KR20130105030A - 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법 - Google Patents
리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법 Download PDFInfo
- Publication number
- KR20130105030A KR20130105030A KR1020120027119A KR20120027119A KR20130105030A KR 20130105030 A KR20130105030 A KR 20130105030A KR 1020120027119 A KR1020120027119 A KR 1020120027119A KR 20120027119 A KR20120027119 A KR 20120027119A KR 20130105030 A KR20130105030 A KR 20130105030A
- Authority
- KR
- South Korea
- Prior art keywords
- transition metal
- lithium
- precursor
- complex
- metal oxide
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/36—Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/006—Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/006—Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/04—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/04—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystallography & Structural Chemistry (AREA)
Abstract
본 발명은 리튬 복합 전이금속 산화물의 제조에 사용되는 전이금속 전구체로서, 하기 화학식 1로 표현되는 복합 전이금속 화합물을 포함하고 있는 것을 특징으로 하는 전이금속 전구체 및 그 제조방법을 제공한다.
M(OH1 -x)2- yAy /n (1)
상기 식에서, M은 Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 둘 이상이고; A는 OH1 -x를 제외한 하나 이상의 음이온이고; 0<x<0.5: 0.01 y 0.5; n은 A의 산화수이다.
본 발명에 따른 전이금속 전구체는 특정 음이온을 포함하므로, 이를 사용하여 리튬 복합 전이금속 산화물을 제조하는 경우, 상기 음이온이 리튬 복합 전이금속 산화물의 표면과 내부에 균일하게 포함될 수 있으므로, 이를 기반으로 한 이차전지는 우수한 출력 특성 및 수명 특성을 발휘하며, 높은 충방전 효율을 나타낼 수 있다.
M(OH1 -x)2- yAy /n (1)
상기 식에서, M은 Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 둘 이상이고; A는 OH1 -x를 제외한 하나 이상의 음이온이고; 0<x<0.5: 0.01 y 0.5; n은 A의 산화수이다.
본 발명에 따른 전이금속 전구체는 특정 음이온을 포함하므로, 이를 사용하여 리튬 복합 전이금속 산화물을 제조하는 경우, 상기 음이온이 리튬 복합 전이금속 산화물의 표면과 내부에 균일하게 포함될 수 있으므로, 이를 기반으로 한 이차전지는 우수한 출력 특성 및 수명 특성을 발휘하며, 높은 충방전 효율을 나타낼 수 있다.
Description
본 발명은 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법에 관한 것으로, 더욱 상세하게는, 리튬 복합 전이금속 산화물의 제조에 사용되는 전이금속 전구체로서, 특정한 복합 전이금속 화합물을 포함하는 것을 특징으로 하는 전이금속 전구체 및 그 제조방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 전압을 가지고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 함유 코발트 산화물(LiCoO2)이 주로 사용되고 있고, 그 외에 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO2)의 사용도 고려되고 있다.
상기 양극 활물질들 중 LiCoO2은 우수한 사이클 특성 등 제반 물성이 우수하여 현재 많이 사용되고 있지만, 안전성이 낮으며, 원료로서 코발트의 자원적 한계로 인해 고가라는 문제가 있다. LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 원료로서 자원이 풍부하고 환경친화적인 망간을 사용한다는 장점을 가지고 있으므로, LiCoO2를 대체할 수 있는 양극 활물질로서 많은 관심을 모으고 있다. 그러나, 이들 리튬 망간 산화물은 용량이 작고, 사이클 특성 등이 나쁘다는 단점을 가지고 있다.
또한, LiNiO2 등의 리튬 니켈계 산화물은 상기 코발트계 산화물보다 비용이 저렴하면서도 4.25V로 충전되었을 때, 높은 방전 용량을 나타내는 바, 도핑된 LiNiO2의 가역 용량은 LiCoO2의 용량(약 153 mAh/g)을 초과하는 약 200 mAh/g에 근접한다. 따라서, 약간 낮은 평균 방전 전압과 체적 밀도(volumetric density)에도 불구하고, LiNiO2 양극 활물질을 포함하는 상용화 전지는 개선된 에너지 밀도를 가지므로, 최근 고용량 전지를 개발하기 위하여 이러한 니켈계 양극 활물질에 대한 연구가 활발하게 진행되고 있다.
따라서, 많은 종래기술들은 LiNiO2계 양극 활물질의 특성과 LiNiO2의 제조공정을 개선하는데 초점을 맞추고 있고, 니켈의 일부를 Co, Mn 등의 다른 전이금속으로 치환한 형태의 리튬 전이금속 산화물이 제안되었다. 그러나, LiNiO2계 양극 활물질의 높은 생산비용, 전지에서의 가스발생에 의한 스웰링, 낮은 화학적 안정성, 높은 pH 등의 문제들은 충분히 해결되지 못하고 있다.
이에, 일부 선행문헌에서 리튬 니켈-망간-코발트 산화물 표면에 LiF, Li2SO4, Li3PO4 등과 같은 물질을 도포하여 전지의 성능을 향상시키기 위한 시도가 있었지만, 이 경우, 상기 물질이 리튬 니켈-망간-코발트 산화물 표면에만 위치하게 되므로, 소망하는 수준의 효과를 발휘하는데 한계가 있을 뿐만 아니라, 상기 물질을 리튬 니켈-망간-코발트 산화물 표면에 도포하는 별도의 공정이 필요하다는 문제점이 있다.
그러나, 이러한 다양한 시도들에도 불구하고 만족스러운 성능의 리튬 복합 전이금속 산화물은 아직 개발되지 못하고 있는 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 특정 음이온을 갖는 복합 전이금속 화합물을 포함하는 전구체를 개발하였고, 그러한 전구체로부터 제조되는 리튬 복합 전이금속 산화물을 기반으로 한 이차전지가 우수한 출력 특성 및 수명 특성을 발휘하고, 높은 충방전 효율을 나타내는 것을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명은 리튬 이차전지용 전극 활물질인 리튬 복합 전이금속 산화물의 제조에 사용되는 전이금속 전구체로서, 하기 화학식 1로 표현되는 복합 전이금속 화합물을 포함하는 것을 특징으로 하는 전이금속 전구체를 제공한다.
M(OH1 -x)2- yAy /n (1)
상기 식에서,
M은 Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 둘 이상이고;
A는 OH1 -x를 제외한 하나 이상의 음이온이고;
0<x<0.5;
0.01≤y≤ 0.5;
n은 A의 산화수이다.
종래 리튬 이차전지의 전극 활물질을 F- , PO4 3 -, CO3 2 - 등과 같은 특정 음이온을 포함하는 리튬 화합물로 도핑 또는 표면처리 하거나 그것과 리튬 화합물을 혼합하는 일부 기술들이 알려져 있다. 예를 들어, 일부 선행기술은 기존의 리튬 니켈계 산화물에 특정한 구조의 인산 리튬염을 혼합하여 전극 활물질로 사용하는 이차전지를 제시하고 있고, 또 다른 선행기술은 인산 리튬염으로 피복한 리튬 망간계 산화물을 전극 활물질로 사용하여 망간 이온의 전해액에서의 용출을 방지하는 기술을 제시하고 있다.
그러나, 이들 선행기술은 전극 활물질을 제조 후, 리튬 화합물로 표면처리 등을 하는 추가 공정이 필요하므로, 결과적으로 리튬 이차전지의 제조 단가를 상승시키는 요인이 될 수 있다. 또한, 특정 음이온이 전극 활물질의 표면에만 존재하게 되므로 소망하는 수준의 효과를 발휘하는데 있어 한계가 있다.
이에, 본 발명에 따른 전이금속 전구체는 OH1 -x를 제외한 하나 이상의 음이온이 특정한 양으로 치환되어 있으며, 본 출원의 발명자들은 이러한 음이온이 치환되어 있는 전구체를 사용하여 리튬 복합 전이금속 산화물을 제조할 경우, 리튬 복합 전이금속 산화물의 표면과 내부에 상기 음이온이 균일하게 포함될 수 있으므로, 이를 기반으로 한 이차전지는 우수한 출력 특성 및 수명 특성을 발휘하며, 높은 충방전 효율을 나타낼 수 있음을 새롭게 확인하였다.
즉, 리튬 복합 전이금속 산화물의 표면과 내부에 균일하게 포함된 특정 음이온이 그레인(grain) 간의 이온 전도도 향상에 기여하고, 그레인 또는 결정 성장(crystal growth)을 작게 유도하여, 활성화 단계에서 산소 발생시 구조 변화를 줄여 주고 표면적을 넓힐 수 있어서, 레이트(rate) 특성 등 전지의 제반 성능을 향상시킬 수 있다.
상기 화학식 1에서 M은 앞서 정의한 바와 같은 원소들에서 선택되는 둘 또는 그 이상으로 이루어져 있다.
하나의 바람직한 예에서, 상기 M은 Ni, Co 및 Mn으로 이루어진 군에서 선택되는 하나 이상의 전이금속을 포함하고 있어서, 상기 전이금속들 중의 적어도 하나의 물성이 리튬 복합 전이금속 산화물에서 발현될 수 있도록 구성할 수 있다. 특히 바람직하게는, Ni, Co 및 Mn로 이루어진 군에서 선택되는 두 종류의 전이금속 또는 이들 모두를 포함하는 구성으로 이루어질 수 있다.
또한, 상기 화학식 1에서 음이온 A는 그레인(grain) 간의 이온 전도도 향상에 기여할 수 있는 것이라면 제한되지 않는다.
하나의 바람직한 예에서, 상기 A는 PO4, CO3, BO3, F로 이루어진 군에서 선택되는 하나 이상일 수 있으나, 이 중 PO4 이온의 경우 리튬과 결합할 경우 매우 안정한 구조를 가지면서 높은 리튬 확산계수를 가지므로, 리튬 복합 전이금속 산화물의 안정성을 높여줄 수 있어, 특히 바람직하다.
이러한 음이온 A의 함량은, 지나치게 많은 경우, 이를 포함하는 리튬 복합 전이금속 산화물의 결정화를 방해하여 활물질의 성능을 향상시키는 것이 어려울 수 있고, 지나치게 적을 경우, 소망하는 효과를 발휘하기 어려울 수 있기 때문에, 복합 전이금속 화합물에서 A의 함량은 상기 정의한 바와 같이 전체량을 기준(몰 기준)으로 0.01 내지 0.5 몰%의 범위가 바람직하고, 0.03 이상 내지 0.2 몰%이하인 것이 특히 바람직하다.
참고로, 이러한 음이온 A의 함량은 앞서 정의한 바와 같이 음이온의 산화수에 따라 상기 범위에서 결정됨은 물론이다.
상기 복합 전이금속 화합물의 바람직한 예로서, 하기 화학식 2로 표현되는 복합 전이금속 화합물을 들 수 있다.
NibMncCo1 -(b+c+d)M'd(OH1 -x) 2- yAy /n (2)
상기 식에서, 0.3≤b≤0.9, 0.1≤c≤0.6, 0≤d≤0.1, b+c+d≤1이고, M'는 Al, Mg, Cr, Ti, Si, Cu, Fe 및 Zr로 이루어진 군에서 선택되는 하나 또는 둘 이상이며, A, x, y 및 n은 상기 화학식 1에서 정의한 바와 같다.
상기 복합 전이금속 화합물은 니켈을 고함량으로 포함하고 있어서, 고용량의 리튬 이차전지용 양극 활물질을 제조하는데 특히 바람직하게 사용될 수 있다. 즉 상기 니켈의 함량(b)은 전체량을 기준(몰 기준)으로, 망간 및 코발트에 비해 상대적으로 니켈 과잉의 조성으로서 상기 정의된 바와 같이 0.3 ~ 0.9이다. 이러한 니켈의 함량이 0.3 미만인 경우에는 높은 용량을 기대하기 어렵고, 반대로 0.9를 초과하는 경우에는 안전성이 크게 저하되는 문제가 있다. 더욱 바람직한 함량은 0.33 내지 0.8일 수 있다
또한, 상기 망간의 함량(c)는 상기 정의된 바와 같이, 0.1 ~ 0.6이고, 바람직하게는 0.1 내지 0.5 일 수 있다.
경우에 따라서는, 금속 M'는 0.1 이하의 범위에서 Al, Mg, Cr, Ti 및 Si로 이루어진 군에서 선택되는 하나 또는 둘 이상으로 치환될 수 있으며, 바람직하게는 0.08 이하의 범위에서 치환될 수 있다.
코발트의 함량(1-(b+c+d))은 상기 니켈, 망간, 금속 M'의 함량(b+c+d)에 따라 달라지는 바, 코발트의 함량이 지나치게 높은 경우, 코발트의 높은 함량으로 인해 원료 물질의 비용이 전체적으로 증가하고 가역 용량이 다소 감소하며, 코발트의 함량이 지나치게 낮은 경우에는 충분한 레이트 특성과 전지의 높은 분말 밀도를 동시에 달성하기 어려울 수 있다. 따라서, 상기 니켈, 망간, 금속 M'의 함량(b+c+d)은 바람직하게는 0.05 내지 0.4 일 수 있다.
이러한 전이금속 화합물은 음이온 A를 포함하므로, 높은 탭 밀도를 가지며, 하나의 바람직한 예로 1.5 내지 2.5 g/cc의 탭 밀도를 가질 수 있다.
본 발명에 따른 전이금속 전구체는 적어도 화학식 1의 복합 전이금속 화합물을 포함하고 있으며, 하나의 바람직한 예에서, 상기 복합 전이금속 화합물을 30 중량% 이상, 더욱 바람직하게는 50 중량% 이상의 함량으로 포함하는 것으로 구성될 수 있다.
이러한 전이금속 전구체는, 화학식 1의 복합 전이금속 화합물을 포함하지 않는 전이금속 전구체와 비교하여, 우수한 물성의 리튬 복합 전이금속 산화물로 제조될 수 있음을 이후 설명하는 실시예 및 실험예에서 확인할 수 있다.
상기에서 전이금속 전구체의 나머지 성분들은 다양할 수 있으며, 예를 들어, M(OH1 -x)2 (여기서, M 및 x는 화학식 1에서와 동일하다)일 수 있다.
본 발명은 또한 상기 화학식 1의 복합 전이금속 화합물을 제공하는 바, 상기 화학식 1의 복합 전이금속 화합물은 그 자체로 당업계에 신규 물질이다.
이러한 복합 전이금속 화합물을 포함하는 전이금속 전구체는, 바람직하게는, 제조 단계에서 음이온 A를 포함하는 화합물을 첨가하여 제조될 수 있는 바, 앞서 설명한 바와 같이, 리튬 복합 전이금속 산화물을 제조한 후 음이온 A를 포함하는 화합물과 반응시키는 추가 공정 등이 필요 없으므로, 공정이 간단하고 용이하며, 경제성이 높다는 장점이 있다. 또한, 그로부터 제조된 리튬 복합 전이금속 산화물은, 그렇지 않은 경우에 비해, 양극 활물질로서 우수한 성능을 발휘할 수 있다.
이하에서는 본 발명에 따른 전이금속 전구체를 제조하는 방법을 설명한다.
상기 전이금속 전구체는 전이금속 함유 염과 음이온 A가 포함된 화합물 특정량이 용해된 염기성 물질을 사용하여 공침법에 의해 제조될 수 있다.
상기 공침법은 수용액 중에서 침전 반응을 이용하여 2종 이상의 전이금속 원소를 동시에 침전시켜 제조하는 방법이다. 구체적인 예에서, 2종 이상의 전이금속을 포함하는 복합 전이금속 화합물은, 전이금속의 함량을 고려하여 전이금속 함유 염들을 소망하는 몰비로 혼합하여 수용액을 제조한 뒤, 수산화나트륨 등의 강염기와, 경우에 따라서는 암모니아 공급원 등의 첨가제 등을 부가하여, pH를 염기성으로 유지하면서 공침하여 제조될 수 있다. 이 때, 온도, pH, 반응 시간, 슬러리의 농도, 이온 농도 등을 적절히 제어함으로써, 소망하는 평균 입자 지름, 입자지름 분포, 입자 밀도를 조절할 수 있다. pH 범위는 9 내지 13이고 바람직하게는 10 내지 12이며, 경우에 따라서는, 반응은 다단으로 수행될 수도 있다.
상기 전이금속 함유 염은 소성시 용이하게 분해되고 휘발되기 쉬운 음이온을 갖는 것이 바람직한 바, 황산염 또는 질산염일 수 있으며, 특히 바람직하게는 황산염일 수 있다. 예를 들어, 황산 니켈, 황산 코발트, 황산 망간, 질산 니켈, 질산 코발트, 질산 망간 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 염기성 물질은 수산화나트륨, 수산화칼륨, 수산화리튬 등을 들 수 있고, 바람직하게는 수산화나트륨이 사용될 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 음이온 A가 포함된 화합물은 Zx'Ay'의 화학식으로 표현될 수 있으며, 상기 식에서, Z는 Na, NH4, H로 이루어진 군에서 선택되는 하나 이상이고, A는 PO4, CO3, BO3, F로 이루어진 군에서 선택되는 하나 이상이며, 0<x'<4 및 0<y'<4의 범위에서, Z의 산화수×x' + A의 산화수×y' = 0인 조건을 만족한다. 하나의 바람직한 예에서, 상기 Zx'Ay'는 Na3PO4, (NH4)3PO4, (NH4)2HPO4, (NH4)2H2PO4로 이루어진 군에서 선택되는 하나 이상일 수 있다.
이러한 화합물 Zx'Ay'는 물에 용해될 수 있으며, 바람직하게는, 0.01 내지 0.5 몰%의 범위에서, 앞서 정의된 염기성 물질에 용해된 상태로 반응조에 투입되어 상기 전구체 제조용 전이금속 염과 반응할 수 있으며, 바람직하게는 수산화나트튬 용액에 용해된 상태로 투입될 수 있다. 경우에 따라서는, 전이금속 함유 염과 함께 투입될 수도 있다.
하나의 바람직한 예에서, 상기 공침 과정에서 전이금속과 착체를 형성할 수 있는 첨가제 및/또는 탄산 알칼리를 추가로 첨가할 수 있다. 상기 첨가제는, 예를 들어, 암모늄 이온 공급체, 에틸렌 디아민류 화합물, 구연산류 화합물 등이 사용될 수 있다. 상기 암모늄 이온 공급체는, 예를 들어, 암모니아수, 황산암모늄염 수용액, 질산암모늄염 수용액 등을 들 수 있다. 상기 탄산 알칼리는 탄산 암모늄,탄산나트륨,탄산 칼륨 및 탄산 리튬으로 이루어진 군에서 선택될 수 있다. 경우에 따라서는, 이들을 2 이상 혼합하여 사용할 수도 있다.
상기 첨가제와 탄산 알칼리의 첨가량은 전이금속 함유 염의 양, pH 등을 고려하여 적절히 결정할 수 있다.
반응 조건들에 따라, 화학식 1에 따른 복합 전이금속 화합물만을 포함하는 전이금속 전구체가 제조될 수도 있고, 또는 기타 복합 전이금속 화합물을 동시에 포함하는 전이금속 전구체가 제조될 수도 있다. 그에 대한 자세한 내용은 이후의 실시예들을 참조할 수 있다.
본 발명은 또한 상기 전이금속 전구체로부터 제조되는 리튬 복합 전이금속 산화물을 제공한다. 구체적으로, 상기 전이금속 전구체와 리튬 함유 물질을 소성 반응시켜, 리튬 이차전지용 양극 활물질인 리튬 복합 전이금속 산화물을 제조할 수 있다.
이와 같이 제조된 리튬 복합 전이금속 산화물은 음이온 A를 리튬 복합 전이금속 산화물의 표면과 내부에 균일하게 포함하므로 우수한 전기 화학적 특성을 나타낸다. 상기 음이온 A의 함량은 복합 전이금속 화합물에 치환된 A의 몰 수에 따라 달라질 수 있으나, 바람직하게는 리튬 복합 전이금속 산화물 전체 중량을 기준으로 0.05 내지 3 중량% 포함되어 있을 수 있다.
이러한 리튬 복합 전이금속 산화물은 리튬 이차전지용 전극 활물질로서 바람직하게 사용될 수 있으며, 이들은 단독으로 사용될 수도 있고, 다른 공지의 리튬 이차전지용 전극 활물질과 혼합되어 사용될 수도 있다.
또한, 상기 리튬 복합 전이금속 산화물은 2 이상의 전이금속을 포함하는 것으로서, 예를 들어, 1 또는 그 이상의 전이금속으로 치환된 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물; 1 또는 그 이상의 전이금속으로 치환된 리튬 망간 산화물; 화학식 LiNi1-yMyO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B, Cr, Zn 또는 Ga이고 상기 원소 중 하나 이상의 원소를 포함, 0.01≤y≤0.7 임)으로 표현되는 리튬 니켈계 산화물 Li1+zNi1/3Co1/3Mn1/3O2, Li1+zNi0.4Mn0.4Co0.2O2 등과 같이 Li1+zNibMncCo1-(b+c+d)MdO(2-e)Ne (여기서, -0.5≤z≤0.5, 0.3≤b≤0.9, 0.1≤c≤0.9, 0≤d≤0.1, 0≤e≤0.05, b+c+d<1 임, M = Al, Mg, Cr, Ti, Si 또는 Y이고, N = F, P 또는 Cl임)으로 표현되는 리튬 니켈 코발트 망간 복합산화물; 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 리튬 복합 전이금속 산화물은 특히 바람직하게는 Co, Ni 및 Mn를 모두 포함하는 리튬 복합 전이금속 산화물일 수 있다.
리튬 복합 전이금속 산화물의 제조를 위한 전이금속 전구체와 리튬 함유 물질의 반응 조건은 당업계에 공지되어 있으므로, 그에 대한 자세한 설명은 본 명세서에서 생략한다.
본 발명은 또한, 상기 리튬 복합 전이금속 산화물을 양극 활물질로서 포함하는 양극 및 이를 포함하는 리튬 이차전지를 제공한다.
상기 양극은, 예를 들어, 양극 집전체 상에 본 발명에 따른 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 리튬 이차전지는 일반적으로 양극, 음극, 분리막 및 리튬염 함유 비수 전해질로 구성되어 있으며, 본 발명에 따른 리튬 이차전지의 기타 성분들에 대해 이하에서 설명한다.
음극은 음극 집전체 상에 음극 재료를 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 더 포함될 수도 있다.
상기 음극 재료는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
리튬 함유 비수계 전해질은 비수 전해질과 리튬염으로 이루어져 있다. 비수 전해질로는 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수계 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene Sultone), FPC(Fluoro-Propylene Carbonate) 등을 더 포함시킬 수 있다.
이하, 본 발명에 따른 일부 실시예들을 참조하여 더욱 상세히 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예 1>
3L 습식 반응기용 탱크에 증류수 2L를 채운 뒤 질소가스를 탱크에 1 L/min의 속도로 연속적으로 투입하여 용존 산소를 제거하였다. 이때, 탱크 안의 증류수 온도를 온도 유지장치를 이용하여 45 ~ 50℃로 유지하였다. 또한, 탱크 외부에 설치되어 있는 모터와 연결되어 있는 임펠러를 이용하여, 탱크 내부의 증류수를 1000 ~ 1200 rpm의 속도로 교반하였다.
니켈 황산염, 코발트 황산염, 및 망간 황산염을 0.40.: 0.20: 0.40의 비율(몰비)로 혼합하여 1.5M 농도의 전이금속 수용액을 준비하였고, 그와 별도로 0.1 mol%의 Na3PO4을 첨가한 3M 수산화나트륨 수용액을 준비하였다. 상기 전이금속 수용액은 0.18 L/hr으로 습식 반응기용 탱크에 정량 펌프로 연속적으로 펌핑 하였다. 상기 수산화나트륨 수용액은 탱크 내부의 증류수 pH 조절을 위해 컨트롤 장비와 연동시켜, 습식 반응기 탱크 내부의 증류수를 pH 11.0 ~ 11.5가 유지되도록, 가변식 펌핑 하였다. 이때, 첨가물로서 30% 농도의 암모니아 용액을 0.035L ~ 0.04 L/hr의 속도로 반응기에 연속적으로 함께 펌핑하였다.
전이금속 수용액, 수산화나트륨 수용액, 암모니아 용액의 유량을 조절하여 용액의 습식 반응기 탱크 내의 평균 체류 시간은 5 ~ 6 시간 정도가 되도록 하였으며, 탱크 내의 반응이 정상 상태(steady state)에 도달한 후, 지속 시간을 주어 좀더 밀도 높은 복합 전이금속 전구체를 합성하였다.
정상 상태의 도달 후, 전이금속 수용액의 전이금속 이온, 수산화나트륨의 수산화 이온, 및 암모니아 용액의 암모니아 이온이 20 시간 동안 지속적으로 반응하여 제조된 니켈-코발트-망간 복합 전이금속 전구체를, 탱크 옆 상단에 설치되어 있는 오버플로 파이프를 통해 연속적으로 얻는다.
이렇게 얻어진 복합 전이금속 전구체를 증류수로 여러 번 세척하고, 120℃ 항온 건조기에서 24 시간 건조시켜, 니켈-코발트-망간 복합 전이금속 전구체를 얻었다.
<실시예 2>
0.2 mol%의 Na3PO4을 첨가한 3M 수산화나트륨 수용액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전이금속 전구체를 제조하였다.
<실시예 3>
0.5 mol%의 Na3PO4을 첨가한 3M 수산화나트륨 수용액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전이금속 전구체를 제조하였다.
<실시예 4>
Na3PO4 대신 0.1 mol%의 (NH4)2HPO4을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전이금속 전구체를 제조하였다.
<비교예 1>
Na3PO4을 첨가하지 않은 3M 수산화나트륨 수용액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전이금속 전구체를 제조하였다.
<실험예 1> PO4 이온 함량 분석
상기 실시예 1 내지 4 및 비교예 1에서 각각 제조된 전이금속 전구체 0.01 g을 50ml Corning tube에 정확히 측정하여 넣고, 소량의 산을 적가한 후, 흔들어 혼합하였다. 혼합된 시료가 맑게 용해되었을 때 Ion Chromatograph (Diones 사 모델 DX500)로 시료의 PO4 이온의 농도를 측정한다. 그 결과를 하기 표 1에 나타내었다.
<표 1>
상기 표 1에 따르면 Ion Chromatograph 분석 결과, 전구체가 함유하는 PO4 이온 함량은 그 양이 증가함에 따라 선형적으로 증가함을 확인할 수 있다.
<실험예 2> 탭 밀도(Tap Density) 측정
상기 실시예 1 내지 4 및 비교예 1에서 각각 제조된 전이금속 전구체를 Powder Multi Tester(SEISHIN 사)에서 1000회 이상 탭 핑(tappling) 후 탭밀도를 측정하였다.
<표 2>
상기 표 2에 따르면 PO4 이온을 포함하는 실시예들의 전구체는 비교예의 전구체에 비하여 탭 밀도가 크게 향상됨을 확인할 수 있다.
<실시예 5 내지 8>
실시예 1 내지 4에서 각각 제조된 니켈-코발트-망간 복합 전이금속 전구체들을 Li2CO3와 1: 1의 비율(중량비)로 혼합한 후에 5℃/분의 승온 속도로 가열하여 950℃에서 10 시간 동안 소성시켜 Li[Ni0 .4Co0 .2Mn0 .4]O2의 양극 활물질 분말을 제조하였다.
이렇게 제조된 양극 활물질 분말에 도전재로서 Denka와 바인더로서 KF1100을 95: 2.5: 2.5의 중량비로 혼합하여 슬러리를 제조하여, 20 ㎛ 두께의 알루미늄 박(Al foil)에 균일하게 코팅하였다. 이를 130℃로 건조하여 리튬 이차전지용 양극을 제조하였다.
상기에서 제조된 리튬 이차전지용 양극과, 상대 전극(음극)으로서 리튬 메탈 박과, 분리막으로서 폴리에틸렌막(Celgard, 두께: 20 ㎛), 및 에틸렌 카보네이트, 디메틸렌 카보네이트, 디에틸 카보네이트가 1: 2: 1로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용하여, 2016 코인 전지를 제조하였다.
<비교예 2>
비교예 1에서 제조된 니켈-코발트-망간 복합 전이금속 전구체를 Li2CO3와 1: 1의 비율(중량비)로 혼합한 후에 5℃/분의 승온 속도로 가열하여 950℃에서 10 시간 동안 소성시켜 Li[Ni0 .4Co0 .2Mn0 .4]O2을 제조한 후, 이렇게 제조된 Li[Ni0 .4Co0 .2Mn0 .4]O2에 Li3PO4 1 중량%을 혼합하여 양극 활물질 분말을 제조하였다.
이렇게 제조된 양극 활물질 분말에 도전재로서 Denka와 바인더로서 KF1100을 95: 2.5: 2.5의 중량비로 혼합하여 슬러리를 제조하여, 20 ㎛ 두께의 알루미늄 박(Al foil)에 균일하게 코팅하였다. 이를 130℃로 건조하여 리튬 이차전지용 양극을 제조하였다.
상기에서 제조된 리튬 이차전지용 양극과, 상대 전극(음극)으로서 리튬 메탈 박과, 분리막으로서 폴리에틸렌막(Celgard, 두께: 20 ㎛), 및 에틸렌 카보네이트, 디메틸렌 카보네이트, 디에틸 카보네이트가 1: 2: 1로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용하여, 2016 코인 전지를 제조하였다.
<비교예 3>
비교예 1에서 제조된 니켈-코발트-망간 복합 전이금속 전구체을 Li2CO3와 1: 1의 비율(중량비)로 혼합한 후에 5℃/분의 승온 속도로 가열하여 950℃에서 10 시간 동안 소성시켜 Li[Ni0 .4Co0 .2Mn0 .4]O2을 제조하였다. 이렇게 제조된 Li[Ni0 .4Co0 .2Mn0 .4]O2의 표면 전체에, 메카노 퓨전(mechano fusion)을 이용하여 Li3PO4 1 중량%을 코팅하여 양극 활물질 분말을 제조한 후, 비교예 2과 동일한 방법을 사용하여, 2016 코인 전지를 제조하였다.
<비교예 4>
비교예 1에서 제조된 니켈-코발트-망간 복합 전이금속 전구체을 Li2CO3와 1: 1의 비율(중량비)로 혼합한 후에 5℃/분의 승온 속도로 가열하여 950℃에서 10 시간 동안 소성시켜 Li[Ni0 .4Co0 .2Mn0 .4]O2을 제조한 후, 비교예 2과 동일한 방법을 사용하여, 2016 코인 전지를 제조하였다.
<실험예 3>
상기에서 실시예 5 내지 8 및 비교예 2 내지 4에서 각각 제조된 코인 전지들에 대해 전기 화학 분석 장치(Toyo System, Toscat 3100U)를 사용하여 3.0 ~ 4.25 V 영역에서 양극 활물질 전기적 특성을 평가하였다.
그 결과를 하기 표 3에 나타내었다.
<표 3>
상기 표 3에 따르면 전구체에 PO4 처리를 한 실시예들의 전지의 경우, 충방전 효율이 향상되고 이에 따라 방전용량이 상승함을 확인할 수 있다. 비교예들의 전지의 경우, 실시예들의 전지에 비하여 충방전 용량 및 효율이 떨어지는 것을 확인할 수 있다.
<실험예 4>
상기 실시예 5 내지 8 및 비교예 2 내지 4에서 각각 제조된 코인 전지들을 0.2 C로 충전하고, 0.2 C 및 2 C로 방전하여 율 특성을 평가하였다.
<표 4>
상기 표 4에 따르면 전구체에 PO4 처리를 한 실시예들의 전지의 경우, 율 특성이 향상되며, 0.2 mol%의 PO4 처리를 한 실시예 6의 전지가 최적의 성능을 발휘하는 것을 확인할 수 있다. 전구체에 PO4 처리를 하지 않은 비교예들의 전지의 경우, 실시예들의 전지에 비하여 2C 율 특성이 떨어지는 것을 확인할 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
Claims (16)
- 리튬 복합 전이금속 산화물의 제조에 사용되는 전이금속 전구체로서, 하기 화학식 1로 표현되는 복합 전이금속 화합물을 포함하고 있는 것을 특징으로 하는 전이금속 전구체:
M(OH1 -x)2- yAy /n (1)
상기 식에서,
M은 Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 둘 이상이고;
A는 OH1 -x를 제외한 하나 이상의 음이온이고;
0<x<0.5:
0.01≤y≤ 0.5;
n은 A의 산화수이다. - 제 1 항에 있어서, 상기 M은 Ni, Co 및 Mn로 이루어진 군에서 선택되는 하나 이상의 전이금속을 포함하고 있는 것을 특징으로 하는 전이금속 전구체.
- 제 1 항에 있어서, 상기 A는 PO4, CO3, BO3, 및 F로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 전이금속 전구체.
- 제 1 항에 있어서, 상기 A는 PO4인 것을 특징으로 하는 전이금속 전구체.
- 제 1 항에 있어서, 상기 복합 전이금속 화합물은 하기 화학식 2로 표현되는 복합 전이금속 화합물인 것을 특징으로 하는 전이금속 전구체:
NibMncCo1 -(b+c+d)M'd(OH1 -x) 2- yAy /n (2)
상기 식에서,
0.3≤b≤0.9;
0.1≤c≤0.6;
0≤d≤0.1;
b+c+d≤1;
M'는 Al, Mg, Cr, Ti Si, Cu, Fe 및 Zr로 이루어진 군에서 선택되는 하나 또는 둘 이상이고;
A, x, y 및 n은 제 1 항에서와 정의한 바와 같다. - 제 1 항에 있어서, 상기 복합 전이금속 화합물은 탭 밀도가 1.5 내지 2.5 g/cc인 것을 특징으로 하는 전이금속 전구체
- 제 1 항에 있어서, 상기 전이금속 전구체의 전체량을 기준으로 상기 복합 전이금속 화합물이 30 중량% 이상으로 함유되어 있는 것을 특징으로 하는 전이금속 전구체.
- 하기 화학식 1로 표현되는 것을 특징으로 하는 복합 전이금속 화합물:
M(OH1 -x)2- yAy /n (1)
상기 식에서, M, A, x 및 y는 제 1 항에서 정의한 바와 같다. - 제 1 항의 화학식 1로 표현되는 복합 전이금속 화합물을 제조하는 방법으로서, 전구체 제조용 전이금속 염을 0.01 내지 0.5 몰%의 Zx'Ay'과 반응시키는 과정을 포함하는 특징으로 하는 복합 전이금속 화합물을 제조하는 방법:
상기에서,
Z는 Na, NH4, H 로 이루어진 군에서 선택되는 하나 이상이고;
A는 PO4, CO3, BO3, F로 이루어진 군에서 선택되는 하나 이상이며;
0<x'<4 및 0<y'<4의 범위에서, Z의 산화수×x' + A의 산화수×y' = 0인 조건을 만족한다. - 제 9 항에 있어서, 상기 전구체 제조용 전이금속 염은 황산염인 것을 특징으로 하는 복합 전이금속 화합물을 제조하는 방법.
- 제 10 항에 있어서, 상기 황산염은 황산 니켈, 황산 코발트 및 황산 망간으로 이루어진 군에서 선택되는 하나 또는 둘 이상인 것을 특징으로 하는 복합 전이금속 화합물을 제조하는 방법.
- 제 9 항에 있어서, 상기 Zx'Ay'는 Na3PO4, Na3PO4, (NH4)3PO4, (NH4)2HPO4, (NH4)2H2PO4로 이루어진 군에서 선택되는 하나 이상인 것을 특징을 하는 복합 전이금속 화합물을 제조하는 방법.
- 제 9 항에 있어서, 상기 Zx'Ay'은 물 또는 수산화나트륨에 용해된 상태로 반응조에 투입되는 것을 특징으로 하는 복합 전이금속 화합물을 제조하는 방법.
- 제 1 항에 따른 전이금속 전구체를 사용하여 제조된 리튬 복합 전이금속 산화물로서, 음이온 A가 리튬 복합 전이금속 산화물의 표면과 내부에 균일하게 포함되어 있는 것을 특징으로 하는 리튬 복합 전이금속 산화물.
- 제 14 항에 있어서, 상기 음이온 A는 리튬 복합 전이금속 산화물 전체 중량을 기준으로 0.05 내지 3 중량% 포함되어 있는 것을 특징으로 하는 리튬 복합 전이금속 산화물.
- 제 14 항에 따른 리튬 복합 전이금속 산화물을 양극 활물질로서 포함하는 것을 특징으로 하는 리튬 이차전지.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120027119A KR101446491B1 (ko) | 2012-03-16 | 2012-03-16 | 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법 |
PCT/KR2013/001722 WO2013137577A1 (ko) | 2012-03-16 | 2013-03-05 | 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법 |
EP13760602.6A EP2802030B1 (en) | 2012-03-16 | 2013-03-05 | Precursor for preparing lithium composite transition metal oxide and method for preparing same |
CN201380008999.8A CN104106159B (zh) | 2012-03-16 | 2013-03-05 | 用于制备锂复合过渡金属氧化物的前体和制备所述前体的方法 |
JP2014557578A JP6104945B2 (ja) | 2012-03-16 | 2013-03-05 | リチウム複合遷移金属酸化物製造用前駆体及びその製造方法 |
TW102107821A TWI464947B (zh) | 2012-03-16 | 2013-03-06 | 用於製備鋰複合過渡金屬氧化物之前驅物及其製備方法 |
US14/452,833 US9431143B2 (en) | 2012-03-16 | 2014-08-06 | Precursor for preparing lithium composite transition metal oxide and method for preparing the same |
US15/219,483 US9905325B2 (en) | 2012-03-16 | 2016-07-26 | Precursor for preparing lithium composite transition metal oxide and method for preparing the same |
JP2016215053A JP6345218B2 (ja) | 2012-03-16 | 2016-11-02 | リチウム複合遷移金属酸化物製造用前駆体及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120027119A KR101446491B1 (ko) | 2012-03-16 | 2012-03-16 | 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130105030A true KR20130105030A (ko) | 2013-09-25 |
KR101446491B1 KR101446491B1 (ko) | 2014-10-06 |
Family
ID=49161426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120027119A KR101446491B1 (ko) | 2012-03-16 | 2012-03-16 | 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법 |
Country Status (7)
Country | Link |
---|---|
US (2) | US9431143B2 (ko) |
EP (1) | EP2802030B1 (ko) |
JP (2) | JP6104945B2 (ko) |
KR (1) | KR101446491B1 (ko) |
CN (1) | CN104106159B (ko) |
TW (1) | TWI464947B (ko) |
WO (1) | WO2013137577A1 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160094917A (ko) * | 2013-10-31 | 2016-08-10 | 주식회사 엘지화학 | 리튬이차전지용 양극활물질 전구체 제조방법 및 이를 이용한 양극활물질 및 리튬이차전지 |
KR20170046921A (ko) * | 2015-10-22 | 2017-05-04 | 주식회사 엘지화학 | 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질 |
CN107074588A (zh) * | 2014-10-31 | 2017-08-18 | 株式会社Lg 化学 | 过渡金属氧化物的前体、锂和过渡金属氧化物的复合物、包含所述复合物的正极和二次电池 |
KR20190121857A (ko) * | 2017-03-15 | 2019-10-28 | 유미코아 | 전이금속 수산화물 전구체를 제조하기 위한 질산염 공정 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2014248900C1 (en) | 2013-03-12 | 2017-06-08 | Apple Inc. | High voltage, high volumetric energy density Li-ion battery using advanced cathode materials |
KR101608632B1 (ko) | 2013-08-20 | 2016-04-05 | 주식회사 엘지화학 | 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법 및 이를 이용한 리튬 복합 전이금속 산화물 |
US9716265B2 (en) | 2014-08-01 | 2017-07-25 | Apple Inc. | High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries |
WO2016068681A1 (ko) * | 2014-10-31 | 2016-05-06 | 주식회사 엘지화학 | 전이금속 산화물의 전구체, 그 제조방법, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지 |
EP3224882B1 (en) * | 2014-11-28 | 2018-04-11 | Basf Se | Process for making lithiated transition metal oxides |
US10297821B2 (en) | 2015-09-30 | 2019-05-21 | Apple Inc. | Cathode-active materials, their precursors, and methods of forming |
JP6583069B2 (ja) * | 2016-03-14 | 2019-10-02 | トヨタ自動車株式会社 | リチウムイオン二次電池の製造方法 |
CN109075334A (zh) | 2016-03-14 | 2018-12-21 | 苹果公司 | 用于锂离子电池的阴极活性材料 |
WO2018057584A1 (en) | 2016-09-20 | 2018-03-29 | Apple Inc. | Cathode active materials having improved particle morphologies |
WO2018057621A1 (en) | 2016-09-21 | 2018-03-29 | Apple Inc. | Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same |
EP3496185A1 (en) * | 2017-12-08 | 2019-06-12 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Low-temperature preparation of cathode active material |
US11695108B2 (en) | 2018-08-02 | 2023-07-04 | Apple Inc. | Oxide mixture and complex oxide coatings for cathode materials |
US11749799B2 (en) | 2018-08-17 | 2023-09-05 | Apple Inc. | Coatings for cathode active materials |
US11757096B2 (en) | 2019-08-21 | 2023-09-12 | Apple Inc. | Aluminum-doped lithium cobalt manganese oxide batteries |
US12074321B2 (en) | 2019-08-21 | 2024-08-27 | Apple Inc. | Cathode active materials for lithium ion batteries |
JP7535867B2 (ja) * | 2020-03-27 | 2024-08-19 | 株式会社田中化学研究所 | ニッケル含有水酸化物の製造方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0793138B2 (ja) * | 1987-01-29 | 1995-10-09 | 日本電池株式会社 | 電池用正極板およびその製造方法 |
DE3811717A1 (de) * | 1988-04-08 | 1989-10-19 | Varta Batterie | Positive sammlerelektrode fuer akkumulatoren mit alkalischem elektrolyten |
JP3441107B2 (ja) * | 1992-05-18 | 2003-08-25 | 三菱電線工業株式会社 | リチウム二次電池 |
US5591548A (en) * | 1995-06-05 | 1997-01-07 | Motorola, Inc. | Electrode materials for rechargeable electrochemical cells and method of making same |
KR100373721B1 (ko) | 1995-11-17 | 2003-04-26 | 삼성에스디아이 주식회사 | 니켈전극활물질및이를채용하고있는니켈전극 |
JPH11345613A (ja) * | 1998-06-02 | 1999-12-14 | Sanyo Electric Co Ltd | アルカリ蓄電池用正極活物質、それを用いたアルカリ蓄電池用正極及びアルカリ蓄電池 |
JP2003073127A (ja) | 2001-08-29 | 2003-03-12 | Tosoh Corp | ニッケル−マンガン化合物、その製造方法及びこれを用いた用途 |
JP2003313030A (ja) * | 2002-04-23 | 2003-11-06 | Sumitomo Metal Mining Co Ltd | 高タップ密度塩基性炭酸コバルト粉及びその製造方法 |
DE102006049098B4 (de) * | 2006-10-13 | 2023-11-09 | Toda Kogyo Corp. | Pulverförmige Verbindungen, Verfahren zu deren Herstellung sowie deren Verwendung in Lithium-Sekundärbatterien |
DE102006049107A1 (de) * | 2006-10-13 | 2008-04-17 | H.C. Starck Gmbh | Pulverförmige Verbindungen, Verfahren zu deren Herstellung sowie deren Verwendung in elektrochemischen Anwendungen |
DE102007039471A1 (de) * | 2007-08-21 | 2009-02-26 | H.C. Starck Gmbh | Pulverförmige Verbindungen, Verfahren zu deren Herstellung sowie deren Verwendung in Lithium-Sekundärbatterien |
KR100927244B1 (ko) * | 2007-10-13 | 2009-11-16 | 주식회사 엘지화학 | 리튬 이차전지용 양극 활물질 |
JP4968945B2 (ja) | 2008-02-01 | 2012-07-04 | 日本化学工業株式会社 | 複合炭酸塩およびその製造方法 |
US8277683B2 (en) * | 2008-05-30 | 2012-10-02 | Uchicago Argonne, Llc | Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries |
JP5460979B2 (ja) * | 2008-07-09 | 2014-04-02 | 住友化学株式会社 | 遷移金属リン酸塩、それを用いたナトリウム二次電池用正極および該正極を用いた二次電池 |
JP5311922B2 (ja) | 2008-08-19 | 2013-10-09 | キヤノン株式会社 | 撮像装置及びその制御方法 |
DE102009009674A1 (de) | 2009-02-19 | 2010-08-26 | Daimler Ag | Brennstoffzellensystem mit wenigstens einer Brennstoffzelle |
JP5832300B2 (ja) * | 2009-02-20 | 2015-12-16 | ユミコア ソシエテ アノニムUmicore S.A. | Li蓄電池内での高い安全性と高出力とを兼備する非均質な正電極材料 |
JP2011057518A (ja) | 2009-09-11 | 2011-03-24 | Kansai Shokubai Kagaku Kk | 高密度ニッケル・コバルト・マンガン共沈水酸化物及びその製造方法 |
US8883350B2 (en) * | 2010-11-25 | 2014-11-11 | Basf Se | Process for preparing precursors for transition metal mixed oxides |
EP2457873B1 (de) * | 2010-11-25 | 2018-10-31 | Basf Se | Verfahren zur Herstellung von Vorstufen für Übergangsmetallmischoxide |
US9630842B2 (en) * | 2011-01-10 | 2017-04-25 | Basf Se | Process for preparing transition metal hydroxides |
-
2012
- 2012-03-16 KR KR1020120027119A patent/KR101446491B1/ko active IP Right Grant
-
2013
- 2013-03-05 JP JP2014557578A patent/JP6104945B2/ja active Active
- 2013-03-05 WO PCT/KR2013/001722 patent/WO2013137577A1/ko active Application Filing
- 2013-03-05 CN CN201380008999.8A patent/CN104106159B/zh active Active
- 2013-03-05 EP EP13760602.6A patent/EP2802030B1/en active Active
- 2013-03-06 TW TW102107821A patent/TWI464947B/zh active
-
2014
- 2014-08-06 US US14/452,833 patent/US9431143B2/en active Active
-
2016
- 2016-07-26 US US15/219,483 patent/US9905325B2/en active Active
- 2016-11-02 JP JP2016215053A patent/JP6345218B2/ja active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160094917A (ko) * | 2013-10-31 | 2016-08-10 | 주식회사 엘지화학 | 리튬이차전지용 양극활물질 전구체 제조방법 및 이를 이용한 양극활물질 및 리튬이차전지 |
CN107074588A (zh) * | 2014-10-31 | 2017-08-18 | 株式会社Lg 化学 | 过渡金属氧化物的前体、锂和过渡金属氧化物的复合物、包含所述复合物的正极和二次电池 |
KR20170046921A (ko) * | 2015-10-22 | 2017-05-04 | 주식회사 엘지화학 | 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질 |
KR20190121857A (ko) * | 2017-03-15 | 2019-10-28 | 유미코아 | 전이금속 수산화물 전구체를 제조하기 위한 질산염 공정 |
Also Published As
Publication number | Publication date |
---|---|
JP2015513513A (ja) | 2015-05-14 |
WO2013137577A1 (ko) | 2013-09-19 |
US20140346393A1 (en) | 2014-11-27 |
EP2802030B1 (en) | 2017-05-10 |
TWI464947B (zh) | 2014-12-11 |
CN104106159B (zh) | 2017-03-08 |
JP2017043540A (ja) | 2017-03-02 |
US9905325B2 (en) | 2018-02-27 |
JP6345218B2 (ja) | 2018-06-20 |
JP6104945B2 (ja) | 2017-03-29 |
CN104106159A (zh) | 2014-10-15 |
US9431143B2 (en) | 2016-08-30 |
US20160336584A1 (en) | 2016-11-17 |
TW201342695A (zh) | 2013-10-16 |
KR101446491B1 (ko) | 2014-10-06 |
EP2802030A1 (en) | 2014-11-12 |
EP2802030A4 (en) | 2015-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101446491B1 (ko) | 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법 | |
US8268198B2 (en) | Precursor for preparation of lithium transition metal oxide | |
KR101497909B1 (ko) | 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법 | |
KR100959589B1 (ko) | 리튬 복합 전이금속 산화물 제조용 신규 전구체 | |
KR101490852B1 (ko) | 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법, 및 리튬 복합 전이금속 산화물 | |
KR20170046921A (ko) | 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질 | |
KR101778243B1 (ko) | 전이금속 산화물의 전구체, 그 제조방법, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지 | |
KR101541347B1 (ko) | 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
KR20160094917A (ko) | 리튬이차전지용 양극활물질 전구체 제조방법 및 이를 이용한 양극활물질 및 리튬이차전지 | |
KR100938623B1 (ko) | 리튬 전이금속 산화물 제조용 전구체 | |
KR101570970B1 (ko) | 리튬 복합 전이금속 산화물 제조용 전구체 | |
KR101848979B1 (ko) | 전이금속 산화물 전구체, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지 | |
KR101608632B1 (ko) | 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법 및 이를 이용한 리튬 복합 전이금속 산화물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170718 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180619 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190625 Year of fee payment: 6 |