KR20130062896A - 편광 분리 소자 - Google Patents

편광 분리 소자 Download PDF

Info

Publication number
KR20130062896A
KR20130062896A KR1020120140562A KR20120140562A KR20130062896A KR 20130062896 A KR20130062896 A KR 20130062896A KR 1020120140562 A KR1020120140562 A KR 1020120140562A KR 20120140562 A KR20120140562 A KR 20120140562A KR 20130062896 A KR20130062896 A KR 20130062896A
Authority
KR
South Korea
Prior art keywords
light
polarization splitting
wavelength
equation
recess
Prior art date
Application number
KR1020120140562A
Other languages
English (en)
Other versions
KR101370135B1 (ko
Inventor
김태수
박정호
신부건
김재진
이종병
정진미
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2014544682A priority Critical patent/JP2015500508A/ja
Priority to PCT/KR2012/010492 priority patent/WO2013085284A1/ko
Priority to CN201280069066.5A priority patent/CN104105987B/zh
Publication of KR20130062896A publication Critical patent/KR20130062896A/ko
Priority to US14/039,924 priority patent/US9541693B2/en
Application granted granted Critical
Publication of KR101370135B1 publication Critical patent/KR101370135B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1838Diffraction gratings for use with ultraviolet radiation or X-rays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3075Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state for use in the UV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • G02B5/3091Birefringent or phase retarding elements for use in the UV

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

본 출원은 편광 분리 소자, 편광 분리 소자의 제조방법, 광조사 장치, 광 조사 방법 및 정렬된 광배향막의 제조 방법에 관한 것이다. 본 출원의 편광 분리 소자는, 자외선 및 열에 대한 내구성이 우수하며, 편광 특성의 피치 의존성이 낮아 제조공정이 용이하다. 또한, 본 출원의 편광 분리 소자는 단파장 영역에서도 우수한 편광도 및 소광비를 구현할 수 있다.

Description

편광 분리 소자{POLARIZED LIGHT SPLITTING ELEMENT}
본 출원은 편광 분리 소자, 편광 분리 소자의 제조방법, 광조사 장치, 광 조사 방법 및 정렬된 광배향막의 제조 방법에 관한 것이다.
액정 분자를 일정 방향으로 배열하기 위해 사용되는 액정 배향막은 다양한 분야에 적용되고 있다. 액정 배향막으로는 광의 조사에 의해 처리된 표면으로서 인접하는 액정 분자를 배열시킬 수 있는 광배향막이 있다. 통상적으로 광배향막은 광감응성 물질(photosensitive material)의 층에 광, 예를 들면, 직선 편광된 광을 조사함으로써, 상기 광감응성 물질을 일정 방향으로 정렬(orientationally ordering)시켜서 제조할 수 있다.
상기 광배향막막에 직선 편광된 광을 조사하기 위하여, 다양한 종류의 편광 분리 소자가 이용될 수 있다.
예를 들어, 상기 편광 분리 소자로서 특허문헌 1 등에는 알루미늄을 이용한 편광 분리 소자를 개시하고 있다.
또한, 일반적으로 자외선 영역의 빛을 편광시키기 위한 편광 분리 소자에는 120nm 이하의 피치를 가지도록 선격자 패턴을 형성될 수 있다.
대한민국공개특허공보 제2002-0035587호
본 출원은, 편광 분리 소자, 편광 분리 소자의 제조방법, 광조사 장치, 광 조사 방법 및 정렬된 광배향막의 제조 방법을 제공한다.
예시적인 편광 분리 소자는, 기판; 및 상기 기판 위에 형성된 요철을 포함할 수 있으며, 자외선 영역 파장대역의 선편광된 광을 생성할 수 있다. 본 명세서에서 사용되는 용어 「자외선 영역」은 예를 들면, 250 내지 350 nm, 270 내지 330 nm, 290 내지 310 nm의 파장을 가지는 빛의 영역을 의미 한다. 이하, 첨부된 도면을 참조하여, 상기 편광 분리 소자에 대하여 자세히 설명한다.
도 1은 예시적인 편광 분리 소자의 단면을 모식적으로 나타낸 도면이며, 도 2는 예시적인 편광 분리 소자의 상면을 모식적으로 나타낸 도면이며, 도 3은 예시적인 편광 분리 소자를 상부에서 촬영한 사진이다. 도 1 및 도 2에서 나타나듯이, 상기 편광 분리 소자는 기판(1) 및 상기 기판 상에 형성된 요철(2)을 포함할 수 있다.
본 명세서에서 사용되는 용어 「요철」은 복수의 요부(2a)와 홈부(2b)가 형성된 스트라이프 형상의 패턴이 서로 평행하게 배열된 구조(도 2를 참조)를 의미하며, 본 명세서에서 사용되는 용어 「피치(P)」는, 상기 요부(2a)의 폭(W)과 홈부(2b)의 폭을 더한 거리를 의미하고(도 2를 참조), 본 명세서에서 사용되는 용어 「높이」는, 상기 요부의 높이(H)를 의미한다(도 1을 참조).
도 1과 같이, 예시적인 상기 편광 분리 소자는 요철(2)을 포함할 수 있으며, 상기 요철(2)은 요부(2a)와 홈부(2b)를 가질 수 있다. 상기에서, 요부(2a)는 광흡수성 물질을 포함할 수 있다. 예를 들어, 상기 광흡수성 물질은 250 nm 내지 350 nm의 자외선 영역의 파장 중 어느 한 길이의 파장, 예를 들면, 300 nm의 파장의 광에 대한 굴절률이 1 내지 10, 예를 들면, 1.3 내지 8, 1.5 내지 9 또는 2 내지 7 일 수 있다. 상기 굴절률이 1 미만인 광흡수성 물질로 형성된 편광 분리 소자는 우수한 소광비를 가질 수 없다. 본 명세서에서 사용되는 용어 「소광비(Extinction Ratio)」는 Tc/Tp를 의미하며, 소광비가 높을수록 편광 성능이 우수한 편광판으로 볼 수 있다. 여기에서, Tc는 상기 요부(2a)와 직교하는 방향으로 편광된 파장의 광의 상기 편광 분리 소자에 대한 투과도이고, Tp는 상기 요부(2a)와 평행한 방향으로 편광된 광의 상기 편광 분리 소자에 대한 투과도를 의미한다. 또한, 상기 광흡수성 물질은 250 nm 내지 310 nm의 광파장 영역에서 흡광계수가 0.5 내지 10, 예를 들면, 1 내지 5, 1.5 내지 7, 2 내지 6, 또는 5 내지 10 일 수 있다. 상기 흡광계수가 상기 수치 범위를 만족하는 재료를 사용하여 요부(2a)를 형성할 경우, 편광 분리 소자의 소광비가 높아지고 전체 투과율도 우수하게 나타날 수 있다.
특히, 250 nm 내지 310 nm의 광파장 영역에서 굴절률이 1 내지 10이고 동시에 흡광계수가 0.5 내지 10의 범위를 만족하는 광흡수성 물질이 요부(2a)에 포함될 경우, 상기 요부(2a)의 피치에 제한 받지 않으면서, 자외선 영역의 빛을 편광시킬 수 있다. 즉, 상기 요부(2a)가 상기 광흡수성 물질을 포함하여, 250 nm 내지 350 nm의 광파장 영역에서 굴절률이 1 내지 10이고, 흡광계수가 0.5 내지 10이기 때문에, 자외선 영역의 빛을 편광시킬 경우의 피치(P)에 대한 의존성이 알루미늄과 같은 반사성 소재보다 낮을 수 있다. 또한, 단파장인 자외선 영역의 빛을 편광시키기 위해 상기 광흡수성 물질로 형성된 요부(2a)의 피치는, 예를 들면, 50 nm 내지 200 nm, 100 nm 내지 180 nm, 110 nm 내지 150 nm, 120 nm 내지 150 nm, 130 nm 내지 150 nm 또는 140 nm 내지 150 nm로 형성될 수 있다. 상기 피치(P)가 400 nm의 광파장 영역의 약 1/2 정도인 200 nm를 초과할 경우, 자외선 영역에서의 편광 분리가 일어나지 않을 수 있다. 상기 요부(2a)는 또한, 전술한 범위의 굴절률 및 흡광계수를 가지므로 자외선 흡수능이 우수하고, 알루미늄에 비해 단파장에서도 우수한 소광비를 가지므로 상기 광흡수성 물질을 이용하여 자외선 편광도가 우수한 편광 분리 소자를 제조할 수 있다. 하나의 예시에서, 상기 광흡수성 물질의 산화 온도는 400℃ 이상일 수 있으며, 예를 들면, 500℃ 이상, 600℃ 이상, 700℃ 이상, 800℃ 이상일 수 있다. 상기와 같은 산화 온도를 가지는 광흡수성 물질로 상기 요부(2a)를 형성할 경우, 상기 광흡수성 물질의 산화 온도가 높기 때문에, 열적 안정성 및 내구성이 우수한 편광 분리 소자를 얻을 수 있다. 이에 따라, 백라이트 또는 광원에서 발생하는 열, 특히, 자외선 영역의 빛을 편광시킬 경우 자외선에 의한 열로 인한 산화를 막을 수 있고, 따라서 편광 분리 소자가 변형되지 않고 우수한 편광도를 유지할 수 있는 효과가 있다.
또한, 상기 광흡수성 물질은 전술한 범위의 굴절률 및 흡광계수를 가지는 것이라면, 기술분야에서 공지된 다양한 물질을 사용할 수 있으며, 예를 들면, 실리콘, 산화 티탄, 산화 아연, 산화 지르코디움, 텅스텐, 산화 텅스텐, 갈륨비소, 갈륨 안티모나이드, 알루미늄갈륨비소, 카드뮴 텔룰라이드, 크롬, 몰리브덴, 니켈, 갈륨 포스파이드, 인듐갈륨비소, 인듐포스파이드, 인듐 안티모나이드, 카드뮴아연 텔룰라이드, 산화 주석, 산화 세슘, 스트론튬산화 티탄, 실리콘카바이드, 이리듐, 산화 이리듐 또는 아연셀레늄 텔룰라이드 등이 사용될 수 있으나, 이에 제한되는 것은 아니다.
하나의 예시에서, 상기 요철의 홈부에는 유전 물질(dielectric material)이 존재할 수 있다. 예시적인 상기 유전 물질의 250 nm 내지 350 nm 파장의 광에 대한 굴절률은 1 내지 3일 수 있다. 상기 유전 물질은, 전술한 범위의 굴절률을 가진다면 특별히 제한되는 것은 아니며, 예를 들면, 실리콘 옥사이드, 마그네슘 플로라이드, 실리콘 나이트라이드 또는 공기 등이 예시될 수 있다. 하나의 예시에서, 상기 유전 물질이 공기일 경우에는, 상기 요철의 홈부는 실질적으로 비어있는 상태(empty space)일 수 있다
하나의 예시에서, 상기 자외선 편광 분리 소자는, 하기 수식 1에 의해 계산되는 a가 0.74 내지 10이며, b가 0.5 내지 10일 수 있다.
[수식 1]
(a+bi)2 = n1 2×(1-W/P) + n2 2×W/P
상기 수식 1에서, i는 허수 단위이고, n1은 상기 유전 물질의 250 nm 내지 350 nm의 자외선 영역의 파장 중 어느 한 길이의 파장, 예를 들면, 300 nm 파장의 광에 대한 굴절률이며, n2는 상기 요부(2a)의 250 nm 내지 350 nm의 자외선 영역의 파장 중 어느 한 길이의 파장, 예를 들면, 300 nm의 파장의 광에 대한 굴절률이고, W는 상기 요부(2a)의 폭이며, P는 상기 요부(2a)의 피치이다.
상기 요철(2)의 요부(2a)의 피치(P)가 상기 수식 1을 만족하는 경우, 120 nm 이상의 피치 범위에서도, 단파장 영역, 예를 들면 250 nm 내지 350 nm의 광파장 영역에서 0.5 이상, 0.6 이상, 0.7 이상, 0.9 이상의 높은 편광도를 가지는 편광 분리 소자를 얻을 수 있다. 상기 편광도 값의 상한은 특별히 제한되는 것은 아니나, 제조 공정의 경제성을 고려하여 0.98 이하, 0.95 이하, 0.93 이하의 값을 가질 수 있다. 즉, 상기 편광도가 0.98을 초과할 경우, 편광 분리 소자의 요철의 종횡비(Aspect ratio, 요부의 폭/높이)를 높여야 하며, 이 경우 편광 분리 소자의 제작이 어려워 지고, 제작 공정이 복잡해질 수 있다. 본 명세서에서 사용되는 용어 「편광도」는 조사되는 빛의 강도에 대한 편광의 강도를 의미하며, 하기 수식 3과 같이 계산된다.
[수식 3]
편광도 D= (Tc-Tp)/(Tc+Tp)
상기에서, Tc는 상기 요부(2a)와 직교하는 방향으로 편광된 250 nm 내지 350 nm의 파장의 광의 상기 편광 분리 소자에 대한 투과도이고, Tp는 상기 요부(2a)와 평행한 방향으로 편광된 250 nm 내지 350 nm의 파장의 광의 상기 편광 분리 소자에 대한 투과도이다. 상기에서 평행이란 실질적인 평행을 의미하며, 수직이란 실질적인 수직을 의미한다.
또한, 하나의 예시에서, 상기 자외선 편광 분리 소자는 하기 수식 2에 의해 계산되는 c가 1.3 내지 10이며, d가 0.013 내지 0.1일 수 있다.
[수식 2]
(c+di)2 = n1 2×n2 2 / ((1-W/P)×n2 2+W×n1 2/P)
상기 수식 2에서, i는 허수 단위이고, n1은 상기 유전 물질의 250 nm 내지 350 nm의 자외선 영역의 파장 중 어느 한 길이의 파장, 예를 들면, 300 nm 파장의 광에 대한 굴절률이며, n2는 상기 요부(2a)의 250 nm 내지 350 nm의 자외선 영역의 파장 중 어느 한 길이의 파장, 예를 들면, 300 nm 파장의 광에 대한 굴절률이고, W는 상기 요부(2a)의 폭이며, P는 상기 요부(2a)의 피치이다.
상기 요철(2)의 요부(2a)의 피치(P)가 상기 식 2를 만족하는 경우, 우수한 편광 분리 특성을 가지기 위한 적절한 투과율을 가질 수 있으며, 반면, 흡수율이 낮아져, 요부(2a)의 높이를 낮게 제조할 수 있다.
상기 요부(2a)의 높이(H)는 특별히 제한되는 것은 아니나, 예를 들면, 20 nm 내지 300 nm, 50 nm 내지 200 nm, 100 nm 내지 150 nm, 150 nm 내지 250 nm 또는 200 nm 내지 280 nm일 수 있다. 상기 요철(2)의 높이(H)가 300 nm를 초과할 경우, 흡수되는 광량이 증가하여, 광배향시 필요한 절대 광량이 낮아질 수 있다. 따라서 상기 요철(2)의 높이(H)가 전술한 범위 내에서 형성될 경우, 흡수되는 광량이 많지 않아 적합한 편광 분리 소자의 제작이 가능하며, 상기 편광 분리 소자가 우수한 자외선 투과율을 유지하면서도, 원활한 편광 분리성능을 구현할 수 있다. 또한, 동일한 피치(P)에서 요철(2)의 높이(H)가 두꺼워짐에 따라 종횡비가 증가하게 되어 패턴 제작 용이성이 떨어지게 되는 것을 방지할 수 있다.
상기 요부(2a)의 폭(W)은 특별히 제한되는 것은 아니나, 예를 들면, 10 nm 내지 160 nm, 일 수 있으며, 특히 요부(2a)의 피치가 50 nm 내지 150 nm일 경우, 예를 들면, 10 nm 내지 120 nm, 30 nm 내지 100 nm, 50 nm 내지 80 nm일 수 있다.
하나의 예시에서, 상기 요철(2)의 필-펙터(fill-factor)는 0.2 내지 0.8일 수 있으며, 예를 들어, 0.3 내지 0.6, 0.4 내지 0.7, 0.5 내지 0.75 또는 0.45일 수 있다. 상기 요철의 필-펙터가 상기 수치 범위를 만족하는 경우 원활한 편광 분리성능을 구현할 수 있고, 흡수되는 광량이 많지 않아 편광 분리 소자의 편광 특성이 저하되는 것을 방지할 수 있다. 본 명세서에서 사용되는 용어 요철의 「필-펙터(fill-factor)」는 요부의 피치(P)에 대한 상기 요부의 폭(W)의 비율(W/P)를 의미한다.
또한, 예시적인 상기 편광 분리 소자는 하기 수식 1에 의해 계산되는 a가 0.74 내지 10이며, b가 0.5 내지 10이고, 하기 수식 2에 의하여 계산되는 c가 1.3 내지 10이며, d가 0.013 내지 0.1일 수 있다.
[수식 1]
(a+bi)2 = n1 2×(1-W/P) + n2 2×W/P
[수식 2]
(c+di)2 = n1 2×n2 2 / ((1-W/P)×n2 2+W×n1 2/P)
상기 수식 1 및 2에서, i는 허수 단위이고, n1은 상기 유전 물질의 250 nm 내지 350 nm의 자외선 영역의 파장 중 어느 한 길이의 파장, 예를 들면, 300 nm 파장의 광에 대한 굴절률이며, n2는 상기 요부(2a)의 250 nm 내지 350 nm의 자외선 영역의 파장 중 어느 한 길이의 파장, 예를 들면, 300 nm 파장의 광에 대한 굴절률이고, W는 상기 요부(2a)의 폭이며, P는 상기 요부(2a)의 피치이다. 상기 수식 1 및 수식 2에 의하여 a, b, c 및 d가 상기 범위를 모두 만족할 경우, 상기 편광 분리 소자의 피치(P)에 따른 편광 특성에 의존성이 낮아, 편광 분리 소자에 120 nm 이상의 피치 값을 가지는 요철을 형성하더라도 단파장 영역에서도 우수한 편광도 및 소광비를 구현할 수 있다.
하나의 예시에서, 상기 편광 분리 소자에 포함되며, 요철(2)을 지지하기 위한 상기 기판(1)은, 예를 들면, 석영, 자외선 투과 유리, PVA(Polyvinyl Alcohol), 폴리 카보네이트(Poly Carbonate), EVA(Ethylene Vinyl Acetate 공중합체) 등과 같은 재료로부터 형성된 기판(1)일 수 있다. 예시적인 상기 기판(1)의 자외선 투과율은, 예를 들어 70% 이상, 80% 이상, 90% 이상일 수 있으며, 전술한 범위의 투과율을 가질 경우, 편광 분리 소자의 자외선 투과율도 향상되어 광배향 속도가 우수한 광배향막의 제조가 가능하다.
예시적인 상기 편광 분리 소자는 소광비가 2 이상의 값을 가질 수 있으며, 예를 들면, 5 이상, 10 이상, 50 이상, 100 이상 또는 500 이상의 값을 가질 수 있다. 상기 소광비의 상한은 특별히 제한되는 것은 아니나, 제조공정 및 경제적인 측면을 고려할 때, 예를 들면, 2000 이하, 1500 이하 또는 1000 이하 일 수 있다. 하나의 예시에서, 상기 편광 분리 소자는 단파장인 250nm 내지 350nm의 광 파장 역역에서의 소광비가 2 내지 2000, 예를 들면, 5 내지 1500, 10 내지 1500, 50 내지 2000, 500 내지 1500 또는 100 내지 2000일 수 있다. 전술한 범위 내의 소광비를 가짐으로서, 상기 편광 분리 소자는 가시광선 영역은 물론 자외선 영역에도 우수한 편광성능을 나타낼 수 있다. 예를 들어, 상기 편광 분리 소자를 구성하는 패턴의 높이를 증가시킬 경우 소광비를 2000을 초과하여 향상시킬 수 있으나, 현실적으로 2000 이상의 소광비를 가지는 편광 분리 소자는 실용적인 면에서 의미가 없으며, 동일한 피치에서 높이를 크게 하는 경우 종횡비가 증가하기 때문에 공정적인 측면에서도 생산성이 현저히 떨어질 수 있다.
본 출원은 또한 전술한 상기 자외선 편광 분리 소자의 제조방법을 포함하며, 예시적인 상기 자외선 편광 분리 소자의 제조방법은 기판 위에 광흡수성 물질을 사용하여 요부(2a)를 형성하고, 상기 요부(2a)에 의해 형성된 홈부(2b)에 유전 물질을 도입하여 요철을 형성하는 것을 포함할 수 있다.
예시적인 상기 편광 분리 소자의 제조방법은 또한, 기판상에 광흡수성을 증착하여 요부(2a)를 형성할 수 있다. 예를 들면, 상기 광흡수성 물질을 투광성 기판 위에, 스퍼터링(Sputtering), 화학 기상 증착(Chemical Vapor Deposition, CVD), 저압 화학 기상 증착(Low Pressure CVD, LPCVD), 플라즈마 향상 화학 기상 증착(Plasma Enhanced CVD, PECVD), 대기압 화학 기상 증착(Atmospheric Pressure CVD, APCVD), 물리 기상 증착(Physical Vapor Deposition, PVD), 열증발 증착(Thermal Evaporation Depositon), 유도열 증발 증착(Inductive Thermal Evaporation), 전자빔 증발 증착(Elecron-beam Evaporation deposition), 원자층 증착(Atomic Layer Deoposition) 등의 기술분야에서 공지된 다양한 진공 증착(Vacuum Evaporation Coating)법을 통하여 증착시킬 수 있으며, 이에 제한되는 것은 아니다.
또 다른 예시적인 형태의 제조방법은, 기판 위에 광흡수성 나노 입자 또는 상기 광흡수성 물질의 전구체를 포함하는 코팅 용액을 이용하여 용액 공정에 의하여 요부(2a)를 형성할 수 있다. 상기 용액 공정은 용액을 사용하는 코팅 공정을 의미하며, 하나의 예시적인 형태에서, 상기 용액 공정은 졸-겔 공정(Sol-Gel process)을 포함할 수 있다.
하나의 예시에서, 상기 요부(2a)는 기판상에 증착된 광흡수층 위에 레지스트 패턴을 형성하고, 상기 레지스트 패턴을 이용하여 형성할 수 있다.
상기 레지스트 패턴은, 기술분야에서 공지된 다양한 방법에 의하여 형성될 수 있으며, 예를 들면, 포토 리소그래피(Photo lithography), 나노 임프린트 리소그래피(Nano imprint lithography), 소프트 리소그래피(Soft lithography) 또는 간섭 리소그래피(Interference lithography) 등의 방법이 이용될 수 있으며, 상기 광흡수층 상에 레지스트 물질을 도포한 후, 마스크를 이용하여 원하는 패턴으로 노광한 후 현상하는 방법으로 형성될 수 있으나, 이에 제한되는 것은 아니다.
상기 요부(2a)는 또한, 기형성된 레지스트 패턴을 마스크로 이용하고, 건식 또는 습식 식각 방법에 의하여 형성할 수 있다.
하나의 예시에서, 상기 습식 식각은 식각 용액을 사용하여, 상기 광흡수층을 식각하는 방법을 의미하며, 예를 들어, 수산화 칼륨(KOH), TMAH(Tetramethylammonium hydroxide)와 같은 강 염기성 용액, HF와 같은 강 산성 용액 또는 불산(HF), 질산(HNO3) 및 초산(CH3COOH)의 혼합물 등을 사용한 식각 용액에 상기 광흡수층을 침지시키는 방법에 의하여 수행할 수 있다. 하나의 예시에서, 상기 식각 용액에, IPA(Isopropylalcohol) 또는 계면활성제 등의 첨가물을 추가할 수 있다.
일반적으로 습식 식각의 경우 수직방향과 수평방향의 식각 속도가 같은 식각, 이른바, 등방 식각이 이루어지기 때문에 높은 종횡비를 갖는 패턴을 형성하기에는 적합하지 않음에도 불구하고, 상기 편광 분리 소자는 편광도를 얻기 위해 요구되는 종횡비가 높지 않기 때문에, 습식 식각을 이용하여 요부(2a)를 형성할 수 있다. 이 경우, 건식 식각 보다 공정 비용이 현격하게 줄어들게 되며 공정 속도 또한 빨라질 수 있다.
한편, 하나의 예시에서, 상기 광흡수층은 그 결정방향에 따라 등방성 식각 또는 이방성 식각을 선택적으로 이용할 수 있다. 예를 들어, 결정방향이 100 방향인 광흡수층에 습식 식각을 수행할 경우, 모든 방향에서 동일한 식각 속도를 갖는 등방 식각이 이루어지게 된다. 그러나, 광흡수층 결정방향이 110 방향인 경우에는 수산화 칼륨(KOH) 등의 강염기를 사용하면 111 방향은 사실상 식각이 되지 않게 되고, 그 결과 한 방향으로만 식각이 진행되는 이방성 식각을 구현할 수 있다. 따라서 이와 같은 특성을 이용하면 습식 식각을 통해서도, 높은 종횡비를 갖는 이방성 식각을 구현할 수 있다.
하나의 예시에서, 상기 건식 식각은 기체 상태의 가스를 사용하여, 상기 광흡수층을 식각하는 방법이며, 예를 들어, 이온빔 식각, RF 스퍼터 식각, 반응이온 식각 또는 플라즈마 식각 등의 공지된 건식 식각법을 이용할 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 광흡수층을 건식 식각 방법에 의하는 식각하는 경우, 식각의 용이성을 높이기 위해서 상기 광흡수층을 형성하고, 상기 레지스트 패턴을 형성하기 전에, 상기 레지스트와 광흡수층 사이에 추가로 하드 마스크층을 형성할 수 있다. 상기 하드 마스크층은 레지스트에는 식각이 잘 되나 상기 광흡수층보다는 식각이 잘 안되는 물질이라면, 특별히 제한되지는 않으며, 예를 들면 Cr, Ni, SiN, SiO2 등을 사용할 수 있다. 상기에서, 하드 마스크층을 추가로 삽입할 경우, 레지스트만 에칭 마스크로 사용할 경우보다 식각 비율이 현저하게 높아지므로 높은 종횡비를 갖는 패턴을 용이하게 제작할 수 있다.
상기 레지스트 패턴을 이용하여, 요부(2a)가 형성되면, 상기 레지스트 패턴은 제거될 수 있으며, 건식 식각의 경우, 상기 하드 마스크 층 또한, 요부(2a)가 형성된 후 제거될 수 있다. 상기 레지스트 패턴 또는 하드 마스크층은 특별히 제한되는 것은 아니며, 예를 들면, 약 300 ℃ 내지 400 ℃의 온도에서 포토레지스트 버닝 공정을 통하여 제거될 수 있다.
본 출원은 또한 상기 편광 분리 소자를 포함하는 장치, 예를 들면, 광조사 장치에 관한 것이다. 예시적인 장치는, 상기 편광 분리 소자 및 피조사체가 거치되는 장비를 포함할 수 있다.
상기에서, 상기 편광 분리 소자는 편광판일 수 있다. 편광판은, 예를 들면, 광원으로부터 조사된 광으로부터 직선으로 편광된 광을 생성하기 위하여 사용될 수 있다. 편광판은 예를 들면, 광원으로부터 조사된 광이 편광판으로 입사되어, 편광판을 투과한 광이 다시 마스크로 조사될 수 있도록 장치 내에 포함될 수 있다. 또한, 예를 들어, 장치가 집광판을 포함하는 경우에는, 편광판은, 광원으로부터 조사된 광이 집광판으로 집광된 후에 편광판에 입사될 수 있는 위치에 존재할 수 있다.
편광판으로는, 광원으로부터 조사된 광으로부터 직선 편광된 광을 생성할 수 있는 것이라면, 특별한 제한 없이 사용될 수 있다. 이러한 편광판으로는, 브루스터 각으로 배치된 유리판 또는 와이어 그리드 편광판 등이 예시될 수 있다.
또한, 상기 장치는 피조사체가 거치되는 장비와 편광 분리 소자 사이에 광배향 마스크를 추가로 포함할 수 있다.
상기에서 마스크는, 예를 들면, 장비에 거치된 피조사체의 표면과의 거리가 약 50 mm 이하가 되도록 설치될 수 있다. 상기 거리는, 예를 들면, 0 mm를 초과하거나, 0.001 mm 이상, 0.01 mm 이상, 0.1 mm 이상 또는 1 mm 이상일 수 있다. 또한, 상기 거리는 40 mm 이하, 30 mm 이하, 20 mm 이하 또는 10 mm 이하일 수 있다. 피조사체의 표면과 마스크의 거리는 상기한 상한 및 하한의 다양한 조합으로 설계될 수 있다.
상기에서, 피조사체가 거치되는 장비의 종류는 특별히 제한되지 않으며, 광이 조사되는 동안 피조사체가 안정적으로 유지될 수 있도록 설계되어 있는 모든 종류의 장비가 포함될 수 있다.
또한, 상기 장치는, 마스크로 광을 조사할 수 있는 광원을 추가로 포함할 수 있다. 광원으로는, 마스크의 방향으로 광을 조사할 수 있는 것이라면, 목적에 따라서 특별한 제한 없이 사용할 수 있다. 예를 들면, 마스크의 개구부로 가이드되는 광을 통하여 광배향막의 배향이나, 포토레지스트의 노광 등을 수행하고자 하는 경우에는, 광원으로는, 자외선의 조사가 가능한 광원으로서, 고압 수은 자외선 램프, 메탈 할라이드 램프 또는 갈륨 자외선 램프 등이 사용될 수 있다.
광원은 하나 또는 복수개의 광조사 수단을 포함할 수 있다. 복수의 광조사 수단이 포함되는 경우에 조사 수단의 수나 배치 형태는 특별히 제한되지 않는다. 광원이 복수의 광조사 수단을 포함하는 경우에, 광조사 수단은, 2개 이상의 열을 형성하고 있으며, 2개 이상의 열 중 어느 하나의 열에 위치하는 광조사 수단과 상기 어느 하나의 열과 인접하는 다른 열에 위치되어 있는 광조사 수단은 서로 엇갈려서 중첩되도록 배치될 수 있다.
광조사 수단이 서로 엇갈려서 중첩되어 있다는 것은, 어느 하나의 열에 존재하는 광조사 수단과 어느 하나의 열과 인접하는 다른 열에 존재하는 광조사 수단의 중심을 연결하는 선은 각 열과 수직한 방향과 평행하지 않은 방향(소정 각도로 경사진 방향)으로 형성되면서, 광조사 수단의 조사 면적은 각 열과 수직한 방향에서 일정 부분 서로 겹쳐져서 존재하는 경우를 의미할 수 있다.
도 4는, 상기와 같은 광조사 수단의 배치를 예시적으로 설명하고 있는 도면이다. 도 4에서는 복수의 광조사 수단(10)이 2개의 열, 즉 A열과 B열을 형성하면서 배치되어 있다. 도 4의 광조사 수단 중에서 101로 표시되는 광조사 수단을 제 1 광조사 수단으로 하고, 102로 표시되는 광조사 수단을 제 2 광조사 수단으로 하면, 제 1 및 제 2 광조사 수단의 중심을 연결하는 선(P)은, A열 및 B열의 방향과 수직하는 방향으로 형성되어 있는 선(C)과 평행하지 않게 형성되어 있다. 또한, 제 1 광조사 수단의 조사 면적과 제 2 광조사 수단의 조사 면적은, A열 및 B열의 방향과 수직하는 방향으로 Q의 범위만큼 중첩되어 있다.
상기와 같은 배치에 의하면, 광원에 의해 조사되는 광의 광량을 균일하게 유지할 수 있다. 상기에서 어느 하나의 광조사 수단과 다른 광조사 수단이 중첩되는 정도, 예를 들면, 도 4에서 Q의 길이는 특별히 제한되지 않는다. 예를 들면, 중첩되는 정도는, 광조사 수단의 직경, 예를 들면, 도 4의 L의 약 1/3 이상 내지 2/3 이하일 수 있다.
장치는, 또한 광원으로부터 조사되는 광의 광량의 조절을 위하여, 하나 이상의 집광판을 추가로 포함할 수 있다. 집광판은 예를 들면, 광원으로부터 조사된 광이 집광판으로 입사되어 집광된 후에, 집광된 광이 편광 분리 소자 및 마스크로 조사될 수 있도록 장치 내에 포함될 수 있다. 집광판으로는, 광원으로부터 조사된 광을 집광할 수 있도록 형성되어 있다면, 이 분야에서 통상 사용되는 구성을 사용할 수 있다. 집광판으로는, 렌티큘러 렌즈층 등이 예시될 수 있다.
도 5는, 광조사 장치의 하나의 예를 나타내는 도면이다. 도 5의 장치는, 순차로 배치된 광원(10), 집광판(20), 편광판(30), 마스크(40) 및 피조사체(50)를 거치하는 장비(60)를 포함하고 있다. 도 5의 장치에서는, 광원(10)에서 조사된 광이 우선 집광판(20)에 입사하여 집광되고, 다시 편광판(30)으로 입사한다. 편광판(30)에 입사한 광은 직선으로 편광된 광으로 생성되고, 다시 마스크(40)로 입사되어 개구부에 의해 가이드되어 피조사체(50)의 표면에 조사될 수 있다.
본 출원은, 광 조사 방법에 대한 것이다. 예시적인 상기 방법은, 상기 기술한 광조사 장치를 사용하여 수행할 수 있다. 예를 들어, 상기 방법은, 상기 피조사체가 거치될 수 있는 장비에 피조사체를 거치하고, 상기 편광 분리 소자 및 마스크를 매개로 상기 피조사체로 광을 조사하는 것을 포함할 수 있다.
하나의 예시에서 상기 피조사체는 광배향막일 수 있다. 이러한 경우 상기 광조사 방법은, 정렬된 광배향막을 제조하는 방법일 수 있다. 예를 들어, 광배향막이 장비에 고정된 상태로 편광 분리 소자 및 마스크를 매개로 직선 편광된 광 등을 조사하여 광배향막에 포함되어 있는 광감응성 물질을 소정 방향으로 정렬시켜서 배향성이 발현된 광배향막을 제조할 수 있다.
상기 방법에 적용될 수 있는 광배향막의 종류는 특별히 제한되지 않는다. 해당 분야에서는 광감응성 잔기를 포함하는 화합물로서 광배향막의 형성에 사용할 수 있는 다양한 종류의 광배향성 화합물이 공지되어 있고, 이러한 공지의 물질은 모두 광배향막의 형성에 사용될 수 있다. 광배향성 화합물로는, 예를 들면, 트랜스-시스 광이성화(trans-cis photoisomerization)에 의해 정렬되는 화합물; 사슬 절단(chain scission) 또는 광산화(photo-oxidation) 등과 같은 광분해(photo-destruction)에 의해 정렬되는 화합물; [2+2] 첨가 환화([2+2] cycloaddition), [4+4] 첨가 환화 또는 광이량화(photodimerization) 등과 같은 광가교 또는 광중합에 의해 정렬되는 화합물; 광 프리즈 재배열(photo-Fries rearrangement)에 의해 정렬되는 화합물 또는 개환/폐환(ring opening/closure) 반응에 의해 정렬되는 화합물 등을 사용할 수 있다. 트랜스-시스 광이성화에 의해 정렬되는 화합물로는, 예를 들면, 술포화 디아조 염료(sulfonated diazo dye) 또는 아조고분자(azo polymer) 등의 아조 화합물이나 스틸벤 화합물(stilbenes) 등이 예시될 수 있고, 광분해에 의해 정렬되는 화합물로는, 시클로부탄 테트라카복실산 이무수물(cyclobutane-1,2,3,4-tetracarboxylic dianhydride), 방향족 폴리실란 또는 폴리에스테르, 폴리스티렌 또는 폴리이미드 등이 예시될 수 있다. 또한, 광가교 또는 광중합에 의해 정렬되는 화합물로는, 신나메이트(cinnamate) 화합물, 쿠마린(coumarin) 화합물, 신남아미드(cinnamamide) 화합물, 테트라히드로프탈이미드(tetrahydrophthalimide) 화합물, 말레이미드(maleimide) 화합물, 벤조페논 화합물 또는 디페닐아세틸렌(diphenylacetylene) 화합물이나 광감응성 잔기로서 찰코닐(chalconyl) 잔기를 가지는 화합물(이하, 찰콘 화합물) 또는 안트라세닐(anthracenyl) 잔기를 가지는 화합물(이하, 안트라세닐 화합물) 등이 예시될 수 있고, 광 프리즈 재배열에 의해 정렬되는 화합물로는 벤조에이트(benzoate) 화합물, 벤조아미드(benzoamide) 화합물, 메타아크릴아미도아릴 (메타)아크릴레이트(methacrylamidoaryl methacrylate) 화합물 등의 방향족 화합물이 예시될 수 있으며, 개환/폐환 반응에 의해 정렬하는 화합물로는 스피로피란 화합물 등과 같이 [4+2] π-전자 시스템([4+2] π-electronic system)의 개환/폐환 반응에 의해 정렬하는 화합물 등이 예시될 수 있으나, 이에 제한되는 것은 아니다. 이러한 광배향성 화합물을 사용한 공지의 방식을 통해서 상기 광배향막을 형성할 수 있다. 예를 들면, 광배향막은 상기 화합물을 사용하여 적절한 지지 기재상에 형성될 수 있고, 이러한 광배향막은 피조사체를 거치할 수 있는 장비, 예를 들면, 롤에 의해 이송되면서 상기 방법에 적용될 수 있다.
상기 방법에서 편광 분리 소자 및 마스크를 매개로 광이 조사되는 광배향막은, 1차 배향 처리된 광배향막일 수 있다. 1차 배향 처리는, 예를 들면, 편광 분리 소자를 통하여 일정 방향으로 직선 편광된 자외선을 마스크를 매개로 광을 조사하기 전에 광배향막, 예를 들면, 광배향막의 전체 면에 조사함으로써 수행할 수 있다. 1차 배향 처리된 광배향막에 마스크를 매개로 광을 조사하되, 상기 1차 배향 처리 시와는 상이한 방향으로 편광된 광을 조사하게 되면, 개구부에 대응되는 광배향막의 영역에만 광이 조사되어, 광배향성 화합물이 재정렬되고, 이를 통하여 광배향성 화합물의 정렬 방향이 패턴화되어 있는 광배향막을 제조할 수 있다.
광배향막의 배향을 위하여, 예를 들어, 직선 편광된 자외선을 1회 이상 조사하면, 배향층의 배향은 최종적으로 조사되는 광의 편광 방향에 의해 결정된다. 따라서, 광배향막에 편광 분리 소자를 통해 일정 방향으로 직선 편광된 자외선을 조사하여 1차 배향시킨 후에, 마스크를 매개로 소정 부위에만 1차 배향 처리 시에 사용한 것과는 다른 방향으로 직선 편광된 광에 노출시키면, 광이 조사되는 소정 부위에서만 배향층의 방향이 1차 배향 처리 시의 방향과는 상이한 방향으로 변경될 수 있다. 이에 따라서 제 1 배향 방향을 가지는 제 1 배향 영역과 제 1 배향 방향과는 상이한 제 2 배향 방향을 가지는 제 2 배향 영역을 적어도 포함하는 패턴 또는 배향 방향이 서로 다른 2종류 이상의 배향 영역이 광배향막에 형성될 수 있다.
하나의 예시에서 1차 배향 시에 조사되는 직선 편광된 자외선의 편광축과 1차 배향 후에 마스크를 매개로 수행되는 2차 배향 시에 조사되는 직선 편광된 자외선의 편광축이 이루는 각도는 수직일 수 있다. 상기에서 수직은, 실질적인 수직을 의미할 수 있다. 이러한 방식으로 1차 및 2차 배향 시에 조사되는 광의 편광축을 제어하여 제조된 광배향막은, 예를 들면, 입체 영상을 구현할 수 있는 광학 필터에 사용될 수 있다.
예를 들어 상기와 같이 형성된 광배향막 상에 액정층을 형성하여 광학 필터를 제조할 수 있다. 액정층을 형성하는 방법은 특별히 제한되지 않으며, 예를 들면, 광배향막 상에 광에 의한 가교 또는 중합이 가능한 액정 화합물을 도포 및 배향한 후에 액정 화합물의 층에 광을 조사하여 가교 또는 중합시켜서 형성할 수 있다. 이와 같은 단계를 거치면, 액정 화합물의 층은, 광배향막의 배향에 따라서 배향 및 고정되어서, 배향 방향이 상이한 2종류 이상의 영역을 포함하는 액정 필름이 제조될 수 있다.
광배향막에 도포되는 액정 화합물의 종류는 특별히 제한되지 않고, 광학 필터의 용도에 따라서 적절히 선택될 수 있다. 예를 들어, 광학 필터가 입체 영상의 구현을 위한 필터인 경우에는, 액정 화합물은, 하부에 존재하는 배향층의 배향 패턴에 따라서 배향할 수 있고, 광가교 또는 광중합에 의하여 λ/4의 위상차 특성을 나타내는 액정 고분자층을 형성할 수 있는 액정 화합물일 수 있다. 용어 「λ/4의 위상차 특성」은 입사되는 광을 그 파장의 1/4배만큼 위상 지연시킬 수 있는 특성을 의미할 수 있다. 이러한 액정 화합물을 사용하면, 예를 들면, 입사광을 좌원 편광된 광 및 우원 편광된 광으로 분할할 수 있는 광학 필터를 제조할 수 있다.
액정 화합물을 도포하고, 또한 배향 처리, 즉 하부의 배향층의 배향 패턴에 따라서 정렬시키는 방식이나, 정렬된 액정 화합물을 가교 또는 중합시키는 방식은 특별히 제한되지 않는다. 예를 들면, 배향은, 액정 화합물의 종류에 따라서 화합물이 액정성을 나타낼 수 있는 적절한 온도에서 액정층을 유지하는 방식 등으로 진행될 수 있다. 또한, 가교 또는 중합은, 액정 화합물의 종류에 따라서 적절한 가교 또는 중합이 유도될 수 있는 수준의 광을 액정층으로 조사하여 수행할 수 있다.
본 출원의 편광 분리 소자는, 자외선 및 열에 대한 내구성이 우수하며, 편광 특성의 피치 의존성이 낮아 제조공정이 용이하다. 또한, 본 출원의 편광 분리 소자는 단파장 영역에서도 우수한 편광도 및 소광비를 구현할 수 있다.
도 1은, 예시적인 편광 분리 소자를 단면을 보여주는 단면도이다.
도 2는 예시적인 편광 분리 소자의 상면을 모식적으로 나타낸 도면이다.
도 3은, 예시적인 편광 분리 소자를 상부에서 촬영한 사진이다.
도 4는, 예시적인 광 조사 수단의 배치를 나타내는 도면이다.
도 5는, 예시적인 광조사 장치를 보여주는 도면이다.
도 6은, 실시예 3의 실리콘으로 이루어진 요철을 포함하는 편광 분리 소자의 흡광계수가 일정할 때, 자외선 영역에서의 굴절률이 증가함에 따른 편광 분리 소자의 Tc 값을 나타내는 그래프이다.
도 7은, 실시예 3의 실리콘으로 이루어진 요철을 포함하는 편광 분리 소자의 흡광계수가 일정할 때, 자외선 영역에서의 굴절률이 증가함에 따른 편광 분리 소자의 Tp 값을 나타내는 그래프이다.
도 8은, 실시예 3 및 비교예에 의해 제조된 편광 분리 소자의 Tc 및 Tp를 측정한 그래프이다.
이하 실시예 및 비교예를 통하여 상기 기술한 내용을 보다 상세히 설명하나, 본 출원의 편광 분리 소자 등의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
편광 분리 소자의 제작
실시예 1
석영 유리를 60℃의 아세톤과 IPA(Iso-Propyl alcohol)에 20분씩 초음파 세척하여 표면의 이물질을 제거하였다. 이후 상기 석영 유리에 전자-빔 증착(E-Beam Evaporation)을 통하여 1Å/sec의 속도로 GaAs (300 nm의 광파장에 대한 굴절률 3.69, 흡광계수 1.97)박막을 50 nm의 두께로 증착하였다. 증착된 GaAs 박막 위에 Micro Resist사의 mr-8010r을 100nm 두께로 스핀 코팅한 후 95도에서 1분간 베이킹하였다. 다음으로, 150nm 피치의 임프린팅 마스터를 이용하여 임프린트 공정을 수행하였다. 임프린트시 프레스(Press)의 온도는 160℃ 이며 40Bar에서 3분간 유지한 후 2분간 쿨링(cooling)하여 100℃에서 탈착(Demold)하였다. 이후 ICP RIE 장비를 이용하여 GaAs를 건식 식각하였다. 이후 유기 용매로 아세톤을 이용하여 임프린트용 레지스트를 제거하여 요부의 폭(W)은 75 nm, 피치(P)가 150 nm인 편광 분리 소자를 제작하였다.
실시예2
석영 유리에 전자-빔 증착(E-Beam Evaporation)을 통하여 InP(300 nm의 광파장에 대한 굴절률 3.2, 흡광계수 1.74) 박막을 50 nm의 두께로 증착시킨 것을 제외하고는, 실시예 1과 동일한 방법으로 요부의 폭(W)은 75 nm, 피치(P)가 150 nm인 InP 편광 분리 소자를 제작하였다.
실시예 3
석영 유리에 전자-빔 증착(E-Beam Evaporation)을 통하여 실리콘(300 nm의 광파장에 대한 굴절률 5, 흡광계수 4.09) 박막을 50 nm의 두께로 증착시킨 것을 제외하고는, 실시예 1과 동일한 방법으로 요부의 폭(W)은 75 nm, 피치(P)가 150 nm인 실리콘 편광 분리 소자를 제작하였다.
비교예
석영 유리를 60℃의 아세톤과 IPA에 20분씩 초음파 세척하의 표면의 이물질을 제거하였다. 이후 상기 석영 유리에 전자-빔 증착(E-Beam Evaporation)을 통하여 1 Å/sec의 속도로 알루미늄(300 nm의 광파장에 대한 굴절률 0.28, 흡광계수 3.64) 박막을 200 nm의 두께로 증착하였다. 증착된 알루미늄 박막 위에 Micro Resist사의 mr-8010r을 100nm 두께로 스핀 코팅한 후 95℃에서 1분간 베이킹 하였다. 다음으로, 150nm 피치의 임프린팅 마스터를 이용하여 임프린트 공정을 수행하였다. 임프린트시 프레스(Press)의 온도는 160℃이며 40Bar에서 3분간 유지한 후 2분간 쿨링(cooling)하여 100℃에서 탈착(Demold)하였다. 이후 ICP RIE 장비를 이용하여 알루미늄을 건식 식각하였다. 이후 유기 용매로 아세톤을 이용하여 임프린트용 레지스트를 제거하여 요부의 폭(W)은 75 nm, 피치(P)가 150 nm 인 알루미늄 편광 분리 소자를 제조하였다.
실험예
실시예 1 내지 3 및 비교예에서 제조된 편광 분리 소자에 대하여 하기 방식으로 그 물성을 평가하였다.
측정방법 1. 투과율의 측정
사용하지 않은 알루미늄 편광 분리 소자 2장을 겹쳐서 투과율 측정 장비에 삽입하여 편광된 광원을 만든 후, 제작된 편광 분리 소자의 방향을 편광 방향과 수직 수평으로 놓은 후 Tp 및 Tc를 측정하였다. 여기서 Tp는 요부와 평행한 방향 편광의 투과도를 의미하고, Tc는 요부와 수직인 방향 편광의 투과도를 의미한다.
측정방법 2. 굴절률 및 흡광계수의 측정
Spectroscopic ellipsometry 장비 및 Oscillation modeling을 이용해서 실시예 및 비교예에서 제조된 편광 분리 소자소자에 300 nm의 파장의 빛을 조사하여 상기 편광 분리 소자의 요부의 굴절률 및 흡광계수를 측정 하였으며, 그 결과는 하기 표 1과 같다.
파장( nm ) 요부의 물질 Real Optical constant
굴절률 흡광계수

250
GaAs 2.89 4.05
InP 2.55 3.51
Si 1.7 3.68
Al 0.20 3.0

275
GaAs 3.92 2.90
InP 3.65 2.06
Si 1.87 5.00
Al 0.23 3.3

300
GaAs 3.69 1.97
InP 3.20 1.74
Si 5.0 4.09
Al 0.28 3.64

325
GaAs 3.50 1.91
InP 3.10 1.78
Si 5.13 3.18
Al 0.33 3.95

350
GaAs 3.52 2.00
InP 3.19 1.95
Si 5.5 2.90
Al 0.39 4.3
편광 분리 소자의 유효 굴절률의 계산
실시예 1 내지 3의 편광 분리 소자와 비교예의 편광 분리 소자 각각의 W, P 값, 유전 물질(공기)의 굴절률(n1) 값 1과 상기에서 측정된 편광 분리 소자의 요부의 광학 상수(n2)를 수식 1 및 수식 2에 대입하여 계산하였으며, 그 결과는 하기 표 1과 같다.

파장( nm )

요부의 물질
Real Optical constant Effective refractive index
n 2 n // (a+ bi ) n (c+ di )

250
GaAs 2.89+4.05i 2.09+2.81i 1.42+0.028i
InP 2.55+3.51i 1.85+2.42i 1.42+0.037i
Si 1.7+3.68i 1.24+2.52i 1.44+0.035i
Al 0.20+3.0i 0.15+2.0i 1.50+0.012i

275
GaAs 3.92+2.90i 2.13+1.99i 1.41+0.042i
InP 3.65+2.06i 2.65+1.42i 1.39+0.033i
Si 1.87+5.00i 1.87+3.48i 1.44+0.040i
Al 0.23+3.3i 0.17+2.22i 1.48+0.010i

300
GaAs 3.69+1.97i 2.68+1.35i 1.39+0.032i
InP 3.20+1.74i 2.35+1.19i 1.38+0.042i
Si 5.0+4.09 i 3.58+2.86i 1.41+0.017i
Al 0.28+3.64i 0.21+2.48i 1.47+0.009i

325
GaAs 3.50+1.91i 2.55+1.31i 1.39+0.036i
InP 3.10+1.78i 1.58+1.18i 1.39+0.088i
Si 5.13+3.18i 3.67+2.22i 1.41+0.017i
Al 0.33+3.95i 0.24+2.70i 1.46+0.008i

350
GaAs 3.52+2.00i 2.56+1.37i 1.39+0.035i
InP 3.19+1.95i 2.34+1.33i 1.39+0.043i
Si 5.5+2.90i 3.94+2.02i 1.40+0.017i
Al 0.39+4.3i 0.28+2.96i 1.45+0.0074i
소광비의 계산
각각의 파장대역에 따라 측정된 투과율을 바탕으로 소광비(Tc/Tp)를 계산하였다. 실시예 1 내지 3 및 비교예의 파장대별 소광비는 비교하면 표 3과 같다.
Al과 광흡수성 물질로 이루어진 편광 분리 소자의 물질별 소광비
각 파장대역에서 소광비
250nm 275nm 300nm 325nm 325nm
실시예 1 51.50074 291.3341 234.8004 294.8964 532.1686
실시예 2 13.4354 166.7665 73.3974 1064.73 1711.022
실시예 3 34.71716 204.9879 207.9338 683.9417 1762.759
비교예 0.233146 6.649053 6.649053 89.0692 134.102
상기 표 1과 같이, 요부에 포함되는 GaAs, InP, Si의 경우 300 nm의 파장의 광에 대한 굴절률이 1 내지 10이고 흡광계수가 0.5 내지 10을 만족하며, Al의 경우, 300 nm의 파장의 광에 대한 흡광계수는 3.64이나, 굴절률 0.28이므로, 본원의 광흡수성 물질에 포함되지는 않는다.
상기 표 2에서 알 수 있듯이, 실시예 1 내지 3과 같이, GaAs, InP 또는 실리콘을 사용하여, 요부를 제조한 경우, n//을 보면 비교예인 Al의 a는 모두 0.74 미만이지만 실시예인 Si의 경우 모두 0.74 이상으로 Al 보다 높게 나타나고 있고, b는 Si가 Al 보다 높은 값을 갖는 것으로 나타나고 있다.
또한, 상기 표 3과 같이, 자외선 파장대역에서, 비교예에서 제작한 편광 분리 소자에 비해 실시예 1 내지 3에서 제작한 편광 분리 소자는, 비교예와 150 nm의동일한 피치를 갖도록 제조되더라도, 소광비가 현저하게 높게 나타나고 있다.
또한, 도 6을 보면, 실시예 1의 실리콘으로 요부를 형성한 편광 분리 소자는, 자외선 영역, 특히 250nm 내지 310nm 파장대역에서, 흡광계수가 일정한 경우, 굴절률이 증가함에 따라 Tc 값은 대체로 높아지고 이 경우, 단파장 영역으로 갈수록 투과율의 증가 폭이 커지며, 도 7과 같이, 자외선 영역에서 굴절률이 증가함에 따라 Tp 값은 낮아지는 것으로 측정되었다. 즉, 실리콘으로 요부를 형성한 편광 분리 소자의 경우, 단파장 영역에서 소광비가 우수한 것으로 나타나고 있다.
또한, 실시예 3 및 비교예에 의해 150 nm의 동일한 피치를 가지도록 제조된 편광 분리 소자의 Tc 및 Tp를 N&K사의 스펙트로미터를 이용하여 측정하였고, 결과는 도 8에 도시되었다. 도 8에 의하면, 실리콘으로 요부가 형성된 편광 분리 소자의 경우, 알루미늄으로 요부가 형성된 편광 분리 소자보다 단 파장 영역(약 250 내지 270 nm)에서도 편광 분리 특성이 매우 우수하게 나타나고 있으며, 또한, 실리콘으로 요부를 형성한 편광 분리 소자의 요부의 높이(50 nm)가 알루미늄으로 요부를 형성한 편광 분리 소자의 요부의 높이(150 nm)보다 낮게 형성할 수 있어, 제조가 용이하였다.
1 : 기판
2 : 광흡수층
2a : 요부
2b : 홈부
10, 101, 102: 광 조사 수단
20: 집광판
30: 편광판
40: 마스크
50: 피조사체
60: 피조사체가 거치되는 장비

Claims (19)

  1. 기판; 및 상기 기판 위에 형성되어 있고, 300 nm의 파장의 광에 대한 굴절률이 1 내지 10이고 흡광계수가 0.5 내지 10인 광흡수성 물질을 포함하는 요부와 유전 물질이 존재하는 홈부를 가지는 요철을 포함하는 자외선 편광 분리 소자.
  2. 제 1 항에 있어서, 하기 수식 1에 의해 계산되는 a가 0.74 내지 10이며, b가 0.5 내지 10인 자외선 편광 분리 소자:
    [수식 1]
    (a+bi)2 = n1 2×(1-W/P) + n2 2×W/P
    상기 수식 1에서, i는 허수 단위이고, n1은 상기 유전 물질의 300 nm 파장의 광에 대한 굴절률이며, n2는 상기 요부의 300 nm의 파장의 광에 대한 굴절률이고, W는 상기 요부의 폭이며, P는 상기 요부의 피치이다.
  3. 제 1 항에 있어서, 하기 수식 2에 의해 계산되는 c가 1.3 내지 10이며, d가 0.013 내지 0.1인 자외선 편광 분리 소자:
    [수식 2]
    (c+di)2 = n1 2×n2 2 / ((1-W/P)×n2 2+W×n1 2/P)
    상기 수식 2에서, i는 허수 단위이고, n1은 상기 유전 물질의 300 nm 파장의 광에 대한 굴절률이며, n2는 상기 요부의 300 nm 파장의 광에 대한 굴절률이고, W는 상기 요부의 폭이며, P는 상기 요부의 피치다.
  4. 제 1 항에 있어서, 하기 수식 1에 의해 계산되는 a가 0.74 내지 10이며, b가 0.5 내지 10이고, 하기 수식 2에 의하여 계산되는 c가 1.3 내지 10이며, d가 0.013 내지 0.1인 자외선 편광 분리 소자:
    [수식 1]
    (a+bi)2 = n1 2×(1-W/P) + n2 2×W/P
    [수식 2]
    (c+di)2 = n1 2×n2 2 / ((1-W/P)×n2 2+W×n1 2/P)
    상기 수식 1 및 2에서, i는 허수 단위이고, n1은 상기 유전 물질의 300 nm 파장의 광에 대한 굴절률이며, n2는 상기 요부의 300 nm 파장의 광에 대한 굴절률이고, W는 상기 요부의 폭이며, P는 상기 요부의 피치다.
  5. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서, 유전 물질의 250 nm 내지 350 nm 파장의 광에 대한 굴절률이 1 내지 3 인 자외선 편광 분리 소자.
  6. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서, 요부의 250 nm 내지 350 nm 파장의 광에 대한 굴절률이 1 내지 10 인 자외선 편광 분리 소자.
  7. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서, 요부는 0.5 내지 10 의 흡광 계수를 가지는 흡광성인 자외선 편광 분리 소자.
  8. 제 1 항에 있어서, 광흡수성 물질은 실리콘, 산화 티탄, 산화 아연, 산화 지르코디움, 텅스텐, 산화 텅스텐, 갈륨비소, 갈륨 안티모나이드, 알루미늄갈륨비소, 카드뮴 텔룰라이드, 크롬, 몰리브덴, 니켈, 갈륨 포스파이드, 인듐갈륨비소, 인듐포스파이드, 인듐 안티모나이드, 카드뮴아연 텔룰라이드, 산화 주석, 산화 세슘, 스트론튬산화 티탄, 실리콘카바이드, 이리듐, 산화 이리듐 및 아연셀레늄 텔룰라이드로 이루어진 군으로부터 선택된 1종 이상인 편광 분리 소자.
  9. 제 1 항에 있어서, 하기 수식 3으로 계산되는 D가 0.67 내지 0.98인 자외선 편광 분리 소자:
    [수식 3]
    D = (Tc-Tp)/(Tc+Tp)
    상기 수식 3에서 Tc는 상기 요부와 직교하는 방향으로 편광된 250 nm 내지 350 nm의 파장의 광의 상기 편광 분리 소자에 대한 투과도이고, Tp는 상기 요부와 평행한 방향으로 편광된 250 nm 내지 350 nm의 파장의 광의 상기 편광 분리 소자에 대한 투과도이다.
  10. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서, 요부의 피치는 50 nm 내지 200 nm인 자외선 편광 분리 소자.
  11. 제 10 항에 있어서, 요부의 피치(P)에 대한 상기 요부의 폭(W)의 비율(W/P)이 0.2 내지 0.8인 자외선 편광 분리 소자.
  12. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서, 요부의 높이는 20 nm 내지 300 nm인 자외선 편광 분리 소자.
  13. 제 1 항에 있어서, 하기 수식 4로 계산되는 R이 2 내지 2000인 자외선 편광 분리 소자:
    [수식 4]
    R = Tc/Tp
    상기 수식 4에서 Tc는 상기 요부와 직교하는 방향으로 편광된 250 nm 내지 350 nm의 파장의 광의 상기 편광 분리 소자에 대한 투과도이고, Tp는 상기 요부와 평행한 방향으로 편광된 250 nm 내지 350 nm의 파장의 광의 상기 편광 분리 소자에 대한 투과도이다.
  14. 기판 위에 광흡수성 물질을 사용하여 요부를 형성하고, 상기 요부에 의해 형성된 홈부에 유전 물질을 도입하여 요철을 형성하는 것을 포함하는 제 1 항의 자외선 편광 분리 소자의 제조방법.
  15. 피조사체가 거치되는 장비; 및 제 1 항의 편광 분리 소자를 포함하는 광조사 장치.
  16. 제 15 항에 있어서, 피조사체가 거치되는 장비와 편광 분리 소자 사이에 광배향 마스크를 추가로 포함하는 광조사 장치.
  17. 제 16 항에 있어서, 마스크를 향하여 직선 편광된 광을 조사할 수 있는 광원을 추가로 포함하는 장치.
  18. 제 16 항의 장치의 피조사체가 거치되는 장비에 피조사체를 거치하고, 편광 분리 소자 및 마스크를 매개로 상기 피조사체에 광을 조사하는 방법.
  19. 제 16 항의 장치의 피조사체가 거치되는 장비에 광배향막을 거치하고, 편광 분리 소자 및 마스크를 매개로 상기 광배향막에 직선 편광된 광을 조사하는 정렬된 광배향막의 제조 방법.
KR1020120140562A 2011-12-05 2012-12-05 편광 분리 소자 KR101370135B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014544682A JP2015500508A (ja) 2011-12-05 2012-12-05 偏光分離素子
PCT/KR2012/010492 WO2013085284A1 (ko) 2011-12-05 2012-12-05 편광 분리 소자
CN201280069066.5A CN104105987B (zh) 2011-12-05 2012-12-05 偏振光分离元件
US14/039,924 US9541693B2 (en) 2011-12-05 2013-09-27 Polarized light splitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110128920 2011-12-05
KR1020110128920 2011-12-05

Publications (2)

Publication Number Publication Date
KR20130062896A true KR20130062896A (ko) 2013-06-13
KR101370135B1 KR101370135B1 (ko) 2014-03-06

Family

ID=48860481

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120140562A KR101370135B1 (ko) 2011-12-05 2012-12-05 편광 분리 소자

Country Status (6)

Country Link
US (1) US9541693B2 (ko)
EP (1) EP2790043B1 (ko)
JP (1) JP2015500508A (ko)
KR (1) KR101370135B1 (ko)
CN (1) CN104105987B (ko)
WO (1) WO2013085284A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180030485A (ko) * 2018-03-05 2018-03-23 동우 화인켐 주식회사 광배향 조사장치

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101827658B1 (ko) * 2013-11-13 2018-02-08 다이니폰 인사츠 가부시키가이샤 편광자, 편광자용 기판 및 광 배향 장치
US20160231176A1 (en) * 2015-02-05 2016-08-11 Polarization Solutions, Llc Light irradiation device having polarization measuring mechanism
JP6935352B2 (ja) * 2015-07-03 2021-09-15 ウシオ電機株式会社 グリッド偏光素子
US20180323078A1 (en) * 2015-12-24 2018-11-08 Intel Corporation Pitch division using directed self-assembly
KR101892054B1 (ko) 2017-01-18 2018-08-28 신화인터텍 주식회사 편광 광학 부재
CN106918947A (zh) * 2017-04-10 2017-07-04 惠科股份有限公司 显示面板及其制造方法
KR102559836B1 (ko) * 2018-01-31 2023-07-27 삼성디스플레이 주식회사 편광자, 상기 편광자를 포함한 광학 장치, 상기 편광자를 포함한 디스플레이 장치 및 상기 편광자의 제조 방법
CN112014916B (zh) * 2019-05-30 2022-06-21 上海微电子装备(集团)股份有限公司 一种偏振线栅及其制作方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211422A (ja) * 1998-01-27 1999-08-06 Nikon Corp 線幅測定装置及び方法
KR100323731B1 (ko) 1998-11-06 2002-05-09 구본준, 론 위라하디락사 광조사장치
US6243199B1 (en) 1999-09-07 2001-06-05 Moxtek Broad band wire grid polarizing beam splitter for use in the visible wavelength region
JP2002328222A (ja) * 2001-04-26 2002-11-15 Nippon Sheet Glass Co Ltd 偏光素子及びその製造方法
US7670758B2 (en) * 2004-04-15 2010-03-02 Api Nanofabrication And Research Corporation Optical films and methods of making the same
JP2006178186A (ja) * 2004-12-22 2006-07-06 Seiko Epson Corp 偏光制御素子、偏光制御素子の製造方法、偏光制御素子の設計方法、電子機器
JP2006201273A (ja) * 2005-01-18 2006-08-03 Ushio Inc 偏光光照射装置
JP2006330521A (ja) 2005-05-27 2006-12-07 Nippon Zeon Co Ltd グリッド偏光フィルム、グリッド偏光フィルムの製造方法、光学積層体、光学積層体の製造方法、および液晶表示装置
US20070183025A1 (en) * 2005-10-31 2007-08-09 Koji Asakawa Short-wavelength polarizing elements and the manufacture and use thereof
WO2008022097A2 (en) 2006-08-15 2008-02-21 Api Nanofabrication And Research Corp. Methods for forming patterned structures
WO2008022099A2 (en) * 2006-08-15 2008-02-21 Api Nanofabrication And Research Corp. Polarizer films and methods of making the same
JP5163039B2 (ja) * 2007-09-28 2013-03-13 凸版印刷株式会社 偽造防止構造体及びそれを用いた偽造防止枚葉体、並びにその真偽判定方法
US20090231702A1 (en) * 2008-03-17 2009-09-17 Qihong Wu Optical films and methods of making the same
KR20100049766A (ko) * 2008-11-04 2010-05-13 (주)세현 편광 소자의 제조 방법
JP5402101B2 (ja) * 2009-03-06 2014-01-29 セイコーエプソン株式会社 偏光素子、投射型表示装置、液晶装置、電子機器
JP2010277077A (ja) * 2009-04-28 2010-12-09 Sumitomo Chemical Co Ltd ワイヤグリッド偏光子
EP2790044B1 (en) * 2011-12-05 2019-03-06 LG Chem, Ltd. Polarization separation element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180030485A (ko) * 2018-03-05 2018-03-23 동우 화인켐 주식회사 광배향 조사장치

Also Published As

Publication number Publication date
US20140021367A1 (en) 2014-01-23
CN104105987B (zh) 2016-08-24
WO2013085284A1 (ko) 2013-06-13
US9541693B2 (en) 2017-01-10
EP2790043B1 (en) 2022-07-13
CN104105987A (zh) 2014-10-15
JP2015500508A (ja) 2015-01-05
EP2790043A1 (en) 2014-10-15
KR101370135B1 (ko) 2014-03-06
EP2790043A4 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
KR101370135B1 (ko) 편광 분리 소자
KR101370094B1 (ko) 편광 분리 소자
KR101377296B1 (ko) 편광 분리 소자의 제조방법
KR101653042B1 (ko) 마스크
WO2011037323A2 (ko) 광배향막 제조용 자외선 고투과 이중 선 격자 편광판 및 이의 제조방법
US20160054497A1 (en) Inorganic polarizing plate and production method thereof
JPWO2005096037A1 (ja) 光学部材およびその製造方法
JP6402390B2 (ja) 偏光紫外線分離素子
US7118795B2 (en) Process of producing optical element and optical element
WO2013095062A1 (ko) 편광 분리 소자의 제조방법
EP2891909B1 (en) Method for manufacturing polarized light splitting element
KR20130120714A (ko) 내구성이 우수한 흡수형 선격자 편광판 및 그 제조 방법
JP2020079953A (ja) 偏光解消板、それを用いた光学機器及び液晶表示装置、並びに偏光解消板の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170216

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 7