KR20130064027A - 3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산의 생산방법 - Google Patents

3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산의 생산방법 Download PDF

Info

Publication number
KR20130064027A
KR20130064027A KR1020120141124A KR20120141124A KR20130064027A KR 20130064027 A KR20130064027 A KR 20130064027A KR 1020120141124 A KR1020120141124 A KR 1020120141124A KR 20120141124 A KR20120141124 A KR 20120141124A KR 20130064027 A KR20130064027 A KR 20130064027A
Authority
KR
South Korea
Prior art keywords
ala
leu
gly
glu
ile
Prior art date
Application number
KR1020120141124A
Other languages
English (en)
Other versions
KR101494386B1 (ko
Inventor
최인석
정원석
이찬무
김낙종
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to PCT/KR2012/010586 priority Critical patent/WO2013085321A1/ko
Publication of KR20130064027A publication Critical patent/KR20130064027A/ko
Application granted granted Critical
Publication of KR101494386B1 publication Critical patent/KR101494386B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 3-하이드록시프로피온알데히드(3-Hydroxypropionaldehyde) 및/또는 3-하이드록시프로피온산(3-Hydroxypropionic acid; 3-HP)을 생산하는 재조합 미생물 및 이를 이용한 3-HPA 및/또는 3-HP의 생산방법에 관한 것이다.
본 발명에 따른 재조합 미생물은 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래의 글리세롤 데하이드라타제(glycerol dehydratase)를 암호화하는 유전자를 포함하고 있는데, 기존에 알려진 클로스트리디움 부티리쿰(Clostridium butyricum) 유래의 비타민 B12 비의존성 글리세롤 데하이드라타제를 암호화하는 유전자를 포함하는 재조합 미생물보다 3-HPA 및 3-HP 생산에 있어 월등히 우수한 활성을 보여준다.
따라서 본 발명은 상기 미생물을 배양하고 그 배양물로부터 3-HPA 및 3-HP를 경제적으로 대량 수득할 수 있는 효과가 있다.

Description

3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산의 생산방법{3-HYDROXYALDEHYDE AND/OR 3-HYDROXYPROPIONIC ACID-PRODUCING RECOMBINANT MICROORGANISM AND METHOD OF PRODUCING 3-HYDROXYALDEHYDE AND/OR 3-HYDROXYPROPIONIC ACID USING THE SAME}
본 발명은 3-하이드록시프로피온알데히드(3-hydroxypropionaldehyde; 3-HPA) 및/또는 3-하이드록시프로피온산(3-Hydroxypropionic acid; 3-HP)을 생산하는 재조합 미생물 및 이를 이용한 3-HPA 및/또는 3-HP의 생산방법에 관한 것이다.
최근 석유 가격의 급격한 상승과 석유 기반 산업에 의한 지구 온난화 문제가 대두되면서 바이오 기반 연료 및 화학 산업이 각광을 받고 있다. 바이오 기반 연료 중 하나인 바이오 디젤은 식물성 기름이나 동물성 지방으로부터 트리글리세리드의 에스테르 교환반응에 의하여 생산되고 있다. 최근 바이오 디젤의 대량생산으로 인 하여 부산물인 글리세롤의 생산이 급증하였고, 바이오 디젤 10억 갤런당 77억 파운 드의 글리세롤이 생산되고 있다. 앞으로 바이오 디젤의 시장 수요가 증가하면서 부산물인 글리세롤의 생산량도 급격하게 증가할 것으로 예측된다.
탄소원으로 글리세롤을 사용할 수 있는 미생물을 이용하여 다양한 발효 산물을 만들 수 있는데, 3-하이드록시프로피온산(3-hydroxypropionic acid; 3-HP)이 한 예이다.
3-HP는 광학적으로 활성이 있는 물질의 합성을 위해 중요한 역할을 하는 2개 의 작용기를 가지고 있는데, 이는 화학산업에서 3-HP가 중요한 전구체로 각광을 받 게 하는 요소이다. 3-HP를 전구체로 하여 합성되는 핵심 화합물로는 1,3-프로판디 올(1,3-propanediol, MW 79.09), 아크릴산(acrylic acid, MW 72.06) 등이 알려져 있다(도 1 참조).
도 1에 나타낸 바와 같이, 생물학적으로 두 종의 효소가 촉매하는 탈수 및 산화 공정을 통하여 글리세롤로부터 3-HP를 생산할 수 있다. 첫 번째 효소인 글리 세롤 데하이드라타제(Glycerol dehydratase)는 글리세롤을 탈수반응시켜 3-하이드 록시프로피온알데히드(3-Hydroxypropionaldehyde; 3-HPA)을 생산하고, 두 번째 효 소인 3-하이드록시프로피온알데히드 데히드로게나제(3-HPA dehydrogenase)는 3-HPA를 탈수소화시켜 3-HP를 생산하게 된다.
클랩시엘라 뉴모니아(Klebsiella pneumoniae) 유래의 글리세롤 데하이드라타 제 효소가 알려져 있다(USP 6,852,517). 이 효소는 고가의(expensive) 비타민 B12 의존성 효소로서, 3-HP 생산에 이용시 생산 단가가 증가하는 단점이 있다.
클로스트리디움 부티리쿰(Clostridium butyricum) 유래의 글리세롤 데하이드 라타제는 비타민 B12 비의존성 효소로서, 극도의 산소 민감도를 보이지만 비타민 B12에 의하여 활성에 영향을 받지 않는 것으로 보고되고 있다(PNAS, 100: pp 5010-5015 (2003)). 이와 같이 비타민 B12 비의존성 글리세롤 데하이드라타제를 이용한 3-HP 생산은 고가의 비타민 B12를 필요로 하지 않기 때문에 생산단가를 혁신적으로 낮출 수 있으므로 상업적으로 유용한 가치가 있다.
1. 미국등록특허 6,852,517 2. 미국등록특허 7,005,291
1. Proceedings of the National Academy of Sciences of the United States of America(PNAS), 100: pp 5010-5015 (2003).
본 발명의 목적은 비타민 B12 비의존적인 방식으로 3-하이드록시알데히드(3-Hydroxypropionaldehyde; 3-HPA) 및 3-하이드록시프로피온산(3-Hydroxypropionic acid; 3-HP)의 생산능이 우수한 재조합 미생물 및 이를 이용한 3-HPA 및 3-HP의 효과적인 생산방법을 제공하는 것이다.
상기 목적을 달성하기 위하여 본 발명은 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래의 글리세롤 데하이드라타제(glycerol dehydratase)를 암호화하는 폴리뉴클레오타이드를 포함하는, 3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산을 생산하는 재조합 미생물을 제공한다.
본 발명은 또한 탄소원(carbon source)으로 글리세롤 및 글루코스 중 하나 이상을 포함하는 배지에서 상술한 재조합 미생물을 배양하는 단계를 포함하는, 3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산의 생산방법을 제공한다.
본 발명에 따른 재조합 미생물은 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래의 글리세롤 데하이드라타제(glycerol dehydratase)를 암호화하는 유전자(폴리뉴클레오타이드)를 포함하고 있는데, 기존에 알려진 클로스트리디움 부티리쿰(Clostridium butyricum) 유래의 비타민 B12 비의존성 글리세롤 데하이드라타제를 암호화하는 유전자를 포함하는 재조합 미생물보다 3-하이드록시프로피온알데히드 및 3-하이드록시프로피온산의 생산에 있어 월등히 우수한 활성을 보여준다. 따라서 본 발명은 상기 미생물을 배양하고 그 배양물로부터 3-HPA 및 3-HP를 경제적으로 대량 수득할 수 있는 효과가 있다.
도 1은 글리세롤로부터 3-하이드록시프로피온알데히드(3-HPA)를 거쳐 3-하이드록시프로피온산(3-HP)을 생성하는 경로를 보여주는 개략적인 모식도이다.
도 2는 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래의 글리세 롤 데하이드라타제(glycerol dehydratase) 및 재활성화 인자의 dhaB1 및 dhaB2 유전자를 포함하는 재조합 벡터(pRSF-dhaB1B2(RI))에 대한 개략적인 개열지도이다.
도 3은 대장균 K-12 유래의 알데히드 데히드로게나제 코딩 유전자(aldH)를 포함하는 재조합 벡터(pET-aldH)에 대한 개략적인 개열지도이다.
도 4는 클로스트리디움 부티리쿰(Clostridium butyricum) 유래의 글리세롤 데하이드라타제 및 재활성화 인자의 dhaB1 및 dhaB2 유전자를 포함하는 재조합 벡터(pRSF-dhaB1B2(CB))에 대한 개략적인 개열지도이다.
도 5는 아크롤레인과 트립토판을 이용한 3-하이드록시프로피온알데히드(3-Hydroxypropionaldehyde; 3-HPA)의 농도 측정방법을 개략적으로 보여준다.
도 6은 실시예 1 및 비교예 1에서 제조한 재조합 대장균에 대한 시간에 따른 세포 배양액의 농도(흡광도, OD) 변화를 보여준다.
도 7은 실시예 1 및 비교예 1에서 제조한 재조합 대장균에 대한 시간에 따른 세포 배양액의 산도(pH) 변화를 보여준다.
도 8은 실시예 1 및 비교예 1에서 제조한 재조합 대장균에 대한 시간에 따른 3-HP의 생산량을 보여준다.
도 9는 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래의 글리세 롤 데하이드라타제(glycerol dehydratase) 유전자 및 nar 프로모터를 포함하는 재조합 벡터 pET-aldH-pnarB12(R)에 대한 개략적인 개열지도이다
도 10은 클로스트리디움 부티리쿰(Clostridium butyricum) 유래의 글리세롤 데하이드라타제 유전자 및 nar 프로모터를 포함하는 재조합 벡터 pET-aldH-pnalB12(C)에 대한 개략적인 개열지도이다
도 11은 실시예 4 및 비교예 2에서 제조한 재조합 대장균에 대한 시간에 따른 세포 배양액의 농도(흡광도, OD) 변화를 보여준다.
도 12은 실시예 4 및 비교예 2에서 제조한 재조합 대장균에 대한 시간에 따른 세포 배양액의 산도(pH) 변화를 보여준다.
도 13은 실시예 4 및 비교예 2에서 제조한 재조합 대장균에 대한 시간에 따른 3-HP의 생산량을 보여준다.
본 발명의 구체적인 내용을 기술하기에 앞서 본 명세서에 사용된 용어에 대하여 의미를 서술한다.
본 명세서에서 사용되는 '폴리펩타이드'는 해당 아미노산 서열에 대하여 실질적인 동일성을 나타내는 아미노산 서열을 포함하는 것으로 해석된다. 상기의 실질적인 동일성은 본 발명의 아미노산 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 사용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 60%의 상동성, 보다 바람직하게는 최소 80%의 상동성, 가장 바람직하게는 최소 90%의 상동성을 나타내는 아미노산 서열을 의미한다. 상기 폴리펩타이드는 상기 상술한 것처럼 기재된 특정의 아미노산 서열과 약 60% 이상의 동일성을 갖는 아미노산 서열을 가지며 글리세롤 대사에 관련하는 폴리펩타이드를 포함하며, 동일성이 높을수록 바람직하다.
또한 상기 동일성을 가지는 폴리펩타이드는 기재된 특정 아미노산 서열의 폴리펩타이드에서 1개 이상의 아미노산 잔기가 소실, 치환, 삽입, 및/또는 첨가된 아미노산 서열을 포함하면서 글리세롤 대사와 관련되는 폴리펩타이드를 포함한다. 일반적으로, 소실, 치환, 삽입, 및/또는 첨가의 수는 적을수록 바람직하다.
본 명세서에 사용되는 '유전자' 또는 '(폴리)뉴클레오타이드'는 특정 단백질을 발현(암호화)시키는 핵산 단편(핵산 분자)을 지칭하며, 코딩 영역만을 지칭하거나 코딩 서열 앞에 있는 조절 서열(5' 비-코딩 서열) 및 코딩 서열 뒤에 있는 조절 서열(3' 비-코딩 서열)을 포함할 수 있으며, 핵산 분자에서 기본 구성 단위인 뉴클레오타이드는 자연의 뉴클레오타이드 뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogues)도 포함한다.
본 발명의 유전자는 상기 기재된 특정의 아미노산 서열(폴리펩타이드)을 암호화하는 핵산 분자에 제한되지 않고, 상기에서 서술한 것처럼 특정 아미노산 서열에 대하여 실질적인 동일성을 나타내는 아미노산 서열을 갖는 폴리펩타이드를 암호화하는 핵산 분자를 포함하는 것으로 해석된다. 상기의 실질적인 동일성은 본 발명의 아미노산 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 사용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 60%의 상동성, 보다 바람직하게는 최소 80%의 상동성, 가장 바람직하게는 최소 90%의 상동성을 나타내는 아미노산 서열을 의미한다.
또한 상기 동일성을 가지는 폴리펩타이드는 예를 들어, 하나 이상의 아미노산이 소실, 치환, 삽입, 및/또는 첨가되는 아미노산 서열의 폴리펩타이드를 포함한다. 그러한 폴리펩타이드는 상기 상술한 것처럼 1 개 이상의 아미노산 잔기가 소실, 치환, 삽입, 및/또는 첨가된 아미노산 서열로 이루어지며 3-하이드록시프로피온산 합성 관련되는 폴리펩타이드를 포함하며, 아미노산 잔기의 소실,치환,삽입, 및/또는 첨가의 수가 적은 것이 바람직하다.
본 명세서에서 사용되는 용어 '상보적' 또는 '상보성'은 퓨린 및 피리미딘뉴클레오티드가 수소 결합을 통해 결합하여 더블 스트랜드 핵산 분자를 형성하는 능력을 언급하며, 부분적으로 상보적인 경우도 포함한다. 하기 염기쌍이 상보성과 관련된다: 구아닌 및 시토신; 아데닌 및 티민; 및 아데닌 및 우라실. '상보적'은 상기 언급된 관계가 전장의 상기 분자에 걸쳐 2개의 싱글-스트랜드 핵산 분자를 포함하는 모든 염기쌍에 실질적으로 적용된다. '부분적으로 상보적'은 2개의 싱글-스트랜드 핵산 분자중 하나의 길이 짧기 때문에 그 분자들 중 하나의 일부가 싱글 스트랜드로 남아있는 것 관계를 의미한다.
본 발명의 '천연 유전자(native gene)'는 자신의 조절 서열과 함께 자연에서 발견되는 유전자를 의미한다. 본 발명의 '외인성 유전자(exogenous gene)'는 숙주세포 내 자연적으로 존재하지 않으나 외부로부터 숙주세포 내 도입된 유전자를 의미한다.
본 발명의 '프로모터(promoter)'는 뉴클레오타이드 서열 또는 기능성 RNA의 발현을 제어할 수 있는 DNA 서열을 지칭한다.
본 발명의 '인핸서(enhancer)'는 프로모터 활성을 자극할 수 있는 DNA 서열이며, 프로모터의 고유한 요소이거나 또는 수준을 향상시키도록 삽입된 이종성 요소일 수 있다. 프로모터는 천연 유전자로부터 그 전체가 유래될 수도 있거나, 자연에서 발견되는 상이한 프로모터로부터 유래된 상이한 요소로 구성될 수도 있다.
본 명세서에 사용되는 3-하이드록시프로피온알데히드 '및/또는' 3-하이드록시프로피온산을 생산한다는 용어는 3-하이드록시프로피온알데히드 및 3-하이드록시프로피온산 중에서 어느 하나를 각각 또는 함께 생산할 수 있는 것을 의미한다.
본 발명자들은 3-하이드록시프로피온산(3-Hydroxypropionic acid; 3-HP)의 생산 활성이 우수하면서 3-HP 생산에 고가의 비타민 B12를 필요로 하지 않는 글리세롤 데하이드라타제 효소를 선별하기 위해, 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래의 글리세롤 데하이드라타제(glycerol dehydratase) 유전자를 클로닝하고, 대장균에서 알데히드 데히드로게나제(aldehyde dehydrogenase)와 함께 과발현시킨 결과, 글리세롤을 3-하이드록시프로피온알데히드(3--hydroxypropionaldehyde; 3-HPA)로 전환하는데 있어 높은 활성을 나타내고, 3-하이드록시프로피온산(3-ydroxypropionic acid; 3-HP)생산도 상당히 증가하는 것을 발견하였다.
이에 본 발명은 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래 의 글리세롤 데하이드라타제를 암호화하는 폴리뉴클레오타이드를 포함하는, 3-HPA 및/또는 3-HP를 생산하는 재조합 미생물을 제공한다.
본 발명에 따른 글리세롤 데하이드라타제는 글리세롤을 3-히드록시프로피온알데히드로(3-HPA) 전환시키는 효소를 의미하며, 글리세롤 데하이드라타제(Glycerol dehydratase) 또는 디올 데하이드라타제(Diol dehydratases) 등이 포함된다. 공지의 비타민 B12 비의존성 클로스트리디움 부티리쿰(Clostridium butyricum) 유래의 글리세롤 데하이드라타제보다 글리세롤을 3-HPA로 전환하는 활성이 우수한 특징이 있다.
상기 로세브리아 이누리보란스(Roseburia inulinivorans)는 혐기성 박테리아로서, 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래의 글리세롤 데하이드라타제는 비타민 B12 비의존성이며, 서열번호 10으로 표현된 아미노산 서열(DhaB1)로 표현되는 폴리펩타이드일 수 있다. 이에, 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래의 글리세롤 데하이드라타제를 암호화하는 폴리뉴클레오타이드는 서열번호 10의 폴리펩타이드를 발현하는 뉴클레오타이드 서열, 서열번호 1로 표현된 뉴클레오타이드 서열, 또는 그에 상보적인 서열일 수 있다.
본 발명에 따른 재조합 미생물은 비타민 B12 비의존성 글리세롤 데하이드라 타제를 활성화시키기 위한 글리세롤 데하이드라타제 재활성화 인자를 암호화하는 뉴클레오타이드를 추가로 포함할 수 있다. 본 발명의 글리세롤 데하이드라타제 재활성화 인자는, 글리세롤 데하이드라타제가 작용하는 동안 비가역적으로 불활성화되는 것을 다시 활성화시켜주는 폴리펩타이드이다.
글리세롤 데하이드라타제 재활성화 인자로 일반적으로 알려진 어느 것이라도 사용할 수 있으나, DhaB2, DhaB4, GdrA, DdrA 및 PduG로 이루어지는 그룹에서 선택될 수 있다. 상기 재활성화 인자를 암호화하는 폴리뉴클레오타이드는 dhaB2 (DQ299884.1), dhaB4 (U30903), gdrA (U60992), ddrA (AF017781), pduG (AF026270) 등을 들 수 있다. 바람직하게는, 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래 글리세롤 데하이드라타제 재활성화 인자이며, 서열번호 11로 표현되는 아미노산 서열(DhaB2)을 포함할 수 있다. 상기 재활성화 인자 유전자를 암호화하는 뉴클레오타이드 서열은 서열번호 11의 폴리펩타이드를 암호화하는 뉴클레오타이드 서열 또는 서열번호 2(dhaB2)을 포함하는 서열일 수 있다. 또한 상기 뉴클레오타이드 서열에 상보적인 서열일 수 있다.
본 발명의 재조합 미생물은 3-하이드록시프로피온알데히드 데히드로게나제(3-hydroxypropionaldehyde dehydrogenase)를 암호화하는 폴리뉴클레오타이드를 추가로 포함할 수 있다. 본 발명의 3-히드록시프로피온알데히드 데히드로게나제는 3-하이드록시프로피온알데히드(3-Hydroxy propionaldehyde; 3-HPA)를 3-하이드록시프로피온산(3-Hydroxypropionic acid, 3-HP)으로 전환하는 효소를 의미한다.
상기 3-히드록시프로피온알데히드 데히드로게나제에는 3-HPA를 3-HP로 전환시키는 활성을 가지는 효소라면 어느 효소라도 포함된다. 3-하이드록시프로피온알데히드 데히드로게나제는 조효소로서 NAD+ 또는 NADP+를 사용할 수 있다.
본 발명의 상기 3-하이드록시프로피온알데히드 데히드로게나제를 암호화하는 폴리뉴클레오타이드는 천연 유전자 또는 외인성 유전자일 수 있다. 본 발명의 숙주세포가 내인성으로 상기 데히드로게나제 유전자를 포함하고 있는 경우 상기 데히드로게나제 유전자를 외부에서 숙주세포 내 도입하는 것이 필요하지 않을 수 있으나, 상기 효소의 발현양을 증가시키기 위하여 추가로 숙주세포 내로 도입할 수도 있다.
본 발명에서 3-하이드록시프로피온알데히드 데히드로게나제는 AldH2, Ald4, AldA, AldB 및 AldH로 이루어진 그룹에서 선택되는 것일 수 있으나 이에 한정되는 것은 아니다. 상기 효소를 암호화하는 뉴클레오타이드 서열로는, 호모 사피엔스(Homo sapiens) 유래의 aldH2 유전자(NM_000690.3, NM_001204889.1), 사카로마이세스 세레비지에(S. cerevisiae) 유래의 ald4 유전 자(NM_001183794.1), 대장균(E. coli) 유래의 aldA, aldB, aldH 유전자 (NC_000913.2) 등으로부터 선택될 수 있지만, 이에 한정되는 것은 아니다. 예를 들어, 3-하이드록시프로피온알데히드 데히드로게나제는 서열번호 12의 아미노산 서열(AldH)을 포함하는 것일 수 있으며, 이를 암호화하는 폴리뉴클레오타이드는 서열번호 12의 폴리펩타이드를 암호화하는 뉴클레오타이드 서열 또는 서열번호 3으로 표현된 뉴클레오타이드 서열을 포함할 수 있다. 또한 상기 뉴클레오타이드 서열에 상보적인 서열일 수 있다.
본 발명의 각 폴리뉴클레오타이드(뉴클레오타이드 서열)은 숙주세포의 게놈 내에 또는 적어도 하나의 발현 벡터 내 포함될 수 있다.
본 발명의 일 실시예에서는, 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래의 글리세롤 데하이드라타제 및 재활성화 인자를 암호화하는 폴리뉴클레오타이드를 포함하는 발현 벡터 및 상기 벡터로 형질전환된 3-HPA 및/또는 3-HP를 생산하는 재조합 미생물을 제공한다. 상기 발현 벡터는 3-하이드록시프로피온알데히드 데히드로게나제를 암호화하는 폴리뉴클레오타이드를 추가로 포함할 수 있다. 또는 상기 재조합 미생물은 3-하이드록시프로피온알데히드 데히드로게나제를 암호화하는 폴리뉴클레오타이드를 포함하는 발현 벡터를 추가적으로 포함할 수 있다.
상기 발현벡터는 상기 유전자의 발현 조절을 위하여 항시성(constitutive) 또는 유도성 프로모터, 전사 인핸서(enhancer), 전사 터미네이터 등을 포함할 수 있다. 복수의 외인성 유전자를 발현시키는 경우 여러 유전자가 한 발현벡터에 삽입되거나 별도의 발현벡터에 삽입될 수도 있다. 상기 발현 벡터는 알려진 방법으로 숙주 세포 내 도입될 수 있다. 상기 각 폴리뉴클레오타이드는 동일 또는 상이한 프로모터에 각각 작동되도록 연결될 수 있다. 일례로 글리세롤 데하이라타제 및 그 활성화 인자는 동일 프로모터에 작동되도록 연결될 수 있다. 일례로 본 발명에서는 상기 글리세롤 데하이드라타제를 암호화하는 폴리뉴클레오타이드를 포함하는 발현 벡터는 혐기성 조건에서 작동이 유도되는 혐기성 프로모터, 예를 들어 nar, PadhE, Nirb, fdhF, phTERT, PnirB 프로모터를 포함할 수 있다(Kim et. al., J. Biotechnology, Vol.151, Issue 1, pp.102-107; Wei et. al., Applied Microbiology and Biotechnology March 2009, Volume 82, Issue 4, pp 703-712 ; Oxer et. al., Peakman TC, Charles IG, et al. (1991)).
본 발명의 일 실시예에서는, 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래의 글리세롤 데하이드라타제 및 재활성화 인자의 DHAB1과 DHAB2를 암호화하는 폴리뉴클레오타이드 및 AldH를 암호화하는 폴리뉴클레오타이드를 포함하는 발현 벡터 및 상기 벡터로 형질전환된 재조합 미생물을 제공한다. 상기에서, 각 폴리뉴클레오타이드는 동일하거나 상이한 프로모터에 각각 작동되도록 연결될 수 있고, 또한 동일 또는 상이한 벡터에 포함될 수 있다.
본 발명의 재조합 미생물은 재조합 벡터와 같은 발현카세트로 숙주 세포에 도입하는 형질전환 방법에 의하여 만들어질 수 있으며, 상기 도입 방법 역시 공지의 기술, 예컨데 염화칼슘법, 열 충격법, 전기충격법 등의 형질전환방법이나 재조합 파지 바이러스를 통한 형질주입을 통해 도입할 수 있다. 상기의 숙주 세포 이외에도 발현의 목적에 따라 달라지는 벡터에 의존하여 다양한 균주를 용이하게 이용할 수 있음은 당업자에게 명백한 일이다.
본 발명의 재조합 미생물의 제조에 사용 가능한 미생물은 박테리아, 효모, 곰팡이 등 제한되지 않으며, 일례로 에스케리키아 (Escherichia) 속, 슈도모나스(Pseudomonas) 속, 엔테로박테리아 (Enterobacteria) 속, 브레비박테리움(Brevibacterium) 속, 코리네박테리움 (Corynebacterium) 속, 크렙시엘라(Klebsiella) 속, 시트로박터(Citrobacter) 속, 스트렙토마이세스 (Streptomyces) 속, 바실러스 (Bacillus) 속, 락토바실러스(Lactobacillus) 속, 슈도모나스 (Pseudomonas) 속, 사카로마이세스 (Saccharomyces)속 및 아스퍼질러스(Aspergillus) 속 미생물 중에서 선택될 수 있다. 바람직하게는 대장균, 클렙시엘라, 락토바실러스, 등과 같은 박테리아일 수 있다. 가장 바람직하게는 대장균이다.
본 발명은 또한 탄소원(carbon source)으로 글리세롤, 글루코스 또는 이들의 혼합물, 구체적으로는 글리세롤을 포함하는 배지에서 상술한 재조합 미생물을 배양하는 단계를 포함하는, 3-HPA 및/또는 3-HP의 생산방법을 제공한다. 글루코스를 글리세롤로 전환하지 못하는 미생물의 경우에는 공지의 방법으로 전환에 필요한 외래 유전자를 도입시켜 글루코스로부터 3-HPA 및/또는 3-HP가 생산되도록 할 수 있다(US7,005,291).
한편, 3-HPA를 3-HP로 전환시키는 반응경로상에서 본 발명에 따른 재조합 미생물을 적절히 사용하여 3-HPA 및 3-HP를 필요에 따라 각각 생산하거나 또는 동시순차적으로 생산되도록 할 수 있다.
배양조건은 사용된 미생물에 따라 적절히 조절할 수 있는데, 대장균의 경우 미호기성(microaerobic) 조건하에서 예를 들어 pH 7 내지 pH 8의 산도, 25℃ 내지 30℃의 온도에서, 1일 내지 4 일간, 바람직하게는 2일 내지 4일간 수행될 수 있다.
상기 재조합 균주는 호기성, 미호기성 또는 비호기성 조건에서 배양될 수 있으며, 일례에서 미호기성(microaerobic) 조건하에 배양될 수 있다. 본 발명의 발효는 배치(batch), 유가식(fed-batch), 또는 연속식(continuous)으로 진행될 수 있다.
본 발명의 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래의 글리세롤 데하이드라타제을 사용할 경우 공지의 비타민 B12 비의존성 클로스트리디움 부티리쿰(Clostridium butyricum) 유래의 글리세롤 데하 이드라타제에 비해 3-HPA 생산능이 10배 정도 향상되고 3-HP 생산능이 2배 정도 향상된 결과를 나타내었다.
이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 다만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다.
[ 실시예 1]
<단계 1> 로세브리아 이누리니보란스 ( Roseburia inulinivorans ) 유래 글리세 롤 데하이드라타제 및 재활성화 인자 발현 유전자를 포함하는 재조합 벡터의 제작
로세브리아 이누리니보란스 DSM16841로부터 게놈 DNA를 추출하고 정방향 프 라이머(서열번호 4: 5'-GGATCCGATGGGAAATTATGATAGTACTCCAATTGCG-3' (BamHI)) 및 역방향 프라이머(서열번호 5: 5'-GTCGACTTAACCACCAATCTGGCAGTGTAATG-3' (SalI))를 사용하여 PCR(Polymerase Chain Reaction)을 수행하여 dhaB1 및 dhaB2 유전자를 증폭하고, BamHI과 SalI으로 절단하였다.
PCR 조건은 하기와 같았다: LA taq 폴리머라아제 (Takara, Japan) 사용, Cycle Ⅰ (97℃, 5 min), Cycle Ⅱ (31 cycles / 97℃, 1 min / 55℃, 1 min / 72℃, 3 min), Cycle Ⅲ (72℃, 10 min).
증폭된 DNA를 동일 효소로 처리한 pRSFDuet 벡터 (Novagen)에 도입하여 pRSF-dhaB1B2(RI) 벡터를 제작하였다 (도 2 참조).
<단계 2> 알데히드 데히드로게나제 발현 유전자를 포함하는 재조합 벡터의 제작
대장균 K-12으로부터 게놈 DNA를 추출하고 정방향 프라이머(서열번호 6: 5'-TTTCATATGAATTTTCATCATCTGGCTTAC-3' (NdeI)) 및 역방향 프라이머(서열번호 7: 5'-TTTAGATCTTTCGGTCATTTCAGGCCTCCA-3' (BglII))를 사용하여 PCR을 수행하여 aldH 유전자를 증폭하고, NdeI 및 BglII로 절단하였다.
PCR 조건은 하기와 같았다: LA taq 폴리머라아제 (Takara, Japan) 사용, Cycle Ⅰ (97℃, 5 min), Cycle Ⅱ (31 cycles / 97℃, 1 min /55℃, 1 min / 72℃, 1.5 min), Cycle Ⅲ (72℃, 5 min).
증폭된 DNA를 동일 효소로 절단한 pETDuet 벡터(Novagen)에 도입하여 pET-aldH 벡터를 제작하였다 (도 3 참조).
<단계 3> 재조합 벡터로 형질전환된 대장균의 제조
상기 <단계 1>에서 제작한 재조합 벡터 pRSF-dhaB1B2(RI)와 <단계 2>에서 제 작한 재조합 벡터 pET-aldH를 대장균 BL21(DE3)(Novagen)에 차례로 형질전환시켜 재조합 균주 B/pRSF-dhaB1B2(RI)/pET-aldH를 제작하였다.
[ 비교예 1]
클로스트리디움 부티리쿰(Clostridium butyricum) DSM2478로부터 게놈 DNA를 추출하고 정방향 프라이머(서열번호 8: 5'-AAACCATGGTAAGTAAAGGATTTAGTACCCAAACAG-3' (NcoI)) 및 역방향 프라이머(서열번호 9: 5'-AAAGTCGACTTACTCAGCTCCAATTGTGCAAGGTAT-3' (SalI))를 이용하여 PCR을 수행하여 dhaB1 및 dhaB2 유전자를 증폭하고, NcoI과 SalI으로 절단하였다. PCR 반응은 실시예 1의 <단계 1>과 동일하게 수행되었다. 유 전자 염기서열 확인 후 돌연변이가 유발되지 않은 유전자를 pRSFDuet 벡터(Novagen)에 도입하여 pRSF-dhaB1B2(CB)를 제작하였다 (도 4 참조).
이렇게 제작한 재조합 벡터 pRSF-dhaB1B2(CB)와 실시예 1의 <단계 2>에서 제 작한 재조합 벡터 pET-aldH를 대장균 BL21(DE3)(Novagen)에 차례로 형질전환시켜 재조합 균주 B/pRSF-dhaB1B2(CB)/pET-aldH 를 제작하였다.
[ 실시예 2]: 3- HPA 농도
실시예 1과 비교예 1의 재조합 균주를 LB-NSG 배지(LB배지(Gibco-BRL)에 니트릴로아세트산(nitrilotriacetic acid) (200mg/L), 황산철(FeSO4) (50mg/L), 0.1 M K2HPO4/KH2PO4 (pH=7.2), 셀렌산나트륨(Sodium selenate) (30㎍/L), Glycerol 20g/L) 추가)에서 미호기성(microaerobic) 조건하에 30℃, pH 7에서 72시간 동안 배양한 후 12,000 rpm에서 5분간 원심분리하여 상등액과 세포침전물로 분리하였다.
상등액은 그대로 3-HPA를 측정하였고, 세포침전물은 7g/L 농도로 100mM 인산칼륨(potassium phosphate) 용액에서 현탁한 후 세포분쇄기로 세포를 파쇄한 후, 원심분리기에서 4℃, 12,000 rpm으로 10분간 원심분리한 후, 세포파쇄 상등액을 취하여 3-HPA를 측정하였다.
3-HPA 농도 측정은 세포파쇄액 및 배양 상등액 150㎕를 750㎕의 트립토판 용액(2.05g 트립토판, 4.17㎖ 염산, 2.5㎖ 톨루엔)과 각각 섞은 다음 40℃에서 20분간 반응시켜 보라색 발색을 유도하여 수행하였다. 560 nm에서 흡광도를 측정하 여 아크롤레인의 농도를 결정하고 이에 따른 3-HPA 농도를 계산하였다
즉, 아크롤레인 농도에 따른 흡광도의 변화는 도 5에 나타낸 바와 같이, 농 도별 흡광도를 측정하여 표준 곡선을 그리고, 산성조건에서 3-HPA의 전부가 아크롤레인으로 전환됨을 가정하여 흡광도에 따른 3-HPA의 농도를 계산하였다. 그 결과가 하기 표 1에 나타나 있다.
상등액 세포 파쇄액 합계
비교예 1 3 ㎎/L 0.26 ㎎/L 3.26 ㎎/L
실시예 1 34 ㎎/L 1.97 ㎎/L 35.97 ㎎/L
상기 표 1에서 보는 바와 같이, 실시예 1에서 제조한 균주의 경우, 상등액에 서 측정된 3-HPA 양(34㎎/L)이 비교예 1에서 제조한 균주의 것(3㎎/L)에 비해 대 략 11.3배 높고, 세포 파쇄액에서 측정된 3-HPA 양은 7.58배 높게 나타났다. 이러 한 결과는 로세브리아 이누리니보란스 유래의 글리세롤 데하이드라타제 효소가 클 로스트리디움 부티리쿰 유래의 효소보다 글리세롤에 대하여 높은 활성을 나타내고 있음을 보여준다.
[ 실시예 3]: 3- HP 의 발효 및 생산
실시예 1 및 비교예 1에서 제조한 재조합 대장균의 배양을 위해, 250㎖ 플 라스크에 100㎖ LB 배지(Gibco-BRL)를 넣고 추가적으로 니트릴로아세트산(Nitrilotriacetic acid) 200㎎/L, 황산철(FeSO4) 50㎎/L, 0.1 M K2HPO4/KH2PO4 (pH=7.2), 셀렌산나트륨(Sodium selenate) 30㎍/L, 글리세롤(Glycerol) 20g/L를 넣은 다음(LB-NSG 배지), 37℃ 배양기에서 배양하여 흡광도(OD, optical density)=0.8에서 이소프로필 1-티오-β-갈락토시드(isopropyl-1-thio-β-D-galactopyranoside, IPTG, 0.1 Mm)로 발현을 유도하였다. 2시간 후 배양액(각각 40㎖)을 50㎖ 원심분리기 튜브(centrifuge tube)에 분주하고, 파라필름(parafilm)으로 밀봉하여 미호기성(microaerobic) 조건을 형성한 후, 30℃ 배양기에서 250 rpm에서 72시간 동안 추가 진탕배양하였다. 24, 48, 72 시간째에 배양액 중 일부를 취하여 흡광도(OD) 및 산도(pH)를 측정하고 HPLC(high performance liquid chromatography)를 이용하여 3-HP 생산을 확인하였다. 그 결과를 도 6 내지 8에 나타내었다.
3-HP 분석시 Aminex HPX-87H (300mm*7.8mm) 컬럼을 사용하였고 이동상은 0.5mM 황산용액에 9% 아세토니트릴(acetonitrile)이 함유된 용액을 사용하여 유속 0.4㎖/min으로 흘려주었다. 컬럼의 온도는 35℃였으며, 검출기는 RI 및 UV/VIS (210nm) 듀얼모드를 이용하였다. 3-HP는 총 35분의 분석 시간 중 17.5 분에 검출되었으며 3-HP의 생산은 LC/MS에 의해서도 확인되었다.
도 6 내지 8에서 보는 바와 같이, 흡광도 값은 24시간까지는 두 균주에서 비슷하였으나, 24시간 이후 비교예 1의 균주가 실시예 1의 균주보다 조금 높은 값을 보였다(도 6 참조). 배양액의 pH도 유사한 양상을 보였다(도 7 참조).
한편, 3-HP 생산량의 경우, 두 균주 모두 24시간까지 0의 흡광도 값을 보이다가, 48시간 이후부터 3-HP가 생산되기 시작하였으며, 72시간이 되었을 때 비교예 1의 균주의 경우 310㎎/L인 반면, 본 발명에 따른 실시예 1의 균주의 경우 610㎎/L의 높은 3-HP 생산량을 나타내었다.
[ 실시예 4]
<단계 1> 로세브리아 이누리니보란스 ( Roseburia inulinivorans ) 유래 글리세롤 데하이드라타제 및 재활성화 인자 발현 유전자를 포함하는 재조합 벡터의 제작2
pRBS 플라즈미드(J. Biotechnology, Vol.151, Issue 1, pp.102-107)를 기반으로 nar 프로모터를 얻기 위한 PCR을 수행하였다.
정방향 프라이머(서열번호 13: 5'-ATTAATTAACATGGGGAATACTCCTTAATACCC-3' (PacI)) 및 역방향 프라이머(서열번호 14: 5'-AGCTAGCATCTCCTTCTTAAAGTTAAAC-3' (NheI))를 사용하여 PCR(Polymerase Chain Reaction)을 수행하여 nar 프로모터 유전자를 증폭하고, PacI과 NheI으로 절단하였다.
PCR 조건은 하기와 같았다: LA taq 폴리머라아제(Takara, Japan) 사용, Cycle Ⅰ (97℃, 5 min), Cycle Ⅱ (31 cycles / 97℃, 1min / 55℃, 1 min / 72℃, 1 min), Cycle Ⅲ (72℃, 10 min).
로세브리아 이누리니보란스 DSM16841 gDNA를 기반으로 dhaB1 및 dhaB2를 얻기 위한 PCR을 수행하였다.
정방향 프라이머(서열번호 15: 5'-AGCTAGCATGGGAAATTATGATAGTACTCCAATTG-3' (NheI)) 및 역방향 프라이머(서열번호 16: 5'-ACCTAGGTTAACCACCAATCTGGCAGTG-3' (AvrII))를 사용하여 PCR(Polymerase Chain Reaction)을 수행하여 dhaB1 및 dhaB2 유전자를 증폭하고, NheI과 AvrII로 절단하였다.
PCR 조건은 하기와 같았다: LA taq 폴리머라아제(Takara, Japan) 사용, Cycle Ⅰ (97℃, 5 min), Cycle Ⅱ (31 cycles / 97℃, 1 min / 55℃, 3.5 min / 72℃, 1 min), Cycle Ⅲ (72℃, 10 min).
상기 nar 프로모터 및 dhaB1-dhaB2 단편을 PacI 및 AvrII 효소로 처리한 pET-Duet 벡터 (Novagen)에 도입하여 pET-pnarB12(R) 벡터를 제작하였다.
<단계 2> 알데히드 데히드로게나제 발현 유전자 도입
대장균 K-12으로부터 게놈 DNA를 추출하고 정방향 프라이머(서열번호 17: 5'-TTTCATATGAATTTTCATCATCTGGCTTAC-3' (NdeI)) 및 역방향 프라이머(서열번호 18: 5'-TTTAGATCTTTCGGTCATTTCAGGCCTCCA-3' (BglII))를 사용하여 PCR을 수행하여 aldH 유전자를 증폭하고, NdeI 및 BglII로 절단하였다.
PCR 조건은 하기와 같았다: LA taq 폴리머라아제 (Takara, Japan) 사용, Cycle Ⅰ (97℃, 5 min), Cycle Ⅱ (31 cycles/ 97℃, 1 min / 55℃, 1 min / 72℃, 1.5 min), Cycle Ⅲ (72℃, 5 min).
증폭된 DNA를 NdeI, BglII 효소로 절단한 pET-pnarB12(R) 벡터에 도입하여 pET-aldH-pnarB12(R) 벡터를 제작하였다. (도 9 참조)
<단계 3> 재조합 벡터로 형질전환된 대장균의 제조
<단계 2>에서 제작한 재조합 벡터 pET-aldH-pnarB12(R)을 E.coli K(DE3) △ackA-pta에 형질전환시켜 재조합 균주 DK/pET-aldH-pnarB12(R)을 제작하였다.
E.coli K(DE3) △ackA-pta는 Datsenko 및 Wanner(2000)의 Red recombinase 방법에 따라 제조되었다(Datsenko et. al., Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5). 즉, pKD4 플라즈미드를 주형으로 하기의 프라이머를 사용하여 ackA-pta 넉다운을 위한 PCR을 실시하였다.
정방향 프라이머(서열번호 19:
5'-CGTAGTGATCGATGAGTCTGTTATTCAGGGTATCAAAGGTGTAGGCTGGAGCTGCTTC-3')
역방향 프라이머(서열번호 20:
5'-CAATCCCTGCACCCAGTTCTACACCCTGAGACGCTGATTCCGGGGATCCGTCGACC-3')
PCR 산물을 Red 플라즈미드 pKD46을 사용하여 E.coli K(DE3) 의 게놈으로 재조합시킨 후 kmR 형질전환체를 선택하였다. kmR 유전자를 제거하기 위하여 ackA-pta::Km 균주에 flp recombinase 유전자(Cherepanov and Wackernagel, Gene. 1995 May 26;158(1):9-14)를 포함하는 pCP20플라즈미드를 형질전환시키고 PCR을 이용하여 genotype으로 이중 크로스오버 변이체 E.coli K(DE3) △ackA-pta를 얻었다.
[ 비교예 2]
<단계 1> 클로스트리디움 부티리쿰 ( Clostridium butyricum ) DSM2478 유래 글리세롤 데하이드라타제 및 재활성화 인자 발현 유전자를 포함하는 재조합 벡터의 제작
실시예 4의 단계 1과 같은 방법으로 nar 프로모터 단편을 얻었다. 클로스트리디움 부티리쿰(Clostridium butyricum) DSM2478로부터 게놈 DNA를 추출하고 정방향 프라이머(서열번호 21: 5'-AGCTAGCATGGTAAGTAAAGGATTTAGTACCCAAACAG-3' (NheI)) 및 역방향 프라이머(서열번호 22: 5'-ACCTAGGTTACTCAGCTCCAATTGTGCAAGGTAT-3' (AvrII))를 이용하여 PCR을 수행하여 dhaB12 유전자를 증폭하고, NheI과 AvrII으로 절단하였다. PCR 반응은 실시예 4의 <단계 1>과 동일하게 수행되었다.
유전자 염기서열 확인 후 돌연변이가 유발되지 않은 nar 프로모터 및 dhaB12 유전자를 pET-duet 벡터(Novagen)에 도입하여 pET-dhaB12(C)를 제작하였다. 이렇게 제작한 재조합 벡터에 실시예 4의 <단계 2>에서 제작한 알데히드 데히드로게나제를 동일한 방법으로 재조합 벡터 pET-aldH-pnarB12(C)를 제작하였다. (도 10 참조) 제작한 재조합 벡터 pET-aldH-pnarB12(C)을 대장균 K(DE3) △ackA-pta에 형질전환시켜 재조합 균주 DK/pET-aldH-pnarB12(C)을 제작하였다.
[ 실시예 5]: 3- HP 의 발효 및 생산
실시예 4 및 비교예 2에서 제조한 재조합 대장균의 배양을 위해, 250㎖ 플라스크에 50㎖ LB 배지(Gibco-BRL)를 넣고 14시간 전배양을 하였다. 전배양 플라스크에서 균체 5㎖을 수확하여 RM 배지 45㎖로 옮겼다. RM 배지의 조성은 다음과 같다: 글리세롤(40g/L), 시트르산(1.8g/L), KH2PO4(6g/L), K2HPO4(34.8g/L), (NH4)2HPO4(4g/L), Trace elemental solution(3㎖, ZnCl2 0.014g/L, FeCl2ㆍ4H2O 0.041g/L, MnCl2 0.015g/L, CuCl2 0.0015g/L H3BO3 0.003g/L, Ma2MoO4 0.0025g/L).
상기 준비한 액을 33℃ 배양기에서 배양하여 흡광도(OD)=0.8에서 IPTG(0.03 mM)로 발현을 유도하였다. IPTG 발현 유도 후 파라필름(parafilm)으로 플라스크 상단 마게부분을 밀봉하여 미호기성(microaerobic) 조건을 형성한 후 150 rpm에서 72시간 동안 추가 진탕배양하였다. 24, 48, 72 시간째에 배양액 중 일부를 취하여 흡광도(OD) 및 산도(pH)를 측정하고, HPLC(high performance liquid chromatography)를 이용하여 3-HP 생산을 확인하였다. 그 결과를 도 11, 12, 13에 나타내었다.
도 13에서 보는 바와 같이 3-HP 생산량의 경우, 배양 후 72시간이 되었을 때 실시예 4의 균주의 경우 2.11 g/L인 반면, 비교예 2의 균주의 경우 1.23 g/L의 3-HP 생산량을 나타내었다.
실험결과, 본 발명에 따른 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래의 글리세롤 데하이드라타제는 비타민 B12 비의존적으로 3-HPA 및 3-HP를 생산할 수 있을 뿐만 아니라 기존에 보고된 클로스트리디움 부티리쿰(Clostridium butyricum) 유래의 글리세롤 데하이드라타제 보다 글리세롤에 대해 월등히 우수한 활성을 나타내고 이에 따라 3-HP 생산능에 있어서도 매우 우수한 효과를 나타냄을 확인하였다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항 들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 따른 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래의 글리세롤 데하이드라타제는 기존에 보고된 클로스트리디움 부티리쿰(Clostridium butyricum) 유래의 글리세롤 데하이드라타제 보다 글리세롤에 대해 월등히 우수한 활성을 나타내고 이에 따라 3-HPA 및 3-HP 생산능에 있어서도 매우 우수한 효과를 나타내므로, 기존의 클로스트리디움 부티리쿰 유래의 글리세롤 데하이드라타제를 대체하여 3-HPA 및 3-HP 생산에 효과적으로 활용될 수 있음을 알 수 있다.
<110> Samsung Petrochemical Co., Ltd. <120> 3-HYDROXYALDEHYDE AND/OR 3-HYDROXYPROPIONIC ACID-PRODUCING RECOMBINANT MICROORGANISM AND METHOD OF PRODUCING 3-HYDROXYALDEHYDE AND/OR 3-HYDROXYPROPIONIC ACID USING THE SAME <130> FPS120191_PCT <150> KR 1020110130386 <151> 2011-12-07 <160> 22 <170> KopatentIn 2.0 <210> 1 <211> 2532 <212> DNA <213> Roseburia inulinivorans <220> <221> gene <222> (1)..(2532) <223> dhaB1, glycerol dehydratase of Roseburia inulinivorans <400> 1 atgggaaatt atgatagtac tccaattgcg aagtcggatc gtataaaaag acttgtagat 60 catctgtatg caaagatgcc tgagattgag gcggcaagag cggaactgat cacagaatca 120 tttaaggcta cggaaggtca gccggtagtg atgcgcaaag cacgtgcttt tgaacatatt 180 ttaaagaatc ttccgatcat tatcagacca gaagaattaa ttgtcggaag tacaacgatc 240 gcaccgagag gatgccagac atatccggaa ttttcatatg aatggttaga ggcagaattc 300 gaaacagtcg aaacaagaag tgctgatcca ttctatattt cagaggaaac aaaaaagaga 360 ttattagctg cagatgctta ctggaaagga aaaacaacca gtgagctggc aacttcctat 420 atggctccgg agacactccg tgccatgaaa cataatttct ttacaccggg caactatttt 480 tataatggtg taggacatgt aacagttcag tatgaaaccg tattggcgat cggtctgaat 540 ggtgtaaaag aaaaagtcag aaaagagatg gagaactgcc attttggaga tgcggattat 600 tctaccaaga tgtgtttctt agaatccatc ctgatttcct gtgatgcagt catcacttat 660 gcaaatcgtt atgcgaaaat ggcagaagag atggcagaga aagaaacaga tgcagcaaga 720 agacaggagc ttctgacaat tgcaagagta tgtaaaaatg taccggaatt ccctgctgaa 780 agcttccagg aggcgtgcca gtccttctgg ttcatccagc aggtattaca gattgaatcc 840 agtggacatt ctatttcacc gggacgtttt gaccagtata tgtatcctta ttacgagaag 900 gatttaaaag aaggcagtct cacccgtgag tacgcacagg aactgatcga ctgtatctgg 960 gtaaaattaa atgatctgaa taaatgtcgt gatgccgcaa gtgcagaagg ttttgcagga 1020 tattccttat tccagaacct gatcgttggt ggacagacag ttcagggaag agacgctacc 1080 aatgatcttt cgtttatgtg catcactgcc agtgagcatg tatttttacc aatgccatcc 1140 ttatcgatcc gtgtgtggca tggatcatcc aaggcattat taatgcgtgc ggcagagctg 1200 acaagaaccg gtatcggttt accggcttat tataatgacg aagttatcat tcctgcattg 1260 gttcatcgtg gagcaaccat ggacgaggca aggaattaca acatcatcgg atgtgtagaa 1320 ccgcaggttc cgggtaaaac agacggatgg cacgatgcag cgttcttcaa tatgtgccgc 1380 ccattggaga tggtattttc caatggttat gacaatggag agatcgcaag tatccagacc 1440 ggtaatgtgg agagcttcca gtcatttgat gaatttatgg aagcatacag aaaacagatg 1500 ttatataaca tcgaattgat ggtaaatgca gataatgcaa ttgattatgc tcatgcaaag 1560 cttgcaccat taccatttga gtcatgtctg gtagatgact gcatcaagcg gggaatgagt 1620 gcacaggaag gcggagcaat ttataacttt accggtccgc agggctttgg tatcgcaaat 1680 gtcgcagact ctttatatac gatcaagaag ctggtatttg aagaaaaacg cattaccatg 1740 ggcgagttaa agaaagctct tgagatgaat tacggtaaag ggctggatgc cacaactgcc 1800 ggagatattg caatgcaggt tgcaaaagga ttaaaagatg caggtcagga agtgggacct 1860 gatgtgatag cgaatacgat cagacaggta ttagagatgg aattaccgga agatgtcagg 1920 aagcgttatg aagagatcca tgaaatgatc cttgaacttc cgaaatacgg aaatgatatt 1980 gatgaagtag atgagcttgc ccgcgaggca gcatatttct acacaagacc attagagaca 2040 ttcaaaaatc caagaggtgg aatgtatcag gcaggtctct atccggtatc agccaatgtt 2100 ccattaggag ctcagaccgg tgctactccg gacggaagat tagcacatac tccggtggca 2160 gatggagtcg gaccgacatc aggattcgat atcagtggac cgacagcatc ctgtaactca 2220 gttgcaaaat tagatcatgc gatcgcaagt aacggaacac tctttaatat gaaaatgcat 2280 ccaacagcta tggctggaga gaaggggctg gagagcttta tttctctgat tcgtggttac 2340 tttgatcagc agggtatgca catgcagttt aatgtcgtag accgtgcaac tcttttggac 2400 gcacaggctc atccagaaaa atacagtggg ctgatcgtac gtgtagccgg atattctgct 2460 ttgtttacta cgttatcgaa atccttacag gatgatatca ttaagagaac agaacaggct 2520 gataatcgat ag 2532 <210> 2 <211> 795 <212> DNA <213> Roseburia inulinivorans <220> <221> gene <222> (1)..(795) <223> dhaB2, Glycerol dehydratase activator of Roseburia inulinivorans <400> 2 atgaaagaat atttgaatac atccggcagg atttttgata ttcaaagata ttccatacat 60 gatggtccgg gagtccgaac catagtcttc ttaaaaggat gtgcgttacg atgcagatgg 120 tgctgtaatc cggaatcaca gtcttttgaa gtggaaacaa tgacgatcaa cggaaaacca 180 aaggttatgg gcaaagatgt aactgtagcg gaggttatga agacagtaga aagagacatg 240 ccttattatt tacagtccgg tggaggaatc actctttccg gtggtgaatg tacgcttcaa 300 ccggagttct cattagggct tttaagagca gcaaaagatt tgggaatatc aacagccatt 360 gaaagtatgg cttatgcaaa atacgaagtg atcgaaacac tgcttccgta tctggatact 420 tacttaatgg atattaagca tatgaatccg gaaaagcata aagaatatac aggtcatgat 480 aatctcagaa tgttggagaa tgcactcagg gtagcccaca gtgggcagac agaactgatc 540 atccgtgttc ctgttattcc tggatttaat gctacagagc aggaattgct tgatatagcg 600 aagtttgcag ataccttacc gggcgtcaga cagatccaca tattgcctta tcataacttt 660 ggtcagggaa aatacgaagg attgaacaga gactatccaa tgggagatac agagaagcct 720 tccaatgagc agatgaaggc atttcaggaa atgatccaaa aaaatacgtc attacactgc 780 cagattggtg gttaa 795 <210> 3 <211> 1488 <212> DNA <213> Escherichia coli <220> <221> gene <222> (1)..(1488) <223> aldH gene of E. coli aldehyde dehydrogenase <400> 3 atgaattttc atcatctggc ttactggcag gataaagcgt taagtctcgc cattgaaaac 60 cgcttattta ttaacggtga atatactgct gcggcggaaa atgaaacctt tgaaaccgtt 120 gatccggtca cccaggcacc gctggcgaaa attgcccgcg gcaagagcgt cgatatcgac 180 cgtgcgatga gcgcagcacg cggcgtattt gaacgcggcg actggtcact ctcttctccg 240 gctaaacgta aagcggtact gaataaactc gccgatttaa tggaagccca cgccgaagag 300 ctggcactgc tggaaactct cgacaccggc aaaccgattc gtcacagtct gcgtgatgat 360 attcccggcg cggcgcgcgc cattcgctgg tacgccgaag cgatcgacaa agtgtatggc 420 gaagtggcga ccaccagtag ccatgagctg gcgatgatcg tgcgtgaacc ggtcggcgtg 480 attgccgcca tcgtgccgtg gaacttcccg ctgttgctga cttgctggaa actcggcccg 540 gcgctggcgg cgggaaacag cgtgattcta aaaccgtctg aaaaatcacc gctcagtgcg 600 attcgtctcg cggggctggc gaaagaagca ggcttgccgg atggtgtgtt gaacgtggtg 660 acgggttttg gtcatgaagc cgggcaggcg ctgtcgcgtc ataacgatat cgacgccatt 720 gcctttaccg gttcaacccg taccgggaaa cagctgctga aagatgcggg cgacagcaac 780 atgaaacgcg tctggctgga agcgggcggc aaaagcgcca acatcgtttt cgctgactgc 840 ccggatttgc aacaggcggc aagcgccacc gcagcaggca ttttctacaa ccagggacag 900 gtgtgcatcg ccggaacgcg cctgttgctg gaagagagca tcgccgatga attcttagcc 960 ctgttaaaac agcaggcgca aaactggcag ccgggccatc cacttgatcc cgcaaccacc 1020 atgggcacct taatcgactg cgcccacgcc gactcggtcc atagctttat tcgggaaggc 1080 gaaagcaaag ggcaactgtt gttggatggc cgtaacgccg ggctggctgc cgccatcggc 1140 ccgaccatct ttgtggatgt ggacccgaat gcgtccttaa gtcgcgaaga gattttcggt 1200 ccggtgctgg tggtcacgcg tttcacatca gaagaacagg cgctacagct tgccaacgac 1260 agccagtacg gccttggcgc ggcggtatgg acgcgcgacc tctcccgcgc gcaccgcatg 1320 agccgacgcc tgaaagccgg ttccgtcttc gtcaataact acaacgacgg cgatatgacc 1380 gtgccgtttg gcggctataa gcagagcggc aacggtcgcg acaaatccct gcatgccctt 1440 gaaaaattca ctgaactgaa aaccatctgg ataagcctgg aggcctga 1488 <210> 4 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genomic DNA of Roseburia inulinivorans <400> 4 ggatccgatg ggaaattatg atagtactcc aattgcg 37 <210> 5 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genomic DNA of Roseburia inulinivorans <400> 5 gtcgacttaa ccaccaatct ggcagtgtaa tg 32 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genomic DNA of E. coli K-12 <400> 6 tttcatatga attttcatca tctggcttac 30 <210> 7 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genomic DNA of E. coli K-12 <400> 7 tttagatctt tcggtcattt caggcctcca 30 <210> 8 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genomic DNA of Clostridium butyricum <400> 8 aaaccatggt aagtaaagga tttagtaccc aaacag 36 <210> 9 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genomic DNA of Clostridium butyricum <400> 9 aaagtcgact tactcagctc caattgtgca aggtat 36 <210> 10 <211> 843 <212> PRT <213> Roseburia inulinivorans <220> <221> PEPTIDE <222> (1)..(843) <223> DhaB1, glycerol dehydratase of Roseburia inulinivorans <400> 10 Met Gly Asn Tyr Asp Ser Thr Pro Ile Ala Lys Ser Asp Arg Ile Lys 1 5 10 15 Arg Leu Val Asp His Leu Tyr Ala Lys Met Pro Glu Ile Glu Ala Ala 20 25 30 Arg Ala Glu Leu Ile Thr Glu Ser Phe Lys Ala Thr Glu Gly Gln Pro 35 40 45 Val Val Met Arg Lys Ala Arg Ala Phe Glu His Ile Leu Lys Asn Leu 50 55 60 Pro Ile Ile Ile Arg Pro Glu Glu Leu Ile Val Gly Ser Thr Thr Ile 65 70 75 80 Ala Pro Arg Gly Cys Gln Thr Tyr Pro Glu Phe Ser Tyr Glu Trp Leu 85 90 95 Glu Ala Glu Phe Glu Thr Val Glu Thr Arg Ser Ala Asp Pro Phe Tyr 100 105 110 Ile Ser Glu Glu Thr Lys Lys Arg Leu Leu Ala Ala Asp Ala Tyr Trp 115 120 125 Lys Gly Lys Thr Thr Ser Glu Leu Ala Thr Ser Tyr Met Ala Pro Glu 130 135 140 Thr Leu Arg Ala Met Lys His Asn Phe Phe Thr Pro Gly Asn Tyr Phe 145 150 155 160 Tyr Asn Gly Val Gly His Val Thr Val Gln Tyr Glu Thr Val Leu Ala 165 170 175 Ile Gly Leu Asn Gly Val Lys Glu Lys Val Arg Lys Glu Met Glu Asn 180 185 190 Cys His Phe Gly Asp Ala Asp Tyr Ser Thr Lys Met Cys Phe Leu Glu 195 200 205 Ser Ile Leu Ile Ser Cys Asp Ala Val Ile Thr Tyr Ala Asn Arg Tyr 210 215 220 Ala Lys Met Ala Glu Glu Met Ala Glu Lys Glu Thr Asp Ala Ala Arg 225 230 235 240 Arg Gln Glu Leu Leu Thr Ile Ala Arg Val Cys Lys Asn Val Pro Glu 245 250 255 Phe Pro Ala Glu Ser Phe Gln Glu Ala Cys Gln Ser Phe Trp Phe Ile 260 265 270 Gln Gln Val Leu Gln Ile Glu Ser Ser Gly His Ser Ile Ser Pro Gly 275 280 285 Arg Phe Asp Gln Tyr Met Tyr Pro Tyr Tyr Glu Lys Asp Leu Lys Glu 290 295 300 Gly Ser Leu Thr Arg Glu Tyr Ala Gln Glu Leu Ile Asp Cys Ile Trp 305 310 315 320 Val Lys Leu Asn Asp Leu Asn Lys Cys Arg Asp Ala Ala Ser Ala Glu 325 330 335 Gly Phe Ala Gly Tyr Ser Leu Phe Gln Asn Leu Ile Val Gly Gly Gln 340 345 350 Thr Val Gln Gly Arg Asp Ala Thr Asn Asp Leu Ser Phe Met Cys Ile 355 360 365 Thr Ala Ser Glu His Val Phe Leu Pro Met Pro Ser Leu Ser Ile Arg 370 375 380 Val Trp His Gly Ser Ser Lys Ala Leu Leu Met Arg Ala Ala Glu Leu 385 390 395 400 Thr Arg Thr Gly Ile Gly Leu Pro Ala Tyr Tyr Asn Asp Glu Val Ile 405 410 415 Ile Pro Ala Leu Val His Arg Gly Ala Thr Met Asp Glu Ala Arg Asn 420 425 430 Tyr Asn Ile Ile Gly Cys Val Glu Pro Gln Val Pro Gly Lys Thr Asp 435 440 445 Gly Trp His Asp Ala Ala Phe Phe Asn Met Cys Arg Pro Leu Glu Met 450 455 460 Val Phe Ser Asn Gly Tyr Asp Asn Gly Glu Ile Ala Ser Ile Gln Thr 465 470 475 480 Gly Asn Val Glu Ser Phe Gln Ser Phe Asp Glu Phe Met Glu Ala Tyr 485 490 495 Arg Lys Gln Met Leu Tyr Asn Ile Glu Leu Met Val Asn Ala Asp Asn 500 505 510 Ala Ile Asp Tyr Ala His Ala Lys Leu Ala Pro Leu Pro Phe Glu Ser 515 520 525 Cys Leu Val Asp Asp Cys Ile Lys Arg Gly Met Ser Ala Gln Glu Gly 530 535 540 Gly Ala Ile Tyr Asn Phe Thr Gly Pro Gln Gly Phe Gly Ile Ala Asn 545 550 555 560 Val Ala Asp Ser Leu Tyr Thr Ile Lys Lys Leu Val Phe Glu Glu Lys 565 570 575 Arg Ile Thr Met Gly Glu Leu Lys Lys Ala Leu Glu Met Asn Tyr Gly 580 585 590 Lys Gly Leu Asp Ala Thr Thr Ala Gly Asp Ile Ala Met Gln Val Ala 595 600 605 Lys Gly Leu Lys Asp Ala Gly Gln Glu Val Gly Pro Asp Val Ile Ala 610 615 620 Asn Thr Ile Arg Gln Val Leu Glu Met Glu Leu Pro Glu Asp Val Arg 625 630 635 640 Lys Arg Tyr Glu Glu Ile His Glu Met Ile Leu Glu Leu Pro Lys Tyr 645 650 655 Gly Asn Asp Ile Asp Glu Val Asp Glu Leu Ala Arg Glu Ala Ala Tyr 660 665 670 Phe Tyr Thr Arg Pro Leu Glu Thr Phe Lys Asn Pro Arg Gly Gly Met 675 680 685 Tyr Gln Ala Gly Leu Tyr Pro Val Ser Ala Asn Val Pro Leu Gly Ala 690 695 700 Gln Thr Gly Ala Thr Pro Asp Gly Arg Leu Ala His Thr Pro Val Ala 705 710 715 720 Asp Gly Val Gly Pro Thr Ser Gly Phe Asp Ile Ser Gly Pro Thr Ala 725 730 735 Ser Cys Asn Ser Val Ala Lys Leu Asp His Ala Ile Ala Ser Asn Gly 740 745 750 Thr Leu Phe Asn Met Lys Met His Pro Thr Ala Met Ala Gly Glu Lys 755 760 765 Gly Leu Glu Ser Phe Ile Ser Leu Ile Arg Gly Tyr Phe Asp Gln Gln 770 775 780 Gly Met His Met Gln Phe Asn Val Val Asp Arg Ala Thr Leu Leu Asp 785 790 795 800 Ala Gln Ala His Pro Glu Lys Tyr Ser Gly Leu Ile Val Arg Val Ala 805 810 815 Gly Tyr Ser Ala Leu Phe Thr Thr Leu Ser Lys Ser Leu Gln Asp Asp 820 825 830 Ile Ile Lys Arg Thr Glu Gln Ala Asp Asn Arg 835 840 <210> 11 <211> 264 <212> PRT <213> Roseburia inulinivorans <220> <221> PEPTIDE <222> (1)..(264) <223> DhaB2, Glycerol dehydratase activator of Roseburia inulinivorans <400> 11 Met Lys Glu Tyr Leu Asn Thr Ser Gly Arg Ile Phe Asp Ile Gln Arg 1 5 10 15 Tyr Ser Ile His Asp Gly Pro Gly Val Arg Thr Ile Val Phe Leu Lys 20 25 30 Gly Cys Ala Leu Arg Cys Arg Trp Cys Cys Asn Pro Glu Ser Gln Ser 35 40 45 Phe Glu Val Glu Thr Met Thr Ile Asn Gly Lys Pro Lys Val Met Gly 50 55 60 Lys Asp Val Thr Val Ala Glu Val Met Lys Thr Val Glu Arg Asp Met 65 70 75 80 Pro Tyr Tyr Leu Gln Ser Gly Gly Gly Ile Thr Leu Ser Gly Gly Glu 85 90 95 Cys Thr Leu Gln Pro Glu Phe Ser Leu Gly Leu Leu Arg Ala Ala Lys 100 105 110 Asp Leu Gly Ile Ser Thr Ala Ile Glu Ser Met Ala Tyr Ala Lys Tyr 115 120 125 Glu Val Ile Glu Thr Leu Leu Pro Tyr Leu Asp Thr Tyr Leu Met Asp 130 135 140 Ile Lys His Met Asn Pro Glu Lys His Lys Glu Tyr Thr Gly His Asp 145 150 155 160 Asn Leu Arg Met Leu Glu Asn Ala Leu Arg Val Ala His Ser Gly Gln 165 170 175 Thr Glu Leu Ile Ile Arg Val Pro Val Ile Pro Gly Phe Asn Ala Thr 180 185 190 Glu Gln Glu Leu Leu Asp Ile Ala Lys Phe Ala Asp Thr Leu Pro Gly 195 200 205 Val Arg Gln Ile His Ile Leu Pro Tyr His Asn Phe Gly Gln Gly Lys 210 215 220 Tyr Glu Gly Leu Asn Arg Asp Tyr Pro Met Gly Asp Thr Glu Lys Pro 225 230 235 240 Ser Asn Glu Gln Met Lys Ala Phe Gln Glu Met Ile Gln Lys Asn Thr 245 250 255 Ser Leu His Cys Gln Ile Gly Gly 260 <210> 12 <211> 495 <212> PRT <213> Escherichia coli <220> <221> PEPTIDE <222> (1)..(495) <223> AldH gene of E. coli aldehyde dehydrogenase <400> 12 Met Asn Phe His His Leu Ala Tyr Trp Gln Asp Lys Ala Leu Ser Leu 1 5 10 15 Ala Ile Glu Asn Arg Leu Phe Ile Asn Gly Glu Tyr Thr Ala Ala Ala 20 25 30 Glu Asn Glu Thr Phe Glu Thr Val Asp Pro Val Thr Gln Ala Pro Leu 35 40 45 Ala Lys Ile Ala Arg Gly Lys Ser Val Asp Ile Asp Arg Ala Met Ser 50 55 60 Ala Ala Arg Gly Val Phe Glu Arg Gly Asp Trp Ser Leu Ser Ser Pro 65 70 75 80 Ala Lys Arg Lys Ala Val Leu Asn Lys Leu Ala Asp Leu Met Glu Ala 85 90 95 His Ala Glu Glu Leu Ala Leu Leu Glu Thr Leu Asp Thr Gly Lys Pro 100 105 110 Ile Arg His Ser Leu Arg Asp Asp Ile Pro Gly Ala Ala Arg Ala Ile 115 120 125 Arg Trp Tyr Ala Glu Ala Ile Asp Lys Val Tyr Gly Glu Val Ala Thr 130 135 140 Thr Ser Ser His Glu Leu Ala Met Ile Val Arg Glu Pro Val Gly Val 145 150 155 160 Ile Ala Ala Ile Val Pro Trp Asn Phe Pro Leu Leu Leu Thr Cys Trp 165 170 175 Lys Leu Gly Pro Ala Leu Ala Ala Gly Asn Ser Val Ile Leu Lys Pro 180 185 190 Ser Glu Lys Ser Pro Leu Ser Ala Ile Arg Leu Ala Gly Leu Ala Lys 195 200 205 Glu Ala Gly Leu Pro Asp Gly Val Leu Asn Val Val Thr Gly Phe Gly 210 215 220 His Glu Ala Gly Gln Ala Leu Ser Arg His Asn Asp Ile Asp Ala Ile 225 230 235 240 Ala Phe Thr Gly Ser Thr Arg Thr Gly Lys Gln Leu Leu Lys Asp Ala 245 250 255 Gly Asp Ser Asn Met Lys Arg Val Trp Leu Glu Ala Gly Gly Lys Ser 260 265 270 Ala Asn Ile Val Phe Ala Asp Cys Pro Asp Leu Gln Gln Ala Ala Ser 275 280 285 Ala Thr Ala Ala Gly Ile Phe Tyr Asn Gln Gly Gln Val Cys Ile Ala 290 295 300 Gly Thr Arg Leu Leu Leu Glu Glu Ser Ile Ala Asp Glu Phe Leu Ala 305 310 315 320 Leu Leu Lys Gln Gln Ala Gln Asn Trp Gln Pro Gly His Pro Leu Asp 325 330 335 Pro Ala Thr Thr Met Gly Thr Leu Ile Asp Cys Ala His Ala Asp Ser 340 345 350 Val His Ser Phe Ile Arg Glu Gly Glu Ser Lys Gly Gln Leu Leu Leu 355 360 365 Asp Gly Arg Asn Ala Gly Leu Ala Ala Ala Ile Gly Pro Thr Ile Phe 370 375 380 Val Asp Val Asp Pro Asn Ala Ser Leu Ser Arg Glu Glu Ile Phe Gly 385 390 395 400 Pro Val Leu Val Val Thr Arg Phe Thr Ser Glu Glu Gln Ala Leu Gln 405 410 415 Leu Ala Asn Asp Ser Gln Tyr Gly Leu Gly Ala Ala Val Trp Thr Arg 420 425 430 Asp Leu Ser Arg Ala His Arg Met Ser Arg Arg Leu Lys Ala Gly Ser 435 440 445 Val Phe Val Asn Asn Tyr Asn Asp Gly Asp Met Thr Val Pro Phe Gly 450 455 460 Gly Tyr Lys Gln Ser Gly Asn Gly Arg Asp Lys Ser Leu His Ala Leu 465 470 475 480 Glu Lys Phe Thr Glu Leu Lys Thr Ile Trp Ile Ser Leu Glu Ala 485 490 495 <210> 13 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for pRBS plsmid (nar promoter enhancing) <400> 13 attaattaac atggggaata ctccttaata ccc 33 <210> 14 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for pRBS plsmid (nar promoter enhancing) <400> 14 agctagcatc tccttcttaa agttaaac 28 <210> 15 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genomic DNA of Roseburia inulinivorans <400> 15 agctagcatg ggaaattatg atagtactcc aattg 35 <210> 16 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genomic DNA of Roseburia inulinivorans <400> 16 acctaggtta accaccaatc tggcagtg 28 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genomic DNA of E. coli K-12 <400> 17 tttcatatga attttcatca tctggcttac 30 <210> 18 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genomic DNA of E. coli K-12 <400> 18 tttagatctt tcggtcattt caggcctcca 30 <210> 19 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for pKD4 plasmid (ackA-pta knockdown) <400> 19 cgtagtgatc gatgagtctg ttattcaggg tatcaaaggt gtaggctgga gctgcttc 58 <210> 20 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for pKD4 plasmid (ackA-pta knockdown) <400> 20 caatccctgc acccagttct acaccctgag acgctgattc cggggatccg tcgacc 56 <210> 21 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for genomic DNA of Clostridium butyricum <400> 21 agctagcatg gtaagtaaag gatttagtac ccaaacag 38 <210> 22 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for genomic DNA of Clostridium butyricum <400> 22 acctaggtta ctcagctcca attgtgcaag gtat 34

Claims (13)

  1. 로세브리아 이누리니보란스(Roseburia inulinivorans) 유래의 글리세롤 데하이드라타제(glycerol dehydratase)를 암호화하는 폴리뉴클레오타이드를 포함하는, 3-하이드록시프로피온알데히드(3-Hydroxypropionaldehyde) 및/또는 3-하이드록시프로피온산(3-Hydroxypropionic acid)를 생산하는 재조합 미생물.
  2. 제1항에 있어서,
    상기 글리세롤 데하이드라타제(glycerol dehydratase)는 서열번호 10의 폴리펩타이드 서열을 포함하는 것을 특징으로 하는 재조합 미생물.
  3. 제1항에 있어서,
    3-하이드록시프로피온알데히드 데히드로게나제(dehydrogenase)를 암호화하는 폴리뉴클레오타이드를 추가로 포함하는 것을 특징으로 하는 재조합 미생물.
  4. 제3항에 있어서,
    상기 3-하이드록시프로피온알데히드 데히드로게나제를 암호화하는 폴리뉴클레오타이드는 천연 또는 외인성 유전자인 것을 특징으로 하는 재조합 미생물.
  5. 제3항에 있어서,
    상기 3-하이드록시프로피온알데히드 데히드로게나제는 AldH2, Ald4, AldA, AldB 및 AldH로 구성된 군에서 선택되는 하나 이상의 폴리펩타이드인 것을 특징으로 하는 재조합 미생물.
  6. 제1항에 있어서,
    글리세롤 데하이드라타제 재활성화 인자를 암호화하는 폴리뉴클레오타이드를 추가로 포함하는 것을 특징으로 하는 재조합 미생물.
  7. 제6항에 있어서,
    상기 글리세롤 데하이드라타제 재활성화 인자는 서열번호11의 폴리펩타이드서열을 포함하는 것을 특징으로 하는 재조합 미생물.
  8. 제3항에 있어서,
    글리세롤 데하이드라타제 재활성화 인자를 암호화하는 폴리뉴클레오타이드를 추가로 포함하는 것을 특징으로 하는 재조합 미생물.
  9. 제8항에 있어서,
    상기 글리세롤 데하이드라타제 재활성화 인자는 서열번호11의 폴리펩타이드서열을 포함하는 것을 특징으로 하는 재조합 미생물.
  10. 제1항에 있어서,
    상기 글리세롤 데하이드라타제(glycerol dehydratase)를 암호화하는 폴리뉴클레오타이드가 발현 벡터에 존재하는 것을 특징으로 하는 재조합 미생물.
  11. 제10항에 있어서,
    상기 발현벡터가 혐기성 조건에서 작동이 유도되는 프로모터를 포함하는 것을 특징으로 하는 재조합 미생물.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서,
    상기 재조합 미생물은 대장균인 것을 특징으로 하는 재조합 미생물.
  13. 탄소원(carbon source)으로 글리세롤 및 글루코스 중 하나 이상을 포함하는 배지에서 제1항 내지 제11항 중 어느 한 항에 따른 재조합 미생물을 배양하는 단계를 포함하는, 3-하이드록시프로피온알데히드(3-Hydroxypropionaldehyde) 및/또는 3-하이드록시프로피온산(3-Hydroxypropionic acid)의 생산방법.
KR20120141124A 2011-12-07 2012-12-06 3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산의 생산방법 KR101494386B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/010586 WO2013085321A1 (ko) 2011-12-07 2012-12-07 3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산의 생산방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110130386 2011-12-07
KR20110130386 2011-12-07

Publications (2)

Publication Number Publication Date
KR20130064027A true KR20130064027A (ko) 2013-06-17
KR101494386B1 KR101494386B1 (ko) 2015-02-23

Family

ID=48861152

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20120141124A KR101494386B1 (ko) 2011-12-07 2012-12-06 3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산의 생산방법

Country Status (1)

Country Link
KR (1) KR101494386B1 (ko)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60030403D1 (de) * 1999-08-30 2006-10-12 Wisconsin Alumni Res Found Herstellung von 3-hydroxypropionsäure in rekombinanten organismen
US20070148749A1 (en) 2004-03-26 2007-06-28 Shinzo Yasuda Process for producting 1,3-propanediol and or/3-hydroxypropionic acid
KR101069016B1 (ko) * 2008-06-09 2011-09-29 주식회사 씨티씨바이오 글리세롤디하이드라타제 및 3-하이드록시프로피온알데히드디하이드로게나제를 코딩하는 유전자로 형질전환된 재조합미생물 및 상기 재조합 미생물을 이용한3-하이드록시프로피온산의 제조방법
KR101157376B1 (ko) * 2010-12-10 2012-06-20 주식회사 씨티씨바이오 글리세롤디하이드라타제 및 3-하이드록시프로피온알데히드 디하이드로게나제를 코딩하는 유전자로 형질전환된 재조합 미생물 및 상기 재조합 미생물을 이용한 3-하이드록시프로피온산의 제조방법

Also Published As

Publication number Publication date
KR101494386B1 (ko) 2015-02-23

Similar Documents

Publication Publication Date Title
US10975400B2 (en) 5-aminolevulinic acid high-yield bacterial strain, preparation method and use thereof
EP2379730B1 (en) Method for the preparation of diols
Kwak et al. Biosynthesis of 3-hydroxypropionic acid from glycerol in recombinant Escherichia coli expressing Lactobacillus brevis dhaB and dhaR gene clusters and E. coli K-12 aldH
EP2591091B1 (en) Method for the preparation of 1,3-propanediol from sucrose
US20140065697A1 (en) Cells and methods for producing isobutyric acid
JP5706907B2 (ja) グリセロールから3−ヒドロキシプロピオン酸を産生する新しい方法
JP2017534268A (ja) 有用産物の生産のための改変微生物および方法
KR101437042B1 (ko) 포도당 및 글리세롤을 이용한 3-히드록시프로피온산의 생산방법
EP2904104B1 (en) Recombinant microorganisms for producing organic acids
EP2176415B1 (en) Preparing method for (s)-3-hydroxybutyric acid and (s)-3-hydroxybutyrate ester using recombinant microorganism
WO2024140379A1 (zh) 酶、生产红景天苷的菌株及生产方法
CN114075524B (zh) 阿魏酸生产工程菌、其建立方法及其应用
KR20140003258A (ko) 3-하이드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-하이드록시프로피온산의 생산방법
US20220380822A1 (en) Application of branched-chain a-ketoacid dehydrogenase complex in preparation of malonyl coenzyme a
EP2872639B1 (en) A microorganism modified for the production of 1,3-propanediol
KR101505172B1 (ko) 3-히드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-히드록시프로피온산의 생산방법
KR101994772B1 (ko) 포도당으로부터 1,3-프로판디올를 생산하는 신규한 크렙시엘라 뉴모니아 균주 및 이를 이용한 1,3 프로판디올의 생산방법
JP2023528727A (ja) 動的代謝制御を利用したキシロースからキシリトールを産生するための方法及び組成物
KR101494386B1 (ko) 3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-하이드록시프로피온알데히드 및/또는 3-하이드록시프로피온산의 생산방법
US9670493B2 (en) Low-phosphate repressible promoter
WO2022003144A1 (en) Bacterial cells and methods for production of 2-fluoro-cis,cis-muconate
KR20150025897A (ko) 글리세롤의 생물학적 전환
US10808265B2 (en) Microbes and methods for improved conversion of a feedstock
US20230183757A1 (en) Methods and compositions for the production of xylitol from xylose utilizing dynamic metabolic control
CN117417873A (zh) 一种生产依克多因的工程菌及其制备方法和应用

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180117

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191120

Year of fee payment: 6