메틸트리메톡시실란, 에틸트리메톡시실란, 프로필트리메톡시실란, 헥사메틸디실란, 메톡시트리메틸실란, 트리에틸에톡시실란, 트리메틸클로로실란, 비닐트리에톡시실란 및 디메틸디에톡시실란으로 이루어진 군에서 선택되는 하나 이상인 소수성 모노리스형 실리카 에어로젤의 제조방법.
  4. 제 1항에 있어서,
    상기 알킬실란 용액의 용매는 메탄올, 디메틸포름아마이드 및 그 혼합물로 이루어진 군에서 선택되는 것인 소수성 모노리스형 실리카 에어로젤의 제조방법.
  5. 제 1항에 있어서,
    상기 알킬실란 용액은 3 내지 30부피%의 농도인 소수성 모노리스형 실리카 에어로젤의 제조방법.
  6. 제 1항에 있어서,
    상기 알킬실란 용액은 25 내지 80℃의 온도로 유지되는 것인 소수성 모노리스형 실리카 에어로젤의 제조방법.
  7. 제 1항에 있어서,
    상기 알킬실란 용액에의 침적 시간은 6시간 내지 48시간인 소수성 모노리스형 실리카 에어로젤의 제조방법.
  8. 제 1항에 있어서,
    상기 소수화 단계는 회분식 또는 연속식으로 처리되는 소수성 모노리스형 실리카 에어로젤의 제조방법.
KR1020120047484A 2012-05-04 2012-05-04 소수성 모노리스형 실리카 에어로젤의 제조방법 KR101409884B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120047484A KR101409884B1 (ko) 2012-05-04 2012-05-04 소수성 모노리스형 실리카 에어로젤의 제조방법
US13/684,282 US8889749B2 (en) 2012-05-04 2012-11-23 Preparation method of hydrophobic monolith type silica aerogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120047484A KR101409884B1 (ko) 2012-05-04 2012-05-04 소수성 모노리스형 실리카 에어로젤의 제조방법

Publications (2)

Publication Number Publication Date
KR20130123942A true KR20130123942A (ko) 2013-11-13
KR101409884B1 KR101409884B1 (ko) 2014-06-27

Family

ID=49513050

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120047484A KR101409884B1 (ko) 2012-05-04 2012-05-04 소수성 모노리스형 실리카 에어로젤의 제조방법

Country Status (2)

Country Link
US (1) US8889749B2 (ko)
KR (1) KR101409884B1 (ko)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104927A1 (ko) * 2014-12-23 2016-06-30 주식회사 엘지화학 수분산 에어로젤 및 그 제조 방법
WO2017159968A1 (ko) * 2016-03-16 2017-09-21 주식회사 엘지화학 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔
US10696557B2 (en) 2016-02-16 2020-06-30 Lg Chem, Ltd. Apparatus and method for manufacturing aerogel sheet
US10723629B2 (en) 2016-02-16 2020-07-28 Lg Chem, Ltd. Apparatus of manufacturing aerogel sheet
US10737231B2 (en) 2016-01-19 2020-08-11 Lg Chem, Ltd. Method and apparatus for manufacturing aerogel sheet
CN112320808A (zh) * 2020-10-16 2021-02-05 航天特种材料及工艺技术研究所 一种透明疏水气凝胶的制备方法
US10919772B2 (en) 2015-11-03 2021-02-16 Lg Chem, Ltd. Method for preparing hydrophobic metal oxide-silica composite aerogel, and hydrophobic metal oxide-silica composite aerogel prepared thereby
US10941897B2 (en) 2015-02-13 2021-03-09 Lg Chem, Ltd. Preparation method of silica aerogel-containing blanket and silica aerogel-containing blanket prepared by using the same
KR20210073218A (ko) * 2019-12-10 2021-06-18 한국과학기술연구원 에어로겔 나노 복합체가 코팅된 초발수성 코팅막의 제조방법
US11279622B2 (en) 2016-09-12 2022-03-22 Lg Chem, Ltd. Method for producing silica aerogel and silica aerogel produced thereby
CN115340098A (zh) * 2022-08-15 2022-11-15 中国科学院苏州纳米技术与纳米仿生研究所 高自粘结强度的氧化硅气凝胶材料、其制备方法及应用
US11505657B2 (en) 2016-03-24 2022-11-22 Lg Chem, Ltd. System and rotating blade unit for preparing silica aerogel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130267652A1 (en) * 2012-04-04 2013-10-10 Samsung Electronics Co., Ltd. Methods of hydrophobizing materials with siloxanes containing hydrocarbyliminoalkyl or quaternary ammonium salts
CN104445225B (zh) * 2014-12-11 2016-05-25 常州大学 一种以秸秆为原料低温常压干燥制备二氧化硅气凝胶的方法
MX2017013786A (es) 2015-04-27 2018-03-27 Huntsman Int Llc Materiales porosos a base de isocianato funcionalizado.
CN113213492B (zh) * 2021-05-26 2022-11-22 华北水利水电大学 超疏水二氧化硅气凝胶及其制备方法、超疏水多孔膜及其制备方法和应用
CN115142154A (zh) * 2022-07-26 2022-10-04 西安交通大学 一种二氧化硅纤维气凝胶、其制备方法及其改性方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659155B2 (ja) * 1992-02-03 1997-09-30 松下電工株式会社 疎水性エアロゲルの製造方法
WO1993016125A1 (en) * 1992-02-18 1993-08-19 Matsushita Electric Works, Ltd. Process for producing hydrophobic aerogel
JP2725573B2 (ja) 1993-11-12 1998-03-11 松下電工株式会社 疎水性エアロゲルの製法
DE19502453C1 (de) 1995-01-27 1996-09-05 Hoechst Ag Verfahren zur Herstellung von modifizierten Si0¶2¶- Aerogelen und deren Verwendung
US5938236A (en) 1996-07-17 1999-08-17 Nippon Kayaku Kabushiki-Kaisha Gas generator for an air bag
KR100214248B1 (ko) * 1997-07-08 1999-08-02 현상훈 실리카 에어로겔의 제조 방법
JP2000264620A (ja) * 1999-03-16 2000-09-26 Matsushita Electric Works Ltd 疎水性エアロゲルの製造方法
KR101091860B1 (ko) * 2006-10-10 2011-12-12 한국생산기술연구원 영구적 소수성을 갖는 에어로겔의 제조 방법 및 이로부터 제조된 영구적 소수성을 갖는 에어로겔
KR101147494B1 (ko) 2010-05-14 2012-05-21 주식회사 화인텍 소수성 실리카 에어로젤의 제조방법 및 그 제조방법에 의해 제조된 소수성 실리카 에어로젤

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544048B2 (en) 2014-12-23 2020-01-28 Lg Chem, Ltd. Waterborne aerogel and method for producing same
WO2016104927A1 (ko) * 2014-12-23 2016-06-30 주식회사 엘지화학 수분산 에어로젤 및 그 제조 방법
US10941897B2 (en) 2015-02-13 2021-03-09 Lg Chem, Ltd. Preparation method of silica aerogel-containing blanket and silica aerogel-containing blanket prepared by using the same
US10919772B2 (en) 2015-11-03 2021-02-16 Lg Chem, Ltd. Method for preparing hydrophobic metal oxide-silica composite aerogel, and hydrophobic metal oxide-silica composite aerogel prepared thereby
US10737231B2 (en) 2016-01-19 2020-08-11 Lg Chem, Ltd. Method and apparatus for manufacturing aerogel sheet
US10696557B2 (en) 2016-02-16 2020-06-30 Lg Chem, Ltd. Apparatus and method for manufacturing aerogel sheet
US10723629B2 (en) 2016-02-16 2020-07-28 Lg Chem, Ltd. Apparatus of manufacturing aerogel sheet
US11708275B2 (en) 2016-02-16 2023-07-25 Lg Chem, Ltd. Apparatus of manufacturing aerogel sheet
KR20170107739A (ko) * 2016-03-16 2017-09-26 주식회사 엘지화학 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔
WO2017159968A1 (ko) * 2016-03-16 2017-09-21 주식회사 엘지화학 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔
US11078084B2 (en) 2016-03-16 2021-08-03 Lg Chem, Ltd. Aerogel precursor and aerogel prepared using the same
US11505657B2 (en) 2016-03-24 2022-11-22 Lg Chem, Ltd. System and rotating blade unit for preparing silica aerogel
US11279622B2 (en) 2016-09-12 2022-03-22 Lg Chem, Ltd. Method for producing silica aerogel and silica aerogel produced thereby
KR20210073218A (ko) * 2019-12-10 2021-06-18 한국과학기술연구원 에어로겔 나노 복합체가 코팅된 초발수성 코팅막의 제조방법
CN112320808A (zh) * 2020-10-16 2021-02-05 航天特种材料及工艺技术研究所 一种透明疏水气凝胶的制备方法
CN115340098A (zh) * 2022-08-15 2022-11-15 中国科学院苏州纳米技术与纳米仿生研究所 高自粘结强度的氧化硅气凝胶材料、其制备方法及应用

Also Published As

Publication number Publication date
US20130296596A1 (en) 2013-11-07
KR101409884B1 (ko) 2014-06-27
US8889749B2 (en) 2014-11-18

Similar Documents

Publication Publication Date Title
KR101409884B1 (ko) 소수성 모노리스형 실리카 에어로젤의 제조방법
EP3357864B1 (en) Method for preparing hydrophobic silica aerogel
EP3342754B1 (en) Method for manufacturing silica aerogel
CN108002749B (zh) 一种疏水高弹性甲基硅倍半氧烷气凝胶块体及其制备方法
KR101938654B1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
KR100796253B1 (ko) 초소수성 실리카계 분말의 제조방법
EP3345867B1 (en) Method for manufacturing silica aerogel
EP3214041B1 (en) Method for preparing hydrophobic silica aerogel and hydrophobic silica aerogel prepared therefrom
CN106629750A (zh) 一种透明二氧化硅块体气凝胶的常压制备方法
KR101907737B1 (ko) 금속산화물-실리카 복합 에어로겔의 제조방법 및 이를 이용하여 제조된 금속산화물-실리카 복합 에어로겔
US9663376B2 (en) Xerogel production method
KR20120033159A (ko) 실리카 에어로겔 과립의 제조방법
JP2008208019A (ja) 多孔質材及びその調製方法
KR100710887B1 (ko) 에어로젤 블랑켓트의 제조 방법
KR101129375B1 (ko) 물유리 및 에어로겔로부터 제조된 세라믹 다공체 및 이의 제조방법
KR20100092683A (ko) 유연성을 갖는 실리카 에어로젤 제조방법
KR20120126741A (ko) 구형 실리카 에어로겔 과립의 제조방법
KR102113655B1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
KR100823072B1 (ko) 고투명도의 에어로젤의 제조방법 및 이에 의해 제조된에어로젤
KR100896790B1 (ko) 실리카 에어로젤의 제조방법과 이에 의하여 제조된 실리카에어로젤
CN107759143B (zh) 一种高比表面介孔甲基硅倍半氧烷气凝胶块体及其制备方法
KR20230005300A (ko) 증가된 알칼리 안정성을 갖는 실리카 에어로겔
KR100867488B1 (ko) 에어로겔에 은을 코팅하는 방법 및 이에 따라 제조된 은코팅된 에어로겔
KR101889474B1 (ko) 실리카 기공 구조체 및 그 제조 방법
Kim et al. Sol–Gel Processing of Tetramethylammonium Silicate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
FPAY Annual fee payment

Payment date: 20170601

Year of fee payment: 4