KR20090127153A - 세포 및 세포 배양물의 평가 방법 - Google Patents

세포 및 세포 배양물의 평가 방법 Download PDF

Info

Publication number
KR20090127153A
KR20090127153A KR1020097020856A KR20097020856A KR20090127153A KR 20090127153 A KR20090127153 A KR 20090127153A KR 1020097020856 A KR1020097020856 A KR 1020097020856A KR 20097020856 A KR20097020856 A KR 20097020856A KR 20090127153 A KR20090127153 A KR 20090127153A
Authority
KR
South Korea
Prior art keywords
mfap5
chondrocyte
cells
chondrocytes
expression level
Prior art date
Application number
KR1020097020856A
Other languages
English (en)
Inventor
스티븐 엠. 랍코
스티븐 제이. 두가이
Original Assignee
겐자임 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 겐자임 코포레이션 filed Critical 겐자임 코포레이션
Publication of KR20090127153A publication Critical patent/KR20090127153A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6887Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids from muscle, cartilage or connective tissue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4722Proteoglycans, e.g. aggreccan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • G01N2400/10Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • G01N2400/38Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence, e.g. gluco- or galactomannans, Konjac gum, Locust bean gum or Guar gum
    • G01N2400/40Glycosaminoglycans, i.e. GAG or mucopolysaccharides, e.g. chondroitin sulfate, dermatan sulfate, hyaluronic acid, heparin, heparan sulfate, and related sulfated polysaccharides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/10Musculoskeletal or connective tissue disorders

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

본 발명은 세포 배양물의 조성을 평가하는 방법 (예를 들어, 연골세포와 섬유모세포와의 구별 방법) 및 각 세포 (예를 들어, 연골세포)의 표현형을 평가하기 위한 방법을 개시한다. 상기 방법은 예를 들어 연골 결함의 치료에 사용되는 연골세포 배양물을 평가하기 위해 사용할 수 있다. 몇몇 실시양태에서, 본 발명은 섬유모세포 마커의 발현 수준을 기준으로 세포 배양 조성물 또는 세포의 동일성의 확인을 포함한다. 다른 실시양태에서, 본 발명은 세포 배양물 샘플 또는 각 세포에서 하나 이상의 연골세포 마커와 하나 이상의 섬유모세포 마커의 발현 수준의 비교를 포함한다. 예시적 실시양태에서, 연골세포 마커는 히알루로난 및 프로테오글리칸 연결 단백질 1 (HAPLN1)이고, 섬유모세포 마커는 미세원섬유 관련 단백질 5 (MFAP5)이다.
연골세포, 섬유모세포, 프로테오글리칸 연결 단백질 1, 미세원섬유 관련 단백질 5, 연골 결함

Description

세포 및 세포 배양물의 평가 방법 {METHODS OF EVALUATING CELLS AND CELL CULTURES}
본 출원은 그의 전문이 본원에 참고로 포함되는 2007년 4월 6일자로 출원된 가출원 제60/910,574호를 우선권으로 주장한다.
본 발명은 세포 배양물의 조성을 측정하는 방법, 보다 특히 연골세포와 섬유모세포를 구별하는 방법에 관한 것이다.
관절 연골에 대한 손상은 불량한 복원 속도를 갖는데, 부분적으로 연골 조직에의 혈액 공급의 결핍 때문이다 (문헌 [Basad et al., In: Hendrich et al., Cartilage Surgery and Future Perspectives, Thieme Verlag, 49-56 (2003)]). 슬관절에 대한 외상은 예를 들어 연골 (chondral) 및 골연골 (osteochondral) 병변을 유발할 수 있으며, 이러한 손상은 골관절염으로 진행될 수 있다 (문헌 [Brittberg et al., New England Journal of Medicine, 331 (14): 889-895 (1994)]). 골관절염의 심한 경우에서, 전 슬관절 치환술이 필요할 수 있다. 그러나, 슬관절 치환술에서 사용되는 인공 보철은 수명이 제한되며, 따라서 슬관절 치환술은 특히 비-중장년층 환자에 대하여 최적 치료법이 아니다 (Brittberg et al., 상기 문헌).
몇몇 경우에서, 관절 연골 손상은 자가 연골세포 이식에 의해 복구할 수 있다 (문헌 [Brittberg et al., Clin. Orthopaed. Rel. Res., 367S: S147-S155 (1999)]). 이러한 절차에서, 연골세포를 환자로부터 수집하고, 세포 배양물에서 확장시켜 연골세포의 수를 증가시키고, 이후 환자의 손상 부위에 다시 이식한다. 손상 부위에 연골세포로 봉하기 위한 골막 조직 편으로 연골세포를 덮는다. 배양된 연골세포가 배양물에서 탈분화되는 경향을 갖지만, 성공적인 이식에서, 탈분화된 연골세포는 그의 재분화 가능성이 유지되며, 이식시 유리질 연골 조직을 생성하는 연골세포로 재분화할 것이다.
매트릭스-유도 자가 연골세포 이식으로 알려진 변형된 기법 (MACI® 이식 절차)에서, 배양된 연골세포를 콜라겐 매트릭스에 로딩하고, 이후 이들을 환자에 이식한다 (Basad et al., 상기 문헌). 추가적으로, 콜라겐 매트릭스를 봉합 대신 피브린 접착제로 고정시켜, 보다 단순한 수술 기법이 되도록 할 수 있다.
다양한 기법 및 배지를 사용하여 연골세포를 배양할 수 있다. 연골세포 배양물을 위한 무혈청 배지의 예, 및 연골세포의 단리 및 증식을 위한 방법은 예를 들어 본원에 참고로 포함되는 미국 특허 제6,150,163호 및 제7,169,610호, 및 미국 가출원 제60/805,307호에 기재되어 있다.
섬유모세포 또는 섬유모세포-유사 세포 (예컨대, 윤활세포)를 연골세포와 동시-단리시킬 수 있으며, 따라서 연골세포 이식물의 제조 과정에서 세포 배양물에서 동시-증식될 수 있다. 연골세포는 이들이 배양물에서 탈분화되는 경우 섬유모세포 외관과 비슷한 것으로 알려져 있다 (문헌 [Benya and Shaffer, Cell, 30: 215-224 (1982)]). 그러나 이들은 그의 분화 가능성을 유지하는데, 즉 이들은 이식시 연골세포 표현형을 재발현할 수 있다. 결과적으로, 이는 외관을 기준으로 배양된 탈분 화된 연골세포를 동시-배양된 섬유모세포 또는 섬유모세포-유사 세포로부터 구별하기 어렵게 할 수 있다.
추가적으로, 배양된 탈분화된 연골세포에서의 유전자 발현 패턴은 천연 연골 연골세포의 그것과 상이하다. 예를 들어, 천연 연골 연골세포에서 높게 발현되는 여러 마커는 배양된 연골세포에서 감소된 수준으로 발현된다 (문헌 [Binette et al., J. Orthopaed. Res., 16:207-216 (1998)]). 따라서, 이러한 연골세포 마커의 발현은 탈분화된 연골세포를 세포 배양물에 존재할 수 있는 다른 유형의 세포와 반드시 구별할 수 있는 것은 아니다. 추가적으로, 많은 알려진 섬유모세포 마커는 비록 상이한 수준이기는 하나 탈분화된 연골세포 및 천연 연골 연골세포 모두에서 발현된다. 따라서, 이러한 섬유모세포 마커의 발현 수준은 샘플에 존재하는 세포가 탈분화된 연골세포인지, 섬유모세포인지 또는 섬유모세포-유사 세포인지 반드시 나타내는 것은 아닐 수 있다.
연골세포, 섬유모세포 및 섬유모세포-유사 세포를 확인하는 방법, 특히 세포 배양물에 적용할 수 있는 방법에 대한 필요가 있다.
<발명의 개요>
특정 측면에서, 본 발명의 방법은 세포 배양물의 조성을 평가하는 방법 (예를 들어, 연골세포를 섬유모세포와 구별하기 위한 방법) 및 각 세포 (예를 들어, 연골세포)의 표현형을 평가하기 위한 방법을 제공한다. 본 발명의 방법은 예를 들어 연골 결함의 치료에 사용되는 연골세포 배양물을 평가하기 위해 사용할 수 있다. 몇몇 실시양태에서, 본 발명은 섬유모세포 마커의 발현 수준을 기준으로 세포 배양물 조성 또는 세포의 동일성을 확인하는 것을 포함한다. 다른 실시양태에서, 본 발명은 세포 배양물 샘플 또는 각 세포에서 하나 이상의 연골세포 마커 및 하나 이상의 섬유모세포 마커의 발현 수준을 비교하는 것을 포함한다. 예시적 실시양태에서, 연골세포 마커는 히알루로난 및 프로테오글리칸 연결 단백질 1 (HAPLN1)이고, 섬유모세포 마커는 미세원섬유 관련 단백질 5 (MFAP5)이다.
본 발명은 적어도 일부 특정 비-연골 세포 유형, 예컨대 섬유모세포 및 윤활세포에서 높게 발현되되, 연골세포에서 유의하게 낮은 수준으로 발현되는 세포 표현형 마커로서 MFAP5의 확인을 기초로 한다. 추가적으로, 본 발명은 적어도 일부 MFAP5 및 연골세포 마커, 예컨대 HAPLN1의 발현 수준 비가 연골 생검으로부터 유래된 배양물에서의 세포 표현형의 신뢰성 있는 지시제라는 발견을 기초로 한다. 일부 조건 하에, 세포 배양물의 조성 또는 각 세포의 표현형을 확인하기 위해 마커의 유형 (즉, 섬유모세포 및 연골세포 마커) 둘 모두를 사용하는 것이 바람직할 수 있지만, 본 발명은 또한 MFAP5 마커 단독의 표준화된 발현 수준의 측정이 상기 목적에 충분할 수 있다는 실시양태를 제공한다.
몇몇 실시양태에서, 섬유모세포 마커는 MFAP5가 아니며, 그의 표준화된 발현 수준은 섬유모세포에서에 비해 연골세포에서 보다 낮게 된다. 몇몇 실시양태에서, 섬유모세포 마커는 그의 표준화된 발현 수준이 섬유모세포 및/또는 윤활세포에서에 비해 연골세포 (예를 들어, 일차 및/또는 계대배양된 연골세포)에서 보다 낮게 된다. 몇몇 실시양태에서, 섬유모세포 마커는 섬유모세포 및/또는 윤활세포에서에 비해 연골세포에서 적어도 2배, 5배, 8배, 10배 또는 그 이상 낮게 발현된다.
따라서, 한 측면에서, 본 발명은 세포 배양물, 예를 들어 연골세포를 시험적으로 함유하는 세포 배양물의 조성을 평가하는 방법 (방법 1); 및 각 세포의 표현형을 평가하는 방법 (방법 2)을 제공한다. 방법 1의 실시양태에서, 각각의 마커의 발현 수준을 복수개의 세포 (예를 들어, 배양물 샘플)에서의 마커의 평균 발현 수준으로서 측정한다. 방법 1의 실시양태에서, 세포 배양물의 조성을 총체적으로 평가하여 연골세포를 함유하는지를 측정할 수 있다. 방법 2의 실시양태에서, 마커의 발현 수준은 평가되는 각 세포에서의 상기 마커의 발현 수준으로서 측정된다. 따라서, 방법 1은 세포 배양물의 조성을 확인하는 반면, 방법 2는 각 세포의 표현형을 예를 들어 세포가 연골세포인지를 확인한다.
몇몇 실시양태에서, 방법 1은
a) 세포 배양물로부터 복수개의 세포를 얻는 단계;
b) 세포 배양물로부터의 복수개의 세포에서 본 발명의 섬유모세포 마커의 평균 발현 수준을 측정하는 단계; 및
c) 발현 수준을 기준으로 배양물의 조성을 측정하는 단계
를 포함하며, 여기서 미리 측정된 역치 미만의 발현 수준은 세포 배양물이 연골세포를 함유한다는 것을 나타낸다. 별법으로, 미리측정된 역치 초과의 발현 수준은 세포 배양물이 연골세포를 함유하지 않는다는 것을 나타낸다 (예를 들어, 배양물은 적어도 50%, 55%, 60%, 65%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상의 연골세포를 포함하지 않음).
몇몇 실시양태에서, 방법 1은 섬유모세포 마커 (MFAP5 또는 또 다른 섬유모 세포 마커) 및 연골세포 마커 (예를 들어, HAPLN1)의 발현 수준을 대조군과, 또는 서로와 비교하는 단계를 포함한다. 몇몇 실시양태에서, 섬유모세포 마커 및 연골세포 마커는 일차 및/또는 계대배양된 연골세포에서의 발현 수준의 비 (섬유모세포 마커에 대한 연골세포 마커의 비)가 배양된 섬유모세포에서의 발현 비와 동일하거나 또는 5, 10, 20, 30, 50, 75, 100배 또는 그 이상 크게 된다.
특히, 몇몇 실시양태에서, 방법 1은
a) 세포 배양물로부터 복수개의 세포를 얻는 단계;
b) 복수개의 세포에서 연골세포 마커의 평균 발현 수준을 측정하는 단계;
c) 복수개의 세포에서 섬유모세포 마커의 평균 발현 수준을 측정하는 단계; 및
d) 연골세포 마커의 평균 발현 수준 및 섬유모세포 마커의 평균 발현 수준을 기준으로 배양물의 조성을 측정하는 단계
를 포함한다. 몇몇 실시양태에서, 연골세포 마커의 발현 수준이 미리측정된 역치 초과인 반면 섬유모세포 마커의 발현수준이 미리 측정된 역치 미만인 경우, 배양물은 연골세포를 함유하는 것으로 확인된다. 별법으로, 미리측정된 역치 초과의 섬유모세포 마커의 발현 수준은 세포 배양물이 연골세포를 함유하지 않는다는 것을 나타낸다 (예를 들어, 배양물은 연골세포를 적어도 50%, 55%, 60%, 65%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상 포함하지 않음).
몇몇 실시양태에서, 배양물 조성을 측정하는 단계는 연골세포 마커의 평균 발현 수준과 섬유모세포 마커의 평균 발현 수준을 비교하는 것을 포함한다. 몇몇 실시양태에서, 마커의 발현 수준을 서로에 대하여 비교한다 (따라서, 역치는 예를 들어 2개 마커의 발현 수준 간의 주어진 차이 또는 그의 비로서 정의될 수 있음). 예를 들어, 몇몇 실시양태에서, 미리측정된 역치에 비해 큰, 예를 들어 0.25, 0.55, 1, 2, 2.2, 5, 10, 25, 50 또는 그 이상의 섬유모세포 마커 (예를 들어, MFAP5) 발현 수준에 대한 연골세포 마커 (예를 들어, HAPLN1) 발현 수준의 비는 세포 배양물이 연골세포를 함유한다는 것을 나타낸다.
방법 1의 몇몇 실시양태에서, 연골세포 및 섬유모세포 마커의 발현 수준은 예를 들어 정량적 RT-PCR의 표준 곡선 방법, 또는 정량적 RT-PCR의 비교 CT 방법 (이는 섬유모세포 마커 및 연골세포 마커에 대해 요구되는 역치 사이클 수의 차이를 측정함)에 의해 RNA 수준에서 측정한다.
관련된 측면에서, 본 발명은 예를 들어 유세포 분석법 또는 단일-세포 RT-PCR을 사용하여 각 세포의 표현형을 평가하는 방법 (방법 2)을 제공한다. 상기 방법은 연골 또는 윤활막, 연골세포 배양물, 섬유모세포 배양물, 윤활세포 배양물, 또는 임의의 다른 적합한 배양물로부터 유래된 세포 배양물을 비롯한 세포 배양물로부터 각 세포를 확인하는데 유용하다. 또한, 상기 방법은 임의의 적합한 생물학적 샘플로부터 유래된 각 세포를 확인하는데 유용하며, 여기서 이는 연골 샘플, 윤활막 샘플, 섬유모세포 샘플 등을 비롯한 각 세포를 확인하는데 바람직하다. 방법 2에서의 섬유모세포 및 연골세포 마커는 방법 1에 대해 기재된 것과 같이 선택하고 평가할 수 있다.
몇몇 실시양태에서, 방법 2는
a) 세포에서 본 발명의 섬유모세포 마커의 발현 수준을 측정하는 단계; 및
b) 섬유모세포 마커의 발현 수준을 기준으로 세포의 표현형을 측정하는 단계
를 포함하며, 여기서 미리 측정된 역치 미만의 발현 수준은 세포가 연골세포임을 나타낸다. 별법으로, 미리측정된 역치 초과의 발현 수준은 세포가 연골세포가 아님 (예를 들어, 섬유모세포 또는 윤활세포임)을 나타낸다. 몇몇 실시양태에서, 방법 2는
a) 세포에서 연골세포 마커의 발현 수준을 측정하는 단계;
b) 세포에서 섬유모세포 마커의 발현 수준을 측정하는 단계; 및
c) 연골세포 마커의 발현 수준 및 섬유모세포 마커의 발현 수준을 기준으로 세포의 표현형을 평가하는 단계
를 포함한다. 몇몇 실시양태에서, 연골세포 마커의 발현 수준이 미리측정된 역치 수준 초과인 반면 섬유모세포 마커의 발현 수준이 미리측정된 역치 수준 미만인 경우, 세포는 연골세포로서 확인된다. 별법으로, 연골세포 마커의 발현 수준이 미리측정된 역치 수준 미만인 반면 섬유모세포 마커의 발현 수준이 미리측정된 역치 수준 초과인 경우, 세포는 연골세포가 아니다. 몇몇 실시양태에서, 세포의 표현형을 평가하는 단계 c)는 연골세포 마커의 발현 수준과 섬유모세포 마커와의 발현 수준의 비교를 포함한다.
본 발명의 추가 측면을 하기 발명의 상세한 설명에서 설명할 것이다.
도 1은 연골세포 생검으로부터 배양된 연골세포를 제조하는데 사용되는 예시적 제조 방법에서의 단계를 예시하는 순서도이다.
도 2는 RT-PCR의 표준 곡선 방법에 의해 측정된 것과 같은 여러 세포주에서의 HAPLN1 발현 수준을 도시한다. 발현 수준을 18S 리보솜 RNA로 표준화하였다. 일차 연골세포 (PC)에서의 발현 수준을 1로 조정하고, 다른 비를 그에 따라 조정하였다. 사용된 세포주를 표 2에 열거한다.
도 3은 RT-PCR의 표준 곡선 방법에 의해 측정된 것과 같은, 도 2에서 나타낸 것과 동일한 세포주에서의 MFAP5의 발현 수준을 도시한다. 발현 수준을 18S 리보솜 RNA로 표준화하였다. 일차 연골세포 (PC)에서의 발현 수준을 1로 조정하고, 다른 비를 그에 따라 조정하였다.
도 4는 도 2 및 도 3으로부터의 HAPLN1 및 MFAP5 발현 수준의 비를 도시한다. 일차 연골세포 (PC)에서의 비를 1로 조정하고, 다른 비를 그에 따라 조정하였다.
도 5는 도 2에서 나타낸 것과 동일한 세포주에서의 HAPLN1 및 MFAP5 발현 수준의 비를 도시한다. 발현 수준을 RT-PCR의 비교 CT 방법에 의해 측정하였으며, 비를 2^(CT,MFAP5 - CT,HAPLN1)로서 계산하였다.
도 6은 여러 추가의 연골세포주 및 윤활세포주에서의 HAPLN1 발현 수준을 도시한다. 발현 수준을 RT-PCR의 표준 곡선 방법에 의해 측정하고, 18S 리보솜 RNA로 표준화하였다. 일차 연골세포 (PC)에서의 발현 수준을 1로 조정하였으며, 다른 비를 그에 따라 조정하였다. 사용된 세포주를 표 3에 열거한다.
도 7은 도 6에서 나타낸 것과 동일한 세포주에서의 MFAP5 발현 수준을 도시한다. 발현 수준을 RT-PCR의 표준 곡선 방법에 의해 측정하고, 18S 리보솜 RNA로 표준화하였다. 일차 연골세포 (PC)에서의 발현 수준을 1로 조정하고, 다른 비를 그에 따라 조정하였다.
도 8은 도 6 및 도 7로부터의 HAPLN1 및 MFAP5 발현 수준의 비를 도시한다. 일차 연골세포 (PC)에서의 비를 1로 조정하고, 다른 비를 그에 따라 조정하였다.
도 9는 도 6에서 나타낸 것과 동일한 세포주에서의 HAPLN1 및 MFAP5 발현 수준의 비를 도시한다. RT-PCR의 비교 CT 방법에 의해 상기 발현 수준을 측정하였으며, 상기 비를 2^(CT,MFAP5 - CT,HAPLN1)로서 계산하였다.
도 10A는 도 2 및 도 6에서 나타낸 것과 동일한 세포주, 및 또한 표 4에서 확인된 추가의 연골세포주, 윤활세포주 및 피부 섬유모세포주에서의 HAPLN1 및 MFAP5 발현 수준의 비를 도시한다. 실시예 3에서 기재된 것과 같은 맞춤형 프라이머 및 프로브를 사용하여 RT-PCR의 비교 CT 방법에 의해 발현 수준을 측정하였다. HAPLN1:MFAP5 비를 2^(CT,MFAP5 - CT,HAPLN1)로서 계산하였다. 도 10B는 표 5에서 확인된 추가 세포주에서의 HAPLN1 및 MFAP5 발현 수준의 비를 도시한다. 도 10A에 대해 기재된 것과 동일한 방법을 사용하여 발현 수준을 측정하였다.
도 11은 단층 및 콜라겐-스캐폴드 배양물에서의 HAPLN1 및 MFAP5에 대한 발현 수준 비 사이의 비교를 나타낸다. 사용된 세포주를 표 7에서 열거한다. RT- PCR의 표준 곡선 방법에 의해 HAPLN1 및 MFAP5 발현 수준을 측정하였다. 발현 수준을 18S 리보솜 RNA로 표준화하였다. 일차 연골세포 (PC)의 단층 배양물에서의 비를 1로 조정하고, 다른 비를 그에 따라 조정하였다.
도 12는 도 11에서 나타낸 것과 동일한 세포주를 사용하여 단층 및 콜라겐-스캐폴드 배양물에서의 HAPLN1 및 MFAP5에 대한 발현 수준 비 사이의 비교를 나타낸다. HAPLN1 및 MFAP5의 발현 수준을 RT-PCR의 비교 CT 방법에 의해 측정하였으며, 비를 2^(CT,MFAP5 - CT,HAPLN1)로서 계산하였다.
도 13은 배양물 수준의 함수로서의 HAPLN1 및 MFAP5에 대한 발현 수준 비에서의 변화를 도시한다. 도면에서 나타낸 것과 같이, 3개 윤활세포주를 일차 배양물 (배양물 수준 1)로부터 제4 계대 (배양물 수준 5)까지 배양하였다. RT-PCR의 비교 CT 방법에 의해 HAPLN1 및 MFAP5의 발현 수준을 측정하였으며, 상기 비를 2^(CT,MFAP5 - CT,HAPLN1)로서 계산하였다.
도 14A 및 도 14B는 배양물 수준의 함수로서의 HAPLN1 및 MFAP5에 대한 발현 수준 비에서의 변화를 도시한다. 도 14A 및 도 14B에서, 연골세포주를 연골 (배양물 수준 0)로부터 샘플링하고, 이후 도면에서 나타낸 것과 같이 일차 (배양물 수준 1)부터 제2 계대 (배양물 수준 3)까지 배양하였다. 발현 수준을 실시예 5에서 기재된 것과 같은 맞춤형 프라이머 및 프로브를 사용하여 RT-PCR의 비교 CT 방법에 의해 측정하였다. HAPLN1:MFAP5 비를 2^(CT,MFAP5 - CT,HAPLN1)로서 계산하였다.
도 15는 연골세포 및 윤활세포의 혼합된 집단의 배양물에서의 HAPLN1 및 MFAP5의 발현 수준의 비를 도시한다. 각각 다양한 비율의 2개 세포 형태로서 3회 시험을 수행하였다. 실시예 6에 기재된 것과 같은 맞춤형 프라이머 및 프로브를 사용하여 RT-PCR의 비교 CT 방법에 의해 발현 수준을 측정하였다. HAPLN1:MFAP5 비를 2^(CT,MFAP5 - CT,HAPLN1)로서 계산하였다.
도 16은 절대 정량 방법에 의해 측정된 것과 같은 절대 카피수를 사용하여 표 12에 열거되어 있는 여러 세포주에서의 HAPLN1 및 MFAP5의 발현 수준의 몰 비를 도시한다. PCR 반응물 13 μL 당 cDNA 2 μl를 사용한 것을 제외하고는 실시예 3에 기재된 것과 같이 RT-PCR을 수행하였다. 103, 104 및 105 카피/반응물에서 수행하는 합성 HAPLN1 및 MFAP5 RNA 전사 표준물로부터 표준 곡선을 제조하였다. 각 시험 샘플에 존재하는 HAPLN1 및 MFAP5 mRNA 카피의 양을 이들 표준 곡선으로부터 측정하였다.
본 발명은 적어도 부분적으로는, 섬유모세포 및 윤활세포와 같은 특정 비-연골세포 세포 유형에서는 높게 발현되는 반면 연골세포에서는 유의하게 낮은 수준으로 발현되는 유전자로서의 MFAP5의 확인을 기초로 한다. 따라서, 몇몇 실시양태에서, 본 발명은 세포 표현형 마커로서 MFAP5를 사용하는 방법을 제공한다. MFAP5는 피브릴린에 결합하는 세린-트레오닌-풍부 단백질이며, I형 프로콜라겐의 안정화와 관련된다고 보고되었다 (문헌 [Lemaire et al., Arthritis & Rheumatism, 52(6): 1812-1823 (2005)]). 인간 MFAP5의 뉴클레오티드 및 아미노산 서열은 진뱅크® 기탁 번호 NM_003480으로 찾을 수 있고, 그의 뉴클레오티드 서열은 또한 서열 1로 제공된다. MFAP5 이외에 또는 그를 대신해서, 다른 섬유모세포 마커도 하기 기재하는 바와 같이 본 발명의 방법에 사용될 수 있다.
따라서, 한 측면에서, 본 발명은 연골세포를 포함하는 세포 배양물의 조성을 평가하는 방법 (방법 1) 및 각 세포의 표현형을 평가하는 방법 (방법 2)을 제공한다.
방법 1에 관한 실시양태에서, 각각의 마커의 발현 수준은 복수개의 세포에서의 상기 마커의 평균 발현 수준으로 결정된다. 방법 1의 실시양태에서, 세포 배양물의 조성을 총체적으로 평가하여 연골세포를 함유하는지를 측정할 수 있다. 방법 2의 실시양태에서, 마커의 발현 수준은 평가되는 각 세포에서의 상기 마커의 발현 수준으로서 측정된다. 따라서, 방법 1은 세포 배양물의 조성을 확인하는 반면, 방법 2는 개별 세포의 표현형, 예를 들어 세포가 연골세포인지를 확인한다.
몇몇 실시양태에서, 섬유모세포 마커는 MFAP5가 아니며, 그의 표준화된 발현 수준은 섬유모세포에서에 비해 연골세포에서 보다 낮게 된다. 몇몇 실시양태에서, 섬유모세포 마커는 그의 표준화된 발현 수준이 섬유모세포 (예를 들어, 피부 섬유모세포) 및/또는 윤활세포에서에 비해 연골세포 (예를 들어, 일차 연골세포, 배양된 탈분화된 연골세포)에서 보다 낮게 된다. 몇몇 실시양태에서, 섬유모세포 마커는 섬유모세포 및/또는 윤활세포에서에 비해 연골세포에서 적어도 2배, 5배, 8배, 10배 또는 그 이상 낮게 발현된다. 이러한 추가의 마커는 예를 들면, 예컨대 문헌 [Leung et al., Trends in Genetics, 19(11): 649-659 (2003)]에 기재된 바와 같은 유전자 배열 분석(gene array analysis)을 사용하여 확인할 수 있다.
몇몇 실시양태에서, 방법 1은 세포 배양물로부터의 복수개의 세포에서 본 발명의 섬유모세포 마커의 발현 수준을 측정하는 것을 포함하며, 여기서 미리측정된 역치 미만의 발현 수준은 세포 배양물이 연골세포를 함유함을 나타낸다. 별법으로, 미리측정된 역치 초과의 발현 수준은 세포 배양물이 연골세포를 함유하지 않음을 나타낸다 (예를 들어, 배양물은 연골세포를 적어도 50%, 55%, 60%, 65%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상 포함하지 않음).
예시적인 실시양태에서, 섬유모세포 마커는 MFAP5이며, 세포 배양물에 의한 역치보다 높은 MFAP5 발현은 상기 배양물이 상당한 수의 비-연골세포를 함유함을 나타낸다. 몇몇 실시양태에서, 미리측정된 역치 수준은 1) 순수한 섬유모세포 배양물에서의 MFAP5 발현의 수준과 동일하거나 보다 낮거나 (예를 들어, 2배, 3배, 4배 또는 5배 더 낮음), 또는 2) 순수한 연골세포 배양물 (예를 들어, 연골 생검으로부터 얻은 일차 연골세포)에서의 MFAP5 발현의 수준과 동일하거나 보다 높다 (예를 들어, 2배, 3배, 4배 또는 5배 더 높음). MFAP5 이외의 섬유모세포 마커의 경우, 미리측정된 역치는 순수한 섬유모세포 및/또는 연골세포에서의 각각의 마커의 발현 수준을 기준으로 유사하게 선택될 수 있다. "미리측정된" 수준은 마커 발현 수준을 측정하기 전에 선택될 필요는 없으며, 발현 수준이 측정된 후, 예를 들어 발현 결과의 통계학적 분석을 기초로 선택될 수 있다.
평가 대상 배양물로부터의 복수개의 세포는 상기 배양물로부터 얻은 샘플 또는 분취물에 의해 대표될 수 있다. 예를 들어, 콜라겐 매트릭스에서 성장된 배양물의 경우, 실시예에 기재한 바와 같이 펀치 샘플링을 사용할 수 있다. 복수개의 세포는, 전형적으로는 적어도 주어진 발현 분석 방법을 수행하기에 충분한 수 또는 그 이상의 세포를 함유할 것이다. 예를 들어, PCR의 경우, 10 내지 1,000개 만큼의 세포가 통상적으로 충분하나, 더 적은 수를 사용할 수도 있다.
몇몇 실시양태에서, 방법 1 및 방법 2는 섬유모세포 마커 (MFAP5 또는 다른 섬유모세포 마커) 및 연골세포 마커 (예를 들어, HAPLN1 또는 다른 연골세포 마커)의 발현 수준을 대조군과 또는 서로와 비교하는 것을 포함한다. 상기 마커의 발현 수준을 측정하는 순서는 달라질 수 있다. 예를 들어, 연골세포 마커의 발현 수준을 먼저 측정한 후, 섬유모세포 마커의 발현 수준을 측정할 수 있고, 또는 그의 반대도 가능하다. 몇몇 실시양태에서, 두 유형의 마커의 발현 수준을 동시에 측정할 수 있다.
본 발명의 방법에서 유용한 몇몇 연골세포 마커의 예는 이들의 진뱅크™ 기탁 번호 및 서열 번호를 비롯하여 표 1에 제시된다. 따라서, 몇몇 실시양태에서, 상기 연골세포 마커는 HAPLN1, MGP, EDIL3, WISP3, AGC1, COMP, COL2A1, COL9A1, COL11A1, LECT1, S100B, CRTAC1, SOX9 및 NEBL로부터 선택된다.
Figure 112009061103420-PCT00001
Figure 112009061103420-PCT00002
추가의 연골세포 마커는 예를 들면, 예컨대 문헌 [Leung et al., Trends in Genetics, 19(11): 649-659 (2003)]에 기재된 바와 같은 유전자 배열 분석을 사용하여 확인할 수 있다. 일반적으로, 연골세포 마커는, 그의 표준화된 발현 수준이 섬유모세포 (예를 들어, 피부 섬유모세포) 및/또는 윤활세포에서에 비해 연골세포 (예를 들어, 일차 연골세포, 배양된 탈분화된 연골세포)에서 보다 높은 유전자 또는 단백질이다. 몇몇 실시양태에서, 연골세포 마커는 섬유모세포 및/또는 윤활세포에서에 비해 연골세포에서 적어도 2배, 4배, 5배, 8배, 10배, 50배, 75배, 100배 또는 그보다 높게 발현된다.
몇몇 실시양태에서, 섬유모세포 마커 및 연골세포 마커는 일차 연골세포 및/또는 계대배양된 연골세포에서의 상기 마커들의 발현 수준의 비가 피부 섬유모세포 및/또는 윤활세포에서의 비와 동일하거나 또는 5배, 10배, 20배, 30배, 50배, 75배, 100배 또는 그 이상 크도록 선택된다.
특히, 몇몇 실시양태에서, 방법 1은
a) 세포 배양물로부터 복수개의 세포를 얻는 단계;
b) 복수개의 세포에서 연골세포 마커의 평균 발현 수준을 측정하는 단계;
c) 복수개의 세포에서 섬유모세포 마커의 평균 발현 수준을 측정하는 단계; 및
d) 연골세포 마커의 평균 발현 수준 및 섬유모세포 마커의 평균 발현 수준을 기준으로 배양물의 조성을 측정하는 단계
를 포함한다. 몇몇 실시양태에서, 연골세포 마커의 발현 수준이 미리측정된 역치 초과인 반면 섬유모세포 마커의 발현 수준이 미리측정된 역치 미만인 경우, 배양물은 연골세포를 함유하는 것으로 확인된다. 별법으로, 연골세포 마커의 발현 수준이 미리측정된 역치 미만인 반면 섬유모세포 마커의 발현 수준이 미리측정된 역치 수준 초과인 경우, 배양물은 연골세포를 함유하지 않는다 (예를 들어, 배양물은 연골세포를 적어도 50%, 55%, 60%, 65%, 75%, 80%, 85%, 90%, 95%, 98%, 99% 또는 그 이상 포함하지 않음).
방법 1의 추가의 실시양태에서, 본 발명은
a) 포유동물로부터 연골 생검을 얻는 단계;
b) 상기 생검으로부터 세포를 단리하는 단계;
c) 단계 b)에서 단리된 세포를 세포 배양물에서 배양하는 단계;
d) 세포 배양물의 샘플을 얻는 단계;
e) 샘플로부터의 하나 이상의 세포에서 MFAP5 및 HAPLN1의 발현 수준을 측정하는 단계; 및
f) MFAP5 및 HAPLN1의 발현 수준을 기준으로 배양물의 조성을 측정하는 단계
를 포함하는, 세포 배양물 조성을 평가하는 방법을 포함한다.
몇몇 실시양태에서, 배양물 조성을 측정하는 단계는 연골세포 마커의 평균 발현 수준 및 섬유모세포 마커의 평균 발현 수준을 비교하는 것을 포함한다. 상기 몇몇 실시양태에서, 세포 배양물은 MFAP5 발현에 대한 HAPLN1 발현의 비가 0.25 초과일 때 연골세포을 함유한다고 평가된다. 특정 실시양태에서, 상기 비는 세포 배양물이 연골세포를 50% 이상 함유하는 것을 나타낸다.
몇몇 실시양태에서, 마커의 발현 수준을 서로에 대해 비교한다 (따라서, 역치는 예를 들어 두 마커의 발현 수준 사이의 주어진 차이 또는 그의 비로서 정의될 수 있음). 예를 들어, 몇몇 실시양태에서, 섬유모세포 마커 (예를 들어, MFAP5)의 발현 수준에 대한 연골세포 마커 (예를 들어, HAPLN1) 발현 수준의 비가 미리측정된 역치 (예를 들어, 0.25, 0.55, 1, 2, 2.2, 5, 10, 25, 50 또는 그 이상)보다 크다는 것은 세포 배양물이 연골세포를 함유한다는 것을 나타낸다.
방법 1의 몇몇 실시양태에서, 연골세포 및 섬유모세포 마커의 발현 수준은 예를 들어 정량적 RT-PCR의 표준 곡선 방법 또는 정량적 RT-PCR의 비교 CT 방법 (이 방법은 섬유모세포 마커 및 연골세포 마커에 대해 요구되는 역치 사이클 수의 차이를 측정함)에 의해 RNA 수준에서 측정된다.
관련 측면에서, 본 발명은 예를 들어 유세포 분석법을 이용하여, 각 세포의 표현형을 평가하는 방법 (방법 2)을 제공한다. 상기 방법은 연골 또는 윤활막으로부터 유도된 세포 배양물, 연골세포 배양물, 섬유모세포 배양물, 윤활세포 배양물 또는 임의의 다른 적절한 배양물을 비롯한 세포 배양물로부터 개별 세포를 확인하기에 유용하다. 상기 방법은 연골 샘플, 윤활막 샘플, 섬유모세포 샘플 등을 비롯한 개별 세포를 확인하기 위해 바람직한 임의의 적절한 임의의 생물학적 샘플로부터 유도된 개별 세포를 확인하기에 유용하다. 몇몇 실시양태에서, 방법 2는 세포에서 본 발명의 섬유모세포 마커의 발현 수준을 측정하는 단계를 포함하며, 여기서 미리측정된 역치 미만의 발현 수준은 상기 세포가 연골세포임을 나타낸다. 별법으로, 미리측정된 역치 초과의 발현 수준은 상기 세포가 연골세포가 아님 (예를 들면, 상기 세포는 섬유모세포 또는 윤활세포임)을 나타낸다. 몇몇 실시양태에서, 방법 2는
a) 세포에서 연골세포 마커의 발현 수준을 측정하는 단계;
b) 세포에서 섬유모세포 마커의 발현 수준을 측정하는 단계; 및
c) 연골세포 마커의 발현 수준 및 섬유모세포 마커의 발현 수준을 기준으로 세포의 표현형을 평가하는 단계
를 포함한다. 몇몇 실시양태에서, 상기 세포는, 연골세포 마커의 발현 수준이 미리측정된 역치 수준 초과인 반면 섬유모세포 마커의 발현 수준이 미리측정된 역치 수준 미만인 경우, 연골세포라고 확인된다. 방법 2의 실시양태에서, 섬유모세포 및 연골세포 마커는 상기 방법 1에 대해 기재된 바와 같이 선택되고 평가될 수 있다.
유세포 분석법은 시판용 항체를 사용하여 수행할 수 있거나, 또는 상기 항체는 예를 들어 문헌 [Linsenmeyer et al., Biochem. Biophys. Res. Com., 92(2): 440-6 (1980)]에 기재된 바와 같이 제조할 수 있다.
본 발명의 방법에 의해 평가되는 세포 및 배양물은 연골세포를 함유하거나 함유하지 않을 수 있는 임의의 조직, 세포 배양물 또는 다른 물질을 비롯한 임의의 생물학적 샘플로부터 얻을 수 있다. 몇몇 실시양태에서, 평가되는 세포 또는 배양물은 포유동물, 특히 인간 기원이다. 몇몇 실시양태에서, 세포 배양물은 연골 생검으로부터 방출된 세포로부터 성장한다. 예를 들어, 자가 연골세포 이식에서, 그 절차를 위한 연골세포는 통상 이식물을 받는 환자의 연골 생검으로부터 배양된다. 카티셀(Carticel)® 자가 연골세포 생성물 (겐자임 코포레이션(Genzyme Corporation), 메사추세츠주 캠브리지 소재)이 배양된 연골세포 생성물의 예이다. 본 발명의 몇몇 실시양태에서, 세포 배양물은 연골세포로 로딩된 콜라겐 매트릭스를 포함한다. 이러한 연골세포는 연골 생검으로부터 얻을 수 있고, 배양된 후 예를 들어 MACI® 이식 생성물에서 사용된 것과 같은 매트릭스 상에 로딩될 수 있다. 본 발명의 방법은 매트릭스를 이식하기 전에 콜라겐 지지체 상에 로딩된 세포를 확인하고/하거나 그 확인을 증명하는데 유용하다.
세포 배양물 측정 방법의 유용성의 예를 예시하기 위해, 도 1을 참조한다. 이 도면은 예컨대 카티셀® 자가 연골세포를 사용하여 자가 연골세포 이식용 배양된 연골세포 생성물을 제조하는 것과 관련된 단계 또는 MACI® 이식 절차용 배양된 연골세포 생성물을 제조하는 단계를 예시한다. 단계 1에서의 자가 연골세포를 이식받은 환자로부터의 연골 생검을 처리를 위해 수송한다 (단계 2). 생검 물질을 단계 3에서 분해시켜 연골로부터 연골세포를 방출시키고 수집한다. 방출된 세포를 조직 배양 플라스크에 플레이팅하고, 단계 4에서 일차 배양물로 증식시키고 필요하다면 계대배양한다. 세포가 적절한 수에 도달하면, 세포를 임의로는 환자가 이식받을 준비가 될 때까지 단계 5에서 냉동보존할 수 있다. 환자가 세포를 이식받을 준비가 되면, 세포를 해동시키고 조직 배양 플라스크에 플레이팅하고 성장시켜 조립 배양물을 제조한다 (단계 6).
자가 연골세포 이식에 사용하기 위해, 충분한 수의 세포가 조립 배양물에서 수득된다면, 세포를 세포 펠렛으로 원심분리하고 수송 매질 중에 재현탁시키는데, 이것이 카티셀® 자가 연골세포 생성물과 같은 "최종 생성물"이다 (단계 8). 이러한 "최종 생성물"은 예를 들어 멸균성 시험, 세포 생존성 시험, 내독소 시험, 마이코플라스마 시험 및 배양물 조성 시험을 비롯한 다수의 QC 시험을 거쳐 (본원에 기재된 바와 같은 단계 9 "QC 확인"), 배양된 세포가 충분한 수의 연골세포를 함유한다는 것을 보증한다. 배양된 세포가 모든 QC 시험을 통과한다면, 이식 (단계 11)을 위해 환자에게 수송한다 (단계 10).
별법으로, 단계 6으로부터의 조립 배양물을 MACI® 이식물에 사용하는 경우, 세포를 배지 중에 재현탁시키고, 콜라겐 스캐폴드 상에 시딩하고, 4일 동안 배양한다 (단계 7). 배양 기간 말기에, 세포를 수송 매질로 헹구어 MACI® 이식물을 위한 최종 생성물을 생성한다. 이 생성물도 상기 약술한 QC 시험을 거친다. 따라서, 최종 생성물이 카티셀® 자가 연골세포와 같은 배양된 연골세포의 현탁액인지 또는 최종 생성물이 MACI® 이식물을 위한 스캐폴드-시딩된 생성물인지 간에, 본 발명의 방법은 배양물의 수송 전에 연골세포를 함유하는 세포 배양물의 조성을 확인하기 위한 다수의 확인 분석 또는 로트 출하 분석에 유용하다. 예를 들어, "QC 확인" (단계 9)은 최종 생성물 조립 전 임의의 단계, 예를 들어 단계 4, 5, 6, 7 또는 8 전에 수행할 수 있다.
유전자 또는 단백질의 발현 수준을 측정하는 다수의 방법이 예를 들어 문헌 [Sambrook et al. (eds.) Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, 1989]; [Current Protocols in Molecular Biology (Ausubel et al. (eds.) New York: John Wiley and Sons, 1998)]에 기재된 바와 같이 당업자에게 알려져 있다. 이러한 방법의 예는 중합효소 연쇄 반응 (PCR에 의한 절대적 정량화, 실시간 PCR (RT-PCR) 및 qRT-PCR, 다중 또는 단일 PCR 포함), 단일 세포 PCR, 노던 블롯(northern blot) 분석, 뉴클레아제 보호 분석, 계내 혼성화 분석, 면역조직화학 분석, 면역세포화학 분석, 겔 또는 모세관과 같은 전기영동 분석, 웨스턴 블롯(Western blot) 분석, ELISA, 면역침전 분석, HPLC 또는 겔 크로마토그래피와 같은 크로마토그래피 기재 분석, 질량 분광법 분석, RNase 보호 분석, 유세포 분석법, DNA 메틸화 분석 및 히스톤 변형 분석을 포함한다.
본 발명의 모든 방법에서, RNA 또는 단백질 수준에서의 발현 수준은 통상적인 방법 중 임의의 방법을 비롯한 임의의 적합한 방법을 사용하여 측정할 수 있다. RNA 수준은 예를 들어 정량적 RT-PCR (예를 들어, 태크만(TaqMan)™ RT-PCR 또는 RT-PCR), 노던 블롯팅 또는 RNA 수준을 측정하기 위한 임의의 다른 방법, 또는 실시예에 기재된 바와 같은 방법에 의해 측정할 수 있다. 단백질 수준은 예를 들어 웨스턴 블롯팅, ELISA, 유세포 분석법, 효소 활성 분석 또는 단백질 수준을 측정하기 위한 임의의 다른 방법을 사용함으로써 측정할 수 있다. 발현 수준은 전형적으로 베타-액틴 또는 글리세르알데히드-3-포스페이트 데히드로게나제 (GAPDH) 또는 18S 리보솜 RNA 등과 같은 항존(housekeeping) 유전자일 수 있는 대조군 및/또는 샘플에서 RNA 또는 단백질의 총량에 대해 조정 및/또는 표준화할 수 있다. 표준화는 전형적으로 단백질, DNA 또는 RNA 유입량의 변화를 설명하기 위해 수행된다. 예를 들어, 실시예에서, 발현 수준은 표준 곡선을 사용하여 18S 리보솜 RNA로 표준화한다.
예시적 실시양태에서, 섬유모세포 및 연골세포 마커의 발현 수준은 RT-PCR을 사용하여 표준 곡선에 의해 또는 상대적 정량화를 위한 비교 CT 방법에 의해 측정한다. 몇몇 실시양태에서, 마커 카피수의 절대적 정량화는 알려진 양의 마커를 사용하여 표준 곡선을 제조함으로써 측정할 수 있다. 이러한 분석을 수행하기 위한 일반적 방법은 예를 들어 문헌 [Real-Time PCR Systems: Applied Biosystems 7900HT Fast Real-Time PCR System and 7300/7500 Real-Time PCR Systems, Chemistry Guide, Applied Biosystems, 2005, Part No. 4348358 Rev. E]에 기재되어 있다.
비교 CT 방법을 사용하여 2개의 마커를 비교하는 경우, 섬유모세포 마커의 발현 수준 대 연골세포 마커의 발현 수준의 비의 양은 (1+E)^(CT,f - CT,c)로서 계산할 수 있으며, 여기서 CT,f는 섬유모세포 마커 역치 사이클의 수이고, CT,c는 연골세포 마커의 역치 사이클의 수이며, 증폭 효율 (E)은 두 마커에 대해 동일하고 두 마커의 출발 양은 (예를 들어, 2개의 중복 샘플에서와 같이) 내인성 대조군과 동일한 양으로 표준화된다고 가정한다. 실시예에서 예시된 바와 같이 E가 약 1인 경우, 비는 2^(CT,f - CT,c)로서 어림잡을 수 있다. 별법으로, 문헌 [Appendix A of Real-Time PCR Systems: Applied Biosystems 7900HT Fast Real-Time PCR System and 7300/7500 Real-Time PCR Systems, Chemistry Guide, Applied Biosystems, 2005, Part No. 4348358 Rev. E]에 기재된 바와 같이 계산할 수 있다.
본 발명의 추가 실시양태를 하기 실시예에 기재하며, 이는 예시적인 것으로 본 발명의 범위를 제한하고자 함은 아니다.
실시예 1: 연골세포, 윤활세포 및 섬유모세포에서 HAPLN1 및 MFAP5의 발현
세포 단리 및 배양 - 인간 연골세포 배양물을 카티셀® 자가 연골세포의 제조 방법 또는 배양된 연골세포의 제조를 위한 프로테아제 방법을 사용하여 연골로부터 단리하였다. 카티셀® 자가 연골세포의 제조 방법을 사용하여, 연골 조직을 뼈 및 윤활막에서 제거하고 제1 분해에 제공하여 조직을 37℃에서 18시간 동안 콜라게나제 용액 중에서 효소 처리하였다. 제1 분해로부터 방출된 세포를 소 태아 혈청 (FBS) 및 겐타마이신 함유 배지 (EGHXX)를 함유하는 조직 배양 플라스크에 플레이팅하였다. 이어서, 세포를 제2 분해에 제공하여 제1 분해로부터 남은 조직을 37℃에서 2.5시간 동안 콜라게나제/트립신 용액으로 처리하였다. 제2 분해로부터 방출된 세포를 EGHXX를 함유하는 조직 배양 플라스크에 플레이팅하였다. 제2 분해 후 남은 조직편을 EGHXX를 함유하는 조직 배양 플라스크에 플레이팅하였다. 프로테아제 단리 방법을 사용하여, 연골 조직을 뼈 및 윤활막에서 제거하고, 37℃에서 1.5시간 동안 프로나제 E(Pronase E) (시그마-알드리치 인크.(Sigma-Aldrich Inc.), 미주리주 세인트 루이스 소재) 용액 중의 제1 분해에 제공하였다. 이어서, 프로나제 용액을 제거하고, 연골의 제2 분해를 37℃에서 18시간 동안 콜라게나제 용액 중에서 수행하였다. 이어서, 방출된 세포를 EGHXX를 함유하는 조직 배양 플라스크에 플레이팅하였다. 단리 후, 세포 배양 방법은 어느 단리 방법으로부터 수득한 세포이든지 동일하였다. 일차 세포 배양물에 2 내지 4일 마다 새로운 EGHXX를 재공급하였다. 일차 배양 플라스크가 50% 내지 80% 전면생장에 도달했을 때, 단일 세포 현탁액으로 트립신화하고, EGHXX에 의해 중화시켜 트립신을 불활성화고, 세포 계수를 수행하였다. 이어서, 생성된 세포 현탁액을 샘플링하거나, 계대배양에 의해 더 증식시키거나, 장기간 저장을 위해 냉동보존하였다. 일차 배양물의 계대배양은 이차 배양 또는 제1 계대라고 지칭된다. 후속 계대배양은 제2 계대, 제3 계대, 제4 계대 등으로 지칭된다. EGHXX를 함유하는 조직 배양 플라스크에 세포를 플레이팅하고, 2 내지 4일 마다 새로운 EGHXX를 재공급하여 계대배양을 수행하였다. 계대배양물이 80% 내지 100% 전면생장에 도달하였을 때, 단일 세포 현탁액 으로 트립신화하고, EGHXX에 의해 중화시켜 트립신을 불활성화하고, 세포 계수를 수행하였다. 이어서, 생성된 세포 현탁액을 샘플링하거나, 더 증식시키거나, 장기간 저장을 위해 냉동보존하였다.
인간 윤활세포 배양물 (또한 윤활막 섬유모세포로서 알려진 윤활막 유래 세포 배양물) S1 및 S2를 셀 어플리케이션즈 인크.(Cell Applications Inc.) (캘리포니아주 샌 디에고 소재)로부터 냉동보존된 일차 배양 세포로서 입수하였다. 윤활세포를 EGHXX 배지를 함유하는 조직 배양 플라스크에 플레이팅하고, 상기 기재된 바와 같은 카티셀® 자가 연골세포의 제조 방법을 사용하여 배양하였다. 인간 피부 섬유모세포 배양물을 냉동보존된 일차 배양 세포로서 셀 어플리케이션즈 인크.로부터 구입하였다. 피부 섬유모세포를 상기 기재된 바와 같은 카티셀® 자가 연골세포의 제조 방법을 사용하여 배양하였다.
본 실시예에 사용된 세포 배양물을 하기 표 2에 나열한다.
Figure 112009061103420-PCT00003
RNA 및 cDNA 제조 - RNA를 TRI-스핀 절차를 사용하여 세포 배양물로부터 단리하였다 (문헌 [Reno et al., Biotechniques 22: 1082-6 (1997)] 참조). 단리된 RNA 농축물을 분광광도계로 측정하였다. 샘플 PC, C1, C2, S1, S2, F1 및 F2로부터 cDNA를 제조하기 위해, 무작위 6량체 프라이머를 사용하는 제1 가닥 합성 키트(First Strand Synthesis Kit) (로슈(Roche), 인디애나주 인디애나폴리스 소재)를 제조자 설명서에 따라 실행하였다. 생성된 cDNA를 분석할 때까지 -20℃ 또는 -80℃에서 저장하였다.
유전자 발현 분석 - 정량적 실시간 RT-PCR을 사용하여 표준 곡선 방법 또는 비교 CT 방법에 의해 유전자 발현 분석을 수행하였다. 실시간 PCR 방법은 이중 표지된 올리고 프로브의 5' 뉴클레아제 절단을 기초로 하여 표적 서열의 서열 특이적 프라이머 증폭을 보고하였다 ("태크만™" 분석). 연골 연결 단백질 (HAPLN1) 및 미세원섬유 관련 단백질 5 (MFAP5)를 코딩하는 유전자의 발현을 각각 태크만™ 유전자 발현 분석 Hs00157103_m1 및 Hs00185803_m1 (어플라이드 바이오시스템즈 인크.(Applied Biosystems Inc.))을 사용하여 분석하였다. UNG 부재의 태크만™ 유니버설 PCR 마스터 믹스(TaqMan™ Universal PCR Master Mix) (카탈로그 번호 4324018, 어플라이드 바이오시스템즈 인크.)를 이용하여 실시간 PCR을 제조하고, 적절한 태크만™ 유전자 발현 분석 (어플라이드 바이오시스템즈) 및 샘플 cDNA를 유니버설 PCR 믹스 프로토콜에 따라 사용하였다. 표준 태크만™ 사이클링 및 이러한 구성을 위한 데이타 수집 프로그램을 사용하여 ABI 7500 실시간 PCR 시스템 (어플라이드 바이오시스템즈 인크.) 상에서 증폭을 실행하였다. 웰마다 5 ng 이하의 유입 cDNA를 이용하여 이중 25 μL 반응을 실행하였다. 모든 분석에 대해 0.1 단위의 역치를 사용하였다.
표준 곡선 방법 - 18S rRNA를 내부 대조군으로서 사용하여 RT-PCR 결과를 표준화함으로써 유입 변화를 설명하는 진핵생물 18S rRNA 내인성 대조군 분석 (카탈로그 번호 4319413E, 어플라이드 바이오시스템즈 인크.)을 사용하여 표준 곡선 방법을 수행하였다. 각 유전자의 상대적 발현 수준의 정량을 위해, 일차 연골세포 (PC) cDNA의 희석을 실행하여 7500 시스템 소프트웨어에 의해 표준 곡선을 생성하였다. 표준 곡선으로부터 각 시험 샘플의 발현 수준을 측정하고, 일차 연골세포 대조군 (PC)에 대한 생성된 mRNA 비를 PC에 대한 샘플 18S rRNA 비로 나누어 cDNA 로딩에 대해 표준화하였다.
비교 C T 방법 - 다양한 샘플에서 MFAP5에 대한 HAPLN1의 상대적인 유전자 발현 비를 판단하기 위하여 상기한 바와 같이 산출된 실시간 정량적 RT-PCR 유전자 발현 분석 원 데이터로부터 비교 CT 분석을 수행하였다. 비교 CT 방법은 MFAP5에 대한 HAPLN1의 비의 상대적인 측정치를 제공하여, 표준물, 표준 곡선 분석, 또는 실제 캘리브레이터(calibrator)의 필요없이 시험 샘플들 간의 직접 비교를 가능하게 하였다. 이 방법은 아래와 같은 네 가지 조건을 만족시켰기 때문에 본 실시예에서 사용하는 HAPLN1 및 MFAP5 분석 케이스에 채용할 수 있었다: 1) 유니버설 PCR 믹스 프로토콜에 따라 성능이 시종 일관되었고; 2) HAPLN1, MFAP5 및 내인성 대조군 분석에서 등량의 RNA가 전개되었고; 3) 각 분석에서 등량의 RNA를 전개시켰을 때 내인성 대조군 유전자, 18S rRNA의 CT 값이 항상 HAPLN1 CT 또는 MFAP5 CT 보다 낮아, HAPLN1 또는 MFAP5의 계량이 가능할 경우에 18S CT도 항상 계량이 가능하였고; 4) 위에 열거한 다른 세 가지 조건들이 만족될 경우 상기 방법은 HAPLN1 CT 값이 MFAP5 CT 값과 동일하게 산출되는 HAPLN1 / MFAP5 비를 갖는 이론상의 샘플로 정의된 임의로 선택한 이론상의 캘리브레이터를 사용하였다. 이러한 비교 CT 방법에 사용되는 방정식은 다음과 같이 유도한다. 샘플 중의 표적 유전자의 양, 내인성 대조군 유전자에 대해 표준화된 표적 유전자의 양, 및 캘리브레이터에 대한 상대적인 표적 유전자의 양을 다음과 같이 나타낼 경우:
(1+E)^(-ΔΔCT,표적 유전자)
여기서, E = 증폭 효율이고,
ΔΔCT,표적 유전자 = 샘플 ΔCT,표적 유전자 - 캘리브레이터 ΔCT,표적 유전자이고,
ΔCT,표적 유전자 = CT,표적 유전자 - CT,내인성 대조군 유전자이다.
(문헌 [Liu, W. and Saint, D.A., Analytical Biochemistry, 302: 52-59 (2002)]; [Livak, K.J, ABI Prism 7700 Sequence Detection System, User Bulletin 2, ABI publication 4303859, 1997] 참조). 이어서, MFAP5에 대한 HAPLN1의 비는 다음과 같이 기술할 수 있고:
(1+E)^(-ΔΔCT,HAPLN1) / (1+E)^(-ΔΔCT,MFAP5)
이것은
(1+E)^(-{[샘플 CT,HAPLN1 - 샘플 CT,내인성 대조군 유전자] - [캘리브레이터 CT,HAPLN1 - 캘리브레이터 CT,내인성 대조군 유전자]}) / (1+E)^(-{[샘플 CT,MFAP5 - 샘플 CT,내인성 대조군 유전자] - [캘리브레이터 CT,MFAP5 - 캘리브레이터 CT,내인성 대조군 유전자]})
와 같다.
각 분석에서 동일한 양의 샘플을 전개시킬 경우, 샘플 내인성 대조군 유전자의 CT는 용어 x로 표시할 수 있다. 각 분석에서 동일한 양의 캘리브레이터를 전개시킬 경우, 캘리브레이터 내인성 대조군 유전자의 CT는 용어 y로 표시할 수 있다. 이 용어들로 대체할 경우, 다음과 같은 방정식이 유도되고:
(1+E)^(-{[샘플 CT,HAPLN1 - x] - [캘리브레이터 CT,HAPLN1 - y]}) / (1+E)^(-{[샘플 CT,MFAP5 - x] - [캘리브레이터 CT,MFAP5 - y]})
이것은
(1+E)^([x - 샘플 CT,HAPLN1] - [y - 캘리브레이터 CT,HAPLN1]) / (1+E)^([x - 샘플 CT,MFAP5] - [y - 캘리브레이터 CT,MFAP5])
와 같다.
각 분석에서 등량의 캘리브레이터를 전개시킬 경우 캘리브레이터가 CT,MFAP5 값과 동일한 CT,HAPLN1 값을 산출하는 HAPLN1 / MFAP5 비를 갖는 이론상의 샘플로 정의되면, 캘리브레이터 CT,HAPLN1 및 캘리브레이터 CT,MFAP5는 용어 z로 대체할 수 있다. 따라서, 방정식은 아래와 같이 유도되고:
(1+E)^([x - 샘플 CT,HAPLN1] - [y - z]) / (1+E)^([x - 샘플 CT,MFAP5] - [y - z])
이것은
(1+E)^([x - 샘플 CT,HAPLN1] - [y - z] - [x - 샘플 CT,MFAP5] + [y - z])
와 같고, 이것은
(1+E)^([x - 샘플 CT,HAPLN1] - [x - 샘플 CT,MFAP5])
와 같고, 이것은
(1+E)^(샘플 CT,MFAP5 - 샘플 CT,HAPLN1)
와 같다.
그리고, 만약 E = 1 (100% 효율)일 경우, MFAP5에 대한 HAPLN1의 상대적인 비는 다음과 같다:
2^(샘플 CT,MFAP5 - 샘플 CT,HAPLN1)
상기 방정식은 미지수로서 샘플 HAPLN1 CT 및 샘플 MFAP5 CT의 두 개의 변수 만을 남기고 최종 공식으로 유도된다. 이 공식은 샘플들을 상기한 조건 하에서 분석하며, 이용된 이론상의 캘리브레이터를 상기한 바와 같이 설정한 경우에 적용한다.
도 2는 RT-PCR의 표준 곡선 방법으로 측정한 여러 세포주에서의 HAPLN1 발현 수준을 도시한다. 도 3은 도 2에 나타낸 것과 동일한 세포 샘플에서의 RT-PCR의 표준 곡선 방법으로 측정한 MFAP5의 발현 수준을 도시한다. HAPLN1은 윤활세포 및 섬유모세포 배양물에서보다 연골세포 배양물에서 더 높은 수준으로 발현되었다. MFAP5는 연골세포 배양물에서보다 윤활세포 및 섬유모세포 배양물에서 더 높은 수준으로 발현되었다.
도 4는 도 2 및 3으로부터의 HAPLN1 및 MFAP5의 발현 수준의 비를 도시한다. 일차 연골세포 (PC)에서의 비를 1로 조정하고; 이에 따라 다른 비들을 조정하였다.
도 5는 도 2에 나타낸 것과 동일한 세포주에서의 HAPLN1 및 MFAP5의 발현 수준의 비를 도시하되, 이 발현 수준은 RT-PCR 비교 CT 방법으로 측정하였다. CT 방법의 결과는 표준 곡선 방법으로 얻은 결과와 유사하였다.
실시예 2: 추가의 연골세포주, 윤활세포주 및 섬유모세포주에서의 HAPLN1 및 MFAP5의 발현
연골세포 배양물과 윤활세포 배양물을 구별하기 위한 방법의 적합성을 확인하기 위하여 추가적인 세포 배양물에서 HAPLN1 및 MFAP5의 발현 수준을 측정하였다. 본 실시예에서 사용한 배양물을 표 3에 열거하였다.
Figure 112009061103420-PCT00004
세포 단리 및 배양 - 인간 연골세포 세포 배양물 C3, C4, C5, C6 및 C7을 단리하고 실시예 1에 기재한 바와 같이 카티셀® 자가 연골세포 생산 방법을 사용하여 배양하였다. 인간 윤활세포 배양물 (윤활막 유래 세포 배양물, 윤활막 섬유모세포라고도 함)을 젠자임에서 단리하거나 셀 어플리케이션즈 인크.(미국 캘리포니아주 샌 디에고 소재)에서 구입하였다. 다양한 절차를 이용하여 세포주 S4, S6 및 S7을 젠자임에서 단리하였다. S4는 잘게 절단한 윤활막 조직을 37℃에서 3.5시간 동안 콜라게나제 용액 중에서 분해시킨 다음, 37℃에서 1시간 동안 트립신 용액 중에서 제2 분해시켜 단리하였다. 세포주 S6은 잘게 절단한 윤활막 조직을 37℃에서 2시간 동안 콜라게나제와 DNA 분해효소를 함유하는 용액 중에서 분해시켜 단리하였다. 세포주 S7은 잘게 절단한 윤활막에 대해 카티셀® 자가 연골세포 생산 방법으로 단리하였다. 단리한 후, 윤활막 유래 세포를 EGHXX 배지를 갖는 조직 배양 플라스크에서 플레이팅하고, 실시예 1에 기재한 바와 같이 카티셀® 자가 연골세포 생산 방법을 이용하여 배양하였다. 세포주 S3 및 S5는 동결보존된 제1 계대 세포로서 셀 어플리케이션즈 인크.사에서 구입하였다. 해동시킨 후, 세포주 S3 및 S5로부터의 세포를 EGHXX 배지를 갖는 조직 배양 플라스크에서 플레이팅하고, 실시예 1에 기재한 바와 같이 카티셀® 자가 연골세포 생산 방법을 이용하여 배양하였다.
RNA 단리 및 cDNA 제조 - 연골세포 배양물 C3, C4, C5, C6, C7 및 윤활세포 배양물 S3, S4, S5, S6, S7에 대한 RNA 제조는 실시예 1에 기재한 바와 같이 수행하였다. 이들 샘플로부터의 RNA를 대용량 cDNA 역전사 키트 (어플라이드 바이오시스템즈, 인크., 미국 캘리포니아주 포스터 시티 소재)를 이용하여 제조자 설명서에 따라 cDNA로 역전사시켰다. 본 실시예에서는 실시예 1로부터의 PC cDNA를 이용하였다. cDNA는 분석할 때까지 -20℃ 또는 -8O℃에서 저장하였다.
유전자 발현 분석 - 실시예 1에 기재한 바와 같이 RT-PCR을 이용하여 유전자 발현을 분석하였다.
도 6은 다수의 추가적인 연골세포주 및 윤활세포주에서의 HAPLN1 발현 수준을 도시한다. 발현 수준은 RT-PCR의 표준 곡선 방법을 이용하여 측정하였고 18S 리보좀 RNA로 표준화하였다.
도 7은 도 6에 나타낸 것과 동일한 세포주에서의 MFAP5 발현 수준을 도시한다. 발현 수준은 RT-PCR의 표준 곡선 방법을 이용하여 측정하였고 18S 리보좀 RNA로 표준화하였다.
도 8은 도 6 및 7로부터의 HAPLN1 및 MFAP5의 발현 수준의 비를 보여준다. 일차 연골세포 (PC)에서의 비를 1로 조정하고; 이에 따라 다른 비들을 조정하였다.
도 9는 도 6에 나타낸 것과 동일한 세포주에서의 HAPLN1 및 MFAP5 발현 수준의 비를 도시한다. 발현 수준은 RT-PCR의 비교 CT 방법을 이용하여 측정하였고, 비는 2^(CT,MFAP5 - CT,HAPLN1)로 계산하였다.
추가적인 세포주에서의 RT-PCR의 결과는 실시예 1에서 얻은 결과와 일치하였다.
실시예 3: 맞춤형 프라이머 및 프로브를 이용한 연골세포, 윤활세포 및 섬유모세포에서의 HAPLN1 및 MFAP5의 발현
알려진 올리고뉴클레오티드 서열의 프라이머 및 프로브를 이용하여 다양한 연골세포, 윤활세포, 및 피부 섬유모세포 배양물을 시험하였다.
세포 단리 및 배양 - 본 실시예에서 사용한 세포주들을 아래의 표 4 및 5에 열거하였다. 인간 연골세포 배양물 C1, C2, C3, C4, C5, C6, C7, C8, C26, C28, C30 및 C34를 단리하고 실시예 1에 기재한 바와 같이 카티셀® 자가 연골세포 생산 방법을 이용하여 배양하였다. 인간 연골세포 배양물 C21, C22, C23, C24, C25, C27, C29, C31, C32 및 C33을 (프로테아제 방법을 이용하여) 단리하고, 실시예 1에 기재한 바와 같이 배양하였다. 인간 윤활세포 배양물 S1, S2, S3, S4, S5, S6 및 S7에 대한 세포 단리 및 배양 방법은 실시예 1 및 2에서 기재하였다. 윤활세포 배양물 S9는 37℃에서 2시간 동안 잘게 절단한 윤활막 조직을 콜라게나제 및 DNA 분해효소를 함유하는 용액 중에서 분해시켜 단리하였다. 윤활세포 배양물 S10은 잘게 절단한 윤활막 조직을 37℃에서 3.5시간 동안 콜라게나제 용액 중에서 분해시킨 다음, 37℃에서 1시간 동안 트립신 용액 중에서 제2 분해시켜 단리하였다. 윤활세포주 S11, S12, S13, S14, S15, S16, S17 및 S18은 동결보존된 제1 계대 세포로서 셀 어플리케이션즈 인크.사에서 구입하였다. 피부 섬유모세포주 F1, F2, F3, F4, F5, F6, F8, F9, F10 및 F11은 동결보존된 일차 배양 세포로서 셀 어플리케이션즈 인크.사에서 구입하였다. 모든 세포 배양물들은 실시예 1에 기재한 바와 같이 카티셀® 자가 연골세포 생산 방법을 이용하여 배양하였다.
Figure 112009061103420-PCT00005
Figure 112009061103420-PCT00006
RNA 단리 및 cDNA 제조 -- 연골세포주 C1, C2, C3, C4, C5, C6, C7, 윤활세포주 S1, S2, S3, S4, S5, S6, S7, 및 피부 섬유모세포주 F1 및 F2로부터의 RNA 제조는 실시예 1 및 2에 기재되어 있다. 연골세포주 C8, 윤활세포주 S9, S10, S11, S12, S13, S14, 피부 섬유모세포주 F3, F4, F5 및 F6, 및 표 5에 열거된 모든 세포주로부터의 RNA 제조를 위하여, RNeasy™ 미니 키트 (캘리포니아주 발렌시아 소재의 퀴아젠(Qiagen)) RNA 단리 방법을 사용하였다. RNeasy™ 단리를 위하여, 100만개 이하의 세포를 함유한 세포 펠렛에 용해 용액 360 ㎕를 첨가하였다. 샘플을 즉시 최고 속도로 30초 동안 와동시킨 다음 37℃에서 5분 동안 두었다. 인큐베이션 후, 샘플을 10초 동안 손으로 진탕시킨 데 이어, 추가 30초 동안 최고 속도로 와동시켰다. 각 튜브의 내용물을 수집하고, 용해물을 퀴아쉬레더(Qiashredder)™ 컬럼 (퀴아젠)을 통해 전개시켰다. 퀴아쉬레더에 적용시킨 용해물 300 ㎕ 및 50 ㎕를 동물 세포로부터의 RNA 단리에 대한 제조자의 프로토콜에 따라 RNeasy™ 절차에서 사용하였다. 컬럼을 물 30 ㎕로 이루어진 단일 용리에 의해 용리시켰다. 고용량 cDNA 역전사 키트 (캘리포니아주 포스터 시티 소재의 어플라이드 바이오시스템즈 인크.))를 제조자 설명서에 따라 사용하여 RNA를 cDNA로 역전사시켰다. 생성된 cDNA를 분석 시까지 -20℃ 또는 -80℃에 보관하였다.
유전자 발현 분석 -- HAPLN1 및 MFAP5 mRNA의 영역에 특이적인 맞춤형 프라이머 및 프로브를 사용하여 RT-PCR 분석을 수행하였다. 맞춤 프라이머 및 프로브에 대한 서열 정보를 표 6에 나타냈다. 약어: 6FAM = 6-카르복시플루오레세인, VIC™은 어플라이드 바이오시스템즈 인크.의 상표이며 형광체이고, MGBNFQ = 작은 홈 결합제 비-형광성 켄처. 프라이머는 인비트로젠 코포레이션(Invitrogen Corp.) (캘리포니아주 칼즈배드 소재)으로부터 입수하였다. 프로브는 어플라이드 바이오시스템즈 인크.로부터 입수하였다. HAPLN1에 대하여, 정방향 프라이머의 표적은 진뱅크 등록 번호 NM_001884.2 하에 기탁된 HAPLN1 서열 (서열 2)의 뉴클레오티드 543 내지 570이고, 역방향 프라이머의 표적은 뉴클레오티드 603 내지 622이고, 프로브의 표적은 동일한 서열의 뉴클레오티드 584에서 601까지이다. MFAP5에 대하여, 정방향 프라이머의 표적은 진뱅크 등록 번호 NM_003480.2 하에 기탁된 MFAP5 서열 (서열 1)의 뉴클레오티드 301에서 322까지이고, 역방향 프라이머의 표적은 뉴클레오티드 353에서 372까지이고, 프로브의 표적은 동일한 서열의 뉴클레오티드 334에서 350까지이다. UNG 부재의 태크만™ 패스트 유니버설 PCR 마스터 믹스 (카탈로그 번호 4352042, 어플라이드 바이오시스템즈 인크.), 900 nM 프라이머, 250 nM 프로브, 및 샘플 cDNA 5 ng 이하를 태크만™ 패스트 유니버설 PCR 믹스 프로토콜에 따라 사용하여 실시간 PCR을 수행하였다. 반응 부피는 13 ㎕였고, 디폴트 패스트 태크만™ 주기 및 이 구성에 대한 데이터 수집 프로그램을 사용하여 ABI 7500 실시간 PCR 시스템 (어플라이드 바이오시스템즈 인크.) 상에서 증폭을 실시하였다. 모든 분석에 대해 0.1 단위의 역치를 사용하였다. 실시예 1에 기재된 RT-PCR의 비교 CT 방법에 의해 발현 수준을 구하였다.
Figure 112009061103420-PCT00007
도 10A는 도 2 및 6에 나타낸 것과 동일한 세포주, 뿐만 아니라 표 4에 나타낸 추가 연골세포주, 윤활세포주 및 피부 섬유모세포주에서의 HAPLN1 및 MFAP5 발현 수준의 비를 도시한다. 도 10B는 표 5로부터의 세포주에서의 HAPLN1 및 MFAP5 발현 수준의 비를 도시한다. 맞춤형 프라이머 및 프로브를 사용하여 얻어진 결과는 실시예 1 및 2에 기재된 결과와 유사하였다.
실시예 4: 단층 및 콜라겐 스캐폴드에서의 연골세포, 윤활세포 및 섬유모세포 배양물 내 HAPLN1 및 MFAP5 발현 수준의 비교
HAPLN1 및 MFAP5의 발현 수준을 단층 및 콜라겐 스캐폴드에서의 다양한 유형의 배양물에서 비교하였다.
세포 단리 및 배양 -- 연골세포 배양물 C9, C10, C11, C12, C13, C14, C15, C16, C17 및 C18을 실시예 1에 기재된 바와 같은 프로테아제 방법을 사용하여 단리하고, 실시예 1에 기재된 바와 같이 배양하였다. 윤활세포 배양물 S7을 실시예 1 및 2에 기재된 바와 같이 단리하여 배양하였다. 피부 섬유모세포 배양물 F2 및 F7을 셀 어플리케이션즈 인크.로부터 냉동보존된 일차 배양 세포로서 입수하여 실시예 1에 기재된 바와 같이 배양하였다. 제2 계대 (배양물 S7에 대해서는 제3 계대) 배양이 완료되면, RNA 단리를 위하여 샘플을 취한 다음 ("0일" 또는 단층 샘플), 세포를 EGHXX 배지에 재현탁시켜 20 ㎠ MAIX™ 스캐폴드 (ACI-MAIX™ 콜라겐 막, CE, 독일 데-52134 헤르초겐라트 소재의 마트리첼 게엠베하(Matricel GmbH))에 접종하였다. 세포를 37℃에서 1시간 동안 부착되도록 한 다음, 스캐폴드에 추가 EGHXX를 공급하고 4일 동안 배양하였다. 윤활세포 및 피부 섬유모세포를 함유한 스캐폴드 배양물도 동일한 방식으로 제조하였다. 스캐폴드 배양 4일 후, 8 mm 생검 펀치를 사용하여 배양물을 샘플링하고 ("4일" 또는 스캐폴드 샘플), RNA 단리를 수행하였다.
RNA 단리 및 cDNA 제조 -- RNeasy™ 미니 키트 (캘리포니아주 발렌시아 소재의 퀴아젠)를 사용하여 RNA를 단리하였다. RNeasy™ 단리를 위하여, MACI® 이식물 샘플 (제조당 2개까지의 8 mm MACI® 이식물 펀치)에 용해 용액 360 ㎕를 첨가하였다. 샘플을 즉시 최고 속도로 30초 동안 와동시킨 다음 37℃에서 5분 동안 두었다. 인큐베이션 후, 샘플을 10초 동안 손으로 진탕시켜 막을 펼친 데 이어, 추가 30초 동안 최고 속도로 와동시켰다. 각 튜브의 내용물을 수집하고, 용해물을 퀴아쉬레더 컬럼 (퀴아젠)을 통해 전개시켰다. 퀴아쉬레더에 적용시킨 용해물 350 ㎕를 동물 세포로부터의 RNA 단리에 대한 제조자의 프로토콜에 따라 RNeasy™ 절차에서 사용하였다. 컬럼을 물 30 ㎕로 이루어진 단일 용리에 의해 용리시켰다. 고용량 cDNA 역전사 키트 (캘리포니아주 포스터 시티 소재의 어플라이드 바이오시스템즈 인크.)를 제조자 설명서에 따라 사용하여 샘플 RNA로부터의 cDNA 제조를 수행하였다. cDNA를 -20℃ 또는 -80℃에 보관하였다.
표 7에 상기 실시예에서 사용되는 세포 배양물 및 형태를 열거하였다.
Figure 112009061103420-PCT00008
유전자 발현 분석 -- 앞서 실시예 1에 개략적으로 나타낸 방식으로 단층 및 MACI® 이식물 cDNA의 유전자 발현 분석을 수행하였다.
도 11은 단층 및 콜라겐-스캐폴드 배양에서의 HAPLN1 및 MFAP5에 대한 발현 수준 비 사이의 비교를 나타낸다. HAPLN1 및 MFAP5 발현 수준은 RT-PCR의 표준 곡선 방법에 의해 측정하였다. 발현 수준을 18S 리보솜 RNA로 표준화하였다. 일차 연골세포 (PC)의 단층 배양에서의 비를 1로 조정하고, 이에 따라 다른 비를 조정하였다.
도 12는 도 11에 나타낸 것과 동일한 세포주를 사용한 단층 및 콜라겐-스캐폴드 배양물에서의 HAPLN1 및 MFAP5에 대한 발현 수준 비 사이의 비교를 나타낸다. HAPLN1 및 MFAP5의 발현 수준은 RT-PCR의 비교 CT 방법에 의해 측정하였고, 비는 2^(CT,MFAP5 - CT,HAPLN1)로서 계산하였다.
스캐폴드 배양에서 얻어진 결과는 단층 배양에서 얻어진 것과 유사하였다.
실시예 5: 계대 수의 함수로서의 HAPLN1 및 MFAP5의 발현
다양한 배양 수준에서의 HAPLN1 대 MFAP5의 비를 조사하였다.
세포 단리 및 배양 -- 연골세포 배양물 C19, C20, C31, C32 및 C33을 실시예 1에 기재된 바와 같은 프로테아제 방법을 사용하여 단리하고, 실시예 1에 기재된 바와 같이 배양하였다. 윤활세포 배양물 S6 및 S7을 실시예 1 및 2에 기재된 바와 같이 단리하여 배양하였다. 37℃에서 2시간 동안 콜라게나제 및 DNase를 함유한 용액 내에서 잘게 절단한 윤활막 조직을 분해시킴으로써 윤활세포 배양물 S8을 단리하였다. S8의 세포 배양을 실시예 1에 기재된 바와 같이 수행하였다. 연골세포 배양물 C19, C20, C31, C32 및 C33에 대하여, 연골 유래 세포 (도 14A 및 14B에서 "0"으로 표시됨), 일차 배양 세포 (도 14A 및 14B에서 "1"로 표시됨), 제1 계대 세포 (도 14A 및 14B에서 "2"로 표시됨) 및 제2 계대 세포 (도 14A 및 14B에서 "3"으로 표시됨)의 샘플을 취하였다. 윤활세포 배양물 S7에 대하여, 일차 배양 (도 13에서 "1"로 표시됨), 제1 계대 (도 13에서 "2"로 표시됨), 제2 계대 (도 13에서 "3"으로 표시됨), 제3 계대 (도 13에서 "4"로 표시됨) 및 제4 계대 (도 13에서 "5"로 표시됨) 세포의 샘플을 취하였다. 윤활세포 배양물 S6 및 S8에 대하여, 제1 계대 (도 13에서 "2"로 표시됨), 제2 계대 (도 13에서 "3"으로 표시됨), 제3 계대 (도 13에서 "4"로 표시됨) 및 제4 계대 (도 13에서 "5"로 표시됨) 세포의 샘플을 취하였다.
RNA 단리 및 cDNA 제조 - RNeasy™ 미니 키트 (퀴아젠) 및 고용량 cDNA 역전사 키트 (어플라이드 바이오시스템즈 인크.)를 사용하여 실시예 3에 기재한 바와 같이 RNA 및 cDNA를 제조하였다.
유전자 발현 분석 - 윤활세포 샘플의 유전자 발현 분석을 실시예 1에 기재한 바와 같이 수행하였다. 연골세포 샘플의 유전자 발현 분석을 실시예 3에 기재한 바와 같이 수행하였다.
도 13, 14A 및 14B은 계대 수의 함수로서 HAPLN1과 MFAP5의 발현 수준 비율의 변화를 도시한다. 발현 수준은 RT-PCR의 비교 CT 방법으로 측정하였다. HAPLN1 : MFAP5 비는 2^(CT,MFAP5 - CT,HAPLN1)로 계산하였다.
HAPLN1 대 MFAP5의 비는 모든 배양 수준에서 연골세포 샘플에 비해 윤활세포 샘플에서 일관되게 낮았다. HAPLN1 대 MFAP5의 비는 모든 배양 수준에서 윤활세포 샘플에 비해 연골세포 샘플에서 일관되게 높았다.
실시예 6: 혼합된 세포 배양물에서 HAPLN1 및 MFAP5의 발현
연골세포와 윤활세포의 혼합된 배양물에 유전자 발현 분석을 적용하여 혼합된 배양물에서 상기 방법의 민감성 수준을 평가하였다. 인간 연골세포 및 인간 윤활세포의 세포 배양물을 사용하여 하기 비율과 같은 두 유형의 세포의 혼합물을 제조하였다.
1) 0% 연골세포 / 100% 윤활세포;
2) 25% 연골세포 / 75% 윤활세포;
3) 50% 연골세포 / 50% 윤활세포;
4) 75% 연골세포 / 25% 윤활세포; 및
5) 100% 연골세포 / 0% 윤활세포.
세포 단리 및 배양 - 연골세포주 C5, C6 및 C8을 실시예 1 및 2에 기재한 바와 같이 단리하고 배양하였다. 윤활세포 배양물 S6, S7 및 S9를 실시예 1, 2 및 3에 기재한 바와 같이 단리하고 배양하였다. 혼합 실험 1을 위하여, 연골세포주 6 (C6) 및 윤활세포주 6 (S6)의 제2 계대 배양물을 사용하였다. 혼합 실험 2를 위하여, 연골세포주 8 (C8) 및 윤활세포주 7 (S7)의 제1 계대 배양물을 사용하였다. 혼합 실험 3을 위하여, 연골세포주 5 (C5) 및 윤활세포주 9 (S9)의 제1 계대 배양물을 사용하였다.
RNA 단리 및 cDNA 제조 - RNeasy™ 미니 키트 (퀴아젠) 및 고용량 cDNA 역전사 키트 (어플라이드 바이오시스템즈 인크.)를 사용하여 실시예 3에 기재한 바와 같이 RNA 및 cDNA를 제조하였다.
유전자 발현 분석 - 실시예 3에 기재한 바와 같이 유전자 발현 분석을 수행하였다.
발현 수준은 RT-PCR의 비교 CT 방법으로 측정하였다. HAPLN1:MFAP5 비율은 2^(CT,MFAP5 - CT,HAPLN1)로 계산하였다. 혼합 실험의 결과는 도 15에 제공하였으며, 이는 혼합된 연골세포 및 윤활세포 집단으로 이루어진 샘플에서 HAPLN1 및 MFAP5의 발현 수준의 비를 나타낸다. 75% 이하의 연골세포 및 25% 이상의 윤활세포를 포함하는 배양물에서 HAPLN1:MFAP5 발현 수준 비는 약 1 이하였다. 더 높은 비는 시험한 샘플내의 더 높은 연골세포 비율에 상응한다. 세포 배양물의 혼합물을 식별할 수 있는 분석의 능력은 평균적으로 샘플이 67% 이상의 연골세포와 나머지는 활막 섬유모세포로 이루어져 양수의 CT,MFAP5 - CT,HAPLN1이 나온다는 것을 나타내었다. 피부 섬유모세포와 같은 다른 유형의 세포에 의한 오염 역시 상기 분석으로 검출할 수 있다.
실시예 7: 분석 반응률과 마커의 분자 비 사이의 관계의 분석
HAPLN1 및 MFAP5의 합성 RNA 전사체를 이용하여 시험 샘플에서의 분석 반응률과 마커의 분자 비 사이의 관계를 측정하였다. 먼저, 표 8에 열거된 프라이머를 사용하여 일차 PCR (플래티넘 PCR 수퍼믹스, 인비트로젠 카탈로그 번호 11306-016)을 인간 cDNA에 수행하였다. HAPLN1에 대하여, 이러한 프라이머는 HAPLN1 유전자 (기탁 번호 NM_001884.2)의 위치 256에서 1171까지의 뉴클레오티드를 증폭시켰다. MFAP5에 대하여, 이러한 프라이머는 MFAP5 유전자 (기탁 번호 NMJ303480.2)의 위치 32에서 728까지의 뉴클레오티드를 증폭시켰다. 비교를 위해 100 개의 염기쌍 분자크기 래더 (100 bp PCR 분자 자(Molecular Ruler), 바이오래드(BioRad) 카탈로그 번호 170-8206)를 사용하고, 겔 염색을 위해 SYBR 그린 I (인비트로젠 카탈로그 번호 S-7563)를 사용하여 1.5% 트리스-아세테이트 EDTA (TAE) 아가로스 겔 상에서 PCR 산물을 분석하였다. 생성된 일차 앰플리콘을 4% 네이티브 트리스-보레이트 EDTA (TBE) 폴리아크릴아미드 (PAGE) 겔을 이용하여 겔 정제하고, 표 8에 열거된 프라이머를 이용한 이차 PCR의 주형으로 사용하였다. 이차 MFAP5 증폭을 위한 겔-정제한 일차 앰플리콘 주형을 200 μL의 이차 반응 당 0.56 ng으로 로딩했다. 이차 HAPLN1 증폭을 위한 겔-정제한 일차 앰플리콘 주형을 900 μL의 이차 반응 당 2.5 ng으로 로딩하였다. 이차 앰플리콘을 상기한 바와 같은 네이티브 TBE PAGE 겔로부터 정제하고, 암비온(Ambion) 메가스크립트(Megascript) T7 키트를 사용한 시험관 내 전사를 위한 주형으로 사용하였다. 20 μL 전사 반응물 당 1.3 μg 이하의 이차 앰플리콘 주형을 사용하였다. 생성된 전사체를 6% TBE-우레아 (TBU) 폴리아크릴아미드 겔을 이용하여 겔 정제하고, 0.1 mM EDTA 중에 재현탁하고, 40 ng/μL RNA에 상응하는 1A26O 단위의 환산 인자를 이용하여 2회씩 리딩함으로써 분광광도법으로 정량화하였다. 겔 정제한 전사체를 6% TBU 겔 상에서 분석하여 순도를 평가하였다. PAGE 분석으로 순도를 측정하고, 분광광도법으로 정량화한 후, μL당 전사 카피수를 표 9에 열거된 환산 인자를 이용하여 측정하였다. 이러한 환산 인자는 평균 염기 분자량을 343 달톤으로 가정한 것이다. 아보가드로 상수는 6.02×1023/몰로 간주하였다. 또한 첫번째로 전사되는 염기가 T7 프로모터로부터 +1 G이며 표적 서열이 후속되는 것이라고 가정하였다. 전사체를 효모 RNA 담체 완충액 (뉴클레아제-무함유 수 중 20 ng/μL 효모 RNA (암비온 카탈로그 번호 AM7120G)의 용액)에 103 내지 108 카피/μL 범위의 농도로 희석시켰다. 그 후, 13 μL PCR 반응물 당 2 μL의 cDNA를 사용하는 것을 제외하고는 본 출원의 실시예 3에 주어진 바와 같은 RT-PCR 절차를 사용하여 희석물을 시험하였다. 본 출원의 실시예 4에 기재된 바와 같은 비교 CT 방법을 사용하여 각 희석물의 HAPLN1:MFAP5 비를 계산하였다.
카피수 표준을 사용한 분석 반응률을 공지된 분자 비와 비교하였다. 이러한 결과를 표 10에 나타내었다. 분석 반응률과 측정된 분자 비 사이의 관계를 이용하여 다양한 분석 반응률에서의 정확한 분자 비를 계산하였다. 표 11에 기재한 이러한 결과는 측정한 비교 CT가 허용 경계가 1일 때 (예, HAPLN1:MFAP5 = 1), HAPLN1:MFAP5의 정확한 분자 비가 2.212임에 상응함을 나타낸다.
Figure 112009061103420-PCT00009
Figure 112009061103420-PCT00010
Figure 112009061103420-PCT00011
Figure 112009061103420-PCT00012
실시예 8: 연골세포 및 섬유모세포 마커의 절대 정량 분석
절대 정량 방법을 이용한 유전자 발현 분석을 수행하였다. 표 12는 본 실시예에 사용되는 세포 배양물을 열거한다. 상기 실시예에서 논의한 바와 같이 다양한 배양물을 단리하고, 배양하였다. 실시예 3에서 논의한 바와 같이 RNeasy 키트를 사용하여 세포 배양물로부터의 RNA를 단리하였다. 13 μL PCR 반응물 당 2μL의 cDNA를 사용한 것을 제외하고는 실시예 3에 기재한 바와 같이 세포 배양물에 RT-PCR을 수행하였다. HAPLN1 및 MFAP5에 대한 시험관 내 전사된 RNA 표준물 (실시예 7에 기재된 바와 같이 제조함)을 희석시켜 최종 농도가 uL 당 5×102, 5×103 및 5×104개 카피인 cDNA를 수득하였다. 표준물로부터의 CT 결과를 y-축에 플로팅하고 반응 당 카피수 (103, 104 및 105)의 로그를 x-축에 플로팅하여 표준 곡선을 생성하였다. 선형 추세선을 데이터에 피팅시키고, 각 시험 샘플에 존재하는 HAPLN1 및 MFAP5 mRNA 카피의 양을 수학적으로 측정하였다. 이러한 정량화 방법은 예를 들어 [Real-Time PCR Systems: Applied Biosystems 7900HT Fast Real-Time PCR System and 7300/7500 Real-Time PCR Systems, Chemistry Guide, Applied Biosystems, 2005, Part No. 4348358 Rev. E]에 이미 기재되어 있다. 그 후 각 샘플의 HAPLN1:MFAP5 몰 비를 계산하였다. 도 16은 다양한 세포 배양물에서의 HAPLN1:MFAP5의 몰 비를 도시한다. 이러한 결과는 연골세포에서의 HAPLN1:MFAP5의 몰 비가 윤활세포 및 피부 섬유모세포에 비해 높다는 것을 나타낸다.
Figure 112009061103420-PCT00013
본원에서 언급된 모든 공보 및 특허 문서는 그 전체가 참고문헌으로 도입되어 있다. 참고문헌으로 도입된 자료가 본 명세서와 모순되거나 일치하지 않는 부분에 있어서, 본 명세서는 임의의 이러한 자료를 반영하지 않는다.
SEQUENCE LISTING <110> Genzyme Corporation <120> METHOD OF EVALUATING CELLS AND CELL CULTURES <130> 07680.0060-00304 <150> US 60/910,574 <151> 2007-04-06 <160> 27 <170> PatentIn version 3.5 <210> 1 <211> 2900 <212> DNA <213> Homo sapiens <400> 1 attccagcct cattgtaaca cacattctac gcctagcctg gctttcttgc tctccctcat 60 ctcattgttt cagcggaggc caaatctgaa gtcctttcca gggagtggct ctgttcatct 120 tattcgccag ccaaagtagg aacagcgtaa gaggagagag acacattcag cagccaaagg 180 actcggtgga aagagcagaa caccatagac aatatgtcgc tcttgggacc caaggtgctg 240 ctgtttcttg ctgcattcat catcacctct gactggatac ccctgggggt caatagtcaa 300 cgaggagacg atgtgactca agcgactcca gaaacattca cagaagatcc taatctggtg 360 aatgatcccg ctacagatga aacagttttg gctgttttgg ctgatattgc accttccaca 420 gatgacttgg cctccctcag tgaaaaaaat accactgcag agtgctggga tgagaaattt 480 acctgcacaa ggctctactc tgtgcatcgg ccggttaaac aatgcattca tcagttatgc 540 ttcaccagtt tacgacgtat gtacatcgtc aacaaggaga tctgctctcg tcttgtctgt 600 aaggaacacg aagctatgaa agatgagctt tgccgtcaga tggctggtct gccccctagg 660 agactccgtc gctccaatta cttccgactt cctccctgtg aaaatgtgga tttgcagaga 720 cccaatggtc tgtgatcatt gaaaaagagg aaagaagaaa aaatgtatgg gtgagaggaa 780 ggaggatctc cttcttctcc aaccattgac agctaaccct tagacagtat ttcttaaacc 840 aatccttttg caatgtccag cttttacccc tactctctac tttttcaccc aaactgataa 900 catttatctc attttctagc acttaaaata caaagtctat attattgcat aattttgctg 960 cttctcaata tcatagacac agtgaataga tgatgactat atggcttata tacaaacatt 1020 ctatgtacaa tttcaaggga gactaaactt taggctaata atctttacta ttgaatctgt 1080 ctgatataga tcttagggtt gaagaagcta tctttgtcta tttgggctaa ccatagaatt 1140 tcatttattt tcctcacaat attttcctag accaactccc catcattcac gtgttcctct 1200 ttactcttac tttaactatt ttgctggctt gcccgaaaat ttgcctggca agtcttcctt 1260 ataagacaca tcatggtaag ttttgtagtc ctgtaagatt ctgcaacaca gtcaagaatt 1320 atacaatcct actagcaata tataaggacc caaaatgtct tctgctaagc tcagaggctg 1380 gggctaaagc atgaggacta tgccagctat agaacttgga ctcataattc gctatccaat 1440 ttttcatgca gttgtctagt cgggaagtaa ggttggaaac taagtctcat ttactgattc 1500 gtttatgggt agtaccggga tgaacccacc accacaaagc aaattagaca acttaatgtg 1560 aaatcatacc attggttgac gtttccttga gttgctactt cgttcatctt cacaacttaa 1620 caagtgcacg gtcgaattat tgtgcaagtg gcttttggat atcctgattg gggcctaaga 1680 agggcattca gacttgaatt ttaataggca gacagaaagt ttgcctaata gttaatacga 1740 aagagtgaaa gaaacacaat attcagacaa cccacattct tatcctggct ctagcagtaa 1800 ccacgtagcc ttggataagc cattttcctt cattaggtcc tggtttaatt tcctcatctt 1860 taaaatgaga aggttaaatt tatcttagta ctgctgggcg cagtggctca tgcctgtaat 1920 ctgagcactt tgggaagctg aggcgggtgg atcacttgag gtcagaaatt tgagacgagc 1980 ctggccaaca tggtgaaacc ccatctctac taaaaataca aaaattagct gggcgtggtg 2040 gcacgtgcct gtaatcccag ctactcggga ggctgaggca ggagaatcaa ttgaacctgg 2100 gaggcagagg ttgcagtgag ccgagatggc gccattgcac tccagcctgg gtgacaaaag 2160 caaaagtcca tcttaagaaa tatatatata tattatatat attcttagtt ctaagatttc 2220 ctttaattct atgattctct ggatttaaat gcattattca tatttcttga agcttagata 2280 cagtctaatt catagcaacc atatctgctt tatcctaggt gagggtagca gtccacaatg 2340 gaatagaaga aaatcccatt ataacaaatg acaaattata tatcatgaat ccttctgtct 2400 gactaactca ataactttct ataaaagcca atggaattca aataggagct aggagacaac 2460 aagttatata tgacagtgga ggttgtattc cttttatatt gctgagaaaa ctagttaaat 2520 gatcagattc ttgctgttaa gaaacaattt cgtttaatgg gatctgtaca actgatttta 2580 aaaaaatgct acaaaaagcc ccaaagcata taatctctac tccttacagt ctctagaatt 2640 aaatgtactc atttagacaa catattaaat gcatatttta gccactttag agaaacctca 2700 taggcacaga gtttccaaga ttaattttaa gaatatcttc acgaacttga ccctcctact 2760 ccacattgca acatttccat cagacagcat ttcaattcca gtattatgta tattgcaaat 2820 taaacatttt aaaatatttt tttccaattt atttctcaaa ataaaatgtc ttttgttctg 2880 gtaaaaaaaa aaaaaaaaaa 2900 <210> 2 <211> 1759 <212> DNA <213> Homo sapiens <400> 2 gtgaggagaa agagcgctac gttcacttga tctccagctt ccaacttaag cagaacttga 60 gagcatccga actcctggat ttcaggacaa gtgaagaaga ttctttgggc tataaagatg 120 aagagtctac ttcttctggt gctgatttca atctgctggg ctgatcatct ttcagacaac 180 tatactctgg atcatgacag agctattcac atccaagcag aaaatggccc ccatctactt 240 gtggaagcag agcaagccaa ggtgttttca cacagaggtg gcaatgttac actgccatgt 300 aaattttatc gagaccctac agcatttggc tcaggaatcc ataaaatccg aattaagtgg 360 accaagctaa cttcggatta cctcaaggaa gtggatgttt ttgtttccat gggataccac 420 aaaaaaacct atggaggcta ccagggtaga gtgtttctga agggaggcag tgatagtgat 480 gcttctctgg tcatcacaga cctcactctg gaagattatg ggagatataa gtgtgaggtg 540 attgaaggat tagaagatga tactgttgtg gtagcactgg acttacaagg tgtggtattc 600 ccttactttc cacgactggg gcgctacaat ctcaattttc acgaggcgca gcaggcgtgt 660 ctggaccagg atgctgtgat cgcctccttc gaccagctgt acgacgcctg gcggggcggg 720 ctggactggt gcaatgccgg ctggctcagt gatggctctg tgcaatatcc catcacaaag 780 cccagagagc cctgtggggg ccagaacaca gtgcccggag tcaggaacta cggattttgg 840 gataaagata aaagcagata tgatgttttc tgttttacat ccaatttcaa tggccgtttt 900 tactatctga tccaccccac caaactgacc tatgatgaag cggtgcaagc ttgtctcaat 960 gatggtgctc agattgcaaa agtgggccag atatttgctg cctggaaaat tctcggatat 1020 gaccgctgtg atgcgggctg gttggcggat ggcagcgtcc gctaccccat ctctaggcca 1080 agaaggcgct gcagtcctac tgaggctgca gtgcgcttcg tgggtttccc agataaaaag 1140 cataagctgt atggtgtcta ctgcttcaga gcatacaact gaatgtgccc ttagagcgca 1200 tcagttttaa agtcattaag aacatgtgaa aggtgttttt tttttccaat atgaactcat 1260 gcaagttacc aaaactgtga taaccctttt ttacttactg taaagagtca ttttcataag 1320 atcaattcat tgatttgttt tttgtaaagc tatcattcaa tatatattat aaattaatat 1380 aaatttaagg gaagctctat gtaaggagac ttagagccaa actgtttaag ctgtatcatc 1440 ccaacaaagt atcctttcat gaacggggca tgcaatagct taagaattgc taggattaaa 1500 ttaaggaaag taaagctact cagagcaaca ggttccacaa gcacaaactt tacacatttg 1560 tacaattttg aaatgcacta caataaacaa attagagcaa cacatttgaa atacaggctt 1620 ctttacataa actgagaggt tatacaaaac tcagtttcac aagggaacaa tctatacctt 1680 tctaaaagtt aatatttcaa gtctctaata ggcagaatat tttactcttt aaaatcctgc 1740 ctttctgacc aaaaaaaaa 1759 <210> 3 <211> 661 <212> DNA <213> Homo sapiens <400> 3 tggttcttat aaaaacctca cagccttcca ctaacatccc gtaggagcct ctctccctac 60 tgctgctaca caagaccctg agactgacct gcaggacgaa accatgaaga gcctgatcct 120 tcttgccatc ctggccgcct tagcggtagt aactttgtgt tatgaatcac atgaaagcat 180 ggaatcttat gaacttaatc ccttcattaa caggagaaat gcaaatacct tcatatcccc 240 tcagcagaga tggagagcta aagtccaaga gaggatccga gaacgctcta agcctgtcca 300 cgagctcaat agggaagcct gtgatgacta cagactttgc gaacgctacg ccatggttta 360 tggatacaat gctgcctata atcgctactt caggaagcgc cgagggacca aatgagactg 420 agggaagaaa aaaaatctct ttttttctgg aggctggcac ctgattttgt atccccctgt 480 agcagcatta ctgaaataca taggcttata tacaatgctt ctttcctgta tattctcttg 540 tctggctgca cccctttttc ccgcccccag attgataagt aatgaaagtg cactgcagtg 600 agggtcaaag gagagtcaac atatgtgatt gttccataat aaacttctgg tgtgatactt 660 t 661 <210> 4 <211> 2974 <212> DNA <213> Homo sapiens <400> 4 agaagccccg cagccgccgc gcggagaaca gcgacagccg agcgcccggt ccgcctgtct 60 gccggtgggt ctgcctgccc gcgcagcaga cccggggcgg ccgcgggagc ccgcgccccg 120 cccgccgcgc ctctgccggg acccacccgc agcggagggc tgagcccgcc ggcggctccc 180 cggagctcac ccacctccgc gcgccggagc gcaggcaaaa ggggaggaaa ggctcctctc 240 tttagtcacc actctcgccc tctccaagaa tttgtttaac aaagcgctga ggaaagagaa 300 cgtcttcttg aattctttag taggggcgga gtctgctgct gccctgcgct gccacctcgg 360 ctacactgcc ctccgcgacg acccctgacc agccggggtc acgtccggga gacgggatca 420 tgaagcgctc ggtagccgtc tggctcttgg tcgggctcag cctcggtgtc ccccagttcg 480 gcaaaggtga tatttgtgat cccaatccat gtgaaaatgg aggtatctgt ttgccaggat 540 tggctgatgg ttccttttcc tgtgagtgtc cagatggctt cacagacccc aactgttcta 600 gtgttgtgga ggttgcatca gatgaagaag aaccaacttc agcaggtccc tgcactccta 660 atccatgcca taatggagga acctgtgaaa taagtgaagc ataccgaggg gatacattca 720 taggctatgt ttgtaaatgt ccccgaggat ttaatgggat tcactgtcag cacaacataa 780 atgaatgcga agttgagcct tgcaaaaatg gtggaatatg tacagatctt gttgctaact 840 attcctgtga gtgcccaggc gaatttatgg gaagaaattg tcaatacaaa tgctcaggcc 900 cactgggaat tgaaggtgga attatatcaa accagcaaat cacagcttcc tctactcacc 960 gagctctttt tggactccaa aaatggtatc cctactatgc acgtcttaat aagaaggggc 1020 ttataaatgc gtggacagct gcagaaaatg acagatggcc gtggattcag ataaatttgc 1080 aaaggaaaat gagagttact ggtgtgatta cccaaggagc caagaggatt ggaagcccag 1140 agtatataaa atcctacaaa attgcctaca gtaatgatgg aaagacttgg gcaatgtaca 1200 aagtgaaagg caccaatgaa gacatggtgt ttcgtggaaa cattgataac aacactccat 1260 atgctaactc tttcacaccc cccataaaag ctcagtatgt aagactctat ccccaagttt 1320 gtcgaagaca ttgcactttg cgaatggaac ttcttggctg tgaactgtcg ggttgttctg 1380 agcctctggg tatgaaatca ggacatatac aagactatca gatcactgcc tccagcatct 1440 tcagaacgct caacatggac atgttcactt gggaaccaag gaaagctcgg ctggacaagc 1500 aaggcaaagt gaatgcctgg acctctggcc acaatgacca gtcacaatgg ttacaggtgg 1560 atcttcttgt tccaaccaaa gtgactggca tcattacaca aggagctaaa gattttggtc 1620 atgtacagtt tgttggctcc tacaaactgg cttacagcaa tgatggagaa cactggactg 1680 tataccagga tgaaaagcaa agaaaagata aggttttcca gggaaatttt gacaatgaca 1740 ctcacagaaa aaatgtcatc gaccctccca tctatgcacg acacataaga atccttcctt 1800 ggtcctggta cgggaggatc acattgcggt cagagctgct gggctgcaca gaggaggaat 1860 gaggggaggc tacatttcac aaccctcttc cctatttccc taaaagtatc tccatggaat 1920 gaactgtgca aaatctgtag gaaactgaat ggtttttttt tttttttcat gaaaaagtgc 1980 tcaaattatg gtaggcaact aacggtgttt ttaagggggt ctaagcctgc cttttcaatg 2040 atttaatttg attttatttt atccgtcaaa tctcttaagt aacaacacat taagtgtgaa 2100 ttacttttct ctcattgttt cctgaattat tcgcattggt agaaatatat tagggaaaga 2160 aagtagcctt ctttttatag caagagtaaa aaagtctcaa agtcatcaaa taagagcaag 2220 agttgataga gcttttacaa tcaatactca cctaattctg ataaaaggaa tactgcaatg 2280 ttagcaataa gtttttttct tctgtaatga ctctacgtta tcctgtttcc ctgtgcctac 2340 caaacactgt caatgtttat tacaaaattt taaagaagaa tatgtaacat gcagtactga 2400 tattataatt ctcattttac tttcattatt tctaataaga gattatgtga cttctttttc 2460 ttttagttct attctacatt cttaatattg tatattacct gaataattca atttttttct 2520 aattgaattt cctattagtt gactaaaaga agtgtcatgt ttactcatat atgtagaaca 2580 tgactgccta tcagtagatt gatctgtatt taatattcgt taattaaatc tgcagtttta 2640 tttttgaagg aagccataac tatttaattt ccaaataatt gcttcataaa gaatcccata 2700 ctctcagttt gcacaaaaga acaaaaaata tatatgtctc tttaaattta aatcttcatt 2760 tagatggtaa ttacatatcc ttatatttac tttaaaaaat cggcttattt gtttatttta 2820 taaaaaattt agcaaagaaa tattaatata gtgctgcata gtttggccaa gcatactcat 2880 catttctttg ttcagctcca catttcctgt gaaactaaca tcttattgag atttgaaact 2940 ggtggtagtt tcccaggaag gcacaggtgg agtt 2974 <210> 5 <211> 1307 <212> DNA <213> Homo sapiens <400> 5 cctgagtccc gggaggaaag tgctcgccca ttcctgacct gtgacacgct cactgcgaag 60 gcaggttatt agaagagtcc catgaaaggt ggctccacgg tcccagcgac atgcaggggc 120 tcctcttctc cactcttctg cttgctggcc tggcacagtt ctgctgcagg gtacagggca 180 ctggaccatt agatacaaca cctgaaggaa ggcctggaga agtgtcagat gcacctcagc 240 gtaaacagtt ttgtcactgg ccctgcaaat gccctcagca gaagccccgt tgccctcctg 300 gagtgagcct ggtgagagat ggctgtggat gctgtaaaat ctgtgccaag caaccagggg 360 aaatctgcaa tgaagctgac ctctgtgacc cacacaaagg gctgtattgt gactactcag 420 tagacaggcc taggtacgag actggagtgt gtgcatacct tgtagctgtt gggtgcgagt 480 tcaaccaggt acattatcat aatggccaag tgtttcagcc caaccccttg ttcagctgcc 540 tctgtgtgag tggggccatt ggatgcacac ctctgttcat accaaagctg gctggcagtc 600 actgctctgg agctaaaggt ggaaagaagt ctgatcagtc aaactgtagc ctggaaccat 660 tactacagca gctttcaaca agctacaaaa caatgccagc ttatagaaat ctcccactta 720 tttggaaaaa aaaatgtctt gtgcaagcaa caaaatggac tccctgctcc agaacatgtg 780 ggatgggaat atctaacagg gtgaccaatg aaaacagcaa ctgtgaaatg agaaaagaga 840 aaagactgtg ttacattcag ccttgcgaca gcaatatatt aaagacaata aagattccca 900 aaggaaaaac atgccaacct actttccaac tctccaaagc tgaaaaattt gtcttttctg 960 gatgctcaag tactcagagt tacaaaccca ctttttgtgg aatatgcttg gataagagat 1020 gctgtatccc taataagtct aaaatgatta ctattcaatt tgattgccca aatgaggggt 1080 catttaaatg gaagatgctg tggattacat cttgtgtgtg tcagagaaac tgcagagaac 1140 ctggagatat attttctgag ctcaagattc tgtaaaacca agcaaatggg ggaaaagtta 1200 gtcaatcctg tcatataata aaaaaattag tgagtaaaaa aaaaaaaaaa aaaaaaaaaa 1260 aaaaaaaaaa aaaaaaaaaa aaaaaagaaa aaaaaaaaaa aaaaaaa 1307 <210> 6 <211> 7137 <212> DNA <213> Homo sapiens <400> 6 cggccaggtg tgtgggactg aagttcttgg agaagggagt ccaactcttc aaggtgaact 60 atgaccactt tactctgggt tttcgtgact ctgagggtca tcactgcagc tgtcactgta 120 gaaacttcag accatgacaa ctcgctgagt gtcagcatcc cccaaccgtc cccgctgagg 180 gtcctcctgg ggacctccct caccatcccc tgctatttca tcgaccccat gcaccctgtg 240 accaccgccc cttctaccgc cccactggcc ccaagaatca agtggagccg tgtgtccaag 300 gagaaggagg tagtgctgct ggtggccact gaagggcgcg tgcgggtcaa cagtgcctat 360 caggacaagg tctcactgcc caactacccg gccatcccca gtgacgccac cttggaagtc 420 cagagcctgc gctccaatga ctctggggtc taccgctgcg aggtgatgca tggcatcgag 480 gacagcgagg ccaccctgga agtcgtggtg aaaggcatcg tgttccatta cagagccatc 540 tctacacgct acaccctcga ctttgacagg gcgcagcggg cctgcctgca gaacagtgcc 600 atcattgcca cgcctgagca gctgcaggcc gcctacgaag acggcttcca ccagtgtgac 660 gccggctggc tggctgacca gactgtcaga taccccatcc acactccccg ggaaggctgc 720 tatggagaca aggatgagtt tcctggtgtg aggacgtatg gcatccgaga caccaacgag 780 acctatgatg tgtactgctt cgccgaggag atggagggtg aggtctttta tgcaacatct 840 ccagagaagt tcaccttcca ggaagcagcc aatgagtgcc ggcggctggg tgcccggctg 900 gccaccacgg gccacgtcta cctggcctgg caggctggca tggacatgtg cagcgccggc 960 tggctggccg accgcagcgt gcgctacccc atctccaagg cccggcccaa ctgcggtggc 1020 aacctcctgg gcgtgaggac cgtctacgtg catgccaacc agacgggcta ccccgacccc 1080 tcatcccgct acgacgccat ctgctacaca ggtgaagact ttgtggacat cccagaaaac 1140 ttctttggag tggggggtga ggaggacatc accgtccaga cagtgacctg gcctgacatg 1200 gagctgccac tgcctcgaaa catcactgag ggtgaagccc gaggcagcgt gatccttacc 1260 gtaaagccca tcttcgaggt ctcccccagt cccctggaac ccgaggagcc cttcacgttt 1320 gcccctgaaa taggggccac tgccttcgct gaggttgaga atgagactgg agaggccacc 1380 aggccctggg gctttcccac acctggcctg ggccctgcca cggcattcac cagtgaggac 1440 ctcgtcgtgc aggtgaccgc tgtccctggg cagccgcatt tgccaggggg ggtcgtcttc 1500 cactaccgcc cgggacccac ccgctactcg ctgacctttg aggaggcaca gcaggcctgc 1560 cctggcacgg gggcggtcat tgcctcgccg gagcagctcc aggccgccta cgaagcaggc 1620 tatgagcagt gtgacgccgg ctggctgcgg gaccagaccg tcagataccc cattgtgagc 1680 ccacggaccc catgcgtggg tgacaaggac agcagcccag gggtcaggac ctatggcgtg 1740 cgcccatcaa cagagaccta cgatgtctac tgctttgtag acagacttga gggggaggtg 1800 ttcttcgcca cacgccttga gcagttcacc ttccaggaag cactggagtt ctgtgaatct 1860 cacaatgcca ctgccaccac gggccagctc tacgccgcct ggagccgcgg cctggacaag 1920 tgctatgccg gctggctggc cgacggcagc ctccgctacc ccatcgtcac cccaaggcct 1980 gcctgcggtg gggacaagcc aggcgtgaga acggtctacc tctaccctaa ccagacgggc 2040 ctcccagacc cactgtcccg gcaccatgcc ttctgcttcc gaggcatttc agcggttcct 2100 tctccaggag aagaagaggg tggcacaccc acatcaccct ctggtgtgga ggagtggatc 2160 gtgacccaag tggttcctgg tgtggctgct gtccccgtag aagaggagac aactgctgta 2220 ccctcagggg agactactgc catcctagag ttcaccaccg agccagaaaa ccagacagaa 2280 tgggaaccag cctatacccc agtgggcaca tccccgctgc cagggatcct tcctacttgg 2340 cctcctactg gcgccgaaac agaggaaagt acagaaggcc cttctgcaac tgaagtgccc 2400 tctgcctcag aggaaccatc cccctcagag gtgccattcc cctcagagga gccatccccc 2460 tcagaggaac cattcccctc agtgaggcca ttcccctcag tggagctgtt cccctcagag 2520 gagccattcc cctccaagga gccatccccc tcagaggaac catcagcctc agaagagccg 2580 tatacacctt caccccccga gcccagctgg actgagctgc ccagctctgg ggaggaatct 2640 ggggcccctg atgtcagtgg tgacttcaca ggcagtggag atgtttcagg acaccttgac 2700 ttcagtgggc agctgtcagg ggacagggca agtggactgc cctctggaga cctggactcc 2760 agtggtctta cttccacagt gggctcaggc ctgactgtgg aaagtggact accctcaggg 2820 gatgaagaga gaattgagtg gcccagcact cctacggttg gtgaactgcc ctctggagct 2880 gagatcctag agggctctgc ctctggagtt ggggatctca gtggacttcc ttctggagaa 2940 gttctagaga cctctgcctc tggagtagga gacctcagtg ggcttccttc tggagaagtt 3000 ctagagacca ctgcccctgg agtagaggac atcagcgggc ttccttctgg agaagttcta 3060 gagaccactg cccctggagt agaggacatc agcgggcttc cttctggaga agttctagag 3120 accactgccc ctggagtaga ggacatcagc gggcttcctt ctggagaagt tctagagacc 3180 actgcccctg gagtagagga catcagcggg cttccttctg gagaagttct agagaccact 3240 gcccctggag tagaggacat cagcgggctt ccttctggag aagttctaga gaccgctgcc 3300 cctggagtag aggacatcag cgggcttcct tctggagaag ttctagagac cgctgcccct 3360 ggagtagagg acatcagcgg gcttccttct ggagaagttc tagagaccgc tgcccctgga 3420 gtagaggaca tcagcgggct tccttctgga gaagttctag agaccgctgc ccctggagta 3480 gaggacatca gcgggcttcc ttctggagaa gttctagaga ccgctgcccc tggagtagag 3540 gacatcagcg ggcttccttc tggagaagtt ctagagaccg ctgcccctgg agtagaggac 3600 atcagcgggc ttccttctgg agaagttcta gagaccgctg cccctggagt agaggacatc 3660 agcgggcttc cttctggaga agttctagag actgctgccc ctggagtaga ggacatcagc 3720 gggcttcctt ctggagaagt tctagagact gctgcccctg gagtagagga catcagcggg 3780 cttccttctg gagaagttct agagactgct gcccctggag tagaggacat cagcgggctt 3840 ccttctggag aagttctaga gactgctgcc cctggagtag aggacatcag cgggcttcct 3900 tctggagaag ttctagagac tactgcccct ggagtagagg agatcagcgg gcttccttct 3960 ggagaagttc tagagactac tgcccctgga gtagatgaga tcagtgggct tccttctgga 4020 gaagttctag agactactgc ccctggagta gaggagatca gcgggcttcc ttctggagaa 4080 gttctagaga cttctacctc tgcggtaggg gacctcagtg gacttccttc tggaggagaa 4140 gttctagaga tttctgtctc tggagtagag gacatcagtg ggcttccttc tggagaggtt 4200 gtagagactt ctgcctctgg aatagaggat gtcagtgaac ttccttcagg agaaggtcta 4260 gagacctctg cttctggagt agaggacctc agcaggctcc cttctggaga agaagttcta 4320 gagatttctg cctctggatt tggggacctc agtggagttc cttctggagg agaaggtcta 4380 gagacctctg cttctgaagt agggactgac ctcagtgggc ttccttctgg aagggagggt 4440 ctagagactt cagcttctgg agctgaggac ctcagtgggt tgccttctgg aaaagaagac 4500 ttggtggggt cagcttctgg agacttggac ttgggcaaac tgccttctgg aactctagga 4560 agtgggcaag ctccagaaac aagtggtctt ccctctggat ttagtggtga gtattctggg 4620 gtggaccttg gaagtggccc accctctggc ctgcctgact ttagtggact tccatctgga 4680 ttcccaactg tttccctagt ggattctaca ttggtggaag tggtcacagc ctccactgca 4740 agtgaactgg aagggagggg aaccattggc atcagtggtg caggagaaat atctggactg 4800 ccctccagtg agctggacat tagtgggaga gctagtggac tcccttcagg aactgaactc 4860 agtggccaag catctgggtc tcctgatgtc agtggggaaa tacctggact ctttggtgtc 4920 agtggacagc catcagggtt tcctgacact agtggggaaa catctggagt gactgagctt 4980 agcgggctgt cctctggaca accaggtgtt agtggagaag catctggagt tctttatggc 5040 actagtcaac cctttggcat aactgatctg agtggagaaa catctggggt ccctgatctc 5100 agtgggcagc cttcagggtt accagggttc agtggggcaa catcaggagt ccctgacctg 5160 gtttctggta ccacgagtgg cagcggtgaa tcttctggga ttacatttgt ggacaccagt 5220 ttggttgaag tggcccctac tacatttaaa gaagaagaag gcttagggtc tgtggaactc 5280 agtggcctcc cttccggaga ggcagatctg tcaggcaaat ctgggatggt ggatgtcagt 5340 ggacagtttt ctggaacagt cgattccagt gggtttacat cccagactcc ggaattcagt 5400 ggcctaccaa gtggcatagc tgaggtcagt ggagaatcct ccagagctga gattgggagc 5460 agcctgccct cgggagcata ttatggcagt ggaactccat ctagtttccc cacggtctct 5520 cttgtagaca gaactttggt ggaatctgta acccaggctc caacagccca agaggcagga 5580 gaagggcctt ctggcatttt agaactcagt ggtgctcatt ctggagcacc agacatgtct 5640 ggggagcatt ctggatttct ggacctaagt gggctgcagt ccgggctgat agagcccagc 5700 ggagagccac caggtactcc atattttagt ggggattttg ccagcaccac caatgtaagt 5760 ggagaatcct ctgtagccat gggcaccagt ggagaggcct caggacttcc agaagttact 5820 ttaatcactt ctgagttcgt ggagggtgtt actgaaccaa ctatttctca ggaactaggc 5880 caaaggcccc ctgtgacaca cacaccccag ctttttgagt ccagtggaaa agtctccaca 5940 gctggggaca ttagtggagc taccccagtg ctccctgggt ctggagtaga agtatcatca 6000 gtcccagaat ctagcagtga gacgtccgcc tatcctgaag ctgggttcgg ggcatctgcc 6060 gcccctgagg ccagcagaga agattctggg tcccctgatc tgagtgaaac cacctctgca 6120 ttccacgaag ctaaccttga gagatcctct ggcctaggag tgagcggcag cactttgaca 6180 tttcaagaag gcgaggcgtc cgctgcccca gaagtgagtg gagaatccac caccaccagt 6240 gatgtgggga cagaggcacc aggcttgcct tcagccactc ccacggcttc tggagacagg 6300 actgaaatca gcggagacct gtctggtcac acctcgcagc tgggcgttgt catcagcacc 6360 agcatcccag agtctgagtg gacccagcag acccagcgcc ctgcagagac gcatctagaa 6420 attgagtcct caagcctcct gtactcagga gaagagactc acacagtcga aacagccacc 6480 tccccaacag atgcttccat cccagcttct ccggaatgga aacgtgaatc agaatcaact 6540 gctgcagacc aggaggtatg tgaggagggc tggaacaagt accagggcca ctgttaccgc 6600 cacttcccgg accgcgagac ctgggtggat gctgagcgcc ggtgtcggga gcagcagtca 6660 cacctgagca gcatcgtcac ccccgaggag caggagtttg tcaacaacaa tgcccaagac 6720 taccagtgga tcggcctgaa cgacaggacc atcgaagggg acttccgctg gtcagatgga 6780 caccccatgc aatttgagaa ctggcgcccc aaccagcctg acaacttttt tgccgctgga 6840 gaggactgtg tggtgatgat ctggcacgag aagggcgagt ggaatgatgt tccctgcaat 6900 taccacctcc ccttcacgtg taaaaagggc acagccacca cctacaaacg cagactacag 6960 aagcggagct cacggcaccc tcggaggagc cgccccagca cagcccactg agaagagctt 7020 ccaggacgca cccaggacgc tgagcccagg agcctgccag gctgacgtgc atcccaccca 7080 gacggtgtcc tcttcttgtc gctttttgtc atataaggaa tcccattaaa aaaaaaa 7137 <210> 7 <211> 2471 <212> DNA <213> Homo sapiens <400> 7 agaaagcgag cagccaccca gctccccgcc accgccatgg tccccgacac cgcctgcgtt 60 cttctgctca ccctggctgc cctcggcgcg tccggacagg gccagagccc gttgggctca 120 gacctgggcc cgcagatgct tcgggaactg caggaaacca acgcggcgct gcaggacgtg 180 cgggagctgc tgcggcagca ggtcagggag atcacgttcc tgaaaaacac ggtgatggag 240 tgtgacgcgt gcgggatgca gcagtcagta cgcaccggcc tacccagcgt gcggcccctg 300 ctccactgcg cgcccggctt ctgcttcccc ggcgtggcct gcatccagac ggagagcggc 360 gcgcgctgcg gcccctgccc cgcgggcttc acgggcaacg gctcgcactg caccgacgtc 420 aacgagtgca acgcccaccc ctgcttcccc cgagtccgct gtatcaacac cagcccgggg 480 ttccgctgcg aggcttgccc gccggggtac agcggcccca cccaccaggg cgtggggctg 540 gctttcgcca aggccaacaa gcaggtttgc acggacatca acgagtgtga gaccgggcaa 600 cataactgcg tccccaactc cgtgtgcatc aacacccggg gctccttcca gtgcggcccg 660 tgccagcccg gcttcgtggg cgaccaggcg tccggctgcc agcggcgcgc acagcgcttc 720 tgccccgacg gctcgcccag cgagtgccac gagcatgcag actgcgtcct agagcgcgat 780 ggctcgcggt cgtgcgtgtg tgccgttggc tgggccggca acgggatcct ctgtggtcgc 840 gacactgacc tagacggctt cccggacgag aagctgcgct gcccggagcg ccagtgccgt 900 aaggacaact gcgtgactgt gcccaactca gggcaggagg atgtggaccg cgatggcatc 960 ggagacgcct gcgatccgga tgccgacggg gacggggtcc ccaatgaaaa ggacaactgc 1020 ccgctggtgc ggaacccaga ccagcgcaac acggacgagg acaagtgggg cgatgcgtgc 1080 gacaactgcc ggtcccagaa gaacgacgac caaaaggaca cagaccagga cggccggggc 1140 gatgcgtgcg acgacgacat cgacggcgac cggatccgca accaggccga caactgccct 1200 agggtaccca actcagacca gaaggacagt gatggcgatg gtatagggga tgcctgtgac 1260 aactgtcccc agaagagcaa cccggatcag gcggatgtgg accacgactt tgtgggagat 1320 gcttgtgaca gcgatcaaga ccaggatgga gacggacatc aggactctcg ggacaactgt 1380 cccacggtgc ctaacagtgc ccaggaggac tcagaccacg atggccaggg tgatgcctgc 1440 gacgacgacg acgacaatga cggagtccct gacagtcggg acaactgccg cctggtgcct 1500 aaccccggcc aggaggacgc ggacagggac ggcgtgggcg acgtgtgcca ggacgacttt 1560 gatgcagaca aggtggtaga caagatcgac gtgtgtccgg agaacgctga agtcacgctc 1620 accgacttca gggccttcca gacagtcgtg ctggacccgg agggtgacgc gcagattgac 1680 cccaactggg tggtgctcaa ccagggaagg gagatcgtgc agacaatgaa cagcgaccca 1740 ggcctggctg tgggttacac tgccttcaat ggcgtggact tcgagggcac gttccatgtg 1800 aacacggtca cggatgacga ctatgcgggc ttcatctttg gctaccagga cagctccagc 1860 ttctacgtgg tcatgtggaa gcagatggag caaacgtatt ggcaggcgaa ccccttccgt 1920 gctgtggccg agcctggcat ccaactcaag gctgtgaagt cttccacagg ccccggggaa 1980 cagctgcgga acgctctgtg gcatacagga gacacagagt cccaggtgcg gctgctgtgg 2040 aaggacccgc gaaacgtggg ttggaaggac aagaagtcct atcgttggtt cctgcagcac 2100 cggccccaag tgggctacat cagggtgcga ttctatgagg gccctgagct ggtggccgac 2160 agcaacgtgg tcttggacac aaccatgcgg ggtggccgcc tgggggtctt ctgcttctcc 2220 caggagaaca tcatctgggc caacctgcgt taccgctgca atgacaccat cccagaggac 2280 tatgagaccc atcagctgcg gcaagcctag ggaccagggt gaggacccgc cggatgacag 2340 ccaccctcac cgcggctgga tgggggctct gcacccagcc ccaaggggtg gccgtcctga 2400 gggggaagtg agaagggctc agagaggaca aaataaagtg tgtgtgcagg gaaaaaaaaa 2460 aaaaaaaaaa a 2471 <210> 8 <211> 5087 <212> DNA <213> Homo sapiens <400> 8 aacgggcgcc gcggcgggga gaagacgcag agcgctgctg ggctgccggg tctcccgctt 60 ccccctcctg ctccaagggc ctcctgcatg agggcgcggt agagacccgg acccgcgccg 120 tgctcctgcc gtttcgctgc gctccgcccg ggcccggctc agccaggccc cgcggtgagc 180 catgattcgc ctcggggctc cccagacgct ggtgctgctg acgctgctcg tcgccgctgt 240 ccttcggtgt cagggccagg atgtccagga ggctggcagc tgtgtgcagg atgggcagag 300 gtataatgat aaggatgtgt ggaagccgga gccctgccgg atctgtgtct gtgacactgg 360 gactgtcctc tgcgacgaca taatctgtga agacgtgaaa gactgcctca gccctgagat 420 ccccttcgga gagtgctgcc ccatctgccc aactgacctc gccactgcca gtgggcaacc 480 aggaccaaag ggacagaaag gagaacctgg agacatcaag gatattgtag gacccaaagg 540 acctcctggg cctcagggac ctgcagggga acaaggaccc agaggggatc gtggtgacaa 600 aggtgaaaaa ggtgcccctg gacctcgtgg cagagatgga gaacctggga cccctggaaa 660 tcctggcccc cctggtcctc ccggcccccc tggtccccct ggtcttggtg gaaactttgc 720 tgcccagatg gctggaggat ttgatgaaaa ggctggtggc gcccagttgg gagtaatgca 780 aggaccaatg ggccccatgg gacctcgagg acctccaggc cctgcaggtg ctcctgggcc 840 tcaaggattt caaggcaatc ctggtgaacc tggtgaacct ggtgtctctg gtcccatggg 900 tccccgtggt cctcctggtc cccctggaaa gcctggtgat gatggtgaag ctggaaaacc 960 tggaaaagct ggtgaaaggg gtccgcctgg tcctcagggt gctcgtggtt tcccaggaac 1020 cccaggcctt cctggtgtca aaggtcacag aggttatcca ggcctggacg gtgctaaggg 1080 agaggcgggt gctcctggtg tgaagggtga gagtggttcc ccgggtgaga acggatctcc 1140 gggcccaatg ggtcctcgtg gcctgcctgg tgaaagagga cggactggcc ctgctggcgc 1200 tgcgggtgcc cgaggcaacg atggtcagcc aggccccgca gggcctccgg gtcctgtcgg 1260 tcctgctggt ggtcctggct tccctggtgc tcctggagcc aagggtgaag ccggccccac 1320 tggtgcccgt ggtcctgaag gtgctcaagg tcctcgcggt gaacctggta ctcctgggtc 1380 ccctgggcct gctggtgcct ccggtaaccc tggaacagat ggaattcctg gagccaaagg 1440 atctgctggt gctcctggca ttgctggtgc tcctggcttc cctgggccac ggggccctcc 1500 tggccctcaa ggtgcaactg gtcctctggg cccgaaaggt cagacgggtg aacctggtat 1560 tgctggcttc aaaggtgaac aaggccccaa gggagaacct ggccctgctg gcccccaggg 1620 agcccctgga cccgctggtg aagaaggcaa gagaggtgcc cgtggagagc ctggtggcgt 1680 tgggcccatc ggtccccctg gagaaagagg tgctcccggc aaccgcggtt tcccaggtca 1740 agatggtctg gcaggtccca agggagcccc tggagagcga gggcccagtg gtcttgctgg 1800 ccccaaggga gccaacggtg accctggccg tcctggagaa cctggccttc ctggagcccg 1860 gggtctcact ggccgccctg gtgatgctgg tcctcaaggc aaagttggcc cttctggagc 1920 ccctggtgaa gatggtcgtc ctggacctcc aggtcctcag ggggctcgtg ggcagcctgg 1980 tgtcatgggt ttccctggcc ccaaaggtgc caacggtgag cctggcaaag ctggtgagaa 2040 gggactgcct ggtgctcctg gtctgagggg tcttcctggc aaagatggtg agacaggtgc 2100 tgcaggaccc cctggccctg ctggacctgc tggtgaacga ggcgagcagg gtgctcctgg 2160 gccatctggg ttccagggac ttcctggccc tcctggtccc ccaggtgaag gtggaaaacc 2220 aggtgaccag ggtgttcccg gtgaagctgg agcccctggc ctcgtgggtc ccaggggtga 2280 acgaggtttc ccaggtgaac gtggctctcc cggtgcccag ggcctccagg gtccccgtgg 2340 cctccccggc actcctggca ctgatggtcc caaaggtgca tctggcccag caggcccccc 2400 tggggctcag ggccctccag gtcttcaggg aatgcctggc gagaggggag cagctggtat 2460 cgctgggccc aaaggcgaca ggggtgacgt tggtgagaaa ggccctgagg gagcccctgg 2520 aaaggatggt ggacgaggcc tgacaggtcc cattggcccc cctggcccag ctggtgctaa 2580 tggcgagaag ggagaagttg gacctcctgg tcctgcagga agtgctggtg ctcgtggcgc 2640 tccgggtgaa cgtggagaga ctgggccccc cggaccagcg ggatttgctg ggcctcctgg 2700 tgctgatggc cagcctgggg ccaagggtga gcaaggagag gccggccaga aaggcgatgc 2760 tggtgcccct ggtcctcagg gcccctctgg agcacctggg cctcagggtc ctactggagt 2820 gactggtcct aaaggagccc gaggtgccca aggccccccg ggagccactg gattccctgg 2880 agctgctggc cgcgttggac ccccaggctc caatggcaac cctggacccc ctggtccccc 2940 tggtccttct ggaaaagatg gtcccaaagg tgctcgagga gacagcggcc cccctggccg 3000 agctggtgaa cccggcctcc aaggtcctgc tggaccccct ggcgagaagg gagagcctgg 3060 agatgacggt ccctctggtg ccgaaggtcc accaggtccc cagggtctgg ctggtcagag 3120 aggcatcgtc ggtctgcctg ggcaacgtgg tgagagagga ttccctggct tgcctggccc 3180 gtcgggtgag cccggcaagc agggtgctcc tggagcatct ggagacagag gtcctcctgg 3240 ccccgtgggt cctcctggcc tgacgggtcc tgcaggtgaa cctggacgag agggaagccc 3300 cggtgctgat ggcccccctg gcagagatgg cgctgctgga gtcaagggtg atcgtggtga 3360 gactggtgct gtgggagctc ctggagcccc tgggccccct ggctcccctg gccccgctgg 3420 tccaactggc aagcaaggag acagaggaga agctggtgca caaggcccca tgggaccctc 3480 aggaccagct ggagcccggg gaatccaggg tcctcaaggc cccagaggtg acaaaggaga 3540 ggctggagag cctggcgaga gaggcctgaa gggacaccgt ggcttcactg gtctgcaggg 3600 tctgcccggc cctcctggtc cttctggaga ccaaggtgct tctggtcctg ctggtccttc 3660 tggccctaga ggtcctcctg gccccgtcgg tccctctggc aaagatggtg ctaatggaat 3720 ccctggcccc attgggcctc ctggtccccg tggacgatca ggcgaaaccg gccctgctgg 3780 tcctcctgga aatcctggac cccctggtcc tccaggtccc cctggccctg gcatcgacat 3840 gtccgccttt gctggcttag gcccgagaga gaagggcccc gaccccctgc agtacatgcg 3900 ggccgaccag gcagccggtg gcctgagaca gcatgacgcc gaggtggatg ccacactcaa 3960 gtccctcaac aaccagattg agagcatccg cagccccgag ggctcccgca agaaccctgc 4020 tcgcacctgc agagacctga aactctgcca ccctgagtgg aagagtggag actactggat 4080 tgaccccaac caaggctgca ccttggacgc catgaaggtt ttctgcaaca tggagactgg 4140 cgagacttgc gtctacccca atccagcaaa cgttcccaag aagaactggt ggagcagcaa 4200 gagcaaggag aagaaacaca tctggtttgg agaaaccatc aatggtggct tccatttcag 4260 ctatggagat gacaatctgg ctcccaacac tgccaacgtc cagatgacct tcctacgcct 4320 gctgtccacg gaaggctccc agaacatcac ctaccactgc aagaacagca ttgcctatct 4380 ggacgaagca gctggcaacc tcaagaaggc cctgctcatc cagggctcca atgacgtgga 4440 gatccgggca gagggcaata gcaggttcac gtacactgcc ctgaaggatg gctgcacgaa 4500 acataccggt aagtggggca agactgttat cgagtaccgg tcacagaaga cctcacgcct 4560 ccccatcatt gacattgcac ccatggacat aggagggccc gagcaggaat tcggtgtgga 4620 catagggccg gtctgcttct tgtaaaaacc tgaacccaga aacaacacaa tccgttgcaa 4680 acccaaagga cccaagtact ttccaatctc agtcactcta ggactctgca ctgaatggct 4740 gacctgacct gatgtccatt catcccaccc tctcacagtt cggacttttc tcccctctct 4800 ttctaagaga cctgaactgg gcagactgca aaataaaatc tcggtgttct atttatttat 4860 tgtcttcctg taagaccttc gggtcaaggc agaggcagga aactaactgg tgtgagtcaa 4920 atgccccctg agtgactgcc cccagcccag gccagaagac ctcccttcag gtgccgggcg 4980 caggaactgt gtgtgtccta cacaatggtg ctattctgtg tcaaacacct ctgtattttt 5040 taaaacatca attgatatta aaaatgaaaa gattattgga aagtaca 5087 <210> 9 <211> 3704 <212> DNA <213> Homo sapiens <400> 9 ccctcaccgg gggcaggagg gaccaaggct gggcccagaa cacatagtcc tagggtaaca 60 gtgaaggggt cgtgagggga cagtgactcc cttccaaccc cttcttcata gggactgttg 120 gcaaacaaag aaaatcaact gggaaaatga agacctgctg gaaaattcca gttttcttct 180 ttgtgtgcag tttcctggaa ccctgggcat ctgcagctgt caagcgtcgc cccagattcc 240 ctgtcaattc caattctaat ggtggaaatg aactctgtcc aaagatcagg attggccaag 300 atgacttacc agggtttgat ctgatctctc agttccaggt agataaagca gcatctagaa 360 gagctatcca gagagtagtg ggatcagcta cattgcaggt ggcttacaag ttgggaaata 420 atgtagactt caggattcca actaggaatt tatatcccag tggactgcct gaagaatact 480 ccttcttgac gacgtttcga atgactggaa gcactctcaa aaagaactgg aacatttggc 540 agattcagga ttcctctggg aaggagcaag ttggcataaa gattaatggc caaacacaat 600 ctgttgtatt ttcatacaag ggactggatg gaagtctcca aacagcagcc ttttcgaatt 660 tgtcctcctt gtttgattcc cagtggcata agatcatgat tggcgtggag aggagtagtg 720 ctactctttt tgttgactgc aacaggattg aatctttacc tataaagcca agaggcccaa 780 ttgacattga tggctttgct gtgctgggaa aacttgcaga taatcctcaa gtttctgttc 840 catttgaact tcaatggatg ctgatccatt gtgaccccct gcggcccagg agagaaactt 900 gccatgagct gccagccaga ataacgccca gccagaccac cgacgagaga ggtcccccgg 960 gtgagcaggg tcctcccggg cctccgggcc cccctggagt tccaggcatc gatggcatcg 1020 acggtgaccg aggtcctaag ggccccccgg gccccccggg tcctgcaggt gaaccgggaa 1080 agccaggagc tccaggcaag cctggcacac ctggcgctga tggattaaca ggacctgatg 1140 gatcccctgg ctccattggg tcaaagggac aaaaaggaga acctggtgtg cctggatcgc 1200 gtggatttcc aggccgtggt attcctggac cccctggtcc tcctgggaca gcaggactcc 1260 ctggagagct tggccgtgta ggacctgttg gtgaccctgg gagaagagga ccacctggcc 1320 cccctggccc cccaggaccc agaggaacaa ttggctttca tgatggagat ccattgtgtc 1380 ccaatgcctg tccaccaggt cgctcaggat atccaggcct accaggcatg aggggtcata 1440 aaggggctaa aggagaaatt ggtgaaccag gaagacaagg acacaagggt gaagaaggtg 1500 accagggaga actcggagaa gttggagctc aaggacctcc aggagcccag ggtttgcgag 1560 gcatcaccgg catagttggg gacaaagggg aaaaaggtgc tcggggctta gatggtgaac 1620 ctgggcctca gggtcttcct ggtgcacctg gtgatcaagg acagcgagga cctccaggag 1680 aagcaggtcc caaaggagat agaggggctg aaggtgctag aggaattcct ggtctccctg 1740 ggcccaaagg agacacgggt ttgccaggtg tggatggccg tgatgggatc cctggaatgc 1800 ctggaacaaa gggtgaacca ggaaaacctg ggcctcctgg tgatgcagga ttgcaggggt 1860 taccaggtgt acctggaatt cctggtgcaa agggtgttgc tggtgaaaag ggtagcacag 1920 gtgctccagg gaagcctggt cagatgggaa attcaggcaa accgggccaa caggggcctc 1980 caggagaggt gggaccccga ggaccccagg ggcttcctgg cagtagagga gaattaggac 2040 cagtgggatc cccaggccta ccaggtaaac tgggttctct gggtagccct ggcctccctg 2100 gcttgcctgg gccccctgga cttcctggaa tgaaaggtga caggggtgta gtcggtgaac 2160 cgggtccaaa gggtgaacag ggtgcctctg gtgaagaagg tgaagcagga gaaagggggg 2220 aacttggaga tataggatta cctggcccaa agggatctgc aggtaatcct ggggaacctg 2280 gcttgagagg gcctgaggga agtcgggggc ttcctggagt ggaaggacca agaggaccac 2340 ctggaccccg gggtgtgcag ggagaacagg gtgccaccgg cctgcctggt gtccagggcc 2400 ctccgggtag agcaccgaca gatcagcaca ttaagcaggt ttgcatgaga gtcatacaag 2460 aacattttgc tgagatggct gccagtctta agcgtccaga ctcaggtgcc actgggcttc 2520 ctggaaggcc tggccctcct ggtccccccg gccctcctgg agagaatggt ttcccaggcc 2580 agatgggaat tcgtggcctt ccgggcatta aggggccccc tggtgctctt ggtttgaggg 2640 gacctaaagg tgacttggga gaaaaggggg agcgtggccc tccaggaaga ggtcccaacg 2700 gtttgcctgg agctataggt ctcccaggtg acccaggccc tgccagctat ggcagaaatg 2760 gccgagacgg tgagcgaggc cccccagggg tggcaggaat tcctggagtg cctggacccc 2820 cgggacctcc tgggcttccc ggtttctgtg agccagcctc ctgcaccatg caggctggtc 2880 agcgagcatt taacaaaggg cctgaccctt gaaaggctta ctgctgcatg gctgtctgca 2940 tgaaccacgc ctggtgaagg agcctgggtg agaaacacca tccaaagctg gggcaaagat 3000 gattaccttc agcatgatta caatgtatta ccttcagtat gattacagaa gtcctacttg 3060 acaatcacat atagaagaac ggtgctattc agtaagttct ctttcctttc ccttggaggg 3120 aagacagcag agtcatcagt taaaaaaaaa aaaagaaaac caaacacctc ccttgaataa 3180 atttatactc ctgttcccag gatcttgagc tttagtgtgc tatacctatg tgtcttatcg 3240 tgggccactg tgccaataaa caaaaacaac tgtttggttt acctcagttg cagtagttat 3300 tttcatttag aagttgttct cagattattg tttcagttat atagaggatt actagactag 3360 ttatgaagaa accccactac attcaatgga attggtgctt aaaatctcat cgatgtgctg 3420 tctctggagt gataagaaag ggctacatct cccgaaatga tttctttacg tcatgtattg 3480 gtttccttct tcaccttgaa cttttgttga actgtatgta ctttacccca aacctgttaa 3540 tattttgagc gcttctatgt gaaagcaaag aaataatttt aatactctgg cattcataaa 3600 ttttattgat gagattattt attttaaagg tttgaggtaa catctctggt tgtaccaaag 3660 aagaaataaa tatggtttct taatctcttg catgttttct tata 3704 <210> 10 <211> 7291 <212> DNA <213> Homo sapiens <400> 10 acacagtact ctcagcttgt tggtggaagc ccctcatctg ccttcattct gaaggcaggg 60 cccggcagag gaaggatcag agggtcgcgg ccggagggtc ccggccggtg gggccaactc 120 agagggagag gaaagggcta gagacacgaa gaacgcaaac catcaaattt agaagaaaaa 180 gccctttgac tttttccccc tctccctccc caatggctgt gtagcaaaca tccctggcga 240 taccttggaa aggacgaagt tggtctgcag tcgcaatttc gtgggttgag ttcacagttg 300 tgagtgcggg gctcggagat ggagccgtgg tcctctaggt ggaaaacgaa acggtggctc 360 tgggatttca ccgtaacaac cctcgcattg accttcctct tccaagctag agaggtcaga 420 ggagctgctc cagttgatgt actaaaagca ctagattttc acaattctcc agagggaata 480 tcaaaaacaa cgggattttg cacaaacaga aagaattcta aaggctcaga tactgcttac 540 agagtttcaa agcaagcaca actcagtgcc ccaacaaaac agttatttcc aggtggaact 600 ttcccagaag acttttcaat actatttaca gtaaaaccaa aaaaaggaat tcagtctttc 660 cttttatcta tatataatga gcatggtatt cagcaaattg gtgttgaggt tgggagatca 720 cctgtttttc tgtttgaaga ccacactgga aaacctgccc cagaagacta tcccctcttc 780 agaactgtta acatcgctga cgggaagtgg catcgggtag caatcagcgt ggagaagaaa 840 actgtgacaa tgattgttga ttgtaagaag aaaaccacga aaccacttga tagaagtgag 900 agagcaattg ttgataccaa tggaatcacg gtttttggaa caaggatttt ggatgaagaa 960 gtttttgagg gggacattca gcagtttttg atcacaggtg atcccaaggc agcatatgac 1020 tactgtgagc attatagtcc agactgtgac tcttcagcac ccaaggctgc tcaagctcag 1080 gaacctcaga tagatgagta tgcaccagag gatataatcg aatatgacta tgagtatggg 1140 gaagcagagt ataaagaggc tgaaagtgta acagagggac ccactgtaac tgaggagaca 1200 atagcacaga cggaggcaaa catcgttgat gattttcaag aatacaacta tggaacaatg 1260 gaaagttacc agacagaagc tcctaggcat gtttctggga caaatgagcc aaatccagtt 1320 gaagaaatat ttactgaaga atatctaacg ggagaggatt atgattccca gaggaaaaat 1380 tctgaggata cactatatga aaacaaagaa atagacggca gggattctga tcttctggta 1440 gatggagatt taggcgaata tgatttttat gaatataaag aatatgaaga taaaccaaca 1500 agccccccta atgaagaatt tggtccaggt gtaccagcag aaactgatat tacagaaaca 1560 agcataaatg gccatggtgc atatggagag aaaggacaga aaggagaacc agcagtggtt 1620 gagcctggta tgcttgtcga aggaccacca ggaccagcag gacctgcagg tattatgggt 1680 cctccaggtc tacaaggccc cactggaccc cctggtgacc ctggcgatag gggcccccca 1740 ggacgtcctg gcttaccagg ggctgatggt ctacctggtc ctcctggtac tatgttgatg 1800 ttaccgttcc gttatggtgg tgatggttcc aaaggaccaa ccatctctgc tcaggaagct 1860 caggctcaag ctattcttca gcaggctcgg attgctctga gaggcccacc tggcccaatg 1920 ggtctaactg gaagaccagg tcctgtgggg gggcctggtt catctggggc caaaggtgag 1980 agtggtgatc caggtcctca gggccctcga ggcgtccagg gtccccctgg tccaacggga 2040 aaacctggaa aaaggggtcg tccaggtgca gatggaggaa gaggaatgcc aggagaacct 2100 ggggcaaagg gagatcgagg gtttgatgga cttccgggtc tgccaggtga caaaggtcac 2160 aggggtgaac gaggtcctca aggtcctcca ggtcctcctg gtgatgatgg aatgagggga 2220 gaagatggag aaattggacc aagaggtctt ccaggtgaag ctggcccacg aggtttgctg 2280 ggtccaaggg gaactccagg agctccaggg cagcctggta tggcaggtgt agatggcccc 2340 ccaggaccaa aagggaacat gggtccccaa ggggagcctg ggcctccagg tcaacaaggg 2400 aatccaggac ctcagggtct tcctggtcca caaggtccaa ttggtcctcc tggtgaaaaa 2460 ggaccacaag gaaaaccagg acttgctgga cttcctggtg ctgatgggcc tcctggtcat 2520 cctgggaaag aaggccagtc tggagaaaag ggggctctgg gtccccctgg tccacaaggt 2580 cctattggat acccgggccc ccggggagta aagggagcag atggtgtcag aggtctcaag 2640 ggatctaaag gtgaaaaggg tgaagatggt tttccaggat tcaaaggtga catgggtcta 2700 aaaggtgaca gaggagaagt tggtcaaatt ggcccaagag gggaagatgg ccctgaagga 2760 cccaaaggtc gagcaggccc aactggagac ccaggtcctt caggtcaagc aggagaaaag 2820 ggaaaacttg gagttccagg attaccagga tatccaggaa gacaaggtcc aaagggttcc 2880 actggattcc ctgggtttcc aggtgccaat ggagagaaag gtgcacgggg agtagctggc 2940 aaaccaggcc ctcggggtca gcgtggtcca acgggtcctc gaggttcaag aggtgcaaga 3000 ggtcccactg ggaaacctgg gccaaagggc acttcaggtg gcgatggccc tcctggccct 3060 ccaggtgaaa gaggtcctca aggacctcag ggtccagttg gattccctgg accaaaaggc 3120 cctcctggac cacctgggaa ggatgggctg ccaggacacc ctgggcaacg tggggagact 3180 ggatttcaag gcaagaccgg ccctcctggg ccagggggag tggttggacc acagggacca 3240 accggtgaga ctggtccaat aggggaacgt gggcatcctg gccctcctgg ccctcctggt 3300 gagcaaggtc ttcctggtgc tgcaggaaaa gaaggtgcaa agggtgatcc aggtcctcaa 3360 ggtatctcag ggaaagatgg accagcagga ttacgtggtt tcccagggga aagaggtctt 3420 cctggagctc agggtgcacc tggactgaaa ggaggggaag gtccccaggg cccaccaggt 3480 ccagttggct caccaggaga acgtgggtca gcaggtacag ctggcccaat tggtttacca 3540 gggcgcccgg gacctcaggg tcctcctggt ccagctggag agaaaggtgc tcctggagaa 3600 aaaggtcccc aagggcctgc agggagagat ggagttcaag gtcctgttgg tctcccaggg 3660 ccagctggtc ctgccggctc ccctggggaa gacggagaca agggtgaaat tggtgagccg 3720 ggacaaaaag gcagcaaggg tgacaaggga gaaaatggcc ctcccggtcc cccaggtctt 3780 caaggaccag ttggtgcccc tggaattgct ggaggtgatg gtgaaccagg tcctagagga 3840 cagcagggga tgtttgggca aaaaggtgat gagggtgcca gaggcttccc tggacctcct 3900 ggtccaatag gtcttcaggg tctgccaggc ccacctggtg aaaaaggtga aaatggggat 3960 gttggtccca tggggccacc tggtcctcca ggcccaagag gccctcaagg tcccaatgga 4020 gctgatggac cacaaggacc cccagggtct gttggttcag ttggtggtgt tggagaaaag 4080 ggtgaacctg gagaagcagg gaacccaggg cctcctgggg aagcaggtgt aggcggtccc 4140 aaaggagaaa gaggagagaa aggggaagct ggtccacctg gagctgctgg acctccaggt 4200 gccaaggggc caccaggtga tgatggccct aagggtaacc cgggtcctgt tggttttcct 4260 ggagatcctg gtcctcctgg ggaacctggc cctgcaggtc aagatggtgt tggtggtgac 4320 aagggtgaag atggagatcc tggtcaaccg ggtcctcctg gcccatctgg tgaggctggc 4380 ccaccaggtc ctcctggaaa acgaggtcct cctggagctg caggtgcaga gggaagacaa 4440 ggtgaaaaag gtgctaaggg ggaagcaggt gcagaaggtc ctcctggaaa aaccggccca 4500 gtcggtcctc agggacctgc aggaaagcct ggtccagaag gtcttcgggg catccctggt 4560 cctgtgggag aacaaggtct ccctggagct gcaggccaag atggaccacc tggtcctatg 4620 ggacctcctg gcttacctgg tctcaaaggt gaccctggct ccaagggtga aaagggacat 4680 cctggtttaa ttggcctgat tggtcctcca ggagaacaag gggaaaaagg tgaccgaggg 4740 ctccctggaa ctcaaggatc tccaggagca aaaggggatg ggggaattcc tggtcctgct 4800 ggtcccttag gtccacctgg tcctccaggt ttaccaggtc ctcaaggccc aaagggtaac 4860 aaaggctcta ctggacccgc tggccagaaa ggtgacagtg gtcttccagg gcctcctggg 4920 tctccaggtc cacctggtga agtcattcag cctttaccaa tcttgtcctc caaaaaaacg 4980 agaagacata ctgaaggcat gcaagcagat gcagatgata atattcttga ttactcggat 5040 ggaatggaag aaatatttgg ttccctcaat tccctgaaac aagacattga gcatatgaaa 5100 tttccaatgg gtactcagac caatccagcc cgaacttgta aagacctgca actcagccat 5160 cctgacttcc cagatggtga atattggatt gatcctaacc aaggttgctc aggagattcc 5220 ttcaaagttt actgtaattt cacatctggt ggtgagactt gcatttatcc agacaaaaaa 5280 tctgagggag taagaatttc atcatggcca aaggagaaac caggaagttg gtttagtgaa 5340 tttaagaggg gaaaactgct ttcatactta gatgttgaag gaaattccat caatatggtg 5400 caaatgacat tcctgaaact tctgactgcc tctgctcggc aaaatttcac ctaccactgt 5460 catcagtcag cagcctggta tgatgtgtca tcaggaagtt atgacaaagc acttcgcttc 5520 ctgggatcaa atgatgagga gatgtcctat gacaataatc cttttatcaa aacactgtat 5580 gatggttgtg cgtccagaaa aggctatgaa aagactgtca ttgaaatcaa tacaccaaaa 5640 attgatcaag tacctattgt tgatgtcatg atcaatgact ttggtgatca gaatcagaag 5700 ttcggatttg aagttggtcc tgtttgtttt cttggctaag attaagacaa agaacatatc 5760 aaatcaacag aaaatatacc ttggtgccac caacccattt tgtgccacat gcaagttttg 5820 aataaggatg gtatagaaaa caacgctgca tatacaggta ccatttagga aataccgatg 5880 cctttgtggg ggcagaatca catggcaaaa gctttgaaaa tcataaagat ataagttggt 5940 gtggctaaga tggaaacagg gctgattctt gattcccaat tctcaactct ccttttccta 6000 tttgaatttc tttggtgctg tagaaaacaa aaaaagaaaa atatatattc ataaaaaata 6060 tggtgctcat tctcatccat ccaggatgta ctaaaacagt gtgtttaata aattgtaatt 6120 attttgtgta cagttctata ctgttatctg tgtccatttc caaaacttgc acgtgtccct 6180 gaattccatc tgactctaat tttatgagaa ttgcagaact ctgatggcaa taaatatatg 6240 tattatgaaa aaataaagtt gtaatttctg atgactctaa gtccctttct ttggttaata 6300 ataaaatgcc tttgtatata ttgatgttga agagttcaat tatttgatgt cgccaacaaa 6360 attctcagag ggcaaaaatc tggaagactt ttggaagcac actctgatca actcttctct 6420 gccgacagtc attttgctga atttcagcca aaaatattat gcattttgat gctttattca 6480 aggctatacc tcaaactttt tcttctcaga atccaggatt tcacaggata cttgtatata 6540 tggaaaacaa gcaagtttat atttttggac agggaaatgt gtgtaagaaa gtatattaac 6600 aaatcaatgc ctccgtcaag caaacaatca tatgtatact ttttttctac gttatctcat 6660 ctccttgttt tcagtgtgct tcaataatgc aggttaatat taaagatgga aattaagcaa 6720 ttatttatga atttgtgcaa tgttagattt tcttatcaat caagttcttg aatttgattc 6780 taagttgcat attataacag tctcgaaaat tattttactt gcccaacaaa tattactttt 6840 ttcctttcaa gataatttta taaatcattt gacctaccta attgctaaat gaataacata 6900 tggtggactg ttattaagag tatttgtttt aagtcattca ggaaaatcta aacttttttt 6960 tccactaagg tatttacttt aaggtagctt gaaatagcaa tacaatttaa aaattaaaaa 7020 ctgaattttg tatctatttt aagtaatata tgtaagactt gaaaataaat gttttatttc 7080 ttatataaag tgttaaatta attgatacca gatttcactg gaacagtttc aactgataat 7140 ttatgacaaa agaacatacc tgtaatattg aaattaaaaa gtgaaatttg tcataaagaa 7200 tttcttttat ttttgaaatc gagtttgtaa atgtcctttt aagaagggag atatgaatcc 7260 aataaataaa ctcaagtctt ggctacctgg a 7291 <210> 11 <211> 1538 <212> DNA <213> Homo sapiens <400> 11 ccgtgcaccg tgtgtgcgcg cggcgttgaa atgccctgca cgtcggggca gcgggacaga 60 tcccagggtg cccagggagt ctccaagtgc ctcactcctc ccgccgcaaa catgacagag 120 aactccgaca aagttcccat tgccctggtg ggacctgatg acgtggaatt ctgcagcccc 180 ccggcgtacg ctacgctgac ggtgaagccc tccagccccg cgcggctgct caaggtggga 240 gccgtggtcc tcatttcggg agctgtgctg ctgctctttg gggccatcgg ggccttctac 300 ttctggaagg ggagcgacag tcacatttac aatgtccatt acaccatgag tatcaatggg 360 aaattacaag atgggtcaat ggaaatagac gctgggaaca acttggagac ctttaaaatg 420 ggaagtggag ctgaagaagc aattgcagtt aatgatttcc agaatggcat cacaggaatt 480 cgttttgctg gaggagagaa gtgctacatt aaagcgcaag tgaaggctcg tattcctgag 540 gtgggcgccg tgaccaaaca gagcatctcc tccaaactgg aaggcaagat catgccagtc 600 aaatatgaag aaaattctct tatctgggtg gctgtagatc agcctgtgaa ggacaacagc 660 ttcttgagtt ctaaggtgtt agaactctgc ggtgaccttc ctattttctg gcttaaacca 720 acctatccaa aagaaatcca gagggaaaga agagaagtgg taagaaaaat tgttccaact 780 accacaaaaa gaccacacag tggaccacgg agcaacccag gcgctggaag actgaataat 840 gaaaccagac ccagtgttca agaggactca caagccttca atcctgataa tccttatcat 900 cagcaggaag gggaaagcat gacattcgac cctagactgg atcacgaagg aatctgttgt 960 atagaatgta ggcggagcta cacccactgc cagaagatct gtgaacccct ggggggctat 1020 tacccatggc cttataatta tcaaggctgc cgttcggcct gcagagtcat catgccatgt 1080 agctggtggg tggcccgtat cttgggcatg gtgtgaaatc acttcatata tcatgtgctg 1140 taaaataaga actagctgaa gagacaacca aagaagcatt aaggcaggtt gatgctgatg 1200 ggaccataaa atatttttac actcaacctg agcggttatt cttgacactc ttaacagaat 1260 tttttcaatt gttttccaga actttagtat atgcaaatgt actgaaaggg tagttcaagt 1320 ctaaaatgcc ataacccctt tattatttgt tattttttat ttgcattgct ttgccataag 1380 tcttcccttg cttgtatctt ccaaagctat tttgaaataa acatgaaaat ttacagtttg 1440 ccaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1500 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaa 1538 <210> 12 <211> 1135 <212> DNA <213> Homo sapiens <400> 12 gggcagaggg aataagaggc tgcctctgcc caccagtcct gccgcccagg acccgcagca 60 gagacgacgc ctgcagcaag gagaccagga aggggtgaga caaggaagag gatgtctgag 120 ctggagaagg ccatggtggc cctcatcgac gttttccacc aatattctgg aagggaggga 180 gacaagcaca agctgaagaa atccgaactg aaggagctca tcaacaatga gctttcccat 240 ttcttagagg aaatcaaaga gcaggaggtt gtggacaaag tcatggaaac actggacaat 300 gatggagacg gcgaatgtga cttccaggaa ttcatggcct ttgttgccat ggttactact 360 gcctgccacg agttctttga acatgagtga gattagaaag cagccaaacc tttcctgtaa 420 cagagacggt catgcaagaa agcagacagc aagggcttgc agcctagtag gagctgagct 480 ttccagccgt gttgtagcta attaggaagc ttgatttgct ttgtgattga aaaattgaaa 540 acctctttcc aaaggctgtt ttaacggcct gcatcattct ttctgctata ttaggcctgt 600 gtgtaagctg actggcccca gggactcttg ttaacagtaa cttaggagtc aggtctcagt 660 gataaagcgt gcaccgtgca gcccgccatg gccgtgtaga ccctaacccg gagggaaccc 720 tgactacaga aattaccccg gggcaccctt aaaacttcca ctacctttaa aaaacaaagc 780 cttatccagc attatttgaa aacactgctg ttctttaaat gcgttcctca tccatgcaga 840 taacagctgg ttggccggtg tggccctgca agggcgtggt ggcttcggcc tgcttcccgg 900 gatgcgcctg atcaccaggt gaacgctcag cgctggcagc gctcctggaa aaagcaactc 960 catcagaact cgcaatccga gccagctctg ggggctccag cgtggcctcc gtgacccatg 1020 cgattcaagt cgcggctgca ggatccttgc ctccaacgtg cctccagcac atgcggcttc 1080 cgagggcact accgggggct ctgagccacc gcgagggcct gcgttcaata aaaag 1135 <210> 13 <211> 2889 <212> DNA <213> Homo sapiens <400> 13 ctggctgccg gctgctgcca ccgcaatccc ggctcctaaa tcagcgcggg gaggcgctcc 60 ctccccacgc ccggctctcc gggctctcgg ggccgcgatt ggccgcgccg gcgcccccca 120 ccccgggccc ccggctccag ctgccgcgcc attggctgcg ggcctccgcc agcctttaca 180 taagaccggg cgcgctcgag tggagttgta taaagcgagc gcgcggcgtc ggggcgggag 240 gctcgaggcc agcccgggac cggggctggg agcaagcagg cggcggcgcc ggcggcagag 300 gcggcagcga gcgcccgctt cccacgcccc taggcggcgg ggccgagagc gggaggatgg 360 ctccgagcgc tgaccccggc atgtccagga tgttaccgtt cctgctgctg ctctggtttc 420 tgcccatcac tgaggggtcc cagcgggctg aacccatgtt cactgcagtc accaactcag 480 ttctgcctcc tgactatgac agtaatccca cccagctcaa ctatggtgtg gcagttactg 540 atgtggacca tgatggggac tttgagatcg tcgtggcggg gtacaatgga cccaacctgg 600 ttctgaagta tgaccgggcc cagaagcggc tggtgaacat cgcggtcgat gagcgcagct 660 caccctacta cgcgctgcgg gaccggcagg ggaacgccat cggggtcaca gcctgcgaca 720 tcgacgggga cggccgggag gagatctact tcctcaacac caataatgcc ttctcggggg 780 tggccacgta caccgacaag ttgttcaagt tccgcaataa ccggtgggaa gacatcctga 840 gcgatgaggt caacgtggcc cgtggtgtgg ccagcctctt tgccggacgc tctgtggcct 900 gtgtggacag aaagggctct ggacgctact ctatctacat tgccaattac gcctacggta 960 atgtgggccc tgatgccctc attgaaatgg accctgaggc cagtgacctc tcccggggca 1020 ttctggcgct cagagatgtg gctgctgagg ctggggtcag caaatataca gggggccgag 1080 gcgtcagcgt gggccccatc ctcagcagca gtgcctcgga tatcttctgc gacaatgaga 1140 atgggcctaa cttccttttc cacaaccggg gcgatggcac ctttgtggac gctgcggcca 1200 gtgctggtgt ggacgacccc caccagcatg ggcgaggtgt cgccctggct gacttcaacc 1260 gtgatggcaa agtggacatc gtctatggca actggaatgg cccccaccgc ctctatctgc 1320 aaatgagcac ccatgggaag gtccgcttcc gggacatcgc ctcacccaag ttctccatgc 1380 cctcccctgt ccgcacggtc atcaccgccg actttgacaa tgaccaggag ctggagatct 1440 tcttcaacaa cattgcctac cgcagctcct cagccaaccg cctcttccgc gtcatccgta 1500 gagagcacgg agaccccctc atcgaggagc tcaatcccgg cgacgccttg gagcctgagg 1560 gccggggcac agggggtgtg gtgaccgact tcgacggaga cgggatgctg gacctcatct 1620 tgtcccatgg agagtccatg gctcagccgc tgtccgtctt ccggggcaat cagggcttca 1680 acaacaactg gctgcgagtg gtgccacgca cccggtttgg ggcctttgcc aggggagcta 1740 aggtcgtgct ctacaccaag aagagtgggg cccacctgag gatcatcgac gggggctcag 1800 gctacctgtg tgagatggag cccgtggcac actttggcct ggggaaggat gaagccagca 1860 gtgtggaggt gacgtggcca gatggcaaga tggtgagccg gaacgtggcc agcggggaga 1920 tgaactcagt gctggagatc ctctaccccc gggatgagga cacacttcag gacccagccc 1980 cactggagtg tggccaagga ttctcccagc aggaaaatgg ccattgcatg gacaccaatg 2040 aatgcatcca gttcccattc gtgtgccctc gagacaagcc cgtatgtgtc aacacctatg 2100 gaagctacag gtgccggacc aacaagaagt gcagtcgggg ctacgagccc aacgaggatg 2160 gcacagcctg cgtggggact ctcggccagt caccgggccc ccgccccacc acccccaccg 2220 ctgctgctgc cactgccgct gctgctgccg ctgctggagc tgccactgct gcaccggtcc 2280 tcgtagatgg agatctcaat ctggggtcgg tggttaagga gagctgcgag cccagctgct 2340 gagcaggggt gggacatgaa ccagcggatg gagtccagca ggggagtggg aaagtgggct 2400 tgtgctgctg cctagacagt agggatgtaa aggcctggga gctagaccct ccccaagccc 2460 atccatgcac attacttagc taacaattag ggagactcgt aaggccaggc cctgtgctgg 2520 gcacatagct gtgatcacag cagacagggt cgctgccctg atggcgctta cattccagtg 2580 ggtctaatga ccatatctta ggacacagat gtgcccaggg aggtggtgtc actgcacagg 2640 aagtatgagg actttagtgt cctgagttca aatcctgatt caggaactca caaagctatg 2700 tgaccttaca ccagtcactt aacttgttag ccatccatta tcgcatctgc aaaatgggga 2760 ttaagaatag aatcttgggg ttagtgtgga gattagatta aatgtatgta agacacttgg 2820 cacaaaacct ggcacatagt aaaggctcaa taaaaacaag tgcctctcac tgggctttgt 2880 caacacgtg 2889 <210> 14 <211> 3935 <212> DNA <213> Homo sapiens <400> 14 ggagagccga aagcggagct cgaaactgac tggaaacttc agtggcgcgg agactcgcca 60 gtttcaaccc cggaaacttt tctttgcagg aggagaagag aaggggtgca agcgccccca 120 cttttgctct ttttcctccc ctcctcctcc tctccaattc gcctcccccc acttggagcg 180 ggcagctgtg aactggccac cccgcgcctt cctaagtgct cgccgcggta gccggccgac 240 gcgccagctt ccccgggagc cgcttgctcc gcatccgggc agccgagggg agaggagccc 300 gcgcctcgag tccccgagcc gccgcggctt ctcgcctttc ccggccacca gccccctgcc 360 ccgggcccgc gtatgaatct cctggacccc ttcatgaaga tgaccgacga gcaggagaag 420 ggcctgtccg gcgcccccag ccccaccatg tccgaggact ccgcgggctc gccctgcccg 480 tcgggctccg gctcggacac cgagaacacg cggccccagg agaacacgtt ccccaagggc 540 gagcccgatc tgaagaagga gagcgaggag gacaagttcc ccgtgtgcat ccgcgaggcg 600 gtcagccagg tgctcaaagg ctacgactgg acgctggtgc ccatgccggt gcgcgtcaac 660 ggctccagca agaacaagcc gcacgtcaag cggcccatga acgccttcat ggtgtgggcg 720 caggcggcgc gcaggaagct cgcggaccag tacccgcact tgcacaacgc cgagctcagc 780 aagacgctgg gcaagctctg gagacttctg aacgagagcg agaagcggcc cttcgtggag 840 gaggcggagc ggctgcgcgt gcagcacaag aaggaccacc cggattacaa gtaccagccg 900 cggcggagga agtcggtgaa gaacgggcag gcggaggcag aggaggccac ggagcagacg 960 cacatctccc ccaacgccat cttcaaggcg ctgcaggccg actcgccaca ctcctcctcc 1020 ggcatgagcg aggtgcactc ccccggcgag cactcggggc aatcccaggg cccaccgacc 1080 ccacccacca cccccaaaac cgacgtgcag ccgggcaagg ctgacctgaa gcgagagggg 1140 cgccccttgc cagagggggg cagacagccc cctatcgact tccgcgacgt ggacatcggc 1200 gagctgagca gcgacgtcat ctccaacatc gagaccttcg atgtcaacga gtttgaccag 1260 tacctgccgc ccaacggcca cccgggggtg ccggccacgc acggccaggt cacctacacg 1320 ggcagctacg gcatcagcag caccgcggcc accccggcga gcgcgggcca cgtgtggatg 1380 tccaagcagc aggcgccgcc gccacccccg cagcagcccc cacaggcccc gccggccccg 1440 caggcgcccc cgcagccgca ggcggcgccc ccacagcagc cggcggcacc cccgcagcag 1500 ccacaggcgc acacgctgac cacgctgagc agcgagccgg gccagtccca gcgaacgcac 1560 atcaagacgg agcagctgag ccccagccac tacagcgagc agcagcagca ctcgccccaa 1620 cagatcgcct acagcccctt caacctccca cactacagcc cctcctaccc gcccatcacc 1680 cgctcacagt acgactacac cgaccaccag aactccagct cctactacag ccacgcggca 1740 ggccagggca ccggcctcta ctccaccttc acctacatga accccgctca gcgccccatg 1800 tacaccccca tcgccgacac ctctggggtc ccttccatcc cgcagaccca cagcccccag 1860 cactgggaac aacccgtcta cacacagctc actcgacctt gaggaggcct cccacgaagg 1920 gcgaagatgg ccgagatgat cctaaaaata accgaagaaa gagaggacca accagaattc 1980 cctttggaca tttgtgtttt tttgtttttt tattttgttt tgttttttct tcttcttctt 2040 cttccttaaa gacatttaag ctaaaggcaa ctcgtaccca aatttccaag acacaaacat 2100 gacctatcca agcgcattac ccacttgtgg ccaatcagtg gccaggccaa ccttggctaa 2160 atggagcagc gaaatcaacg agaaactgga ctttttaaac cctcttcaga gcaagcgtgg 2220 aggatgatgg agaatcgtgt gatcagtgtg ctaaatctct ctgcctgttt ggactttgta 2280 attatttttt tagcagtaat taaagaaaaa agtcctctgt gaggaatatt ctctatttta 2340 aatattttta gtatgtactg tgtatgattc attaccattt tgaggggatt tatacatatt 2400 tttagataaa attaaatgct cttatttttc caacagctaa actactctta gttgaacagt 2460 gtgccctagc ttttcttgca accagagtat ttttgtacag atttgctttc tcttacaaaa 2520 agaaaaaaaa aatcctgttg tattaacatt taaaaacaga attgtgttat gtgatcagtt 2580 ttgggggtta actttgctta attcctcagg ctttgcgatt taaggaggag ctgccttaaa 2640 aaaaaataaa ggccttattt tgcaattatg ggagtaaaca atagtctaga gaagcatttg 2700 gtaagcttta tcatatatat attttttaaa gaagagaaaa acaccttgag ccttaaaacg 2760 gtgctgctgg gaaacatttg cactctttta gtgcatttcc tcctgccttt gcttgttcac 2820 tgcagtctta agaaagaggt aaaaggcaag caaaggagat gaaatctgtt ctgggaatgt 2880 ttcagcagcc aataagtgcc cgagcacact gcccccggtt gcctgcctgg gccccatgtg 2940 gaaggcagat gcctgctcgc tctgtcacct gtgcctctca gaacaccagc agttaacctt 3000 caagacattc cacttgctaa aattatttat tttgtaagga gaggttttaa ttaaaacaaa 3060 aaaaaattct tttttttttt tttttccaat tttaccttct ttaaaatagg ttgttggagc 3120 tttcctcaaa gggtatggtc atctgttgtt aaattatgtt cttaactgta accagttttt 3180 ttttatttat ctctttaatc tttttttatt attaaaagca agtttctttg tattcctcac 3240 cctagatttg tataaatgcc tttttgtcca tccctttttt ctttgttgtt tttgttgaaa 3300 acaaactgga aacttgtttc tttttttgta taaatgagag attgcaaatg tagtgtatca 3360 ctgagtcatt tgcagtgttt tctgccacag acctttgggc tgccttatat tgtgtgtgtg 3420 tgtgggtgtg tgtgtgtttt gacacaaaaa caatgcaagc atgtgtcatc catatttctc 3480 tacatcttct cttggagtga gggaggctac ctggagggga tcagcccact gacagacctt 3540 aatcttaatt actgctgtgg ctagagagtt tgaggattgc tttttaaaaa agacagcaaa 3600 cttttttttt tatttaaaaa aagatatatt aacagtttta gaagtcagta gaataaaatc 3660 ttaaagcact cataatatgg catccttcaa tttctgtata aaagcagatc tttttaaaaa 3720 gatacttctg taacttaaga aacctggcat ttaaatcata ttttgtcttt aggtaaaagc 3780 tttggtttgt gttcgtgttt tgtttgtttc acttgtttcc ctcccagccc caaacctttt 3840 gttctctccg tgaaacttac ctttcccttt ttctttctct tttttttttt tgtatattat 3900 tgtttacaat aaatatacat tgcattaaaa agaaa 3935 <210> 15 <211> 8034 <212> DNA <213> Homo sapiens <400> 15 cttgagtgtt agagctgagt agttttccca gaatctctaa gtccttttta tgctctttta 60 tgaatgaata gaattagtaa aagataaata aattttttct tttggatttc ttaaccagtg 120 gaaaaaatgt tgactttaaa agttcataaa atcaaatttt gcttaagaat atgttatttc 180 cacttgtgag gccagcctgg tagacctctg ggatcctttt ctgttcactc acacaccact 240 gagataagga gtgaagtgtg ggctaaatag ggctgaggct tgggcaaggg catttctgcc 300 agagcaccag agacgtcagc atctcaaggg cactgtggta tggaaaagga cgccacatga 360 gtaaatttta aaaatataaa tattttaaag ggtaaaaatg agggtccctg tatttgagga 420 tataaaagat gaaactgaag aagaaaagat aggggaagaa gaaaatgaag aagaccaggt 480 cttctataag cctgttattg aagacttaag catggaattg gccagaaaat gcacggaact 540 cattagcgat atccgttata aagaagagtt taaaaagtcc aaggataagt gtacatttgt 600 gactgacagt cctatgctaa accatgtaaa aaatatcggt gcttttattt ctgaggcaaa 660 atacaaaggc accattaaag ctgacctttc taattctctt tataagcgga tgccagccac 720 aattgacagt gtttttgcag gagaagttac acagctccag agtgaggtgg cctacaagca 780 gaaacatgat gctgccaaag gattctcaga ttatgcccac atgaaggagc cccctgaggt 840 taaacatgcc atggaggtca ataaacacca gagtaatatt tcttatagga aagacgtgca 900 ggacacccac acgtacagtg cagaacttga ccgaccagac atcaagatgg caacccagat 960 ctctaagatc ataagcaatg cagaatacaa gaaaggacaa ggaataatga ataaagagcc 1020 cgctgtaatt ggaagaccag attttgaaca tgccgtggaa gcttctaaac tttctagtca 1080 aattaaatac aaagaaaaat tcgataatga aatgaaggat aagaaacatc attacaatcc 1140 tcttgaaagt gcttctttta ggcagaatca gcttgctgct acactggcga gcaatgtgaa 1200 gtacaagaaa gacattcaaa atatgcatga tccagtttca gatctcccaa atttgttgtt 1260 tttagaccat gttttgaaag ccagcaaaat gctcagcggc cgagaatata aaaagctctt 1320 tgaggaaaac aaaggaatgt atcattttga tgcagatgct gtggaacatc tgcaccataa 1380 aggcaatgcc gtcctccaaa gtcaggtgaa atataaagaa gaatatgaga aaaataaggg 1440 aaagccaatg cttgaatttg ttgagacacc atcatatcaa gcttcaaagg aggctcaaaa 1500 gatgcaaagt gaaaaagttt acaaagagga ttttgagaag gagattaaag gaaggtcatc 1560 actggattta gacaagactc cagaattttt acatgtaaag tacatcacca accttctgag 1620 ggagaaagaa tataaaaaag atttggaaaa tgagataaaa gggaaaggaa tggaacttaa 1680 ttcagaagtt cttgatatcc aaagagcaaa gcgggcctct gaaatggcaa gtgagaaaga 1740 atacaagaaa gacctggagt caataattaa agggaaagga atgcaagctg gcactgacac 1800 ccttgaaatg cagcatgcca agaaggctgc agagatagcg agtgagaaag actataaaag 1860 agatctggag actgaaatta aagggaaagg gatgcaggtg agcacagaca ctcttgatgt 1920 ccagagagct aagaaagcat ccgagatggc cagccagaaa caatacaaga aggacttaga 1980 aaatgaaatt aaagggaaag gaatgcaagt gagcatggat atcccagata tccttcgagc 2040 caagaggaca tctgaaatct atagccagag aaagtataaa gatgaagcag agaagatgct 2100 ttctaactat tctaccatag cagatactcc tgaaattcag agaattaaga caactcaaca 2160 aaacattagt gcggtatttt ataagaaaga agtgggagct ggcactgcag tgaaagatag 2220 cccagagatc gaacgagtga agaaaaatca gcagaatatt agttcagtga aatacaaaga 2280 agagattaaa catgcaacag ccatttctga tcctccagaa ctaaagagag ttaaagaaaa 2340 ccagaagaac atcagcaatc tccagtataa agagcaaaac tacaaggcca ctccggtaag 2400 catgaccccg gagatagaga gagtgaggcg aaaccaggag cagctgagtg cggtaaaata 2460 taagggagaa cttcaacggg gaactgcaat ttctgatcca ccagagctga agagggcaaa 2520 agaaaaccag aaaaacatca gcaatgttta ttacagaggt cagctgggaa gagctaccac 2580 tttaagtgta actcctgaaa tggaaagagt gaagaagaat caagaaaata ttagctcggt 2640 aaaatatacc caggaccata aacagatgaa aggtagacca agtctgattt tagatacacc 2700 tgctatgaga catgttaaag aagcacaaaa tcatatttca atggtaaaat accatgaaga 2760 ttttgaaaaa acaaagggga gaggctttac tcccgtcgtg gacgatcctg tgacagagag 2820 agtgaggaag aacacccagg tggtcagcga tgctgcctat aaaggggtcc accctcacat 2880 cgtggagatg gacaggagac ctggaatcat tgttgacctc aaagtttggc gcacagatcc 2940 tggctccatc ttcgaccttg atcccctgga agacaatatt cagtctagaa gtctccatat 3000 gctctctgaa aaggcgagtc actataggcg acactggtct cgatcccatt ccagcagtac 3060 tttcggtaca ggtctcggag acgacaggtc agaaatctcc gagatttacc ctagcttttc 3120 atgctgcagt gaggtaacaa gaccgtctga tgaaggagca cctgttcttc ccggagccta 3180 tcagcaaagc cattcccaag gctatggcta catgcaccag accagtgtgt catccatgag 3240 atcaatgcag cattcaccaa atctaaggac ctaccgagcc atgtacgatt acagtgccca 3300 ggatgaagac gaggtctcct ttagagacgg cgactacatc gtcaacgtgc agcctattga 3360 cgatggctgg atgtacggca cagtgcagag aacagggaga acaggaatgc tcccagcgaa 3420 ttacattgag tttgttaatt aattatttct ccctgccctt tgagctttat tctaatgtat 3480 cccaaaccta atctttttaa aagatagaag atacttttaa gacaacttgg ccattatttt 3540 acaatgatgt atccttcctt tgacaattag acacacaggt accaggaaga aggaatgacc 3600 tctgggctga aaacagcagc attttcagta attcctacaa acaaaaatct ttgtgtctgg 3660 acgcctggtg ctgctaattg tgttcatggt ttcctttgat tggctattga acccttctgg 3720 gaaatgtatt tttgtagact ttaatagaga agttgattgt cccttaaatg tagcgtgtgt 3780 ttgaaacttc ttagctgtca ctttggaatc accccaagcc aattctctta actctgtaat 3840 gcagccaata atacaaaccc gttttgcttt tgagtcatga ggcaatttcc aatattagtg 3900 aaaattgccc aatataataa gtgtaaacag tggcagaagg acagtctggt taaaattata 3960 ttgactggtg gccttaggga tctagaaact tctactaaac agagaaattt ccttgttccc 4020 taggctgact ggtatctatt tatttctcat ttgtaccaag gcatctccta ctctccattt 4080 atattctatg gacccaagtc tatgctcagt tccacagaat gtcaggacca aataacttca 4140 cagctactct gcaaagggca aattataatg tcattgatat aatttcccta gtagcattta 4200 ccctgttgca tgtcatgtag attcaagctt ctgtaacata ggcagctgca ctgcgcgttc 4260 ctattattga agcaaaaagg gtgactgata cctaaaagcc ctttcttcct ctagtcgcca 4320 gctcatcaga aaaacatact ttgaaaagat gcttgagatt ttcctgctgc atcgcactct 4380 agtttggaag gatttacatc ttaggaaata acatgtatac tctagtaaat aagcgattta 4440 ggtgttccat tgaacagctt tgattaactt aatgccacca ttgatttcaa agtgaagaaa 4500 atgtaacaga agccagtgaa gcaatggaag ctggagtgtg actggaaaaa tactcagcaa 4560 acaaagttac caattccata cagagatgat ctggtgtctt cttttggaaa atggtattca 4620 aattctggaa tggaaatcta gccaccaaaa cgggttaatc aaaagacgtc cttttccgtt 4680 ttttttgctt ttattttcta aatcattttt aagggaatga aacaggaatg tcatcagaga 4740 ttttttagta caggcccaag agcctgtact ctaagaaaga aatttttgcc atgtatgaat 4800 tttcgaataa gtgactttgc aggcttttgc tagcccttgc tggtgggtct ggaaattaca 4860 tccagagtct gcagtccagg tcaccaagcc agcggcaccc gtcggcaacc ctgtgtttaa 4920 cggattgtgc cgtttactgt gacctgcaac ggggtggcat tcacttaggg tctgacttca 4980 cagctatgac aaaaccgaaa aagcaaaact gcgaggaagt gctaagatgt acgggtcttg 5040 gggatatctg ccttatatgt tatattcaag gaaattaacg aaacatcctg tgaaacatcg 5100 tttaaggaaa cgtttactag tccaaaggcc aaagctaatt tatttccact ttagaaaagt 5160 tagcacatgc ttttgaaaat ctgtgatttc attttattag gctaaaaggg taaataggct 5220 ttattacact gaagctgcat ctatatgtca ctgacataaa gttgaaaaaa taaatgcagg 5280 caaataacta gagacttctt ttaagggggt ttggctggtt tctctcactg aaatggccag 5340 tcgtgattaa agtgataaaa ccccatatct gttttggtat attgtacaca aacctacaaa 5400 aataaactga acttgcaata tttttgcaat aaaatctgtc gttaaaactg aggataaaat 5460 acctgctcaa ttttatttta ctaagtatat atttacattt cacccaggca ggccattttc 5520 ttttgtgatt ataagaaaga gtagttgttg attaaatttt cagactaaat ataggacagg 5580 tacaattttg gataaatagc agatttataa gaaccgcaat gaaaactgac ttgaaataat 5640 gcttgtaatc aggaaagtaa tttcatccac cgatttcaaa accagattca ctgagcataa 5700 aagtcaatac atatttgagg aataagtctc ctaaaatttt aagcttcacg taataatgtt 5760 tgcatagcaa aatatttctg cttcaagcct ttaggaatta agatctgatc agaatttaac 5820 taaagggtag ttgttttaca atgaagacta aaactgaaca agatgttgca tgcgcttagg 5880 ccataatttg gtagtgttgg cagttgttaa taaagcttgt caggatgtta agcatctcag 5940 gagaaatatt ggaaaattat atgtataaaa ccaaagtgct gtttttaaaa gcatcattta 6000 aaaaaaaatg acatgcctga acaacttttc cactttccac gtgcttccct cccacctttg 6060 gtttggcaac aggtatctcg tgcatgaagc tgacagctaa agaagatttt aaaaattgag 6120 ttaaagatga ctgtgtaaat gtccaagcac agagagcatg cacctgactt tctaaagttt 6180 gatgtgttct caagcctgac agaagcacaa ggaacagttt gatacacttt taaaaggttc 6240 tgaaaacaaa gctgtatagg gatcctctct ctcttgagca aagtatagca acagaatata 6300 ttgcttttgt tgtaagcttt tgtagtacat gtttttacta ataattcttg ttctctagaa 6360 agctttctat ttctaaccta tggcaaaatg aatccttcat gtcttcttgt tattgtttac 6420 acacttgcag tgtagcccag tttgaaatat ttatttggtt atcaactgcc catggaggag 6480 gctcttgatg atcccaggtc tcctcgacct ccatacacca cacaggcatt tgtaagcaca 6540 gtttccacaa gcaccttgta ggaatatgga taagattaga ccagcccctc tctgtccact 6600 gggtttattt cttgaagaag atgcagatct ggtttttcca atgtgccaca gtctttcctt 6660 atcctctcca tgctgagctt gacaacactc tgggaatgag gaacaagact ttttctaaaa 6720 agatagtgga agttcaaggg atgtacctcg ttttcaggtt catccatctc cagtggaatg 6780 ttttcaataa aagatgaaga aaatgtgtgt gatctttaat aacacatccc tatagaaagt 6840 ggataaaaga tataccaaaa ctgtaataca gatatataca aatataggtg cctttttgat 6900 tactcttgtt tgtctagtat gctcttggaa agaaaaccaa gcaagcaagt tgctgcctat 6960 tctatagtaa tattttatta cacatgattg atatttttgt ggtagggaag tgggatgctc 7020 ctcagatatt aaaggtgtta gctgattgta ttttatctct aaagatttag aactttagaa 7080 aatgccgact tcttccatct atttctgaaa ggttctttgt ggatttatat agagttgagc 7140 tatataaaca ttaactttag atttgggatt taaaatgcct attgtaagat agaataattg 7200 tgaggctgga ttcactacac aagatgaact tcacttcata aattaattat accttagcga 7260 tttgcttctg ataatctaaa agtggctaga ttgtggttgt tttggttaag gtgatatgga 7320 ggtgggagag cttttagtta agtaagaagc tatgtaaact gacaaggatg ctaaaataaa 7380 agtctctgaa gtattccatg ccttttggac cctttcctcg caactaactg tcaactgttg 7440 atcaaaaaag tcaaggcatt gtatgttgct tctgtggtta ttattctgtg atgcttagac 7500 tacttgaacc cataaacttg gaagaatctt tgagcaaatt ttctcagttg tctgtatgac 7560 ttcagtatat tcctgggaat gccataggat tttttgtgct tgatacatgg tatccagttt 7620 gcatagtatc acttctttgt aatccagttg ctgttaagaa tgatgtactt taaaggaaaa 7680 gagaaaactg catcacagtc ccattctcca gtgtccatgc aatgaattgc tgagcattta 7740 ggaagcagca ccaagtctat tacaggcatg gtgtgaaact tgatgtttga cctgtgatca 7800 aaattgaacc attgtacagt ttggcttctg tttgcttcaa aatatgtaga attgtggttg 7860 atgattaatt tgcgagacta actttgagag tgtaacagtt ttgaagaaaa cattgaatgt 7920 tttacaaatg aaggggcttc acggaatgtt acaatgttac taatataatt tggcttttgt 7980 tatgcaaatt gttaacacca gctattaaaa tatattttag tagaaaaaaa aaaa 8034 <210> 16 <211> 28 <212> DNA <213> Artificial <220> <223> HAPLN1 forward primer <400> 16 tgaaggatta gaagatgata ctgttgtg 28 <210> 17 <211> 20 <212> DNA <213> Artificial <220> <223> HAPLN1 reverse primer <400> 17 gccccagtcg tggaaagtaa 20 <210> 18 <211> 18 <212> DNA <213> Artificial <220> <223> HAPLN1 probe sequence <400> 18 tacaaggtgt ggtattcc 18 <210> 19 <211> 22 <212> DNA <213> Artificial <220> <223> MFAP5 forward primer sequence <400> 19 cgaggagacg atgtgactca ag 22 <210> 20 <211> 20 <212> DNA <213> Artificial <220> <223> MFAP5 reverse primer sequence <400> 20 agcgggatca ttcaccagat 20 <210> 21 <211> 17 <212> DNA <213> Artificial <220> <223> MFAP5 probe sequence <400> 21 acattcacag aagatcc 17 <210> 22 <211> 20 <212> DNA <213> artificial <220> <223> Primer sequence <400> 22 gccaaggtgt tttcacacag 20 <210> 23 <211> 40 <212> DNA <213> Artificial <220> <223> Primer sequence <400> 23 taatacgact cactataggg gccaaggtgt tttcacacag 40 <210> 24 <211> 20 <212> DNA <213> Artificial <220> <223> Primer sequence <400> 24 ctctgaagca gtagacacca 20 <210> 25 <211> 21 <212> DNA <213> Artificial <220> <223> Primer sequence <400> 25 cctagcctgg ctttcttgct c 21 <210> 26 <211> 41 <212> DNA <213> Artificial <220> <223> Primer sequence <400> 26 taatacgact cactataggg cctagcctgg ctttcttgct c 41 <210> 27 <211> 21 <212> DNA <213> Artificial <220> <223> Primer sequence <400> 27 ccattgggtc tctgcaaatc c 21

Claims (35)

  1. a) 세포 배양물로부터 복수개의 세포를 얻는 단계;
    b) 복수개의 세포에서 섬유모세포 마커의 평균 발현 수준을 측정하며, 상기 섬유모세포 마커는 그의 표준화된 발현 수준이 섬유모세포 또는 윤활세포에 비해 연골세포에서 보다 낮게 되는 단계; 및
    c) 섬유모세포 마커의 평균 발현 수준을 기준으로 배양물의 조성을 측정하는 단계
    를 포함하며, 여기서 1) 세포 배양물은 연골세포를 포함하거나, 또는 2) 섬유모세포 마커는 미세원섬유 관련 단백질 5 (MFAP5)인 것인, 세포 배양물의 조성을 평가하는 방법.
  2. a) 세포 배양물로부터 복수개의 세포를 얻는 단계;
    b) 복수개의 세포에서 섬유모세포 마커의 평균 발현 수준을 측정하며, 상기 섬유모세포 마커는 그의 표준화된 발현 수준이 섬유모세포 또는 윤활세포에 비해 연골세포에서 보다 낮게 되는 단계; 및
    c) 섬유모세포 마커의 평균 발현 수준을 기준으로 배양물의 조성을 측정하는 단계
    를 포함하며, 여기서 미리측정된 역치 미만의 평균 발현 수준은 세포 배양물이 연골세포를 포함한다는 것을 나타내는 것인, 세포 배양물의 조성을 평가하는 방 법.
  3. a) 세포 배양물로부터 복수개의 세포를 얻는 단계;
    b) 복수개의 세포에서 MFAP5의 평균 발현 수준을 측정하는 단계; 및
    c) MFAP5의 평균 발현 수준을 기준으로 배양물의 조성을 측정하는 단계
    를 포함하며, 여기서 미리측정된 역치 미만의 상기 MFAP5의 평균 발현 수준은 세포 배양물이 연골세포를 포함한다는 것을 나타내는 것인, 세포 배양물의 조성을 평가하는 방법.
  4. 제1항에 있어서, 1) 세포 배양물이 연골세포를 포함하며, 2) 섬유모세포 마커가 MFAP5인 방법.
  5. 제1항에 있어서, 섬유모세포 마커가 그의 표준화된 발현 수준이 피부 섬유모세포 또는 윤활세포에서에 비해 계대배양된 연골세포에서 보다 낮게 되는 것인 방법.
  6. 제1항에 있어서, 복수개의 세포에서 연골세포 마커의 평균 발현 수준을 측정하는 단계; 및 단계 c)에서 연골세포 마커의 평균 발현 수준, 및 연골세포 및 섬유모세포 마커의 평균 발현 수준을 기준으로 배양물의 조성을 측정하는 단계를 더 포함하는 방법.
  7. 제6항에 있어서, 섬유모세포 마커 및 연골세포 마커가 연골세포에서의 이들의 발현 수준의 비 (섬유모세포 마커에 대한 연골세포 마커의 비)가 피부 섬유모세포 또는 윤활세포에서의 비와 동일하거나 또는 5배 더 크도록 하는 방법.
  8. 제6항에 있어서, 연골세포 마커가 표 1에서 열거된 연골세포 마커로부터 선택되는 것인 방법.
  9. 제6항에 있어서, 연골세포 마커가 HAPLN1인 방법.
  10. 제6항에 있어서, 연골세포 마커가 HAPLN1이고, 섬유모세포 마커가 MFAP5인 방법.
  11. 제6항에 있어서, 섬유모세포 마커 및 연골세포 마커의 발현 수준을 RNA 수준에서 측정하는 방법.
  12. 제11항에 있어서, 발현 수준을 PCR을 사용하여 측정하는 방법.
  13. 제12항에 있어서, 발현 수준을 비교 CT PCR 방법을 사용하여 측정하는 방법.
  14. 제6항에 있어서, 비교 CT PCR 방법을 사용하여 측정시 섬유모세포 마커에 대한 연골세포 마커의 발현 수준 비가 0.25 초과인 것은 세포 배양물이 연골세포를 함유함을 나타내는 것인 방법.
  15. 제14항에 있어서, 상기 비는 세포 배양물이 적어도 50% 연골세포를 함유함을 나타내는 것인 방법.
  16. 제6항에 있어서, 섬유모세포 마커에 대한 연골세포 마커의 몰 비가 0.55 초과인 것은 세포 배양물이 연골세포를 함유함을 나타내는 것인 방법.
  17. 제16항에 있어서, 상기 몰 비는 세포 배양물이 적어도 50% 연골세포를 함유한다는 것을 나타내는 것인 방법.
  18. 제1항에 있어서, 세포 배양물이 연골 생검으로부터 얻은 세포를 포함하는 방법.
  19. 제18항에 있어서, 연골 생검을 슬관절로부터 취하는 방법.
  20. 제18항에 있어서, 세포 배양물의 평가에 이어서, 세포 배양물로부터의 세포를 필요한 환자에게 투여하는 방법.
  21. 제20항에 있어서, 배양물로부터의 세포를 자가 연골세포 이식을 위해 사용하는 방법.
  22. a) 세포에서 MFAP5의 발현 수준을 측정하는 단계; 및
    b) MFAP5의 발현 수준을 기준으로 세포의 표현형을 측정하는 단계
    를 포함하는, 세포의 표현형을 평가하는 방법.
  23. 제22항에 있어서, 세포에서 연골세포 마커의 발현 수준을 측정하는 단계; 및 단계 b)에서 연골세포 마커 및 MFAP5의 발현 수준을 기준으로 세포의 표현형을 측정하는 단계를 더 포함하는 방법.
  24. 제23항에 있어서, 연골세포 마커가 표 1에서 열거된 연골세포 마커로부터 선택되는 것인 방법.
  25. 제23항에 있어서, 연골세포 마커가 HAPLN1인 방법.
  26. 제23항에 있어서, 연골세포 마커가 HAPLN1이며, 섬유모세포 마커가 MFAP5인 방법.
  27. 제23항에 있어서, 섬유모세포 마커 및 연골세포 마커의 발현 수준을 RNA 수준에서 측정하는 방법.
  28. a) 포유동물로부터 연골 생검을 얻는 단계;
    b) 생검으로부터 세포를 단리하는 단계;
    c) 단계 b)에서 단리된 세포를 세포 배양물에서 배양하는 단계;
    d) 세포 배양물의 샘플을 얻는 단계;
    e) 샘플로부터의 하나 이상의 세포에서 MFAP5 및 HAPLN1의 발현 수준을 측정하는 단계; 및
    f) MFAP5 및 HAPLN1의 발현 수준을 기준으로 배양물의 조성을 측정하는 단계
    를 포함하는, 세포 배양물의 조성을 평가하는 방법.
  29. 제28항에 있어서, MFAP5 및 HAPLN1의 발현 수준을 RNA 수준에서 측정하는 방법.
  30. 제29항에 있어서, 발현 수준을 PCR을 사용하여 측정하는 방법.
  31. 제30항에 있어서, 발현 수준을 비교 CT PCR 방법을 사용하여 측정하는 방법.
  32. 제28항에 있어서, 비교 CT PCR 방법을 사용하여 측정시 MFAP5에 대한 HAPLN1의 발현 수준 비가 0.25 초과인 것은 세포 배양물이 연골세포를 함유함을 나타내는 것인 방법.
  33. 제32항에 있어서, 상기 비는 세포 배양물이 적어도 50% 연골세포를 함유함을 나타내는 것인 방법.
  34. 제28항에 있어서, MFAP5에 대한 HAPLN1의 몰 비가 0.55 초과인 것은 세포 배양물이 연골세포를 함유함을 나타내는 것인 방법.
  35. 제34항에 있어서, 상기 몰 비는 세포 배양물이 적어도 50% 연골세포를 함유함을 나타내는 것인 방법.
KR1020097020856A 2007-04-06 2008-04-03 세포 및 세포 배양물의 평가 방법 KR20090127153A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US91057407P 2007-04-06 2007-04-06
US60/910,574 2007-04-06

Publications (1)

Publication Number Publication Date
KR20090127153A true KR20090127153A (ko) 2009-12-09

Family

ID=39629001

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097020856A KR20090127153A (ko) 2007-04-06 2008-04-03 세포 및 세포 배양물의 평가 방법

Country Status (21)

Country Link
US (3) US8029992B2 (ko)
EP (2) EP2132562B9 (ko)
JP (2) JP5383654B2 (ko)
KR (1) KR20090127153A (ko)
CN (1) CN101680881B (ko)
AR (1) AR066403A1 (ko)
AT (1) ATE541211T1 (ko)
AU (1) AU2008237332A1 (ko)
BR (1) BRPI0809902A2 (ko)
CA (1) CA2682948C (ko)
DK (1) DK2132562T3 (ko)
ES (1) ES2380753T3 (ko)
HK (1) HK1138374A1 (ko)
HR (1) HRP20120299T1 (ko)
IL (1) IL201225A0 (ko)
MX (1) MX2009010694A (ko)
MY (1) MY153234A (ko)
PL (1) PL2132562T3 (ko)
PT (1) PT2132562E (ko)
SI (1) SI2132562T1 (ko)
WO (1) WO2008124508A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101316702B1 (ko) * 2011-04-20 2013-10-10 서울대학교산학협력단 곤충의 표지 유전자를 이용한, 곤충의 맥주 유입 시기 계산 방법

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8889127B2 (en) 2004-07-01 2014-11-18 Icahn School Of Medicine At Mount Sinai Targeted protein replacement for the treatment of lysosomal storage disorders
WO2007035778A2 (en) 2005-09-19 2007-03-29 Histogenics Corporation Cell-support matrix and a method for preparation thereof
JP5557084B2 (ja) * 2009-03-17 2014-07-23 独立行政法人物質・材料研究機構 組織再生方法
US20120128632A1 (en) * 2009-07-23 2012-05-24 Jeffrey Keeler Teumer Identity markers
WO2011126833A2 (en) * 2010-03-29 2011-10-13 Massachusetts Institute Of Technology Anti-inflammatory factors
US10130736B1 (en) 2010-05-14 2018-11-20 Musculoskeletal Transplant Foundation Tissue-derived tissuegenic implants, and methods of fabricating and using same
US8883210B1 (en) 2010-05-14 2014-11-11 Musculoskeletal Transplant Foundation Tissue-derived tissuegenic implants, and methods of fabricating and using same
US9352003B1 (en) 2010-05-14 2016-05-31 Musculoskeletal Transplant Foundation Tissue-derived tissuegenic implants, and methods of fabricating and using same
KR20140023260A (ko) * 2010-11-16 2014-02-26 미쓰비시 가가꾸 가부시키가이샤 Cartilage Acidic Protein 1 단백질에 의한 뇌경색의 검사 방법
US8834928B1 (en) 2011-05-16 2014-09-16 Musculoskeletal Transplant Foundation Tissue-derived tissugenic implants, and methods of fabricating and using same
HUE051021T2 (hu) 2011-09-07 2021-01-28 Sinai School Medicine Ceramidáz és sejtek differenciálódása
DK2854910T3 (da) 2012-06-01 2020-05-04 Icahn School Med Mount Sinai Ceramidniveauer i behandling og forebyggelse af infektioner
CA2905449A1 (en) 2013-03-14 2014-10-02 Icahn School Of Medicine At Mount Sinai Therapeutic acid ceramidase compositions and methods of making and using them
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
CA3177726A1 (en) 2015-05-21 2016-11-24 Musculoskeletal Transplant Foundation Modified demineralized cortical bone fibers
DE102016213684A1 (de) 2016-07-26 2018-02-01 Tetec Tissue Engineering Technologies Ag Marker und Verfahren zur Beurteilung der Zusammensetzung oder Reinheit einer Zellkultur sowie zur in vitro Bestimmung der Identität einer Knorpelzelle oder einer Synovialzelle
AU2017403257B2 (en) * 2017-03-06 2021-09-30 Haplnscience inc. Composition for skin aging measurement, prevention, or alleviation, using HAPLN1
EP3417888A1 (de) * 2017-06-25 2018-12-26 co.don AG Verfahren zum herstellen von transplantierbarem knorpelgewebe
CN112048563B (zh) * 2020-09-09 2022-12-02 福建华民生物科技有限公司 一种利用软骨特异性基因表达程度控制软骨质量的方法
JP7222001B2 (ja) * 2021-01-22 2023-02-14 ハプルサイエンス・インコーポレイテッド Hapln1を利用した皮膚老化の測定用または予防用または改善用の組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004681A2 (en) 1996-07-25 1998-02-05 Genzyme Corporation Chondrocyte media formulations and culture procedures
JP2000515761A (ja) * 1996-07-26 2000-11-28 ジェンザイム・コーポレーション 全細胞分析系
AU2002305193A1 (en) * 2001-04-18 2002-11-05 Wyeth Methods and reagents for regulating bone and cartilage formation
WO2003064598A2 (en) 2002-01-25 2003-08-07 Genzyme Corporation Serum-free media for chondrocytes and methods of use thereof
EP2402461B1 (en) 2005-03-11 2015-08-12 Epiontis GmbH Method and kit for identifying chondrocytes by the detection of demethylation of C15orf27
US9234897B2 (en) * 2005-03-31 2016-01-12 Two Cells Co., Ltd Method for distinguishing mesenchymal stem cell using molecular marker and use thereof
WO2007058671A1 (en) * 2005-11-21 2007-05-24 West Michael D Novel uses of cells with prenatal patterns of gene expression
JP2009540826A (ja) 2006-06-20 2009-11-26 ジェンザイム・コーポレーション 軟骨細胞増幅のための無血清培地およびその使用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101316702B1 (ko) * 2011-04-20 2013-10-10 서울대학교산학협력단 곤충의 표지 유전자를 이용한, 곤충의 맥주 유입 시기 계산 방법

Also Published As

Publication number Publication date
ATE541211T1 (de) 2012-01-15
ES2380753T3 (es) 2012-05-18
EP2132562B9 (en) 2012-05-23
EP2442104A2 (en) 2012-04-18
EP2442104A3 (en) 2012-04-25
HK1138374A1 (en) 2010-08-20
MX2009010694A (es) 2009-10-22
CA2682948A1 (en) 2008-10-16
CN101680881B (zh) 2013-04-24
WO2008124508A1 (en) 2008-10-16
ES2380753T9 (es) 2012-11-27
EP2132562A1 (en) 2009-12-16
BRPI0809902A2 (pt) 2014-10-07
IL201225A0 (en) 2010-05-31
MY153234A (en) 2015-01-29
US8029992B2 (en) 2011-10-04
CN101680881A (zh) 2010-03-24
HRP20120299T1 (hr) 2012-04-30
DK2132562T3 (da) 2012-04-30
PT2132562E (pt) 2012-04-19
PL2132562T3 (pl) 2012-06-29
JP2014036658A (ja) 2014-02-27
EP2132562B1 (en) 2012-01-11
AU2008237332A1 (en) 2008-10-16
CA2682948C (en) 2016-05-31
SI2132562T1 (sl) 2012-05-31
US20080248481A1 (en) 2008-10-09
US20120149013A1 (en) 2012-06-14
US20120329051A1 (en) 2012-12-27
JP2010523124A (ja) 2010-07-15
AR066403A1 (es) 2009-08-19
JP5383654B2 (ja) 2014-01-08

Similar Documents

Publication Publication Date Title
KR20090127153A (ko) 세포 및 세포 배양물의 평가 방법
DK2681333T3 (en) EVALUATION OF RESPONSE TO GASTROENTEROPANCREATIC NEUROENDOCRINE NEOPLASIS (GEP-NENE) THERAPY
CN109863251B (zh) 对肺鳞状细胞癌亚型分型的方法
RU2721916C2 (ru) Способы прогнозирования рака предстательной железы
KR101446626B1 (ko) 신장암 진단, 신장암 환자 예후 예측을 위한 조성물 및 방법
KR101828290B1 (ko) 자궁내막암 마커
AU2012345789B2 (en) Methods of treating breast cancer with taxane therapy
US20040029114A1 (en) Methods of diagnosis of breast cancer, compositions and methods of screening for modulators of breast cancer
US20230416827A1 (en) Assay for distinguishing between sepsis and systemic inflammatory response syndrome
WO2003042661A2 (en) Methods of diagnosis of cancer, compositions and methods of screening for modulators of cancer
MXPA03006617A (es) Metodos de diagnostico de cancer de pecho, composiciones y metodos de rastreo de moduladores de cancer de pecho.
CN111183233A (zh) 使用靶基因表达的数学建模评估Notch细胞信号传导途径活性
WO2003025138A2 (en) Methods of diagnosis of cancer compositions and methods of screening for modulators of cancer
US10900086B1 (en) Compositions and methods for diagnosing prostate cancer using a gene expression signature
WO2002086443A2 (en) Methods of diagnosis of lung cancer, compositions and methods of screening for modulators of lung cancer
CN101573453A (zh) 使用生物学途径基因表达分析来预测淋巴结阴性原发性乳腺癌的远处转移的方法
KR20140140069A (ko) 전반적 발달장애의 진단 및 치료용 조성물 및 그 진단 및 치료 방법
CN109423515B (zh) 一组用于肝癌检测的基因标志物及其应用
CN101111768A (zh) 肺癌预后
CN108841823A (zh) circRNA_26852及其应用
EP1497454A2 (en) Methods of diagnosis of cancer, compositions and methods of screening for modulators of cancer
KR101496745B1 (ko) 인간 암세포의 불사화에 관련되는 유전자 및 그 용도
KR102578053B1 (ko) 돼지 혈액을 이용한 돼지의 열 스트레스 노출 여부 판별용 바이오 마커 및 이의 용도
KR102480128B1 (ko) 면역력 강화 소 African Humped Cattle (AFH) 품종 특이적 단일염기다형성 및 그의 용도
KR20220062881A (ko) 팔보시클립, 풀베스트란트 또는 이의 조합에 대한 내성 암의 진단을 위한 조성물, 키트 및 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application