KR20130054942A - 동공 투과율 분포의 측정 방법 및 측정 장치, 노광 방법 및 노광 장치, 및 디바이스 제조 방법 - Google Patents

동공 투과율 분포의 측정 방법 및 측정 장치, 노광 방법 및 노광 장치, 및 디바이스 제조 방법 Download PDF

Info

Publication number
KR20130054942A
KR20130054942A KR1020127024951A KR20127024951A KR20130054942A KR 20130054942 A KR20130054942 A KR 20130054942A KR 1020127024951 A KR1020127024951 A KR 1020127024951A KR 20127024951 A KR20127024951 A KR 20127024951A KR 20130054942 A KR20130054942 A KR 20130054942A
Authority
KR
South Korea
Prior art keywords
pupil
optical system
diffraction
region
phase
Prior art date
Application number
KR1020127024951A
Other languages
English (en)
Inventor
나오노리 기타
Original Assignee
가부시키가이샤 니콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 니콘 filed Critical 가부시키가이샤 니콘
Publication of KR20130054942A publication Critical patent/KR20130054942A/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70941Stray fields and charges, e.g. stray light, scattered light, flare, transmission loss
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0228Testing optical properties by measuring refractive power
    • G01M11/0235Testing optical properties by measuring refractive power by measuring multiple properties of lenses, automatic lens meters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70133Measurement of illumination distribution, in pupil plane or field plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

본 발명은 피검광학계의 동공 투과율 분포를 고정밀도로 신속하게 또한 비교적 낮은 부하로 측정하는 측정 장치 등에 관한 것이다. 피검광학계의 동공 투과율 분포를 측정하는 측정 장치는, 피검광학계의 동공과 광학적으로 푸리에 변환의 관계에 있는 제 1 면에 탑재 가능한 회절 격자와, 회절 격자를 거쳐 생성된 +1차 회절빔이 동공의 유효 영역 내의 제 1 동공 부분 영역을 통과하고 회절 격자를 거쳐 생성된 -1차 회절빔이 제 2 동공 부분 영역을 통과하도록 광축에 대해 경사진 빔을 제 1 면의 소정 위치에 입사시키는 조명 광학계와, 제 1 동공 부분 영역 및 피검광학계를 거친 +1차 회절빔의 강도와, 제 2 동공 부분 영역 및 피검광학계를 거친 -1차 회절빔의 강도를 측정하는 측정 유닛을 구비하며, 상기 측정 장치는, +1차 회절빔의 강도의 측정값 및 -1차 회절빔의 강도의 측정값에 근거하여, 제 1 동공 부분 영역에서의 동공 투과율과 제 2 동공 부분 영역에서의 동공 투과율의 비를 결정한다.

Description

동공 투과율 분포의 측정 방법 및 측정 장치, 노광 방법 및 노광 장치, 및 디바이스 제조 방법{MEASURING METHOD AND MEASURING APPARATUS OF PUPIL TRANSMITTANCE DISTRIBUTION, EXPOSURE METHOD AND EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD}
본 발명은 동공 투과율 분포의 측정 방법 및 측정 장치, 노광 방법 및 노광 장치, 및 디바이스 제조 방법에 관한 것이다. 더 상세하게는, 본 발명은, 예컨대 반도체 소자나 액정 표시 소자와 같은 디바이스를 포토리소그래피 프로세스로 제조할 때에 사용되는 노광 장치에 탑재된 투영 광학계의 동공 투과율 분포의 측정에 관한 것이다.
반도체 소자 등을 제조하기 위한 포토리소그래피 프로세스는, 마스크(또는 레티클)의 패턴 이미지를, 투영 광학계를 거쳐서, 감광성 기판(포토레지스트가 도포된 웨이퍼 또는 유리 플레이트 등) 상에 투영하는 투영 노광법을 구현하는 노광 장치를 이용하여 행해진다. 최근, 투영 광학계를 거쳐서 형성되는 패턴 이미지의 콘트라스트의 향상을 도모하기 위해서, 노광 장치에 탑재된 상태로 투영 광학계의 동공 투과율 분포를 수시 측정하는 방법이 제안되어 있다(예를 들면, 비특허문헌 1 참조).
비특허문헌 1에 개시된 측정 방법에서는, 피검광학계인 투영 광학계의 물체면(object plane)에 설치된 명암형 회절 격자(bright/dark type diffraction grating)의 소정 위치에 얇은 평행광을 수직 입사시키고, 회절 격자를 거쳐서 생성된 0차 광 및 ±1차 회절빔을 투영 광학계의 이미지면의 근방에서 검출한다. 그리고, 0차 광의 강도의 검출 결과 및 ±1차 회절빔의 강도의 검출 결과에 근거하여, 투영 광학계의 동공 투과율 분포를 측정한다. "광학계의 동공 투과율 분포"란, 동공의 유효 영역 내의 임의의 위치를 통과하는 광을 고려하여, 해당 광의 입사 전의 강도와 사출 후의 강도의 비를 정함으로써, 동공 위치에 투과율 필터가 배치된 이상적인 광학 상태와 실제의 광학계 상태간에 서로 일치하는 하에서, 그 투과율 필터의 투과율 분포를 의미한다.
특허문헌 1: 유럽 특허 공개 제779530호 공보(일본 특허 공표 평성10-503300호 공보에 대응) 특허문헌 2: 미국 특허 제6,900,915호 공보(일본 특허 공개 제 2004-78136호 공보에 대응) 특허문헌 3: 미국 특허 제7,095,546호 공보(일본 특허 공표 제 2006-524349호 공보에 대응) 특허문헌 4: 일본 특허 공개 제 2006-113437호 공보 특허문헌 5: 미국 특허 공개 제 2008/0030707A1호 공보 특허문헌 6: 미국 특허 공개 제 2008/0252876A1호 공보(일본 특허 공표 제 2008-502126호 공보에 대응) 특허문헌 7: 미국 특허 공개 제 2002/0001088A1호 공보 특허문헌 8: 미국 특허 공개 제 2005/0078287A1호 공보 특허문헌 9: 일본 특허 공개 제 2004-304135호 공보 특허문헌 10: 미국 특허 공개 제 2007/0296936호 공보(국제 특허 공개 WO2006/080285호 팜플렛에 대응) 특허문헌 11: 국제 공개 WO99/49504호 팜플렛 특허문헌 12: 일본 특허 공개 평성6-124873호 공보 특허문헌 13: 일본 특허 공개 평성10-303114호 공보 특허문헌 14: 미국 특허 공개 제 2006/0170901호 공보 특허문헌 15: 미국 특허 공개 제 2007/0146676호 공보
비특허문헌 1: Kazuya Sato et al., "Measurement of transmittance variation of projection lenses depending on the light paths using a grating-pinhole mask", Proceedings of SPIE Vol.4346 379-386, 2001
발명자 등은, 종래의 동공 투과율 분포의 측정 방법에 대해 검토한 결과, 이하와 같은 문제를 발견하였다. 즉, 비특허문헌 1에 개시된 측정 방법에서는, 명암형 회절 격자를 거쳐 생성되는 회절빔 중 ±1차 회절광 성분의 강도가 0차 광 성분에 비하여 현저하고 작아져, 이에 따라 매우 넓은 다이나믹 레인지를 이용하여 각 성분을 검출할 필요가 있어, 나아가서는 동공 투과율 분포의 고정밀의 측정이 곤란하였다. 또한, 동공 유효 영역의 전체에 걸쳐 분포하는 복수의 위치를 통과하는 ±1차 회절광 성분을 검출하기 위해서는, 명암 패턴의 피치가 서로 다른 복수의 회절 격자를 준비하고, 피치 방향을 변화시키면서 각 회절 격자를 이용한 측정을 반복할 필요가 있어, 측정에 걸리는 부하가 비교적 높아 신속한 측정이 곤란하다.
본 발명은, 상술한 문제를 해결하기 위해 이루어진 것으로, 피검광학계의 동공 투과율 분포를 고정밀도로 또한 신속하게, 비교적 낮은 부하로 측정할 수 있는 측정 방법 및 측정 장치를 제공하는 것을 목적으로 한다. 본 발명의 다른 목적은, 탑재된 투영 광학계의 동공 투과율 분포를 고정밀도로 또한 신속하게 측정하는 측정 방법 및 측정 장치를 이용하여, 콘트라스트가 높은 패턴 이미지를 형성할 수 있는 노광 장치, 노광 방법, 및 디바이스 제조 방법을 제공하는 것이다.
상기 문제를 해결하기 위해서, 본 발명의 일 실시 형태는 피검광학계의 동공 투과율 분포를 측정하는 측정 방법을 제공한다. 상기 측정 방법의 일 형태는 빔 공급 단계, 빔 회절 단계, 영역 통과 단계, 강도 측정 단계, 및 투과율비 산출 단계를 구비한다. 빔 공급 단계에서는, 피검광학계의 동공과 광학적으로 푸리에 변환의 관계에 있는 제 1 면의 소정 위치에 제 1 빔을 공급한다. 빔 회절 단계에서는, 제 1 면의 제 1 위상 영역을 통과하는 광에 제 1 위상값을 부여함과 아울러, 제 1 위상 영역에 인접하는 제 2 위상 영역을 거친 빛에 제 1 위상값과는 다른 제 2 위상값을 부여함으로써, 제 1 빔을 회절시킨다. 영역 통과 단계에서는, 제 1 빔을 회절시키는 것을 통해 생성된 제 1 빔의 +1차 회절빔을, 동공의 유효 영역 내의 제 1 동공 부분 영역을 통과하고, 또한, 제 1 빔을 회절시키는 것을 통해 생성된 제 1 빔의 -1차 회절빔을, 유효 영역 내에서 제 1 동공 부분 영역으로부터 떨어진 제 2 동공 부분 영역을 통과시킨다. 강도 측정 단계에서는, 제 1 동공 부분 영역 및 피검광학계를 거친 +1차 회절빔의 강도와 제 2 동공 부분 영역 및 피검광학계를 거친 -1차 회절빔의 강도가 측정된다. 투과율비 산출 단계에서는, 제 1 빔의 +1차 회절빔의 강도의 측정값 및 제 1 빔의 -1차 회절빔의 강도의 측정값에 근거하여, 제 1 동공 부분 영역에서의 동공 투과율과 제 2 동공 부분 영역에서의 동공 투과율의 비율이 산출된다.
본 발명의 일 실시 형태가 제공하는 측정 방법의 다른 형태도 빔 공급 단계, 빔 회절 단계, 영역 통과 단계, 강도 측정 단계, 및 투과율비 산출 단계를 구비한다. 빔 공급 단계에서는, 피검광학계의 동공과 광학적으로 푸리에 변환의 관계에 있는 제 1 면의 소정 위치에, 피검광학계의 광축에 대해 경사진 제 1 빔이 공급된다. 빔 회절 단계에서는, 제 1 빔이 회절된다. 영역 통과 단계에서는, 제 1 빔을 회절 시키는 것을 통해 생성된 제 1 빔의 +1차 회절빔이 상기 동공의 유효 영역 내의 제 1 동공 부분 영역을 통과하고, 또한, 제 1 빔을 회절시키는 것을 통해 생성된 -1차 회절빔이 유효 영역 내에서 제 1 동공 부분 영역으로부터 떨어진 제 2 동공 부분 영역을 통과한다. 강도 측정 단계에서는, 제 1 동공 부분 영역 및 피검광학계를 거친 제 1 빔의 +1차 회절빔의 강도와, 제 2 동공 부분 영역 및 피검광학계를 거친 제 1 빔의 -1차 회절빔의 강도가 측정된다. 투과율비 산출 단계에서는, 제 1 빔의 +1차 회절빔의 강도의 측정값 및 제 1 빔의 -1차 회절빔의 강도의 측정값에 근거하여, 제 1 동공 부분 영역에서의 동공 투과율과 제 2 동공 부분 영역에서의 동공 투과율의 비가 산출된다.
본 발명의 일 실시 형태는, 전술한 형태 중 어느 하나의 측정 방법을 처리 유닛에 실행시키는 프로그램을 제공한다. 본 발명의 일 실시 형태는 이러한 프로그램을 저장하는 기록 매체를 제공한다.
본 발명의 일 실시 형태는 노광 장치의 제어 방법을 제공한다. 이러한 노광 장치의 제어 방법은, 소정의 패턴을 조명하는 조명 광학계와, 상기 소정의 패턴의 이미지를 감광성 기판 상에 형성하는 투영 광학계를 구비한 노광 장치를 제어한다. 구체적으로, 상기 제어 방법은, 상기 형태 중 어느 하나의 측정 방법을 이용하여 측정된 투영 광학계의 동공 투과율 분포의 측정 결과에 근거하여, 소정의 패턴을 조명하는 조명 조건을 변경한다.
본 발명의 일 실시 형태는 노광 방법을 제공한다. 상기 노광 방법의 일 형태는, 소정의 패턴을 조명하고, 투영 광학계를 이용하여 소정의 패턴을 감광성 기판 상에 노광하는 것을 구비한다. 구체적으로, 상기 노광 방법의 전술한 형태는, 전술한 형태 중 어느 하나의 측정 방법을 이용하여 측정된 상기 투영 광학계의 동공 투과율 분포의 측정 결과에 근거하여, 소정의 패턴을 조명하는 조명 조건을 변경한다.
본 발명의 일 실시 형태가 제공하는 노광 방법의 다른 형태도 소정의 패턴을 조명하고, 투영 광학계를 이용하여 소정의 패턴을 감광성 기판에 노광하는 것을 구비한다. 구체적으로, 상기 노광 방법의 다른 형태는 전술한 형태 중 어느 하나의 측정 방법을 이용하여 측정된 투영 광학계의 동공 투과율 분포의 측정 결과에 근거해서 작성된 패턴을 이용한다.
본 발명의 일 실시 형태는 전술한 형태 중 어느 하나의 노광 방법을 이용한 디바이스 제조 방법을 제공한다. 상기 디바이스 제조 방법은 노광 단계와, 마스크층 형성 단계와, 프로세싱 단계를 구비한다. 노광 단계에서는, 전술한 형태 중 어느 하나의 노광 방법을 이용하여, 소정의 패턴을 감광성 기판에 전사하는 노광이 행해진다. 마스크층 형성 단계에서는, 소정의 패턴이 전사된 감광성 기판이 현상되고, 소정의 패턴에 대응하는 형상의 마스크층이 감광성 기판의 표면에 형성된다. 프로세싱 단계에서는, 마스크층을 거쳐서 감광성 기판의 표면이 처리된다.
본 발명의 실시 형태는, 피검광학계의 동공 투과율 분포를 측정하는 측정 장치를 제공한다. 상기 측정 장치는 회절 격자와, 조명 광학계와, 측정 유닛을 구비한다. 회절 격자는 피검광학계의 동공과 광학적으로 푸리에 변환의 관계에 있는 제 1 면에 탑재 가능하고, 도달하는 광을 회절시키는 광학 소자이다. 조명 광학계는, 제 1 면에 설치된 회절 격자를 거쳐 생성된 상기 광의 +1차 회절빔이 동공의 유효 영역 내의 제 1 동공 부분 영역을 통과하고, 또한, 회절 격자를 거쳐 생성된 상기 광의 -1차 회절빔이 상기 유효 영역 내에서 제 1 동공 부분 영역으로부터 떨어진 제 2 동공 부분 영역을 통과하도록, 피검광학계의 광축에 대해서 경사진 빔을 제 1 면의 소정 위치에 입사시킨다. 측정 유닛은, 제 1 동공 부분 영역 및 피검광학계를 거친 상기 광의 +1차 회절빔의 강도와, 제 2 동공 부분 영역 및 피검광학계를 거친 상기 광의 -1차 회절빔의 강도를 측정한다. 특히, 상기 측정 장치는, 상기 광의 +1차 회절빔의 강도의 측정값 및 상기 광의 -1차 회절빔의 강도의 측정값에 근거하여, 제 1 동공 부분 영역에서의 동공 투과율과 제 2 동공 부분 영역에서의 동공 투과율의 비를 정한다.
본 발명의 일 실시 형태는, 소정의 패턴을 조명하는 조명 광학계와, 소정의 패턴의 이미지를 감광성 기판 상에 형성하는 투영 광학계를 구비한 노광 장치를 제공한다. 상기 노광 장치의 일 형태는, 전술한 형태 중 어느 하나에 따른 측정 방법에 의해 측정된 투영 광학계의 동공 투과율 분포의 측정 결과에 근거하여, 소정의 패턴의 조명 조건을 스위칭하기 위해서 조명 광학계를 제어하는 제어 유닛을 구비한다.
본 발명의 일 실시 형태가 제공하는 노광 장치의 다른 형태도 소정의 패턴을 조명하는 조명 광학계와, 소정의 패턴의 이미지를 감광성 기판 상에 형성하는 투영 광학계를 구비한다. 상기 노광 장치의 다른 형태는 투영 광학계의 동공 투과율 분포를 측정하기 위한 상기 측정 장치를 구비한다.
본 발명의 일 실시 형태는 전술한 형태 중 어느 하나에 따른 노광 장치를 이용한 디바이스 제조 방법을 제공한다. 상기 디바이스 제조 방법은 노광 단계와, 마스크층 형성 단계와, 프로세싱 단계를 구비한다. 노광 단계에서는, 전술한 형태 중 어느 하나에 따른 노광 장치를 이용하여, 소정의 패턴이 감광성 기판에 전사하는 노광을 행한다. 마스크층 형성 단계에서는, 소정의 패턴이 전사된 감광성 기판을 현상하여, 소정의 패턴에 대응하는 형상의 마스크층이 감광성 기판의 표면에 형성된다. 프로세싱 단계에서는, 마스크층을 거쳐서 감광성 기판의 표면이 처리된다.
본 발명의 일 실시 형태는, 전술한 측정 방법 중 어느 하나를 실시할 때에 이용되는 측정용 레티클을 제공한다. 상기 측정용 레티클에는 제 1 위상 영역 및 제 2 위상 영역이 그 표면 상에 형성되어 있다.
본 발명의 일 실시 형태는 다른 형태의 측정 방법을 실시할 때에 이용되는 개구 조리개(aperture stop)를 제공한다. 상기 개구 조리개는, 제 1 빔을 공급하는 조명 광학계의 광로 중에서, 동공과 광학적으로 공액인 제 1 공액면에서 조명 광학계의 광축으로부터 떨어진 위치에 국한된(localized) 광 강도 분포를 형성하기 위해서, 조명 광학계의 광축으로부터 떨어진 위치에 형성된 개구부(aperture)를 구비한다.
본 발명의 일 실시 형태는 상기 다른 형태의 측정 방법을 실시할 때에 이용되는 공간 광변조기를 제공한다. 상기 공간 변조기는, 제 1 빔을 공급하는 조명 광학계의 광로 중에서, 동공과 광학적으로 공액인 제 1 공액면에서 조명 광학계의 광축으로부터 떨어진 위치에 국한된 광 강도 분포를 형성하기 위해서, 제 1 공액면으로 향하는 빔에 각도 분포를 부여한다.
본 발명의 일 실시 형태는 상기 다른 형태의 측정 방법을 실시할 때에 이용되는 공간 광변조기의 제어 방법을 제공한다. 상기 공간 변조기의 제어 방법은, 제 1 빔을 공급하는 조명 광학계의 광로 중에서, 동공과 광학적으로 공액인 제 1 공액면에서 조명 광학계의 광축으로부터 떨어진 위치에 국한된 광 강도 분포를 형성하기 위해서, 제 1 공액면으로 향하는 빔에 각도 분포를 부여하도록, 공간 변조기를 제어한다.
본 발명의 일 실시 형태는 전술한 공간 변조기의 제어 방법을 처리 유닛에 실행시키는 프로그램을 제공한다. 본 발명의 일 실시 형태는 이러한 프로그램을 저장하는 기록 매체를 제공한다.
본 발명에 따른 각 실시 형태는 이하의 상세한 설명 및 첨부 도면에 의해 더 이해하기 쉬워진다. 이들 실시 형태는 단지 예시를 위해서 나타낸 것이며, 본 발명을 한정하는 것으로 생각해서는 안된다.
본 발명의 새로운 응용 범위는 이하의 상세한 설명으로부터 명확해진다. 그러나, 상세한 설명 및 특정의 예는 본 발명의 바람직한 실시 형태를 나타내는 것이지만, 예시를 위해서 제공되는 것이며, 본 발명의 범위에서의 여러 변형 및 개량은 본 상세한 설명으로부터 당업자에게는 자명한 것은 명백하다.
본 발명의 일 실시 형태에 따른 측정 장치에서는, 피검광학계의 동공과 광학적으로 푸리에 변환의 관계에 있는 물체면에 탑재된 위상 회절 격자를 통해 생성되는 회절빔 중 측정 타겟으로서의 ±1차 회절광 성분의 강도가 서로 동일하므로, 이에 따라 측정 유닛에서는 비교적 좁은 다이나믹 레인지를 이용하여 각 회절광 성분의 고정밀도의 검출이 가능하여, 피검광학계의 동공 투과율 분포를 고정밀도로 측정할 수 있다. 피검광학계의 물체면에 고정적으로 탑재된 위상 회절 격자에 입사하는 측정빔의 입사 각도를 변화시키는 것만으로, 각 회절광 성분이 피검광학계의 동공을 통과하는 영역을 변화시킬 수 있기 때문에, 피검광학계의 동공 투과율 분포를 비교적 낮은 부하로 신속하게 측정할 수 있다.
도 1은 제 1 실시 형태에 따른 동공 투과율 분포의 측정 장치의 구성을 개략적으로 나타내는 도면,
도 2는 도 1의 위상형 회절 격자의 구성을 개략적으로 나타내는 도면,
도 3은 도 1의 조명 광학계의 내부 구성을 개략적으로 나타내는 도면,
도 4는 도 1의 측정 유닛의 내부 구성을 개략적으로 나타내는 도면,
도 5는 측정 유닛의 대물 광학계의 입사 평면에 교정용 위상 회절 격자 등이 형성되어 있는 상태를 나타내는 도면,
도 6은 개구 조리개가 조명 동공의 위치에 배치된 상태를 나타내는 도면,
도 7은 회절 격자를 통해 생성된 ±1차 회절빔이 결상 광학계의 동공을 통과하는 1쌍의 동공 부분 영역을 나타내는 도면,
도 8은 1쌍의 빔을 회절 격자 상의 소정 위치에 동시에 기울여 입사시켜, 제 1의 ±1차 회절빔과 제 2의 ±1차 회절빔을 생성하는 상태를 나타내는 도면,
도 9는 측정 유닛의 대물 광학계의 동공 투과율 분포에 기인하는 측정 결과의 오차를 검출하는 기술을 설명하는 도면,
도 10은 PDI/LDI형의 측정 유닛의 내부 구성을 개략적으로 나타내는 도면,
도 11은 도 10의 측정 유닛의 광투과성 기판의 입사 평면에 교정용 위상 회절 격자 등이 형성되어 있는 상태를 나타내는 도면,
도 12는 시어링 간섭계(shearing interferometer)를 이용하는 측정 유닛의 주요 구성을 개략적으로 나타내는 도면,
도 13은 도 12의 측정 유닛의 광투과성 기판의 입사 평면에 교정용 위상 회절 격자 등이 형성되어 있는 상태를 나타내는 도면,
도 14는 본 발명의 제 2 실시 형태에 따른 노광 장치의 구성을 개략적으로 나타내는 도면,
도 15는 도 14의 조명 광학계의 내부 구성을 개략적으로 나타내는 도면,
도 16은 제 2 실시 형태에서의 투영 광학계의 동공 투과율 분포의 측정 상태를 나타내는 도면,
도 17은 측정용 개구 조리개가 조명 동공의 위치에 배치된 상태를 나타내는 도면,
도 18은 도 14의 측정용 레티클에 형성된 위상 격자를 개략적으로 나타내는 도면,
도 19는 측정용 개구 조리개의 하나의 개구부로부터 측정용 레티클을 거쳐서 생성된 ±1차 회절빔이 투영 광학계의 동공을 통과하는 4개의 동공 부분 영역을 나타내는 도면,
도 20은 측정용 개구 조리개의 9개의 개구부로부터 측정용 레티클을 거쳐서 생성된 ±1차 회절빔이 투영 광학계의 동공을 통과하는 36개의 동공 부분 영역을 나타내는 도면,
도 21은 측정용 개구 조리개의 하나의 개구부로부터 측정용 레티클을 거쳐서 생성된 ±1차 회절빔 및 ±3차 회절빔이 투영 광학계의 동공을 통과하는 16개의 동공 부분 영역을 나타내는 도면,
도 22는 측정용 개구 조리개의 인접하는 2개의 개구부로부터 측정용 레티클을 거쳐서 생성된 ±1차 회절빔 및 ±3차 회절빔이 투영 광학계의 동공을 통과하는 32개의 동공 부분 영역을 나타내는 도면,
도 23은 투영 광학계의 동공 투과율 분포의 상대비 정보(relative ratio information)를 보완하는 기술을 설명하는 도면,
도 24는 반도체 디바이스의 제조 단계를 나타내는 흐름도,
도 25는 액정 표시 소자와 같은 액정 디바이스의 제조 단계를 나타내는 흐름도이다.
본 발명의 실시 형태들을 첨부 도면에 근거하여 설명한다. 도 1은 제 1 실시 형태에 따른 동공 투과율 분포의 측정 장치의 구성을 개략적으로 나타내는 도면이다. 특히, 제 1 실시 형태는 피검광학계로서의 결상 광학계(20)의 동공 투과율 분포(pupil transmittance distribution)를 측정하는 측정 장치(10)에 적용된다. 도 1에서는, 결상 광학계(20)의 이미지면(image plane)(20i)의 법선 방향으로 z축을, 이미지면(20i)에 대해 도 1의 지면에 평행한 방향으로 y축을, 이미지면(20i)에 대해 도 1의 지면에 수직인 방향으로 x축을 설정하고 있다.
제 1 실시 형태의 측정 장치(10)는, 결상 광학계(20)의 물체면(object plane)(20o)에 탑재 가능한 위상형의 회절 격자(11)와, 물체면(20o)의 소정 위치(및, 이에 따라 회절 격자(11)의 소정 위치)에 측정빔을 입사시키는 조명 광학계(12)와, 결상 광학계(20)를 거친 측정빔의 강도를 측정하는 측정 유닛(13)을 구비하고 있다. 회절 격자(11)는, 도 2에 나타낸 바와 같이, 투과광에 대해 제 1 위상값을 부여하는 제 1 위상 영역(11a)과, 투과광에 대해 제 1 위상값과 π만큼 다른 제 2 위상값을 부여하는 제 2 위상 영역(11b)이 한 방향을 따라 교대로 배치된 형태를 가진다.
이하의 설명에서는, 회절 격자(11)는, 위상 영역(11a, 11b)의 피치 방향(pitch direction)이 y방향과 일치하고, 또한 그 회절 광학면이 물체면(20o)과 일치하도록 탑재되는 것으로 가정한다. 또한, 결상 광학계(20)와 조명 광학계(12)는 그 광축 AX1 및 AX2(도 3 참조)가 z방향으로 연장되는 하나의 직선을 따라 정렬되도록, 공동축으로(coaxially) 배치되어 있는 것으로 가정한다. 조명 광학계(12)는, 도 3에 나타내는 바와 같이, 광원(21)으로부터의 광에 근거하여, 조명 동공(12p)에 소정의 광 강도 분포를 형성하는 공간 광변조기(12a) 및 제 1 릴레이 광학계(12b)와, 조명 동공(12p)에서 조명 광로에 대해 삽입 또는 분리 가능한 개구 조리개(12c)와, 개구 조리개(12c)를 거친 광을 결상 광학계(20)의 물체면(20o)에 유도하는 제 2 릴레이 광학계(20d)로 이루어져 있다.
광원(21)은, 예컨대 결상 광학계(20)에서 사용될 광을 공급한다. 여기서 적용 가능한 공간 광변조기(12a)는 회절 광학 소자, 미러 어레이 등이다. 미러 어레이는, 소정면 내에 배열되어 개별적으로 제어 가능한 복수의 미러 요소를 갖는 공간 광변조기이며, 그 구성 및 작용은, 예를 들면 상기 특허문헌 1~4에 개시되어 있다. 조명 동공(12p)은, 결상 광학계(20)의 물체면(20o)과 광학적으로 푸리에 변환의 관계에 있고, 또한 결상 광학계(20)의 동공(20p)과 광학적으로 공액인 위치에 있다. 여기서는, 상기 특허문헌 1~4의 개시를 참조로서 원용한다.
측정 유닛(13)은, 도 4에 나타내는 바와 같이, 결상 광학계(20)의 이미지면(20i)과 광학적으로 푸리에 변환의 관계에 있는 면(13p)을 형성하는 대물 광학계(13a)와, 면(13p)을 따라 배치된 검출면(13ba)을 갖는 광전 검출기(13b)로 이루어지며, xy평면을 따라서 일체적으로 이동 가능하게 구성되어 있다. 즉, 대물 광학계(13a)는 결상 광학계(20)의 동공(20p)과 광학적으로 공액인 면(13p)과 결상 광학계(20) 사이의 광로 중에 배치되고, 광전 검출기(13b)의 검출면(13ba)은 대물 광학계(13a)의 동공면(13p)을 따라 배치되어 있다. 여기서 적용 가능한 광전 검출기(13b)는, 예를 들면 CCD 이미지 센서 또는 CMOS 이미지 센서와 같은 고체 촬상 소자(solid-state image sensing device), 촬상관(image pickup tube) 등이다.
결상 광학계(13a)에서 대물 광학계(13a)에 가장 근접한 위치에는, 결상 광학계(20)의 이미지면(20i)에 따른 평면을 갖는 평볼록 렌즈(13aa)가 배치되어 있다. 평볼록 렌즈(13aa)의 입사 평면(13i) 상에는, 도 5에 나타내는 바와 같이, 예를 들면 크롬 또는 산화크로뮴으로 형성된 차광부(13e)와, 측정용 개구부(13f)와, 파면 수차 측정 결과를 교정하기 위한 교정용 핀홀(13g)과, 동공 투과율 분포 측정 결과를 교정하기 위한 교정용 위상 회절 격자(13h)가 형성되어 있다. 측정 유닛(13)의 구성에서 교정용 위상 회절 격자(13h)를 제외한 부분은, 예컨대 상기 특허문헌 5에 개시되어 있다. 여기서는 상기 특허문헌 5의 개시를 참조로서 원용한다. 측정 유닛(13)은, 메모리 MR과 같은 기록 매체를 갖는 처리 유닛(컴퓨터)이더라도 좋고, 이 메모리 MR에는, 본 실시 형태에 따른 측정 방법, 노광 장치와 공간 광변조기(12a)의 제어 방법을 상기 처리 유닛에 실행시키는 프로그램이 저장된다.
측정 장치(10)의 작용의 이해를 용이하게 하기 위해서, 가장 단순한 예로서 도 6에 나타내는 바와 같이 원형 형상의 단일의 개구부(31)를 갖는 개구 조리개(12c)를 이용하는 경우에 대해 생각한다. 도 6에 있어서, 광축 AX2를 중심으로 한 파선으로 나타내는 원은 조명 동공(12p)의 유효 영역을 나타내고 있다. 개구 조리개(12c)는 개구부(31)의 중심이 광축 AX2로부터 -y방향측에 떨어져 위치하도록 탑재되고, 개구 조리개(12c)에는 개구부(31)를 포함한 소요 영역에 빔이 입사된다. 이 경우, 개구 조리개(12c)는, 결상 광학계(20)의 동공(20p)과 광학적으로 공액인 조명 동공(12p)에서 광축 AX2로부터 떨어져 위치에 국한된 광 강도 분포를 갖는 원형 국부 빔을 형성하는 국부 빔 형성 유닛으로서 기능한다.
개구 조리개(12c)의 개구부(31)를 거친 빔은 제 2 릴레이 광학계(12d)를 거쳐서, 회절 격자(11)의 소정 위치(나아가서는 결상 광학계(20)의 물체면(20o)의 소정 위치)에, 결상 광학계(20)의 광축 AX1에 대해(나아가서는 조명 광학계(12)의 광축 AX2에 대해) 경사진 빔으로서 입사된다. 회절 격자(11)로의 경사빔의 입사 위치는, 예를 들면 복수의 렌즈로 구성되는 제 2 릴레이 광학계(12d)의 광로 중에서 물체면(20o)과 광학적으로 공액인 위치 또는 그 근방에 위치한 시야 조리개(field stop)(도시하지 않음), 또는 물체면(20o)의 바로 앞의 위치에 배치된 시야 조리개(도시하지 않음)에 의해 가변적으로 결정된다.
설명을 간단히 하기 위해서, 조명 광학계(12)의 조명 동공(12p)과 결상 광학계(20)의 동공(20p)은 x방향 및 y방향에 대해 조명 동공(12p)의 정립상(erect image)을 동공(20p)에 형성하는 공액 관계에 있는 것으로 가정한다. 도 1 및 도 7을 참조하면, 회절 격자(11)에 경사져 입사되어 생성된 회절광 중, +1차 회절빔(40a)(혹은 40b)은 결상 광학계(20)의 동공(20p)의 유효 영역(20pe) 내의 동공 부분 영역(41a)을 통과하고, -1차 회절빔(40b)(혹은 40a)은 동공 유효 영역(20pe) 내에서 동공 부분 영역(41a)으로부터 떨어진 동공 부분 영역(41b)을 통과하여, 결상 광학계(20)로부터 각각 사출된다. 동공 부분 영역(41a 및 41b)은 개구부(31)와 동일하게 원형 형상을 가지며, 서로 동일한 크기를 가진다.
동공 부분 영역(41a 및 41b)은 동공 유효 영역(20pe)에서 광축 AX1을 통과하여 y방향으로 연장되는 직선상의 1점(41c)에 대해 대칭인 위치에 있다. 여기서, 점(41c)은 회절 격자(11)를 거쳐서 0차 빔(도 1에서 파선으로 나타냄)이 생성되는 경우, 그 0차 빔이 동공(20p)을 통과하는 영역의 중심이다. 즉, 동공 부분 영역(41a 및 41b)의 중심 위치(41c)는 개구 조리개(12c)의 개구부(31)의 위치에 의존한다. 동공 부분 영역(41a 및 41b)의 크기는 개구 조리개(12c)의 개구부(31)의 크기에 의존한다. 동공 부분 영역(41a 및 41b)의 중심간 거리는 회절 격자(11)에서의 위상 영역(11a, 11b)의 피치에 의존한다.
도 1, 도 3 및 도 5를 참조하면, 동공 부분 영역(41a) 및 결상 광학계(20)를 거친 +1차 회절빔(40a), 및 동공 부분 영역(41b) 및 결상 광학계(20)를 거친 -1차 회절빔(40b)은, 측정 유닛(13)의 측정용 개구부(13f)를 거쳐서, 대물 광학계(13a)에 입사된다. 대물 광학계(13a)를 거친 1차 회절빔(40a, 40b)은 대물 광학계(13a)의 동공면(13p)에 배치된 검출면(13ba)에서 광전 검출기(13b)에 의해 검출되게 된다. 도면의 명료화를 위해서, 도 1에서는, 결상 광학계(20)의 이미지면(20i)으로부터 아래쪽에 간격을 두고 측정 유닛(13)을 배치한 상태를 나타내고 있다.
설명을 간략화하기 위해서, 회절 격자(11)를 거쳐 생성된 +1차 회절빔(40a)의 강도와 -1차 회절빔(40b)의 강도가 서로 동일하고 또한 결상 광학계(20)의 이미지면(20i)에서의 +1차 회절빔(40a)과 -1차 회절빔(40b)의 강도비가, 측정 유닛(13)의 검출면(13ba)에서 검출되는 +1차 회절빔(40a)과 -1차 회절빔(40b)의 강도비와 일치하는 것으로 가정한다. 환언하면, 측정 유닛(13)은, 대물 광학계(13a)의 동공 투과율 분포에 영향 등을 받지 않고, 결상 광학계(20)의 이미지면(20i)에서의 +1차 회절빔(40a)과 -1차 회절빔(40b)의 강도비를 정확히 측정할 수 있는 것으로 가정한다.
이 경우, 측정 장치(10)에서는, +1차 회절빔(40a)의 강도의 측정값 및 -1차 회절빔(40b)의 강도의 측정값에 근거하여, 동공 부분 영역(41a)에서의 동공 투과율과 동공 부분 영역(41b)에서의 동공 투과율의 비를 산출하여, 나아가서는 동공 부분 영역(41a 및 41b)에 대해 결상 광학계(20)의 동공 투과율 분포를 측정한다. 측정 장치(10)에 의해 측정되어야 할 동공 투과율 분포는, 동공 유효 영역(20pe)에서의 동공 투과율의 절대값의 분포가 아니라, 동공 투과율 분포의 상대비 정보, 예를 들면 동공 유효 영역(20pe)의 중심(광축 AX1의 위치)에서의 동공 투과율을 규격화한 분포이다.
측정 장치(10)에서는, 서로 간격을 둔 1쌍의 동공 부분 영역(41a 및 41b)에 대해 결상 광학계(20)의 동공 투과율 분포를 측정할 때에는, 동공 부분 영역(41a)의 중심과 동공 부분 영역(41b)의 중심을 연결하는 선분의 중점(41c)에 광학적으로 대응하는 위치에 개구부(31)가 배치되도록 구성하고 있다. 이것은, 동공 유효 영역(20pe)에서 측정해야 할 1쌍의 동공 부분 영역에 대응하는 위치에 개구부(31)가 배치되도록 개구 조리개(12c)를 xy평면을 따라 스텝 이동시키면서 측정 유닛(13)에 의한 측정을 반복하는 것에 의해, 임의의 1쌍의 동공 부분 영역에서의 동공 투과율의 비의 집합을 얻을 수 있어, 이에 따라 소망한 분포에 따른 소망수의 동공 부분 영역에 대해 결상 광학계(20)의 동공 투과율 분포를 측정할 수 있는 것을 의미하고 있다.
구체적으로, 개구 조리개(12c)를 xy평면을 따라 스텝 이동시키면서, 나아가서는 회절 격자(11)에 입사하는 측정광의 입사 각도를 변화시키면서, 임의의 1쌍의 동공 부분 영역에서의 동공 투과율의 비를 연속하여 정하는 것에 의해, 동공 유효 영역(20pe)의 전체에 걸쳐 분포하는 소망수의 동공 부분 영역간의 동공 투과율의 상대 정보가 얻어진다. 그리고, 동공 유효 영역(20pe)에서의 이러한 이산적인 동공 투과율의 상대값의 분포를, 예를 들면 제르니케 피팅 프로세스(Zernike fitting process)하는 것에 의해, 결상 광학계(20)의 2차원적인 동공 투과율 분포가 함수 분포로서 직접적으로 얻어진다. 이산적인 측정값의 분포를 제르니케 피팅 프로세스에 의한 함수 분포를 얻는 기술은, 파면 수차를 대상으로 한 통상의 제르니케 피팅 프로세스를 참조할 수 있어, 선형 최소 이승법(linear least-squares method)으로 산출할 수 있다.
측정 장치(10)에서는, 회절 격자(11)는 회절 격자의 제조 오차에 기인한 0차 광, ±3차 회절빔, ±5차 회절광 등도 생성한다. 이 경우, ±3차 회절빔, ±5차 회절광 등은, 측정 대상으로부터 제외함과 아울러, 결상 광학계(20)의 동공(20p)에 대해 측정 대상인 ±1차 회절빔과 서로 겹치지 않게 설정해야 한다. 그러나, 현실적으로는, ±5차 회절광(및 그 이상의 고차 회절광)의 강도는 측정 대상인 ±1차 회절빔의 강도보다 무시할 수 있을 정도로 작다. 0차 광과 ±3차 회절광이 피검광학계의 동공에서 ±1차 회절빔과 서로 겹치는 것을 회피하기 위한 설정 기술에 대해서는, 제 2 실시 형태에서 구체적으로 설명한다.
상기와 같이, 측정 장치(10)에서는, 회절 격자(11)는, 피검광학계로서의 결상 광학계(20)의 동공(20p)과 광학적으로 푸리에 변환의 관계에 있는 물체면(20o)에 탑재될 수 있다. 조명 광학계(12)는, 물체면(20o)의 회절 격자(11)를 거쳐 생성된 +1차 회절빔(41a)이 동공 유효 영역(20pe) 내의 동공 부분 영역(41a)을 통과하고, 또한 회절 격자(11)를 거쳐 생성된 -1차 회절빔(40b)이 동공 유효 영역(20pe) 내에서 동공 부분 영역(41a)으로부터 떨어진 동공 부분 영역(41b)을 통과하도록, 결상 광학계(20)의 광축 AX1에 대해 경사진 빔(그러나, 수직 입사하는 빔을 포함하는 것을 배제하지 않음)을 물체면(20o)의 소정 위치에 입사시킨다. 측정 유닛(13)은, 동공 부분 영역(41a) 및 결상 광학계(20)를 거친 +1차 회절빔(40a)의 강도 및 동공 부분 영역(41b) 및 결상 광학계(20)를 거친 -1차 회절빔(40b)의 강도를 측정한다.
제 1 실시 형태의 측정 장치(10)에서는, 2종류의 위상 영역(11a, 11b)이 교대로 배치된 위상 회절 격자(11)를 채용하고 있기 때문에, 회절 격자(11)를 거쳐 생성되는 회절빔 중 측정 대상으로서의 ±1차 회절광 성분의 강도는 서로 동일하다. 그 결과, 측정 유닛(13)의 광전 검출기(13b)에 의해서, 비교적 좁은 다이나믹 레인지를 이용하여 각 회절광 성분의 고정밀도의 검출이 가능하여, 이에 따라 결상 광학계(20)의 동공 투과율 분포를 고정밀도로 측정할 수 있다. π의 위상차를 갖는 2종류의 위상 영역(11a, 11b)이 교대로 배치된 위상 회절 격자(11)를 측정 장치가 이용하고 있기 때문에, 측정빔이 아닌 0차 광이 발생해서 ±1차 회절광 성분의 강도의 측정에 영향을 주지 않고, 각 성분의 고정밀도의 검출이 가능하다.
또한, 회절 격자(11)의 자세를 변화(피치 방향을 변화)시키거나 회절 격자(11)를, 특성이 다른(예컨대 피치가 다른) 또다른 회절 격자와 교환하거나 하지 않고, 단일의 개구부(31)를 갖는 개구 조리개(12c)를 소요 회수에 따른 xy평면을 따라 단순히 스텝 이동시키는 것에 의해서, 결상 광학계(20)의 동공 투과율 분포를 비교적 낮은 부하로 신속하게 측정할 수 있다. 환언하면, 회절 격자(11)를 고정적으로 설치한 상태에서, 개구 조리개(12c)의 개구부(31)를 xy평면을 따라 스텝 이동시켜, 회절 격자(11)로의 측정광의 입사 각도를 단순히 변화시키는 것에 의해서, 결상 광학계(20)의 동공 투과율 분포를 비교적 낮은 부하로 신속히 측정할 수 있다.
제 1 실시 형태의 측정 장치(10)에서는, 각 회절광 성분의 강도를 정확히 검출하기 위해서 동공 부분 영역(41a 및 41b)이 서로 떨어져 있는 것이 중요하며, 또한 동공 투과율 분포를 정확히 측정하기 위해서 동공 부분 영역(41a, 41b)의 크기(나아가서는 개구부(31)의 크기)를 어느 정도 작게 억제하는 것도 중요하다. 즉, 개구 조리개(12c)의 개구부(31)에 광학적으로 대응하는 1쌍의 동공 부분 영역(41a, 41b)의 중심간 거리를 과도하게 크게 설정하지 않아도 되기 때문에, 회절 격자(11)에서의 위상 영역(11a, 11b)의 피치를 과도하게 작게 설정하지 않아도 되어, 결과적으로 회절 격자(11)의 제작이 용이하다.
전술한 제 1 실시 형태에 관한 설명에서는, 단일의 개구부(31)가 마련된 개구 조리개(12c)를 스텝 이동시키면서 측정 유닛(13)에 의한 측정을 반복적으로 행하고 있다. 그러나, 이에 한정되지 않고, 복수의 개구부가 마련된 개구 조리개를 이용하여, 이러한 개구 조리개의 이용으로 인해, 그 스텝 이동의 회수, 나아가서는 측정 유닛에 의한 측정의 회수를 줄여서, 결상 광학계(20)의 동공 투과율 분포를 더 신속하게 측정할 수도 있다. 일례로서, 도 8에, 조명 동공(12p)에 대해 광축 AX2를 사이에 두고 y방향으로 대칭 배치된 1쌍의 개구부를 거친 제 1 빔과 제 2 빔이 동시에 회절 격자(11) 상의 소정 위치에 경사져 입사되어, 제 1 빔으로부터 제 1의 ±1차 회절빔 및, 제 2 빔으로부터 제 2의 ±1차 회절빔을 생성하는 셋업을 나타낸다.
필요한 분포에 따라 배치된 복수의 개구부를 갖는 개구 조리개(12c)를 이용하여, 개구부와 동수의 빔을 회절 격자(11) 상의 소정 위치에 동시에 공급하고, 각 빔으로부터 생성된 ±1차 회절빔에 근거해서 결상 광학계(20)의 동공 투과율 분포를 일괄적으로 측정하는 다른 셋업을 적용할 수도 있다. 이 경우, 개구 조리개(12c)를 스텝 이동시킬 필요가 없고, 측정 유닛(13)에 의한 측정도 1회만이기 때문에, 동공 투과율 분포의 측정을 가장 신속하게 할 수 있다. 복수의 개구부를 갖는 개구 조리개를 이용하여 피검광학계의 동공 투과율 분포를 일괄적으로 측정하는 기술에 대해서는, 제 2 실시 형태에서 구체적으로 설명한다.
또, 상술한 제 1 실시 형태에 관한 설명에서는, 개구 조리개(12c)는, 조명 동공(12p)에서 광축 AX2로부터 떨어진 위치에 국한된 광 강도 분포를 갖는 원형의 국부빔을 형성하는 국부빔 형성 유닛으로서 기능하고 있다. 그러나, 이에 한정되지 않고, 조명 동공에 형성되는 국부빔의 수, 형상, 크기, 위치 등에 대해 다양한 형태가 고려될 수 있다. 구체적으로, 예를 들면 다각형 형상의 국부빔을 형성하기 위해서 다각형 형상의 개구부를 마련하거나 광축 AX2의 위치에 국한된 국부빔을 포함하도록 광축 AX2의 위치에도 개구부를 배치하거나 하는 것도 가능하다.
개구 조리개(12c) 대신에 혹은 개구 조리개(12c)에 부가하여, 공간 광변조기(12a)를 국부빔 형성 유닛으로서 기능하도록 배치할 수도 있다. 이 경우, 국부빔 형성 유닛으로서의 공간 광변조기(12a)는, 조명 동공(12p)에서 광축 AX2로부터 떨어진 위치에 국한된 적어도 하나의 광 강도 분포를 형성하기 위해서, 조명 동공(12p)으로 향하는 빔에 각도 분포를 부여한다. 구체적으로, 적용 가능한 공간 광변조기(12a)는 회절 광학 소자만을 이용하여도 좋고, 미러 어레이만을 이용하여도 좋고, 회절 광학 소자와 미러 어레이의 조합을 이용하여도 좋다.
회절 광학 소자만을 이용하는 경우, 특성이 다른 복수의 회절 광학 소자를 준비하고, 회절 격자(11)에 입사시키는 빔에 필요한 입사 각도에 따라 필요한 회절 광학 소자를 조명 광로 중에 설정할 필요가 있다. 미러 어레이만을 이용하는 경우에는, 회절 격자(11)에 입사시키는 빔에 필요한 입사 각도에 따라 복수의 미러 요소를 개별적으로 제어하면 충분하다. 구체적으로, 미러 어레이의 복수의 미러 요소를 개별적으로 제어하는 것에 의해, 입사 각도를 변화시키면서 하나 이상의 빔을 연속적으로 회절 격자(11)에 입사시켜도 좋고, 여러 입사 각도를 갖는 복수의 빔을 동시에 회절 격자(11)에 입사시켜도 좋다.
상술한 제 1 실시 형태에 관한 설명에서는, 회절 격자(11)로서, π의 위상차를 갖는 2종류의 위상 영역(11a, 11b)이 1 방향을 따라 교대로 배치된 형태를 갖는 위상 회절 격자를 이용하고 있다. 그러나, 이에 한정되지 않고, 회절 격자의 구체적 구성에 대해서는 여러 형태가 고려될 수 있다. 예를 들면 π 이외의 적당한 위상차를 갖는 2 종류의 위상 영역이 1방향을 따라 교대로 배치된 형태의 회절 격자를 이용할 수 있다. 이 경우, 0차 광이 발생하게 되지만, 이 0차 광을 측정 대상에서 제외하고 또한 0차 광이 결상 광학계(20)의 동공(20p)에서 ±1차 회절빔과 서로 겹치지 않는 셋업을 적용할 수 있다.
또한, 예를 들면 2종류의 직사각형 형상의 위상 영역이, 체크 플래그 패턴(check flag pattern)을 형성하도록 배치된 회절 격자, 즉 2종류의 직사각형 형상의 위상 영역이 체크 패턴으로 배치된 형태의 회절 격자를 이용할 수도 있다. 이 경우, 회절 격자에 입사하는 1개의 빔으로부터 1쌍의 +1차 회절빔과 1쌍의 -1차 회절빔이 생성된다. π의 위상차를 갖는 2종류의 직사각형 형상의 위상 영역이 체크 패턴으로 배치된 형태의 회절 격자를 이용하여, 피검광학계의 동공 투과율 분포를 측정하는 기술에 대해서는, 제 2 실시 형태에서 구체적으로 설명한다.
또, 위상형의 회절 격자(11) 대신에, 명암형의 회절 격자를 이용할 수도 있다. 이 경우, 피검광학계의 동공과 광학적으로 푸리에 변환의 관계에 있는 위치에 고정적으로 탑재된 회절 격자에 입사하는 측정광의 입사 각도를 변화시키면서, 피검광학계의 동공 투과율 분포를 비교적 낮은 부하로 신속히 측정할 수 있다. 즉, 명암 패턴의 피치가 서로 다른 복수의 회절 격자를 준비하고, 피치 방향을 변화시키면서 각 회절 격자를 이용한 측정을 반복할 필요가 없다.
상술한 제 1 실시 형태에 관한 설명에서는, 측정 유닛(13)은, 대물 광학계(13a)의 동공 투과율 분포에 의해 영향을 받지 않고, +1차 회절빔(40a)과 -1차 회절빔(40b)의 강도비를 정확하게 측정할 수 있는 것으로 가정하고 있다. 그러나, 대물 광학계(13a)의 동공 투과율 분포의 영향을 무시할 수 있는 정도로 작지 않은 경우에는, 대물 광학계(13a)의 동공 투과율 분포에 기인하는 측정 결과의 오차를 검출하여, 결상 광학계(20)의 동공 투과율 분포의 측정 결과를 교정하는 이하의 기술을 적용할 수 있다.
대물 광학계(13a)의 동공 투과율 분포에 기인하는 측정 결과의 오차를 검출하는 동작(즉 측정 유닛(13)의 교정 동작)을 행하기 위해서는, 도 9에 나타내는 바와 같이, 회절 격자(11) 대신에, 예를 들면 회절 격자(11)와 동일한 두께 및 동일한 굴절률을 갖는 평행 평면판(14)을 결상 광학계(20)의 물체면(20o)에 탑재한다. 그리고, 개구부(31)로부터 평행 평면판(14) 상의 소정 위치(회절 격자(11)로의 측정빔의 입사 위치와 동일한 위치)에 입사하여, 결상 광학계(20)를 거친 빔이 교정용 위상 회절 격자(13h)를 통과하도록, 측정 유닛(13)을 xy평면을 따라 위치 결정한다. 교정용 위상 회절 격자(13h)는, 회절 격자(11)와 같이, π의 위상차를 갖는 2 종류의 위상 영역이 y방향을 따라 교대로 배치된 형태를 가진다.
이 경우, 예를 들면 도 6에 나타내는 바와 같이 탑재된 개구 조리개(12c)의 개구부(31)로부터 사출되어, 평행 평면판(14) 및 결상 광학계(20)를 통과한 교정빔(평행 평면판(14)에 의해 회절되지 않는 빔)은 교정용 위상 회절 격자(13h)에 의해 회절된다. 교정용 위상 회절 격자(13h)를 거쳐 생성된 +1차 회절빔(42a(혹은 42b)) 및 -1차 회절빔(42b(혹은 42a))은 대물 광학계(13a)를 거쳐서, 대물 광학계(13a)의 동공면(13p)에 배치된 광전 검출기(13)의 검출면(13ba)에 영향을 준다.
측정 유닛(13)은 +1차 회절빔(42a)의 강도 및 -1차 회절빔(42b)의 강도를 측정한다. 교정용 위상 회절 격자(13h)는, +1차 회절빔(42a)이 도 1을 참조하여 설명한 +1차 회절빔(40a)에 대응하고, -1차 회절빔(42b)이 -1차 회절빔(40b)에 대응하도록 구성되어 있다. 그 결과, 측정 유닛(13)에서는, +1차 회절빔(42a) 및 -1차 회절빔(42b)의 강도의 측정값을 이용하여, 1쌍의 동공 부분 영역(41a, 41b)에서의 동공 투과율의 비의 산출 결과를 교정한다. 또한, 개구부(31)를 갖는 개구 조리개(12c)를 xy평면을 따라 스텝 이동하면서 측정 유닛(13)에 의한 측정을 반복하여, 이에 의해 결상 광학계(20)의 동공 유효 영역(20pe) 내의 임의의 1쌍의 동공 부분 영역에서의 동공 투과율의 비의 산출 결과를 교정한다. 이러한 방법으로, 대물 광학계(13a)의 동공 투과율 분포에 기인하는 측정 결과의 오차를 검출하여, 결상 광학계(20)의 동공 투과율 분포의 측정 결과를 교정할 수 있다.
복수의 개구부가 마련된 개구 조리개를 이용하는 경우, 그 스텝 이동의 회수, 나아가서는 측정 유닛에 의한 측정의 회수를 줄여서, 이에 따라 대물 광학계(13a)의 동공 투과율 분포에 기인하는 측정 결과의 오차를 더 신속히 검출할 수 있다. 필요한 분포에 따라 배치된 복수의 개구부를 갖는 개구 조리개를 이용하는 다른 경우에는, 개구부와 동수의 빔을 평행 평면판(14) 상의 소정 위치에 동시에 공급하여, 각 빔으로부터 교정용 위상 회절 격자(13h)를 거쳐 생성된 ±1차 회절빔에 근거해서 대물 광학계(13a)의 동공 투과율 분포에 기인하는 측정 결과의 오차를 일괄적으로 검출할 수도 있다.
결상 광학계(20)의 동공 투과율 분포의 측정에 사용하는 회절 격자(11)의 구성에 따르면, 교정용 위상 회절 격자(13h)로서, 예를 들면 π를 제외한 적당한 위상차를 갖는 2종류의 위상 영역이 1방향을 따라 교대로 배치된 형태의 회절 격자를 이용할 수 있다. 또한, 여기서 적용 가능한 교정용 위상 회절 격자(13h)는, 예를 들면 2종류의 직사각형 형상의 위상 영역이 체크 플래그 패턴을 형성하도록 배치된 회절 격자, 즉 2종류의 직사각형 형상의 위상 영역이 체크 패턴으로 배치된 형태의 회절 격자이다.
상술한 제 1 실시 형태에 관한 설명에서는, 측정 유닛(13)은, 대물 광학계(측정 광학계)(13a)와, 대물 광학계(13a)의 동공면(결상 광학계(20)의 동공(20p)과 광학적으로 공액인 면)(13p)에서 ±1차 회절빔 성분을 광전 변환하여 검출하는 광전 검출기(13b)를 가진다. 그러나, 측정 유닛의 구체적인 구성에 대해서는 여러 형태가 고려될 수 있다. 예를 들면, 도 10에 나타내는 바와 같이, PDI(Point Diffraction Interferometer)나 LDI(Line Diffraction Interferometer)를 채용하는 측정 유닛(13A)을 이용할 수도 있다.
전술한 바와 같은 PDI/LDI형의 측정 유닛(13A)에는 평면 형상의 입사면(13Ai)을 갖는 광투과성 기판(13Aa)과, 광투과성 기판(13Aa)의 평면 형상의 사출면(13Aj)과 접촉하여 배치된 검출면(13ba)을 갖는 광전 검출기(13b)가 마련되어 있다. 광투과성 기판(13Aa)의 입사 평면(13Ai)에는, 도 11에 나타내는 바와 같이, 예를 들면 크롬 또는 산화 크로뮴으로 형성된 차광부(13Ae)와, 측정용 개구부(13Af)와, 구면 기준파 발생용 핀홀(13Ag)과, 동공 투과율 분포 측정 결과를 교정하기 위한 교정용 위상 회절 격자(13Ah)가 형성되어 있다. 측정 유닛(13A)의 구성에서 교정용 위상 회절 격자(13Ah)를 제외한 부분은, 예를 들면 일본 특허 공표 제 2008-502126호 공보 및 이에 대응하는 미국 특허 공개 제 2008/0252876A1호 공보의 도 3에 개시되어 있다.
측정 유닛(13A)에서는, 측정용 개구부(13Af)를 통과하는 피검광학계로부터의 파면과, 구면 기준파 발생용 핀홀(13Ag)로부터 생기는 구면파간을 간섭시켜, 광전 검출기(13b)의 검출면(13ba) 상에 간섭 무늬(interference fringes)를 형성한다. 이 간섭 무늬는 피검광학계의 파면 수차의 정보를 포함하고 있다. 측정용 개구부(13Af)에만 광이 입사되도록 측정 유닛을 배치하면, 검출면(13ba) 상에는, 피검광학계의 동공 투과율 분포에 따른 광 강도 분포가 형성된다. 교정용 위상 회절 격자(13Ah)에만 광이 입사되도록 측정 유닛을 배치하면, 광투과성 기판(13Aa)의 투과율 분포에 기인하는 측정 결과의 오차를 검출할 수 있다. 광전 검출기(13b)의 검출면(13ba)은, NA가 1을 초과하는 광선(ray)을 수광하기 위해서, 광투과성 기판(13Aa)의 사출면(13Aj)과 접촉하고 있다.
또한, 예를 들면 도 12에 나타내는 바와 같이, 시어링 간섭계(shearing interferometer)를 이용하는 측정 유닛(13B)을 이용할 수도 있다. 측정 유닛(13B)은, 측정 유닛(13A)과 같이, 평면 형상의 입사면(13Bi)을 갖는 광투과성 기판(13Ba)과, 광투과성 기판(13Ba)의 평면 형상의 사출면(13BAj)과 접촉하도록 배치된 검출면(13ba)을 갖는 광전 검출기(13b)를 갖고 있다. 광투과성 기판(13Ba)의 입사 평면(13Bi)에는, 도 13에 나타내는 바와 같이, 예를 들면 크롬 또는 산화 크로뮴으로 형성된 차광부(13Be)와, 측정용 개구부(13Bf)와, 파면 측정용 회절 격자(13Bg)와, 동공 투과율 분포 측정 결과를 교정하기 위한 교정용 위상 회절 격자(13Bh)가 형성되어 있다. 측정 유닛(13B)의 구성에서 측정용 개구부(13Bf) 및 교정용 위상 회절 격자(13Bh)를 제외한 부분은, 예를 들면 상기 특허문헌 6의 도 2 및 도 5, 상기 특허문헌 7~8 등에 개시되어 있다. 여기서는 특허문헌 6~8의 개시 내용을 참조로서 원용한다.
측정 유닛(13B)에서는, 피검광학계로부터의 파면이 파면 측정용 회절 격자(13Bg)에 의해서 수평적으로 시프트되고, 상호간에 시프트된 파면끼리가 간섭이 일어나 광전 검출기(13b)의 검출면(13ba) 상에 간섭 무늬를 형성한다. 간섭 무늬는 피검광학계의 파면 수차의 정보를 포함하고 있다. 측정용 개구부(13Bf)에만 광이 입사되도록 측정 유닛을 배치하면, 검출면(13ba) 상에는, 피검광학계의 동공 투과율 분포에 따른 광 강도 분포가 형성된다. 교정용 위상 회절 격자(13Bh)에만 광이 입사되도록 측정 유닛을 배치하면, 광투과성 기판(13Ba)의 투과율 분포에 기인하는 측정 결과의 오차를 검출할 수 있다. 광전 검출기(13b)의 검출면(13ba)은, NA가 1을 초과하는 광선(ray)을 수광하기 위해서, 광투과성 기판(13Ba)의 사출면(13Bj)과 접촉하고 있다.
상술한 제 1 실시 형태에 관한 설명에서는, 회절 격자(11)에 공급하는 측정빔의 편광 상태에 대해 언급하고 있지 않더라도, 피검광학계로서의 결상 광학계(20)의 동공 투과율 분포가 입사광의 편광 상태에 비교적 크게 의존하고 있다. 이 경우, 예를 들면 x방향으로 편광된 직선 편광 상태로 회절 격자(11)에 입사하는 측정빔을 이용하여 x방향 직선 편광에 관한 결상 광학계(20)의 동공 투과율 분포를 측정하고, y방향으로 편광된 직선 편광 상태로 회절 격자(11)에 입사하는 측정빔을 이용하여 y방향 직선 편광에 관한 결상 광학계(20)의 동공 투과율 분포를 측정하도록, 측정 장치가 배치될 수도 있다.
상술한 제 1 실시 형태에 관한 설명에서는, 제 1 입사 각도를 가지는 제 1 측정빔으로부터 회절 격자(11)를 거쳐 생성되는 ±1차 회절빔에 근거해서 제 1의 쌍의 동공 부분 영역에서의 동공 투과율의 비를 정하고, 제 2 입사 각도를 가지는 제 2 측정빔으로부터 회절 격자(11)를 거쳐 생성되는 ±1차 회절빔에 근거해서 제 2의 쌍의 동공 부분 영역에서의 동공 투과율의 비를 정하고 있다. 그러나, 제 1의 쌍의 동공 부분 영역에서의 동공 투과율비와 제 2의 쌍의 동공 부분 영역에서의 동공 투과율비는 항상 동일 조건 하에서 측정되지 않아, 제 1의 쌍의 동공 부분 영역에서의 동공 투과율과 제 2의 쌍의 동공 부분 영역에서의 동공 투과율의 비를 반드시 정확하게 정하는 것은 아니라는 것을 유념해야 한다.
따라서, 필요에 따라, 측정 장치는, 제 1 측정빔 및 제 2 측정빔에 의한 측정 전 또는 후에, 회절 격자(11)의 소정 위치에 제 3 측정빔을 입사시키도록 구성되어, 제 1의 쌍의 동공 부분 영역에서의 동공 투과율과 제 2의 쌍의 동공 부분 영역에서의 동공 투과율의 비를 얻고, 이에 의해 동공 투과율비에 근거하여 동공 투과율 분포의 상대비 정보를 보완할 수도 있다. 이 때, 제 3 측정빔은, 회절 격자(11)를 거쳐 생성되는 +1차 회절빔이 제 1의 쌍의 동공 부분 영역을 포함하는 제 1 포함 영역 내의 동공 부분 영역을 통과하고, 또한 회절 격자(11)를 거쳐 생성되는 -1차 회절빔이 제 2의 쌍의 동공 부분 영역을 포함하는 제 2 포함 영역 내의 동공 부분 영역을 통과하도록, 필요한 입사 각도로 회절 격자(11)에 입사한다. 전술한 바와 같이 동공 투과율 분포의 상대비 정보를 보완하는 기술에 대해서는, 제 2 실시 형태에서 구체적으로 설명한다.
도 14는 제 2 실시 형태에 따른 노광 장치의 구성을 개략적으로 나타내는 도면이다. 즉, 제 2 실시 형태는, 피검광학계로서의 투영 광학계 PL의 동공 투과율 분포를 측정하는 측정 장치가 마련된 노광 장치에 적용된다. 도 14에 있어서, 감광성 기판인 웨이퍼 W의 표면(전사면)의 법선 방향에 따라 Z축을, 웨이퍼 W의 표면 내에서 도 14의 지면에 평행한 방향을 따라 Y축을, 웨이퍼 W의 표면 내에서 도 14의 지면에 수직인 방향을 따라 X축을 설정하고 있다.
도 14를 참조하면, 제 2 실시 형태의 노광 장치에서는, 광원 LS로부터 노광광(조명광)이 공급되도록 구성되어 있다. 여기서 적용 가능한 광원 LS는, 예를 들어 193㎚의 파장의 광을 공급하는 ArF 엑시머 레이저 광원이나, 248㎚의 파장의 광을 공급하는 KrF 엑시머 레이저 광원이다. 광원 LS로부터 사출된 광은, 조명 광학계 IL을 거쳐서, 전사해야 할 패턴이 형성된 마스크(레티클) M를 조명한다. 스텝-앤드-리피트(step-and-repeat) 방식의 노광 장치의 경우, 조명 광학계 IL은 마스크 M의 직사각형 형상의 패턴 영역의 전체를 조명한다. 스텝-앤드-스캔(step-and-scan) 방식의 노광 장치의 경우, 조명 광학계 IL은, 직사각형 형상의 패턴 영역에서, 주사 방향인 Y방향과 직교하는 X방향을 따라 홀쭉한(long and thin) 직사각형 형상의 영역을 조명한다.
광원 LS로부터 사출된 빔은, 도 15에 나타내는 바와 같이, 주지의 구성을 갖는 빔 송광계(beam sending system)(51)에 입사된다. 빔 송광계(51)에 입사한 빔은, 소정의 직사각형 형상의 단면을 갖는 빔으로 정형화된 후, 빔 형상 가변 유닛(52)을 거쳐서, 마이크로 플라이아이 렌즈(또는 플라이아이 렌즈)(53)에 입사된다. 빔 송광계(51)는, 입사빔을 적절한 크기 및 형상의 단면을 갖는 빔으로 변환하면서 빔 형상 가변 유닛(52)에 유도하고, 또한, 빔 형상 가변 유닛(52)(차례로 마이크로 플라이아이 렌즈(53))에 입사하는 빔의 위치 변동 및 각도 변동을 액티브하게 보정하도록 기능한다.
빔 형상 가변 유닛(52)은, 예컨대 공간 광변조기(52a), 릴레이 광학계(53b)를 포함하며, 마이크로 플라이아이 렌즈(53)의 입사면에 형성되는 조야(illumination field)의 크기 및 형상을 가변하는 기능, 나아가서는 마이크로 플라이아이 렌즈(53)의 뒤측 초점면(rear focal plane)에 형성되는 실질적인 면광원의 크기 및 형상을 변화시키는 기능을 가진다. 여기서 적용 가능한 공간 광변조기(52a)는, 예를 들면 제어 유닛 CR로부터의 제어 신호에 따라 조명 광로에 대해 스위칭 가능하도록 배치되는 복수의 회절 광학 소자이다. 회절 광학 소자는 입사빔의 단면 형상을 다른 단면 형상으로 변환하는 광학 소자이다. 일반적으로, 회절 광학 소자는 기판에 노광광(조명광)의 파장 정도의 피치의 단차를 형성하는 것에 의해서 구성되어, 입사빔을 소망하는 각도로 회절하는 작용을 가진다.
제어 유닛 CR은 메모리 MR과 같은 기록 매체를 갖는 처리 유닛(컴퓨터)일 수도 있고, 이 메모리 MR에는, 본 실시 형태에 따른 측정 방법, 노광 장치 및 공간 광변조기(52a)의 제어 방법을 해당 처리 유닛에 실행시키는 프로그램이 저장된다.
여기서 적용 가능한 공간 광변조기(52a)는, 예를 들면 조명 광로에 대해 고정적으로 탑재된 미러 어레이이다. 미러 어레이는, 전술한 바와 같이, 소정면 내에 배열되어 개별적으로 제어 가능한 복수의 미러 요소를 갖는 공간 광변조기이다. 미러 어레이에서는, 예를 들면 제어 유닛 CR로부터의 제어 신호에 따라 복수의 미러 요소가 각각 소정의 방향(predetermined orientation)으로 설정되고, 복수의 미러 요소에 의해 각각 소정의 각도로 반사된 빔은 마이크로 플라이아이 렌즈(53)의 입사면에 소망하는 크기 및 형상을 갖는 조야를 형성한다. 공간 광변조기(52a)는 또한 회절 광학 소자와 미러 어레이의 조합일 수도 있다.
마이크로 플라이아이 렌즈(53)는, 예를 들면 종횡으로 조밀하게 배열된 정굴절력을 갖는 다수의 미소 렌즈(a large number of microscopic lenses)로 이루어지는 광학 소자이며, 평행 평면판을 에칭하는 것에 의해 미소 렌즈 그룹을 형성함으로써 구성되어 있다. 마이크로 플라이아이 렌즈에서는, 서로 격리된 렌즈 요소로 이루어지는 플라이아이 렌즈와는 달라, 다수의 미소 렌즈(미소 굴절면)가 서로 격리되지 않고 일체적으로 형성되어 있다. 그러나, 렌즈 요소가 종횡으로 배치되어 있는 구성이라는 점에서, 마이크로 플라이아이 렌즈는 플라이아이 렌즈와 같은 파면 분할형의 광학 인티그레이터이다.
마이크로 플라이아이 렌즈(53)에서의 단위 파면 분할면으로서의 직사각형 형상의 미소 굴절면은 마스크 M 상에서 형성해야 할 조야의 형상(나아가서는 웨이퍼 W 상에서 형성해야 할 노광 영역의 형상)과 동일한 직사각형 형상이다. 또한, 여기서 적용 가능한 마이크로 플라이아이 렌즈(53)도, 예를 들면 원통형의 마이크로 플라이아이 렌즈이다. 원통형의 마이크로 플라이아이 렌즈의 구성 및 작용은, 예를 들면 미국 특허 제6913373호에 개시되어 있다.
마이크로 플라이아이 렌즈(53)에 입사한 빔은 다수의 미소 렌즈에 의해 2차원적으로 분할되어, 그 후측 초점면 또는 근방의 조명 동공 ILp에는, 입사면에 형성되는 광 강도 분포와 거의 같은 광 강도 분포를 갖는 2차 광원(다수의 소광원으로 이루어지는 실질적인 면광원: 동공 강도 분포)가 형성된다. 마이크로 플라이아이 렌즈(53)의 바로 뒤의 조명 동공 ILp에 형성된 2차 광원으로부터의 빔은 조명 개구 조리개(54)에 입사된다. 조명 개구 조리개(54)는, 마이크로 플라이아이 렌즈(53)의 뒤측 초점면 또는 그 근방에 배치되고, 2차 광원에 대응한 형상의 개구부(광투과부)를 갖는다.
조명 개구 조리개(54)는, 조명 광로에 대해 삽입 또는 분리되도록 배치되고또한 크기 및 형상이 제각기 다른 개구부를 갖는 복수의 개구 조리개와 스위칭 가능하게 구성되어 있다. 여기서 적용 가능한 조명 개구 조리개(54)의 스위칭 방식은, 예를 들면 주지의 터릿 방식(turret method)이나 슬라이드 방식 등이다. 조명 개구 조리개(54)는, 후술하는 투영 광학계 PL의 동공 PLp와 광학적으로 공액인 위치에 배치되고, 2차 광원에 의한 조명 분포의 범위를 규정한다. 또한, 조명 개구 조리개(54)의 설치를 생략할 수도 있다.
조명 개구 조리개(54)에 의해 제한된 2차 광원으로부터의 광은 콘덴서 광학계(55)를 거쳐서 마스크 블라인드(56)를 중첩적으로 조명한다. 이렇게 해서, 조명 시야 조리개으로서의 마스크 블라인드(56)에는, 마이크로 플라이아이 렌즈(53)의 직사각형 형상의 미소 굴절면의 형상과 초점 거리에 따른 직사각형 형상의 조야가 형성된다. 마스크 블라인드(56)의 직사각형 형상의 개구부(광투과부)를 거친 빔은 조명 결상 광학계(57)의 집광 작용을 받은 후, 소정의 패턴이 형성된 마스크 M을 중첩적으로 조명한다. 즉, 조명 결상 광학계(57)는 마스크 블라인드(56)의 직사각형 형상의 개구부의 이미지를 마스크 M 상에 형성한다.
마스크 M의 패턴면을 투과한 광은, 예를 들면 축소 배율을 갖는 투영 광학계 PL을 거쳐서, 포토레지스트가 도포된 웨이퍼(감광성 기판) W의 단위 노광 영역에 마스크 M의 패턴 이미지를 형성한다. 즉, 마스크 M 상에서의 조명 영역에 광학적으로 대응하도록, 웨이퍼 W의 단위 노광 영역에서, 마스크 M의 패턴 영역 전체와 동일한 직사각형 형상의 영역에, 또는 X방향으로 홀쪽한 직사각형 형상의 영역(정지 노광 영역)에 마스크 패턴 이미지가 형성된다.
마스크 M은, 그 패턴면이 투영 광학계 PL의 물체면 PLo와 일치하도록, 마스크 스테이지 MS 상에서 XY평면과 평행하게 유지된다. 마스크 스테이지 MS에는, X방향, Y방향, Z방향, 및 Z축 회전의 회전 방향으로 마스크 M을 이동시키는 기구가 설치되어 있다. 마스크 스테이지 MS에는, 도시하지 않은 이동 미러가 마련되고, 이 이동 미러를 이용하는 마스크 레이저 간섭계 MIF가, 마스크 스테이지 MS(나아가서는 마스크 M)의 X방향의 위치, Y방향의 위치, 및 Z축 회전의 회전 방향의 위치를 실시간으로 측정한다.
웨이퍼 W는, 그 전면(front surface)(전사면)이 투영 광학계 PL의 이미지면 PLi와 일치하도록, 기판 스테이지 WS 상에서 XY평면과 평행하게 유지되어 있다. 기판 스테이지 WS에는, X방향, Y방향, Z방향, 및 Z축 회전의 회전 방향으로 웨이퍼 W를 이동시키는 기구가 설치되어 있다. 기판 스테이지 WS에는, 도시하지 않은 이동 미러가 마련되고, 이 이동 미러를 이용하는 기판 레이저 간섭계 WIF가 기판 스테이지 WS(나아가서는 웨이퍼 W)의 X방향의 위치, Y방향의 위치, 및 Z축 회전의 회전 방향의 위치를 실시간으로 측정한다.
마스크 레이저 간섭계 MIF로부터의 출력 및 기판 레이저 간섭계 WIF로부터의 출력은 제어 유닛 CR에 공급된다. 제어 유닛 CR은 마스크 레이저 간섭계 MIF의 측정 결과에 근거하여, 마스크 M의 X방향의 위치, Y방향의 위치, 및 Z축 회전의 회전 방향의 위치를 제어한다. 즉, 제어 유닛 CR은, 마스크 스테이지 MS에 내장되는 기구에 제어 신호를 송신하고, 이 기구가 제어 신호에 근거하여 마스크 스테이지 MS를 이동시켜, 마스크 M의 X방향의 위치, Y방향의 위치, 및 Z축 회전의 회전 방향의 위치를 조정한다.
제어 유닛 CR은, 오토 포커스 방식에 의해, 웨이퍼 W의 표면을 투영 광학계 PL의 이미지면 PLi와 일치시키기 위해서, 웨이퍼 W의 Z방향의 위치(초점 위치)를 제어한다. 또한, 제어 유닛 CR은, 기판 레이저 간섭계 WIF의 측정 결과에 근거하여, 웨이퍼 W의 X방향의 위치, Y방향의 위치, 및 Z축 회전의 회전 방향의 위치도 제어한다. 즉, 제어 유닛 CR은, 기판 스테이지 WS에 내장되어 있는 기구에 제어 신호를 송신하고, 이 기구가 제어 신호에 근거하여 기판 스테이지 WS를 이동시켜, 웨이퍼 W의 X방향, Y방향 및 Z축 회전의 회전 방향의 위치를 조정한다.
스텝-앤드-리피트 방식에서는, 웨이퍼 W 상에 종횡으로 설정된 복수의 단위 노광 영역 중 하나의 단위 노광 영역에, 마스크 M의 패턴 이미지를 일괄적으로 노광한다. 그 후, 제어 유닛 CR은, 기판 스테이지 WS를 XY평면을 따라 스텝 이동시킴으로써, 웨이퍼 W의 다른 단위 노광 영역을 투영 광학계 PL에 대해 위치 결정한다. 이렇게 해서, 노광 장치는 마스크 M의 패턴 이미지를 웨이퍼 W의 단위 노광 영역에 일괄 노광하는 풀-쇼트 노광 동작(full-shot exposure operation)을 반복적으로 행한다.
스텝-앤드-스캔 방식에서는, 제어 유닛 CR은, 투영 광학계 PL의 투영 배율에 따른 속도비로 마스크 스테이지 MS 및 기판 스테이지 WS를 Y방향으로 이동시키면서, 마스크 M의 패턴 이미지를 웨이퍼 W의 하나의 단위 노광 영역에 전사하는 주사 노광을 행한다. 그 후, 제어 유닛 CR은, 기판 스테이지 WS를 XY평면을 따라 스텝 이동시킴으로써, 웨이퍼 W의 다른 단위 노광 영역을 투영 광학계 PL에 대해 위치 결정한다. 이렇게 해서, 노광 장치는 마스크 M의 패턴 이미지를 웨이퍼 W의 단위 노광 영역에 전사하는 주사 노광 동작을 반복적으로 행한다.
즉, 스텝-앤드-스캔 방식에서는, 마스크 M 및 웨이퍼 W의 위치 제어를 행하면서, 직사각형 형상의 정지 노광 영역의 단변 방향인 Y방향을 따라, 마스크 스테이지 MS와 기판 스테이지 WS를, 나아가서는 마스크 M와 웨이퍼 W를 동기적으로 이동(주사)시키는 것에 의해, 웨이퍼 W 상에는 정지 노광 영역의 긴 변과 동일한 폭 및 웨이퍼 W의 주사량(이동량)에 따른 길이를 갖는 영역에서 마스크 패턴의 주사 노광이 실시된다. 이하에서는, 피검광학계인 투영 광학계 PL과 조명 광학계 IL는, 그 광축 AXp 및 AXi가 Z방향으로 연장되는 하나의 직선을 따라 공동축 배치되어 있는 것으로 가정한다.
제 2 실시 형태에서는, 마이크로 플라이아이 렌즈(53)에 의해 형성되는 2차 광원을 광원으로서 이용하여, 조명 광학계 IL의 피조사면에 배치되는 마스크 M을 쾰러 조명에 의해 조명한다. 이 때문에, 2차 광원이 형성되는 위치는 투영 광학계 PL의 개구 조리개 AS의 위치(나아가서는 투영 광학계 PL의 동공 PLp의 위치)와 광학적으로 공액이고, 이에 따라, 2차 광원의 형성면을 조명 광학계 IL의 조명 동공면이라고 부를 수 있다. 전형적으로는, 조명 동공면에 대해 피조사면(마스크 M이 배치되는 면, 또는 투영 광학계 PL을 포함하여 조명 광학계라고 생각하는 경우에는 웨이퍼 W가 배치되는 면)이 광학적인 푸리에 변환면이다.
동공 강도 분포란, 조명 광학계 IL의 조명 동공면 또는 조명 동공면과 광학적으로 공액인 면에서의 광 강도 분포(휘도 분포)이다. 마이크로 플라이아이 렌즈(53)에 의한 파면 분할수가 비교적 큰 경우, 마이크로 플라이아이 렌즈(53)의 입사면에 형성되는 글로벌(global) 광 강도 분포와 2차 광원 전체의 글로벌 광 강도 분포(동공 강도 분포; 동공 휘도 분포)가 높은 상관을 나타낸다. 이 때문에, 마이크로 플라이아이 렌즈(53)의 입사면 및 이 입사면과 광학적으로 공액인 면에서의 광 강도 분포는 동공 강도 분포라고 불릴 수 있다.
제 2 실시 형태의 노광 장치에는 투영 광학계 PL의 파면 수차를 측정하는 측정 장치(13)가 마련되어 있다. 측정 장치(13)는, 제 1 실시 형태에서의 측정 장치(13)와 동일한 구성을 갖고, 도 1에서의 x좌표, y좌표 및 z좌표가 도 14에서의 X좌표, Y좌표 및 Z좌표에 각각 대응하도록, 기판 스테이지 WS에 장착되어 있다. 제 2 실시 형태의 측정 장치(10')(도 16을 참조)에서는, 투영 광학계 PL을 거쳐서 형성되는 패턴 이미지의 콘트라스트를 향상시키기 위해서, 노광 장치에 탑재된 상태에서 투영 광학계 PL의 동공 투과율 분포를 수시로 측정한다.
투영 광학계 PL의 동공 투과율 분포의 측정에서는, 도 16에 나타내는 바와 같이, 조명 광학계 IL의 조명 개구 조리개(54) 대신에(조명 개구 조리개(54)의 설치를 생략하는 경우에는 그 위치에) 측정용 개구 조리개(54a)를 탑재하고, 마스크 M 대신에 측정용 레티클 TR을 탑재한다. 또한, 제어 유닛 CR로부터의 커맨드에 따라서 기판 스테이지 WS를 이동시켜, 평볼록 렌즈(13aa)의 입사 평면(13i)이 투영 광학계 PL의 이미지면 PLi과 일치하고 측정용 개구부(13f)가 이미지면 PLi 상의 소정 위치(투영 광학계 PL을 거친 측정빔이 이미지면 PLi에 입사하는 위치)에 배치되도록 측정 장치(13)를 위치 결정한다. 측정 장치(10')에는 조명 동공 ILp에 설치된 측정용 개구 조리개(54a)를 포함한 조명 광학계 IL과, 측정용 레티클 TR과, 측정 유닛(13)이 마련되어 있다.
측정용 개구 조리개(54a)는, 비교적 단순한 일례로서 도 17에 나타내는 바와 같이, 9개의 개구부(61, 62, 63, 64, 65, 66, 67, 68, 69)를 가진다. 이하, 설명을 간단히 하기 위해서, 각 개구부(61~69)는 원형 형상이고, 동일한 크기를 갖는 것으로 가정한다. 개구부(61~64, 66~69)는, 각 개구부의 중심점이 중앙의 개구부(65)를 중심으로 하는 정방형의 코너 또는 각 변의 중점과 일치하도록 배열되어 있는 것으로 가정한다. 측정용 개구 조리개(54a)는 개구부(65)의 중심점이 조명 광학계 IL의 광축 AXi에 일치하도록 배치되어 있는 것으로 가정한다.
구체적으로는, 개구부(61~69)의 피치 Ppi를 개구부(61~69)의 직경 Dpi의 약 10배 정도로 설정할 수 있다. 개구부(61~69)의 직경 Dp가 너무 크면, 각 개구부(61~69) 및 측정용 레티클 TR의 위상 격자를 거쳐 생성되는 ±1차 회절빔이 투영 광학계 PL의 동공 PLp를 통과하는 동공 부분 영역(동공 PLp에 형성되는 회절 스폿 이미지)이 서로 부분적으로 겹치게 된다. 개구부(61~69)의 피치 Ppi에 대해서는, 그 절대값에 대해 임의적이지만, 후술하는 바와 같이 측정용 레티클 TR의 위상 격자의 피치 Pr과 소정의 상대 관계를 만족하도록 제약할 수 있다. 그러나, 개구부(61~69)의 피치 Ppi가 너무 크면, 동공 부분 영역끼리가 부분적으로 서로 겹쳐지는 것이 용이하게 회피되지만, 측정용 개구 조리개(54a)를 XY평면을 따라 스텝 이동시키지 않고 투영 광학계 PL의 동공 투과율 분포를 일괄적으로 측정하는 경우에는, 동공 투과율 분포 정보의 횡분해능(transverse resolution)이 희생되어 버린다.
측정용 레티클 TR의 표면에는, 도 18에 나타내는 바와 같이, 투과광에 대해 제 1 위상값을 부여하는 직사각형 형상의 제 1 위상 영역(11c)과, 투과광에 대해 제 1 위상값과 π만큼 다른 제 2 위상값을 부여하는 직사각형 형상의 제 2 위상 영역(11d)이 서로 직교하는 2방향을 따라 교대로 배치된 위상 격자(위상 패턴)가 형성되어 있다. 환언하면, 측정용 레티클 TR의 위상 격자는, 2종류의 직사각형 형상의 위상 영역(11c, 11d)이 체크 플래그 패턴(check flag pattern)을 형성하도록 배치된 형태(즉 2종류의 직사각형 형상의 위상 영역(11c, 11d)이 체크 패턴으로 배치된 형태)를 가진다.
이하의 설명에서는, 각 위상 영역(11c, 11d)이 정방형이고 서로 동일한 크기를 갖는 것으로 가정한다. 또, 측정용 레티클 TR은, 위상 영역(11c, 11d)의 피치 방향이 X방향 및 Y방향과 일치하고 또한 회절 광학면이 투영 광학계 PL의 물체면 PLo와 일치하도록 탑재되는 것으로 가정한다. 위상 영역(11c, 11d)의 피치 Pr에 대해서는, 후술하는 바와 같이, 개구 조리개(54a)에 마련된 개구부(61~69)의 피치 Ppi와 소정의 상대 관계를 만족하도록 제약할 수 있다.
개구 조리개(54a)에는, 개구부(61~69)를 포함하는 소요 영역(예를 들면 개구부(61~69)를 포함하는 원형 영역)에 광빔이 입사된다. 이 경우, 중앙의 개구부(65)를 거친 빔은, 조명 광학계 IL로부터 사출되어, 측정용 레티클 TR의 위상 격자 상의 소정 위치(나아가서는 투영 광학계 PL의 물체면 PLo의 소정 위치)에 수직 입사(투영 광학계 PL의 광축 AXp와 평행하게 입사)된다. 개구부(65)를 제외한 다른 개구부(61~64, 66~69)를 거친 빔, 즉 투영 광학계 PL의 동공 PLp와 광학적으로 공액인 조명 동공 ILp에서 광축 AXi로부터 떨어진 위치에 국한된 광 강도 분포를 갖는 원형 형상의 국부빔은, 조명 광학계 IL로부터 사출되어, 측정용 레티클 TR의 위상 격자 상의 소정 위치에, 광축 AXp에 대해(나아가서는 광축 AXi에 대해) 경사진 8개의 빔으로서 입사된다.
측정용 레티클 TR로의 9개의 빔의 입사 위치는, 예를 들면 마스크 블라인드(56)의 작용에 의해 가변적으로 결정된다. 이와 달리, 마스크 블라인드(56)의 근방에 배치된 시야 조리개(도시하지 않음), 또는 물체면 PLo의 바로 앞의 위치에 배치된 시야 조리개(도시하지 않음) 등에 의해 가변적으로 결정된다. 이렇게 해서, 개구부(61~69)로부터의 9개의 빔은 측정용 레티클 TR의 위상 격자 상의 동일한 위치에 동시에 입사된다. 이하에서 설명을 간략히 하기 위해서, 조명 광학계 IL의 조명 동공 ILp와 투영 광학계 PL의 동공 PLp는 X방향 및 Y방향에 대해 조명 동공 ILp의 정립상을 동공 PLp에 형성하는 공액 관계에 있는 것으로 가정한다.
측정용 레티클 TR에 입사하는 1개의 빔에 주목하면, 측정용 레티클 TR의 위상 격자를 거쳐 생성된 회절빔 중 측정 대상으로서의 1쌍의 +1차 회절빔 및 1쌍의 -1차 회절빔은, 도 19에 나타내는 바와 같이, 투영 광학계 PL의 동공 PLp의 유효 영역 내의 4개의 동공 부분 영역(60a)을 통과하여, 투영 광학계 PL로부터 각각 사출된다. 4개의 동공 부분 영역(60a)은, 개구부(61~69)와 같이 원형 형상이며, 서로 동일한 크기를 가진다. 4개의 동공 부분 영역(60a)의 각 중심은 점(60c)을 중심으로 X방향 및 Y방향으로 연장되는 4개의 사이드(side)에 의해서 규정되는 정방형의 코너 위치에 위치한다.
점(60c)은 측정용 레티클 TR의 위상 격자를 거쳐 0차 광이 생성되었다면, 그 0차 광이 동공 PLp를 통과하는 영역(60d)의 중심이다. 즉, 4개의 동공 부분 영역(60a)의 중심 위치(60c)는 개구 조리개(54a)의 관련 개구부의 위치에 의존한다. 동공 부분 영역(60a)의 크기는 개구 조리개(54a)의 각 개구부(61~69)의 크기에 크게 의존한다. 동공 부분 영역(60a)의 피치 Ppp는 측정용 레티클 TR의 위상 격자에서의 위상 영역(11c, 11d)의 피치 Pr에 의존한다.
구체적으로, 동공 부분 영역(60a)의 피치 Ppp는, 광의 파장을 λ로 하고, 투영 광학계 PL의 입사측(물체측)의 개구수를 NAo로 할 때, 이하의 식 (1)로 나타내어진다. 각 동공 부분 영역(60a)의 중심과 점(60c)간의 거리 Lpc는 이하의 식 (2)로 나타내어진다. 식 (1) 및 식 (2)에서는, 피치 Pr을, 투영 광학계 PL에 입사되는 빔의 개구수 NAo로 규격화하고 있다.
Figure pct00001
개구 조리개(54a)의 9개의 개구부(61~69) 및 측정용 레티클 TR의 위상 격자를 거쳐 생성된 ±1차 회절빔은, 도 20에 나타내는 바와 같이, 투영 광학계 PL의 동공 PLp의 유효 영역 PLpe 내의 36개(=4×9)의 동공 부분 영역(61a~69a)을 통과하여, 투영 광학계 PL로부터 각각 사출된다. 36개의 동공 부분 영역(61a~69a)의 배열 패턴은, 도 17에 나타내는 개구 조리개(54a)의 9개의 개구부(61~69)의 배열 패턴과, 도 19에 나타내는 바와 같이 1개의 빔으로부터 생성되는 ±1차 회절빔이 투영 광학계 PL의 동공 PLp를 통과하는 4개의 동공 부분 영역(60a)의 배열 패턴의 컨볼류션(convolution)에 의해 얻어진다.
후술하는 바와 같이, 투영 광학계 PL의 동공 PLp에서 측정 대상 이외의 ±3차 회절빔이 측정 대상의 ±1차 회절빔과 서로 겹치는 것을 회피하기 위해서, 도 20에서 1개의 빔에 대응하는 4개의 동공 부분 영역과, 다른 빔에 대응하는 인접한 4개의 동공 부분 영역의 X방향 간격 및 Y방향 간격이 4개의 동공 부분 영역의 피치 Ppp의 절반의 값(즉 Ppp/2)으로 되도록, 36개의 동공 부분 영역(61a~69a)이 배열되는 것으로 가정한다. 이 경우, 4개의 동공 부분 영역의 중심과 이에 인접하는 4개의 동공 부분 영역의 중심간의 거리(즉 개구부의 피치 Ppi에 광학적으로 대응하는 거리)는 4개의 동공 부분 영역의 피치 Ppp의 3/2배의 값이다.
36개의 동공 부분 영역(61a~69a) 및 투영 광학계 PL를 거친 ±1차 회절빔은 측정 유닛(13)의 측정용 개구부(13f)를 거쳐서 대물 광학계(13a)에 입사된다. 대물 광학계(13a)를 거친 ±1차 회절빔은 동공면(13p)에 배치된 검출면(13ba)에서 광전 검출기(13b)에 의해 검출된다. 그 결과, 검출면(13ba)에서도, 투영 광학계 PL의 동공 PLp에서의 36개의 동공 부분 영역(61a~69a)의 배열 패턴과 동일한 방식으로 이산적으로 분포하는 36개의 원형 형상의 광 입사 영역(도시하지 않음)이 형성된다.
이하, 설명을 간략히 하기 위해서, 측정용 레티클 TR의 위상 격자를 거쳐 생성된 36개의 ±1차 회절빔의 강도가 서로 동일하고, 또한 투영 광학계 PL의 이미지면 PLi에서의 36개의 ±1차 회절빔의 각 강도비가, 측정 유닛(13)의 검출면(13ba)에서 검출되는 36개의 ±1차 회절빔의 각 강도비와 일치하는 것으로 가정한다. 환언하면, 측정 유닛(13)은, 대물 광학계(13a)의 동공 투과율 분포에 영향 등을 받지 않고, 투영 광학계 PL의 이미지면 PLi에서의 36개의 ±1차 회절빔의 상호의 강도비를 정확하게 측정할 수 있는 것으로 가정한다.
이 경우, 측정 장치(10')는, 필요한 분포에 따라 배열된 9개의 개구부(61~69)를 가지는 개구 조리개(54a)를 이용하여, 개구부(61~69)와 동일한 수의 9개의 빔을 측정용 레티클 TR의 위상 격자 상의 소정 위치에 동시에 공급하고, 각 빔으로부터 생성된 총 36개의 ±1차 회절빔의 강도를 측정 유닛(13)에 의해 측정한다. 측정 장치(10')는, 그 측정값에 근거하여, 투영 광학계 PL의 동공 유효 영역 PLpe의 전체에 걸쳐 분포하는 36개의 동공 부분 영역(61a~69a)에서의 동공 투과율의 상대비를 정하여, 나아가서는 36개의 동공 부분 영역(61a~69a)에 대해 투영 광학계 PL의 동공 투과율 분포를 일괄적으로 측정한다.
그 결과, 투영 광학계 PL의 동공 유효 영역(20pe)의 전체에 걸쳐 분포하는 36개의 동공 부분 영역간의 동공 투과율의 상대 정보를 얻을 수 있어, 이러한 이산적인 동공 투과율의 상대값의 분포를 예컨대 제르니케 피팅 프로세스하는 것에 의해, 투영 광학계 PL의 2차원적인 동공 투과율 분포를 함수화 분포로서 직접 얻을 수 있다. 전술한 바와 같이, 제 2 실시 형태의 측정 장치(10')에서는, 개구 조리개(54a)를 스텝 이동시킬 필요가 없고, 측정 유닛(13)에 의한 측정도 1회만 요구되므로, 이에 따라, 노광 장치에 탑재된 상태에서 투영 광학계 PL의 동공 투과율 분포를 고정밀도로 신속하게 수시로 측정할 수 있다.
전술한 바와 같이, 제 2 실시 형태의 측정 장치(10')에서는, 2종류의 위상 영역(11c, 11d)이 체크 플래그 패턴을 형성하도록 배치된 위상 격자를 갖는 측정용 레티클 TR을 이용하기 때문에, 측정용 레티클 TR의 위상 격자를 거쳐 생성되는 회절빔 중 측정 대상으로서의 ±1차 회절빔 성분의 강도는 서로 동일하다. 그 결과, 측정 유닛(13)의 광전 검출기(13b)에서는 비교적 좁은 다이나믹 레인지를 이용하여 각 회절광 성분을 고정밀로 검출 가능하여, 이에 따라 투영 광학계 PL의 동공 투과율 분포를 고정밀도로 측정할 수 있다. 또, π의 위상차를 갖는 2종류의 위상 영역(11c, 11d)이 교대로 배치된 위상 격자를 갖는 측정용 레티클 TR을 이용하기 때문에, 측정 대상이 아닌 0차 광이 발생하여, ±1차 회절빔 성분의 강도의 측정에 영향을 주는 것을 방지하는 것에 의해, 측정 장치가 각 성분을 고정밀로 검출할 수 있다.
또, 측정용 레티클 TR의 자세를 변화시키거나 특성이 다른 측정용 레티클과 교환하거나 할 필요가 없어, 측정 장치는, 복수의 개구부(61~69)를 갖는 개구 조리개(54a)를 조명 광로에 단순히 고정적으로 마련하는 것만으로, 투영 광학계 PL의 동공 투과율 분포를 일괄적으로 측정하거나 매우 낮은 부하로 신속히 측정할 수 있다. 환언하면, 측정 장치는, 측정용 레티클 TR 및 개구 조리개(54a)를 고정적으로 설치한 상태에서, 측정 유닛(13)에 의한 1회의 측정 결과에 근거하여, 투영 광학계 PL의 동공 투과율 분포를 매우 낮은 부하로 신속히 측정할 수 있다.
제 2 실시 형태의 측정 장치(10')에서는, 각 회절광 성분의 강도를 정확하게 검출하기 위해서 36개의 동공 부분 영역(61a~69a)이 서로 떨어져 있는 것이 중요하고, 또한 동공 투과율 분포를 정확하게 측정하기 위해서 동공 부분 영역(61a~69a)의 크기(나아가서는 개구부(61~69)의 크기)를 어느 정도 작게 제어하는 것이 중요하다. 즉, 개구 조리개(54a)의 개구부(61~69)에 광학적으로 대응하는 각 동공 부분 영역(61a~69a)의 중심간 거리를 과도하게 크게 설정하지 않아도 되어, 측정용 레티클 TR의 위상 격자에서의 위상 영역(11c, 11d)의 피치 Pr을 과도하게 작게 설정할 필요가 없어, 나아가서는 측정용 레티클 TR의 제작이 용이하다.
제 2 실시 형태의 노광 장치에서는, 제어 유닛 CR이, 측정 장치(10')에 의해(또는 측정 장치(10')에 의한 측정 방법에 의해) 측정된 투영 광학계 PL의 동공 투과율 분포의 측정 결과에 근거하여, 마스크 M의 패턴을 조명하는 조명 조건을 변경하여, 소망하는 노광을 행한다. 구체적으로, 제어 유닛 CR은, 동공 투과율 분포의 측정 결과를 참조하여, 투영 광학계 PL를 거쳐서 형성되는 패턴 이미지의 콘트라스트가 향상되도록, 예를 들면 공간 광변조기(52a)를 포함하는 빔 형상 가변 유닛(52)에 제어 신호를 공급하고, 공간 광변조기(52a) 등의 작용에 의해 마스크 M의 패턴면에 형성되는 조명 영역에서의 조도 분포, 및/또는 조명 동공 ILp로의 동공 휘도 분포를 변경한다.
또한, 제 2 실시 형태의 노광 장치에서는, 조도 분포 및/또는 동공 휘도 분포의 변경 대신에 또는 조도 분포 및/또는 동공 휘도 분포의 변경에 부가하여, 측정 장치(10')에 의해 측정된 투영 광학계 PL의 동공 투과율 분포의 측정 결과에 근거해서 작성된 패턴을 갖는 마스크 M를 이용하여, 투영 광학계 PL를 거쳐 형성되는 패턴 이미지의 콘트라스트를 향상시킬 수도 있다. 또한 제 2 실시 형태의 노광 장치에서는, 예를 들면 소정의 프로그램에 따라, 정보 처리 유닛으로서의 제어 유닛 CR에, 측정 장치(10')에 의한 측정 방법도 실행시킬 수도 있다.
제 2 실시 형태의 측정 장치(10')에서도, 제 1 실시 형태에서의 측정 장치(10)의 경우와 같이, 측정용 레티클 TR의 위상 격자를 거쳐서 ±3차 회절빔, ±5차 회절빔 등도 발생된다. 이 경우, 측정 장치는, ±3차 회절빔, ±5차 회절광 등을 측정 대상에서 제외하고, 측정 대상인 ±1차 회절빔에 비해 현저하게 강도의 작은 ±5차 회절광(및 그 이상의 고차 회절빔)을 무시하고, ±3차 회절빔이 투영 광학계 PL의 동공 PLp에서 ±1차 회절빔과 서로 겹치지 않게 설정하도록, 배열될 수도 있다. 이하, 제 2 실시 형태에서 ±3차 회절빔이, 투영 광학계 PL의 동공 유효 영역 PLpe 내에서 ±1차 회절빔과 서로 겹치지 않도록 설정하는 기술에 대해 설명한다.
측정용 레티클 TR에 입사하는 1개의 빔에 주목하면, 측정용 레티클 TR의 위상 격자를 거쳐 생성된 회절빔 중, 측정 대상이 아닌 ±3차 회절빔은, 도 21에 나타내는 바와 같이, 투영 광학계 PL의 동공 PLp에서 12개의 동공 부분 영역(60e)을 통과하여, 투영 광학계 PL로부터 각각 사출된다. 12개의 동공 부분 영역(60e)은 ±1차 회절빔에 관한 4개의 동공 부분 영역(60a)과 같이 원형 형상이며 동일한 크기를 가진다. 12개의 동공 부분 영역(60e)의 각 중심은, 점(60c)을 중심으로 X방향 및 Y방향으로 연장되는 4개의 사이드에 의해서 규정되는 정방형의 코너 위치, 및 각 사이드를 3등분한 점의 위치에 위치한다.
12개의 동공 부분 영역(60e) 중 X방향, Y방향으로 이웃하는 2개의 영역의 중심간 거리는 4개의 동공 부분 영역(60a) 중 X방향, Y방향으로 이웃하는 2개의 중심간 거리인 피치 Ppp와 동일하다. 12개의 동공 부분 영역(60e)의 각 중심을 연결하는 것에 의해 얻어지는 정방형의 각 사이드는 4개의 동공 부분 영역(60a)의 각 중심을 연결하는 것에 의해 형성되는 정방형의 사이드의 3배의 길이(=3×Ppp)를 가진다.
따라서, 개구 조리개(54a)에서 Y방향으로 이웃하는 2개의 개구부(64, 65) 및 측정용 레티클 TR의 위상 격자를 거쳐 생성된 ±3차 회절빔은, 도 22에 나타내는 바와 같이, 투영 광학계 PL의 동공 PLp에서 24개(=12×2)의 동공 부분 영역(64e, 65e)을 통과하고, 투영 광학계 PL로부터 각각 사출된다. 도 22에서는, 도면의 명료화를 위해서, 다른 개구부(61~63, 66~69) 및 측정용 레티클 TR의 위상 격자를 거쳐 생성된 ±1차 회절빔 및 ±3차 회절빔에 대응하는 동공 부분 영역을 도시하고 있지 않다.
그러나, 도 22를 참조하면, 측정 대상인 ±1차 회절빔에 대응하는 36개의 동공 부분 영역(61a~69a)이 도 20에 나타내는 배열 패턴을 나타내도록 설정되어 있기 때문에, 투영 광학계 PL의 동공 PLp에서 ±3차 회절빔이 ±1차 회절빔과 가장 서로 겹치기 어렵다는 것이 용이하게 추측된다. 여기서, 도 19~도 22를 참조하여, ±1차 회절빔에 대응하는 36개의 동공 부분 영역(61a~69a)이 도 20에 나타내는 배열 패턴을 나타낼 때에 만족되어야 할 조건에 대해 생각한다.
±1차 회절빔에 대응하는 동공 부분 영역(60a; 61a~69a)의 피치 Ppp는 전술의 식 (1)로 나타내어진다. 4개의 동공 부분 영역(예를 들면 64a)의 중심과 이에 이웃하는 4개의 동공 부분 영역(예를 들면 65a)의 중심간의 거리 Ppe, 즉 투영 광학계 PL의 동공 PLp에서 개구부(61~69)의 피치 Ppi에 광학적으로 대응하는 거리 Ppe는 피치 Ppp의 3/2배의 값(=3×(λ/Pr)/NAo)과 동일하다. 한편, 거리 Ppe는, 개구부(61~69)의 피치 Ppi와 투영 광학계 PL의 동공 유효 영역 PLpe의 반경 Ra를 이용하여, 이하의 식 (3)으로 나타내어진다.
Figure pct00002
따라서, 이하의 식 (4)로 나타내는 관계를 만족할 경우에, 측정 대상인 ±1차 회절빔에 대응하는 36개의 동공 부분 영역(61a~69a)이 도 20에 나타내는 배열 패턴을 나타내어, 투영 광학계 PL의 동공 PLp에서 ±3차 회절빔이 ±1차 회절빔과 서로 겹치기 가장 어려워진다. 현실적으로는, 측정 장치가 식 (4)로 나타내는 관계를 만족하도록 설정하면, ±3차 회절빔에 의해 영향을 받지 않고 동공 투과율 분포의 고정밀의 측정을 행하는 것이 가능하게 된다.
Figure pct00003
상술한 제 2 실시 형태에 관한 설명에서는, 필요한 분포에 따라 배치된 복수의 개구부를 갖는 개구 조리개(54a)를 이용하여, 개구부와 동수의 빔을 측정용 레티클 TR의 위상 격자 상의 소정 위치에 동시에 공급하여, 각 빔으로부터 생성된 ±1차 회절빔에 근거해서 투영 광학계 PL의 동공 투과율 분포를 일괄적으로 측정하고 있다. 그러나, 이에 한정되지 않고, 공간 광변조기(52a)로서의 미러 어레이의 작용에 의해, 개구 조리개(54a)의 각 개구부를 차례로 조명하여, 각 개구부를 거친 빔을 측정용 레티클 TR의 위상 격자 상의 소정 위치에 차례로 공급하고, 각 빔으로부터 차례로 생성된 ±1차 회절빔에 근거하여 투영 광학계 PL의 동공 투과율 분포를 측정하도록 구성할 수도 있다. 또한, 개구 조리개(54a)의 설치없이, 미러 어레이의 작용에 의해, 각 개구부에 대응하는 국부빔을 동시에 또는 차례로 형성하는 기술도 적용 가능하다.
상술할 제 2 실시 형태에 관한 설명에서는, 측정 유닛(13)이, 대물 광학계(13a)의 동공 투과율 분포에 의해 영향을 받지 않고, ±1차 회절빔의 상호의 강도비를 정확하게 측정할 수 있는 것으로 가정하고 있다. 그러나, 대물 광학계(13a)의 동공 투과율 분포의 영향을 무시할 수 있는 정도로 작지 않은 경우에는, 제 1 실시 형태에 따라 설명한 전술한 기술은, 측정 유닛(13)의 대물 광학계(13a)의 동공 투과율 분포에 기인하는 측정 결과의 오차를 검출하여, 투영 광학계 PL의 동공 투과율 분포의 측정 결과를 교정할 수 있다. 또한, 측정 유닛(13)은, PDI/LDI형의 측정 유닛(13A)이나, 시어링 간섭계를 이용하는 측정 유닛(13B)으로 교체될 수 있다.
상술한 제 2 실시 형태에 관한 설명에서는, 1개의 빔에 대응하는 4개의 동공 부분 영역에서의 동공 투과율비와, 다른 빔에 대응하는 4개의 동공 부분 영역에서의 동공 투과율비가 서로 동일한 조건 하에서 측정되는 것으로 가정하고 있다. 그러나, 이러한 가정이 성립하지 않는 경우, 예를 들면 4개의 동공 부분 영역(64a)에서의 동공 투과율비 및 다른 4개의 동공 부분 영역(65a)에서의 동공 투과율비를 정확히 정할 수 있다고 하더라도, 동공 부분 영역(64a)에서의 동공 투과율과 동공 부분 영역(65a)에서의 동공 투과율의 비를 정확하게 정할 수 없다.
이 경우, 개구 조리개(54a)를 도 17에 나타내는 바와 같이 설정하여 측정을 행하기 전 또는 후에, 예를 들면 개구 조리개(54a)를 +X방향으로 Ppi/3만큼 및 +Y방향으로 Ppi/3만큼 시프트시킨 상태에서, 측정을 행한다. 그 결과, 개구 조리개(54a)의 개구부(64) 및 측정용 레티클 TR의 위상 격자를 거쳐 생성되는 ±1차 회절빔은, 도 23에 나타내는 바와 같이, 투영 광학계 PL의 동공 PLp에서 4개의 동공 부분 영역(64m1, 64m2, 64m3, 64m4)을 통과하고, 투영 광학계 PL로부터 각각 사출된다. 이 때, 4개의 동공 부분 영역(64m1~64m4)은, 투영 광학계 PL의 동공 PLp에서 4개의 동공 부분 영역(64a)으로부터 +X방향으로 Ppe/3만큼 시프트하고 +Y방향으로 Ppe/3만큼 시프트한 위치에 위치한다.
그 결과, 동공 부분 영역(64m1)은 1개의 빔에 대응하는 4개의 동공 부분 영역(64a)을 포함하는 포함 영역(64r) 내에 있고, 동공 부분 영역(64m2)은 다른 빔에 대응하는 4개의 동공 부분 영역(65a)을 포함하는 포함 영역(65r) 내에 있다. 이러한 방법으로, 예를 들면 동공 부분 영역(64m1)에서의 동공 투과율과 동공 부분 영역(64m2)에서의 동공 투과율의 비를 얻고, 얻어진 동공 투과율비에 근거하여 동공 부분 영역(64a, 65a)에 대해 동공 투과율 분포의 상대비 정보를 보완할 수 있다. 도 23에서는, 도면의 명료화를 위해서, 개구 조리개(54a)의 다른 개구부(61~63, 65~69) 및 측정용 레티클 TR의 위상 격자를 거쳐 생성된 ±1차 회절빔에 대응하는 동공 부분 영역을 도시하지 않고 있다. 그러나, 도 23을 참조하면, 동공 부분 영역(61a~69a)에 대해 동공 투과율 분포의 상대비 정보를 보완할 수 있는 것은 용이하게 추측된다.
상술한 제 2 실시 형태에 관한 설명에서는, 투과형의 마스크 M를 이용하는 노광 장치에 본 실시예를 적용하고 있기 때문에, 투과형의 마스크 M 대신에 투과형의 측정용 레티클 TR을 이용하고 있다. 그러나, 예를 들면 반사형의 마스크를 이용하는 노광 장치의 경우에는, 반사형의 마스크 대신에 반사형의 측정용 레티클을 이용하게 된다. 상술한 제 2 실시 형태에서는, 제 1 실시 형태의 경우와 같이, 측정용 레티클의 위상 격자의 구체적인 구성, 측정 유닛의 구체적인 구성, 조명 동공에 형성되는 국부빔의 수, 형상, 크기, 위치 등에 대해 여러 형태가 가능하다.
상술한 제 2 실시 형태에서는, 노광 장치에 이용되는 투영 광학계를 피검광학계로서 나타내었지만, 결상 광학계이면 어떠한 광학계이더라도 피검광학계로 할 수 있다. 피검광학계가 예를 들면 푸리에 변환 광학계의 비결상 광학계이면, 해당피검광학계를 공지의 동공 투과율 분포를 갖는 푸리에 변환 광학계와 조합하여 결상 광학계를 구성하고, 또한 이 결상 광학계의 동공 투과율 분포의 측정 결과로부터, 조합된 광학계의 동공 투과율 분포를 공제하는 방식으로, 비결상 광학계의 동공 투과율 분포의 측정 결과를 얻을 수 있다.
상술한 실시 형태에서는, 마스크를, 소정의 전자 데이터에 근거하여 소정 패턴을 형성하는 가변 패턴 형성 디바이스로 교체할 수 있다. 이러한 가변 패턴 형성 디바이스를 이용하면, 패턴면이 수직으로 설정되더라도, 동기 정밀도에 미치는 영향을 최저한으로 할 수 있다. 여기서 적용 가능한 가변 패턴 형성 디바이스는, 예를 들면 소정의 전자 데이터에 근거하여 구동되는 복수의 반사 소자를 포함하는 DMD(Digital Micromirror Device)일 수 있다. DMD를 이용한 노광 장치는, 예를 들면 상기 특허문헌 9 및 10에 개시되어 있다. 또한 DMD와 같은 비발광형의 반사형 공간 광변조기 이외에, 투과형 공간 광변조기 또는 자발광형(self-emission type)의 화상 표시 소자를 적용하는 것도 가능하다. 여기서는, 상기 특허문헌 10의 교시를 참조로서 원용한다.
상술한 실시 형태의 노광 장치는, 본원의 특허청구범위에 기재된 각 구성요소를 포함한 각종 하부 시스템을, 소정의 기계적 정밀도, 전기적 정밀도, 광학적 정밀도를 유지하도록, 조립하여 제조된다. 이들 각종 정밀도를 확보하기 위해서, 이 조립의 전후에는, 각종 광학계에 대해서는 광학적 정밀도를 달성하기 위한 조정, 각종 기계계에 대해서는 기계적 정밀도를 달성하기 위한 조정, 각종 전기계에 대해서는 전기적 정밀도를 달성하기 위한 조정과 같은 다양한 조정을 행한다. 각종 하부 시스템으로부터 노광 장치로의 조립 단계는 각종 하부 시스템간의 기계적 접속, 전기 회로의 배선 접속, 기압 회로의 배관 접속 등을 포함한다. 각종 하부 시스템으로부터 노광 장치로의 조립 단계 전에, 각 하부 시스템 개개의 조립 단계가 존재하는 것은 말할 필요도 없다. 각종 하부 시스템으로부터 노광 장치로의 조립 단계의 완료 후에는, 종합 조정을 행하여, 노광 장치 전체적으로의 각종 정밀도를 확보하게 한다. 노광 장치의 제조는 온도 및 청정도(cleanliness) 등이 제어되는 청정실(clean room)에서 행해질 수도 있다.
다음으로, 상술한 실시 형태에 따른 노광 장치를 이용하는 디바이스 제조 방법에 대해 설명한다. 도 24는 반도체 디바이스의 제조 공정을 나타내는 흐름도이다. 도 24에 나타내는 바와 같이, 반도체 디바이스의 제조 공정에서는, 반도체 디바이스의 기판으로 되는 웨이퍼 W에 금속막을 증착하고(스텝 S40), 이 증착한 금속막 상에 감광성 재료인 포토레지스트를 도포한다(스텝 S42). 계속해서, 상술한 실시 형태의 투영 노광 장치를 이용하여, 마스크(레티클) M에 형성된 패턴을 웨이퍼 W 상의 각 쇼트 영역에 전사하고(스텝 S44: 노광 단계), 이 전사가 완료된 웨이퍼 W를 현상, 즉 패턴이 전사된 포토레지스트를 현상한다(스텝 S46: 현상 단계).
그 후, 스텝 S46에서의 웨이퍼 W의 표면에 생성된 레지스터 패턴을 마스크로서 이용하여, 웨이퍼 W의 표면에 대해 에칭과 같은 처리를 행한다(스텝 S48: 프로세싱 단계). 여기서, 레지스트 패턴이란, 상술한 실시 형태의 투영 노광 장치에 의해서 전사된 패턴에 대응하는 형상으로 요철이 형성되는 포토레지스트층이며, 포토레지스트층을 오목부가 관통하고 있다. 스텝 S48에서는, 이 레지스터 패턴을 거쳐서 웨이퍼 W의 표면의 처리가 행해진다. 스텝 S48에 행해지는 처리에는, 예를 들면 웨이퍼 W의 표면의 에칭 또는 금속막 등의 성막 중 적어도 어느 한쪽이 포함된다. 스텝 S44에서는, 상술한 실시 형태의 투영 노광 장치는, 포토레지스트가 도포된 웨이퍼 W를, 감광성 기판 또는 플레이트 P로서 패턴의 전사를 행한다.
도 25는 액정 표시 소자와 같은 액정 디바이스의 제조 공정을 나타내는 흐름도이다. 도 25에 나타내는 바와 같이, 액정 디바이스의 제조 공정에서는, 패턴 형성 단계(스텝 S50), 컬러 필터 형성 단계(스텝 S52), 셀 조립 단계(스텝 S54) 및 모듈 조립 단계(스텝 S56)를 순차적으로 행한다. 스텝 S50의 패턴 형성 단계에서는, 플레이트 P로서, 포토레지스트가 도포된 유리 기판 상에, 상술한 실시 형태의 투영 노광 장치를 이용하여, 회로 패턴 및 전극 패턴과 같은 소정의 패턴을 형성한다. 이 패턴 형성 단계에는, 상술한 실시 형태의 투영 노광 장치를 이용하여, 포토레지스트층에 패턴을 전사하는 노광 단계와, 패턴이 전사된 플레이트 P의 현상, 즉 유리 기판 상의 포토레지스트층의 현상을 행하여, 패턴에 대응하는 형상의 포토레지스트층을 생성하는 현상 단계와, 현상된 포토레지스트층을 거쳐서 유리 기판의 표면을 처리하는 프로세싱 단계가 포함되어 있다.
스텝 S52의 컬러 필터 형성 단계에서는, R(Red), G(Green), B(Blue)에 대응하는 3개의 도트의 세트를 매트릭스 패턴으로 다수 배열하거나, 또는 R, G, B의 3개의 스트라이프의 필터의 세트를 수평 주사 방향으로 복수 배열한 컬러 필터를 형성한다. 스텝 S54의 셀 조립 단계에서는, 스텝 S50에서 소정 패턴이 형성된 유리 기판과, 스텝 S52에서 형성된 컬러 필터를 이용하여, 액정 패널(액정 셀)을 조립한다. 구체적으로는, 유리 기판과 컬러 필터 사이에 액정을 주입하여 액정 패널을 형성한다. 스텝 S56의 모듈 조립 단계에서는, 스텝 S54에서 조립된 액정 패널에서, 이 액정 패널의 표시 동작을 위한 전기 회로 및 백라이트와 같은 각종 부품을 설치한다.
또한, 본 발명의 실시 형태는, 반도체 디바이스 제조용의 노광 장치에의 적용에만 한정되지 않고, 예를 들면, 직사각형 형상의 유리 플레이트로 형성되는 액정 표시 소자 혹은 플라스마 디스플레이와 같은 디스플레이 디바이스용의 노광 장치, 및 촬상 소자(CCD 등), 마이크로 머신, 박막 자기 헤드 및 DNA 칩 과 같은 각종 디바이스를 제조하기 위한 노광 장치에도 널리 적용할 수 있다. 또한, 본 발명의 실시 형태는, 각종 디바이스의 마스크 패턴이 형성된 마스크(포토마스크, 레티클 등)를 포토리소그래피 프로세스에 의해 제조하는 노광 단계(노광 장치)에도 적용할 수 있다.
상술한 실시 형태에서는, 노광광으로서 ArF 엑시머 레이저광(파장: 193㎚) 또는 KrF 엑시머 레이저광(파장: 248㎚)을 이용하고 있지만, 노광광은 이에 한정되지 않고, 본 발명은 다른 적당한 레이저 광원, 예를 들어 파장 157㎚의 레이저광을 공급하는 F2 레이저 광원에도 본 발명의 실시 형태를 적용할 수 있다.
또한, 상술한 실시 형태에서는, 투영 광학계와 감광성 기판 사이의 광로 내를, 1.1보다 큰 굴절률을 갖는 매체(전형적으로는 액체)로 채우는 기술, 소위 액침법(liquid immersion method)도 적용할 수 있다. 이 경우, 투영 광학계와 감광성 기판 사이의 광로 내를 액체를 채우는 기술로서는, 상기 특허문헌 11에 개시되어 있는 국소적으로 액체를 채우는 기술, 상기 특허문헌 12에 개시되어 있는 노광 대상의 기판을 유지한 스테이지를 액조(liquid bath) 내로 이동시키는 기술, 상기 특허문헌 13에 개시되어 있는 스테이지 상에 소정 깊이의 액조를 형성하고, 그 내에서 기판을 유지하는 기술 등의 기술을 채용할 수 있다. 여기서는, 상기 특허문헌 11~13의 교시를 참조로서 원용한다. 상술한 실시 형태에서는, 상기 특허문헌 14 및 15에 개시되어 있는 소위 편광 조명 방법을 적용하는 것도 가능하다. 여기서는, 상기 특허문헌 14 및 15의 교시를 참조로서 원용한다.
10, 10': 측정 장치 11: 회절 격자
12: 조명 광학계 13, 13A, 13B: 측정 유닛
20: 결상 광학계 51: 빔 송광계
52: 빔 형상 가변 유닛 53: 마이크로 플라이아이 렌즈
54: 조명 개구 조리개 54a: 측정용 개구 조리개
55: 콘덴서 광학계 56: 마스크 블라인드
57: 조명 결상 광학계 LS, 21: 광원
IL: 조명 광학계 TR: 측정용 레티클
CR: 제어기 MR: 메모리(기록 매체)
M: 마스크 MS: 마스크 스테이지
PL: 투영 광학계 W: 웨이퍼
WS: 웨이퍼 스테이지

Claims (56)

  1. 피검광학계의 동공 투과율 분포(pupil transmittance distribution)를 측정하는 측정 방법에 있어서,
    상기 피검광학계의 동공과 광학적으로 푸리에 변환의 관계에 있는 제 1 면의 소정 위치에 제 1 빔을 공급하는 단계와,
    상기 제 1 면의 제 1 위상 영역을 거친 광에 제 1 위상값을 부여하고, 상기 제 1 위상 영역에 인접하는 제 2 위상 영역을 거친 광에 상기 제 1 위상값과는 다른 제 2 위상값을 부여하는 것에 의해, 상기 제 1 빔을 회절시키는 단계와,
    상기 제 1 빔의 회절을 통해 생성된 상기 제 1 빔의 +1차 회절빔을 상기 동공의 유효 영역 내의 제 1 동공 부분 영역에 통과시키고, 상기 제 1 빔의 회절을 통해 생성된 상기 제 1 빔의 -1차 회절빔을 상기 유효 영역 내에서 상기 제 1 동공 부분 영역으로부터 떨어진 제 2 동공 부분 영역에 통과시키는 단계와,
    상기 제 1 동공 부분 영역 및 상기 피검광학계를 거친 상기 제 1 빔의 상기 +1차 회절빔의 강도와, 상기 제 2 동공 부분 영역 및 상기 피검광학계를 거친 상기 제 1 빔의 -1차 회절빔의 강도를 측정하는 단계와,
    상기 제 1 빔의 상기 +1차 회절빔의 강도의 측정값 및 상기 제 1 빔의 상기 -1차 회절빔의 강도의 측정값에 근거하여, 상기 제 1 동공 부분 영역에서의 동공 투과율과 상기 제 2 동공 부분 영역에서의 동공 투과율의 비를 정하는 단계
    를 구비하는 측정 방법.
  2. 제 1 항에 있어서,
    상기 제 1 및 제 2 위상 영역은 상기 제 1 면에 교대로 배치되고,
    상기 제 2 위상값은 상기 제 1 위상값과 π만큼 다른
    측정 방법.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 제 1 빔을 공급하는 단계는 상기 제 1 빔으로서 상기 피검광학계의 광축에 대해 경사된 경사빔을 상기 소정 위치에 입사시키는 단계를 구비하는
    측정 방법.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 제 1 면의 상기 소정 위치에 제 2 빔을 공급하는 단계와,
    상기 제 1 면의 상기 제 1 위상 영역을 거친 광에 상기 제 1 위상값을 부여하고, 또한 상기 제 2 위상 영역을 거친 광에 상기 제 2 위상값을 부여하는 것에 의해, 상기 제 2 빔을 회절시키는 단계와,
    상기 제 2 빔의 회절을 거쳐 생성된 상기 제 2 빔의 +1차 회절빔을 상기 유효 영역 내에서 상기 제 1 및 상기 제 2 동공 부분 영역으로부터 떨어진 제 3 동공 부분 영역에 통과시키고, 또한, 상기 제 2 빔의 회절을 통해 생성된 상기 제 2 빔의 -1차 회절빔을 상기 유효 영역 내에서 상기 제 1 내지 상기 제 3 동공 부분 영역으로부터 떨어진 제 4 동공 부분 영역에 통과시키는 단계를 더 구비하는
    측정 방법.
  5. 제 4 항에 있어서,
    상기 제 1 빔과 상기 제 2 빔은 동시에 상기 소정 위치에 입사되는
    측정 방법.
  6. 제 5 항에 있어서,
    상기 제 1 빔의 회절을 통해 생성되는 상기 제 1 빔의 ±3차 회절빔이 상기 동공에서 상기 제 1 내지 상기 제 4 동공 부분 영역으로부터 떨어진 동공 부분 영역을 통과하도록, 상기 제 1 빔과 상기 제 2 빔이 동시에 상기 소정 위치에 입사되는
    측정 방법.
  7. 제 5 항 또는 제 6 항에 있어서,
    상기 제 1 및 제 2 빔을 입사시키는 전 또는 후에, 상기 소정 위치에 제 3 빔을 입사시키는 단계와,
    상기 제 3 빔의 회절을 통해 생성된 상기 제 3 빔의 +1차 회절빔을 상기 유효 영역 내에서 상기 제 1 및 상기 제 2 동공 부분 영역을 포함하는 제 1 포함 영역 내의 제 5 동공 부분 영역에 통과시키고, 또한 상기 제 3 빔의 회절을 통해 생성된 상기 제 3 빔의 -1차 회절빔을 상기 유효 영역 내에서 상기 제 3 및 상기 제 4 동공 부분 영역을 포함하는 제 2 포함 영역 내의 제 6 동공 부분 영역에 통과시키는 단계를 더 구비하는
    측정 방법.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 제 1 및 제 2 위상 영역은 직사각형 형상의 상기 제 1 위상 영역과 직사각형 형상의 상기 제 2 위상 영역이 체크 패턴으로 배치되는
    측정 방법.
  9. 피검광학계의 동공 투과율 분포를 측정하는 측정 방법에 있어서,
    상기 피검광학계의 동공과 광학적으로 푸리에 변환의 관계에 있는 제 1 면의 소정 위치에, 상기 피검광학계의 광축에 대해 경사진 제 1 빔을 공급하는 단계와,
    상기 제 1 빔을 회절시키는 단계와,
    상기 제 1 빔의 회절을 통해 생성된 상기 제 1 빔의 +1차 회절빔을 상기 동공의 유효 영역 내의 제 1 동공 부분 영역에 통과시키고, 또한 상기 제 1 빔의 회절을 통해 생성된 상기 제 1 빔의 -1차 회절빔을 상기 유효 영역 내에서 상기 제 1 동공 부분 영역으로부터 떨어진 제 2 동공 부분 영역에 통과시키는 단계와,
    상기 제 1 동공 부분 영역 및 상기 피검광학계를 거친 상기 제 1 빔의 +1차 회절빔의 강도와, 상기 제 2 동공 부분 영역 및 상기 피검광학계를 거친 상기 제 1 빔의 -1차 회절빔의 강도를 측정하는 단계와,
    상기 제 1 빔의 +1차 회절빔의 강도의 측정값 및 상기 제 1 빔의 -1차 회절빔의 강도의 측정값에 근거하여, 상기 제 1 동공 부분 영역에서의 동공 투과율과 상기 제 2 동공 부분 영역에서의 동공 투과율의 비를 정하는 단계
    를 구비하는 측정 방법.
  10. 제 9 항에 있어서,
    상기 제 1 빔을 회절시키는 단계는, 상기 제 1 면의 제 1 위상 영역을 거친 광에 제 1 위상값을 부여하고, 또한 상기 제 1 위상 영역에 인접하는 제 2 위상 영역을 거친 광에 상기 제 1 위상값과는 다른 제 2 위상값을 부여하여, 상기 제 1 빔을 회절시키는 단계를 구비하는
    측정 방법.
  11. 제 10 항에 있어서,
    상기 제 1 및 제 2 위상 영역은 상기 제 1 면에 교대로 배치되고,
    상기 제 2 위상값은 상기 제 1 위상값과 π만큼 다른
    측정 방법.
  12. 제 10 항 또는 제 11 항에 있어서,
    상기 제 1 면의 상기 소정 위치에 제 2 빔을 공급하는 단계와,
    상기 제 1 면의 상기 제 1 위상 영역을 거친 광에 상기 제 1 위상값을 부여하고, 제 2 위상 영역을 거친 광에 상기 제 2 위상값을 부여하여, 상기 제 2 빔을 회절시키는 단계와,
    상기 제 2 빔의 회절을 통해 생성된 상기 제 2 빔의 +1차 회절빔을 상기 유효 영역 내에서 상기 제 1 및 상기 제 2 동공 부분 영역으로부터 떨어진 제 3 동공 부분 영역에 통과시키고, 상기 제 2 빔의 회절을 통해 생성된 상기 제 2 빔의 -1차 회절빔을 상기 유효 영역 내에서 상기 제 1 내지 상기 제 3 동공 부분 영역으로부터 떨어진 제 4 동공 부분 영역에 통과시키는 단계를 더 구비하는
    측정 방법.

  13. 제 12 항에 있어서,
    상기 제 1 빔 및 상기 제 2 빔은 동시에 상기 소정 위치에 입사되는
    측정 방법.
  14. 제 13 항에 있어서,
    상기 제 1 빔의 회절을 통해 생성되는 상기 제 1 빔의 ±3차 회절빔이 상기 동공에서 상기 제 1 내지 상기 제 4 동공 부분 영역으로부터 떨어진 동공 부분 영역을 통과하도록, 상기 제 1 빔과 상기 제 2 빔은 동시에 상기 소정 위치에 입사되는
    측정 방법.
  15. 제 13 항 또는 제 14 항에 있어서,
    상기 제 1 및 제 2 빔의 입사 전 또는 후에, 상기 소정 위치에 제 3 빔을 입사시키는 단계와,
    상기 제 3 빔의 회절을 통해 생성된 상기 제 3 빔의 +1차 회절빔을 상기 유효 영역 내에서 상기 제 1 및 상기 제 2 동공 부분 영역을 포함하는 제 1 포함 영역 내의 제 5 동공 부분 영역에 통과시키고, 상기 제 3 빔의 회절을 통해 생성된 상기 제 3 빔의 -1차 회절빔을 상기 유효 영역 내에서 상기 제 3 및 상기 제 4 동공 부분 영역을 포함하는 제 2 포함 영역 내의 제 6 동공 부분 영역에 통과시키는 단계를 더 구비하는
    측정 방법.
  16. 제 11 항 내지 제 15 항 중 어느 한 항에 있어서,
    상기 제 1 및 제 2 위상 영역은 직사각형 형상의 상기 제 1 위상 영역 및 직사각형 형상의 상기 제 2 위상 영역이 체크 패턴으로 배치되는
    측정 방법.
  17. 제 1 항 내지 제 16 항 중 어느 한 항에 있어서,
    상기 피검광학계에 대해 상기 제 1 면과 광학적으로 공액인 제 2 면의 소정 위치에, 상기 제 1 면 및 상기 피검광학계를 거쳐서 교정빔(calibration beam)을 공급하는 단계와,
    상기 제 2 면의 제 3 위상 영역을 거친 광에 제 3 위상값을 부여하고, 상기 제 3 위상 영역에 인접하는 제 4 위상 영역을 거친 광에 상기 제 3 위상값과는 다른 제 4 위상값를 부여하는 것에 의해, 상기 교정빔을 회절시키는 단계와,
    상기 교정빔의 회절을 통해 생성된 상기 교정빔의 +1차 회절빔의 강도와, 상기 교정빔의 회절을 통해 생성된 상기 교정빔의 -1차 회절빔의 강도를 측정하는 단계를 더 구비하는
    측정 방법.
  18. 제 17 항에 있어서,
    상기 교정빔은 상기 제 1 면에서 회절되지 않는
    측정 방법.
  19. 제 17 항 또는 제 18 항에 있어서,
    상기 제 1 동공 부분 영역 및 상기 피검광학계를 거친 상기 제 1 빔의 +1차 회절빔와, 상기 제 2 동공 부분 영역 및 상기 피검광학계를 거친 상기 제 1 빔의 -1차 회절빔을 측정 광학계에 통과시키는 단계를 더 구비하며,
    상기 제 1 빔의 +1차 회절빔 및 상기 제 1 빔의 -1차 회절빔의 강도는 상기 측정 광학계를 통과한 후에 측정되는
    측정 방법.
  20. 제 19 항에 있어서,
    상기 교정빔의 회절을 통해 생성되고 상기 측정 광학계를 거친 상기 교정빔의 +1차 회절빔의 강도와, 상기 교정빔의 회절을 통해 생성되고 상기 측정 광학계를 거친 상기 교정빔의 -1차 회절빔의 강도가 측정되는
    측정 방법.
  21. 제 20 항에 있어서,
    상기 동공 투과율의 비의 산출 결과는, 상기 교정빔의 회절을 통해 생성되고 상기 측정 광학계를 거친 상기 교정빔의 +1차 회절빔 및 -1차 회절빔의 강도의 측정값을 이용하여, 교정되는
    측정 방법.
  22. 청구항 1 내지 21 중 어느 한 항에 기재된 측정 방법을 처리 유닛에 실행시키는
    프로그램.
  23. 청구항 1 내지 21 중 어느 한 항에 기재된 측정 방법을 컴퓨터에 실행시키는 컴퓨터 프로그램을 저장하는
    컴퓨터 판독 가능한 매체.
  24. 소정의 패턴을 조명하는 조명 광학계와, 상기 소정의 패턴의 이미지를 감광성 기판 상에 형성하는 투영 광학계를 구비하는 노광 장치를 제어하는 제어 방법에 있어서,
    청구항 1 내지 21 중 어느 한 항에 기재된 측정 방법에 의해 측정된 상기 투영 광학계의 동공 투과율 분포의 측정 결과에 근거하여, 상기 소정의 패턴을 조명하는 조명 조건을 변경하는 단계
    를 구비하는 제어 방법.
  25. 제 24 항에 있어서,
    상기 조명 조건은, 상기 조명 광학계에 의한 상기 제 1 면에서의 조도 분포(illuminance distribution) 및 상기 조명 광학계의 동공로의 동공 휘도 분포(pupil illuminance distribution) 중 적어도 한쪽인
    제어 방법.
  26. 소정의 패턴을 조명하는 것과, 투영 광학계에 의해 상기 소정의 패턴을 감광성 기판에 전사하여 노광하는 것을 포함하는 노광 방법에 있어서,
    청구항 1 내지 21 중 어느 한 항에 기재된 측정 방법에 의해 측정된 상기 투영 광학계의 동공 투과율 분포의 측정 결과에 근거하여, 상기 소정의 패턴을 조명하는 조명 조건을 변경하는 단계
    를 구비하는 노광 방법.
  27. 소정의 패턴을 조명하는 것과, 투영 광학계에 의해 상기 소정의 패턴을 감광성 기판에 전사하여 노광하는 것을 포함하는 노광 방법에 있어서,
    청구항 1 내지 21 중 어느 한 항에 기재된 측정 방법에 의해 측정된 상기 투영 광학계의 동공 투과율 분포의 측정 결과에 근거하여 작성된 패턴을 이용하는 단계
    를 구비하는 노광 방법.
  28. 청구항 26 또는 27에 기재된 노광 방법을 이용하여, 상기 소정의 패턴을 상기 감광성 기판에 전사하여 노광하는 단계와,
    상기 소정의 패턴이 전사된 상기 감광성 기판을 현상하여, 상기 소정의 패턴에 대응하는 형상의 마스크층을 상기 감광성 기판의 표면에 형성하는 단계와,
    상기 마스크층을 거쳐서 상기 감광성 기판의 표면을 처리하는 단계
    를 구비하는 디바이스 제조 방법.
  29. 피검광학계의 동공 투과율 분포를 측정하는 측정 장치에 있어서,
    상기 피검광학계의 동공과 광학적으로 푸리에 변환의 관계에 있는 제 1 면에 탑재 허용된 회절 격자로서, 도달한 광을 회절시키는 상기 회절 격자와,
    상기 제 1 면에 탑재된 상기 회절 격자를 거쳐 생성된 상기 광의 +1차 회절빔이 상기 동공의 유효 영역 내의 제 1 동공 부분 영역을 통과하고, 상기 회절 격자를 거쳐 생성된 상기 광의 -1차 회절빔이 상기 유효 영역 내에서 상기 제 1 동공 부분 영역으로부터 떨어진 제 2 동공 부분 영역을 통과하도록, 상기 피검광학계의 광축에 대해 경사진 빔을 상기 제 1 면의 소정 위치에 입사시키는 조명 광학계와,
    상기 제 1 동공 부분 영역 및 상기 피검광학계를 거친 상기 광의 +1차 회절빔의 강도와, 상기 제 2 동공 부분 영역 및 상기 피검광학계를 거친 상기 광의 -1차 회절빔의 강도를 측정하는 측정 유닛
    을 구비하되,
    상기 광의 +1차 회절빔의 강도의 측정값 및 상기 광의 -1차 회절빔의 강도의 측정값에 근거하여, 상기 제 1 동공 부분 영역에서의 동공 투과율과 상기 제 2 동공 부분 영역에서의 동공 투과율의 비를 정하는
    측정 장치.
  30. 제 29 항에 있어서,
    상기 조명 광학계는, 상기 동공과 광학적으로 공액인 제 1 공액면에서 상기 조명 광학계의 광축으로부터 떨어진 위치에 국한된(localized) 광 강도 분포를 갖는 적어도 하나의 국부빔(localized beam)을 형성하는 국부빔 형성 유닛을 구비하는
    측정 장치.
  31. 제 30 항에 있어서,
    상기 국부빔 형성 유닛은 상기 제 1 공액면에서 조명 광로에 대해 삽입 또는 분리 가능한 개구 조리개를 갖는
    측정 장치.
  32. 제 30 항 또는 제 31 항에 있어서,
    상기 국부빔 형성 유닛은, 상기 제 1 공액면에서 상기 조명 광학계의 상기 광축으로부터 떨어진 위치에 국한된 광 강도 분포를 형성하기 위해서, 상기 제 1 공액면으로 향하는 빔에 각도 분포를 부여하는 공간 광변조기(spatial light modulator)를 갖는
    측정 장치.
  33. 제 32 항에 있어서,
    상기 공간 광변조기는 회절 광학 소자 또는 미러 어레이를 구비하는
    측정 장치.
  34. 제 29 항 내지 제 33 항 중 어느 한 항에 있어서,
    상기 회절 격자는 위상형의 회절 격자를 구비하는
    측정 장치.
  35. 제 34 항에 있어서,
    상기 위상형의 회절 격자는, 투과광에 대해 제 1 위상값을 부여하는 제 1 위상 영역과, 투과광에 대해 상기 제 1 위상값과 π만큼 다른 제 2 위상값을 부여하는 제 2 위상 영역이 교대로 배치된 형태를 갖는
    측정 장치.

  36. 제 34 항에 있어서,
    상기 위상형의 회절 격자는 직사각형 형상의 상기 제 1 위상 영역과 직사각형 형상의 상기 제 2 위상 영역이 체크 패턴으로 배치된 형태를 갖는
    측정 장치.
  37. 제 29 항 내지 제 36 항 중 어느 한 항에 있어서,
    상기 측정 유닛은,
    상기 동공과 광학적으로 공액인 제 2 공액면과 상기 피검광학계 사이의 광로 중에 배치된 대물 광학계와,
    상기 제 1 동공 부분 영역 및 상기 대물 광학계를 거친 상기 광의 +1차 회절빔 및, 상기 제 2 동공 부분 영역 및 상기 대물 광학계를 거친 상기 광의 -1차 회절빔을 상기 제 2 공액면에서 광전 검출하는 광전 검출기(photoelectric detector)를 구비하는
    측정 장치.
  38. 제 37 항에 있어서,
    상기 피검광학계와 상기 대물 광학계 사이의 광로 중에서 상기 제 2 공액면과 광학적으로 푸리에 변환의 관계에 있는 제 2 면에 탑재 가능한 제 2 회절 격자를 더 구비하는
    측정 장치.
  39. 제 29 항 내지 제 36 항 중 어느 한 항에 있어서,
    상기 측정 유닛은, 상기 피검광학계에 대해 상기 제 1 면과 광학적으로 공액인 제 2 면으로부터 떨어진 위치에 배치되고, 상기 제 1 동공 부분 영역을 거친 상기 광의 +1차 회절빔 및 상기 제 2 동공 부분 영역을 거친 상기 광의 -1차 회절빔을 상기 제 2 면으로부터 떨어진 위치에서 광전 검출하는 광전 검출기를 구비하는
    측정 장치.
  40. 제 39 항에 있어서,
    상기 제 2 면에 탑재 가능한 제 2 회절 격자를 더 구비하는
    측정 장치.
  41. 제 38 항 또는 제 40 항에 있어서,
    상기 제 2 회절 격자는 위상형의 회절 격자를 포함하는
    측정 장치.
  42. 제 41 항에 있어서,
    상기 제 2 회절 격자는, 투과광에 대해 제 1 위상값을 부여하는 제 1 위상 영역과, 투과광에 대해 상기 제 1 위상값과 π만큼 다른 제 2 위상값을 부여하는 제 2 위상 영역이 교대로 배치된 형태를 갖는
    측정 장치.
  43. 제 42 항에 있어서,
    상기 제 2 회절 격자는 직사각형 형상의 상기 제 1 위상 영역과 직사각형 형상의 상기 제 2 위상 영역이 체크 패턴으로 배치된 형태를 갖는
    측정 장치.
  44. 소정의 패턴을 조명하는 조명 광학계와, 상기 소정의 패턴의 이미지를 감광성 기판 상에 형성하는 투영 광학계를 구비한 노광 장치에 있어서,
    청구항 1 내지 21 중 어느 한 항에 기재된 측정 방법에 의해 측정된 상기 투영 광학계의 동공 투과율 분포의 측정 결과에 근거하여, 상기 소정의 패턴의 조명 조건을 스위칭하기 위해서, 상기 조명 광학계를 제어하는 제어 유닛을 구비하는
    노광 장치.
  45. 제 44 항에 있어서,
    상기 조명 조건은 상기 조명 광학계에 의한 상기 제 1 면에서의 조도 분포 및 상기 조명 광학계의 동공에서의 동공 휘도 분포 중 적어도 한쪽인
    노광 장치.
  46. 소정의 패턴을 조명하는 조명 광학계와, 상기 소정의 패턴의 이미지를 감광성 기판 상에 형성하는 투영 광학계를 구비한 노광 장치에 있어서,
    상기 투영 광학계의 동공 투과율 분포를 측정하는 청구항 29 내지 43 중 어느 한 항에 기재된 측정 장치를 구비하는
    노광 장치.
  47. 청구항 44 내지 46 중 어느 한 항에 기재된 노광 장치를 이용하여, 상기 소정의 패턴을 상기 감광성 기판에 전사하여 노광하는 단계와,
    상기 소정의 패턴이 전사된 상기 감광성 기판을 현상하고, 상기 소정의 패턴에 대응하는 형상의 마스크층을 상기 감광성 기판의 표면에 형성하는 단계와,
    상기 마스크층을 거쳐서 상기 감광성 기판의 표면을 처리하는 단계를 구비하는
    디바이스 제조 방법.
  48. 제 47 항에 있어서,
    상기 노광 단계는 상기 투영 광학계의 동공 투과율 분포의 측정 결과에 근거하여 작성된 패턴을 이용하는 단계를 구비하는
    디바이스 제조 방법.
  49. 청구항 1 내지 8, 10 내지 16 중 어느 한 항에 기재된 측정 방법을 행할 때에 이용되는 측정용 레티클에 있어서,
    상기 제 1 위상 영역 및 상기 제 2 위상 영역은 상기 측정용 레티클의 표면 상에 형성되는
    측정용 레티클.
  50. 제 49 항에 있어서,
    상기 제 1 위상 영역 및 상기 제 2 위상 영역은 광투과성 기판의 표면에 형성되는
    측정용 레티클.
  51. 청구항 9 내지 16 중 어느 한 항에 기재된 측정 방법을 행할 때에 이용되는 개구 조리개에 있어서,
    상기 제 1 빔을 공급하는 조명 광학계의 광로 중에 상기 동공과 광학적으로 공액인 제 1 공액면에서 상기 조명 광학계의 광축으로부터 떨어진 위치에 국한된 광 강도 분포를 형성하는 개구부로서, 상기 광축으로부터 떨어진 위치에 형성되는 상기 개구부를 구비하는
    개구 조리개.
  52. 청구항 9 내지 16 중 어느 한 항에 기재된 측정 방법을 행할 때에 이용되는 공간 광변조기에 있어서,
    상기 제 1 빔을 공급하는 조명 광학계의 광로 중에 상기 동공과 광학적으로 공액인 제 1 공액면에서 상기 조명 광학계의 광축으로부터 떨어진 위치에 국한된 광 강도 분포를 형성하기 위해서, 상기 제 1 공액면으로 향하는 빔에 각도 분포를 부여하는
    공간 광변조기.
  53. 제 52 항에 있어서,
    회절 광학 소자 또는 미러 어레이를 구비하는
    공간 광변조기.
  54. 청구항 9 내지 16 중 어느 한 항에 기재된 측정 방법을 행할 때에 이용되는 공간 광변조기의 제어 방법에 있어서,
    상기 제 1 빔을 공급하는 조명 광학계의 광로 중에 상기 동공과 광학적으로 공액인 제 1 공액면에서 상기 조명 광학계의 광축으로부터 떨어진 위치에 국한된 광 강도 분포를 형성하기 위해서, 상기 제 1 공액면으로 향하는 빔에 각도 분포를 부여하도록, 상기 공간 변조기를 제어하는
    공간 광변조기의 제어 방법.
  55. 청구항 54에 기재된 제어 방법을 처리 유닛에 실행시키는
    프로그램.
  56. 청구항 54에 기재된 제어 방법을 컴퓨터에 실행시키는 컴퓨터 프로그램을 저장하는
    컴퓨터 판독 가능한 매체.
KR1020127024951A 2010-02-25 2011-02-14 동공 투과율 분포의 측정 방법 및 측정 장치, 노광 방법 및 노광 장치, 및 디바이스 제조 방법 KR20130054942A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US30808710P 2010-02-25 2010-02-25
US61/308,087 2010-02-25
US13/011,320 US9389519B2 (en) 2010-02-25 2011-01-21 Measuring method and measuring apparatus of pupil transmittance distribution, exposure method and exposure apparatus, and device manufacturing method
US13/011,320 2011-01-21
PCT/JP2011/053588 WO2011105307A1 (en) 2010-02-25 2011-02-14 Measuring method and measuring apparatus of pupil transmittance distribution, exposure method and exposure apparatus, and device manufacturing method

Publications (1)

Publication Number Publication Date
KR20130054942A true KR20130054942A (ko) 2013-05-27

Family

ID=44476238

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127024951A KR20130054942A (ko) 2010-02-25 2011-02-14 동공 투과율 분포의 측정 방법 및 측정 장치, 노광 방법 및 노광 장치, 및 디바이스 제조 방법

Country Status (5)

Country Link
US (1) US9389519B2 (ko)
JP (2) JP5691608B2 (ko)
KR (1) KR20130054942A (ko)
TW (4) TWI548868B (ko)
WO (1) WO2011105307A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105258922B (zh) * 2009-10-20 2018-10-19 株式会社尼康 用于测量波前像差的方法和波前像差测量设备
CN102620917A (zh) * 2012-04-11 2012-08-01 长春理工大学 透射式光学元件光致热变形像质分析方法
US9581811B2 (en) * 2012-05-02 2017-02-28 Nikon Corporation Method for evaluating and improving pupil luminance distribution, illumination optical system and adjustment method thereof, exposure apparatus, exposure method, and device manufacturing method
JP5969848B2 (ja) * 2012-07-19 2016-08-17 キヤノン株式会社 露光装置、調整対象の調整量を求める方法、プログラム及びデバイスの製造方法
DE102013204466A1 (de) 2013-03-14 2014-09-18 Carl Zeiss Smt Gmbh Messung einer optischen Symmetrieeigenschaft an einer Projektionsbelichtungsanlage
US11402629B2 (en) 2013-11-27 2022-08-02 Magic Leap, Inc. Separated pupil optical systems for virtual and augmented reality and methods for displaying images using same
CN111054920B (zh) * 2014-11-14 2022-09-16 株式会社尼康 造形装置及造形方法
WO2016179246A1 (en) * 2015-05-04 2016-11-10 Magic Leap, Inc. Separated pupil optical systems for virtual and augmented reality and methods for displaying images using same
WO2016184571A2 (de) * 2015-05-20 2016-11-24 Carl Zeiss Smt Gmbh Messverfahren und messanordnung für ein abbildendes optisches system
DE102016212477A1 (de) * 2016-07-08 2018-01-11 Carl Zeiss Smt Gmbh Messverfahren und Messsystem zur interferometrischen Vermessung der Abbildungsqualität eines optischen Abbildungssystems
DE102017221005A1 (de) * 2017-11-23 2019-05-23 Carl Zeiss Smt Gmbh Verfahren und Vorrichtung zur Kalibrierung einer diffraktiven Messstruktur
CN110243572B (zh) * 2019-06-28 2021-07-27 中兴光电子技术有限公司 一种光波导群折射率测试装置和方法
CN113552773B (zh) * 2020-04-23 2023-02-10 上海微电子装备(集团)股份有限公司 光刻机、瞳面透过率分布检测装置及检测方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2385241A1 (fr) * 1976-12-23 1978-10-20 Marie G R P Convertisseurs de mode de polarisation pour faisceaux laser et generateurs de plasma les utilisant
JPH053300A (ja) 1990-10-05 1993-01-08 Nippon Steel Corp 半導体装置
JP2633091B2 (ja) * 1991-02-22 1997-07-23 キヤノン株式会社 像投影方法、回路製造方法及び投影露光装置
JPH0536586A (ja) * 1991-08-02 1993-02-12 Canon Inc 像投影方法及び該方法を用いた半導体デバイスの製造方法
JP3102086B2 (ja) * 1991-10-08 2000-10-23 株式会社ニコン 投影露光装置及び方法、並びに回路素子形成方法
JP3318620B2 (ja) * 1992-01-28 2002-08-26 株式会社ニコン 投影光学系の特性計測方法、並びに露光方法及び装置
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
RU2084941C1 (ru) 1996-05-06 1997-07-20 Йелстаун Корпорейшн Н.В. Адаптивный оптический модуль
JP3747566B2 (ja) 1997-04-23 2006-02-22 株式会社ニコン 液浸型露光装置
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP3302965B2 (ja) * 2000-02-15 2002-07-15 株式会社東芝 露光装置の検査方法
TW550377B (en) 2000-02-23 2003-09-01 Zeiss Stiftung Apparatus for wave-front detection
JP4230676B2 (ja) * 2001-04-27 2009-02-25 株式会社東芝 露光装置の照度むらの測定方法、照度むらの補正方法、半導体デバイスの製造方法及び露光装置
WO2003021352A1 (fr) * 2001-08-31 2003-03-13 Canon Kabushiki Kaisha Reticule et procede de mesure de caracteristiques optiques
JP4307813B2 (ja) 2001-11-14 2009-08-05 株式会社リコー 光偏向方法並びに光偏向装置及びその光偏向装置の製造方法並びにその光偏向装置を具備する光情報処理装置及び画像形成装置及び画像投影表示装置及び光伝送装置
US6900915B2 (en) 2001-11-14 2005-05-31 Ricoh Company, Ltd. Light deflecting method and apparatus efficiently using a floating mirror
JP4182277B2 (ja) * 2002-03-04 2008-11-19 富士通マイクロエレクトロニクス株式会社 マスク、有効光路の測定方法、及び露光装置
JP4324957B2 (ja) 2002-05-27 2009-09-02 株式会社ニコン 照明光学装置、露光装置および露光方法
JP2004304135A (ja) 2003-04-01 2004-10-28 Nikon Corp 露光装置、露光方法及びマイクロデバイスの製造方法
US7095546B2 (en) 2003-04-24 2006-08-22 Metconnex Canada Inc. Micro-electro-mechanical-system two dimensional mirror with articulated suspension structures for high fill factor arrays
JP2006524349A (ja) 2003-04-24 2006-10-26 メトコネックス カナダ インコーポレイティッド 高フィルファクターアレイのための、連接式サスペンション構造を有する微小電子機械システム2次元ミラー
TWI263859B (en) 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI573175B (zh) 2003-10-28 2017-03-01 尼康股份有限公司 照明光學裝置、曝光裝置、曝光方法以及元件製造 方法
JP2005159213A (ja) * 2003-11-28 2005-06-16 Canon Inc シアリング干渉を利用した測定方法及び装置、それを利用した露光方法及び装置、並びに、デバイス製造方法
CN101726863B (zh) 2004-01-16 2012-08-29 卡尔蔡司Smt有限责任公司 偏振调制光学元件
EP1709636A2 (en) 2004-01-16 2006-10-11 Koninklijke Philips Electronics N.V. Optical system
TWI389174B (zh) 2004-02-06 2013-03-11 尼康股份有限公司 偏光變換元件、光學照明裝置、曝光裝置以及曝光方法
WO2005119368A2 (en) 2004-06-04 2005-12-15 Carl Zeiss Smt Ag System for measuring the image quality of an optical imaging system
EP1621930A3 (en) * 2004-07-29 2011-07-06 Carl Zeiss SMT GmbH Illumination system for a microlithographic projection exposure apparatus
JP4599936B2 (ja) 2004-08-17 2010-12-15 株式会社ニコン 照明光学装置、照明光学装置の調整方法、露光装置、および露光方法
JP4335114B2 (ja) 2004-10-18 2009-09-30 日本碍子株式会社 マイクロミラーデバイス
TWI453795B (zh) 2005-01-21 2014-09-21 尼康股份有限公司 照明光學裝置、曝光裝置、曝光方法以及元件製造方法
KR101240130B1 (ko) 2005-01-25 2013-03-07 가부시키가이샤 니콘 노광 장치, 노광 방법, 및 마이크로 디바이스 제조 방법
DE102006015213A1 (de) 2006-03-30 2007-10-11 Carl Zeiss Smt Ag Polarisationsbeeinflussende optische Anordnung
JP5197304B2 (ja) * 2008-10-30 2013-05-15 キヤノン株式会社 露光装置およびデバイス製造方法

Also Published As

Publication number Publication date
JP2011176312A (ja) 2011-09-08
TW201835540A (zh) 2018-10-01
TW201638571A (zh) 2016-11-01
US9389519B2 (en) 2016-07-12
JP5691608B2 (ja) 2015-04-01
TW201608222A (zh) 2016-03-01
TWI706125B (zh) 2020-10-01
JP5862992B2 (ja) 2016-02-16
TWI548868B (zh) 2016-09-11
JP2015144275A (ja) 2015-08-06
US20110205514A1 (en) 2011-08-25
TWI630378B (zh) 2018-07-21
WO2011105307A1 (en) 2011-09-01
TW201140019A (en) 2011-11-16
TWI515419B (zh) 2016-01-01

Similar Documents

Publication Publication Date Title
JP5862992B2 (ja) 光学系の測定方法、露光装置の制御方法、露光方法、およびデバイス製造方法
US6633390B2 (en) Focus measurement in projection exposure apparatus
US7619748B2 (en) Exposure apparatus mounted with measuring apparatus
CN101349804B (zh) 用于散射仪的反射折射式光学系统
US8004691B2 (en) Measuring apparatus, exposure apparatus and method, and device manufacturing method
US7428059B2 (en) Measurement method and apparatus, exposure apparatus, and device manufacturing method
US7724376B2 (en) Wavefront-aberration measuring method and device, and exposure apparatus including the device
US8013980B2 (en) Exposure apparatus equipped with interferometer and exposure apparatus using the same
JP3870153B2 (ja) 光学特性の測定方法
JP2007180209A (ja) 測定方法及び装置、露光装置、並びに、デバイス製造方法
JP2023125840A (ja) 計測装置、計測方法、リソグラフィ装置及び物品の製造方法
WO2019166183A1 (en) Apodization measurement for lithographic apparatus
JP2009053135A (ja) 回折干渉計、回折干渉計測方法、露光装置及び電子デバイスの製造方法
JP2002270491A (ja) 露光装置、露光装置の製造方法、波面収差計測装置及びマイクロデバイスの製造方法
US20100177290A1 (en) Optical characteristic measuring method, optical characteristic adjusting method, exposure apparatus, exposing method, and exposure apparatus manufacturing method
US10222293B2 (en) Optical characteristic measuring method, optical characteristic adjusting method, exposure apparatus, exposing method, and exposure apparatus manufacturing method by detecting a light amount of measuring light
KR20090091060A (ko) 측정 방법 및 측정용 레티클
JP2014086684A (ja) 干渉計、波面収差計測装置、露光装置、露光方法、およびデバイス製造方法

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination