KR20130090312A - 리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체 입자들 및 이를 포함하는 양극 활물질 - Google Patents
리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체 입자들 및 이를 포함하는 양극 활물질 Download PDFInfo
- Publication number
- KR20130090312A KR20130090312A KR1020120097454A KR20120097454A KR20130090312A KR 20130090312 A KR20130090312 A KR 20130090312A KR 1020120097454 A KR1020120097454 A KR 1020120097454A KR 20120097454 A KR20120097454 A KR 20120097454A KR 20130090312 A KR20130090312 A KR 20130090312A
- Authority
- KR
- South Korea
- Prior art keywords
- transition metal
- lithium
- composite transition
- precursor
- particles
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/04—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Cobaltates
- C01G51/42—Cobaltates containing alkali metals, e.g. LiCoO2
- C01G51/44—Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/04—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
본 발명은, 2종 이상의 전이금속을 포함하고 평균 입경이 1 내지 8 ㎛의 범위 내인 복합 전이금속 수산화물 입자이고, 상기 복합 전이금속 수산화물 입자들은 단분산된 입경 분포를 보이며, 변동계수가 0.2 내지 0.7 인 것을 특징으로 하는 리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체 입자들 및 이를 포함하는 양극 활물질에 관한 것이다.
Description
본 발명은 리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체 입자들 및 이를 포함하는 양극 활물질에 관한 것으로서, 더욱 상세하게는, 2종 이상의 전이금속을 포함하고 평균 입경이 1 내지 8 ㎛의 범위 내인 복합 전이금속 수산화물 입자이고, 상기 복합 전이금속 수산화물 입자들은 단분산된 입경 분포를 보이며, 변동계수(Coefficient of Variation)가 0.2 내지 0.7 인 것을 특징으로 하는 리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체 입자들 및 이를 포함하는 양극 활물질에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 전압을 가지고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지의 구성요소 중에서 양극 활물질은 전지 내에서 전지의 용량 및 성능을 좌우하는데 중요한 역할을 한다.
양극 활물질로는 우수한 사이클 특성 등 제반 물성이 상대적으로 우수한 리튬 코발트 산화물(LiCoO2)이 주로 사용되고 있으나, LiCoO2에 이용되는 코발트는 소위 희귀 금속이라고 불리는 금속으로 매장량이 적고 생산지가 편재되어 있어서 공급 면에서 불안정한 문제가 있다. 또한, 이러한 코발트의 공급 불안정 및 리튬 이차전지의 수요 증가로 인해 LiCoO2는 고가라는 문제가 있다.
이러한 배경에서, LiCoO2를 대체할 수 있는 양극 활물질에 대한 연구가 꾸준히 진행되어 왔고, 대표적인 대체물질로서 니켈(Ni), 망간(Mn), 코발트(Co) 중 2종 이상의 전이금속을 포함하는 리튬 복합 전이금속 산화물을 들 수 있다.
상기 리튬 복합 전이금속 산화물은 리튬 니켈 산화물(LiNiO2)의 고용량성, 층상구조의 리튬 망간 산화물(LiMnO2)에서의 망간의 열적 안정성 및 낮은 가격, LiCoO2의 안정한 전기화학적 특성들을 결합시켜 우수한 전기화학적 성질을 나타내지만, 단순한 고상반응으로는 합성이 용이하지 않다.
따라서, 상기 리튬 복합 전이금속 산화물은 니켈(Ni), 망간(Mn), 코발트(Co) 중 2종 이상의 전이금속을 포함하는 복합 전이금속 전구체를 졸-겔(sol-gel)법, 수열(hydrothermal)법, 분무 열분해(spray pyrolysis)법, 공침(co-precipitation)법 등으로 별도로 제조한 후, 리튬 전구체와 혼합하고 고온에서 소성하여 제조한다.
가격, 생산성 등을 고려하여 공침법으로 복합 전이금속 전구체를 제조하는 것이 일반적이다.
종래에는 공침법으로 복합 전이금속 전구체를 제조하는 경우, 양극 활물질로 사용 시 우수한 방전 용량, 수명 특성, 레이트 특성 등을 갖는 리튬 복합 전이금속 산화물을 제조하기 위하여, 구형화 등의 입자 형태의 최적화 등에 연구의 초점을 맞춰 복합 전이금속 전구체를 제조하였으나, 구형화도 이외에도 복합 전이금속 전구체의 구조적 특성은 매우 중요하다.
그러나, 종래의 공침법으로 제조된 복합 전이금속 전구체 입자들은 넓은 입경 분포를 보이고, 입자 형태가 불균일하며, 불순물들이 다량 함유되어 있는 문제가 있었다.
또한, 종래의 공침법으로 제조된 복합 전이금속 전구체 입자는 최소 평균 입경이 6 ㎛ 내지 10 ㎛ 이었다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
따라서, 본 발명의 목적은 종래의 복합 전이금속 전구체에 비해 입도가 우수하고 균일하며 결정화도가 높은 전구체 입자 및 이를 포함하는 리튬 전이금속 산화물을 제공하는 것이다.
상기한 목적을 달성하기 위하여, 본 발명의 리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체 입자들은,
2종 이상의 전이금속을 포함하고 평균 입경이 1 내지 8 ㎛의 범위 내인 복합 전이금속 수산화물 입자로 이루어져 있고, 상기 복합 전이금속 수산화물 입자들은 단분산된 입경 분포를 보이며, 이러한 입경 분포를 표현하는 파라미터는 제한되지 않으나, 상기 입경 분포를 변동계수(Coefficient of Variation)로 나타내면, 0.2 내지 0.7 범위 내인 것을 특징으로 한다. 상기 변동계수는 표준편차를 평균입경(D50)으로 나눈 값이다.
종래의 공침법으로 제조된 복합 전이금속 수산화물 입자는 최소 평균 입경이 6 내지 10 ㎛인 반면에, 본 발명의 복합 전이금속 수산화물 입자는 전구체 입자는 1 내지 5 ㎛의 최소 평균 입경을 가질 수 있고, 변동계수가 0.2 내지 0.7로 종래의 복합 전이금속 수산화물 입자에 비해 단분산된 입경 분포를 보인다.
따라서, 본 발명의 전구체 입자들은 종래의 전구체 입자들에 비해 단분산된 작은 입도를 가지기 때문에 충방전시 리튬의 이동거리가 짧아지므로 레이트 특성이 좋아진다. 또한, 저온 레이트 특성에서는 이런 향상도가 더 크게 나타나고, 기존 큰 입자들과 함께 투입하게 되면 전극 압축밀도(packing density)가 증가한다.
본 발명의 바람직한 실시예에서, 전구체 입자들의 평균 입경은 1 내지 5 ㎛일 수 있다.
상기 복합 전이금속 수산화물은 하기 화학식 1로 표시되는 화합물일 수 있다.
M(OH1-x)2 (1)
상기 식에서, M은 Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 둘 또는 그 이상이고; 0≤x≤0.8 이다.
상기 화학식 1에서 M은 앞서 정의한 바와 같은 원소들에서 선택되는 둘 또는 그 이상으로 이루어져 있다. 하나의 바람직한 예에서, 상기 M은 Ni, Co 및 Mn으로 이루어진 군에서 선택되는 하나 이상의 전이금속을 포함하고 있어서, 상기 전이금속들 중의 적어도 하나의 물성이 리튬 복합 전이금속 산화물에서 발현될 수 있도록 구성할 수 있다. 특히 바람직하게는, Ni, Co 및 Mn로 이루어진 군에서 선택되는 두 종류의 전이금속 또는 이들 모두를 포함하는 구성으로 이루어질 수 있다.
M이 Ni, Co, Mn 등을 포함하는 바람직한 예로서, 하기 화학식 2로 표시되는 화합물을 들 수 있다.
NibMncCo1-(b+c+d)M''d(OH1-x)2 (2)
상기 식에서, 0.3≤b≤0.9, 0.1≤c≤0.6, 0≤d≤0.1, b+c+d≤1, 0≤x≤0.8이고, M''는 Al, Mg, Cr, Ti 및 Si로 이루어진 군에서 선택되는 하나 또는 둘 이상이다. 즉, 화학식 1의 화합물은 Ni, Co 및 Mn을 포함하고, 이들의 일부가 Al, Mg, Cr, Ti 및 Si로 이루어진 군에서 선택되는 하나 또는 둘 이상으로 치환된 상기 화학식 2의 화합물일 수 있다.
상기 화학식 2의 화합물은 Ni을 고함량으로 포함하고 있어서, 고용량의 리튬 이차전지용 양극 활물질을 제조하는데 특히 바람직하게 사용될 수 있다.
상기한 복합 전이금속 수산화물 입자는 종래의 전구체에 비해 높은 결정화도를 나타낸다. 구체적으로, 상기 결정화도는 복합 전이금속 수산화물 제조용 전이금속 염으로부터 유래되는 불순물의 함유량으로 판단할 수 있다.
본 출원의 발명자들이 확인한 바에 따르면, 상기 복합 전이금속 수산화물 입자는, 복합 전이금속 수산화물 제조용 전이금속 염으로부터 유래되는 불순물을 복합 전이금속 수산화물 입자의 전체 중량 대비 0.4 중량%이하로 포함한다. 상기 불순물은 황산화 이온(SO4 2 -) 함유 염 이온일 수 있다.
상기 불순물은 황산화 이온(SO4 2 -) 함유 염 이온일 수 있다. 상기 황산화 이온(SO4 2 -) 함유 염 이온이 유래되는 전이금속 염은 황산염일 수 있으며, 이러한 황산염의 예로는 황산 니켈, 황산 코발트, 황산 망간 등을 들 수 있으며, 이들은 단독으로 사용될 수도 있고, 둘 이상의 조합으로 사용될 수도 있다.
경우에 따라서는, 상기 황산화 이온(SO4 2 -) 함유 염 이온은 질산화 이온(NO3 -)을 추가로 포함할 수 있으며, 이러한 질산화 이온은 전이금속 염으로서의 질산 니켈, 질산 코발트, 질산 망간 등으로부터 유래될 수 있다.
더욱 바람직한 황산화 이온(SO4 2 -) 함유 염 이온의 함량은 복합 전이금속 수산화물 입자의 전체 중량 대비 0.3 내지 0.4 중량%일 수 있다.
전구체 입자 중 염 이온의 함량을 측정하는 방법은 다양할 수 있으며, 바람직하게는 이온 크로마토그래피(ion chromatograph) 법에 의한 검출 방식이 사용될 수 있다.
본 발명은 또한, 상기한 전구체 입자들을 리튬 전구체와 소성 반응시켜 제조한 것을 특징으로 하는 리튬 복합 전이금속 산화물을 제공한다.
리튬 복합 전이금속 산화물의 제조를 위한 전이금속 전구체와 리튬 함유 물질의 반응 조건은 당업계에 공지되어 있으므로, 그에 대한 자세한 설명은 본 명세서에서 생략한다.
상기 리튬 전구체는 특별히 제한되지 않으며, 예를 들어, 수산화 리튬, 탄산 리튬, 산화 리튬 등을 들 수 있고, 바람직하게는 탄산 리튬(Li2CO3) 및/또는 수산화 리튬(LiOH)일 수 있다.
본 발명의 복합 전이금속 수산화물 입자는 하기 반응기의 유입구를 통하여, 반응기의 회전 반응공간 내로, 2종 이상의 전이금속 염들의 수용액을 포함하는 원료 물질들의 수용액 및 상기 원료 물질들의 수용액의 pH가 10 내지 12의 범위 내에서 일정하게 유지되도록 염기성 수용액을 투입하고, 비질소 분위기 하에서, 1 내지 6 시간 동안 공침반응을 수행함으로써 제조될 수 있다. 상기 복합 전이금속 수산화물 입자는 배출구를 통해 수득할 수 있다.
상기 반응기는, 중공형의 고정 원통;
상기 고정 원통과 동축을 이루며, 고정 원통의 내경보다 작은 외경을 가지는 회전 원통;
상기 회전 원통의 회전운동을 위한 동력을 발생시키는 전동기;
상기 고정 원통과 회전 원통 사이의 이격 공간으로서, 회전 축 방향을 따라 주기적으로 배열되고 서로 반대방향으로 회전하는 고리모양의 와류 쌍들이 생성되는 회전 반응공간; 및
상기 회전 반응공간으로 반응 유체를 도입 및 배출하는 유입구와 배출구를 포함하는 밀폐구조로 이루어져 있다.
종래의 공침 반응기, 예를 들어, CSTR을 이용하여 복합 전이금속 수산화물을 제조하는 경우, 약 6 시간 이상의 높은 체류시간이 요구된다.
반면에, 본 발명의 반응기를 이용하여 복합 전이금속 수산화물을 제조하는 경우에는, 최대 6 시간의 체류시간이 요구되므로, CSTR에 비해 반응기 부피당 생산량이 약 1.5 내지 10배 증가한다.
상기한 효과는 회전 원통의 외경 반지름에 대한 고정 원통과 회전 원통 사이의 간격의 비율이 0.05 초과인 경우에 발현될 수 있다. 구체적으로, 회전 원통의 외경 반지름에 대한 고정 원통과 회전 원통 사이의 간격의 비율이 0.05 이하인 경우에는, 고정 원통과 회전 원통 사이의 간격이 너무 미세하여 제작이 불가능하다. 또한, 제작이 가능한 경우에도, 상기 와류 쌍들이 생성되는 회전 반응공간의 유효 체적이 작아져서 체류시간이 감소하기 때문에 생산량이 대폭 감소하므로 바람직하지 않다.
한편, 하나의 와류 쌍은 실질적으로 1개의 미세 CSTR의 역할을 수행하므로, 회전 축을 따라 주기적으로 배열되는 와류 쌍들은 미세 CSTR들이 연결되어 있는 것과 같은 역할을 하고, 상기 와류 쌍들의 개수가 많아질수록 유동특성이 강화된다.
그러나, 상기 하나의 와류 쌍의 크기는 고정 원통과 회전 원통 사이의 간격과 거의 유사하므로, 회전 원통의 외경 반지름에 대한 고정 원통과 회전 원통 사이의 간격의 비율이 커질수록 또는 고정 원통과 회전 원통 사이의 간격이 커질수록, 반응기 내 상기 와류 쌍들의 개수('CSTR의 개수')는 점차 감소한다.
따라서, 회전 원통의 외경 반지름에 대한 고정 원통과 회전 원통 사이의 간격의 비율이 0.4 이상인 경우에는, 회전 원통의 외경 반지름에 대한 고정 원통과 회전 원통 사이의 간격의 비율이 0.05 초과 내지 0.4 미만인 경우에 비해 상기 와류 쌍들의 유동특성이 저하되어 작은 입경 분포를 보이고 작은 평균 입경을 갖는 균일한 전구체 입자 생성이 어렵다.
또한, 회전 원통의 외경 반지름에 대한 고정 원통과 회전 원통 사이의 간격의 비율이 0.4 이상인 경우에는, 회전 원통의 회전속도의 증가에 따라 회전 축 방향을 따라 주기적으로 배열되고 서로 반대방향으로 회전하는 고리모양의 와류 쌍들('층류의 와류'), 파동 와류, 변조된 파동 와류, 난류의 와류의 연속적인 와류의 특성이 나타나지 않고, 상기 층류의 와류 영역에서 난류의 와류 영역으로의 전이가 바로 일어나므로, 상기 와류 쌍들의 유동특성이 저하되어 작은 입경 분포를 보이고 작은 평균 입경을 갖는 균일한 전구체 입자 생성이 어렵다.
즉, 상기한 반응기를 이용하여 제조된 복합 전이금속 수산화물 입자는 CSTR을 이용하여 제조된 복합 전이금속 수산화물 입자에 비해 작은 입경 분포를 보이고 작은 평균 입경을 갖는 균일한 전구체 입자로 제조될 수 있으나, 이러한 입경 분포 및 평균 입경의 제어는 회전 원통의 외경 반지름에 대한 고정 원통과 회전 원통 사이의 간격의 비율이 0.4 미만인 경우에 발현될 수 있다.
따라서, 상기 회전 원통의 외경 반지름에 대한 고정 원통과 회전 원통 사이의 간격의 비율이 0.05 초과 내지 0.4 미만인 것이 바람직하다.
상기 반응기는 리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체로서, 복합 전이금속 수산화물 입자의 제조를 위해 최적화 설계된 것으로서, 이 때, 반응 유체의 동점도는 0.4 내지 400 cP이고, 단위 질량당 동력 소모량은 0.05 내지 100 W/kg이다. 상기 단위 질량당 동력 소모량은 회전 원통의 교반 속도로 정의할 수 있다.
상기 와류 쌍들이 발생하는 임계 레이놀즈 수는 300이고, 상기 와류 쌍들은 레이놀즈 수가 300이상인 경우, 중심이 같은 고정 원통과 회전 원통 사이를 흐르는 유체가, 원심력에 의해 고정 원통 방향으로 나가려는 경향으로 인해 불안정해짐으로써 회전 반응공간 전면에 걸쳐 형성된다.
상기 전이금속 염은 소성 시 용이하게 분해되고 휘발되기 쉬운 음이온을 갖는 것이 바람직한 바, 황산염 또는 질산염일 수 있다. 예를 들어, 황산 니켈, 황산 코발트, 황산 망간, 질산 니켈, 질산 코발트, 질산 망간 등으로 이루어진 군에서 선택되는 하나 또는 둘 이상일 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 염기성 수용액은 수산화나트륨 수용액, 수산화칼륨 수용액, 수산화 리튬 수용액 등을 들 수 있고, 바람직하게는 수산화나트륨 수용액이 사용될 수 있으나, 이에 한정되는 것은 아니다.
하나의 바람직한 예에서, 상기 원료물질들의 수용액에는 전이금속과 착체를 형성할 수 있는 첨가제 및/또는 탄산 알칼리를 추가로 첨가할 수 있다.
상기 첨가제는, 예를 들어, 암모늄 이온 공급체, 에틸렌 디아민류 화합물, 구연산류 화합물 등이 사용될 수 있다. 상기 암모늄 이온 공급체는, 예를 들어, 암모니아수, 황산암모늄염 수용액, 질산암모늄염 수용액 등을 들 수 있다. 상기 탄산 알칼리는 탄산 암모늄,탄산나트륨,탄산 칼륨 및 탄산 리튬으로 이루어진 군에서 선택될 수 있다. 경우에 따라서는, 이들을 2 이상 혼합하여 사용할 수도 있다.
상기 첨가제와 탄산 알칼리의 첨가량은 전이금속 함유 염의 양, pH 등을 고려하여 적절히 결정할 수 있다.
본 출원의 발명자들은 본 발명의 제조방법에 따라 복합 전이금속 수산화물을 제조하는 경우, 착체 형성 첨가제, 예를 들어, 암모니아 수용액의 사용량을 감소시킬 수 있음을 확인하였다.
본 발명의 구체적인 실시예에서, 상기 암모니아 수용액은 2종 이상의 전이금속 염들의 전체량을 기준으로 5 내지 90 mol%의 범위 내에서 투입된다.
이는 CSTR을 이용하여 복합 전이금속 수산화물을 제조하는 경우에 비해 약 60 % 정도의 첨가제만으로 복합 전이금속 수산화물을 제조하는 것으로서, 본 발명에 따른 제조방법은 상대적으로 저렴한 리튬 복합 전이금속 산화물을 제공할 수 있다.
한편, 망간(Mn)은 산화되어 Mn3+가 되기 쉽고, 예를 들어, Mn3+는 Ni2+와 균질한 복합산화물을 형성하기 어렵게 하므로, 종래의 공침법에서는 Mn 산화물의 형성을 방지하는 첨가제들이 추가적으로 투입되었으나, 본 발명에 따른 제조방법은 밀폐구조의 반응기 내에서 이루어지므로, 반응액 내로 외부 공기가 혼입되어 Mn 산화물이 형성될 염려가 없다.
따라서, 본 발명에 따른 제조방법은, 환원제, 예를 들어, 질소를 투입할 필요가 없이, 비질소 분위기 하에서 이루어지므로, 질소 투입 비용이 감소하는 효과가 있고, 공정 효율성이 향상되는 효과를 갖는다.
본 발명은 또한 상기한 리튬 복합 전이금속 산화물을 포함하는 리튬 이차전지용 양극 활물질 슬러리 및 상기 양극 활물질 슬러리를 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 양극 활물질 슬러리에는 양극 활물질로서, 상기 리튬 복합 전이금속 산화물 이외에 당업계에 공지되어 있는 물질들이 선택적으로 더 포함될 수 있음은 물론이다.
리튬 이차전지는 일반적으로 양극, 음극, 분리막 및 리튬염 함유 비수 전해질로 구성되어 있다.
양극은, 예를 들어, 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 20 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
음극은 음극 집전체 상에 음극 재료를 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 더 포함될 수도 있다.
상기 음극 재료는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
리튬함유 비수계 전해질은 비수 전해질과 리튬으로 이루어져 있다. 비수 전해질로는 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수계 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
또한, 본 발명은 상기 전지모듈을 중대형 디바이스의 전원으로 포함하는 전지팩을 제공하고, 상기 중대형 디바이스는 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차 및 전력 저장장치 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이상에서 설명한 바와 같이, 본 발명의 복합 전이금속 수산화물 입자는 평균 입경이 작고 단분산된 입도 분포를 보이며, 균일하므로, 우수한 레이트 특성, 저온 레이트 특성 및 전극 구성 밀도를 발휘한다.
또한, 본 발명의 복합 전이금속 수산화물 입자는 결정화도가 높으므로, 리튬 전구체와의 반응성이 향상되어 리튬 복합 전이금속 산화물의 소성 온도를 낮출 수 있다.
도 1a 및 도 1b는 본 발명의 구체적인 실시예 1 및 비교예 1의 SEM 사진들이다;
도 2는 실시예 1의 전구체 입자들(D50: 4.07 ㎛)의 입도 분포도이다;
도 3은 본 발명의 일 실시예에 따른 제조방법으로 제조한 전구체 입자를 포함하는 리튬 이차전지의 전기화학적 특성을 나타내는 그래프이다;
도 4는 본 발명의 일 실시예에 따른 반응기의 측면 모식도이다;
도 5는 도 4의 반응기의 회전 반응공간 내에서 발생하는 고리 모양의 와류 쌍들 및 반응 유체의 유동형태를 모식적으로 도시한 것이다;
도 6은 본 발명의 다른 실시예에 따른 반응기의 모식도이다;
도 7은 CSTR과 본 발명에 따른 반응기의 단위 질량당 동력 소모량을 비교한 그래프이다.
도 2는 실시예 1의 전구체 입자들(D50: 4.07 ㎛)의 입도 분포도이다;
도 3은 본 발명의 일 실시예에 따른 제조방법으로 제조한 전구체 입자를 포함하는 리튬 이차전지의 전기화학적 특성을 나타내는 그래프이다;
도 4는 본 발명의 일 실시예에 따른 반응기의 측면 모식도이다;
도 5는 도 4의 반응기의 회전 반응공간 내에서 발생하는 고리 모양의 와류 쌍들 및 반응 유체의 유동형태를 모식적으로 도시한 것이다;
도 6은 본 발명의 다른 실시예에 따른 반응기의 모식도이다;
도 7은 CSTR과 본 발명에 따른 반응기의 단위 질량당 동력 소모량을 비교한 그래프이다.
이하, 본 발명의 일부 실시예들 및 그에 따른 도면을 참조하여 본 발명을 더욱 상세히 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예 1>
니켈 황산염, 코발트 황산염 및 망간 황산염을 0.50 : 0.20 : 0.30의 비율(몰비)로 혼합하여 1.5M 농도의 전이금속 수용액을 준비하고, 3M 수산화 나트륨 수용액을 준비하였다. 암모니아 용액은 25wt%의 암모늄 이온이 용해된 수용액을 준비하였다.
상기 준비된 전이금속 수용액을 체류시간이 1시간이 되도록 정량펌프를 사용하여 반응기 내로 투입하였다. 상기 수산화 나트륨 수용액은 pH가 11.0이 유지되도록 정량펌프를 사용하여 가변적으로 투입하였다. 상기 암모니아 수용액은 전이금속 수용액 대비 30 mol%의 농도를 연속적으로 공급하였다.
평균 체류시간은 1시간으로 정상 상태에 도달 후 20시간 동안 지속적으로 반응하여 제조된 니켈-코발트-망간 복합 전이금속 전구체를 증류수로 여러 번 세척하고, 120℃ 항온 건조기에서 24시간 건조시켜, 니켈-코발트-망간 복합 전이금속 전구체를 제조하였다.
<실시예 2>
체류시간이 2시간이 되도록 공급량을 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 니켈-코발트-망간 복합 전이금속 전구체를 제조하였다.
<실시예 3>
체류시간이 3시간이 되도록 공급량으로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 니켈-코발트-망간 복합 전이금속 전구체를 제조하였다.
<실시예 4>
체류시간이 6시간이 되도록 공급량을 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 니켈-코발트-망간 복합 전이금속 전구체를 제조하였다.
<비교예 1>
CSTR(Continuous Stirred Tank Reactor)을 사용하고 암모니아 수용액을 전이금속 수용액 대비 50 mol%의 농도로 공급한 것을 제외하고는 실시예 4와 동일한 방법으로 니켈-코발트-망간 복합 전이금속 전구체를 제조하였다.
<실험예 1> - 체류시간에 따른 반응기 부피당 생산성 비교
실시예 1 내지 4와 비교예 1에 사용된 반응기들의 부피당 생산량을 비교하였고, 그 결과를 하기 표 1에 나타내었다.
<표 1>
<실험예 2> - 불순물 함량 분석
제조된 전이금속 전구체 0.01g을 50 mL Corning tube에 정확히 측정하여 넣고, 소량의 산을 적가한 후, 흔들어 혼합하였다. 혼합된 시료가 맑게 용해되었을 때, Ion Chromatograph(Dionex 사 모델 DX500)로 시료의 SO4 2 - 농도를 측정한다. 그 결과를 하기에 나타내었다.
<표 2>
<실험예 3> - 입도 분포 그래프
도 1a 및 도 1b는 본 발명의 구체적인 실시예 1 및 비교예 1의 SEM 사진들이고, 도 2는 실시예 1의 전구체 입자(평균입경(D50) 4.07 ㎛)의 입도 분포도이다.
하기 표 3은 실시예 1의 전구체 입자와 비교예 1의 전구체 입자의 평균 입도(D50)와 변동계수(Coefficient of Variation)을 나타낸 것으로서, 이를 참조하면, 실시예 1의 전구체 입자는 평균입경이 5 ㎛ 이하이고, 변동계수가 0.375 으로 단분산도를 보이고 있으나, 비교예 1의 전구체 입자는 평균입경이 8 ㎛ 초과이고, 변동계수가 0.706 으로서, 실시예 1의 전구체 입자에 비해 단분산도가 좋지 않음을 알 수 있다.
<표 3>
<실험예 4> - 코인셀 제조 및 전기화학 특성 평가
제조된 전이금속 전구체들을 Li2CO3와 1 : 1의 비율(중량비)로 혼합한 후에 5℃/분의 승온 속도로 가열하여 920℃에서 10시간 동안 소성시켜 리튬 전이금속 산화물 분말(양극 활물질)을 제조하였다. 이렇게 제조된 양극 활물질 분말에 도전재로서 Denka와 바인더로서 KF 1100을 95 : 2.5 : 2.5의 중량비로 혼합하여 슬러리를 제조하여, 20 ㎛두께의 알루미늄 박(Al foil)에 균일하게 코팅하였다. 이를 130℃로 건조하여 리튬 이차전지용 양극을 제조하였다.
이렇게 제조된 리튬 이차전지용 양극과, 상대전극(음극)으로서 리튬 메탈 박과, 분리막으로서 폴리에틸렌 막(Celgard, 두께: 20 ㎛), 및 에틸렌 카보네이트, 디메틸렌 카보네이트, 디에틸 카보네이트가 1 : 2 : 1로 혼합된 용매 LiPF6가 1M로 녹아있는 액체 전해액을 사용하여, 2032 코인 전지를 제조하였다.
이들 코인전지들에 대해 전기 화학분석 장치(Toyo System, Toscat 3100U)를 사용하여 3.0 ~ 4.25 V 영역에서 양극 활물질의 전기적 특성을 평가하였다. 그 결과를 하기에 나타내었다.
<표 4>
도 4는 본 발명의 일 실시예에 따른 반응기의 측면 모식도이고, 도 5는 도 4의 반응기의 회전 반응공간 내에서 발생하는 고리 모양의 와류 쌍들 및 반응 유체의 유동형태를 모식적으로 도시한 것이며, 도 5는 본 발명의 다른 실시예에 따른 반응기를 모식적으로 도시한 것이다.
도 4를 참조하면, 본 발명에 따른 리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체 제조용 반응기(100)는, 지표면과 수평으로 설치되어 있는 원통형의 고정 원통(110)의 중공 내부에 고정 원통(110)과 동일한 회전축을 이루며, 고정 원통의 내경(2×r1)보다 작은 외경(2×r2)을 가지는 원통형의 회전 원통(120)이 설치되어 있고, 고정 원통(110)과 회전 원통(120) 사이에는 회전 반응공간이 형성되어 있으며, 고정 원통(110) 상에는 회전 반응공간으로 반응 유체를 도입하는 복수개의 유입구들(140, 141, 142)와 반응 유체를 배출하는 배출구(150)가 구비되어 있고, 고정 원통(110)의 일 측면에는 회전 원통(120)을 회전시키기 위한 동력을 발생시키는 전동기(130)가 구비되어 있다.
회전 원통(120)의 외경 반지름(r2)에 대한 고정 원통(110)과 회전 원통 (120)사이의 간격(d)의 비율(d/r2)에 의해 회전 반응공간의 유효 체적이 결정된다.
도 4 및 도 5를 함께 참조하면, 전동기(130)으로부터 발생된 동력으로 회전 원통(120)이 회전하여 임계 레이놀즈 수에 이르면, 유입구들(140, 141, 142)를 통해 회전 반응공간으로 투입된 복합 전이금속 수산화물의 수용액, 암모니아 수용액, 수산화나트륨 수용액 등의 반응 유체들은, 회전 원통(120)으로부터 고정 원통(110)방향으로 원심력을 받아 불안정해지고, 그 결과, 회전 축 방향을 따라 서로 반대방향으로 회전하는 고리 모양의 와류 쌍들(160)이 회전 반응공간 내에서 주기적으로 배열된다.
고리 모양의 와류 쌍들(160)의 중력 방향의 길이는 고정 원통(110)과 회전 원통 (120)사이의 간격(d)과 거의 동일하다.
회전 원통(120)의 회전시 회전축과 베어 링 사이 틈으로 흡입되는 공기를 차단하기 위해 회전축 외부에 오링(O-ring)과 같은 밀봉 수단을 이용하여 밀봉할 수 있다.
도 4 및 도 6을 함께 참조하면, 전이금속 염 수용액, 암모니아 수용액, 수산화나트륨 수용액 등은 유입구(140)을 통해 회전 반응공간으로 유입될 수 있고, 코팅 물질과 같은 이종(異種)물질들은 유입구(141) 또는 유입구(142)를 통해 회전 반응공간으로 유입될 수 있다.
도 6에서 본 발명의 다른 실시예에 따른 반응기는, 전이금속 염 수용액, 암모니아 수용액, 수산화나트륨 수용액 등을 각각 저장하는 저장탱크들(180, 181) 및 회전 반응공간으로 유입되는 반응 유체들의 양을 제어하는 정량펌프(170)가 더 구비되어 있다.
전이금속 염 수용액은 체류시간을 고려하여 정량펌프(170)를 사용하여 회전 반응공간으로 유입할 수 있고, 수산화나트륨 수용액은 일정한 pH를 유지하도록 정량펌프(170)를 사용하여 회전 반응공간으로 가변적으로 투입될 수 있으며, 암모니아 수용액은 정량펌프(170)를 사용하여 연속적으로 공급할 수 있다.
반응 완료 후, 복합 전이금속 수산화물은 배출구(150)을 통해 수득한다.
반응기(100)는 고정 원통(110)과 회전 원통(120) 사이의 회전 반응공간에서 와류 쌍들(160)을 이용하여 반응 유체들을 혼합하는 과정에서 반응 온도를 조절하기 위해, 고정 원통(110)상에 열교환기를 더 구비할 수 있고, 열교환기는 본 발명이 속하는 기술분야에서 통상적으로 알려진 열교환기를 사용할 수 있다.
도 7은 CSTR과 본 발명에 따른 반응기의 단위 질량당 동력 소모량을 비교한 그래프이다. 4L CSTR의 경우, 전구체 합성 시 원하는 입도 형성을 위해 1200 내지 1500 rpm의 회전력이 소모되고, 이를 단위 질량당 교반동력으로 환산하면, 약 13 내지 27 W/kg 이 된다(A 영역). 반면에, 본 발명에 따른 0.5 L 반응기는, 600 내지 1400 rpm의 범위에서 원하는 입도를 갖는 전구체 합성이 가능하며, 이를 단위 질량당 교반동력으로 환산하면, 1 내지 8 W/kg이 된다(B 영역).
즉, 본 발명의 반응기는 CSTR에 비해 작은 단위 질량당 교반동력으로 원하는 입도의 전구체 합성이 가능하다. 이는 본 발명의 반응기가 CSTR에 비해 교반 효율성이 뛰어남을 나타낸다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
Claims (17)
- 리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체 입자들로서,
상기 전구체 입자는 2종 이상의 전이금속을 포함하고 평균 입경이 1 내지 8 ㎛의 범위 내인 복합 전이금속 수산화물 입자이고, 상기 복합 전이금속 수산화물 입자들은 단분산된 입경 분포를 보이며, 변동계수가 0.2 내지 0.7 인 것을 특징으로 하는 전구체 입자들. - 제 1 항에 있어서, 상기 복합 전이금속 수산화물 입자의 평균 입경은 1 내지 5 ㎛의 범위 내인 것을 특징으로 하는 전구체 입자들.
- 제 1 항에 있어서, 상기 복합 전이금속 수산화물 입자는 복합 전이금속 수산화물 제조용 전이금속 염으로부터 유래되는 불순물을 포함하고 있고, 상기 불순물은 복합 전이금속 수산화물 입자의 전체 중량 대비 0.4 중량% 이하인 것을 특징으로 하는 전구체 입자들.
- 제 3 항에 있어서, 상기 불순물은 복합 전이금속 수산화물 입자의 전체 중량 대비 0.3 내지 0.4 중량%인 것을 특징으로 하는 전구체 입자들.
- 제 3 항에 있어서, 상기 불순물은 황산화 이온(SO4 2 -) 함유 염 이온인 것을 특징으로 하는 전구체 입자들.
- 제 3 항에 있어서, 상기 전이금속 염은 황산염인 것을 특징으로 하는 전구체 입자들.
- 제 6 항에 있어서, 상기 황산염은 황산 니켈, 황산 코발트 및 황산 망간으로 이루어진 군에서 선택되는 하나 또는 둘 이상인 것을 특징으로 하는 전구체 입자들.
- 제 3 항에 있어서, 상기 염 이온에는 질산화 이온(NO3 -)이 포함되어 있는 것을 특징으로 하는 전구체 입자들.
- 제 1 항에 있어서, 상기 복합 전이금속 수산화물은 하기 화학식 1로 표시되는 화합물인 것을 특징으로 하는 전구체 입자들:
M(OH1-x)2 (1)
상기 식에서, M은 Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr 및 2주기 전이금속들로 이루어진 군에서 선택되는 둘 또는 그 이상이고; 0≤x≤0.8 이다. - 제 9 항에 있어서, 상기 M은 Ni, Co 및 Mn로 이루어진 군에서 선택되는 두 종류의 전이금속 또는 이들 모두를 포함하고 있는 것을 특징으로 하는 전구체 입자들.
- 제 1 항 내지 제 10 항 중 어느 하나에 따른 전구체 입자들을 리튬 전구체와 소성 반응시켜 제조한 것을 특징으로 하는 리튬 복합 전이금속 산화물.
- 제 11 항에 있어서, 상기 리튬 전구체는 탄산 리튬(Li2CO3) 및/또는 수산화 리튬(LiOH)인 것을 특징으로 하는 리튬 복합 전이금속 산화물.
- 제 12 항에 따른 리튬 복합 전이금속 산화물을 포함하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질 슬러리.
- 제 13 항에 따른 양극 활물질 슬러리를 포함하는 것을 특징으로 하는 리튬 이차전지.
- 제 14 항에 따른 리튬 이차전지를 포함하는 것을 특징으로 하는 중대형 전지모듈.
- 제 15 항에 따른 중대형 전지모듈을 포함하는 것을 특징으로 하는 중대형 전지팩.
- 제 16 항에 따른 중대형 전지팩을 전원으로 이용하는 디바이스.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014547125A JP6284484B2 (ja) | 2012-02-03 | 2013-01-29 | リチウム二次電池用リチウム複合遷移金属酸化物の前駆体粒子及びそれを含む正極活物質 |
PCT/KR2013/000712 WO2013115544A1 (ko) | 2012-02-03 | 2013-01-29 | 리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체 입자들 및 이를 포함하는 양극 활물질 |
EP13743401.5A EP2811555B1 (en) | 2012-02-03 | 2013-01-29 | Method of preparation for precursor particles of lithium composite transition metal oxide using a rotating reactor |
CN201380004172.XA CN103975464B (zh) | 2012-02-03 | 2013-01-29 | 锂二次电池用锂复合过渡金属氧化物的前体粒子及包含其的正极活性材料 |
KR1020130010061A KR101477497B1 (ko) | 2012-02-03 | 2013-01-29 | 리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체 입자들 및 이를 포함하는 양극 활물질 |
US14/290,120 US9590242B2 (en) | 2012-02-03 | 2014-05-29 | Precursor particles of lithium composite transition metal oxide for lithium secondary battery and cathode active material comprising the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120011113 | 2012-02-03 | ||
KR20120011113 | 2012-02-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20130090312A true KR20130090312A (ko) | 2013-08-13 |
Family
ID=49215988
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120097454A KR20130090312A (ko) | 2012-02-03 | 2012-09-04 | 리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체 입자들 및 이를 포함하는 양극 활물질 |
KR1020130010061A KR101477497B1 (ko) | 2012-02-03 | 2013-01-29 | 리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체 입자들 및 이를 포함하는 양극 활물질 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130010061A KR101477497B1 (ko) | 2012-02-03 | 2013-01-29 | 리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체 입자들 및 이를 포함하는 양극 활물질 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9590242B2 (ko) |
EP (1) | EP2811555B1 (ko) |
JP (1) | JP6284484B2 (ko) |
KR (2) | KR20130090312A (ko) |
CN (1) | CN103975464B (ko) |
WO (1) | WO2013115544A1 (ko) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2810706B1 (en) * | 2012-02-01 | 2024-08-14 | LG Energy Solution, Ltd. | Reactor for preparing precursor of lithium composite transition metal oxide, and method for preparing precursor |
KR101596272B1 (ko) | 2013-01-03 | 2016-02-22 | 주식회사 엘지화학 | 리튬 복합 전이금속 산화물 제조용 장치, 이를 이용하여 제조된 리튬 복합 전이금속 산화물, 및 그 제조방법 |
KR101608632B1 (ko) | 2013-08-20 | 2016-04-05 | 주식회사 엘지화학 | 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법 및 이를 이용한 리튬 복합 전이금속 산화물 |
CN109906202B (zh) * | 2016-09-07 | 2022-01-18 | 协和化学工业株式会社 | 微粒复合金属氢氧化物、其烧制物、其制造方法及其树脂组合物 |
KR20190075729A (ko) * | 2017-12-21 | 2019-07-01 | 재단법인 포항산업과학연구원 | 리튬 이차 전지용 양극 활물질 및 이의 제조 방법, 상기 양극 활물질을 포함하는 리튬 이차 전지 |
CN110233259B (zh) | 2018-12-29 | 2021-02-09 | 宁德时代新能源科技股份有限公司 | 正极活性材料、正极极片及电化学储能装置 |
JP6880086B2 (ja) | 2019-01-21 | 2021-06-02 | Jx金属株式会社 | 全固体リチウムイオン電池用酸化物系正極活物質、全固体リチウムイオン電池用酸化物系正極活物質の製造方法及び全固体リチウムイオン電池 |
CN112352333A (zh) | 2019-03-29 | 2021-02-09 | Jx金属株式会社 | 全固态锂离子电池用氧化物系正极活性物质、全固态锂离子电池用氧化物系正极活性物质的前体的制造方法、全固态锂离子电池用氧化物系正极活性物质的制造方法以及全固态锂离子电池 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040013941A1 (en) | 2002-05-20 | 2004-01-22 | Nichia Corporation | Positive electrode active material for a nonaqueous electrolyte secondary battery |
CN100382363C (zh) * | 2002-09-26 | 2008-04-16 | 清美化学股份有限公司 | 锂二次电池用正极活性物质及其制备方法 |
JP2004342548A (ja) * | 2003-05-19 | 2004-12-02 | Mitsubishi Chemicals Corp | リチウム二次電池用正極活物質及びその製造方法、並びに、それを用いたリチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池 |
US8895190B2 (en) * | 2006-02-17 | 2014-11-25 | Lg Chem, Ltd. | Preparation method of lithium-metal composite oxides |
KR100765970B1 (ko) * | 2006-09-29 | 2007-10-10 | 대정화금주식회사 | 공침법을 이용한 망간 복합산화물 및 그 제조방법, 이를이용한 리튬이차전지용 스피넬형 양극활물질과 그 제조방법 |
JP4211865B2 (ja) * | 2006-12-06 | 2009-01-21 | 戸田工業株式会社 | 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池 |
JP5114998B2 (ja) * | 2007-03-29 | 2013-01-09 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池 |
JP5655218B2 (ja) | 2008-04-03 | 2015-01-21 | エルジー・ケム・リミテッド | リチウム複合遷移金属酸化物製造用の新規な前駆物質、リチウム−遷移金属複合酸化物及びリチウム二次バッテリ− |
JP5590283B2 (ja) * | 2008-09-22 | 2014-09-17 | 住友金属鉱山株式会社 | リチウム複合ニッケル酸化物およびその製造方法 |
DE102010053411B4 (de) * | 2009-12-15 | 2023-07-06 | Vat Holding Ag | Vakuumventil |
CN103562136B (zh) * | 2011-03-31 | 2016-09-21 | 住友金属矿山株式会社 | 镍复合氢氧化物粒子和非水电解质二次电池 |
JP4894969B1 (ja) | 2011-06-07 | 2012-03-14 | 住友金属鉱山株式会社 | ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池 |
EP2810706B1 (en) | 2012-02-01 | 2024-08-14 | LG Energy Solution, Ltd. | Reactor for preparing precursor of lithium composite transition metal oxide, and method for preparing precursor |
-
2012
- 2012-09-04 KR KR1020120097454A patent/KR20130090312A/ko active Search and Examination
-
2013
- 2013-01-29 CN CN201380004172.XA patent/CN103975464B/zh active Active
- 2013-01-29 KR KR1020130010061A patent/KR101477497B1/ko active IP Right Grant
- 2013-01-29 EP EP13743401.5A patent/EP2811555B1/en active Active
- 2013-01-29 JP JP2014547125A patent/JP6284484B2/ja active Active
- 2013-01-29 WO PCT/KR2013/000712 patent/WO2013115544A1/ko active Application Filing
-
2014
- 2014-05-29 US US14/290,120 patent/US9590242B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20140272587A1 (en) | 2014-09-18 |
CN103975464B (zh) | 2017-05-17 |
JP2015506075A (ja) | 2015-02-26 |
KR20130090341A (ko) | 2013-08-13 |
KR101477497B1 (ko) | 2014-12-30 |
JP6284484B2 (ja) | 2018-02-28 |
EP2811555B1 (en) | 2024-08-21 |
WO2013115544A1 (ko) | 2013-08-08 |
US9590242B2 (en) | 2017-03-07 |
CN103975464A (zh) | 2014-08-06 |
EP2811555A1 (en) | 2014-12-10 |
EP2811555A4 (en) | 2015-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3316357B1 (en) | Cathode active material comprising multi-layered transition metal oxide for lithium secondary battery, and cathode comprising cathode active material | |
KR102088508B1 (ko) | 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질 | |
EP2289849B2 (en) | Precursor for production of lithium transition-metal oxide | |
TWI464947B (zh) | 用於製備鋰複合過渡金屬氧化物之前驅物及其製備方法 | |
KR100959589B1 (ko) | 리튬 복합 전이금속 산화물 제조용 신규 전구체 | |
KR101477497B1 (ko) | 리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체 입자들 및 이를 포함하는 양극 활물질 | |
KR102065716B1 (ko) | 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질 | |
CN110642302A (zh) | 基于镍的活性材料前体、其制备方法、基于镍的活性材料及锂二次电池 | |
US20150034865A1 (en) | Precursor for preparation of lithium composite transition metal oxide and method of preparing the same | |
KR101673118B1 (ko) | 리튬이차전지용 양극활물질 전구체 제조방법 및 이를 이용한 양극활물질 및 리튬이차전지 | |
KR20110079025A (ko) | 리튬 복합 산화물 및 그 제조 방법 | |
CN110817974B (zh) | 基于镍的活性材料前体、其制备方法、基于镍的活性材料、和锂二次电池 | |
EP2843737B1 (en) | Anode active material and lithium secondary battery comprising same | |
KR20140007748A (ko) | 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법, 및 리튬 복합 전이금속 산화물 | |
KR101570970B1 (ko) | 리튬 복합 전이금속 산화물 제조용 전구체 | |
KR20150145471A (ko) | 리튬 이차 전지용 리튬 코발트 산화물, 그 제조방법 및 이를 포함한 양극을 구비한 리튬 이차 전지 | |
KR101608632B1 (ko) | 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법 및 이를 이용한 리튬 복합 전이금속 산화물 | |
KR101419982B1 (ko) | 균일한 중공형의 리튬이차전지용 양극 활물질의 제조방법 | |
KR101741027B1 (ko) | 복합체 전구체, 이로부터 형성된 복합체, 그 제조방법, 이를 포함하는 리튬 이차 전지용 양극 및 이를 구비한 리튬 이차 전지 | |
KR101435776B1 (ko) | 이차전지용 양극 활물질의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination |