KR101505172B1 - 3-히드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-히드록시프로피온산의 생산방법 - Google Patents

3-히드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-히드록시프로피온산의 생산방법 Download PDF

Info

Publication number
KR101505172B1
KR101505172B1 KR1020120149270A KR20120149270A KR101505172B1 KR 101505172 B1 KR101505172 B1 KR 101505172B1 KR 1020120149270 A KR1020120149270 A KR 1020120149270A KR 20120149270 A KR20120149270 A KR 20120149270A KR 101505172 B1 KR101505172 B1 KR 101505172B1
Authority
KR
South Korea
Prior art keywords
ala
leu
val
gly
glu
Prior art date
Application number
KR1020120149270A
Other languages
English (en)
Other versions
KR20130071395A (ko
Inventor
최인석
김영수
이주희
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to PCT/KR2012/011174 priority Critical patent/WO2013095009A1/ko
Publication of KR20130071395A publication Critical patent/KR20130071395A/ko
Application granted granted Critical
Publication of KR101505172B1 publication Critical patent/KR101505172B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids

Landscapes

  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 3-히드록시프로피온산(3-Hydroxypropionic acid; 3-HP)을 생산하는 재조합 미생물 및 이를 이용한 3-HP의 생산방법에 관한 것이다. 본 발명에 따른 쿠프리아비두스 네카터(Cupriavidus necator) 유래의 숙신산 세미알데히드 데히드로게나제(succinate semialdehyde dehydrogenase)는, 기존에 알려진 대장균 유래의 알데히드 데히드로게나제(AldH) 보다 산화활성이 우수하여 이를 발현하는 폴리뉴클레오타이드를 포함한 미생물은 3-HP 생산에 있어 월등히 우수한 활성을 보여준다. 따라서 본 발명은 상기 미생물을 배양하고 그 배양물로부터 3-HP를 경제적으로 대량 수득할 수 있는 효과가 있다.

Description

3-히드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-히드록시프로피온산의 생산방법{3-HYDROXYPROPIONIC ACID-PRODUCING RECOMBINANT MICROORGANISM AND METHOD OF PRODUCING 3-HYDROXYPROPIONIC ACID USING THE SAME}
본 발명은 3-히드록시프로피온산(3-Hydroxypropionic acid)을 생산하는 재조합 미생물 및 이를 이용한 3-히드록시프로피온산의 생산방법에 관한 것이다.
최근 원유가격의 급등에 의한 불안정성과 탄소배출저감이 글로벌 이슈화됨에 따라 기존 석유를 원료로 하여 화학 공정을 거쳐 생산하던 연료나 화학물질들을 탄소중립적인 생물학적 공정으로 대체하여 생산하려는 노력들이 지속되고 있다. 바이오 기반 연료 중 하나인 바이오 디젤은 식물성 기름이나 동물성 지방으로부터 트리글리세리드의 에스테르 교환반응에 의하여 생산되고 있다. 최근 바이오 디젤의 대량생산으로 인하여 부산물인 글리세롤의 생산이 급증하였고, 바이오 디젤 10억 갤런당 77억 파운드의 글리세롤이 생산되고 있다. 앞으로 바이오 디젤의 시장 수요가 증가하면서 부산물인 글리세롤의 생산량도 급격하게 증가할 것으로 예측된다. 탄소원으로 글리세롤을 사용할 수 있는 미생물을 이용하여 다양한 발효 산물을 만들 수 있는데, 3-히드록시프로피온산(3-hydroxypropionic acid; 3-HP)이 한 예이다.
3-HP는 도 1에 나타낸 바와 같이, 바이오 디젤의 부산물 등으로 생산되는 글리세롤을 원료로 하여 2 단계 효소반응을 거쳐 생물학적으로 생산될 수 있다. 3-HP는 아크릴산을 비롯하여 아크릴로니트릴, 메틸아크릴산, 1,3-프로판디올 등 다양한 물질로 전환이 가능한 유용한 중간체이다.
생물학적인 방법으로 글리세롤을 3-HP로 전환하기 위해서는 탈수효소(dehydratase)와 산화 효소(dehydrogenase)가 필요하다. 첫 번째 효소인 글리세롤 데히드라타제(Glycerol dehydratase)는 글리세롤을 탈수반응시켜 3-히드록시프로피온알데히드(3-Hydroxypropionaldehyde; 3-HPA)을 생산하고, 두 번째 효소인 3-히드록시프로피온알데히드 데히드로게나제(3-HPA dehydrogenase)는 3-HPA를 탈수소화시켜 3-HP를 생산하게 된다. 탈수효소는 클랩시엘라 속(Klebsiella sp.), 시트로박터 속(Citrobacter sp.), 락토바실러스 속(Lactobacillus sp.) 균주 등으로부터 얻을 수 있는 비타민 의존성 효소와 클로스트리디움 속(Clostridium sp.) 균주 등으로부 터 얻을 수 있는 비타민 비의존성 효소가 있다. 글리세롤로부터 3-HP를 제조할 때 탈수효소에 의해 중간체로 3-히드록시프로피온알데히드(3-Hydroxypropionaldehyde; 3-HPA)가 생성되는데, 3-HPA는 모세포에 축적되면 세포의 성장 및 대사를 저해하여 3-HP의 생산성을 감소시키는 것으로 보고되고 있다.
따라서 중간체로 생성되는 3-HPA를 기질로 하여 이를 빠른 속도로 3-HP로 전환시킬 수 있는 고유 활성도(specific activity)가 높은 산화효소를 이용하여 3-HP의 생산성을 높이는 것이 상업적으로 매우 중요하다.
1. Applied Microbiology and Biotechnology (2008) 81:51-60 (Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-hydroxypropionalde) 2. Applied Microbiology and Biotechnology (2009) 84:649-57 (Effect of process parameters on 3-hydroxypropionic acid production from glycerol using a recombinant Escherichia coli)
본 발명의 목적은 3-히드록시프로피온산(3-Hydroxypropionic acid; 3-HP) 생산능이 우수한 재조합 미생물 및 이를 이용한 3-HP의 효과적인 생산방법을 제공하는 것이다.
상기 목적을 달성하기 위하여 본 발명은 쿠프리아비두스 네카터(Cupriavidus necator) 유래의 숙신산 세미알데히드 데히드로게나제(succinate semialdehyde dehydrogenase)를 암호화하는 폴리뉴클레오타이드를 포함하는, 3-히드록시프로피온산(3-hydroxypropionic acid)을 생산하는 재조합 미생물을 제공한다.
본 발명은 또한 3-히드록시프로피온알데히드(3-hydroxypropionaldehyde)가 존재하거나 3-히드록시프로피온알데히드가 생산되는 조건에서 상술된 재조합 미생물을 배양하는 단계를 포함하는, 3-히드록시프로피온산의 생산방법을 제공한다.
본 발명에 따른 쿠프리아비두스 네카터(Cupriavidus necator) 유래의 숙신산 세미알데히드 데히드로게나제(succinate semialdehyde dehydrogenase)는, 기존에 알려진 대장균 유래의 알데히드 데히드로게나제(AldH) 보다 산화활성이 우수하여 중간체인 3-HPA를 빠른 속도로 3-HP로 전환시킬 수 있다.
따라서, 본 발명의 데히드로게나제를 암호화하는 폴리뉴클레오타이드를 포함한 미생물은 3-히드록시프로피온산(3--Hydroxypropionic acid; 3-HP) 생산에 있어 월등히 우수한 활성을 보여주므로, 상기 미생물을 배양하고 그 배양물로부터 3-HP를 경제적으로 대량 수득할 수 있는 효과가 있다.
도 1은 글리세롤로부터 3-히드록시프로피온산(3-Hydroxypropionic acid; 3-HP)을 생성하는 경로와 3-HP를 전구체로 하여 합성되는 핵심 화합물들을 보여주는 개략적인 모식도이다.
도 2는 쿠프리아비두스 네카터(Cupriavidus necator) 유래의 숙신산 세미알데히드 데히드로게나제(succinate semialdehyde dehydrogenase)를 암호화하는 유전자 gabD4를 포함하는 재조합 벡터 pTH-Cn-gabD4에 대한 개략적인 개열지도이다.
도 3은 대장균 K12 유래의 알데히드 데히드로게나제 유전자 aldH를 포함하는 재조합 벡터 pTH-Ec-aldH에 대한 개략적인 개열지도이다.
도 4는 재조합 벡터 pTH-Cn-gabD4 및 pTH-Ec-aldH로 각각 형질전환된 대장균을 배양 및 발현유도한 후 IMAC(Immobilized Metal Affinity Chromatography)를 이용하여 이미다졸(imidazole) 농도에 따른 알데히드 데히드로게나제(GabD4, AldH 단백질)의 분리 및 정제 결과를 보여준다.
도 5는 알데히드 데히드로게나제 GabD4 및 AldH의 효소활성을 보여주는 비교 그래프이다.
도 6은 온도(28℃, 37℃)에 따른 알데히드 데히드로게나제 GabD4의 효소활성을 보여주는 그래프이다.
도 7은 pH에 따른 알데히드 데히드로게나제 GabD4의 효소활성을 보여주는 그래프이다.
도 8은 쿠프리아비두스 네카터(Cupriavidus necator) 유래의 숙신산 세미알데히드 데히드로게나제를 암호화하는 유전자 gabD4 또는 대장균 유래의 알데히드데히드로게나제를 암호화하는 유전자 aldH와 클렙시엘라 뉴모니에(Klebsiella pneumonia) 유래의 dhaB123-gdrA 및 gdrB 유전자를 포함하는 재조합 벡터 pET-BAB--gabD4와 pET-BAB-aldH에 대한 개략적인 개열지도이다.
도 9는 본 발명에 따른 재조합 대장균의 시간에 따른 성장을 보여준다.
도 10은 본 발명에 따른 재조합 대장균으로부터 3-HP의 생산량을 보여준다.
도 11은 본 발명에 따른 재조합 대장균으로부터 3-HP의 생산량을 보여준다.
본 발명의 구체적인 내용을 기술하기에 앞서 본 명세서에 사용된 용어에 대하여 의미를 서술한다.
본 명세서에서 사용되는 '폴리펩타이드'는 해당 아미노산 서열에 대하여 실질적인 동일성을 나타내는 아미노산 서열을 포함하는 것으로 해석된다. 상기의 실질적인 동일성은 본 발명의 아미노산 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 사용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 60%의 상동성, 보다 바람직하게는 최소 80%의 상동성, 가장 바람직하게는 최소 90%의 상동성을 나타내는 아미노산 서열을 의미한다. 상기 폴리펩타이드는 상기 상술한 것처럼 기재된 특정의 아미노산 서열과 약 60% 이상의 동일성을 갖는 아미노산 서열을 가지며 글리세롤 대사에 관련하는 폴리펩타이드를 포함하며, 동일성이 높을수록 바람직하다.
또한 상기 동일성을 가지는 폴리펩타이드는 기재된 특정 아미노산 서열의 폴리펩타이드에서 1개 이상의 아미노산 잔기가 소실, 치환, 삽입, 및/또는 첨가된 아미노산 서열을 포함하면서 글리세롤 대사와 관련되는 폴리펩타이드를 포함한다. 일반적으로, 소실, 치환, 삽입, 및/또는 첨가의 수는 적을수록 바람직하다.
본 명세서에 사용되는 '유전자' 또는 '(폴리)뉴클레오타이드'는 특정 단백질을 발현(암호화)시키는 핵산 단편(핵산 분자)을 지칭하며, 코딩 영역만을 지칭하거나 코딩 서열 앞에 있는 조절 서열(5' 비-코딩 서열) 및 코딩 서열 뒤에 있는 조절 서열(3' 비-코딩 서열)을 포함할 수 있으며, 핵산 분자에서 기본 구성 단위인 뉴클레오타이드는 자연의 뉴클레오타이드 뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogues)도 포함한다.
본 발명의 유전자는 상기 기재된 특정의 아미노산 서열(폴리펩타이드)을 암호화하는 핵산 분자에 제한되지 않고, 상기에서 서술한 것처럼 특정 아미노산 서열에 대하여 실질적인 동일성을 나타내는 아미노산 서열을 갖는 폴리펩타이드를 암호화하는 핵산 분자를 포함하는 것으로 해석된다. 상기의 실질적인 동일성은 본 발명의 아미노산 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 사용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 60%의 상동성, 보다 바람직하게는 최소 80%의 상동성, 가장 바람직하게는 최소 90%의 상동성을 나타내는 아미노산 서열을 의미한다.
또한 상기 동일성을 가지는 폴리펩타이드는 예를 들어, 하나 이상의 아미노산이 소실, 치환, 삽입, 및/또는 첨가되는 아미노산 서열의 폴리펩타이드를 포함한다. 그러한 폴리펩타이드는 상기 상술한 것처럼 1 개 이상의 아미노산 잔기가 소실, 치환, 삽입, 및/또는 첨가된 아미노산 서열로 이루어지며 3-히드록시프로피온산 합성 관련되는 폴리펩타이드를 포함하며, 아미노산 잔기의 소실, 치환, 삽입, 및/또는 첨가의 수가 적은 것이 바람직하다.
본 명세서에서 사용되는 용어 '상보적' 또는 '상보성'은 퓨린 및 피리미딘뉴클레오티드가 수소 결합을 통해 결합하여 더블 스트랜드 핵산 분자를 형성하는 능력을 언급하며, 부분적으로 상보적인 경우도 포함한다. 하기 염기쌍이 상보성과 관련된다: 구아닌 및 시토신; 아데닌 및 티민; 및 아데닌 및 우라실. '상보적'은 상기 언급된 관계가 전장의 상기 분자에 걸쳐 2개의 싱글-스트랜드 핵산 분자를 포함하는 모든 염기쌍에 실질적으로 적용된다. '부분적으로 상보적'은 2개의 싱글-스트랜드 핵산 분자중 하나의 길이 짧기 때문에 그 분자들 중 하나의 일부가 싱글 스트랜드로 남아있는 것 관계를 의미한다.
본 발명자들은 3-히드록시프로피온알데히드(3-Hydroxypropionaldehyde; 3-HPA)를 기질로 하여 3-히드록시프로피온산(3-Hydroxypropionic acid; 3-HP) 생산 활성이 우수한 효소를 선별하기 위해, 쿠프리아비두스 네카터(Cupriavidus necator) 유래의 숙신산 세미알데히드 데히드로게나제(succinate semialdehyde dehydrogenase)를 분리, 정제한 다음 효소활성을 측정한 결과, 대장균에서 유래한 알데히드 데히드로게나제(AldH)에 비해 약 50% 향상된 효소활성을 나타내는 것을 발견하였으며, 이러한 효소를 발현하는 미생물이 3-HP를 효과적으로 생산할 수 있음을 확인하였다.
이에 본 발명은 쿠프리아비두스 네카터(Cupriavidus necator) 유래의 숙신산 세미알데히드 데히드로게나제를 암호화하는 폴리뉴클레오타이드를 포함하는, 3-히드록시프로피온산을 생산하는 재조합 미생물을 제공한다.
본 발명의 쿠프리아비두스 네카터(Cupriavidus necator) 유래의 숙신산 세미알데히드 데히드로게나제는 GabD4로서, 3-히드록시프로피온알데히드를 3-히드록시프로피온산으로 전환하는 활성을 지니며, 서열번호 2의 폴리펩타이드 서열을 포함한다. 상기 효소(폴리펩타이드)를 암호화하는 폴리뉴클레오타이드는 서열번호 2의 폴리펩타이드를 암호화하는 폴리뉴클레오타이드 서열 또는 서열번호 1로 표현된 폴리뉴클레오타이드 서열을 포함하는 서열일 수 있다. 또한 상기 폴리뉴클레오타이드 서열에 상보적인 서열일 수 있다.
상기 숙신산 세미알데히드 데히드로게나제는 조효소로서 NAD+ 또는 NADP+를 사용한다.
본 발명의 재조합 미생물은 3-HPA가 존재하거나 3-HPA가 생산되는 조건에서 배양될 수 있다.
3-HPA의 생산을 위해 본 발명의 재조합 미생물은 글리세롤을 3-HPA로 전환시키는 글리세롤 데히드라타제(glycerol dehydratase) 또는 디올 데히드라타제(diol dehydratase)(이하, 간단히 '글리세롤 데히드라타제'라 칭함)를 암호화하는 폴리뉴클레오타이드를 추가로 포함할 수 있다. 미생물 배양시 탄소원(carbon source)으로 사용된 글리세롤을 3-HPA로 전환할 수 있는 임의의 글리세롤 데히드라타제 효소가 이용될 수 있다. 상기 글리세롤 탈수효소는 비타민 B12 의존성과 비의존성 모두가 사용될 수 있다.
구체적으로는 클랩시엘라 속(Klebsiella sp.), 시트로박터 속(Citrobacter sp.), 클로스트리디움 속(Clostridium sp.), 살로넬라 속(Salmonella sp.) 균주 등에서 유래한 글리세롤 데히드라타제를 예로 들 수 있다. 보다 구체적으로는 클렙시엘라 뉴모니아 유래의 DhaB1, DhaB2 및 DhaB3 또는 클로스트리디움 부티리쿰 유래의 DhaB1을 들 수 있다. 일례로, 클랩시엘라 뉴모니에(Klebsiella pneumoniae) 유래 글리세롤 데히드라타제이며, 서열번호 4, 6, 및 8로 표시되는 폴리펩타이드(각각 DhaB1, DhaB2, DhaB3)를 포함할 수 있다. 상기 글리세롤 데히드라타제를 암호화하는 폴리뉴클레오타이드(dhaB)는, 서열번호 4, 6, 및 8로 표현되는 폴리펩타이드를 암호화하는 폴리뉴클레오타이드 서열 또는 서열번호 3, 5 및 7로 표현된 폴리뉴클레오타이드 서열(각각 dhaB1, dhaB2 및 dhaB3)을 포함할 수 있다. 또한 상기 폴리뉴클레오타이드 서열에 상보적인 서열일 수 있다.
본 발명에 따른 재조합 미생물은 글리세롤 데히드라타제를 재활성화시키기 위한 글리세롤 데히드라타제 재활성화 인자를 암호화하는 폴리뉴클레오타이드를 추가로 포함할 수도 있다. 본 발명의 글리세롤 데하이드라타제 재활성화 인자는, 글리세롤 데하이드라타제가 작용하는 동안 비가역적으로 불활성화되는 것을 다시 활성화시켜주는 폴리펩타이드이다.
글리세롤 데히드라타제 재활성화 인자로 일반적으로 알려진 어느 것이라도 사용할 수 있으나, 클랩시엘라 속(Klebsiella sp.), 시트로박터 속(Citrobacter sp.), 락토바실러스 속(Lactobacillus sp.), 살모넬라 속(Salmonella sp.) 균주 등에서 유래한 글리세롤 데히드라타제 재활성화 인자가 사용될 수 있다. 바람직하게는, 상기 글리세롤 데히드라타제를 제공하는 미생물과 동종의 미생물이다. 구체적으로는 상기 데하이드라타제 재활성화 인자는 DhaFG, GdrAB, DdrAB 등일 수 있으며, 이를 암호화하는 폴리뉴클레오타이드 서열은 dhaFG(ABI36568.1), gdrAB(EF077655.1), ddrAB(AAC15871) 등으로부터 선택될 수 있다.
본 발명의 일례에서, 상기 재활성화 인자는 클렙시엘라 뉴모니에(Klebsiella pneumoniae) 유래 글리세롤 데히드라타제 재활성화 인자로서(각각 GdrA 및 GdrB), 서열번호 10 및 12로 표현되는 폴리펩타이드를 포함하는 것이며, 상기 재활성화 인자를 암호화하는 폴리뉴클레오타이드는 서열번호 10 및 12로 표현되는 폴리펩타이드를 암호화하는 폴리뉴클레오타이드 서열, 또는 서열번호 9 및 11로 표현된 폴리뉴클레오타이드 서열(각각 gdrA, gdrB)을 포함하는 서열이 사용될 수 있다. 또한 상기 폴리뉴클레오타이드 서열에 상보적인 서열일 수 있다.
본 발명의 상기 글리세롤 데히드라타제 또는 그 재활성화 인자를 암호화하는 폴리뉴클레오타이드는 천연 유전자 또는 외인성 유전자일 수 있다. 본 발명의 숙주세포가 내인성으로 상기 유전자를 포함하고 있는 경우 상기 유전자를 외부에서 숙주세포 내 도입하는 것이 필요하지 않을 수 있으나, 상기 효소의 발현양을 증가시키기 위하여 추가로 숙주세포 내로 도입할 수도 있다.
본 발명의 '천연 유전자(native gene)'라 함은 자신의 조절 서열과 함께 자연에서 발견되는 유전자를 의미한다. 본 발명의 '외인성 유전자(exogenous gene)'는 숙주세포 내 자연적으로 존재하지 않으나 외부로부터 숙주세포 내 도입된 유전자를 의미한다.
본 발명의 각 폴리뉴클레오타이드(뉴클레오타이드 서열)은 숙주세포의 게놈 내에 또는 적어도 하나의 발현 벡터 내 포함될 수 있다.
본 발명의 일 실시예에서는, 쿠프리아비두스 네카터(Cupriavidus necator) 유래의 숙신산 세미알데히드 데히드로게나제를 암호화하는 폴리뉴클레오타이드를 포함하는 발현 벡터 및 상기 벡터로 형질전환된 재조합 미생물을 제공한다. 상기 데히드로게나제는 서열번호 2로 표시된 폴리펩타이드를 포함하는 것일 수 있다. 상기 미생물은 추가로 글리세롤 데히드라타제 및 글리세롤 데히드라타제 재활성화 인자를 암호화하는 폴리뉴클레오타이드를 포함하는 발현 벡터를 추가로 포함할 수 있다. 상기 폴리뉴클레오타이드들은 한 발현벡터에 삽입되거나 별도의 발현벡터에 삽입될 수 있다.
상기 발현벡터는 상기 유전자의 발현 조절을 위하여 항시성(constitutive) 또는 유도성 프로모터, 전사 인핸서(enhancer), 전사 터미네이터 등을 포함할 수 있다.
본 발명의 '인핸서(enhancer)'는 프로모터 활성을 자극할 수 있는 DNA 서열이며, 프로모터의 고유한 요소이거나 또는 수준을 향상시키도록 삽입된 이종성 요소일 수 있다. 프로모터는 천연 유전자로부터 그 전체가 유래될 수도 있거나, 자연에서 발견되는 상이한 프로모터로부터 유래된 상이한 요소로 구성될 수도 있다.
상기 발현 벡터는 알려진 방법으로 숙주 세포 내 도입될 수 있다. 상기 각 폴리뉴클레오타이드는 동일 또는 상이한 프로모터에 각각 작동되도록 연결될 수 있다. 일례로 글리세롤 데하이라타제 및 그 활성화 인자는 동일 프로모터에 작동되도록 연결될 수 있다.
본 발명의 재조합 미생물은 재조합 벡터와 같은 발현카세트로 숙주 세포에 도입하는 형질전환 방법에 의하여 만들어질 수 있으며, 상기 도입 방법 역시 공지의 기술, 예컨데 염화칼슘법, 열 충격법, 전기충격법 등의 형질전환방법이나 재조합 파지 바이러스를 통한 형질주입을 통해 도입할 수 있다. 상기의 숙주 세포 이외에도 발현의 목적에 따라 달라지는 벡터에 의존하여 다양한 균주를 용이하게 이용할 수 있음은 당업자에게 명백한 일이다.
본 발명의 재조합 미생물의 제조에 사용 가능한 미생물은 박테리아, 효모, 곰팡이 등이고 이에 제한되지 않으며, 일례로 에스케리키아(Escherichia) 속, 슈도모나스(Pseudomonas) 속, 엔테로박테리아(Enterobacteria) 속, 브레비박테리움(Brevibacterium) 속, 코리네박테리움(Corynebacterium) 속, 크렙시엘라(Klebsiella) 속, 시트로박터(Citrobacter) 속, 스트렙토마이세스(Streptomyces) 속, 바실러스(Bacillus) 속, 락토바실러스(Lactobacillus) 속, 슈도모나스(Pseudomonas) 속, 사카로마이세스(Saccharomyces)속 및 아스퍼질러스(Aspergillus) 속 미생물 중에서 선택될 수 있다. 바람직하게는 대장균, 클렙시엘라, 락토바실러스 등과 같은 박테리아일 수 있다. 가장 바람직하게는 대장균이다.
본 발명은 또한 3-HPA 가 존재하거나 3-HPA가 생산되는 조건에서 상술한 재조합 미생물을 배양하는 단계를 포함하는, 3-HP의 생산방법을 제공한다.
3-HPA의 생산을 위해 탄소원(carbon source)으로 글리세롤, 글루코스 또는 이들의 혼합물, 구체적으로는 글리세롤을 포함하는 배지가 사용될 수 있으며, 배지가 글루코스를 포함하는 경우 글루코스를 글리세롤로 전환하지 못하는 미생물의 경우에는 공지의 방법으로 전환에 필요한 외래 유전자를 도입시켜 글루코스로부터 글리세롤이 생산되도록 할 수 있다.
따라서, 본 발명은 탄소원으로 글리세롤, 글루코스 또는 이들의 혼합물을 포함하는 배지에서 쿠프리아비두스 네카터(Cupriavidus necator) 유래의 숙신산 세미알데히드 데히드로게나제(succinate semialdehyde dehydrogenase)를 암호화하는 폴리뉴클레오타이드를 포함하는, 3-HP를 생산하는 재조합 미생물을 배양하여 3-HP를 생산할 수 있다. 상기 데히드로게나제는 서열번호 2로 표시된 아미노산 서열을 포함하는 것일 수 있다.
또한 상기 미생물은 추가로 글리세롤 데히드라타제 및 글리세롤 데히드라타제 재활성화 인자를 암호화하는 폴리뉴클레오타이드를 추가로 포함할 수 있다. 상기 글리세롤 데히드라타제는 서열번호 4, 6 및 8로 표시된 아미노산 서열을 포함하는 것일 수 있고, 상기 글리세롤 데히드라타제 재활성화 인자는 서열번호 10 및 12로 표시된 아미노산 서열을 포함하는 것일 수 있다.
배양조건은 사용된 미생물에 따라 적절히 조절할 수 있는데, 대장균의 경우 미호기성(microaerobic) 조건하에서 예를 들어 pH 7 내지 8, 25℃ 내지 37℃의 온도에서 2일 내지 5일간 수행될 수 있다.
상기 글리세롤 및 글루코즈 중에서 하나 이상의 탄소원을 포함하는 배지는 글리세롤 및 글루코즈 중에서 하나 이상의 탄소원을 포함하는 배지라면 통상의 기술자가 미생물 배양에 사용할 수 있는 통상의 배지가 모두 적용될 수 있다. 또한 상기 배양 배지는 미생물의 성장 및 3-HP 합성을 돕기 위하여 적절한 질소원, 미량원소원, 비타민, 항생제, 성장인자 등을 더 포함할 수 있다.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실 시예는 본 발명을 예시하는 것일 뿐 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[ 실시예 1] : 쿠프리아비두스 네카터 ( Cupriavidus necator ) 유래의 숙신산 세미알데히드 데히드로게나제 ( succinate semialdehyde dehydrogenase ) 발현 유전자를 포함하는 재조합 벡터의 제작
쿠프리아비두스 네카터 ATCC 17699로부터 게놈 DNA를 추출하고 정방향 프라 이머(서열번호 13: AAAGCTAGCATGTACCAGGATCTCGCCC (NheI)) 및 역방향 프라이머(서열번호 14: AATGGTACCTCAGGCCTGGGTGATGAACTT (KpnI))를 이용하여 PCR을 수행하여 gabD4 유전자를 증폭하고, NheI과 KpnI으로 절단하였다. 이때, PCR은 Cycle Ⅰ (95 ℃, 5분), Cycle Ⅱ (30 cycles/ 95℃, 30초 / 55℃, 30초 / 72℃, 1분 45초), Cycle Ⅲ (72 ℃, 5분)의 과정으로 수행되었다.
증폭된 DNA를 동일 효소로 처리한 pTrcHisC 벡터(Invitrogen)에 도입하여 pTH-Cn-gabD4 벡터를 제작하였다 (도 2 참조).
[ 실시예 2] : 대장균( Escherichia coli ) 유래의 알데히드 데히드로게나제 발현 유전자를 포함하는 재조합 벡터의 제작
대장균 K12 MG1655로부터 게놈 DNA를 추출하고 정방향 프라이머(서열번호 15: ATTGCTAGCATGAATTTTCATCATCTGGCTTAC (NheI)) 및 역방향 프라이머(서열번호 16: AAAGGTACCTTCGGTCATTTCAGGCCTCCA (KpnI))를 이용하여 PCR을 수행하여 aldH 유전자를 증폭하고, NheI과 KpnI으로 절단하였다. 이때, PCR은 Cycle Ⅰ (95℃, 5분), Cycle Ⅱ (30 cycles/ 95℃, 30초 / 55℃, 30초 / 72℃, 1분 45초), Cycle Ⅲ (72 ℃, 5분)의 과정으로 수행되었다.
증폭된 DNA를 동일 효소로 절단한 pTrcHisC 벡터(Invitrogen)에 도입하여 pTH-Ec-aldH 벡터를 제작하였다 (도 3 참조).
[ 실시예 3] : 알데히드 데히드로게나제(AldH, GabD4 단백질)의 분리 및 정제
실시예 1 및 2에서 제작한 재조합 벡터 pTH-Ec-aldH 및 pTH-Cn-gabD4를 대장균 BL21 균주에 형질전환한 후, 균주의 배양 및 발현유도를 통해 알데히드데히드로게나제(AldH, GabD4 단백질)를 분리 및 정제하였다.
구체적으로, 배양은 250 ㎖ 플라스크에 50 ㎍/㎖의 암피실린(ampicillin)이 포함된 50 ㎖ LB(Luria Bertani) 배지를 이용하여 25℃에서 진행되었으며, 배양 3시간 후 600nm에서 측정한 흡광도(OD)가 0.6이 되었을 때, 1mM 이소프릴 1-티오-베타-디-갈락토시드(isopropyl-1-thio-β-D-galactopyranoside, IPTG)로 발현을 유도하였다.
발현유도 12시간 후 4000 rpm에서 15분 동안 원심분리를 통하여 세포만을 분리한 후, 용액 1(50mM NaH2PO4, 0.5M 염화나트륨, pH 8)하에 얼음에 넣고 초음파로 세포를 파쇄하였다. 4000 rpm에서 30분 동안 원심분리를 이용하여 세포파쇄물로부터 상층액만을 얻은 후, IMAC(Immobilized Metal Affinity Chromatography) Ni Sepharose High Performance 레진(GE Healthcare Bio-Sciences AB)을 이용하여 제조사의 지시대로 용액 1에 포함된 이미다졸(Imidazole)의 농도를 0, 10, 30, 50, 100, 250 mM까지 증가시키며 GabD4 및 AldH 단백질과 레진의 결합 및 분리를 유도하였다. 그 결과를 도 4 에 나타냈다.
도 4에 나타난 바와 같이, 0 ~ 100mM 이미다졸을 포함한 용액 1을 처리하였을 때, AldH와 GabD4 단백질뿐만 아니라 세포 내 존재하는 비목적 단백질들도 포함 되어 있어 정제순도가 매우 낮았으나, 이미다졸 농도를 250 mM로 증가시킨 결과 고순도의 AldH와 GabD4 단백질을 획득할 수 있었다.
[ 실시예 4] : 알데히드 데히드로게나제 효소활성 평가
실시예 3에서 분리, 정제된 효소 GabD4 및 AldH 각각을, MWCO 30 튜브를 이 용하여 7000 rpm에서 30분 동안 원심분리를 통하여 인산칼륨 용액(50mM 인산칼륨(potassium phosphate), 1mM 2-머캅토에탄올(merchaptoethanol), pH 5~9)으로 세척 및 농축하였다.
GabD4 및 AldH 효소용액 각각에 대해, 37℃의 온도에서 5분간 예열한 다음 여기에 2mM 3-HPA 및 4mM NAD를 첨가하여 알데히드 데히드로게나제에 의한 산화 반응을 진행하였다. 450 nm에서 생성된 NADH의 양을 측정함으로써 효소활성을 평가하고, 도 5에 나타내었다. 이때 1 유닛(unit)은 1분 동안 1 mmole의 NAD를 NADH 로 전환시키는 효소의 양으로 정의하였다.
또한 상기 GabD4의 효소 활성을 각각 28℃ 및 37℃의 반응 온도에서 측정한 결과는 도 6에 나타내었고, 반응액의 산도를 pH 5 내지 9로 변화시키면서 GabD4의 효소 활성을 측정한 결과는 도 7에 나타내었다.
도 5 내지 7에서 보는 바와 같이, 37℃에서 3-HPA 에 대한 GabD4의 효소활성은, 동일 조건에서 기존 보고된 AldH 대비 약 50% 가량 향상된 것으로 나타났으며 (도 5 참조), 37℃ 및 pH 8에서 가장 우수한 효소활성을 나타내는 것으로 확인되었다 (도 6 및 7 참조).
[ 실시예 5] : 본 발명에 따른 재조합 균주의 제조
먼저, 클렙시엘라 뉴모니에(Klebsiella pneumonia DSM 2026)의 게놈 DNA로부터 dhaB123-gdrA 및 gdrB 유전자를 PCR 증폭하고 pET-Duet(Novagen)벡터의 NcoI-EcoRI 및 EcoRI-SalI 위치에 각각 삽입하여 pET-BAB 벡터를 제작하였다.
여기서, dhaB123-gdrA 유전자 증폭을 위해 사용된 프라이머는 다음과 같다: 정방향 프라이머(서열번호 17: ATATCATGAAAAGATCAAAACGATTT (BspHI)), 역방향 프라이머(서열번호 18: AAAGAATTCCGCGAGCGCCCGTTTAATTC (EcoRI)).
gdrB 유전자 증폭을 위해 사용된 프라이머는 다음과 같다: 정방향 프라이머(서열번호 19: TTTGAATTCTAACGAGGGGACCGTCATGTC (EcoRI)), 역방향 프라이머(서열번호 20: ATAGTCGACTCAGTTTCTCTCACTTAACGG (SalI)).
이때, PCR은 Cycle Ⅰ (95℃, 5분), Cycle Ⅱ (30 cycles/ 95℃, 30초 / 55℃, 30초 / 72℃, 5분(dhaB123-gdrA) 혹은 30초(gdrB)), Cycle Ⅲ (72 ℃, 5분)의 과정으로 수행되었다.
앞서 얻어진 pET-BAB 벡터에 pET-Duet 벡터로부터 pseudo-유전자를 PCR 증폭 하여 삽입하는 방식으로 pET-BAB 벡터의 시작코돈을 포함하고 있는 NdeI 뒤에 NheI 에 해당하는 염기서열(GCTAGC)을 추가하여 pET-BAB-(NheI) 벡터를 제작하였다.
사용된 프라이머쌍은 다음과 같다: 정방향 프라이머 (서열번호 21: TTTCATATGGCTAGCGCTCGTCGTTTGGTATGGCTTC (NdeI & NheI)), 역방향 프라이머 (서열번 호 22: TTTGGTACCTTTTGCCTTCCTGTTTTTGCTC (KpnI)).
이 때, PCR은 Cycle Ⅰ (95℃, 5분), Cycle Ⅱ (30 cycles/ 95℃, 30초 / 55℃, 30초 / 72℃, 30초), Cycle Ⅲ (72 ℃, 5분)의 과정으로 수행되었다.
실시예 1에서 제조한 pTH-Cn-gabD4와 pTH-Ec-aldH를 NheI과 KpnI으로 절단한 다음 앞서 얻어진 pET-BAB-(NheI) 벡터에 삽입하여 재조합 벡터 pET-BAB-gabD4와 pET-BAB-aldH를 제작하였다 (도 8 참조).
이렇게 제조된 재조합 벡터 pET-BAB-gabD4와 pET-BAB-aldH를 대장균 BL21(DE3)에 형질전환시켜 본 발명에 따른 재조합 균주를 제작하였다.
[ 실시예 6] : 3- HP 의 발효 및 생산(1)
실시예 5에서 제조한 재조합 균주를 37℃에서 250 ㎖ 플라스크를 사용하여 50 ㎖ 배지(12.8 g/L 12.8 g/L 인산수소이나트륨(Na2HPO4-7H2O), 3g/L 인산이수소칼륨(KH2PO4), 1.5g/L 염화나트륨(NaCl) 2g/L 염화암모늄(NH4Cl), 17.4g/L 인산수소이칼륨(K2HPO4), 0.5g/L 효모 추출물(yeast extract), 3mL 1M 황산마그네슘(MgSO4), 0.1mL 1M 염화칼슘(CaCl2), 40 g/L 글리세롤(glycerol), pH 7.8)에서 배양하였다. 이후 600nm에서 측정한 흡광도(OD)가 0.6 내지 0.8 되었을 때, 0.01 mM IPTG 및 48 μM 비타민 B12를 첨가하여 단백질의 발현 및 3-HP 생산을 유도하였다.
발현유도 후 12시간 동안 배양하면서 생장 정도와 3-HP 함량을 측정하고 도 9 및 도 10에 나타내었다. 3-HP의 함량은 반응액 1 ㎖를 취하여 HPLC(Waters e2695)를 사용하여 정량하였다. HPLC 분석에 있어 Aminex HPX-87H 컬럼과 9% 아세토니트릴(acetonitrile)을 포함한 0.5% 황산을 용매로 사용하였으며, 컬럼의 온도는 35℃였으며, 검출기는 RI 및 UV/VIS(210 nm) 듀얼모드를 이용하였다.
도 10에서 보는 바와 같이, 쿠프리아비두스 네카터 유래의 GabD4에 의해서도 3-HP가 정상적으로 생산됨을 확인하였으며, 3-HP 생산량은 6.4g/L로서, 기존 보고된 AldH를 사용한 경우(4.7 g/L)보다 36% 가량 증가하였음을 확인할 수 있었다. 이는 본 발명에 따른 효소 및 균주를 활용하여 글리세롤을 기반으로 3-HP를 보다 효과적으로 생산할 수 있음을 보여준다.
[ 실시예 7] : 3- HP 의 발효 및 생산(2)
실시예 5에서 제조한 재조합 균주를 500 ㎖ 플라스크에 50 ㎍/㎖의 암피실린(ampicillin)이 포함된 100㎖ LB(Luria Bertani) 배지를 이용하여 37℃에서 전배양한 후, 동일한 온도에서 5L 발효조를 사용하여 2L 배지(12.8 g/L 인산수소이나트륨(Na2HPO4-7H2O), 3g/L 인산이수소칼륨(KH2PO4), 1.5g/L 염화나트륨(NaCl) 2g/L 염화암모늄(NH4Cl), 17.4g/L 인산수소이칼륨(K2HPO4), 0.5g/L 효모 추출물(yeast extract), 120mL 1M 황산마그네슘(MgSO4), 4mL 1M 염화칼슘(CaCl2), 80 g/L 글리세롤(glycerol), pH 7.8)에서 배양하였다. 이후 600nm에서 측정한 흡광도(OD)가 0.6 내지 0.8 되었을 때, 0.03mM IPTG 및 48μM 비타민 B12를 첨가하여 단백질의 발현 및 3-히드록시프로피온산 생산을 유도하고 3-HP의 함량을 실시예 6과 같이 측정하였다.
발현유도 후 48시간 동안 배양한 결과, 3-히드록시프로피온산을 32g/L 생산하였다(도 11). 이는 본 발명에 따른 효소 및 균주를 활용하여 글리세롤을 기반으로 3-HP를 대량으로 생산할 수 있음을 보여준다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항 들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
<110> Samsung Petrochemical Co., Ltd. <120> 3-HYDROXYPROPIONIC ACID-PRODUCING RECOMBINANT MICROORGANISM AND METHOD OF PRODUCING 3-HYDROXYPROPIONIC ACID USING THE SAME <130> PC11781-1 <150> KR 1020110138193 <151> 2011-12-20 <160> 22 <170> KopatentIn 2.0 <210> 1 <211> 1428 <212> DNA <213> Cupriavidus necator <220> <221> gene <222> (1)..(1428) <223> gabD4, succinate semialdehyde dehydrogenase of Cupriavidus necator <400> 1 atgtaccagg atctcgccct ctatatcgac ggagaattca tcaagggagg cgaccggcgc 60 gagcaggatg tcatcaaccc ggccacgcag gaagtgctgg gcaagctgcc gcacgccagc 120 cgcgccgacc tggaccgcgc gctggccgcc gcgcagcgcg cctttgaaac ctggaagaag 180 acctcgccgc tggagcgcgc caggatcctg cgccgcgtgg gcgagctcac ccgcgagcgc 240 gccaaggaga tcggccgcaa tatcacgctg gaccagggca agccgctggc cgaagccgtc 300 ggcgaagtga tggtctgcgc cgagcacgcc gactggcatg ccgaggaatg ccgccgcatc 360 tacggccgcg tgatcccgcc gcgccagccc aatgtgcgcc agatcgtggt gcgcgagccg 420 atcggcgtgt gcgccgcctt cacgccgtgg aacttcccgt tcaaccaggc catccgcaag 480 atcgtgtcgg cgctgggcgc gggctgcacg ctgatcctga aggggccgga agactcgccc 540 agcgcggtgg tggcgctggc gcagctgttc catgatgcgg gcctgccccc gggcgtgctc 600 aacatcgtct ggggcgtgcc cagcgaggtc tcgacctacc tgatcgaatc gccgatcgtg 660 cgcaagattt cattcaccgg ctcggtgccg gtgggcaagc agctggcggc gctggccggc 720 gcgcatatga agcgcgtgac catggagctg ggcggccatt cgccggtgct ggtgttcgac 780 gacgccgaca tcgaccccgc cgccgagatg ctggcgcgct tcaagctgcg caatgccggc 840 caggtatgcg tgtcgccgac gcgcttctat gtccaggaga aagcctatga ccgcttcctg 900 gcgcgcttta ccgaggtgat cggctcgatc aaggtcggca acggcctgga ggacggcacc 960 cagatggggc cgctggcgca tgagcgccgc gtgctgtcaa tggagcagtt cctggacgat 1020 gccagccagc gtggcggcaa ggtggtggca ggcggctcgc gcctggggga caagggctat 1080 ttcttcgcgc ccaccgtggt caccgacctg cccgacgact cgcgtctgat gaccgacgag 1140 ccgttcggcc cggtggcgcc cgtgacgcgc ttcaaggaca cggccgaggt gctgcgccgc 1200 gccaacagcc tgccctttgg cctggcctcg tatgtgttca ccaactcgct gaagaccgcg 1260 accgaagtat ccaacggcct ggaagccggc atggtcaaca tcaaccactt cggcatggcg 1320 ctggccgaga ccccgttcgg gggcatcaag gattcgggca tcggcagcga aggcggccag 1380 gagaccttcg atggctacct ggtaaccaag ttcatcaccc aggcctga 1428 <210> 2 <211> 475 <212> PRT <213> Cupriavidus necator <220> <221> PEPTIDE <222> (1)..(475) <223> GabD4, succinate semialdehyde dehydrogenase of Cupriavidus necator <400> 2 Met Tyr Gln Asp Leu Ala Leu Tyr Ile Asp Gly Glu Phe Ile Lys Gly 1 5 10 15 Gly Asp Arg Arg Glu Gln Asp Val Ile Asn Pro Ala Thr Gln Glu Val 20 25 30 Leu Gly Lys Leu Pro His Ala Ser Arg Ala Asp Leu Asp Arg Ala Leu 35 40 45 Ala Ala Ala Gln Arg Ala Phe Glu Thr Trp Lys Lys Thr Ser Pro Leu 50 55 60 Glu Arg Ala Arg Ile Leu Arg Arg Val Gly Glu Leu Thr Arg Glu Arg 65 70 75 80 Ala Lys Glu Ile Gly Arg Asn Ile Thr Leu Asp Gln Gly Lys Pro Leu 85 90 95 Ala Glu Ala Val Gly Glu Val Met Val Cys Ala Glu His Ala Asp Trp 100 105 110 His Ala Glu Glu Cys Arg Arg Ile Tyr Gly Arg Val Ile Pro Pro Arg 115 120 125 Gln Pro Asn Val Arg Gln Ile Val Val Arg Glu Pro Ile Gly Val Cys 130 135 140 Ala Ala Phe Thr Pro Trp Asn Phe Pro Phe Asn Gln Ala Ile Arg Lys 145 150 155 160 Ile Val Ser Ala Leu Gly Ala Gly Cys Thr Leu Ile Leu Lys Gly Pro 165 170 175 Glu Asp Ser Pro Ser Ala Val Val Ala Leu Ala Gln Leu Phe His Asp 180 185 190 Ala Gly Leu Pro Pro Gly Val Leu Asn Ile Val Trp Gly Val Pro Ser 195 200 205 Glu Val Ser Thr Tyr Leu Ile Glu Ser Pro Ile Val Arg Lys Ile Ser 210 215 220 Phe Thr Gly Ser Val Pro Val Gly Lys Gln Leu Ala Ala Leu Ala Gly 225 230 235 240 Ala His Met Lys Arg Val Thr Met Glu Leu Gly Gly His Ser Pro Val 245 250 255 Leu Val Phe Asp Asp Ala Asp Ile Asp Pro Ala Ala Glu Met Leu Ala 260 265 270 Arg Phe Lys Leu Arg Asn Ala Gly Gln Val Cys Val Ser Pro Thr Arg 275 280 285 Phe Tyr Val Gln Glu Lys Ala Tyr Asp Arg Phe Leu Ala Arg Phe Thr 290 295 300 Glu Val Ile Gly Ser Ile Lys Val Gly Asn Gly Leu Glu Asp Gly Thr 305 310 315 320 Gln Met Gly Pro Leu Ala His Glu Arg Arg Val Leu Ser Met Glu Gln 325 330 335 Phe Leu Asp Asp Ala Ser Gln Arg Gly Gly Lys Val Val Ala Gly Gly 340 345 350 Ser Arg Leu Gly Asp Lys Gly Tyr Phe Phe Ala Pro Thr Val Val Thr 355 360 365 Asp Leu Pro Asp Asp Ser Arg Leu Met Thr Asp Glu Pro Phe Gly Pro 370 375 380 Val Ala Pro Val Thr Arg Phe Lys Asp Thr Ala Glu Val Leu Arg Arg 385 390 395 400 Ala Asn Ser Leu Pro Phe Gly Leu Ala Ser Tyr Val Phe Thr Asn Ser 405 410 415 Leu Lys Thr Ala Thr Glu Val Ser Asn Gly Leu Glu Ala Gly Met Val 420 425 430 Asn Ile Asn His Phe Gly Met Ala Leu Ala Glu Thr Pro Phe Gly Gly 435 440 445 Ile Lys Asp Ser Gly Ile Gly Ser Glu Gly Gly Gln Glu Thr Phe Asp 450 455 460 Gly Tyr Leu Val Thr Lys Phe Ile Thr Gln Ala 465 470 475 <210> 3 <211> 1668 <212> DNA <213> Klebsiella pneumoniae <220> <221> gene <222> (1)..(1668) <223> dhaB1, glycerol dehydratase of Klebsiella pneumoniae <400> 3 atgaaaagat caaaacgatt tgcagtactg gcccagcgcc ccgtcaatca ggacgggctg 60 attggcgagt ggcctgaaga ggggctgatc gccatggaca gcccctttga cccggtctct 120 tcagtaaaag tggacaacgg tctgatcgtc gagctggacg gcaaacgccg ggaccagttt 180 gacatgatcg accgatttat cgccgattac gcgatcaacg ttgagcgcac agagcaggca 240 atgcgcctgg aggcggtgga aatagcccgc atgctggtgg atattcacgt cagtcgggag 300 gagatcattg ccatcactac cgccatcacg ccggccaaag cggtcgaggt gatggcgcag 360 atgaacgtgg tggagatgat gatggcgctg cagaagatgc gtgcccgccg gaccccctcc 420 aaccagtgcc acgtcaccaa tctcaaagat aatccggtgc agattgctgc tgacgccgcc 480 gaggccggga tccgcggctt ctcagaacag gagaccacgg tcggtatcgc gcgctatgcg 540 ccgtttaacg ccctggcgct gttggtcggt tcgcagtgcg gccgccccgg cgttttgacg 600 cagtgctcgg tggaagaggc caccgagctg gagctgggca tgcgtggctt aaccagctac 660 gccgagacgg tgtcggtcta cggcaccgaa gcggtattta ccgacggcga tgatactccg 720 tggtcgaagg cgttcctcgc ctcggcctac gcctcccgcg ggttgaaaat gcgctacacc 780 tccggcaccg gatccgaagc gctgatgggc tattcggaga gcaagtcgat gctctacctc 840 gaatcgcgct gcatcttcat taccaaaggc gccggggttc aggggctgca aaacggcgcg 900 gtgagctgta tcggcatgac cggcgctgtg ccgtcgggca ttcgggcggt gctggcggaa 960 aacctgatcg cctctatgct cgacctcgaa gtggcgtccg ccaacgacca gactttctcc 1020 cactcggata ttcgccgcac cgcgcgcacc ctgatgcaga tgctgccggg caccgacttt 1080 attttctccg gctacagcgc ggtgccgaac tacgacaaca tgttcgccgg ctcgaacttc 1140 gatgcggaag attttgatga ttacaacatc ctgcagcgtg acctgatggt tgacggcggc 1200 ctgcgtccgg tgaccgaggc ggaaaccatt gccattcgcc agaaagcggc gcgggcgatc 1260 caggcggttt tccgcgagct ggggctgccg ccaatcgccg acgaggaggt ggaggccgcc 1320 acctacgcgc acggtagcaa cgagatgccg ccgcgtaacg tggtggagga tctgagtgcg 1380 gtggaagaga tgatgaagcg caacatcacc ggcctcgata ttgtcggcgc gttgagccgc 1440 agcggctttg aggatatcgc cagcaatatt ctcaatatgc tgcgccagcg ggtcaccggc 1500 gattacctgc agacctcggc cattctcgat cggcagttcg aggtggtgag tgcggtcaac 1560 gacatcaatg actatcaggg gccgggcacc ggctatcgca tctctgccga acgctgggcg 1620 gagatcaaaa atattccggg cgtggttcag cccgacacca ctgaataa 1668 <210> 4 <211> 555 <212> PRT <213> Klebsiella pneumoniae <220> <221> PEPTIDE <222> (1)..(555) <223> DhaB1, glycerol dehydratase of Klebsiella pneumoniae <400> 4 Met Lys Arg Ser Lys Arg Phe Ala Val Leu Ala Gln Arg Pro Val Asn 1 5 10 15 Gln Asp Gly Leu Ile Gly Glu Trp Pro Glu Glu Gly Leu Ile Ala Met 20 25 30 Asp Ser Pro Phe Asp Pro Val Ser Ser Val Lys Val Asp Asn Gly Leu 35 40 45 Ile Val Glu Leu Asp Gly Lys Arg Arg Asp Gln Phe Asp Met Ile Asp 50 55 60 Arg Phe Ile Ala Asp Tyr Ala Ile Asn Val Glu Arg Thr Glu Gln Ala 65 70 75 80 Met Arg Leu Glu Ala Val Glu Ile Ala Arg Met Leu Val Asp Ile His 85 90 95 Val Ser Arg Glu Glu Ile Ile Ala Ile Thr Thr Ala Ile Thr Pro Ala 100 105 110 Lys Ala Val Glu Val Met Ala Gln Met Asn Val Val Glu Met Met Met 115 120 125 Ala Leu Gln Lys Met Arg Ala Arg Arg Thr Pro Ser Asn Gln Cys His 130 135 140 Val Thr Asn Leu Lys Asp Asn Pro Val Gln Ile Ala Ala Asp Ala Ala 145 150 155 160 Glu Ala Gly Ile Arg Gly Phe Ser Glu Gln Glu Thr Thr Val Gly Ile 165 170 175 Ala Arg Tyr Ala Pro Phe Asn Ala Leu Ala Leu Leu Val Gly Ser Gln 180 185 190 Cys Gly Arg Pro Gly Val Leu Thr Gln Cys Ser Val Glu Glu Ala Thr 195 200 205 Glu Leu Glu Leu Gly Met Arg Gly Leu Thr Ser Tyr Ala Glu Thr Val 210 215 220 Ser Val Tyr Gly Thr Glu Ala Val Phe Thr Asp Gly Asp Asp Thr Pro 225 230 235 240 Trp Ser Lys Ala Phe Leu Ala Ser Ala Tyr Ala Ser Arg Gly Leu Lys 245 250 255 Met Arg Tyr Thr Ser Gly Thr Gly Ser Glu Ala Leu Met Gly Tyr Ser 260 265 270 Glu Ser Lys Ser Met Leu Tyr Leu Glu Ser Arg Cys Ile Phe Ile Thr 275 280 285 Lys Gly Ala Gly Val Gln Gly Leu Gln Asn Gly Ala Val Ser Cys Ile 290 295 300 Gly Met Thr Gly Ala Val Pro Ser Gly Ile Arg Ala Val Leu Ala Glu 305 310 315 320 Asn Leu Ile Ala Ser Met Leu Asp Leu Glu Val Ala Ser Ala Asn Asp 325 330 335 Gln Thr Phe Ser His Ser Asp Ile Arg Arg Thr Ala Arg Thr Leu Met 340 345 350 Gln Met Leu Pro Gly Thr Asp Phe Ile Phe Ser Gly Tyr Ser Ala Val 355 360 365 Pro Asn Tyr Asp Asn Met Phe Ala Gly Ser Asn Phe Asp Ala Glu Asp 370 375 380 Phe Asp Asp Tyr Asn Ile Leu Gln Arg Asp Leu Met Val Asp Gly Gly 385 390 395 400 Leu Arg Pro Val Thr Glu Ala Glu Thr Ile Ala Ile Arg Gln Lys Ala 405 410 415 Ala Arg Ala Ile Gln Ala Val Phe Arg Glu Leu Gly Leu Pro Pro Ile 420 425 430 Ala Asp Glu Glu Val Glu Ala Ala Thr Tyr Ala His Gly Ser Asn Glu 435 440 445 Met Pro Pro Arg Asn Val Val Glu Asp Leu Ser Ala Val Glu Glu Met 450 455 460 Met Lys Arg Asn Ile Thr Gly Leu Asp Ile Val Gly Ala Leu Ser Arg 465 470 475 480 Ser Gly Phe Glu Asp Ile Ala Ser Asn Ile Leu Asn Met Leu Arg Gln 485 490 495 Arg Val Thr Gly Asp Tyr Leu Gln Thr Ser Ala Ile Leu Asp Arg Gln 500 505 510 Phe Glu Val Val Ser Ala Val Asn Asp Ile Asn Asp Tyr Gln Gly Pro 515 520 525 Gly Thr Gly Tyr Arg Ile Ser Ala Glu Arg Trp Ala Glu Ile Lys Asn 530 535 540 Ile Pro Gly Val Val Gln Pro Asp Thr Thr Glu 545 550 555 <210> 5 <211> 585 <212> DNA <213> Klebsiella pneumoniae <220> <221> gene <222> (1)..(585) <223> dhaB2, glycerol dehydratase of Klebsiella pneumoniae <400> 5 gtgcaacaga caacccaaat tcagccctct tttaccctga aaacccgcga gggcggggta 60 gcttctgccg atgaacgcgc cgatgaagtg gtgatcggcg tcggccctgc cttcgataaa 120 caccagcatc acactctgat cgatatgccc catggcgcga tcctcaaaga gctgattgcc 180 ggggtggaag aagaggggct tcacgcccgg gtggtgcgca ttctgcgcac gtccgacgtc 240 tcctttatgg cctgggatgc ggccaacctg agcggctcgg ggatcggcat cggtatccag 300 tcgaagggga ccacggtcat ccatcagcgc gatctgctgc cgctcagcaa cctggagctg 360 ttctcccagg cgccgctgct gacgctggaa acctaccggc agattggcaa aaacgccgcg 420 cgctatgcgc gcaaagagtc accttcgccg gtgccggtgg tgaacgatca gatggtgcgg 480 ccgaaattta tggccaaagc cgcgctattt catatcaaag agaccaaaca tgtggtgcag 540 gacgccgagc ccgtcaccct gcacgtcgac ttagtaaggg agtga 585 <210> 6 <211> 194 <212> PRT <213> Klebsiella pneumoniae <220> <221> PEPTIDE <222> (1)..(194) <223> DhaB2, glycerol dehydratase of Klebsiella pneumoniae <400> 6 Val Gln Gln Thr Thr Gln Ile Gln Pro Ser Phe Thr Leu Lys Thr Arg 1 5 10 15 Glu Gly Gly Val Ala Ser Ala Asp Glu Arg Ala Asp Glu Val Val Ile 20 25 30 Gly Val Gly Pro Ala Phe Asp Lys His Gln His His Thr Leu Ile Asp 35 40 45 Met Pro His Gly Ala Ile Leu Lys Glu Leu Ile Ala Gly Val Glu Glu 50 55 60 Glu Gly Leu His Ala Arg Val Val Arg Ile Leu Arg Thr Ser Asp Val 65 70 75 80 Ser Phe Met Ala Trp Asp Ala Ala Asn Leu Ser Gly Ser Gly Ile Gly 85 90 95 Ile Gly Ile Gln Ser Lys Gly Thr Thr Val Ile His Gln Arg Asp Leu 100 105 110 Leu Pro Leu Ser Asn Leu Glu Leu Phe Ser Gln Ala Pro Leu Leu Thr 115 120 125 Leu Glu Thr Tyr Arg Gln Ile Gly Lys Asn Ala Ala Arg Tyr Ala Arg 130 135 140 Lys Glu Ser Pro Ser Pro Val Pro Val Val Asn Asp Gln Met Val Arg 145 150 155 160 Pro Lys Phe Met Ala Lys Ala Ala Leu Phe His Ile Lys Glu Thr Lys 165 170 175 His Val Val Gln Asp Ala Glu Pro Val Thr Leu His Val Asp Leu Val 180 185 190 Arg Glu <210> 7 <211> 426 <212> DNA <213> Klebsiella pneumoniae <220> <221> gene <222> (1)..(426) <223> dhaB3, glycerol dehydratase of Klebsiella pneumoniae <400> 7 atgagcgaga aaaccatgcg cgtgcaggat tatccgttag ccacccgctg cccggagcat 60 atcctgacgc ctaccggcaa accattgacc gatattaccc tcgagaaggt gctctctggc 120 gaggtgggcc cgcaggatgt gcggatctcc tgccagaccc ttgagtacca ggcgcagatt 180 gccgagcaga tgcagcgcca tgcggtggcg cgcaatttcc gccgcgcggc ggagcttatc 240 gccattcctg acgagcgcat tctggctatc tataacgcgc tgcgcccgtt ccgctcctcg 300 caggcggagc tgctggcgat cgccgacgag ctggagcaca cctggcatgc gacagtgaat 360 gccgcctttg tccgggagtc ggcggaagtg tatcagcagc ggcataagct gcgtaaagga 420 agctaa 426 <210> 8 <211> 141 <212> PRT <213> Klebsiella pneumoniae <220> <221> PEPTIDE <222> (1)..(141) <223> DhaB3, glycerol dehydratase of Klebsiella pneumoniae <400> 8 Met Ser Glu Lys Thr Met Arg Val Gln Asp Tyr Pro Leu Ala Thr Arg 1 5 10 15 Cys Pro Glu His Ile Leu Thr Pro Thr Gly Lys Pro Leu Thr Asp Ile 20 25 30 Thr Leu Glu Lys Val Leu Ser Gly Glu Val Gly Pro Gln Asp Val Arg 35 40 45 Ile Ser Cys Gln Thr Leu Glu Tyr Gln Ala Gln Ile Ala Glu Gln Met 50 55 60 Gln Arg His Ala Val Ala Arg Asn Phe Arg Arg Ala Ala Glu Leu Ile 65 70 75 80 Ala Ile Pro Asp Glu Arg Ile Leu Ala Ile Tyr Asn Ala Leu Arg Pro 85 90 95 Phe Arg Ser Ser Gln Ala Glu Leu Leu Ala Ile Ala Asp Glu Leu Glu 100 105 110 His Thr Trp His Ala Thr Val Asn Ala Ala Phe Val Arg Glu Ser Ala 115 120 125 Glu Val Tyr Gln Gln Arg His Lys Leu Arg Lys Gly Ser 130 135 140 <210> 9 <211> 1824 <212> DNA <213> Klebsiella pneumoniae <220> <221> gene <222> (1)..(1824) <223> gdrA, Glycerol dehydratase activator of Klebsiella pneumoniae <400> 9 atgccgttaa tagccgggat tgatatcggc aacgccacca ccgaggtggc gctggcgtcc 60 gacgacccgc aggcgagggc gtttgttgcc agcgggatcg tcgcgacgac gggcatgaaa 120 gggacgcggg acaatatcgc cgggaccctc gccgcgctgg agcaggccct ggcgaaaaca 180 ccgtggtcgg tgagcgatgt ctctcgcatc tatcttaacg aagccgcgcc ggtgattggc 240 gatgtggcga tggagaccat caccgagacc attatcaccg aatcgaccat gatcggtcat 300 aacccgcaga cgccgggcgg ggtgggcgtt ggcgtgggga cgactatcgc cctcgggcgg 360 ctggcgacgc tgccggcggc gcagtatgcc gaggggtgga tcgtactgat tgacgacgcc 420 gtcgatttcc ttgacgccgt gtggtggctc aatgaggcgc tcgaccgggg gatcaacgtg 480 gtggcggcga tcctcaaaaa ggacgacggc gtgctggtga acaaccgcct gcgtaaaacc 540 ctgccggtgg tagatgaagt gacgctgctg gagcaggtcc ccgagggggt aatggcggcg 600 gtggaagtgg ccgcgccggg ccaggtggtg cggatcctgt cgaatcccta cgggatcgcc 660 accttcttcg ggctaagccc ggaagagacc caggccatcg tccccatcgc ccgcgccctg 720 attggcaacc gttcagcggt ggtgctcaag accccgcagg gggatgtgca gtcgcgggtg 780 atcccggcgg gcaacctcta cattagcggc gaaaagcgcc gcggagaggc cgatgtcgcc 840 gagggcgcgg aagccatcat gcaggcgatg agcgcctgcg ctccggtacg cgacatccgc 900 ggcgaaccgg gcactcacgc cggcggcatg cttgagcggg tgcgcaaggt aatggcgtcc 960 ctgaccgacc atgagatgag cgcgatatac atccaggatc tgctggcggt ggatacgttt 1020 attccgcgca aggtgcaggg cgggatggcc ggcgagtgcg ccatggaaaa tgccgtcggg 1080 atggcggcga tggtgaaagc ggatcgtctg caaatgcagg ttatcgcccg cgaactgagc 1140 gcccgactgc agaccgaggt ggtggtgggc ggcgtggagg ccaacatggc catcgccggg 1200 gcgttaacca ctcccggctg tgcggcgccg ctggcgatcc tcgacctcgg cgccggctcg 1260 acggatgcgg cgatcgtcaa cgcggagggg cagataacgg cggtccatct cgccggggcg 1320 gggaatatgg tcagcctgtt gattaaaacc gagctgggcc tcgaggatct ttcgctggcg 1380 gaagcgataa aaaaataccc gctggccaaa gtggaaagcc tgttcagtat tcgtcacgag 1440 aatggcgcgg tggagttctt tcgggaagcc ctcagcccgg cggtgttcgc caaagtggtg 1500 tacatcaagg agggcgaact ggtgccgatc gataacgcca gcccgctgga aaaaattcgt 1560 ctcgtgcgcc ggcaggcgaa agagaaagtg tttgtcacca actgcctgcg cgcgctgcgc 1620 caggtctcac ccggcggttc cattcgcgat atcgcctttg tggtgctggt gggcggctca 1680 tcgctggact ttgagatccc gcagcttatc acggaagcct tgtcgcacta tggcgtggtc 1740 gccgggcagg gcaatattcg gggaacagaa gggccgcgca acgcggtcgc caccgggctg 1800 ctactggccg gtcaggcgaa ttaa 1824 <210> 10 <211> 607 <212> PRT <213> Klebsiella pneumoniae <220> <221> PEPTIDE <222> (1)..(607) <223> GdrA, Glycerol dehydratase activator of Klebsiella pneumoniae <400> 10 Met Pro Leu Ile Ala Gly Ile Asp Ile Gly Asn Ala Thr Thr Glu Val 1 5 10 15 Ala Leu Ala Ser Asp Asp Pro Gln Ala Arg Ala Phe Val Ala Ser Gly 20 25 30 Ile Val Ala Thr Thr Gly Met Lys Gly Thr Arg Asp Asn Ile Ala Gly 35 40 45 Thr Leu Ala Ala Leu Glu Gln Ala Leu Ala Lys Thr Pro Trp Ser Val 50 55 60 Ser Asp Val Ser Arg Ile Tyr Leu Asn Glu Ala Ala Pro Val Ile Gly 65 70 75 80 Asp Val Ala Met Glu Thr Ile Thr Glu Thr Ile Ile Thr Glu Ser Thr 85 90 95 Met Ile Gly His Asn Pro Gln Thr Pro Gly Gly Val Gly Val Gly Val 100 105 110 Gly Thr Thr Ile Ala Leu Gly Arg Leu Ala Thr Leu Pro Ala Ala Gln 115 120 125 Tyr Ala Glu Gly Trp Ile Val Leu Ile Asp Asp Ala Val Asp Phe Leu 130 135 140 Asp Ala Val Trp Trp Leu Asn Glu Ala Leu Asp Arg Gly Ile Asn Val 145 150 155 160 Val Ala Ala Ile Leu Lys Lys Asp Asp Gly Val Leu Val Asn Asn Arg 165 170 175 Leu Arg Lys Thr Leu Pro Val Val Asp Glu Val Thr Leu Leu Glu Gln 180 185 190 Val Pro Glu Gly Val Met Ala Ala Val Glu Val Ala Ala Pro Gly Gln 195 200 205 Val Val Arg Ile Leu Ser Asn Pro Tyr Gly Ile Ala Thr Phe Phe Gly 210 215 220 Leu Ser Pro Glu Glu Thr Gln Ala Ile Val Pro Ile Ala Arg Ala Leu 225 230 235 240 Ile Gly Asn Arg Ser Ala Val Val Leu Lys Thr Pro Gln Gly Asp Val 245 250 255 Gln Ser Arg Val Ile Pro Ala Gly Asn Leu Tyr Ile Ser Gly Glu Lys 260 265 270 Arg Arg Gly Glu Ala Asp Val Ala Glu Gly Ala Glu Ala Ile Met Gln 275 280 285 Ala Met Ser Ala Cys Ala Pro Val Arg Asp Ile Arg Gly Glu Pro Gly 290 295 300 Thr His Ala Gly Gly Met Leu Glu Arg Val Arg Lys Val Met Ala Ser 305 310 315 320 Leu Thr Asp His Glu Met Ser Ala Ile Tyr Ile Gln Asp Leu Leu Ala 325 330 335 Val Asp Thr Phe Ile Pro Arg Lys Val Gln Gly Gly Met Ala Gly Glu 340 345 350 Cys Ala Met Glu Asn Ala Val Gly Met Ala Ala Met Val Lys Ala Asp 355 360 365 Arg Leu Gln Met Gln Val Ile Ala Arg Glu Leu Ser Ala Arg Leu Gln 370 375 380 Thr Glu Val Val Val Gly Gly Val Glu Ala Asn Met Ala Ile Ala Gly 385 390 395 400 Ala Leu Thr Thr Pro Gly Cys Ala Ala Pro Leu Ala Ile Leu Asp Leu 405 410 415 Gly Ala Gly Ser Thr Asp Ala Ala Ile Val Asn Ala Glu Gly Gln Ile 420 425 430 Thr Ala Val His Leu Ala Gly Ala Gly Asn Met Val Ser Leu Leu Ile 435 440 445 Lys Thr Glu Leu Gly Leu Glu Asp Leu Ser Leu Ala Glu Ala Ile Lys 450 455 460 Lys Tyr Pro Leu Ala Lys Val Glu Ser Leu Phe Ser Ile Arg His Glu 465 470 475 480 Asn Gly Ala Val Glu Phe Phe Arg Glu Ala Leu Ser Pro Ala Val Phe 485 490 495 Ala Lys Val Val Tyr Ile Lys Glu Gly Glu Leu Val Pro Ile Asp Asn 500 505 510 Ala Ser Pro Leu Glu Lys Ile Arg Leu Val Arg Arg Gln Ala Lys Glu 515 520 525 Lys Val Phe Val Thr Asn Cys Leu Arg Ala Leu Arg Gln Val Ser Pro 530 535 540 Gly Gly Ser Ile Arg Asp Ile Ala Phe Val Val Leu Val Gly Gly Ser 545 550 555 560 Ser Leu Asp Phe Glu Ile Pro Gln Leu Ile Thr Glu Ala Leu Ser His 565 570 575 Tyr Gly Val Val Ala Gly Gln Gly Asn Ile Arg Gly Thr Glu Gly Pro 580 585 590 Arg Asn Ala Val Ala Thr Gly Leu Leu Leu Ala Gly Gln Ala Asn 595 600 605 <210> 11 <211> 354 <212> DNA <213> Klebsiella pneumoniae <220> <221> gene <222> (1)..(354) <223> gdrB, Glycerol dehydratase activator of Klebsiella pneumoniae <400> 11 atgtcgcttt caccgccagg cgtacgcctg ttttacgatc cgcgcgggca ccatgccggc 60 gccatcaatg agctgtgctg ggggctggag gagcaggggg tcccctgcca gaccataacc 120 tatgacggag gcggtgacgc cgctgcgctg ggcgccctgg cggccagaag ctcgcccctg 180 cgggtgggta ttgggctcag cgcgtccggc gagatagccc tcactcatgc ccagctgccg 240 gcggacgcgc cgctggctac cggacacgtc accgatagcg acgatcatct gcgtacgctc 300 ggcgccaacg ccgggcagct ggttaaagtc ctgccgttaa gtgagagaaa ctga 354 <210> 12 <211> 117 <212> PRT <213> Klebsiella pneumoniae <220> <221> PEPTIDE <222> (1)..(117) <223> GdrB, Glycerol dehydratase activator of Klebsiella pneumoniae <400> 12 Met Ser Leu Ser Pro Pro Gly Val Arg Leu Phe Tyr Asp Pro Arg Gly 1 5 10 15 His His Ala Gly Ala Ile Asn Glu Leu Cys Trp Gly Leu Glu Glu Gln 20 25 30 Gly Val Pro Cys Gln Thr Ile Thr Tyr Asp Gly Gly Gly Asp Ala Ala 35 40 45 Ala Leu Gly Ala Leu Ala Ala Arg Ser Ser Pro Leu Arg Val Gly Ile 50 55 60 Gly Leu Ser Ala Ser Gly Glu Ile Ala Leu Thr His Ala Gln Leu Pro 65 70 75 80 Ala Asp Ala Pro Leu Ala Thr Gly His Val Thr Asp Ser Asp Asp His 85 90 95 Leu Arg Thr Leu Gly Ala Asn Ala Gly Gln Leu Val Lys Val Leu Pro 100 105 110 Leu Ser Glu Arg Asn 115 <210> 13 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for gabD4 of Cupriavidus necator <400> 13 aaagctagca tgtaccagga tctcgccc 28 <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for gabD4 of Cupriavidus necator <400> 14 aatggtacct caggcctggg tgatgaactt 30 <210> 15 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for aldH of Escherichia coli <400> 15 attgctagca tgaattttca tcatctggct tac 33 <210> 16 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for aldH of Escherichia coli <400> 16 aaaggtacct tcggtcattt caggcctcca 30 <210> 17 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for dhaB123-gdrA of Klebsiella pneumonia <400> 17 atatcatgaa aagatcaaaa cgattt 26 <210> 18 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for dhaB123-gdrA of Klebsiella pneumonia <400> 18 aaagaattcc gcgagcgccc gtttaattc 29 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for gdrB of Klebsiella pneumonia <400> 19 tttgaattct aacgagggga ccgtcatgtc 30 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for gdrB of Klebsiella pneumonia <400> 20 atagtcgact cagtttctct cacttaacgg 30 <210> 21 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for pseudo gene of pET-Duet vector <400> 21 tttcatatgg ctagcgctcg tcgtttggta tggcttc 37 <210> 22 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for pseudo gene of pET-Duet vector <400> 22 tttggtacct tttgccttcc tgtttttgct c 31

Claims (9)

  1. 3-히드록시프로피온알데히드를 3-히드록시프로피온산으로 전환하는 활성을 가지는 서열번호 2의 폴리펩타이드 서열을 암호화하는 폴리뉴클레오타이드를 포함하는, 3-히드록시프로피온산(3-Hydroxypropionic acid)을 생산하는 재조합 대장균.
  2. 제1항에 있어서,
    글리세롤 또는 디올 데히드라타제(dehydratase)를 암호화하는 폴리뉴클레오타이드를 추가로 포함하는 것을 특징으로 하는 재조합 대장균.
  3. 제2항에 있어서,
    상기 글리세롤 또는 디올 데히드라타제를 암호화하는 폴리뉴클레오타이드는 dhaB1, dhaB2 및 dhaB3을 포함하는 것을 특징으로 하는 재조합 대장균.
  4. 제2항에 있어서,
    상기 글리세롤 또는 디올 데히드라타제를 암호화하는 폴리뉴클레오타이드는 클랩시엘라 속(Klebsiella sp.), 시트로박터 속(Citrobacter sp.), 클로스트리디움 속(Clostridium sp.) 및 살로넬라 속(Salmonella sp.)으로 이루어진 군에서 선택된 하나 이상의 균주에서 유래된 것을 특징으로 하는 재조합 대장균.
  5. 제2항에 있어서,
    글리세롤 또는 디올 데히드라타제 재활성화 인자를 암호화하는 폴리뉴클레오타이드를 추가로 포함하는 것을 특징으로 하는 재조합 대장균.
  6. 제5항에 있어서,
    상기 글리세롤 또는 디올 데히드라타제 재활성화 인자를 암호화하는 폴리뉴클레타이드는 dhaFG, gdrAB 및 ddrAB를 포함하는 것을 특징으로 하는 재조합 대장균.
  7. 삭제
  8. 3-히드록시프로피온알데히드(3-Hydroxypropionaldehyde)가 존재하거나 3-히드록시프로피온알데히드가 생산되는 조건에서 제1항 내지 제6항 중 어느 한 항에 따른 재조합 대장균을 배양하는 단계를 포함하는, 3-히드록시프로피온산의 생산방법.
  9. 글리세롤 및 글루코스 중에서 하나 이상의 탄소원을 포함하는 배지에서 제1항 내지 제6항 중 어느 한 항에 따른 재조합 대장균을 배양하는 단계를 포함하는, 3-히드록시프로피온산의 생산방법.
KR1020120149270A 2011-12-20 2012-12-20 3-히드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-히드록시프로피온산의 생산방법 KR101505172B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/011174 WO2013095009A1 (ko) 2011-12-20 2012-12-20 3-히드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-히드록시프로피온산의 생산방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110138193 2011-12-20
KR20110138193 2011-12-20

Publications (2)

Publication Number Publication Date
KR20130071395A KR20130071395A (ko) 2013-06-28
KR101505172B1 true KR101505172B1 (ko) 2015-03-24

Family

ID=48865889

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120149270A KR101505172B1 (ko) 2011-12-20 2012-12-20 3-히드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-히드록시프로피온산의 생산방법

Country Status (1)

Country Link
KR (1) KR101505172B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102519456B1 (ko) 2018-03-15 2023-04-06 주식회사 엘지화학 미생물을 이용한 폴리(3-하이드록시프로피오네이트-b-락테이트) 블록공중합체
KR102569806B1 (ko) * 2018-11-05 2023-08-22 주식회사 엘지화학 아데노실트랜스퍼라제를 코딩하는 유전자로 형질전환된 미생물 및 이의 이용

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090291480A1 (en) 2006-08-30 2009-11-26 Cargill, Incorporated Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production
KR20110018118A (ko) * 2009-08-17 2011-02-23 서울대학교산학협력단 재조합 대장균을 배양하여 글리세롤로부터 3-히드록시프로피온산을 생산하는 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090291480A1 (en) 2006-08-30 2009-11-26 Cargill, Incorporated Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production
KR20110018118A (ko) * 2009-08-17 2011-02-23 서울대학교산학협력단 재조합 대장균을 배양하여 글리세롤로부터 3-히드록시프로피온산을 생산하는 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Bioresource Technology, Vol.103:351-359(2011. 10. 14.) *
Biotechnology and Bioengineering, Vol.104(4):729-739(2009. 11. 01.) *

Also Published As

Publication number Publication date
KR20130071395A (ko) 2013-06-28

Similar Documents

Publication Publication Date Title
US9121041B2 (en) Method for the preparation of diols
US5633362A (en) Production of 1,3-propanediol from glycerol by recombinant bacteria expressing recombinant diol dehydratase
KR102041627B1 (ko) 1,4-부탄다이올 생산용 미생물 및 관련 방법
JP4570775B2 (ja) 組換え生物によるグリセロールの産生方法
US20130095542A1 (en) Engineered microorganisms and integrated process for producing n-propanol, propylene and polypropylene
KR20150045447A (ko) 재조합 미생물 및 이에 대한 용도
US9957497B2 (en) Hydrocarbon synthase gene and use thereof
AU2012214255A1 (en) Cells and methods for producing isobutyric acid
CA2715737A1 (en) Polypeptide having glyoxalase iii activity, polynucleotide encoding the same and uses thereof
KR20220139351A (ko) 엑토인의 개선된 생산을 위한 변형된 미생물 및 방법
US20220112525A1 (en) Biosynthesis of vanillin from isoeugenol
KR20170082888A (ko) 3-히드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-히드록시프로피온산의 생산방법
US20220325313A1 (en) Biosynthesis of alpha-ionone and beta-ionone
JP2017534268A (ja) 有用産物の生産のための改変微生物および方法
CN111748535B (zh) 一种丙氨酸脱氢酶突变体及其在发酵生产l-丙氨酸中的应用
KR101521045B1 (ko) 유기산을 생산하기 위한 재조합 미생물유기체
CN113201516B (zh) 一种对硝基苄基酯酶突变体及应用
KR101505172B1 (ko) 3-히드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-히드록시프로피온산의 생산방법
EP2872639B1 (en) A microorganism modified for the production of 1,3-propanediol
CN108913724A (zh) 一种以丙二酸盐为原料合成3-羟基丙酸的制备方法及其相应重组细胞和应用
CN110607335B (zh) 一种烟酰胺腺嘌呤二核苷酸类化合物生物合成方法
KR20190097250A (ko) 신규한 효소를 사용한 메틸글리옥살의 히드록시아세톤으로의 전환 및 그의 적용
US9670493B2 (en) Low-phosphate repressible promoter
EP3029145B1 (en) Method for producing methacrylyl-coa
KR20140003262A (ko) 재조합 미생물을 이용한 3-하이드록시프로피온산의 생산방법 및 그에 사용되는 재조합 미생물

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20180220

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190221

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200108

Year of fee payment: 6