KR20100014547A - 탄소 나노튜브 직물 요소와 조종 요소를 포함하는 메모리 셀과 이를 형성하는 방법 - Google Patents

탄소 나노튜브 직물 요소와 조종 요소를 포함하는 메모리 셀과 이를 형성하는 방법 Download PDF

Info

Publication number
KR20100014547A
KR20100014547A KR1020097019877A KR20097019877A KR20100014547A KR 20100014547 A KR20100014547 A KR 20100014547A KR 1020097019877 A KR1020097019877 A KR 1020097019877A KR 20097019877 A KR20097019877 A KR 20097019877A KR 20100014547 A KR20100014547 A KR 20100014547A
Authority
KR
South Korea
Prior art keywords
conductor
carbon nanotube
memory cell
level
diode
Prior art date
Application number
KR1020097019877A
Other languages
English (en)
Korean (ko)
Inventor
에스. 브래드 허너
로이 이. 쉐얼라인
Original Assignee
쌘디스크 3디 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/692,148 external-priority patent/US7982209B2/en
Priority claimed from US11/692,144 external-priority patent/US7667999B2/en
Application filed by 쌘디스크 3디 엘엘씨 filed Critical 쌘디스크 3디 엘엘씨
Publication of KR20100014547A publication Critical patent/KR20100014547A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • G11C13/025Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • H10B63/34Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors of the vertical channel field-effect transistor type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/72Array wherein the access device being a diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Other compounds of groups 13-15, e.g. elemental or compound semiconductors
    • H10N70/8845Carbon or carbides
KR1020097019877A 2007-03-27 2008-03-26 탄소 나노튜브 직물 요소와 조종 요소를 포함하는 메모리 셀과 이를 형성하는 방법 KR20100014547A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/692,144 2007-03-27
US11/692,148 US7982209B2 (en) 2007-03-27 2007-03-27 Memory cell comprising a carbon nanotube fabric element and a steering element
US11/692,148 2007-03-27
US11/692,144 US7667999B2 (en) 2007-03-27 2007-03-27 Method to program a memory cell comprising a carbon nanotube fabric and a steering element

Publications (1)

Publication Number Publication Date
KR20100014547A true KR20100014547A (ko) 2010-02-10

Family

ID=39590778

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097019877A KR20100014547A (ko) 2007-03-27 2008-03-26 탄소 나노튜브 직물 요소와 조종 요소를 포함하는 메모리 셀과 이를 형성하는 방법

Country Status (6)

Country Link
EP (1) EP2140492A1 (zh)
JP (1) JP2010522991A (zh)
KR (1) KR20100014547A (zh)
CN (1) CN101681921B (zh)
TW (1) TW200903782A (zh)
WO (1) WO2008118486A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613545A (zh) * 2015-02-02 2015-05-13 广东美的制冷设备有限公司 空调器室内机及空调器的出风控制方法
CN104613620A (zh) * 2015-02-02 2015-05-13 广东美的制冷设备有限公司 空调器及其出风控制方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100655078B1 (ko) * 2005-09-16 2006-12-08 삼성전자주식회사 비트 레지스터링 레이어를 갖는 반도체 메모리 장치 및그의 구동 방법
US8294098B2 (en) 2007-03-30 2012-10-23 Tsinghua University Transmission electron microscope micro-grid
US8878235B2 (en) 2007-12-31 2014-11-04 Sandisk 3D Llc Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element and methods of forming the same
US8558220B2 (en) 2007-12-31 2013-10-15 Sandisk 3D Llc Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element formed over a bottom conductor and methods of forming the same
US8110476B2 (en) * 2008-04-11 2012-02-07 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
US8530318B2 (en) 2008-04-11 2013-09-10 Sandisk 3D Llc Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element formed over a bottom conductor and methods of forming the same
US20100032639A1 (en) 2008-08-07 2010-02-11 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
JP2012507150A (ja) * 2008-10-23 2012-03-22 サンディスク スリーディー,エルエルシー 低減された層間剥離特性を示す炭素系メモリ素子およびその形成方法
KR20100052080A (ko) * 2008-11-10 2010-05-19 주식회사 하이닉스반도체 저항성 메모리 소자 및 그 제조 방법
JP2010123646A (ja) * 2008-11-18 2010-06-03 Toshiba Corp 電気素子、スイッチング素子、メモリ素子、スイッチング方法及びメモリ方法
US8114765B2 (en) 2008-12-31 2012-02-14 Sandisk 3D Llc Methods for increased array feature density
US8084347B2 (en) 2008-12-31 2011-12-27 Sandisk 3D Llc Resist feature and removable spacer pitch doubling patterning method for pillar structures
US8023310B2 (en) * 2009-01-14 2011-09-20 Sandisk 3D Llc Nonvolatile memory cell including carbon storage element formed on a silicide layer
JP4829320B2 (ja) * 2009-03-17 2011-12-07 株式会社東芝 不揮発性半導体記憶装置の製造方法
CN101848564B (zh) 2009-03-27 2012-06-20 清华大学 加热器件
US7955981B2 (en) * 2009-06-30 2011-06-07 Sandisk 3D Llc Method of making a two-terminal non-volatile memory pillar device with rounded corner
CN101998706B (zh) 2009-08-14 2015-07-01 清华大学 碳纳米管织物及应用该碳纳米管织物的发热体
CN101991364B (zh) 2009-08-14 2013-08-28 清华大学 电烤箱
MX2012002066A (es) 2009-08-17 2012-03-29 Intellikine Inc Compuestos heterociclicos y usos de los mismos.
CN102019039B (zh) 2009-09-11 2013-08-21 清华大学 红外理疗设备
JP5611574B2 (ja) * 2009-11-30 2014-10-22 株式会社東芝 抵抗変化メモリ及びその製造方法
JP5894980B2 (ja) 2010-05-24 2016-03-30 インテリカイン, エルエルシー 複素環式化合物およびその使用
US9127000B2 (en) 2011-02-23 2015-09-08 Intellikine, LLC. Heterocyclic compounds and uses thereof
US10580778B2 (en) * 2018-07-18 2020-03-03 Nanya Technology Corporation Dynamic random access memory structure and method for preparing the same
US11502105B2 (en) 2021-04-06 2022-11-15 Macronix International Co., Ltd. Semiconductor structure and a method for manufacturing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858185B2 (en) * 2003-09-08 2010-12-28 Nantero, Inc. High purity nanotube fabrics and films
CN1849718A (zh) * 2003-07-09 2006-10-18 先进微装置公司 存储器件和使用及制造该器件的方法
JP4448356B2 (ja) * 2004-03-26 2010-04-07 富士通株式会社 半導体装置およびその製造方法
JP2005343744A (ja) * 2004-06-03 2005-12-15 Matsushita Electric Ind Co Ltd カーボンナノチューブ半導体の製造方法およびカーボンナノチューブ構造体
US7479654B2 (en) * 2005-05-09 2009-01-20 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US7812404B2 (en) * 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
US20060273298A1 (en) * 2005-06-02 2006-12-07 Matrix Semiconductor, Inc. Rewriteable memory cell comprising a transistor and resistance-switching material in series
JP4975289B2 (ja) * 2005-09-06 2012-07-11 国立大学法人名古屋大学 カーボンナノウォールを用いた電子素子
EP2070088A4 (en) * 2006-08-08 2009-07-29 Nantero Inc NON-VOLATILE RESISTIVE MEMORY, CIRCUIT BREAKERS AND OPERATING CIRCUITS WITH SCALABLE NANOTUBE SWITCHES WITH TWO TERMINALS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613545A (zh) * 2015-02-02 2015-05-13 广东美的制冷设备有限公司 空调器室内机及空调器的出风控制方法
CN104613620A (zh) * 2015-02-02 2015-05-13 广东美的制冷设备有限公司 空调器及其出风控制方法

Also Published As

Publication number Publication date
WO2008118486A1 (en) 2008-10-02
TW200903782A (en) 2009-01-16
CN101681921A (zh) 2010-03-24
EP2140492A1 (en) 2010-01-06
JP2010522991A (ja) 2010-07-08
CN101681921B (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
US7667999B2 (en) Method to program a memory cell comprising a carbon nanotube fabric and a steering element
US7982209B2 (en) Memory cell comprising a carbon nanotube fabric element and a steering element
KR20100014547A (ko) 탄소 나노튜브 직물 요소와 조종 요소를 포함하는 메모리 셀과 이를 형성하는 방법
JP5735271B2 (ja) 大きくて一様な電流を有する上向きpinダイオードの大型アレイとそれを形成する方法
US7767499B2 (en) Method to form upward pointing p-i-n diodes having large and uniform current
US8207064B2 (en) 3D polysilicon diode with low contact resistance and method for forming same
US20090086521A1 (en) Multiple antifuse memory cells and methods to form, program, and sense the same
US20090104756A1 (en) Method to form a rewriteable memory cell comprising a diode and a resistivity-switching grown oxide
JP5695417B2 (ja) 逆方向リークが減少した3次元の読み書きセルとそれを作る方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application