KR20090037855A - 열원기 및 열원 시스템 그리고 열원기의 제어 방법 - Google Patents

열원기 및 열원 시스템 그리고 열원기의 제어 방법 Download PDF

Info

Publication number
KR20090037855A
KR20090037855A KR1020087028199A KR20087028199A KR20090037855A KR 20090037855 A KR20090037855 A KR 20090037855A KR 1020087028199 A KR1020087028199 A KR 1020087028199A KR 20087028199 A KR20087028199 A KR 20087028199A KR 20090037855 A KR20090037855 A KR 20090037855A
Authority
KR
South Korea
Prior art keywords
cold water
temperature
heat source
water outlet
outlet temperature
Prior art date
Application number
KR1020087028199A
Other languages
English (en)
Other versions
KR101056974B1 (ko
Inventor
겐지 우에다
가즈마 다이토
미노루 마츠오
Original Assignee
미츠비시 쥬고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미츠비시 쥬고교 가부시키가이샤 filed Critical 미츠비시 쥬고교 가부시키가이샤
Publication of KR20090037855A publication Critical patent/KR20090037855A/ko
Application granted granted Critical
Publication of KR101056974B1 publication Critical patent/KR101056974B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

예를 들어, 10% 부하를 하회하는 저부하라 하더라도 계속해서 운전할 수 있는 터보 냉동기를 제공한다. 냉수 입구 온도 센서에 의해 측정된 냉수 입구 온도가 설정 냉수 출구 온도와의 사이에서 소정 온도차를 형성하는 제 1 온도 이하로 된 경우에, 터보 냉동기의 정지 및 기동을 반복하여 제어하는 저부하 모드를 갖는 터보 냉동기에 있어서, 냉수 입구 온도 또는 냉수 출구 온도가 제 1 온도보다 낮은 제 2 온도 이하로 된 경우에 터보 냉동기를 정지시키는 정지 제한 모드를 구비하고 있는 것을 특징으로 한다.
냉매, 압축기, 열원기, 저부하 모드, 정지 제한 모드

Description

열원기 및 열원 시스템 그리고 열원기의 제어 방법{HEAT SOURCE DEVICE, HEAT SOURCE SYSTEM, AND METHOD OF CONTROLLING HEAT SOURCE DEVICE}
본 발명은 예를 들어 터보 냉동기로 된 열원기 및 열원 시스템 그리고 열원기의 제어 방법에 관한 것이다.
반도체 제조 공장의 대규모 클린 룸에 있어서의 냉수 공급 등에 사용되는 냉동기로서, 터보 압축기에 의해 냉매를 압축시키는 터보 냉동기 (열원기) 가 다용되고 있다. 터보 압축기의 냉매 흡입구에는 흡입 냉매량을 조정하는 입구 베인 (용량 제어용 자유회전 베인) 이 형성되어 있다. 터보 냉동기의 제어부는 입구 베인의 각도를 조정함으로써, 외부 부하에 공급하는 냉수의 출구 온도를 일정하게 유지한다 (특허 문헌 1 참조). 예를 들어, 외부 부하가 요구하는 냉수 온도를 7℃ (설정 냉수 출구 온도) 로 한 경우, 이 7℃ 를 유지하도록 제어한다. 또, 냉수 출구 온도와 냉수 입구 온도의 냉수 온도차에는 소정 사양의 설정값이 있는데, 이 냉수 온도차가 설정값일 때에 터보 냉동기의 부하가 100% 가 되도록 설계되어 있다. 예를 들어, 설정 냉수 출구 온도를 7℃ 로 하고, 100% 부하에서의 냉수 온도차를 5℃ 로 한 경우, 100% 부하에서의 냉수 입구 온도는 12℃ 가 된다.
특허 문헌 1 : 일본 실용신안공보 평5-10186호
발명의 개시
동계와 같이 바깥 기온이 낮은 경우, 터보 냉동기에 요구되는 부하가 작아져 10% 를 하회하는 경우가 있다. 부하가 10% 인 경우, 냉수 온도차는 0.5℃ (5℃ × 10% = 0.5℃) 가 된다. 냉수 온도차가 0.5℃ 이하가 되면, 냉수 출구 온도 및 냉수 입구 온도를 측정하는 온도계의 정밀도의 한계로 인하여 정확하게 제어하기 곤란해진다. 예를 들어, 온도계에 측온 저항체 (JIS A 급) 를 사용한 경우, 측온 저항체의 정밀도가 ±0.1℃ 이고, 변환기의 오차가 ±0.1℃ 이다. 따라서, 1 개의 온도계에는 ±0.2℃ 의 오차가 있어, 냉수 출구 및 냉수 입구의 온도차를 계측하려면 2 개의 온도계의 오차가 중첩되기 때문에, 최대 0.4℃ 의 계측 오차가 상정된다. 따라서, 터보 냉동기의 부하가 10% 를 하회하여, 냉수 온도차가 0.5℃ 를 하회하는 경우에는 온도계의 오차 범위 내에서의 제어가 되어 연속 운전에 의한 온도 제어가 곤란해지기 때문에, 터보 냉동기를 일시적으로 정지시켜 (저부하 정지), 냉수 온도의 재상승을 확인하면서 기동 정지를 반복하는 저부하 모드에서의 운전이 행해진다.
이와 같이, 부하가 낮아진 경우에 터보 냉동기의 운전이 단속적으로 되어 냉수 온도가 변동되는 것을 꺼려, 저부하라 하더라도 연속적으로 운전할 수 있는 터보 냉동기가 요망되고 있다.
또, 터보 냉동기의 부하가 낮아져도 계속해서 운전할 수 있도록 높은 정밀도로 냉수 출구 온도 및 냉수 입구 온도를 계측할 수 있는 기술이 요구되고 있다.
또, 터보 냉동기를 도입하는 경우, 도입시에 조정 운전이 행해진다. 일반적으로 냉방 수요가 예상되는 여름철용으로 도입되기 때문에, 터보 냉동기의 도입 시기는 동계가 된다. 동계는 바깥 기온이 낮기 때문에 부하가 작아, 10% 부하를 크게 하회한다. 이 상태에서는 상기 서술한 바와 같이 계속 운전을 할 수 없기 때문에, 조정 운전을 할 수 없다. 그래서, 실제로는 조정 운전을 하기 위해 보일러 등을 새롭게 일시적으로 도입하여 부하를 만들어 내고 있었다. 이 때에 도입되는 보일러는 조정 운전을 위해서만 사용되는 것이기 때문에, 조정 운전이 종료된 후에는 철거된다. 이렇게 해서는 터보 냉동기의 도입 비용이 불어난다. 따라서, 저부하에서도 계속해서 운전할 수 있어, 별도로 보일러를 도입하지 않고 조정 운전을 할 수 있는 터보 냉동기가 요망되고 있다.
본 발명은 이러한 사정을 감안하여 이루어진 것으로서, 예를 들어 10% 부하를 하회하는 저부하라 하더라도 계속해서 운전할 수 있는 열원기 (터보 냉동기) 를 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해, 본 발명의 열원기는 이하의 수단을 채용한다.
즉, 본 발명에 관련된 열원기는, 냉매를 압축시키는 압축기와, 그 압축기에 의해 압축된 냉매를 응축시키는 응축기와, 그 응축기에 의해 응축된 냉매를 팽창시키는 팽창 밸브와, 그 팽창 밸브에 의해 팽창된 냉매를 증발시키는 증발기와, 그 증발기에 의해 열교환된 냉수를 외부 부하에 대해 공급하는 냉수 도입 배관과, 그 냉수 도입 배관을 흐르는 냉수의 냉수 출구 온도를 측정하는 냉수 출구 온도 측정 수단과, 상기 외부 부하와 열교환을 실시하여, 상기 증발기로 상기 냉수를 되돌리는 냉수 복귀 배관과, 그 냉수 복귀 배관을 흐르는 냉수의 냉수 입구 온도를 측정하는 냉수 입구 온도 측정 수단과, 상기 냉수 출구 온도가 설정 냉수 출구 온도가 되도록 제어하는 제어부를 구비하고, 그 제어부는, 상기 냉수 입구 온도 측정 수단에 의해 측정된 냉수 입구 온도가 상기 설정 냉수 출구 온도와의 사이에서 소정 온도차를 형성하는 제 1 온도 이하가 된 경우에, 당해 열원기의 정지 및 기동을 반복하여 제어하는 저부하 모드를 갖는 열원기에 있어서, 상기 제어부는, 상기 냉수 입구 온도 또는 상기 냉수 출구 온도가 상기 제 1 온도보다 낮은 제 2 온도 이하가 된 경우에 당해 열원기를 정지시키는 정지 제한 모드를 구비하고 있는 것을 특징으로 한다.
외부 부하가 열원기에 대해 요구하는 부하가 저하되어 가면, 설정 냉수 출구 온도와 냉수 입구 온도의 온도차가 작아져 간다. 예를 들어, 부하 100% 일 때에 5℃ 의 온도차 (예를 들어, 설정 냉수 출구 온도 7℃ 에 대해 냉수 입구 온도 12℃) 로 되어 있던 경우, 부하가 저감되어 10% 가 되면, 온도차가 0.5℃ 가 된다. 이와 같이, 부하가 저하되어 설정 냉수 출구 온도와 냉수 입구 온도의 온도차가 작아져 냉수 입구 온도가 제 1 온도를 하회하면, 제어부는 열원기를 일시적으로 정지시키고, 또 일시적으로 기동시키는 운전을 반복하여 설정 냉수 출구 온도를 달성하도록 제어한다. 이와 같이, 저부하가 된 경우에 열원기의 정지 기동을 반복하는 저부하 모드를 형성하여 저부하에 대응하도록 한다.
또, 본 발명의 열원기에서는, 냉수 출구 온도 또는 냉수 입구 온도가 제 1 온도보다 낮은 제 2 온도 이하로 된 경우에만 열원기를 정지시키는 정지 제한 모드를 형성하고 있다. 이 정지 제한 모드에서는 냉수 입구 온도가 제 1 온도를 하회해도 열원기를 정지시키지 않고, 냉수 입구 온도 또는 냉수 출구 온도가 제 2 온도 이하로 된 경우에 비로소 열원기를 정지시킨다. 요컨대, 저부하가 되어도 열원기가 정지되기 어려워 연속 운전할 수 있는 모드가 달성된다. 이로써, 동계에 있어서의 열원기 도입시의 조정 운전이라 하더라도, 저부하 모드에 의해 정지되는 부하보다 큰 부하를 부여하기 위한 보일러 등을 별도로 설치할 필요가 없어, 동계에 있어서의 저부하인 상태 그대로 조정 운전을 할 수 있게 된다.
또한, 본 발명의 열원기에 의하면, 상기 제 2 온도는 상기 설정 냉수 출구 온도보다 작은 것으로 해도 된다.
설정 냉수 출구 온도보다 작은 제 2 온도를 채용함으로써, 열원기가 저부하시에 정지되는 것을 실질적으로 회피할 수 있다. 왜냐하면, 냉수 출구 온도는 설정 냉수 출구 온도가 되도록 제어부에 의해 제어되고 있기 때문에, 현실적으로는 냉수 출구 온도 및 냉수 입구 온도가 설정 냉수 출구 온도보다 작아지는 경우는 없기 때문이다. 단, 냉수 출구 온도 측정 수단이나 냉수 입구 온도 측정 수단의 계측 오차로 인하여, 이들 계측값이 설정 냉수 출구 온도를 하회하는 경우가 있기 때문에, 이 측정 오차를 고려하여 제 2 온도를 결정하는 것이 바람직하다. 예를 들어, 온도 측정 수단의 오차를 0.2℃ 로 한 경우, 냉수 입구 및 냉수 출구의 양자를 고려하면 최대 0.4℃ 의 오차를 생각할 수 있기 때문에, 설정 냉수 출구 온도가 7℃ 이면, 제 2 온도를 6.5℃ 이하로 하는 것이 바람직하다.
또한, 본 발명의 열원기에 의하면, 상기 제 2 온도는 상기 외부 부하가 허용하는 최소 온도 이상으로 되어 있는 것으로 해도 된다.
일반적으로, 외부 부하는 설정 냉수 출구 온도의 냉수를 요구하는데, 이 설정 냉수 출구 온도보다 낮은 온도 (최소 온도) 까지 허용한다. 따라서, 제 2 온도는 이 최소 온도를 고려하여 결정된다. 이로써, 저부하라 하더라도 정지되지 않고, 가능한 한 운전을 계속할 수 있다.
또한, 본 발명의 열원기에 의하면, 상기 제어부는 상기 저부하 모드와 상기 정지 제한 모드를 택일적으로 전환할 수 있도록 되어 있는 것으로 해도 된다.
저부하 모드와 정지 제한 모드를 택일적으로 전환할 수 있도록 하고 있기 때문에, 예를 들어, 통상 운전시에는 열원기의 온-오프 운전에 의한 저부하 운전을 할 수 있도록 저부하 모드를 설정하고, 열원기 도입시에는 조정 운전을 할 수 있도록 정지 제한 모드를 설정할 수 있다.
전환은 열원기의 조작반에 물리적인 스위치를 형성하고, 이 스위치를 작업자가 조작함으로써 실시하는 것으로 해도 된다. 또, 중앙 제어실로부터의 신호를 받아, 원격 조작에 의해 전환하는 것으로 해도 된다. 이들의 경우, 열원기의 제어반에 형성된 마이크로컴퓨터는 각 모드의 내부 플래그를 바꾸도록 한다.
또한, 본 발명의 열원기에 의하면, 상기 제어부는 당해 열원기의 운전 중에 상기 각 모드를 택일적으로 전환할 수 있도록 되어 있으며, 상기 정지 제한 모드에서 상기 저부하 모드로 전환한 경우에, 소정 시간 경과 후에 그 저부하 모드를 실행하는 것으로 해도 된다.
겨울철과 같이 부하가 낮은 시기에 열원기의 정지를 피하기 위해 정지 제한 모드가 선택되어 있는 경우, 저부하 모드로 전환하면, 냉수 입구 온도가 제 1 온도를 하회하고 있기 때문에, 열원기가 갑자기 정지될 우려가 있다. 이러한 운전 중에 있어서의 갑작스런 정지를 피하기 위해, 정지 제한 모드에서 저부하 모드로 전환한 경우라 하더라도, 소정 시간 경과 후에 저부하 모드를 실행하는 것으로 하였다.
또한, 본 발명의 열원기에 의하면, 상기 응축기를 흐르는 냉매로부터 응축열을 빼앗는 냉각수를 공급하는 냉각수 공급 수단을 구비하고, 상기 제어부는 상기 응축기에 흘러 들어가는 상기 냉각수의 온도가 소정값 이하인 경우에 상기 정지 제한 모드를 선택할 수 있는 것으로 해도 된다.
응축기에 공급되는 냉각수의 온도가 높은 경우에는, 응축기와 증발기의 차압에 상당하는 최소 냉매 순환량 이상이 필요해져, 냉매 순환량이 적은 저부하 운전은 애초부터 성립하지 않는다. 따라서, 응축기에 흘러 들어가는 냉각수의 온도가 소정값 이하인 경우에 한하여 정지 제한 모드를 선택할 수 있는 것으로 하였다.
또한, 본 발명의 열원기에 의하면, 상기 냉수 출구 온도 측정 수단 및/또는 상기 냉수 입구 온도 측정 수단은, 상기 냉수 도입 배관 및/또는 상기 냉수 복귀 배관의 동일 횡단면에 있어서의 동일 반경 위치에 둘레 방향으로 상이한 위치에 형성된 복수의 온도 센서를 구비하고, 상기 제어부는 각 상기 온도 센서의 출력값의 평균값을 사용하는 것으로 해도 된다.
냉수 배관 안을 흐르는 냉수의 온도는 동일 횡단면에서 보면, 둘레 방향으로 온도 분포를 나타내는 경우가 있다. 이것은 특히 냉수 도입 배관이 증발기에 대해 수평으로 접속되어 있는 경우, 증발기 내의 냉매 액면이 상하로 움직이기 때문에 현저하다. 본 발명의 열원기에서는, 배관의 동일 횡단면에 있어서의 동일 반경 위치에 둘레 방향으로 상이한 위치에 복수의 온도 센서를 형성하고, 이들 온도 센서의 출력값의 평균값을 사용하는 것으로 했기 때문에, 현실적으로 냉수 온도를 사용하여 평가할 수 있다.
또, 본 발명의 열원 시스템은, 상기의 어느 하나에 기재된 열원기를 복수 구비하고 있는 것을 특징으로 한다.
열원기를 복수 구비한 열원 시스템의 경우에는, 외부 부하의 요구에 따라 열원기의 대수를 증감시키는 대수 제어 운전을 실시한다. 구체적으로는, 부하가 작은 경우에는 1 대째의 열원기를 기동시키고, 부하의 증대에 따라 2 대째, 3 대째 와 같이 기동시켜 나가, 복수 대 동시 운전을 실시한다. 부하가 작아져 가는 경우에는, 부하에 따라 열원기를 정지시켜 나가, 기동 대수를 1 대씩 줄여간다. 이러한 열원 시스템의 경우, 열원기가 정지 제한 모드와 저부하 모드를 구비하고 있기 때문에, 저부하시에 최초로 가동되고, 마지막에 정지되는 1 대째의 열원기에 대해서는 정지 제한 모드를 선택해 두고, 2 대째 이후에 가동되고 1 대째보다 먼저 정지되는 열원기에 대해서는 저부하 모드를 선택해 둔다. 이로써, 대수 감소 운전시에는 2 대째 이후의 열원기는 저부하 모드에 의해 신속하게 정지되고, 마지막에 정지되는 1 대째의 열원기는 저부하라 하더라도 정지 제한 모드에 의해 정지되지 않도록 운전을 계속할 수 있다. 이로써, 원활하게 대수 감소 운전이 행해지고, 또한 저부하라 하더라도 정지되지 않는 열원 시스템을 실현시킬 수 있다.
또, 본 발명의 열원기의 제어 방법은, 냉매를 압축시키는 압축기와, 그 압축기에 의해 압축된 냉매를 응축시키는 응축기와, 그 응축기에 의해 응축된 냉매를 팽창시키는 팽창 밸브와, 그 팽창 밸브에 의해 팽창된 냉매를 증발시키는 증발기와, 그 증발기에 의해 열교환된 냉수를 외부 부하에 대해 공급하는 냉수 도입 배관과, 그 냉수 도입 배관을 흐르는 냉수의 냉수 출구 온도를 측정하는 냉수 출구 온도 측정 수단과, 상기 외부 부하와 열교환을 실시하여, 상기 증발기로 상기 냉수를 되돌리는 냉수 복귀 배관과, 그 냉수 복귀 배관을 흐르는 냉수의 냉수 입구 온도를 측정하는 냉수 입구 온도 측정 수단을 구비하고, 상기 냉수 출구 온도가 설정 냉수 출구 온도가 되도록 제어하고, 상기 냉수 입구 온도 측정 수단에 의해 측정된 냉수 입구 온도가 상기 설정 냉수 출구 온도와의 사이에서 소정 온도차를 형성하는 제 1 온도 이하가 된 경우에, 당해 열원기의 정지 및 기동을 반복하여 제어하는 저부하 모드를 실시하는 열원기의 제어 방법에 있어서, 상기 냉수 입구 온도 또는 상기 냉수 출구 온도가 상기 제 1 온도보다 낮은 제 2 온도 이하가 된 경우에 당해 열원기를 정지시키는 정지 제한 모드를 실시하는 것을 특징으로 한다.
외부 부하가 열원기에 대해 요구하는 부하가 저하되어 가면, 설정 냉수 출구 온도와 냉수 입구 온도의 온도차가 작아져 간다. 예를 들어, 부하 100% 일 때에 5℃ 의 온도차 (예를 들어, 설정 냉수 출구 온도 7℃ 에 대해 냉수 입구 온도 12℃) 로 되어 있던 경우, 부하가 저감되어 10% 가 되면, 온도차가 0.5℃ 가 된다. 이와 같이, 부하가 저하되어 설정 냉수 출구 온도와 냉수 입구 온도의 온도차가 작아져, 냉수 입구 온도가 제 1 온도를 하회하면, 열원기를 일시적으로 정지시키고, 또 일시적으로 기동시키는 운전을 반복하여 설정 냉수 출구 온도를 달성하도록 제어한다. 이와 같이, 저부하가 된 경우에 열원기의 정지 기동을 반복하는 저부하 모드를 형성하여 저부하에 대응하도록 한다.
또, 본 발명의 열원기의 제어 방법에서는, 냉수 출구 온도 또는 냉수 입구 온도가 제 1 온도보다 낮은 제 2 온도 이하로 된 경우에만 열원기를 정지시키는 정지 제한 모드를 형성하고 있다. 이 정지 제한 모드에서는 냉수 입구 온도가 제 1 온도를 하회해도 열원기를 정지시키지 않고, 냉수 입구 온도 또는 냉수 출구 온도가 제 2 온도 이하로 된 경우에 비로소 열원기를 정지시킨다. 요컨대, 저부하가 되어도 열원기가 정지되기 어려워 연속 운전할 수 있는 모드가 달성된다. 이로써, 동계에 있어서의 열원기 도입시의 조정 운전이라 하더라도, 저부하 모드에 의해 정지되는 부하보다 큰 부하를 부여하기 위한 보일러 등을 별도로 설치할 필요가 없어, 동계에 있어서의 저부하인 상태 그대로 조정 운전을 할 수 있게 된다.
본 발명에 의하면, 냉수 출구 온도 또는 냉수 입구 온도가 제 1 온도보다 낮은 제 2 온도 이하로 된 경우에만 열원기를 정지시키는 정지 제한 모드를 형성하였기 때문에, 냉수 입구 온도가 제 1 온도를 하회해도 열원기를 정지시키지 않고, 냉수 입구 온도 또는 냉수 출구 온도가 제 2 온도 이하로 된 경우에 비로소 열원기를 정지시켜, 저부하가 되어도 열원기를 가능한 한 정지시키지 않고 연속 운전시킬 수 있다.
도 1 은 본 발명의 일 실시형태에 관련된 터보 냉동기를 나타낸 개략도이다.
도 2 는 도 1 의 증발기의 횡단면을 나타낸 단면도이다.
도 3 은 도 1 의 냉수 도입 배관의 횡단면을 나타낸 단면도이다.
도 4 는 도 1 의 각 냉수 출구 온도 센서의 지시값을 시간에 대해 나타낸 그래프이다.
도 5 는 도 1 의 각 냉수 출구 온도 센서의 정상 상태에 있어서의 지시값을 시간에 대해 나타낸 그래프이다.
도 6 은 도 1 의 터보 냉동기의 냉매 회로 구성을 나타낸 개략도이다.
도 7 은 저부하 모드 및 정지 제한 모드를 나타낸 플로우차트이다.
*부호의 설명*
1 : 터보 냉동기 (열원기)
3 : 압축기
5 : 응축기
7 : 팽창 밸브
9 : 증발기
34 : 냉수 복귀 배관
35 : 냉수 도입 배관
40 : 냉수 입구 온도 센서
42 : 냉수 출구 온도 센서
50 : 제어부
발명을 실시하기 위한 최선의 형태
이하에 본 발명에 관련된 실시형태에 대하여 도면을 참조하여 설명한다.
도 1 에는 본 발명의 터보 냉동기 (열원기 ; 1) 의 개략 구성이 나타나 있다.
도 1 에 나타나 있는 바와 같이, 터보 냉동기 (1) 는 냉매를 압축시키는 터보식 압축기 (3) 와, 압축기 (3) 에 의해 압축된 냉매를 응축시키는 응축기 (5) 와, 응축기 (5) 에 의해 응축된 액 냉매를 팽창시키는 팽창 밸브 (7) 와, 팽창 밸브 (7) 에 의해 팽창된 냉매를 증발시키는 증발기 (9) 를 구비하고 있다.
압축기 (3) 는 원심 날개차 (10) 를 구비한 터보식 원심 압축기로 되어, 전동 모터에 의해 회전 구동된다.
압축기 (3) 의 냉매 흡입구에는 흡입 냉매의 흡입량을 조정하는 입구 베인 (12) 이 형성되어 있다. 이 입구 베인 (12) 의 개도는 터보 냉동기 (1) 의 제어부 (50) 에 의해 제어된다.
응축기 (5) 는 쉘 앤드 튜브식 열교환기로 되어 있다. 응축기 (5) 에는 냉각수 복귀 배관 (5a) 및 냉각수 도입 배관 (5b) 이 접속되어 있다. 냉각수 복귀 배관 (5a) 으로부터 응축기 (5) 내로 흘러 들어간 냉각수는 전열관 (14) 안을 통과하여 헤더 (15) 에서 되돌아간 후, 전열관 (14) 을 통과하여 냉각수 도입 배관 (5b) 으로 유출된다. 이와 같이, 냉각수와 쉘내의 냉매가 열교환을 실시하여 냉매로부터 응축열을 제거한다. 또한, 전열관 (14) 은, 도 1 에서는 이해를 용이하게 하기 위해 단순한 2 개의 배관으로 하고 있는데, 실제로는 쉘내 전체에 다 수 형성된 세관으로 되어 있다 (참고로서, 증발기 (9) 에 대하여 나타낸 도 2 참조). 냉각수 배관 (5a, 5b) 은 외부에 설치된 냉각탑 (6) 에 접속되어 있다.
팽창 밸브 (7) 는 응축기 (5) 와 증발기 (9) 사이에 형성되어 있으며, 응축기 (5) 로부터 공급되는 액 냉매를 압축시킴으로써 등엔탈피 팽창시키는 것이다.
팽창 밸브 (7) 의 개도는 터보 냉동기 (1) 의 제어부 (50) 에 의해 제어되도록 되어 있다.
증발기 (9) 는 쉘 앤드 튜브식 열교환기로 되어 있다. 증발기 (9) 에는 냉수 복귀 배관 (34) 및 냉수 도입 배관 (35) 이 수평으로 접속되어 있다. 냉수 복귀 배관 (34) 으로부터 증발기 (9) 내로 흘러 들어간 냉수는 전열관 (37) 안을 통과하여 헤더 (39) 에서 되돌아간 후, 전열관 (37) 을 통과하여 냉수 도입 배관 (35) 으로 유출된다. 또한, 전열관 (37) 은, 도 1 에서는 이해를 용이하게 하기 위해 단순한 2 개의 배관으로 하고 있는데, 실제로는 도 2 에 나타낸 바와 같이, 쉘 내에 다수 형성된 세관으로 되어 있다. 이와 같이 냉수와 쉘내의 냉매가 열교환을 실시하여, 냉매가 냉수로부터 증발열을 빼앗음으로써 냉수를 냉각시킨다. 냉각된 냉수는 냉수 도입 배관 (35) 을 통하여 외부 부하 (100) 로 이송되어, 외부 부하 (100) 에 대해 냉열을 공급한다.
냉수 복귀 배관 (34) 의 하류측에는 증발기 (9) 유입 직전의 냉수 입구 온도 (TE0) 를 계측하는 복수의 냉수 입구 온도 센서 (40) 가, 냉수 도입 배관 (35) 의 상류측에는 증발기 (9) 유출 직후의 냉수 출구 온도 (TE') 를 계측하는 복수의 냉수 출구 온도 센서 (42) 가 각각 형성되어 있다. 온도 센서로는 JIS A 급의 측 온 저항체를 사용하는 것이 바람직하다. 일반적으로 냉수 입구 온도 (TE0) 는 12℃ 로, 냉수 출구 온도 (TE') 는 7℃ 로 설정된다.
도 3 에는 냉수 도입 배관 (35) 의 횡단면이 나타나 있다. 동 도면에 나타내는 바와 같이, 냉수 도입 배관 (35) 의 동일 횡단면에는 4 개의 온도 센서 (42a, 42b, 42c, 42d) 가 형성되어 있다. 각 온도 센서 (42) 의 선단의 측온부는 동일 반경 위치에 배치되어 있으며, 각각이 둘레 방향으로 상이한 위치에 90°간격으로 형성되어 있다. 즉, 제 1 온도 센서 (42a) 가 최하단인 6 시 위치에, 제 2 온도 센서 (42b) 가 높이 방향에 있어서의 중간 위치인 9 시 위치에, 제 3 온도 센서 (42c) 가 최상단인 12 시 위치에, 제 4 온도 센서 (42d) 가 높이 방향에 있어서의 중간 위치인 3 시 위치에 형성되어 있다. 이들 4 개의 온도 센서 (42) 를 사용하여 냉수 출구 온도 (TE') 를 산출한다. 구체적으로는 4 개의 온도 출력의 산술 평균을 사용한다. 요컨대, 도 4 에 나타내는 바와 같이, 제 1 온도 센서 (42a) 의 온도 출력을 TE1', 제 2 온도 센서 (42b) 의 온도 출력을 TE2', 제 3 온도 센서 (42c) 의 온도 출력을 TE3', 제 4 온도 센서 (42d) 의 온도 출력을 TE4' 로 하면, 냉수 출구 온도 (TE') 는 이하와 같이 나타난다.
TE' = (TE1' + TE2' + TE3' + TE4')/4
이와 같이, 복수의 온도 센서 (42) 의 산술 평균을 사용함으로써, 냉수 출구 온도 (TE') 의 정밀도를 높일 수 있다. 왜냐하면, 상기 서술한 바와 같이, 증발기 (9) 내에는 다수의 전열관 (37) 이 형성되어 있으며 (도 2 참조), 도 1 에 나타내는 바와 같이 액 냉매의 액위 (L) 가 증발기 (9) 내의 전부를 채우지 않고 있 고, 또 냉매의 액위 (L) 가 상하 이동한다는 점에서, 각각의 전열관 (37) 내를 흐른 후의 냉수의 온도는 전열관 (37) 의 위치에 따라 상이하다. 냉수는 합류한 후에 냉수 도입 배관 (35) 으로 흐르게 되기 때문에, 충분히 섞이지 않은 상태에서 냉수 도입 배관 (35) 으로 흘러 들어가게 된다. 따라서, 냉수 도입 배관 (35) 에 흘러 들어간 직후의 냉수는 동일 횡단면에서 온도 분포를 갖게 된다 (도 4 참조). 따라서, 본 실시형태와 같이 복수의 온도 센서를 사용하여 산술 평균값을 사용하는 것이 유효해진다.
또한, 냉수 출구 온도 (TE') 의 정밀도를 높이기 위해, 이하의 보정을 행하고 있다.
도 5 에 나타내는 바와 같이, 터보 냉동기 (1) 가 정지되어 있는 경우와 같이 증발기 (9) 에 의한 열교환이 행해지지 않아 냉수 출구 온도가 정상 상태가 되었을 때에, 각 온도 센서 (42) 의 지시값을 취득한다. 그리고, 각 온도 센서의 지시값과 평균값 (TE) 의 차를 각각 산출한다. 예를 들어, 제 1 온도 센서에 대해서는, ΔTE1 = TE1 - TE 와 같은 차분을 산출한다. 정상 상태라면 동일 횡단면에 있어서의 배관 내의 냉수 온도에 분포는 생기지 않아 평균값과 각 온도 센서의 지시값은 일치할 것이기 때문에, 이 차분 (ΔTE1) 이 평균값 (TE) 에 대한 오차라고 할 수 있다. 따라서, 이 차분을 터보 냉동기 (1) 의 제어부 (50) 에서 보정한다. 예를 들어, 제어부 (50) 의 마이크로컴퓨터반에는 온도 센서의 장착 상태에 의한 드리프트를 보정하는 오프셋값을 설정할 수 있게 되어 있으므로, 이 오프셋값을 상기 차분에 기초하여 변경하도록 한다. 이와 같이, 정상 상태에 있어서의 온도 센서의 지시값을 사용하여 각 온도 센서의 오프셋값을 보정함으로써, 냉수 출구 온도의 정밀도를 향상시킬 수 있다.
또, 이러한 각 온도 센서의 오프셋값의 보정은 정기적으로 실시하여, 빈도 에 의한 가중을 한다. 예를 들어, 과거 10 회의 계측 중 바로 앞의 1 회만 특이한 온도를 출력했다 하더라도, 이 1 회만의 온도를 그대로 채용하는 것이 아니라, 과거 10 회의 온도까지도 고려해 본다. 예를 들어, 과거 10 회의 평균값을 채용하는 것과 같이 빈도에 의한 가중을 행한다. 또한, 이상 (異常) 한 오프셋값 (보정폭) 이 되지 않도록, 오프셋값의 최대값 (예를 들어, 1℃) 을 정해 두고, 이 최대값을 초과한 오프셋은 실시하지 않게 한다. 이로써, 온도 센서 출력의 대폭적인 변동을 억제하여 계측 정밀도를 높일 수 있다. 또한, 이와 같이 정한 오프셋값의 최대값을 대폭 초과하는 경우에는, 온도 센서의 이상으로 여겨, 이후의 센싱 대상에서 제외하는 것이 바람직하다.
또, 온도 센서의 과도적인 응답 지연을 보상하기 위해, 1 차 지연의 시정수를 미리 파악해 두고, 이 시정수를 고려하여 응답 지연에 따른 오차를 보정해도 된다. 본 실시형태와 같이, 측온 저항체를 사용하는 경우에는, 과도적인 응답시에는 센서부의 열 용량을 무시할 수 없기 때문에 유효하다. 구체적으로는, 온도 센서마다 실온의 온도 센서를 냉수 또는 온수에 침지시켜 단계 응답에 의한 온도 이력을 계측하고, 실험에 의해 시정수를 파악한다.
또, 본 실시형태에서는, 냉수 입구 온도 (TE0) 의 정밀도를 높이기 위해, 냉수 복귀 배관 (34) 에도 4 개의 냉수 입구 온도 센서 (40) 를 형성하고 있다 (도 1 참조). 이것은 외부 부하 (100) 로부터 되돌려지는 냉수에도 동일 횡단면 내에서 온도 분포가 생길 우려가 있는 경우에 유효하다. 냉수 입구 온도 센서 (40) 의 설치 위치는, 도 3 과 마찬가지로, 동일 횡단면 내에서 둘레 방향으로 90°씩 각도를 어긋나게 하여 설치하는 것이 바람직하다.
도 6 에는 도 1 에 나타낸 터보 냉동기 (1) 의 냉매 회로 구성이 나타나 있다
동 도면에는 도 1 에서 도시를 생략한 핫가스 바이패스관 (45) 이 나타나 있다. 핫가스 바이패스관 (45) 은 압축기 (3) 의 토출측과 압축기 (3) 의 흡입측 사이에 형성되어 있다. 핫가스 바이패스관 (45) 에는 냉매 유량을 조정하기 위한 핫가스 바이패스 밸브 (45a) 가 형성되어 있다. 이 핫가스 바이패스 밸브 (45a) 에 의해 유량이 조정된 고온 고압의 토출 냉매가 압축기 (3) 의 흡입측으로 바이패스되도록 되어 있다. 핫가스 바이패스 밸브 (45a) 의 개도는 터보 냉동기 (1) 의 제어부 (50) 에 의해 조정된다.
다음으로, 상기 구성의 터보 냉동기 (1) 의 동작에 대하여 설명한다.
압축기 (3) 는 전동 모터에 의해 구동되고, 소정 주파수로 회전된다. 입구 베인 (12) 은 제어부 (50) 에 의해 설정 온도 (예를 들어, 냉수 출구 온도 7℃) 를 달성하도록 그 개도가 조정된다.
또, 압축기 (3) 로부터 토출된 고온 고압의 가스 냉매는, 그 일부가 핫가스 바이패스관 (45) 을 통과하여 핫가스 바이패스 밸브 (45a) 에 의해 냉매 유량이 조정된 후, 압축기 (3) 로 유도되도록 되어 있다.
증발기 (9) 로부터 흡입된 저압 가스 냉매는 압축기 (3) 에 의해 압축되어, 고압 가스 냉매가 된다. 압축기 (3) 로부터 토출된 고압 가스 냉매는 응축기 (5) 로 유도된다.
응축기 (5) 에 있어서, 냉각탑 (6) (도 1 참조) 으로부터 냉각수 배관 (5a, 5b) 을 통하여 유도되는 냉각수에 의해 고압의 가스 냉매는 대략 등압으로 냉각되어, 고압의 액 냉매가 된다. 고압의 액 냉매는 팽창 밸브 (7) 로 유도되고, 이 팽창 밸브 (7) 에 의해 등엔탈피 팽창된다. 이와 같이 팽창된 냉매는 증발기 (9) 에서 증발되어, 전열관 (37) 내를 흐르는 냉수로부터 열을 빼앗는다. 이로써, 냉수 복귀 배관 (34) 으로부터 12℃ 에서 유입된 냉수는 7℃ 까지 냉각되어, 냉수 도입 배관 (35) 을 통하여 외부 부하측으로 반송된다. 이 때, 냉수 출구 온도 및 냉수 입구 온도는 각각 온도 센서 (40, 42) 에 의해 계측되고, 이 계측값에 기초하여 제어부 (50) 는 입구 베인 (12), 팽창 밸브 (7), 핫가스 바이패스 밸브 (45a) 등의 개도를 제어한다. 온도 센서 (40, 42) 의 계측값은 상기 서술한 바와 같이 산술 평균되고, 이 평균값이 제어부 (50) 에서 사용된다.
증발기 (9) 에서 증발된 저압 가스 냉매는 압축기 (3) 로 유도되어 다시 압축된다.
다음으로, 도 7 을 사용하여, 동계와 같이 부하가 작을 때의 터보 냉동기 (1) 의 운전 방법에 대하여 설명한다.
터보 냉동기 (1) 의 제어부 (50) 에는 후술하는 저부하 모드와 정지 제한 모드를 전환하는 물리적인 스위치가 형성되어 있다. 이 스위치는 작업자에 의해 전환된다. 이 스위치의 설정에 의해, 저부하시라 하더라도 정지시키고자 하지 않는 경우에는 정지 제한 모드를 선택하고, 저부하시에 정지시키고자 하는 경우에는 저부하 모드를 선택한다. 또한, 물리적인 스위치 대신에 터보 냉동기 (1) 를 포함하는 시스템을 통합 제어하는 중앙 제어실로부터의 신호를 받아, 원격 조작에 의해 전환하는 것으로 해도 된다.
먼저, 저부하 모드를 설명한다.
터보 냉동기 (1) 의 부하가 작아져 가고 (단계 S0), 제어부 (50) 에서 저부하 모드가 선택되어 있는 경우에는 (단계 S1 에 있어서의 「NO」), 단계 S10 으로 진행된다. 그리고, 단계 S12 에서는 소정 시간이 경과했는지 여부를 판정한다. 이로써, 저부하 모드로 이행된 직후에 터보 냉동기 (1) 가 정지되는 것을 방지한다. 예를 들어, 동계에서 하계로 이행될 때에, 정지 제한 모드에서 저부하 모드로 전환하는 경우, 작업자는 기측 (幾側) 에 형성된 참조용 온도계를 보고 냉수 입구 온도가 충분히 높아졌다고 판단하여 제어부 (50) 의 스위치를 전환하는 경우가 있다. 이 때, 기측의 온도계는 제 1 온도 (후술하는 단계 S14 참조) 를 상회하고 있어도, 제어부 (50) 에서 파악하고 있는 냉수 입구 온도 센서 (40) 에 의한 온도는 제 1 온도보다 낮은 경우가 상정된다. 왜냐하면, 본 실시형태에서는 도 1 에 나타낸 바와 같이 복수의 온도 센서를 사용하여 높은 정밀도로 냉수 입구 온도를 측정하고 있기 때문에, 기측의 비교적 정밀도가 낮은 온도계와 편차가 커졌다는 것을 충분히 생각할 수 있기 때문이다. 이러한 경우에는, 제어부 (50) 의 스위치를 전환한 직후에 터보 냉동기 (1) 가 정지된다. 이 사태를 회피하기 위 해, 단계 S12 에서 소정 시간 대기하도록 하고 있다.
단계 S12 에서 소정 시간 경과한 후, 단계 S14 로 진행되어, 냉수 입구 온도 센서 (40) 에 의해 계측되는 냉수 입구 온도가 제 1 온도를 하회하고 있는지 여부를 판정한다. 제 1 온도는 외부 부하가 요구하는 냉수 온도에 대응하는 설정 냉수 출구 온도 (Toutset) 보다 높은 온도이면서 온도 센서의 오차를 초과한 범위에서 설정한다. 예를 들어, 설정 냉수 출구 온도 (Toutset) 가 7℃ 인 경우, 온도 센서의 오차가 0.4℃ 로 되면, 제 1 온도는 7.5℃ 로 설정된다. 또한, 이 제 1 온도는 임의로 변경할 수 있도록 해도 된다.
냉수 입구 온도가 제 1 온도를 하회하고 있는 경우에는, 단계 S16 로 진행되어, 터보 냉동기 (1) 를 정지시킨다. 냉수 입구 온도가 제 1 온도를 하회하고 있다는 것은, 온도 센서의 오차 범위 내에서의 제어를 강요당하고 있기 때문이기 때문에, 터보 냉동기 (1) 를 일시 정지시키는 제어를 실시한다. 그리고, 냉수 입구 온도가 제 1 온도 이상으로 설정된 소정 값을 상회한 경우에 (단계 S18), 단계 S20 로 진행되어, 다시 터보 냉동기 (1) 를 기동시킨다. 그리고, 냉수 입구 온도가 제 1 온도를 하회할 때까지 (단계 S14) 다시 운전을 계속한다. 저부하 모드에서는 이와 같이 정지 기동을 반복함으로써 저부하에서의 운전을 실시한다.
다음으로, 정지 제한 모드를 설명한다.
터보 냉동기 (1) 의 부하가 작아져 가고 (단계 S0), 제어부 (50) 에서 정지 제한 모드가 선택되어 있는 경우에는 (단계 S1), 제어부 (50) 는 냉각수 복귀 배관 (5a) 에 형성된 온도 센서 (도시 생략) 에 의해 얻어지는 냉각수 온도가 15℃ 를 하회하고 있는지 여부를 판정한다. 냉각수 온도 15℃ 이상인 경우에는, 다음의 단계 S5 로는 진행되지 않는다. 이것은, 냉각수 온도가 15℃ 이상인 경우에는, 일정 이상의 부하가 터보 냉동기 (1) 에 요구되고 있다고 생각할 수 있으므로, 이러한 경우에는 정지 제한 모드를 실시하지 않게 한다. 이로써, 저부하가 아님에도 불구하고 터보 냉동기 (1) 가 정지되는 사태를 회피한다. 또한, 냉각수 온도의 임계값인 15℃ 는 다른 온도를 사용해도 되므로, 임의로 변경할 수 있는 것이다.
단계 S3 에서 냉각수 온도가 15℃ 를 하회하고 있다고 판단하면, 단계 S5 로 진행되어, 냉수 출구 온도 센서 (42) 에 의해 얻어진 냉수 출구 온도 또는 냉수 입구 온도 센서 (40) 에 의해 얻어진 냉수 입구 온도가 제 2 온도를 하회하고 있는지 여부를 판정한다. 이 제 2 온도는 제 1 온도보다 작은 온도로 설정된다. 이로써, 저부하 모드에서는 냉수 입구 온도가 제 1 온도를 하회하면 정지되는 경우라 하더라도, 정지 제한 모드에서는 정지되지 않고, 운전이 계속되는 제어가 실현된다. 또, 정지 제한 모드에서는 냉수 출구 온도가 제 2 온도를 하회한 경우에도 정지하는 제어로 하고 있는데, 이것은 설정 냉수 출구 온도 (Toutset) 에 대해 온도 센서의 오차를 고려한 제 1 온도보다 낮은 제 2 온도의 범위에 들어오면, 온도 센서의 오차 범위 내에서의 계측값이 되기 때문에, 냉수 입구 온도뿐만 아니라 냉수 출구 온도도 제 2 온도를 하회할 가능성을 생각할 수 있기 때문이다.
또, 제 2 온도는 설정 냉수 출구 온도 (Toutset) 보다 작은 온도로 되어 있다. 이로써, 터보 냉동기 (1) 가 저부하시에 정지되는 것을 실질적으로 회피할 수 있다. 왜냐하면, 냉수 출구 온도는 설정 냉수 출구 온도 (Toutset) 가 되도록 제어부 (50) 에 의해 제어되고 있기 때문에, 현실적으로는 냉수 출구 온도 및 냉수 입구 온도가 설정 냉수 출구 온도 (Toutset) 보다 작아지는 경우는 없기 때문이다. 단, 온도 센서의 계측 오차로 인하여, 이들 계측값이 설정 냉수 출구 온도 (Toutset) 를 하회하는 경우가 있기 때문에, 이 측정 오차를 고려하여 제 2 온도를 결정하는 것이 바람직하다. 예를 들어, 온도 센서의 오차를 0.2℃ 로 한 경우, 냉수 입구 및 냉수 출구의 양자를 고려하면 최대 0.4℃ 의 오차를 생각할 수 있기 때문에, 설정 냉수 출구 온도 (Toutset) 가 7℃ 이면, 제 2 온도를 6.5℃ 이하로 하는 것이 바람직하다.
또, 제 2 온도는 외부 부하가 허용하는 최소 온도 이상으로 되어 있다. 일반적으로 외부 부하는 설정 냉수 출구 온도 (Toutset) 를 요구하는데, 이 설정 냉수 출구 온도 (Toutset) 보다 낮은 최소 온도까지 허용하는 설계로 되어 있다. 이 최소 온도 이상이면서, 가능한 한 최소 온도에 가까운 온도를 제 2 온도로 하면, 또한 터보 냉동기 (1) 가 정지되지 않고 계속 운전할 수 있는 제어가 실현된다. 예를 들어, 최소 온도가 5℃ 인 경우에는, 제 2 온도도 5℃ 로 한다.
단계 S5 에서 냉수 출구 온도 또는 냉수 입구 온도가 제 2 온도를 하회하고 있다고 판단한 경우에는, 터보 냉동기 (1) 는 정지된다. 냉수 출구 온도 또는 냉수 입구 온도가 제 2 온도를 하회하고 있는 경우에는, 부하가 한없이 0% 에 가까운 것을 의미하기 때문에, 터보 냉동기 (1) 를 정지시키는 것으로 한다.
상기 서술한 터보 냉동기에 의하면, 이하의 작용 효과를 발휘한다.
냉수 출구 온도 또는 냉수 입구 온도가 제 1 온도보다 낮은 제 2 온도 이하로 된 경우에만 터보 냉동기 (1) 를 정지시키는 정지 제한 모드를 형성하였기 때문에, 냉수 입구 온도가 제 1 온도를 하회해도 터보 냉동기 (1) 를 정지시키지 않고, 냉수 입구 온도 또는 냉수 출구 온도가 제 2 온도 이하가 된 경우에 비로소 터보 냉동기 (1) 를 정지시키는 제어가 실현된다. 즉, 저부하가 되어도 터보 냉동기 (1) 가 정지되기 어려운 모드가 달성된다. 이로써, 동계에 있어서의 터보 냉동기 (1) 의 도입시의 조정 운전이라 하더라도, 터보 냉동기 (1) 가 저부하 모드에 의해 정지되는 부하보다 큰 부하를 부여하기 위한 보일러 등을 별도로 설치할 필요가 없다. 따라서, 동계라 하더라도 저부하에서의 계속 운전이 가능해져, 비용이 들지 않는 조정 운전을 할 수 있게 된다.
또, 부하가 작은 운전 초기라 하더라도, 저부하 모드에 의해 터보 냉동기 (1) 의 기동 정지를 반복하는 운전을 회피할 수 있다.
또, 본 실시형태의 터보 냉동기 (1) 를 복수 구비한 열원 시스템의 경우에는, 외부 부하의 요구에 따라 터보 냉동기 (1) 의 대수를 증감시키는 대수 제어 운전을 실시한다. 구체적으로는, 부하가 작은 경우에는 1 대째의 터보 냉동기 (1) 를 기동시키고, 부하의 증대에 따라 2 대째, 3 대째와 같이 기동시켜 나가, 복수 대 동시 운전을 실시한다. 부하가 작아져 가는 경우에는, 부하에 따라 터보 냉동기 (1) 를 정지시켜 나가, 기동 대수를 1 대씩 줄여간다. 이러한 열원 시스템의 경우, 터보 냉동기 (1) 의 제어부 (50) 의 스위치에 의해 정지 제한 모드와 저부하 모드를 전환할 수 있기 때문에, 저부하시에 최초로 가동되고 마지막에 정지 되는 1 대째의 터보 냉동기 (1) 에 대해서는 정지 제한 모드를 선택해 두고, 2 대째 이후에 가동되고 1 대째보다 먼저 정지되는 터보 냉동기 (1) 에 대해서는 저부하 모드를 선택해 둔다. 이로써, 대수 감소 운전시에는 2 대째 이후의 터보 냉동기 (1) 는 저부하 모드에 의해 신속하게 정지되고, 마지막에 정지되는 1 대째의 터보 냉동기 (1) 는 저부하라 하더라도 정지 제한 모드에 의해 정지되지 않도록 운전을 계속할 수 있다. 이로써, 원활하게 대수 감소 운전이 행해지고, 또한 저부하라 하더라도 정지되지 않는 열원 시스템을 실현시킬 수 있다.
또한, 본 실시형태에서는 냉동 운전을 오로지 행하는 터보 냉동기 (1) 에 대하여 설명했는데, 히트 펌프 운전을 구비한 히트 펌프식 터보 냉동기라 하더라도 본 발명을 적용할 수 있다.
또, 열원기로는 터보 냉동기를 예로서 설명했는데, 다른 형식의 열원기이어도 되고, 예를 들어 스크루 칠러(screw chiller)이어도 된다.

Claims (9)

  1. 냉매를 압축시키는 압축기와,
    그 압축기에 의해 압축된 냉매를 응축시키는 응축기와,
    그 응축기에 의해 응축된 냉매를 팽창시키는 팽창 밸브와,
    그 팽창 밸브에 의해 팽창된 냉매를 증발시키는 증발기와,
    그 증발기에 의해 열교환된 냉수를 외부 부하에 대해 공급하는 냉수 도입 배관과,
    그 냉수 도입 배관을 흐르는 냉수의 냉수 출구 온도를 측정하는 냉수 출구 온도 측정 수단과,
    상기 외부 부하와 열교환을 실시하여, 상기 증발기로 상기 냉수를 되돌리는 냉수 복귀 배관과,
    그 냉수 복귀 배관을 흐르는 냉수의 냉수 입구 온도를 측정하는 냉수 입구 온도 측정 수단과,
    상기 냉수 출구 온도가 설정 냉수 출구 온도가 되도록 제어하는 제어부를 구비하고,
    그 제어부는, 상기 냉수 입구 온도 측정 수단에 의해 측정된 냉수 입구 온도가 상기 설정 냉수 출구 온도와의 사이에서 소정 온도차를 형성하는 제 1 온도 이하로 된 경우에, 당해 열원기의 정지 및 기동을 반복하여 제어하는 저부하 모드를 갖는 열원기에 있어서,
    상기 제어부는, 상기 냉수 입구 온도 또는 상기 냉수 출구 온도가 상기 제 1 온도보다 낮은 제 2 온도 이하로 된 경우에 당해 열원기를 정지시키는 정지 제한 모드를 구비하고 있는 것을 특징으로 하는 열원기.
  2. 제 1 항에 있어서,
    상기 제 2 온도는 상기 설정 냉수 출구 온도보다 작은 것을 특징으로 하는 열원기.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 제 2 온도는 상기 외부 부하가 허용하는 최소 온도 이상으로 되어 있는 것을 특징으로 하는 열원기.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 제어부는 상기 저부하 모드와 상기 정지 제한 모드를 택일적으로 전환할 수 있도록 되어 있는 것을 특징으로 하는 열원기.
  5. 제 4 항에 있어서,
    상기 제어부는 당해 열원기의 운전 중에 상기 각 모드를 택일적으로 전환할 수 있도록 되어 있으며, 상기 정지 제한 모드에서 상기 저부하 모드로 전환한 경우에, 소정 시간 경과 후에 그 저부하 모드를 실행하는 것을 특징으로 하는 열원기.
  6. 제 4 항 또는 제 5 항에 있어서,
    상기 응축기를 흐르는 냉매로부터 응축열을 빼앗는 냉각수를 공급하는 냉각수 공급 수단을 구비하고,
    상기 제어부는 상기 응축기에 흘러 들어가는 상기 냉각수의 온도가 소정값 이하인 경우에 상기 정지 제한 모드를 선택할 수 있는 것으로 하는 것을 특징으로 하는 열원기.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 냉수 출구 온도 측정 수단 및/또는 상기 냉수 입구 온도 측정 수단은, 상기 냉수 도입 배관 및/또는 상기 냉수 복귀 배관의 동일 횡단면에 있어서의 동일 반경 위치에 둘레 방향으로 상이한 위치에 형성된 복수의 온도 센서를 구비하고,
    상기 제어부는 각 상기 온도 센서의 출력값의 평균값을 사용하는 것을 특징으로 하는 열원기.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 기재된 열원기를 복수 구비하고 있는 것을 특징으로 하는 열원 시스템.
  9. 냉매를 압축시키는 압축기와,
    그 압축기에 의해 압축된 냉매를 응축시키는 응축기와,
    그 응축기에 의해 응축된 냉매를 팽창시키는 팽창 밸브와,
    그 팽창 밸브에 의해 팽창된 냉매를 증발시키는 증발기와,
    그 증발기에 의해 열교환된 냉수를 외부 부하에 대해 공급하는 냉수 도입 배관과,
    그 냉수 도입 배관을 흐르는 냉수의 냉수 출구 온도를 측정하는 냉수 출구 온도 측정 수단과,
    상기 외부 부하와 열교환을 실시하여, 상기 증발기로 상기 냉수를 되돌리는 냉수 복귀 배관과,
    그 냉수 복귀 배관을 흐르는 냉수의 냉수 입구 온도를 측정하는 냉수 입구 온도 측정 수단을 구비하고,
    상기 냉수 출구 온도가 설정 냉수 출구 온도가 되도록 제어하고,
    상기 냉수 입구 온도 측정 수단에 의해 측정된 냉수 입구 온도가 상기 설정 냉수 출구 온도와의 사이에서 소정 온도차를 형성하는 제 1 온도 이하로 된 경우에, 당해 열원기의 정지 및 기동을 반복하여 제어하는 저부하 모드를 실시하는 열원기의 제어 방법에 있어서,
    상기 냉수 입구 온도 또는 상기 냉수 출구 온도가 상기 제 1 온도보다 낮은 제 2 온도 이하로 된 경우에 당해 열원기를 정지시키는 정지 제한 모드를 실시하는 것을 특징으로 하는 열원기의 제어 방법.
KR1020087028199A 2006-10-20 2007-10-19 열원기 및 열원 시스템 그리고 열원기의 제어 방법 KR101056974B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2006-286693 2006-10-20
JP2006286693A JP5106819B2 (ja) 2006-10-20 2006-10-20 熱源機および熱源システムならびに熱源機の制御方法
PCT/JP2007/070430 WO2008047901A1 (fr) 2006-10-20 2007-10-19 Dispositif de source de chaleur, système de source de chaleur et procédé de contrôle du dispositif de source de chaleur

Publications (2)

Publication Number Publication Date
KR20090037855A true KR20090037855A (ko) 2009-04-16
KR101056974B1 KR101056974B1 (ko) 2011-08-16

Family

ID=39314112

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087028199A KR101056974B1 (ko) 2006-10-20 2007-10-19 열원기 및 열원 시스템 그리고 열원기의 제어 방법

Country Status (6)

Country Link
US (1) US20090301113A1 (ko)
EP (1) EP2075515B1 (ko)
JP (1) JP5106819B2 (ko)
KR (1) KR101056974B1 (ko)
CN (1) CN101454622B (ko)
WO (1) WO2008047901A1 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495499B2 (ja) * 2008-02-27 2014-05-21 三菱重工業株式会社 ターボ冷凍機および冷凍システムならびにこれらの制御方法
JP5642448B2 (ja) * 2010-08-02 2014-12-17 三菱重工業株式会社 流量推定装置、熱源機、及び流量推定方法
JP5881282B2 (ja) * 2010-09-30 2016-03-09 三菱重工業株式会社 ターボ冷凍装置、その制御装置及びその制御方法
JP2012159255A (ja) * 2011-02-02 2012-08-23 Toshiba Carrier Corp ヒートポンプ式熱源機および加温システム
CN102094817A (zh) * 2011-02-15 2011-06-15 四川长虹空调有限公司 用于冷水机组的无级调节压缩机及其载荷控制方法
ES2584178T3 (es) 2012-08-23 2016-09-26 Danfoss A/S Método para calibrar un sensor de temperatura de un sistema de compresión de vapor
US20140345307A1 (en) * 2013-05-23 2014-11-27 Air To Water Technologies, Inc. Energy efficient dehumidifying refrigeration system
KR101586906B1 (ko) * 2014-04-30 2016-01-20 하이에어코리아 주식회사 터보냉동기의 압축기 운전제어방법
KR102201745B1 (ko) * 2014-05-20 2021-01-12 엘지전자 주식회사 터보 칠러 및 이를 포함하는 칠러 시스템
JP6716306B2 (ja) * 2016-03-23 2020-07-01 三菱重工サーマルシステムズ株式会社 熱源システムの設定温度制御装置、及びそれを備えた熱源システム、並びに熱源システムの設定温度制御方法
CN106403175B (zh) * 2016-09-12 2019-03-26 珠海格力电器股份有限公司 冷水机组的控制方法及冷水机组
US20180372385A1 (en) * 2017-06-26 2018-12-27 Trane International Inc. Compressor cycling control for variable flow systems
JP6533256B2 (ja) * 2017-07-06 2019-06-19 本田技研工業株式会社 内燃機関の制御装置
CN110513930B (zh) * 2019-09-05 2021-07-13 四川长虹空调有限公司 空气源热泵机组变频压缩机加减载控制方法
JP2021038897A (ja) * 2019-09-05 2021-03-11 パナソニックIpマネジメント株式会社 冷凍サイクル装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528827U (ko) * 1978-08-16 1980-02-25
JPS5934257B2 (ja) * 1979-07-06 1984-08-21 三菱電機株式会社 水冷却装置
JPH0426868Y2 (ko) * 1986-11-12 1992-06-26
JPH0833242B2 (ja) * 1987-04-13 1996-03-29 三菱重工業株式会社 冷凍装置
JP2501947B2 (ja) * 1990-10-24 1996-05-29 富士電機株式会社 冷凍装置
JP2715705B2 (ja) 1991-07-04 1998-02-18 松下電器産業株式会社 内燃機関におけるステップモータ制御装置
JPH05296516A (ja) * 1992-04-18 1993-11-09 Osaka Gas Co Ltd 冷房装置
JP2708053B2 (ja) * 1992-07-23 1998-02-04 株式会社日立製作所 冷凍装置の温度調節器
US6061413A (en) * 1996-03-18 2000-05-09 Westinghouse Electric Company Llc Nuclear steam supply temperature measurement system and method
JPH10197079A (ja) * 1997-01-06 1998-07-31 Yakiii Kk 冷水式冷凍機の省エネルギー運転制御装置
JP2000111182A (ja) * 1998-10-09 2000-04-18 Sanden Corp 空調装置
JP2000121175A (ja) * 1998-10-15 2000-04-28 Hitachi Ltd 冷凍装置
JP3693038B2 (ja) * 2002-05-22 2005-09-07 ダイキン工業株式会社 冷凍装置の制御方法および冷凍装置
JP4269616B2 (ja) * 2002-09-24 2009-05-27 株式会社Ihi 過冷却水製造装置の制御方法及び装置
JP3851285B2 (ja) * 2003-03-14 2006-11-29 株式会社三菱地所設計 制御装置

Also Published As

Publication number Publication date
EP2075515A4 (en) 2013-03-27
JP5106819B2 (ja) 2012-12-26
CN101454622A (zh) 2009-06-10
EP2075515B1 (en) 2018-02-28
EP2075515A1 (en) 2009-07-01
JP2008101884A (ja) 2008-05-01
CN101454622B (zh) 2010-12-08
KR101056974B1 (ko) 2011-08-16
US20090301113A1 (en) 2009-12-10
WO2008047901A1 (fr) 2008-04-24

Similar Documents

Publication Publication Date Title
KR101056974B1 (ko) 열원기 및 열원 시스템 그리고 열원기의 제어 방법
EP2232169B1 (en) Vapor compression system
CN102884382B (zh) 热源侧热交换器用风扇的控制方法及空调装置
KR101445992B1 (ko) 열매체 유량 추정 장치, 열원기 및 열매체 유량 추정 방법
US10401068B2 (en) Air cooled chiller with heat recovery
CN100587368C (zh) 具有内部热交换器的制冷回路的控制
JP2007333219A (ja) マルチ式空気調和システム
EP2730859A1 (en) Refrigeration cycle device
EP3614070A1 (en) Air conditioner
WO2016077559A1 (en) On board chiller capacity calculation
JP5010364B2 (ja) 熱源機およびその制御方法、並びに、熱源システムおよびその運転方法
JP4276394B2 (ja) ショーケース冷却装置
US6826917B1 (en) Initial pull down control for a multiple compressor refrigeration system
JP5881339B2 (ja) 空気調和機
WO2020070793A1 (ja) 冷凍サイクル装置
JP2011038711A (ja) ターボ冷凍機
JP5144959B2 (ja) 熱源機およびその制御方法
US12007149B2 (en) Expansion control system on a centrifugal chiller with an integral subcooler
EP4137759A1 (en) Expansion control system on a centrifugal chiller with an integral subcooler
CN101644502B (zh) 制冷回路及用于运行该制冷回路的方法
EP2242966B1 (en) Method of controlling a heat-rejection heat exchanging side of a refrigerant circuit
KR101397658B1 (ko) 공기조화 시스템
JP2008157601A (ja) 冷凍空調システム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140721

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150716

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160721

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170720

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180717

Year of fee payment: 8