KR20120131536A - 고밀도를 갖는 cis계 박막 제조방법 - Google Patents

고밀도를 갖는 cis계 박막 제조방법 Download PDF

Info

Publication number
KR20120131536A
KR20120131536A KR1020110049768A KR20110049768A KR20120131536A KR 20120131536 A KR20120131536 A KR 20120131536A KR 1020110049768 A KR1020110049768 A KR 1020110049768A KR 20110049768 A KR20110049768 A KR 20110049768A KR 20120131536 A KR20120131536 A KR 20120131536A
Authority
KR
South Korea
Prior art keywords
cis
thin film
high density
based compound
compound
Prior art date
Application number
KR1020110049768A
Other languages
English (en)
Inventor
안세진
윤경훈
윤재호
곽지혜
조아라
신기식
안승규
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020110049768A priority Critical patent/KR20120131536A/ko
Priority to CN201280023302.XA priority patent/CN103534818B/zh
Priority to PCT/KR2012/000813 priority patent/WO2012161402A1/en
Publication of KR20120131536A publication Critical patent/KR20120131536A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

고밀도를 갖는 태양전지용 CIS계 화합물 박막 제조방법이 개시된다. 본 발명의 태양전지용 CIS계 화합물 박막 제조방법은 CIS계 화합물 나노입자를 제조하는 단계(단계 1); 상기 CIS계 화합물 나노입자, 킬레이트제(chelating agent) 및 용매를 혼합하여 CIS계 화합물 슬러리를 제조하는 단계(단계 2); 상기 CIS계 화합물 슬러리를 코팅하여 CIS계 화합물 박막을 형성하는 단계(단계 3); 및 상기 CIS계 화합물 박막을 열처리하는 단계(단계 4)를 포함하며, 이에 의해 박막 태양전지의 광흡수층으로 이용되는 CIS계 박막의 구조를 치밀화 할 수 있다.

Description

고밀도를 갖는 CIS계 박막 제조방법{PREPARATION METHOD FOR CIS-BASED COMPOUND THIN FILM WITH HIGH DENSITY}
본 발명은 고밀도를 갖는 태양전지용 CIS계 화합물 박막 제조방법에 관한 것으로서, 보다 상세하게는 비진공 코팅법으로 CIS 화합물 나노입자, CIGS 화합물 나노입자 또는 CZTS 화합물 나노입자 코팅시, 전구체 박막의 형성 단계에서 조직을 치밀하게 할 수 있는 고밀도의 CIS계 화합물 박막 제조방법 및 상기 CIS계 화합물 박막을 이용한 박막형 태양전지의 제조방법에 관한 것이다.
최근 심각한 환경오염 문제와 화석 에너지 고갈로 차세대 청정에너지 개발에 대한 중요성이 증대되고 있다. 그 중에서도 태양전지는 태양 에너지를 직접 전기 에너지로 전환하는 장치로서, 공해가 적고, 자원이 무한적이며 반영구적인 수명이 있어 미래 에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있다.
태양전지는 광흡수층으로 사용되는 물질에 따라서 다양한 종류로 구분되며, 현재 가장 많이 사용되는 것은 실리콘을 이용한 실리콘 태양전지이다. 그러나 최근 실리콘의 공급부족으로 가격이 급등하면서 박막형 태양전지에 대한 관심이 증가하고 있다. 박막형 태양전지는 얇은 두께로 제작되므로 재료의 소모량이 적고, 무게가 가볍기 때문에 활용범위가 넓다. 이러한 박막형 태양전지의 재료로는 비정질 실리콘과 CdTe, CIS 또는 CIGS에 대한 연구가 활발하게 진행되고 있다.
CIS 박막 또는 CIGS 박막은 Ⅰ-Ⅲ-Ⅵ 화합물 반도체 중의 하나이며, 실험실적으로 만든 박막 태양전지 중에서 가장 높은 변환효율(20.3%)을 기록하고 있다. 특히 10 마이크론 이하의 두께로 제작이 가능하고, 장시간 사용 시에도 안정적인 특성이 있어, 실리콘을 대체할 수 있는 저가의 고효율 태양전지로 기대되고 있다.
특히 CIS 박막은 직접 천이형 반도체로서 박막화가 가능하고 밴드갭이 1.04 eV로 비교적 광변환에 적합하며, 광흡수 계수가 알려진 태양전지 재료 중 큰 값을 나타내는 재료이다.
CIGS 박막은 CIS 박막의 낮은 개방전압을 개선하기 위하여 In의 일부를 Ga으로 대체하거나 Se를 S로 대체하여 개발된 재료이다.
CIGS계 태양전지는 수 마이크론 두께의 박막으로 태양전지를 만드는데, 그 제조방법으로는 크게 진공에서의 증착을 이용하는 방법과, 비진공에서 전구체 물질을 도포한 후에 이를 열처리하는 방법이 있다. 그 중, 진공 증착에 의한 방법은 고효율의 흡수층을 제조할 수 있는 장점이 있는 반면에, 대면적의 흡수층 제조 시에 균일성이 떨어지고 고가의 장비를 이용하여야 하며 사용되는 재료의 20?50%의 손실로 인하여 제조단가가 높다는 단점이 있다. 반면에, 전구체 물질을 도포한 후 고온 열처리하는 방법은 공정 단가를 낮출 수 있으며 대면적을 균일하게 제조할 수 있으나, 흡수층 효율이 낮다는 단점이 있다.
비진공에서 전구체 물질을 도포하여 형성된 CIGS 박막은 기공이 많고 치밀화되지 못한 특성을 나타내기 때문에 셀렌화 열처리를 수행한다. 기존의 셀렌화 열처리 공정에서는 유독 기체인 셀렌화수소(H2Se)를 사용함에 따라 안정성의 문제에 의해 안전설비를 갖추기 위해 엄청난 양의 시설비가 전제되어야 하고 장시간 열처리하여야 하기 때문에 CIGS 박막의 단가가 상승하는 단점이 있다.
또한, CIGS 박막은 녹는점이 1000℃ 이상으로 매우 높기 때문에, 수십 나노 사이즈의 CIGS 화합물 나노입자라 하더라도 후열처리에 의해 입자 성장 및 치밀화가 용이하지 않은 문제점이 있었다.
본 발명의 목적은 CIS계 화합물 박막 제조방법에서 공정 비용이 상대적으로 비진공 코팅법을 도입하면서 그 공정 중에 박막 구조의 치밀화를 유도함으로써 제조단가를 낮출 뿐 아니라, 고밀도의 박막을 이용한 고효율 박막 태양전지를 제조하는 데 있다.
상기 목적으로 달성하기 위한 본 발명의 고밀도를 갖는 CIS계 화합물 박막 제조방법은, CIS계 화합물 나노입자를 제조하는 단계(단계 1); 상기 CIS계 화합물 나노입자, 킬레이트제(chelating agent) 및 용매를 혼합하여 CIS계 화합물 슬러리를 제조하는 단계(단계 2); 상기 CIS계 화합물 슬러리를 코팅하여 CIS계 화합물 박막을 형성하는 단계(단계 3); 및 상기 CIS계 화합물 박막을 열처리하는 단계(단계 4)를 포함한다.
본 발명의 바람직한 실시예에 있어서, 상기 CIS계 화합물 나노입자는, CIS 화합물 나노입자, CIGS 화합물 나노입자 또는 CZTS 화합물 나노입자일 수 있다.
상기 킬레이트제는, MEA(monoethanolamine), DEA(diethanolamine), TEA(triethanolamine), 에틸렌디아민, EDTA, NTA, HEDTA, GEDTA, TTHA, HIDA 및 DHEG로 이루어진 군으로부터 선택된 어느 하나일 수 있다.
상기 용매는, 알코올계 용매일 수 있다.
상기 알코올계 용매는, 에탄올, 메탄올, 펜탄올, 프로판올 및 부탄올로 이루어진 군으로부터 선택된 어느 하나를 포함할 수 있다.
상기 슬러리는, 초음파에 의해 분산시켜 제조할 수 있다.
상기 CIS계 화합물 박막은, 비진공 코팅법에 의해 형성될 수 있다.
상기 비진공 코팅법은, 스프레이법, 초음파 스프레이법, 스핀코팅법, 닥터블레이드법, 스크린 인쇄법 및 잉크젯 프린팅법 중 어느 하나일 수 있다.
상기 단계 3은, CIS계 화합물 박막을 코팅한 후, 건조 공정을 더 수행할 수 있다.
상기 단계 3은, 상기 CIS계 박막과 건조 공정을 순차적으로 반복하여 복수 회 수행할 수 있다.
상기 단계 4는, Se 증기를 공급하면서 열처리할 수 있다.
상기 열처리는, 상기 CIS계 화합물 박막이 형성된 기판의 온도를 400 ~ 530 ℃로 하여 수행할 수 있다.
상기 목적을 달성하기 위한 고밀도를 갖는 CIS계 화합물 박막은, 태양전지의 광흡수층으로 사용되는 CIS계 화합물 박막으로서, 기 CIS계 화합물 박막은 킬레이트제(chelating agent)에 의해 CIS계 화합물 나노입자가 성장하여 치밀한 구조를 갖는다.
본 발명의 바람직한 실시예에 있어서, 상기 CIS계 화합물 나노입자는, CIS 화합물 나노입자, CIGS 화합물 나노입자 또는 CZTS 화합물 나노입자일 수 있다.
상기 킬레이트제는, MEA(monoethanolamine), DEA(diethanolamine), TEA(triethanolamine), 에틸렌디아민, EDTA, NTA, HEDTA, GEDTA, TTHA, HIDA 및 DHEG로 이루어진 군으로부터 선택된 어느 하나일 수 있다.
상기 목적을 달성하기 위한 본 발명의 CIS계 화합물 박막을 포함하는 태양전지는 상기 고밀도를 갖는 CIS계 화합물 박막을 포함한다.
본 발명은 킬레이트제를 포함시켜 전구체 박막을 형성하고 열처리하여 CIS계 화합물 박막을 완성함으로써 금속 나노입자 사이의 공극을 최소화하고, 박막의 구조를 치밀화할 수 있으며, 본 발명에 따른 CIS계 화합물 박막을 박막 태양전지의 광흡수층으로 사용하여 고효율의 박막 태양전지를 제조할 수 있다.
도 1은 본 발명의 실시예에 따라 제조된 CIS 박막의 표면을 나타낸 SEM 이미지이다.
도 2는 본 발명의 실시예에 따라 제조된 CIS 박막을 이용한 태양전지의 출력특성을 나타낸 그래프이다.
도 3은 비교예에 따라 제조된 CIS 화합물 박막의 표면을 나타낸 SEM 상 이미지이다.
도 4는 비교예에 따라 제조된 CIS 화합물 박막을 이용한 태양전지의 암상태 전류-전압 곡선이다.
이하에 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 설명할 것이다. 다음에서 설명되는 실시예들은 여러 가지 다양한 형태로 변형할 수 있으며, 본 발명의 범위가 이하의 실시예들에 한정되는 것은 아니다. 본 발명의 실시예는 당 분야의 통상의 지식을 가진 자에게 완전한 설명을 하기 위하여 제공되는 것이다.
이하 본 발명에 따른 CIS계 화합물 박막 제조방법을 구체적으로 설명한다.
본 발명의 CIS계 화합물 박막을 형성하기 위한 방법은, CIS계 화합물 나노입자를 포함한 슬러리에 킬레이트제를 혼합하여 혼합 슬러리를 제조한 후 이를 코팅하고 열처리하여 치밀한 CIS계 화합물 박막을 제조할 수 있다. 구체적인 방법은 하기에서 설명한다.
우선, CIS계 화합물 나노입자를 제조한다(단계 1).
본 발명에서 "CIS계 화합물"이란 IB-IIIA-VIA족 화합물 반도체인 Cu-In-Se를 기본으로 하는 Cu-In-S, Cu-Ga-S, Cu-Ga-Se 등의 3원계 화합물, Cu-In-Ga-Se 등의 4원계 화합물, Cu-In-Ga-Se-(S,Se), Cu-In-Al-Ga-(S,Se), Cu-In-Al-Ga-Se-S 등의 5-6원 화합물을 포함하는 용어로 사용하였다. 보다 넓게는 상기 CIS계 화합물에서 In, Ga, Al 등의 IIIA족 원소 전부를 IIB족 원소(Zn 등) + IVA족 원소(Sn 등)로 치환한 Cu-Zn-Sn-(Se,S)와 일부만 치환한 Cu-In-Ga-Zn-Sn-(Se,S) 등을 포함하는 CZTS계 화합물을 포함하는 것으로 정의한다.
상술한 CIS계 화합물을 사용하여 제조되는 CIS계 화합물 나노입자는 저온 콜로이달 방법, 용매열합성법, 마이크로웨이법, 초음파 합성법 등 본 발명이 속하는 기술분야에서 알려진 방법에 따라 제조될 수 있다.
다음으로, 킬레이트제를 포함한 CIS계 화합물 슬러리를 제조한다(단계 2).
상기 슬러리는 상기 단계 1에서 제조한 CIS계 화합물 나노입자, 용매 및 킬레이트제(chelating agent)를 혼합하여 제조한다.
이때, 상기 용매는 메탄올, 에탄올, 펜탄올, 프로판올, 부탄올 등의 알코올계 용매를 적용할 수 있다.
상기 킬레이트제는 그 자체로서 점도를 가지므로 바인더로 사용할 수 있고, 이에 따라, 별도의 바인더를 추가할 필요가 없다.
상기 킬레이트제는 MEA(monoethanolamine), DEA(diethanolamine), TEA(triethanolamine), 에틸렌디아민, EDTA, NTA, HEDTA, GEDTA, TTHA, HIDA, DHEG 등을 적용할 수 있다.
그러나 본 발명의 범위가 여기에 한정되지 않으며 CIS 계 나노입자를 금속이온으로 녹여내어 킬레이트 화합물을 형성할 수 있는 리간드인 킬레이트제는 본 발명의 범주 내에서 모두 적용할 수 있다.
이때, 상기 슬러리의 농도를 조절하기 위해 CIS계 화합물 나노입자의 비율을 조절할 수 있고, 킬레이팅 정도를 조절하기 위하여 킬레이트제의 비율을 조절할 수 있다.
상술한 CIS계 화합물 나노입자와 킬레이트제를 용매에 혼합한 후 초음파처리를 통해 잘 분산된 상태의 킬레이트제 포함된 CIS계 화합물 슬러리를 제조할 수 있다.
다음으로, 상기 킬레이트제 포함된 CIS계 화합물 슬러리를 코팅하여 CIS계 화합물 박막을 형성한다(단계 3).
본 발명에서 CIS계 화합물 박막 형성은 비진공 코팅법을 사용하는 것을 특징으로 한다. 비진공 코팅법으로는 스프레이법, 초음파 스프레이법, 스핀코팅법, 닥터블레이드법, 스크린 인쇄법, 잉크젯 프린팅법 등 본 발명이 속하는 기술분야에서 잘 알려진 비진공 코팅법을 모두 적용할 수 있다. 이와 같은 비진공 코팅법을 적용함으로써 제조 단가를 낮출 수 있다.
상기 킬레이트제 포함된 CIS계 슬러리를 비진공 조건에서 코팅한 후에는 알코올 용매를 제거하기 위한 건조 과정을 더 수행할 수 있으며, 이러한 코팅 및 건조 과정을 반복하여 목적하는 두께의 킬레이트제 포함된 CIS계 화합물 박막을 형성할 수 있다. 이때, 반복 횟수는 경우에 따라 다르나 3회 내지 5회 수행하는 것이 바람직하다.
이때, 킬레이트제의 비공유 전자쌍은 나노입자 표면의 Cu, In, Ga과 결합하여 금속이온-킬레이트제 복합체(metal ion-chelating agent complex)인 착화합물을 형성한다. 다시 말해, 자연적으로 CIS계 나노입자와 금속이온이 포함된 용액의 혼합물이 형성될 수 있다.
이에 따라, CIS계 나노입자 사이의 공극으로 금속이온이 포함된 용액이 자연스럽게 스며들면서, 입자 성장 및 박막 치밀화가 이루어짐으로써 고밀도의 CIS계 화합물 박막을 형성할 수 있다.
이후, 상기 단계 3에서 형성된 킬레이트제 포함된 CIS계 화합물 박막에 대해 Se 증기를 이용한 셀렌화(selenization) 열처리 공정을 수행한다(단계 4).
상기 Se 증기를 이용한 열처리하는 공정은 Se 고체에 열을 가해 증발시켜 형성된 Se 증기를 공급하면서, 상기 박막이 형성된 기판의 온도를 높여 수행할 수 있다.
이에 의해, 상기 단계 3을 거친 전구체 박막에 셀렌화가 이루어지며, 이에 따라 박막 내 구조가 최종적으로 치밀화되며, 본 발명의 고밀도 CIS계 화합물 박막이 완성된다.
이하, 본 발명의 바람직한 실시예들을 들어 상세히 설명한다.
글로브 박스 내에서 CuI 0.343 g, InI3 0.991 g 을 증류된 피리딘 용매 30 ㎖와 혼합하고 이를 50 ℃의 핫 플레이트 위에서 약 10 분간 교반하였다. 약 10 분간의 교반 후 불투명하던 용액이 투명해지는 것을 확인하였다. 이러한 Cu, In 혼합물을 증류된 메탄올 20 ㎖ 안에 녹아있는 Na2Se 0.5 g와 혼합시켰다. 이는 원자비로 Cu : In : Se = 0.9 : 1 : 2에 해당하며, 그 후 메탄올/피리딘 혼합물을 0℃ 아이스 배스 안에서 기계적으로 교반하면서 1분 동안 반응시켜 CIS 나노 입자를 합성하였다. 합성된 CIS 콜로이드를 4000 rpm으로 약 30 분간 원심분리 후 5 분간 초음파 처리를 하고 증류된 메탄올로 세척하였고 이러한 과정을 반복하여 생산물안의 부산물 및 피리딘을 완전히 제거하여 고순도의 CIS 화합물 나노입자를 합성하였다.
이와 같이 제조된 CIS 화합물 나노입자 0.3 g, 킬레이트제 0.3 g을 용매인 메탄올 1.2 g에 혼합한 후, 초음파 처리를 30분간 수행하여 분산시켜 킬레이트제 포함된 CIS 화합물 슬러리를 제조하였다.
이후, 상기 킬레이트제 포함된 CIS 화합물 슬러리를 Mo 박막이 증착된 소라다임 유리 기판상에 스핀 코팅법을 사용하여 코팅 (1000 rpm, 20초) 한 후, 알코올 용매를 제거하기 위해 핫플레이트 상에서 2단계에 걸친 건조를 수행한다. 이때, 1단계 건조는 100℃에서 3분, 2단계는 300℃에서 5분 동안 건조하였다.
이와 같은 코팅 및 건조 공정을 5회 반복수행하여 소정의 두께를 갖는 킬레이트제 포함된 CIS 화합물 슬러리, 즉, 전구체 박막을 제조하였다.
마지막으로, 기판 온도 530℃에서 Se 증기를 공급하면서 30분간 셀렌화(selenization) 열처리하여 고밀도의 CIS 화합물 박막을 완성하였다.
상기 실시예에 따라 제조된 CIS 박막의 표면을 나타낸 SEM 이미지를 도 1에 나타내었고, 상기 실시예에 따라 제조된 CIS 박막을 이용한 태양전지의 출력특성을 나타낸 그래프를 도 2에 나타내었다.
도 2에 따르면, 본 발명의 실시예에 따라 제조된 CIS 박막을 이용한 태양전지의 에너지 변환효율은 4.41%로 나타났다.
[비교예]
상기 실시예에서와 동일한 방법으로 CIS 화합물 나노입자를 제조한 후, CIS 화합물 나노입자 0.3 g 및 프로필렌글리콜 0.3 g을 메탄올 1.2 g에 용해시킨 후 초음파 처리를 30분간 수행하여 CIS 화합물 슬러리를 제조하였다.
이후, 상기 CIS 화합물 슬러리를 Mo 박막이 증착된 소라다임 유리 기판상에 스핀 코팅법을 사용하여 코팅 (1000 rpm, 20초) 한 후, 알코올 용매와 바인더를 제거하기 위해 핫플레이트 상에서 60℃에서 5분 동안 건조하고, 180℃에서 2분 동안 건조하였다.
이러한 코팅 및 건조 공정을 5회 반복하여 기판상에 CIS 화합물 박막을 형성하였다.
마지막으로, 기판온도 530℃에서 Se 증기를 공급하면서 셀렌화 열처리를 수행하였다.
상기 비교예에 의해 제조된 CIS 화합물 박막 표면의 SEM 이미지를 도 3에 나타내었다.
상기 실시예에 따라 제조된 CIS 박막을 이용한 태양전지는 전혀 광전변환 특성을 보이지 않았다. 이는 도 3에 나타난 바와 같이 CIS 박막의 기공을 통해 전도성 Al:ZnO 막과 하부 Mo 박막간의 접촉이 일어나기 때문이다. 상부 및 하부 전도성 박막간의 접촉 및 이로 인한 단락은 도 4의 암상태 전류-전압 곡선으로부터 확인할 수 있다.
도 1 및 도 3을 참조하면, 본 발명의 실시예에 따라 제조된 CIS 박막의 내부구조는 비교예에 따라 제조된 CIS 박막의 내부구조에 비해 상대적으로 조직이 치밀한 것을 볼 수 있다. 다시 말해, 실시예에 따라 제조된 CIS 박막 내부구조는 기공의 크기가 줄어들었을 뿐 아니라, 입자의 성장이 이루어져 기공의 개수도 현저히 줄어든 것을 알 수 있다.
이와 같은 결과는 실시예에서 CIS 박막의 셀렌화 열처리 전 전구체 박막을 형성하는 단계에서, 박막을 구성하는 슬러리에 킬레이트제를 첨가함으로써 박막의 치밀화를 수행하였으므로, 단순히 전구체 박막을 형성한 후 셀렌화 열처리 단계에서만 박막의 치밀화를 유도한 비교예에 비해 치밀화 정도가 높음을 확인시켜 주는 것이다.
이와 같은 결과는, 전구체 박막 코팅 과정에서 박막의 치밀화를 하지않고, 셀렌화 열처리 단계에서만 치밀화가 이루어진 CIS 박막의 구조에 비하여, 전구체 박막의 형성단계에서 치밀화를 1차 수행한 CIS 박막의 구조가 더 고밀도로 제조될 수 있음을 보여준다.
다시 말해, CIS 나노입자를 포함하는 슬러리에 킬레이트제를 혼합함으로써 CIS 계 나노입자의 표면 금속을 금속이온으로 녹여내어 나노입자 사이에 자연스럽게 스며들도록 함으로써 전구체 박막 형성단계에서 1차적으로 치밀화를 수행하였으며, 여기에 셀렌화 열처리 단계에서 2차적으로 치밀화가 진행되어 더욱 효율적으로 박막 치밀화가 이루어졌다고 볼 수 있다.
따라서 본 발명의 실시예와 같이 셀렌화 열처리 전 전구체 박막 형성단계에서 박막의 치밀화 단계를 1차적으로 거치는 경우에는 셀렌화 열처리에 있어서 종래의 경우보다 상대적으로 낮은 온도로 열처리를 하여도 결과적으로 최종 완성된 CIS계 박막의 밀도가 유사할 것이라는 것을 알 수 있다. 즉, 본 발명의 고밀도 CIS계 박막 제조방법은 공정 비용면에서도 절감효과를 가져올 수 있다.
이상 본 발명을 바람직한 실시예에 대해서 설명하지만, 본 발명은 상술한 특정 실시예에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 그 기술적 사상을 벗어나지 않고 다양하게 변형 실시할 수 있을 것이다. 따라서 본 발명의 권리범위는 특정 실시예가 아니라, 첨부된 특허청구범위에 의해 정해지는 것으로 해석되어야 한다.

Claims (16)

  1. CIS계 화합물 나노입자를 제조하는 단계(단계 1);
    상기 CIS계 화합물 나노입자, 킬레이트제(chelating agent) 및 용매를 혼합하여 CIS계 화합물 슬러리를 제조하는 단계(단계 2);
    상기 CIS계 화합물 슬러리를 코팅하여 CIS계 화합물 박막을 형성하는 단계(단계 3); 및
    상기 CIS계 화합물 박막을 열처리하는 단계(단계 4)를 포함하는 고밀도를 갖는 CIS계 화합물 박막 제조방법.
  2. 청구항 1에 있어서,
    상기 CIS계 화합물 나노입자는,
    CIS 화합물 나노입자, CIGS 화합물 나노입자 또는 CZTS 화합물 나노입자인 것을 특징으로 하는 고밀도를 갖는 CIS계 화합물 박막 제조방법.
  3. 청구항 1에 있어서,
    상기 킬레이트제는,
    MEA(monoethanolamine), DEA(diethanolamine), TEA(triethanolamine), 에틸렌디아민, EDTA, NTA, HEDTA, GEDTA, TTHA, HIDA 및 DHEG로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 고밀도를 갖는 CIS계 화합물 박막 제조방법.
  4. 청구항 1에 있어서,
    상기 용매는,
    알코올계 용매인 것을 특징으로 하는 고밀도를 갖는 CIS계 화합물 박막 제조방법.
  5. 청구항 4에 있어서,
    상기 알코올계 용매는,
    에탄올, 메탄올, 펜탄올, 프로판올 및 부탄올로 이루어진 군으로부터 선택된 어느 하나를 포함하는 알코올계 용매인 고밀도를 갖는 것을 특징으로 하는 CIS계 화합물 박막 제조방법
  6. 청구항 1에 있어서,
    상기 슬러리는,
    초음파에 의해 분산시켜 제조하는 것을 특징으로 하는 고밀도를 갖는 CIS계 화합물 박막 제조방법.
  7. 청구항 1에 있어서,
    상기 CIS계 화합물 박막은,
    비진공 코팅법에 의해 형성되는 것을 특징으로 하는 고밀도를 갖는 CIS계 화합물 박막 제조방법.
  8. 청구항 7에 있어서,
    상기 비진공 코팅법은,
    스프레이법, 초음파 스프레이법, 스핀코팅법, 닥터블레이드법, 스크린 인쇄법 및 잉크젯 프린팅법 중 어느 하나인 것을 특징으로 하는 고밀도를 갖는 CIS계 화합물 박막 제조방법.
  9. 청구항 1에 있어서,
    상기 단계 3은,
    CIS계 화합물 박막을 코팅한 후, 건조 공정을 더 수행하는 하는 것을 특징으로 하는 고밀도를 갖는 CIS계 화합물 박막 제조방법.
  10. 청구항 9에 있어서,
    상기 단계 3은,
    상기 CIS계 박막과 건조 공정을 순차적으로 반복하여 복수 회 수행하는 것을 특징으로 하는 고밀도를 갖는 CIS계 화합물 박막 제조방법.
  11. 청구항 1에 있어서,
    상기 단계 4는,
    Se 증기를 공급하면서 열처리하는 것을 특징으로 하는 고밀도를 갖는 CIS계 화합물 박막 제조방법.
  12. 청구항 11에 있어서,
    상기 열처리는,
    상기 CIS계 화합물 박막이 형성된 기판의 온도를 400 ~ 530 ℃로 하여 수행하는 것을 특징으로 하는 고밀도를 갖는 CIS계 화합물 박막 제조방법.
  13. 태양전지의 광흡수층으로 사용되는 CIS계 화합물 박막으로서,
    상기 CIS계 화합물 박막은 킬레이트제(chelating agent)에 의해 CIS계 화합물 나노입자가 성장하여 치밀한 구조를 갖는 것을 특징으로 하는 고밀도를 갖는 CIS계 화합물 박막.
  14. 청구항 13에 있어서,
    상기 CIS계 화합물 나노입자는,
    CIS 화합물 나노입자, CIGS 화합물 나노입자 또는 CZTS 화합물 나노입자인 것을 특징으로 하는 고밀도를 갖는 CIS계 화합물 박막.
  15. 청구항 13에 있어서,
    상기 킬레이트제는,
    MEA(monoethanolamine), DEA(diethanolamine), TEA(triethanolamine), 에틸렌디아민, EDTA, NTA, HEDTA, GEDTA, TTHA, HIDA 및 DHEG로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 고밀도를 갖는 CIS계 화합물 박막.
  16. 청구항 13 내지 청구항 15의 CIS계 화합물 박막을 포함하는 태양전지.
KR1020110049768A 2011-05-25 2011-05-25 고밀도를 갖는 cis계 박막 제조방법 KR20120131536A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020110049768A KR20120131536A (ko) 2011-05-25 2011-05-25 고밀도를 갖는 cis계 박막 제조방법
CN201280023302.XA CN103534818B (zh) 2011-05-25 2012-02-02 具有高密度的cis系列薄膜的制造方法
PCT/KR2012/000813 WO2012161402A1 (en) 2011-05-25 2012-02-02 Method of manufacturing cis-based thin film having high density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110049768A KR20120131536A (ko) 2011-05-25 2011-05-25 고밀도를 갖는 cis계 박막 제조방법

Publications (1)

Publication Number Publication Date
KR20120131536A true KR20120131536A (ko) 2012-12-05

Family

ID=47217446

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110049768A KR20120131536A (ko) 2011-05-25 2011-05-25 고밀도를 갖는 cis계 박막 제조방법

Country Status (3)

Country Link
KR (1) KR20120131536A (ko)
CN (1) CN103534818B (ko)
WO (1) WO2012161402A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104523A1 (ko) * 2012-12-24 2014-07-03 한국에너지기술연구원 Ci(g)s 박막과 그 제조 방법, 및 이를 이용한 ci(g)s 태양전지와 그 제조 방법.
WO2014163367A1 (ko) * 2013-04-03 2014-10-09 한국에너지기술연구원 고압력 셀렌화 공정을 이용한 ci(g)s 박막 제조 방법과 이를 이용한 태양전지.
KR101458427B1 (ko) * 2013-03-12 2014-11-10 한국에너지기술연구원 성능이 향상된 ci(g)s 박막 제조 방법과 이를 이용한 태양전지.
KR101508133B1 (ko) * 2012-12-24 2015-04-06 한국에너지기술연구원 Ci(g)s 박막과 그 제조 방법, 및 이를 이용한 ci(g)s 태양전지와 그 제조 방법.

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337551B (zh) * 2013-05-28 2015-12-23 湘潭大学 一种不含碳层的CZTS或者CZTSe薄膜的非真空制备方法
CN106098845A (zh) * 2016-06-29 2016-11-09 郭舒洋 一种高结晶度铜锌锡硫薄膜的制备方法
CN107059131A (zh) * 2017-04-21 2017-08-18 南京信息工程大学 一种半导体纳米晶及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312780C (zh) * 2003-12-17 2007-04-25 华南理工大学 一种薄膜太阳能电池的制备方法
KR100909179B1 (ko) * 2006-07-24 2009-07-22 주식회사 엘지화학 Cis계 태양전지 흡수층의 제조방법
KR101030780B1 (ko) * 2007-11-14 2011-04-27 성균관대학교산학협력단 Ⅰ-ⅲ-ⅵ2 나노입자의 제조방법 및 다결정 광흡수층박막의 제조방법
US20110023750A1 (en) * 2009-07-28 2011-02-03 Kuan-Che Wang Ink composition for forming absorbers of thin film cells and producing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104523A1 (ko) * 2012-12-24 2014-07-03 한국에너지기술연구원 Ci(g)s 박막과 그 제조 방법, 및 이를 이용한 ci(g)s 태양전지와 그 제조 방법.
KR101508133B1 (ko) * 2012-12-24 2015-04-06 한국에너지기술연구원 Ci(g)s 박막과 그 제조 방법, 및 이를 이용한 ci(g)s 태양전지와 그 제조 방법.
KR101508132B1 (ko) * 2012-12-24 2015-04-06 한국에너지기술연구원 Ci(g)s 박막과 그 제조 방법, 및 이를 이용한 ci(g)s 태양전지와 그 제조 방법.
KR101458427B1 (ko) * 2013-03-12 2014-11-10 한국에너지기술연구원 성능이 향상된 ci(g)s 박막 제조 방법과 이를 이용한 태양전지.
WO2014163367A1 (ko) * 2013-04-03 2014-10-09 한국에너지기술연구원 고압력 셀렌화 공정을 이용한 ci(g)s 박막 제조 방법과 이를 이용한 태양전지.
KR101469740B1 (ko) * 2013-04-03 2014-12-08 한국에너지기술연구원 고압력 셀렌화 공정을 이용한 ci(g)s 박막 제조 방법과 이를 이용한 태양전지.

Also Published As

Publication number Publication date
WO2012161402A1 (en) 2012-11-29
CN103534818B (zh) 2016-03-09
CN103534818A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
KR101129194B1 (ko) 고밀도를 갖는 태양전지용 cis계 화합물 박막의 제조방법 및 상기 cis계 화합물 박막을 이용한 박막 태양전지의 제조방법
KR20120131536A (ko) 고밀도를 갖는 cis계 박막 제조방법
US9634162B2 (en) Method of fabricating A(C)IGS based thin film using Se-Ag2Se core-shell nanoparticles, A(C)IGS based thin film fabricated by the same, and tandem solar cells including the A(C)IGS based thin film
KR101865239B1 (ko) 높은 무크랙 한계를 갖는 cigs 나노 입자 잉크 제제
Pan et al. Controllable vapor transport deposition of efficient Sb2 (S, Se) 3 solar cells via adjusting evaporation source area
KR101193106B1 (ko) Cu-Se 이성분계 나노입자 플럭스를 이용한 Cu-Se 박막을 포함하는 CI(G)S계 박막의 제조방법 및 그 방법에 의해 제조된 CI(G)S계 박막
KR101192289B1 (ko) 이성분계 나노입자 하이브리드 방법을 이용한 ci(g)s계 박막의 제조방법 및 그 방법에 의해 제조된 ci(g)s계 박막
KR101388451B1 (ko) 탄소층이 감소한 ci(g)s계 박막의 제조방법, 이에 의해 제조된 박막 및 이를 포함하는 태양전지
KR101137434B1 (ko) 급속열처리 공정을 사용한 cis계 화합물 박막의 제조방법 및 상기 cis계 화합물 박막을 이용한 박막 태양전지의 제조방법
KR101369167B1 (ko) 이성분계 나노입자를 포함하는 슬러리의 숙성 단계가 도입된 ci(g)s계 박막의 제조방법 및 그 방법에 의해 제조된 ci(g)s계 박막
KR20120131535A (ko) CIGS/CIS 나노입자의 셀렌화에 의한 치밀한 CIGSe/CISe 박막 제조방법
US20130255535A1 (en) CZTSe NANOINK COMPOSITION AND SPUTTERING TARGET THEREOF
Li et al. Cu (In, Ga) Se2 solar cells with double layered buffers grown by chemical bath deposition
KR20130054800A (ko) 박막 태양전지 광흡수층의 제조방법 및 이를 포함하는 박막 태양전지
WO2015030275A1 (ko) 이성분계 나노입자를 포함하는 슬러리의 숙성 단계가 도입된 ci(g)s계 박막의 제조방법 및 그 방법에 의해 제조된 ci(g)s계 박막
JP2011099059A (ja) 化合物半導体薄膜作製用インク、そのインクを用いて得た化合物半導体薄膜、その化合物半導体薄膜を備える太陽電池、及びその太陽電池の製造方法
Hu et al. Enhanced the crystallinity of Cu (In, Ga) Se 2 via an improved silver-treated process
Guo et al. Selenization of copper indium gallium disulfide nanocrystal films for thin film solar cells
TW201903077A (zh) 具有高無裂縫限度之cigs奈米粒子墨水調配物
KR20120062073A (ko) 찰코파이라이트형 화합물의 제조 방법 및 이 방법에 의해 제조된 찰코파이라이트형 화합물

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20130322

Effective date: 20140120