KR20100093545A - 풍력 터빈의 블레이드의 피치를 제어하기 위한 전자-유압 작동기 - Google Patents

풍력 터빈의 블레이드의 피치를 제어하기 위한 전자-유압 작동기 Download PDF

Info

Publication number
KR20100093545A
KR20100093545A KR1020107011886A KR20107011886A KR20100093545A KR 20100093545 A KR20100093545 A KR 20100093545A KR 1020107011886 A KR1020107011886 A KR 1020107011886A KR 20107011886 A KR20107011886 A KR 20107011886A KR 20100093545 A KR20100093545 A KR 20100093545A
Authority
KR
South Korea
Prior art keywords
wind turbine
hydraulic
motor
pump
piston
Prior art date
Application number
KR1020107011886A
Other languages
English (en)
Other versions
KR101302200B1 (ko
Inventor
데이비드 가이거
Original Assignee
무그 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40419027&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20100093545(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 무그 인코포레이티드 filed Critical 무그 인코포레이티드
Publication of KR20100093545A publication Critical patent/KR20100093545A/ko
Application granted granted Critical
Publication of KR101302200B1 publication Critical patent/KR101302200B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/76Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism using auxiliary power sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/60Control system actuates through
    • F05B2270/604Control system actuates through hydraulic actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

본 발명은 나셀(22)에 대해 회전하도록 허브(23) 상에 장착된 다수의 가변 피치 블레이드(24)들을 구비하는 풍력 터빈(20)에 사용되는 향상된 기술을 제공한다. 본 발명의 향상된 기술에는, 광으로는, 다수의 가변 피치 블레이드들 중 한 블레이드의 피치를 제어하는 전자-유압 작동기(25)를 포함하는 것과, 상기 전자-유압 작동기가, 전류를 공급받아 작동하도록 구성된 모터(26)와, 상기 모터에 의해 구동되며, 상기 모터에 공급된 전류의 작용에 따라 유압 출력을 제공하도록 설치된 펌프(27)와, 상기 펌프의 유압 출력의 작용에 따라 관련된 블레이드의 피치를 선택적으로 변동시키도록 작동 가능하게 설치된 유압 작동기(28)를 포함하는 것과, 상기 모터, 펌프 및 작동기가 상기 풍력 터빈의 허브 안에 실제로(physically) 설치된 것이 있다.

Description

풍력 터빈의 블레이드의 피치를 제어하기 위한 전자-유압 작동기{ELECTRO-HYDRAULIC ACTUATOR FOR CONTROLLING THE PITCH OF A BLADE OF A WIND TURBINE}
본 발명은 일반적으로는 풍력 터빈 기술분야에 관한 것으로, 더 구체적으로는 다수의 블레이드들의 피치를 개별적으로 제어하기 위하여 터빈의 회전 허브에 장착된 다수의 전자-유압 작동기를 구비하는 향상된 풍력 터빈에 관한 것이다.
풍력 터빈은 물론 공지되어 있다. 최근 수년에 걸쳐, 전기 그리드로의 풍력 터빈 공급 전력을 동기화하는 데 따르는 많은 문제점들이 해소되고 극복되었다.
작금의 풍력 터빈들은 비교적 복잡하다. 그 풍력 터빈들은 통상적으로는 타워에 설치되며, 나셀(nacelle)에 대한 수평 축선을 중심으로 해서 회전할 수 있게 허브 상에 장착된 다수의 블레이드들(통상적으로는 3개)을 구비한다. 나셀은 불어오는 바람의 방향으로 향하게 된다. 블레이드들 각각은 통상적으로는 가변 피치로 되어 있고, 각 블레이드의 피치는 다른 블레이드의 피치와는 독립해서 제어될 수 있다. 이들 블레이드들은 통상적으로는 120ㅀ의 간격으로 배치된다. 한 블레이드가 6시 방향의 위치를 향해 하향으로 향하게 되면, 지면에 가까운 쪽의 바람은 통상적으로 다른 두 개의 블레이드들 위를 지나는 바람의 속도에 비해 속도가 낮다. 따라서, 허브의 회전 속도를 지면 효과, 돌풍 등으로부터 정상화(즉, 걸맞게 일정하게 유지)시키려고 하는 목적을 가지고서, 각 블레이드의 피치를 서로 독립적으로 제어한다.
지금까지 풍력 터빈은 전기식 또는 유압식으로 구성된 특징을 보여왔다. 그 어느 경우에서나 발전기는 통상적으로 나셀 안에 설치된다. 제어 신호와 전력은 타워를 통해서 피치 제어 기구로 올려 보내진다. 두 경우에 있어서, 피치 제어 기구는 지금까지는 나셀에 설치되었고, 이 경우에서는 나셀과 회전하는 허브 사이에 일종의 슬립 링 조인트(slip ring joint)가 필요했다. 또한, 이와 같은 장치(arrangement)에 있어서는 대형 불 기어(bull gear)의 사용이 수반되며, 허브 안에 여러 종류의 호스들이 구비된다. 이와 같은 장치의 예상 수명은 풍속의 변동에 의해 주로 야기되는 불 기어에 대한 과도한 마멸로 인해 대략 4년 정도로 짧다.
따라서, 피치 제어 전자-유압 작동기를 나셀이 아니라 허브 안에 설치한 향상된 풍력 터빈을 제공하는 것이 일반적으로 바람직하다.
괄호 안에 기재한 도면 부호는, 예시하기 위한 것일 뿐이지 제한하려고 하는 것이 아닌 본 발명의 개시된 실시예에 대응하는 부품, 부분 또는 면을 나타낸다. 본 발명은 나셀(22)에 대해 회전할 수 있도록 하기 위해 허브(23)에 장착된 다수의 가변 피치 블레이드(24)들을 구비하는 풍력 터빈(20)에서 사용하기 위한 향상된 기술을 제공한다.
본 발명에서 향상된 기술에는, 광의로는, 다수의 블레이드들 중 하나의 블레이드를 제어하는 전자-유압 작동기(25)를 포함하는 것과, 상기 전자-유압 작동기가, 전류를 공급받을 수 있게 구성된 모터(26)와, 상기 모터에 의해 구동되며 상기 모터에 공급된 전류의 작용에 따라 유압 출력을 제공하도록 설치된 펌프(27)와, 상기 펌프의 유압 출력의 작용에 따라 관련된 블레이드의 피치를 선택적으로 변경시킬 수 있도록 작동 가능하게 설치된 유압 작동기(28)를 포함하는 것과, 상기 모터와 펌프와 작동기가 모두 풍력 터빈의 허브 내에 실제로 배치되는 것이 있다.
일 실시예에서, 풍력 터빈은 허브에 설치된 3개의 가변 피치 블레이드(24)들을 구비한다.
모터는 DC 브러시리스 모터(brushless motor)로 구성할 수 있다.
펌프는 고정 변위 펌프로 구성할 수 있다.
양호한 실시예에서, 펌프로부터 나오는 유압 출력의 극성은 모터에 공급된 전류의 극성의 함수이다.
작동기는 실린더(31) 안에 활주 가능하게 장착된 피스톤(30)을 구비하고, 상기 피스톤은 그 피스톤의 한 쪽의 제1 챔버(35)를 피스톤의 다른 쪽의 제2 챔버(36)로부터 밀봉되게 분리시키고, 로드(32)가 상기 피스톤에 장착되고 상기 챔버(35)를 통해서 연장되며 실린더의 단부벽을 관통하고, 이에 의해 피스톤이 챔버들 각각에 면하는 면적들은 같지 않게 된다. 본 발명의 향상된 작동기는 추가로, 유압 유체 저장실(41)과, 챔버가 팽창할 때에는 유압 유체가 저장실로부터 큰 면적의 피스톤 면과 대면하는 챔버로 유동하고 챔버가 수축할 때에는 유압 유체가 상기 큰 면적의 피스톤 면과 대면하는 챔버로부터 저장실로 유동할 수 있도록, 탱크와 작동기 사이에 작동 가능하게 배치된 공동 방지 밸브(anti-cavitation valve)(57)도 포함한다.
유압 유체 저장실은 가압될 수 있다.
상기 공동 방지 밸브는 펌프의 유압 출력의 극성의 작용에 따라 자동으로 작동될 수 있다.
본 발명에서 향상된 기술은 또한, 펌프 유압 출력의 최대 압력을 제한하도록 작동 가능하게 설치된 압력 릴리프 밸브(pressure relief valve)(48, 52)도 포함한다.
펌프는 고압측 및 저압측과, 케이스 드레인을 구비한다.
우회 밸브(54)가 상기 고압측과 저압측을 연통시킬 수 있도록 선택적으로 작동할 수 있게 설치될 수 있다.
케이스 드레인(40)은 필터를 통해서 저장실과 연통한다.
본 발명에서 향상된 기술은 또한, 상기 우회 밸브와 직렬로 배치된 제한 오리피스(restricted orifice)(56)도 포함하는 것이다.
본 발명에서 향상된 기술은 또한, 작은 면적의 피스톤 면과 대면하고 있는 챔버와 도관(63)을 거쳐서 연통하는 가압된 유압 유체 공급원(62)과, 상기 도관에 설치되어 정상 상태에서 개방되는 솔레노이드 밸브(64)를 포함하고, 상기 솔레노이드 밸브는, 전원 고장 시에, 유압 유체가 상기 유압 유체 공급원으로부터 도관을 거쳐서 상기 작은 면적의 피스톤 면과 대면하는 챔버 안으로 유동함으로써 이 챔버가 팽창하고 그에 따라 피스톤이 블레이드 수평 유지 위치를 향해 실린더에 대해서 가압될 수 있도록 개방될 수 있게 설치되는 것을 포함한다.
본 발명에서 향상된 기술은 또한, 펌프를 작은 면적의 피스톤 면과 큰 면적의 피스톤 면과 대면하는 작동기 챔버들로부터 선택적으로 분리될 수 있도록 하는 작동이 가능하게 설치되는 차단 밸브(59, 60)를 포함한다.
모터로 보내지는 전력 및/또는 제어 신호는 바람직하게는 나셀로부터 무접촉 회전식 변압기를 통해서 허브로 공급한다. 이들의 예가 미국 특허 제5,608,771호, 제6,813,316호 및 제5,572,178호에 도시되고 설명되어 있는데, 이들의 조합된 개시 내용을 본 명세서에 참고로 포함시킨다.
따라서, 본 발명의 일반적인 목적은 풍력 터빈에 설치된 다수의 가변 피치 블레이드들 중 한 블레이드의 피치를 제어하기 위한 풍력 터빈용 향상된 전자-유압 작동기를 제공하는 것이다.
본 발명의 다른 목적은, 전자-유압 작동기의 주요 부품들이 나셀이 아닌 회전하는 허브에 장착할 수 있는, 풍력 터빈용 향상된 전자-유압 작동기를 제공하는 것이다.
본 발명의 또 다른 목적은 전력 고장 또는 장애 시에 관련된 블레이드를 수평 유지 위치(feathered position)를 향해 강제 이동시키기 위한 고장-안전 기구를 내장하는 풍력 터빈용 향상된 작동기를 제공하는 것이다.
이러한 목적 및 이점들과 또 다른 목적들 및 이점들은 이상에서 기재하고 이어서 기재하는 명세서의 기재 내용, 도면 및 첨부된 청구범위로부터 명백해질 것이다.
도 1은 풍력 터빈의 상부 가장자리 끝 부분의 등축도로서, 나셀에 대해서 수평 축선을 중심으로 해서 회전하는 허브 상에 장착된 가변 피치 블레이드들의 일부분만을 보이는 도면이다.
도 2는 본 발명의 향상된 전자-유압 작동기의 유압 회로 개요도이다.
도 3은 블레이드들 중 한 블레이드의 피치를 제어하는 향상된 전자-유압 작동기의 좌측면도이다.
도 4는 도 3에 도시된 전자-유압 작동기의 평면도이다.
도 5는 도 4에 도시된 전자-유압 작동기의 좌측 단부도이다.
도 6은 3개의 블레이드들을 독립적으로 제어하기 위한 회로의 블록선도이다.
설명 시작에 앞서서 분명히 이해하고 있어야 할 점으로는, 여러 도면 전체에 걸쳐 동일한 도면 부호는 동일한 구조 요소들, 부분들 또는 면들을 나타내려고 의도한 것이고, 이 요소들, 부분들 또는 면들에 대해서는 명세서 전체에서 기재되고 설명되며, 이들에 대한 상세한 설명은 명세서 전체의 일부를 구성한다. 달리 나타내지 않는 한, 도면은 명세서와 함께 파악(예, 교차 해칭, 부품들의 배열, 비율, 각도 등)되어야 하는 것이며, 본 발명에 대한 전체 설명의 일부를 구성한다. 이하의 설명에서 사용되는 용어들로서, "수평", "수직", "좌", "우", "상부", "하부", 그리고 이들의 형용사 및 부사 파생어들(예, "수평으로", "우측으로", "상향으로" 등)은 독자가 특정 도면을 보고 있을 때에 그 도면에 예시된 구조의 방향을 단순히 지칭하는 것일 뿐이다. 마찬가지로, "내향으로" 및 "외향으로"라는 용어도 일반적으로 어떤 한 면의 방향을 그의 연장 축선 또는 회전 축선에 대해 적절히 지칭하고자 한 것이다.
이제부터 도면을 참조하여 설명하게 되는데, 우선 도 1을 참조하면, 본 발명의 향상된 풍력 터빈(20)이 타워의 상부 가장자리 끝 부분에 장착된 것으로 도시되어 있고, 타워의 일부분을 일반적으로 도면 부호 21로 표시하고 있다. 나셀(22)은 수직 축선 y-y를 중심으로 회전할 수 있게 하기 위해 타워의 상부 가장자리 끝 부분에 회전 가능하게 장착된다. 허브(23)는 수평 축선 x-x를 중심으로 회전할 수 있게 나셀에 장착된다. 도면 부호 24로 여러 개 표시된 다수의 블레이드(24)는 허브 상에 장착되되 그 허브에 대해 회전할 수 있게 장착된다. 각 블레이드의 피치는 본 발명에서 개시하고 있는 향상된 전자-유압 작동기에 의해 독립적으로 제어 가능하다. 주축(도시되지 않음)이 허브의 회전 운동을 나셀에 전달하여 발전기(도시되지 않음)를 통상의 방식으로 구동시키게 된다. 나셀은 또한 피구동 축, 변압기(도시되지 않음) 등의 속도를 증가시키기 위한 기어 박스(도시되지 않음)와 같은 여러 가지의 일반적이고 통상적인 제품도 한다.
지금까지는 블레이드의 피치를 제어하는 기구가 나셀에 장착되었고 제어 동작은 불 기어에 의해서 허브로 전달되었었다. 그러나 본 발명에서는 전자-유압 작동기가 허브 안에 장착되고, 불 기어는 완전히 배제시킬 수 있다.
도 2를 참조하면, 본 발명에서 향상된 전자-유압 작동기(25)는, 개략적으로는, 모터(26), 모터에 의해 구동되는 펌프(27), 및 이중 작동 유압 작동기(28)를 포함하는 것으로 도시되어 있다.
양호한 실시예에서, 모터는 나셀로부터 무접촉 회전식 변압기(도시되지 않음)를 거쳐서 전류를 공급받는 DC 모터이다. 공급된 전류가 한 극성일 때에, 모터는 한 방향으로 회전한다. 공급된 전류가 상기 극성과 반대 극성일 때에, 모터는 반대 방향으로 회전한다.
펌프(27)는 바람직하기로는 고정 변위 펌프인 것이 좋고, 축(29)에 의해 모터에 연결된다.
작동기(28)는 실린더(31) 안에 활주 가능하게 장착된 피스톤(30)을 구비하는 것으로 도시되어 있다. 좌측 단부가 피스톤에 연결된 로드(32)는 실린더의 우측 단부 벽을 관통한다. 로드(32)의 우측 단부에는 구멍부(33)가 설치된다. 실린더의 좌측 단부벽에 또 다른 구멍부(34)가 설치된 것으로 도시되어 있다. 피스톤이 실린더 안에서 활주 가능하게 장착되어, 좌측 챔버(35)를 우측 챔버(36)로부터 밀봉되게 분리시킨다. 피스톤(30)의 전체가 원형인 수직 단부 면은 좌측 챔버(35)와 대면한다. 그러나 피스톤의 환형인 수직 단부 면은 우측 챔버(36)에 대해 우측 방향으로 대면한다. 전자-유압 작동기 전체가 풍력 터빈의 회전 가능 허브 안에 장착된다. 구멍부(34)는 회전 가능 허브에 장착되고, 구멍부(33)는 관련된 블레이드의 피치를 제어하기 위해 연결된 레버 암(도시되지 않음)에 장착된다.
펌프(27)의 한 쪽은 도관(38)을 거쳐서 작동기의 좌측 챔버(35)와 연통하고, 펌프(27)의 반대쪽은 도관(39)을 거쳐서 작동기의 우측 챔버(36)와 연통한다. 드레인 도관(40)은 펌프 내의 유체의 일부를 필터(42) 및 체크 밸브(43)를 거쳐서 저장실(41)과 연통시킨다. 더 상세하게 설명하면, 상기 드레인 도관(40)은 케이스 드레인과 필터 사이에서 연장되고, 도관(44)은 필터(42)를 체크 밸브(43)와 연통시키고, 도관(45)은 체크 밸브(43)를 저장실 또는 탱크(41)와 연통하는 다른 도관(46)과 연통시킨다. 여기서, 탱크는 다이어프램을 구비하는 것으로 도시되어 있는데, 약 90 ~ 250 psi의 압력으로 가스 가압된다.
도관(38)은, 고압 릴리프 밸브(relief valve)(48)를 구비하며 도관(49, 50, 46)에 연결된 도관(47)을 거쳐서, 탱크(41)와 연통한다. 도관(39)은, 또 다른 고압 릴리프 밸브(52)를 구비하며 도관(49, 50, 46)에 연결된 도관(51)을 거쳐서, 탱크(41)와 연통한다. 상기 압력 릴리프 밸브(48, 52)는 펌프의 작동 극성 따르는 과압 상태를 해제하는 기능을 제공한다. 도관(38)은 또한, 도관(53)과 우회 솔레노이드(54)와 그리고 제한 오리피스(56)를 내장하는 도관(55)을 거쳐서, 도관(39)과 연통한다.
도관(38, 39)은 또한 도관(54), 공동 방지 밸브(anti-cavitation valve)(55), 및 도관(56)을 거쳐서 서로 연통한다. 솔레노이드 작동식 우회 밸브(57, 60)들은 각각 도관(38, 39)에 각각 설치된다. 상기 공동 방지 밸브(57)는 인버스 셔틀 밸브(inverse shuttle valve)의 일종으로서, 도관(38, 39) 안의 유체의 압력을 샘플링하여 그 샘플링된 압력들 간의 차압에 따라서 자동으로 움직인다. 공동 방지 밸브(57)는 작동기의 양쪽 챔버(35, 36)들 간의 체적 변화를 수용하는 기능을 한다. 다시 말해, 피스톤이 실린더 내에서 왼쪽으로 움직일 때에, 좁혀지는 좌측 챔버(35)로부터 제거되는 유체의 체적은 확장되는 우측 챔버(36)에 공급되는 유체의 체적보다 더 많다. 이와 같이 과잉 또는 차분량의 유체가 도관(46, 49, 50)을 통하여 저장실 안으로 유동하여 들어가게 하는 것이 공동 방지 밸브의 기능이다. 반면에, 작동기 피스톤이 실린더에 대해서 우측으로 움직일 때에, 유체의 차분량은 저장실(41)로부터 도관(46)과 공동 방지 밸브를 거쳐서 확장되는 좌측 챔버 안으로 들어간다.
충전 배관구(charge fitting)(61)가 도관(39)과 연통되게 구성됨으로써, 유체가 시스템에 추가될 수 있게 된다. 고장-안전 어큐뮬레이터(62)는 정상 작동 시에 개방되는 솔레노이드 밸브(64)를 내장하는 도관(63)을 거쳐서 도관(39)과 연통한다.
풍력 터빈이 처음 시동되면, 우회 밸브(59,60)가 폐쇄되고, 유체가 먼저 어큐뮬레이터(62) 안으로 펌핑되어서 어큐뮬레이터에 충전되어, 어큐뮬레이터를 약 3,000 psi 압력이 되게 가압하게 된다. 그 후, 유체가 작동기로 유동할 수 있도록 밸브(59, 60)가 개방된다.
상기 고장-안전 어큐뮬레이터(62)는, 모터로 공급되는 전력이 줄어들었을 때에는, 시스템으로 가압된 유압 유체를 공급하는 공급원 역할을 한다. 전원 고장 시에, 상기 고장-안전 어큐뮬레이터(62)는 작동기를 블레이드의 수평 유지 위치를 향해서 좌측으로 변위시키는 가압된 유압 유체 공급원 역할을 한다.
본 발명 장치의 상업적 형태를 도 3 내지 도 5에 도시하였고, 이들 도면에서도 앞에서 설명한 것과 같은 부품에 동일한 도면 부호를 붙였다.
도 6을 참조하면, 세 개의 블레이드 각각의 피치를 독립적으로 제어하기 위한 좀더 큰 제어 시스템이 도시되어 있다. 3상 슬립 링(65)으로부터 나온 신호는 3개의 모터 제어기(66A, 66B, 66C) 각각에 공급된다. 상기 모터 제어기 각각은 전력 스테이지(67A, 67B, 67C) 각각으로 신호를 보내고, 결국은 알맞은 크기 및 극성의 전류를 전자-유압 작동기(A, B, C) 각각으로 보내게 된다. 각 로드(32)의 위치는 LVDT(68A, 68B, 68C) 각각을 거쳐서 감시되고, 이어서 그 위치 신호들은 그에 관련된 모터 제어기(66A, 66B, 66C) 각각으로 피드백된다. 데이터 전송용 회전 광학 링(69)도 각 모터 제어기에 입력 신호를 제공한다. 따라서 시스템은 이와 같은 방식으로 각 블레이드의 피치를 독립적으로 제어하게 된다. 물론 도 6에 도시된 장치는 블레이드가 3개인 풍력 터빈에 특정된 것이다. 더 많거나 혹은 적은 수의 블레이드를 사용하는 경우, 작동기의 개수도 그에 상응하여 조정될 수 있다.
[변형 예]
본 발명에 대해 많은 변경 및 수정이 가해질 수 있다는 것은 명백하다. 향상된 풍력 터빈에 있어서, 여러 블레이드들을 서로 독립적으로 제어할 수 있도록 각 블레이드 마다 하나의 전자-유압 작동기를 마련한다. 현재로서는 DC 브러시리스 모터를 사용하는 것이 바람직하지만, 다른 형태의 모터도 사용할 수 있다. 마찬가지로, 현재로서는 고정 변위 펌프가 바람직하긴 하지만, 다른 종류의 펌프로 대체하는 것도 가능하다.
작동기는 물론 실린더와 벽 모두를 관통하는 로드를 구비할 것이다. 그러나 이는 허브의 소음에 간섭될 것이다. 그럼에도 불구하고, 이와 같은 장치를 수용할 수 있게 된다면, 확장되는 챔버의 체적은 줄어드는 챔버의 체적과 같을 것이기 때문에 공동 방지 밸브는 필요 없게 될 것이다.
필요에 따라서는, 모터 제어기와 전력 스테이지를 향상된 허브 장착형 전자-유압 작동기 바로 안에 일체화시킬 수 있다.
따라서, 이상에서는 현재로서 양호한 본 발명의 개선된 기술을 도시하고 설명하고 몇 가지 수정 예에 대해 설명하였지만, 당해 기술 분야의 숙련자들이라면 쉽게 알 수 있는 바와 같이, 특허청구범위에 정의하여 차별화시킨 본 발명을 본 발명의 기술 사상으로부터 벗어나지 않으면서 추가로 더 여러 가지로 변경 및 수정할 수 있다.

Claims (19)

  1. 나셀에 대해 회전하도록 허브 상에 장착된 다수의 가변 피치 블레이드들을 구비하는 풍력 터빈에 있어서,
    상기 다수의 가변 피치 블레이드들 중 한 블레이드의 피치를 제어하는 전자-유압 작동기를 포함하고,
    상기 전자-유압 작동기는,
    전류를 공급받아 작동하도록 구성된 모터와,
    상기 모터에 의해 구동되며, 상기 모터에 공급된 전류의 작용에 따라 유압 출력을 제공하도록 설치된 펌프와,
    상기 펌프의 유압 출력의 작용에 따라 관련된 블레이드의 피치를 선택적으로 변동시키도록 작동 가능하게 설치된 유압 작동기를 포함하고,
    상기 모터, 펌프 및 작동기가 상기 풍력 터빈의 허브 안에 실제로(physically) 설치된 것을 특징으로 하는 풍력 터빈.
  2. 제1항에 있어서,
    풍력 터빈이 상기 허브 상에 장착되는 가변 피치 블레이드들을 3개 구비하고, 상기 블레이드들 마다 하나의 전자-유압 작동기가 각각 제공된 것을 특징으로 하는 풍력 터빈.
  3. 제1항에 있어서,
    상기 모터는 DC 브러시리스 모터인 것을 특징으로 하는 풍력 터빈.
  4. 제1항에 있어서,
    상기 펌프는 고정 변위 펌프인 것을 특징으로 하는 풍력 터빈.
  5. 제1항에 있어서,
    상기 펌프로부터 나온 유압 출력의 극성은 상기 모터에 공급된 전류의 극성의 작용에 따른 것을 특징으로 하는 풍력 터빈.
  6. 제1항에 있어서,
    상기 작동기는 실린더 안에 활주 가능하게 장착된 피스톤을 구비하고, 상기 피스톤은 그 피스톤의 한 쪽의 제1 챔버를 피스톤의 다른 쪽의 제2 챔버로부터 밀봉되게 분리시키고, 로드가 상기 피스톤에 장착되고 상기 챔버들 중 한 챔버를 통해서 연장되며 실린더의 단부벽을 관통하고, 이에 의해 피스톤이 챔버들 각각에 면하는 면적들은 같지 않게 된 것을 특징으로 하는 풍력 터빈.
  7. 제6항에 있어서,
    유압 유체 저장실(41)과,
    챔버가 팽창할 때에는 유압 유체가 저장실로부터 큰 면적의 피스톤 면과 대면하는 챔버로 유동하고 챔버가 수축할 때에는 유압 유체가 상기 큰 면적의 피스톤 면과 대면하는 챔버로부터 저장실로 유동할 수 있도록, 탱크와 작동기 사이에 작동 가능하게 배치된 공동 방지 밸브(anti-cavitation valve)도 추가로 포함하는 것을 특징으로 하는 풍력 터빈.
  8. 제7항에 있어서,
    상기 유압 저장실이 가압되는 것을 특징으로 하는 풍력 터빈.
  9. 제7항에 있어서,
    상기 공동 방지 밸브는 상기 펌프의 유압 출력의 극성의 작용에 따라 자동으로 작동하는 것을 특징으로 하는 풍력 터빈.
  10. 제1항에 있어서,
    펌프 유압 출력의 최대 압력을 제한하도록 작동 가능하게 설치된 압력 릴리프 밸브(pressure relief valve)도 추가로 포함하는 것을 특징으로 하는 풍력 터빈.
  11. 제7항에 있어서,
    상기 펌프는 고압측 및 저압측과, 케이스 드레인을 구비하는 것을 특징으로 하는 풍력 터빈.
  12. 제1항에 있어서,
    상기 고압측과 저압측을 연통시킬 수 있도록 선택적으로 작동할 수 있게 설치된 우회 밸브(54)도 추가로 포함하는 것을 특징으로 하는 풍력 터빈.
  13. 제11항에 있어서,
    상기 케이스 드레인은 필터를 통해서 저장실과 연통하는 것을 특징으로 하는 풍력 터빈.
  14. 제11항에 있어서,
    상기 우회 밸브와 직렬로 배치된 제한 오리피스(restricted orifice)도 또한 포함하는 것을 특징으로 하는 풍력 터빈.
  15. 제1항에 있어서,
    작은 면적의 피스톤 면과 대면하고 있는 챔버와 도관을 거쳐서 연통하는 가압된 유압 유체 공급원과, 상기 도관에 설치되어 정상 상태에서 개방되는 솔레노이드 밸브도 추가로 포함하고,
    상기 솔레노이드 밸브는, 전원 고장 시에, 유압 유체가 상기 유압 유체 공급원으로부터 도관을 거쳐서 상기 작은 면적의 피스톤 면과 대면하는 챔버 안으로 유동함으로써 이 챔버가 팽창하고 그에 따라 피스톤이 블레이드 수평 유지 위치를 향해 실린더에 대해서 가압될 수 있도록 개방될 수 있게 설치되는 것을 특징으로 하는 풍력 터빈.
  16. 제15항에 있어서,
    상기 펌프를 작은 면적의 피스톤 면과 큰 면적의 피스톤 면과 대면하는 작동기 챔버들로부터 선택적으로 분리시킬 수 있도록 하는 작동이 가능하게 설치된 차단 밸브도 추가로 포함하는 것을 특징으로 하는 풍력 터빈.
  17. 제1항에 있어서,
    나셀로부터 나온 전력은 무접촉 회전식 변압기를 거쳐서 상기 모터로 제공되는 것을 특징으로 하는 풍력 터빈.
  18. 제1항에 있어서,
    모터 제어기 및 전력 스테이지를 추가로 포함하고, 상기 모터 제어기와 전력 스테이지도 풍력 터빈의 허브 안에 실제로(physically) 설치된 것을 특징으로 하는 풍력 터빈.
  19. 제18항에 있어서,
    상기 모터 제어기와 전력 스테이지가 상기 전자-유압 작동기에 장착된 것을 특징으로 하는 풍력 터빈.
KR1020107011886A 2007-11-09 2007-11-09 풍력 터빈 KR101302200B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2007/023681 WO2009064264A1 (en) 2007-11-09 2007-11-09 Electro-hydraulic actuator for controlling the pitch of a blade of a wind turbine

Publications (2)

Publication Number Publication Date
KR20100093545A true KR20100093545A (ko) 2010-08-25
KR101302200B1 KR101302200B1 (ko) 2013-08-30

Family

ID=40419027

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107011886A KR101302200B1 (ko) 2007-11-09 2007-11-09 풍력 터빈

Country Status (11)

Country Link
US (1) US20100232964A1 (ko)
EP (1) EP2217806B1 (ko)
JP (1) JP5270685B2 (ko)
KR (1) KR101302200B1 (ko)
CN (1) CN101918709B (ko)
AU (1) AU2007360945B2 (ko)
BR (1) BRPI0722189A2 (ko)
CA (1) CA2705172C (ko)
DK (1) DK2217806T3 (ko)
ES (1) ES2523240T3 (ko)
WO (1) WO2009064264A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8439638B2 (en) 2010-11-25 2013-05-14 Mitsubishi Heavy Industries, Ltd. Blade pitch controller, wind turbine generator, and method of controlling blade pitch

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158618B1 (ko) * 2010-02-22 2012-06-22 미츠비시 쥬고교 가부시키가이샤 풍력 발전 장치 및 그 건전성 진단 방법
DE102010019444A1 (de) 2010-05-05 2011-11-10 Robert Bosch Gmbh Rotorblattverstelleinrichtung
WO2012030326A1 (en) 2010-08-31 2012-03-08 Moog Inc. Gear assembly for turbine control actuators
JP5450324B2 (ja) * 2010-09-06 2014-03-26 株式会社日立製作所 ダウンウインド型風車
DE102010053811A1 (de) 2010-12-08 2012-06-14 Moog Gmbh Störungssicheres Betätigungssystem
US8757984B2 (en) * 2011-02-10 2014-06-24 Inventus Holdings, Llc Method for positioning a hydraulic accumulator on a wind-powered electric generator
KR101277971B1 (ko) * 2011-02-15 2013-06-27 미츠비시 쥬고교 가부시키가이샤 풍차 날개의 피치 구동 장치, 이것을 구비한 풍차 회전 날개, 및 풍력 발전 장치
DK2554837T3 (en) * 2011-08-05 2019-01-28 Rotak Eolica S L Angle adjustment control device for a wind turbine blade
WO2013035194A1 (ja) * 2011-09-09 2013-03-14 三菱重工業株式会社 風車回転翼のピッチ駆動装置、これを備えた風力発電装置
EP2584192A1 (de) * 2011-10-19 2013-04-24 Siemens Aktiengesellschaft Pitchverstelleinrichtung
DE102011085950A1 (de) 2011-11-08 2013-05-08 Wobben Properties Gmbh Turbine für eine Wasserkraftanlage und Wasserkraftanlage
US9926908B2 (en) 2011-11-30 2018-03-27 Vestas Wind Systems A/S Hydraulic pitch system for a wind turbine
DE102011121524A1 (de) 2011-12-16 2013-06-20 Robert Bosch Gmbh Rotorkopf einer Windkraftanlage und Windkraftanlage
US9695802B2 (en) * 2012-05-22 2017-07-04 United Technologies Corporation Wind turbine load mitigation
DE102012013767A1 (de) 2012-07-11 2014-01-16 Liebherr-Components Biberach Gmbh Windenergieanlage mit einem Pitchverstellsystem
EP2703644B1 (en) * 2012-08-27 2016-08-03 Alstom Wind, S.L.U. Angular positioning system for a wind turbine
JP5677546B2 (ja) * 2013-10-18 2015-02-25 株式会社日立製作所 ダウンウインド型風車
DE102014013570A1 (de) * 2014-09-18 2016-03-24 Conveni Gmbh Stellsystem, Windenergieanlage und Verfahren zum Ausrichten und/oder Nachführen eines Maschinenhauses und/oder eines Rotorblattes
DE202015001902U1 (de) 2015-03-11 2016-06-14 Liebherr-Components Biberach Gmbh Verstelleinheit zur Pitchverstellung eines Rotorblatts und Windkraftanlage mit einer solchen Verstelleinheit
DE102015209644A1 (de) 2015-05-27 2016-12-01 Robert Bosch Gmbh Hydrostatischer linearer Aktuator und Anordnung mit hydrostatischen linearen Aktuatoren
DE102016215080A1 (de) 2016-08-12 2018-02-15 Robert Bosch Gmbh Elektrohydraulischer Verstellantrieb, Verfahren für einen elektrohydraulischen Verstellantrieb und Rotor
NL2019045B1 (en) * 2017-06-09 2018-12-17 Delft Offshore Turbine B V Wind turbine generator with hydraulic pump
NL2021527B1 (en) * 2018-08-30 2020-04-24 Holmatro B V Tool having a pump and a motor on a common axis
EP3633188B1 (en) * 2018-10-02 2021-07-14 Siemens Gamesa Renewable Energy A/S Variable flow hydraulic circuit for a wind turbine

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071779A (en) * 1935-07-10 1937-02-23 Mark S Willing Means for preventing soil erosion
US2657533A (en) * 1951-03-26 1953-11-03 Borg Warner Hydraulic control system
US2918795A (en) * 1955-09-06 1959-12-29 Ramsey Corp Electro-hydraulic actuating cylinder
US3609970A (en) * 1970-03-06 1971-10-05 Abex Corp Hydraulic power transfer method and apparatus
US4085587A (en) * 1975-11-03 1978-04-25 Leslie H. Garlinghouse Fail safe liquid power device
CA1146079A (en) * 1980-03-17 1983-05-10 Edward H. Kusiak Wind turbine blade pitch adjustment system
US4630441A (en) * 1984-09-04 1986-12-23 The Boeing Company Electrohydraulic actuator for aircraft control surfaces
US5100082A (en) * 1987-09-17 1992-03-31 The Boeing Company Hydraulic power supplies
US5145324A (en) * 1990-06-18 1992-09-08 Sundstrand Corporation RAM air turbine driving a variable displacement hydraulic pump
US5608771A (en) * 1995-10-23 1997-03-04 General Electric Company Contactless power transfer system for a rotational load
IT1280604B1 (it) * 1995-11-02 1998-01-23 Sme Elettronica Spa Gruppo di potenza per l'alimentazione di attuatori idraulici
FR2748296B1 (fr) * 1996-05-06 1998-11-20 Richer Bertrand Louis Isidore Systeme de controle du calage des pales d'un aerogenerateur avec effet de reduction des charges dynamiques et extremes
AU1135199A (en) * 1997-11-04 1999-05-24 Gerald Hehenberger Drive mechanism for adjusting the rotor blades of wind power installations
US6327957B1 (en) * 1998-01-09 2001-12-11 Wind Eagle Joint Venture Wind-driven electric generator apparatus of the downwind type with flexible changeable-pitch blades
DE19844258A1 (de) * 1998-09-26 2000-03-30 Dewind Technik Gmbh Windenergieanlage
DE20017994U1 (de) * 2000-10-19 2001-02-08 Steven Joachim Hybrider Pitch-Antrieb für Windkraftanlagen
DE10146968A1 (de) * 2000-12-12 2002-06-13 Bosch Rexroth Ag Windrad
JP2002276535A (ja) * 2001-03-21 2002-09-25 Kayaba Ind Co Ltd 可変翼機構
JP3563365B2 (ja) * 2001-04-26 2004-09-08 ティーエスコーポレーション株式会社 航空機の舵面駆動用アクチュエータ装置
JP2002364516A (ja) * 2001-06-04 2002-12-18 Kayaba Ind Co Ltd 風車の可変翼装置
NL1019067C2 (nl) * 2001-10-01 2003-04-02 Actuant Corp Hydraulische bedieningsinrichting voor een afsluitsamenstel.
FR2831226B1 (fr) * 2001-10-24 2005-09-23 Snecma Moteurs Actionneur electrohydraulique autonome
FR2831225B1 (fr) * 2001-10-24 2004-01-02 Snecma Moteurs Dispositif electrohydraulique de changement de pas d'helice
DE20317749U1 (de) * 2003-11-18 2005-03-24 Hawe Hydraulik Gmbh & Co Kg Elektrohydraulische Regenerativ-Steuervorrichtung
JP4641481B2 (ja) * 2005-10-12 2011-03-02 ヤンマー株式会社 風力発電装置
US7602075B2 (en) * 2006-07-06 2009-10-13 Acciona Windpower, S.A. Systems, methods and apparatuses for a wind turbine controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8439638B2 (en) 2010-11-25 2013-05-14 Mitsubishi Heavy Industries, Ltd. Blade pitch controller, wind turbine generator, and method of controlling blade pitch

Also Published As

Publication number Publication date
CN101918709B (zh) 2013-01-02
DK2217806T3 (da) 2014-11-10
CA2705172C (en) 2015-01-20
WO2009064264A1 (en) 2009-05-22
ES2523240T3 (es) 2014-11-24
AU2007360945B2 (en) 2012-02-23
CA2705172A1 (en) 2009-05-22
EP2217806A1 (en) 2010-08-18
JP2011503420A (ja) 2011-01-27
BRPI0722189A2 (pt) 2014-04-08
JP5270685B2 (ja) 2013-08-21
CN101918709A (zh) 2010-12-15
KR101302200B1 (ko) 2013-08-30
AU2007360945A1 (en) 2009-05-22
US20100232964A1 (en) 2010-09-16
EP2217806B1 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
KR101302200B1 (ko) 풍력 터빈
US4352634A (en) Wind turbine blade pitch control system
US20110142596A1 (en) Method for monitoring a component in a hydraulic circuit, monitoring device and fluid turbine
US6261062B1 (en) Actuation system for a controllable pitch propeller
WO2010001479A1 (ja) 風力発電装置
JPH0364713B2 (ko)
US9890767B2 (en) Wind energy system with a pitch adjustment system
EP2189646A3 (en) Variable pitch rotor arrangement in a gas turbine engine
US20110206515A1 (en) Hydraulic yaw drive system for a wind turbine and method of operating the same
WO2012070142A1 (ja) 翼ピッチ制御装置、風力発電装置、及び翼ピッチ制御方法
AU2014281739A1 (en) Turbine with hydraulic variable pitch system
US9068556B2 (en) Pilot circuitry for controlling the emergency feathering of a wind turbine
KR20130086130A (ko) 회전자 블레이드 피치 조절 장치
JP4641481B2 (ja) 風力発電装置
JPH11287178A (ja) 発電装置
KR20120051973A (ko) 풍력식 압축기
US11542918B2 (en) Method of controlling a blade pitch angle of a wind turbine by use of a hydraulic system
CN108071619B (zh) 变桨液压系统及风力发电机组
JPH0742662A (ja) 風 車
WO2018131387A1 (ja) 風力発電装置
NO326734B1 (no) Et turbindrevet elektrisk kraftproduksjonssystem og en metode for a regulering dette

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160819

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171019

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180903

Year of fee payment: 6