WO2008047901A1 - Dispositif de source de chaleur, système de source de chaleur et procédé de contrôle du dispositif de source de chaleur - Google Patents

Dispositif de source de chaleur, système de source de chaleur et procédé de contrôle du dispositif de source de chaleur Download PDF

Info

Publication number
WO2008047901A1
WO2008047901A1 PCT/JP2007/070430 JP2007070430W WO2008047901A1 WO 2008047901 A1 WO2008047901 A1 WO 2008047901A1 JP 2007070430 W JP2007070430 W JP 2007070430W WO 2008047901 A1 WO2008047901 A1 WO 2008047901A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
chilled water
heat source
water outlet
cold water
Prior art date
Application number
PCT/JP2007/070430
Other languages
English (en)
French (fr)
Inventor
Kenji Ueda
Kazuma Taito
Minoru Matsuo
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to CN2007800196570A priority Critical patent/CN101454622B/zh
Priority to EP07830164.5A priority patent/EP2075515B1/en
Priority to US12/225,061 priority patent/US20090301113A1/en
Priority to KR1020087028199A priority patent/KR101056974B1/ko
Publication of WO2008047901A1 publication Critical patent/WO2008047901A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Definitions

  • HEAT SOURCE DEVICE HEAT SOURCE SYSTEM
  • HEAT SOURCE DEVICE CONTROL METHOD HEAT SOURCE DEVICE CONTROL METHOD
  • the present invention relates to a heat source device and a heat source system, for example, a turbo refrigerator, and a method for controlling the heat source device.
  • a turbo refrigerator heat source machine
  • the refrigerant intake of the turbo compressor is provided with an intake vane (prerotation vane for capacity control) that adjusts the amount of refrigerant sucked.
  • the control unit of the turbo refrigerator maintains the outlet temperature of the cold water supplied to the external load constant by adjusting the angle of the inlet vane (see Patent Document 1). For example, if the chilled water temperature required by the external load is 7 ° C (set chilled water outlet temperature), control is performed to maintain this 7 ° C.
  • the chilled water temperature difference between the chilled water outlet temperature and the chilled water inlet temperature has a set value of the specified specification.
  • the turbo chiller load is designed to be 100% . For example, if the set chilled water outlet temperature is 7 ° C and the chilled water temperature difference at 100% load is 5 ° C, the chilled water inlet temperature at 100% load is 12 ° C.
  • Patent Document 1 Japanese Utility Model Publication 5-10186
  • the load required for the centrifugal chiller is reduced and may be less than 10%.
  • the chilled water temperature difference is 0.5 ° C or less, accurate control becomes difficult due to the accuracy limits of the thermometer that measures the chilled water outlet temperature and the chilled water inlet temperature.
  • a resistance temperature detector JIS A class
  • the accuracy of the resistance temperature detector is ⁇ 0.1 ° C
  • the error of the converter is ⁇ 0.1 ° C.
  • thermometer has an error of ⁇ 0.2 ° C, and the error between the two thermometers is superimposed to measure the temperature difference between the chilled water outlet and the chilled water inlet, so the maximum is 0.4 °. C measurement error is assumed. Therefore, the negative of turbo refrigerator If the load is less than 10% and the chilled water temperature difference is less than 0.5 ° C, the temperature is controlled within the error range of the thermometer, making it difficult to control the temperature by continuous operation. However, the operation is performed in the low load mode where the start and stop are repeated while confirming the rise of the chilled water temperature.
  • turbo chiller that can operate continuously even at low loads, as it does not like the chilled water temperature fluctuating due to intermittent operation of the turbo chiller when the load is low.
  • the present invention has been made in view of such circumstances.
  • a heat source machine (turbo refrigerator) capable of continuous operation even at a low load lower than a 10% load is provided. I will make it available.
  • the heat source apparatus of the present invention employs the following means.
  • a heat source device includes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, an expansion valve that expands the refrigerant condensed by the condenser, Measures the evaporator for evaporating the refrigerant expanded by the expansion valve, the chilled water piping for supplying chilled water heat-exchanged by the evaporator to the external load, and the chilled water outlet temperature of the chilled water flowing through the chilled water piping
  • a chilled water inlet temperature measuring means for measuring the chilled water inlet temperature of the flowing chilled water, and a control section for controlling the chilled water outlet temperature to be a set cold water outlet temperature, the control section comprising the chilled water inlet temperature measuring means.
  • a low-load mode in which the heat source unit is repeatedly controlled to stop and start when the chilled water inlet temperature measured by the above is below a first temperature that forms a predetermined temperature difference with the set chilled water outlet temperature.
  • the control unit turns the heat source machine It features a stop limit mode that stops.
  • the temperature difference between the set cold water outlet temperature and the cold water inlet temperature becomes smaller. For example, if the temperature difference is 5 ° C when the load is 100% (for example, the chilled water inlet temperature is 12 ° C compared to the set chilled water outlet temperature of 7 ° C), the load will be reduced to 10%. The temperature difference is 0.5 ° C. Thus, when the load decreases and the temperature difference between the set chilled water outlet temperature and the chilled water inlet temperature becomes smaller and the chilled water inlet temperature falls below the first temperature, the control unit temporarily stops the heat source unit, and temporarily The operation is repeated so that the set chilled water outlet temperature is achieved.
  • the heat source machine of the present invention is provided with a stop limit mode in which the heat source machine is stopped only when the cold water outlet temperature or the cold water inlet temperature is lower than the first temperature and lower than the second temperature.
  • the heat source machine is not stopped even if the chilled water inlet temperature falls below the first temperature, and the heat source machine is stopped only when the chilled water inlet temperature or the chilled water outlet temperature falls below the second temperature.
  • a mode in which the heat source machine does not stop easily and can be operated continuously even when the load is low is achieved.
  • the second temperature may be lower than the set cold water outlet temperature.
  • the error of the temperature measurement means is 0.2 ° C
  • a maximum error of 0.4 ° C can be considered considering both the cold water inlet and the cold water outlet, so the set cold water outlet temperature is 7 ° C.
  • the second temperature is preferably 6.5 ° C or lower.
  • the second temperature may be equal to or higher than a minimum temperature allowed by the external load! /.
  • the external load requires chilled water at a set chilled water outlet temperature, but allows a temperature lower than the set chilled water outlet temperature (minimum temperature). Therefore, the second temperature is determined in consideration of this minimum temperature. As a result, the operation can be continued as much as possible without being stopped even at a low load.
  • control unit may be selectively switchable between the low load mode and the stop limit mode.
  • the low load mode and the stop limit mode can be alternatively switched, for example, during normal operation, the low load mode is set so that the low load operation can be performed by the on / off operation of the heat source unit.
  • the stop limit mode it is possible to set the stop limit mode so that adjustment operation is possible.
  • the switching may be performed by providing a physical switch on the operation panel of the heat source unit and operating this switch by an operator. It is also possible to switch by remote operation in response to a signal from the central control room. In these cases, the microcomputer installed in the control panel of the heat source unit should change the internal flag of each mode.
  • the control unit can selectively switch between the modes during operation of the heat source device, and the low load from the stop limit mode.
  • the low load mode may be executed after a predetermined time has elapsed.
  • the stop limit mode is selected to avoid stopping the heat source machine when the load is low, such as in winter, the cold water inlet temperature is lower than the first temperature when switching to the low load mode As a result, the heat source machine may suddenly stop.
  • the low load mode is executed after a predetermined time even when the stop limit mode is switched to the low load mode.
  • cooling water supply means for supplying cooling water that takes away heat of condensation from the refrigerant flowing through the condenser
  • the control unit is configured to supply the cooling water flowing into the condenser.
  • the stop limit mode may be selectable when the temperature of the vehicle is below a predetermined value.
  • the stop limit mode can be selected only when the temperature of the cooling water flowing into the condenser is below a predetermined value.
  • the cold water outlet temperature measuring means and / or the cold water inlet temperature measuring means have the same radius in the same cross section of the cold water forward pipe and / or the cold water return pipe.
  • a plurality of temperature sensors provided at different positions in the circumferential direction may be provided, and the control unit may use an average of outputs of the temperature sensors.
  • the temperature of the chilled water flowing in the chilled water piping may show a temperature distribution in the circumferential direction when viewed in the same cross section. This is particularly noticeable when the cold water outlet pipe is connected horizontally to the evaporator because the liquid level of the refrigerant in the evaporator rises and falls.
  • a plurality of temperature sensors are provided at different positions in the circumferential direction at the same radial position in the same cross section of the pipe, and the average of the outputs of these temperature sensors is used. It can be evaluated using temperature.
  • the heat source system of the present invention includes a plurality of heat source devices described in the above!
  • a unit control operation is performed in which the number of heat source units is increased or decreased in accordance with a request from an external load. Specifically, if the load is small, the first unit Start up the heat source unit, and start up the second unit, the third unit, etc. as the load increases, and operate multiple units simultaneously. If the load decreases, stop the heat source unit according to the load and reduce the number of units started one by one. In the case of such a heat source system, the heat source unit has a stop limit mode and a low load mode.
  • the method for controlling a heat source apparatus includes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, and a refrigerant condensed by the condenser.
  • An expansion valve that expands, an evaporator that evaporates the refrigerant expanded by the expansion valve, a cold water supply pipe that supplies cold water heat-exchanged by the evaporator to an external load, and a flow through the cold water supply pipe Chilled water outlet temperature measuring means for measuring the chilled water outlet temperature, a chilled water return pipe that exchanges heat with the external load and returns the chilled water to the evaporator, and a chilled water inlet temperature of the chilled water flowing through the chilled water return pipe Chilled water inlet temperature measuring means for controlling the chilled water outlet temperature to be a set chilled water outlet temperature, and the chilled water inlet temperature measured by the chilled water inlet temperature measuring means is equal to the set chilled water outlet temperature.
  • the temperature difference between the set cold water outlet temperature and the cold water inlet temperature becomes smaller. For example, if the temperature difference is 5 ° C when the load is 100% (for example, the cold water inlet temperature is 12 ° C with respect to the set cold water outlet temperature of 7 ° C), the load will be reduced to 10%. The temperature difference is 0.5 ° C. In this way, the load is reduced and set When the temperature difference between the chilled water outlet temperature and the chilled water inlet temperature becomes smaller and the chilled water inlet temperature falls below the first temperature, the heat source unit is temporarily stopped and the operation that is temporarily started is repeated to set the chilled water outlet temperature. Control to achieve. In this way, a low-load mode that repeats stop and start of the heat source unit when a low load occurs is provided to cope with the low load.
  • a stop limit mode in which the heat source apparatus is stopped only when the cold water outlet temperature or the cold water inlet temperature is equal to or lower than a second temperature lower than the first temperature.
  • the heat source machine is not stopped even if the chilled water inlet temperature falls below the first temperature, and is stopped only when the chilled water inlet temperature or the chilled water outlet temperature falls below the second temperature.
  • the stop restriction mode for stopping the heat source unit only when the cold water outlet temperature or the cold water inlet temperature is equal to or lower than the second temperature lower than the first temperature is provided. Even if the temperature falls below the first temperature, the heat source machine is not stopped, and when the chilled water inlet temperature or the chilled water outlet temperature falls below the second temperature, the heat source machine is stopped only and the heat source machine is turned off even when the load is low. It can be continuously operated without stopping.
  • FIG. 1 is a schematic diagram showing a turbo chiller according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross section of the evaporator of FIG.
  • FIG. 3 is a cross-sectional view showing a cross section of the cold water outlet pipe of FIG. 1.
  • FIG. 4 is a graph showing the indicated value of each cold water outlet temperature sensor of FIG. 1 with respect to time.
  • FIG. 5 is a graph showing the indicated value in the steady state of each chilled water outlet temperature sensor of FIG. 1 with respect to time.
  • FIG. 6 is a schematic diagram showing a refrigerant circuit configuration of the turbo chiller of FIG. 1.
  • FIG. 7 is a flowchart showing a low load mode and a stop limit mode.
  • FIG. 1 shows a schematic configuration of a turbo refrigerator (heat source unit) 1 of the present invention.
  • the turbo refrigerator 1 includes a turbo compressor 3 that compresses the refrigerant, a condenser 5 that condenses the refrigerant compressed by the compressor 3, and a condenser 5 that condenses the refrigerant.
  • An expansion valve 7 for expanding the liquid refrigerant and an evaporator 9 for evaporating the refrigerant expanded by the expansion valve 7 are provided.
  • the compressor 3 is a turbo centrifugal compressor including a centrifugal impeller 10, and is driven to rotate by an electric motor.
  • the refrigerant intake port of the compressor 3 is provided with an intake vane 12 that adjusts the amount of suction refrigerant sucked.
  • the opening degree of the inlet rovan 12 is controlled by the control unit 50 of the turbo chiller 1.
  • the condenser 5 is a shell 'and' tube type heat exchanger.
  • the condenser 5 is connected with a cooling water return pipe 5a and a cooling water forward pipe 5b!
  • the cooling water that has flowed into the condenser 5 from the cooling water return pipe 5a passes through the heat transfer pipe 14, is turned back at the header 15, passes through the heat transfer pipe 14, and flows out to the cooling water forward pipe 5b.
  • the heat transfer tube 14 is a simple two-pipe for ease of understanding. (Refer to Figure 2 showing the evaporator 9 for reference).
  • the cooling water pipes 5a and 5b are connected to a cooling tower 6 installed outside.
  • the expansion valve 7 is provided between the condenser 5 and the evaporator 9, and is enthalpy-expanded by squeezing the liquid refrigerant supplied from the condenser 5.
  • the opening degree of the expansion valve 7 is controlled by the control unit 50 of the turbo refrigerator 1.
  • the evaporator 9 is a shell “and” tube type heat exchanger.
  • the evaporator 9 has a cold water return pipe 34 and a cold water forward pipe 35 connected horizontally.
  • the cold water that has flowed into the evaporator 9 from the cooling water return pipe 34 passes through the heat transfer pipe 37, is turned back at the header 39, passes through the heat transfer pipe 37, and flows out to the cold water forward pipe 35.
  • the heat transfer tube 37 has a simple two-pipe structure in FIG. 1 for ease of understanding. Actually, as shown in FIG. Yes.
  • the cold water and the refrigerant in the shell exchange heat, and the refrigerant takes heat of evaporation from the cold water to cool the cold water.
  • the cooled chilled water is sent to the external load 100 via the chilled water outgoing pipe 35, and chilled heat is supplied to the external load 100.
  • a plurality of chilled water inlet temperature sensors 40 for measuring the chilled water inlet temperature TE0 immediately before the inflow of the evaporator 9 are provided.
  • a plurality of cold water outlet temperature sensors 42 for measuring the outlet temperature TE ′ are provided respectively.
  • the temperature sensor it is preferable to use a JIS A class resistance temperature detector.
  • the cold water inlet temperature TE0 is set to 12 ° C
  • the cold water outlet temperature TE ' is set to 7 ° C.
  • FIG. 3 shows a cross section of the cold water outgoing pipe 35.
  • four temperature sensors 42a, 42b, 42c, and 42d are provided on the same cross-section of the cold water outlet pipe 35.
  • the temperature measuring portions at the tips of the temperature sensors 42 are arranged at the same radial position, and are provided at different positions in the circumferential direction at 90 ° intervals. That is, the first temperature sensor 42a is at the lowest position at 6 o'clock, the second temperature sensor 42b is at the middle position in the height direction at 9 o'clock, and the third temperature sensor 42c is at the uppermost position at 12 o'clock.
  • the fourth temperature sensor 42d is provided at the 3 o'clock position, which is an intermediate position in the height direction.
  • the cold water outlet temperature TE ′ is calculated. Specifically, four temperature output arithmetic Use the average. That is, as shown in Fig. 4, the temperature output of the first temperature sensor 42a is TE1 ', the temperature output of the second temperature sensor 42b is TE2', the temperature output of the third temperature sensor 42c is TE3 ', the temperature output of the fourth temperature sensor 42d If the output is TE4 ', the chilled water outlet temperature TE' is expressed as follows.
  • ⁇ , ( ⁇ '+ TE2' + TE3 '+ ⁇ 4') / 4
  • the accuracy of the chilled water outlet temperature ⁇ ′ can be increased by using the arithmetic average of the plurality of temperature sensors 42.
  • a large number of heat transfer tubes 37 are provided in the evaporator 9 (see FIG. 2), and as shown in FIG. Since it is not satisfied and the liquid level L of the refrigerant moves up and down, the temperature of the cold water after flowing through each heat transfer tube 37 differs depending on the position of the heat transfer tube 37. Since the chilled water will flow to the chilled water forward pipe 35 after merging, it will flow into the chilled water forward pipe 35 without being sufficiently mixed. Therefore, the chilled water immediately after flowing into the chilled water outgoing pipe 35 has a temperature distribution in the same cross section (see Fig. 4). Therefore, it is effective to use an arithmetic average value using a plurality of temperature sensors as in this embodiment.
  • this difference is corrected by the control unit 50 of the turbo refrigerator 1.
  • the control unit 50 of the turbo refrigerator For example, on the microcomputer board of the control unit 50, it is possible to set an offset value for correcting drift due to the mounting state of the temperature sensor! /, So this offset value is changed based on the above difference. .
  • the accuracy S of the chilled water outlet temperature is improved by correcting the offset value of each temperature sensor using the indication value of the temperature sensor in the steady state.
  • such correction of the offset value of each temperature sensor is periodically performed and weighted according to frequency. For example, out of the last 10 measurements, even if a unique temperature is output only for the most recent time, the previous 10 temperatures are not taken into account if the temperature is not used as it is.
  • a time constant of the first-order delay may be grasped in advance, and the error due to the response delay may be corrected in consideration of this time constant.
  • a resistance temperature detector is used as in this embodiment, it is effective because the heat capacity of the sensor unit cannot be ignored during a transient response.
  • a temperature sensor at room temperature is immersed in cold water or hot water to measure the temperature history of the step response, and the time constant is ascertained through experiments.
  • the temperature sensors 40 are also provided in the cold water return pipe 34 (see FIG. 1). This is effective when cold water returned from the external load 100 may have a temperature distribution within the same cross section. As in Fig. 3, the temperature sensor 40 should be installed at a 90 ° angle in the circumferential direction within the same cross section.
  • FIG. 6 shows a refrigerant circuit configuration of turbo chiller 1 shown in FIG.
  • a hot gas bypass pipe 45 not shown in FIG. 1 is shown.
  • the hot gas bypass pipe 45 is provided between the discharge side of the compressor 3 and the suction side of the compressor 3.
  • the hot gas bypass pipe 45 is provided with a hot gas bypass valve 45a for adjusting the refrigerant flow rate!
  • the high-temperature high-pressure discharged refrigerant whose flow rate is adjusted by the hot gas bypass valve 45a is bypassed to the suction side of the compressor 3.
  • the opening degree of the hot gas bypass valve 45a is adjusted by the control unit 50 of the turbo chiller 1.
  • the compressor 3 is driven by an electric motor and rotated at a predetermined frequency.
  • the opening degree of the inlet vane 12 is adjusted by the control unit 50 so as to achieve a set temperature (for example, a cold water outlet temperature of 7 ° C.).
  • the low-pressure gas refrigerant sucked from the evaporator 9 is compressed by the compressor 3 to become a high-pressure gas refrigerant.
  • the high-pressure gas refrigerant discharged from the compressor 3 is led to the condenser 5.
  • the high-pressure gas refrigerant is led by the cooling water led from the cooling tower 6 (see Fig. 1) through the cooling water pipes 5a and 5b.
  • the gas refrigerant is cooled to a substantially equal pressure and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is led to the expansion valve 7 and isentropy expanded by the expansion valve 7.
  • the refrigerant expanded in this way evaporates in the evaporator 9 and takes heat from the cold water flowing in the heat transfer tube 37.
  • the chilled water flowing in at 12 ° C from the chilled water return pipe 34 is cooled to 7 ° C and returned to the external load side through the chilled water outgoing pipe 35.
  • the chilled water outlet temperature and the chilled water inlet temperature are measured by the temperature sensors 40 and 42, respectively, and based on the measured values, the control unit 50 opens the inlet rovan 12, the expansion valve 7, the hot gas bypass valve 45a, and the like. Control the degree.
  • the measured values of the temperature sensors 40 and 42 are arithmetically averaged as described above, and this average value is used by the control unit 50.
  • the low-pressure gas refrigerant evaporated in the evaporator 9 is led to the compressor 3 and compressed again.
  • the control unit 50 of the turbo chiller 1 is provided with a physical switch for switching between a low load mode and a stop limit mode, which will be described later. This switch can be switched by the operator. If you do not want to stop even when the load is low, select the stop limit mode. If you want to stop when the load is low, select the low load mode. Instead of a physical switch, a signal from a central control room that performs integrated control of the system including the turbo chiller 1 may be received and switched by remote operation. [0044] First, the low load mode will be described.
  • step SO If the load on the centrifugal chiller 1 decreases (step SO) and the low load mode is selected by the control unit 50 (“NO” in step S1), proceed to step S10. move on .
  • step S12 it is determined whether or not a predetermined time has elapsed. This prevents the centrifugal chiller 1 from stopping immediately after shifting to the low load mode. For example, when switching from the stop limit mode to the low load mode when shifting from winter to summer, the operator determines that the cold water inlet temperature has become sufficiently high by looking at the reference thermometer provided on the machine side. As a result, the switch of the control unit 50 may be switched.
  • the temperature by the temperature sensor 40 grasped by the control unit 50 is assumed to be lower than the first temperature.
  • the temperature of the chilled water inlet is measured with high accuracy using a plurality of temperature sensors as shown in FIG. This is because it can be considered that the deviation becomes large.
  • the turbo chiller 1 stops immediately after the switch of the control unit 50 is switched. To avoid this situation, wait for a predetermined time in Step S12! /.
  • step S14 it is determined whether or not the cold water inlet temperature measured by the temperature sensor 40 is lower than the first temperature.
  • the first temperature is set within the range where the set chilled water outlet temperature Toutse corresponding to the chilled water temperature required by the external load is high and the temperature sensor error is exceeded. For example, if the preset chilled water outlet temperature Toutset is 7 ° C, and the temperature sensor error is 0.4 ° C, the first temperature is set to 7.5 ° C.
  • the first temperature may be arbitrarily changed.
  • step S16 When the cold water inlet temperature is lower than the first temperature, the process proceeds to step S16, and the turbo chiller 1 is stopped. If the chilled water inlet temperature is lower than the first temperature, control within the error range of the temperature sensor is forced, so control to temporarily stop the turbo chiller 1 is performed.
  • step S18 When the cold water inlet temperature exceeds a predetermined value set to the first temperature or higher (step S18), the process proceeds to step S20, and the turbo refrigerator 1 is started again. The operation is continued again until the cold water inlet temperature falls below the first temperature (step S14). In the low load mode, the operation at a low load is performed by repeating stop and start in this way. I do.
  • step SO When the load on the turbo chiller 1 is reduced (step SO) and the stop limit mode is selected in the control unit 50 (step S 1), the control unit 50 is provided in the cooling water return pipe 5a. It is determined whether the coolant temperature obtained by a temperature sensor (not shown) is below 15 ° C. If the coolant temperature is 15 ° C or higher, do not proceed to the next step S5. This is because when the cooling water temperature is 15 ° C or higher, it is considered that a certain load or more is required for the centrifugal chiller 1. Therefore, in this case, the stop limit mode should not be performed. . This avoids a situation where the turbo chiller 1 stops despite a low load.
  • the cooling water temperature threshold of 15 ° C can be changed arbitrarily by using other temperatures.
  • step S5 If it is determined in step S3 that the cooling water temperature is lower than 15 ° C, the process proceeds to step S5, where the cold water outlet temperature sensor 42 obtained by the cold water outlet temperature sensor 42 or the cold water inlet temperature sensor 40 is used. Determine whether the resulting cold water inlet temperature is below the second temperature.
  • the second temperature is set to be lower than the first temperature.
  • the force S is controlled to stop even when the chilled water outlet temperature falls below the second temperature, which is greater than the first temperature considering the temperature sensor error with respect to the set chilled water outlet temperature Toutset. If the temperature falls into the second temperature range, the measured value will be within the error range of the temperature sensor.Therefore, not only the chilled water inlet temperature but also the chilled water outlet temperature may be below the second temperature. Because it is.
  • the second temperature is a temperature at which the set cold water outlet temperature Toutse beam is also small. This substantially prevents the turbo chiller 1 from stopping when the load is low. This is because the chilled water outlet temperature is controlled by the control unit 50 so that the set chilled water outlet temperature becomes the set chilled water outlet temperature Toutset. Therefore, in reality, the chilled water outlet temperature and the chilled water inlet temperature become smaller than the set chilled water outlet temperature Tout se. Because there is nothing. However, these measurement values may fall below the set cold water outlet temperature Toutset due to temperature sensor measurement errors. It is preferable to determine the second temperature in consideration of the above.
  • the error of the temperature sensor is 0.2 ° C
  • a maximum error of 0.4 ° C can be considered when considering both the cold water inlet and the cold water outlet, so the set cold water outlet temperature Toutset is 7 ° C. Therefore, it is preferable to set the second temperature to 6.5 ° C or lower.
  • the second temperature is set to be equal to or higher than the minimum temperature allowed by the external load.
  • the external load is designed to allow a minimum temperature lower than the set cold water outlet temperature Toutset. If the second temperature is a temperature that is equal to or higher than this minimum temperature and is as close to the minimum temperature as possible, control that allows the centrifugal chiller 1 to continue operating without stopping is realized. For example, if the minimum temperature is 5 ° C, the second temperature is also 5 ° C.
  • step S5 When it is determined in step S5 that the cold water outlet temperature or the cold water inlet temperature is lower than the second temperature, the turbo chiller 1 is stopped. If the chilled water outlet temperature or the chilled water inlet temperature is lower than the second temperature, it means that the load is as close to 0% as possible, so the centrifugal chiller 1 is stopped.
  • the stop limit mode is set to stop the centrifugal chiller 1 only when the chilled water outlet temperature or the chilled water inlet temperature is lower than the first temperature!
  • the turbo chiller 1 is not stopped even if the temperature falls below the value, and the control to stop the turbo chiller 1 is realized only when the cold water inlet temperature or the cold water outlet temperature becomes the second temperature or lower. That is, a mode in which the turbo chiller 1 is difficult to stop even when the load is low is achieved.
  • a boiler, etc. is installed separately to give a load that is greater than the load that would cause turbo chiller 1 to stop in the low-load mode, even during adjustment operations when turbo chiller 1 is introduced in winter. There is no need. Therefore, continuous operation with low load is possible even in winter, and adjustment operation that is cost-effective is possible.
  • a unit control operation for increasing or decreasing the number of turbo chillers 1 is performed according to a request for an external load.
  • the load is small, start up the first turbo chiller 1 and start up the second and third units as the load increases, and operate multiple units simultaneously.
  • the load decreases, stop the centrifugal chiller 1 according to the load and decrease the number of units started one by one.
  • the stop limit mode and the low load mode can be switched by the switch of the control unit 50 of the centrifugal chiller 1, so that the system is first started and stopped last when the load is low.
  • the turbo chiller 1 exclusively performing the refrigeration operation has been described.
  • the present invention is applicable to a heat pump turbo chiller having a heat pump operation. Touch with force S.
  • the heat source machine the force described with the turbo refrigerator as an example may be used.
  • Other types of heat source machines may be used, for example, a screw chiller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Air Conditioning Control Device (AREA)

Description

明 細 書
熱源機および熱源システムならびに熱源機の制御方法
技術分野
[0001] 本発明は、例えばターボ冷凍機とされた熱源機および熱源システムならびに熱源 機の制御方法に関するものである。
背景技術
[0002] 半導体製造工場の大規模クリーンルームにおける冷水供給等に用いられる冷凍機 として、ターボ圧縮機により冷媒を圧縮するターボ冷凍機 (熱源機)が多用されてレ、る 。ターボ圧縮機の冷媒吸込口には、吸込冷媒量の調整を行う入ロベーン (容量制御 用のプリローテーションベーン)が設けられている。ターボ冷凍機の制御部は、入口 ベーンの角度を調整することにより、外部負荷に供給する冷水の出口温度を一定に 維持する(特許文献 1参照)。例えば、外部負荷が要求する冷水温度を 7°C (設定冷 水出口温度)とした場合、この 7°Cを保つように制御する。また、冷水出口温度と冷水 入口温度との冷水温度差には所定仕様の設定値がある力 この冷水温度差が設定 値のときにターボ冷凍機の負荷が 100%となるように設計されている。例えば、設定 冷水出口温度を 7°Cとし、 100%負荷での冷水温度差を 5°Cとした場合、 100%負荷 での冷水入口温度は 12°Cとなる。
[0003] 特許文献 1 :実公平 5— 10186号公報
発明の開示
[0004] 冬季のように、外気温が低い場合、ターボ冷凍機に要求される負荷が小さくなり、 1 0%を下回ることがある。負荷が 10%の場合、冷水温度差は 0. 5°C (5°C X 10% = 0 . 5°C)となる。冷水温度差が 0. 5°C以下となると、冷水出口温度および冷水入口温 度を測定する温度計の精度の限界により、正確な制御が困難となる。例えば、温度 計に測温抵抗体 (JIS A級)を用いた場合、測温抵抗体の精度が ± 0. 1°Cであり、 変換器の誤差が ± 0. 1°Cである。したがって、一つの温度計には ± 0. 2°Cの誤差が あり、冷水出口および冷水入口の温度差を計測するには 2つの温度計の誤差が重畳 されるので、最大で 0. 4°Cの計測誤差が想定される。したがって、ターボ冷凍機の負 荷が 10%を下回り、冷水温度差が 0. 5°Cを下回る場合には温度計の誤差範囲内で の制御となり連続運転による温度制御が困難となるので、ターボ冷凍機を一時的に 停止し (低負荷停止)、冷水温度の再上昇を確認しながら起動停止を繰り返す低負 荷モードでの運転が行われる。
このように、負荷が低くなつた場合にターボ冷凍機の運転が断続的になり冷水温度 が変動することを嫌い、低負荷であっても連続的に運転できるターボ冷凍機が要望さ れている。
[0005] また、ターボ冷凍機の負荷が低くなつても継続して運転できるように、高い精度で冷 水出口温度および冷水入口温度の計測が可能な技術が求められて!/、る。
[0006] また、ターボ冷凍機を導入する場合、導入時に調整運転が行われる。一般に、冷 房需要が見込まれる夏場に向けて導入が行われるので、ターボ冷凍機の導入時期 は冬季となる。冬季は、外気温が低いため負荷が小さぐ 10%負荷を大きく下回る。 これでは、上述のように継続運転ができないので、調整運転ができない。そこで、実 際には、調整運転のためにボイラ等を新たに一時的に導入して負荷を作り出してい た。このときに導入されるボイラは調整運転のためだけに用いられるものなので、調整 運転が終了した後には撤去される。これでは、ターボ冷凍機の導入コストが嵩んでし まう。したがって、低負荷でも継続して運転でき、別途ボイラを導入することなく調整 運転ができるターボ冷凍機が望まれて!/、る。
[0007] 本発明は、このような事情に鑑みてなされたものであって、例えば 10%負荷を下回 る低負荷であっても継続して運転が可能な熱源機 (ターボ冷凍機)を提供することを 目白勺とする。
[0008] 上記課題を解決するために、本発明の熱源機は以下の手段を採用する。
すなわち、本発明にかかる熱源機は、冷媒を圧縮する圧縮機と、該圧縮機によって 圧縮された冷媒を凝縮させる凝縮器と、該凝縮器によって凝縮された冷媒を膨張さ せる膨張弁と、該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、該蒸発器 によって熱交換された冷水を外部負荷に対して供給する冷水往配管と、該冷水往配 管を流れる冷水の冷水出口温度を測定する冷水出口温度測定手段と、前記外部負 荷と熱交換を行い、前記蒸発器へと前記冷水を戻す冷水還配管と、該冷水還配管を 流れる冷水の冷水入口温度を測定する冷水入口温度測定手段と、前記冷水出口温 度が設定冷水出口温度となるように制御する制御部とを備え、該制御部は、前記冷 水入口温度測定手段によって測定された冷水入口温度が前記設定冷水出口温度と の間で所定温度差を形成する第 1温度以下となった場合に、当該熱源機の停止およ び起動を繰り返して制御する低負荷モードを有する熱源機にお!/、て、前記制御部は 、前記冷水入口温度または前記冷水出口温度が前記第 1温度よりも低!/、第 2温度以 下となった場合に当該熱源機を停止する停止制限モードを備えていることを特徴と する。
[0009] 外部負荷が熱源機に対して要求する負荷が低下していくと、設定冷水出口温度と 冷水入口温度との温度差が小さくなつていく。例えば、負荷 100%時に 5°Cの温度差 (例えば設定冷水出口温度 7°Cに対して冷水入口温度 12°C)とされて!/、た場合、負 荷が低減して 10%となると、温度差が 0. 5°Cとなる。このように、負荷が低下して設定 冷水出口温度と冷水入口温度との温度差が小さくなり、冷水入口温度が第 1温度を 下回ると、制御部は熱源機を一時的に停止し、また一時的に起動する運転を繰り返 し、設定冷水出口温度を達成するように制御する。このように、低負荷となった場合に 熱源機の停止起動を繰り返す低負荷モードを設け、低負荷に対応するようにする。 また、本発明の熱源機では、冷水出口温度または冷水入口温度が第 1温度よりも 低レ、第 2温度以下となった場合にのみ熱源機を停止する停止制限モードを設けてレ、 る。この停止制限モードでは、冷水入口温度が第 1温度を下回っても熱源機を停止さ せず、冷水入口温度または冷水出口温度が第 2温度以下となった場合に初めて熱 源機を停止させる。つまり、低負荷となっても熱源機が停止しにくく連続運転が可能 なモードが達成される。これにより、冬季における熱源機導入時の調整運転であって も、低負荷モードによって停止してしまう負荷よりも大きな負荷を与えるためのボイラ 等を別途設置する必要がなぐ冬季における低負荷のままで調整運転が可能となる
[0010] さらに、本発明の熱源機によれば、前記第 2温度は、前記設定冷水出口温度よりも 小さいこととしてもよい。
[0011] 設定冷水出口温度よりも小さい第 2温度を採用することにより、熱源機が低負荷時 に停止することを実質的に回避できる。なぜなら、冷水出口温度は設定冷水出口温 度となるように制御部によって制御されているので、現実には、冷水出口温度および 冷水入口温度が設定冷水出口温度よりも小さくなることはないからである。ただし、冷 水出口温度測定手段や冷水入口温度測定手段の計測誤差によって、これらの計測 値が設定冷水出口温度を下回る場合があるので、この測定誤差を考慮して第 2温度 を決定することが好ましい。例えば、温度測定手段の誤差を 0. 2°Cとした場合、冷水 入口および冷水出口の両者を考慮すると最大で 0. 4°Cの誤差が考えられるので、設 定冷水出口温度が 7°Cであれば第 2温度を 6. 5°C以下とするのが好ましい。
[0012] さらに、本発明の熱源機によれば、前記第 2温度は、前記外部負荷が許容する最 小温度以上とされてレ、ることとしてもよ!/、。
[0013] 一般に、外部負荷は設定冷水出口温度の冷水を要求するが、この設定冷水出口 温度よりも低い温度(最小温度)まで許容する。したがって、第 2温度は、この最小温 度を考慮して決定される。これにより、低負荷であっても停止させられずに、可能な限 り運転を継続することができる。
[0014] さらに、本発明の熱源機によれば、前記制御部は、前記低負荷モードと、前記停止 制限モードとを択一的に切替可能とされていることとしてもよい。
[0015] 低負荷モードと停止制限モードとを択一的に切替可能としているので、例えば、通 常運転時には熱源機のオンオフ運転による低負荷運転が可能なように低負荷モード を設定し、熱源機導入時には調整運転が可能なように停止制限モードを設定するこ と力 Sできる。
切替えは、熱源機の操作盤に物理的なスィッチを設け、このスィッチを作業者が操 作することによって行うこととしても良い。また、中央制御室からの信号を受けて、遠隔 操作によって切り替えることとしても良い。これらの場合、熱源機の制御盤に設けられ たマイコンは、各モードの内部フラグを持ち替えるようにする。
[0016] さらに、本発明の熱源機によれば、前記制御部は、当該熱源機の運転中に、前記 各モードを択一的に切替可能とされており、前記停止制限モードから前記低負荷モ ードへと切り替えた場合に、所定時間経過後に該低負荷モードを実行することとして あよい。 [0017] 冬場のように負荷が低い時期に、熱源機の停止を避けるために停止制限モードが 選択されている場合、低負荷モードに切り替えると、冷水入口温度が第 1温度を下回 つているので、熱源機が突然停止するおそれがある。このような運転中における突然 の停止を避けるために、停止制限モードから低負荷モードへと切り替えた場合であつ ても、所定時間経過後に低負荷モードを実行することとした。
[0018] さらに、本発明の熱源機によれば、前記凝縮器を流れる冷媒から凝縮熱を奪う冷却 水を供給する冷却水供給手段を備え、前記制御部は、前記凝縮器に流れ込む前記 冷却水の温度が所定値以下の場合に、前記停止制限モードが選択可能とすることと してもよい。
[0019] 凝縮器へ供給される冷却水の温度が高い場合は、凝縮器と蒸発器の差圧に相当 する最小冷媒循環量以上が必要となり、冷媒循環量が少ない低負荷運転はそもそも 成立しない。したがって、凝縮器に流れ込む冷却水の温度が所定値以下の場合に 限り、停止制限モードが選択できることとした。
[0020] さらに、本発明の熱源機によれば、前記冷水出口温度測定手段および/または前 記冷水入口温度測定手段は、前記冷水往配管および/または前記冷水還配管の 同一横断面における同一半径位置に周方向に異なる位置に設けられた複数の温度 センサを備え、前記制御部は、各前記温度センサの出力 の平均 を用いることと してもよい。
[0021] 冷水配管内を流れる冷水の温度は同一横断面でみると、周方向に温度分布を示 す場合がある。これは、特に、冷水往配管が蒸発器に対して水平に接続されている 場合、蒸発器内の冷媒液面が上下するため顕著である。本発明の熱源機では、配 管の同一横断面における同一半径位置に周方向に異なる位置に複数の温度センサ を設け、これらの温度センサの出力 の平均 を用いることとしたので、現実に近い 冷水温度を用いて評価することができる。
[0022] また、本発明の熱源システムは、上記の!/、ずれかに記載された熱源機を複数備え ていることを特徴とする。
[0023] 熱源機を複数備えた熱源システムの場合には、外部負荷の要求に応じて、熱源機 の台数を増減させる台数制御運転を行う。具体的には、負荷が小さい場合は 1台目 の熱源機を起動し、負荷の増大に応じて 2台目、 3台目といったように起動していき、 複数台同時運転を行う。負荷が小さくなつていく場合は、負荷に応じて熱源機を停止 させていき、起動台数を 1台ずつ少なくしていく。このような熱源システムの場合、熱 源機が停止制限モードと低負荷モードとを備えているので、低負荷時に最初に立ち 上げられて最後に停止させられる 1台目の熱源機に対しては停止制限モードを選択 しておき、 2台目以降に立ち上げられ 1台目よりも先に停止させられる熱源機に対し ては低負荷モードを選択しておく。これにより、減台運転のときには 2台目以降の熱 源機は低負荷モードによって速やかに停止させられ、最後に停止させられる 1台目 の熱源機は低負荷であつても停止制限モードによつて停止しないように運転を継続 すること力 Sできる。これにより、円滑に減台運転が行われ、かつ、低負荷であっても停 止しな!/ヽ熱源システムを実現することができる。
[0024] また、本発明の熱源機の制御方法は、冷媒を圧縮する圧縮機と、該圧縮機によつ て圧縮された冷媒を凝縮させる凝縮器と、該凝縮器によって凝縮された冷媒を膨張 させる膨張弁と、該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、該蒸発器 によって熱交換された冷水を外部負荷に対して供給する冷水往配管と、該冷水往配 管を流れる冷水の冷水出口温度を測定する冷水出口温度測定手段と、前記外部負 荷と熱交換を行い、前記蒸発器へと前記冷水を戻す冷水還配管と、該冷水還配管を 流れる冷水の冷水入口温度を測定する冷水入口温度測定手段とを備え、前記冷水 出口温度が設定冷水出口温度となるように制御し、前記冷水入口温度測定手段によ つて測定された冷水入口温度が前記設定冷水出口温度との間で所定温度差を形成 する第 1温度以下となった場合に、当該熱源機の停止および起動を繰り返して制御 する低負荷モードを行う熱源機の制御方法にお!/、て、前記冷水入口温度または前 記冷水出口温度が前記第 1温度よりも低!/、第 2温度以下となった場合に当該熱源機 を停止する停止制限モードを行うことを特徴とする。
[0025] 外部負荷が熱源機に対して要求する負荷が低下していくと、設定冷水出口温度と 冷水入口温度との温度差が小さくなつていく。例えば、負荷 100%時に 5°Cの温度差 (例えば設定冷水出口温度 7°Cに対して冷水入口温度 12°C)とされて!/、た場合、負 荷が低減して 10%となると、温度差が 0. 5°Cとなる。このように、負荷が低下して設定 冷水出口温度と冷水入口温度との温度差が小さくなり、冷水入口温度が第 1温度を 下回ると、熱源機を一時的に停止し、また一時的に起動する運転を繰り返し、設定冷 水出口温度を達成するように制御する。このように、低負荷となった場合に熱源機の 停止起動を繰り返す低負荷モードを設け、低負荷に対応するようにする。
また、本発明の熱源機の制御方法では、冷水出口温度または冷水入口温度が第 1 温度よりも低い第 2温度以下となった場合にのみ熱源機を停止する停止制限モード を設けている。この停止制限モードでは、冷水入口温度が第 1温度を下回っても熱源 機を停止させず、冷水入口温度または冷水出口温度が第 2温度以下となった場合に 初めて熱源機を停止させる。つまり、低負荷となっても熱源機が停止しにくく連続運 転が可能なモードが達成される。これにより、冬季における熱源機導入時の調整運 転であっても、低負荷モードによって停止してしまう負荷よりも大きな負荷を与えるた めのボイラ等を別途設置する必要がなぐ冬季における低負荷のままで調整運転が 可能となる。
[0026] 本発明によれば、冷水出口温度または冷水入口温度が第 1温度よりも低い第 2温 度以下となった場合にのみ熱源機を停止する停止制限モードを設けたので、冷水入 口温度が第 1温度を下回っても熱源機を停止させず、冷水入口温度または冷水出口 温度が第 2温度以下となった場合に初めて熱源機を停止させ、低負荷となっても熱 源機をなるベく停止させずに連続運転させることができる。
図面の簡単な説明
[0027] [図 1]本発明の一実施形態に力、かるターボ冷凍機を示した概略図である。
[図 2]図 1の蒸発器の横断面を示した断面図である。
[図 3]図 1の冷水往配管の横断面を示した断面図である。
[図 4]図 1の各冷水出口温度センサの指示値を時間に対して示したグラフである。
[図 5]図 1の各冷水出口温度センサの定常状態における指示値を時間に対して示し たグラフである。
[図 6]図 1のターボ冷凍機の冷媒回路構成を示した概略図である。
[図 7]低負荷モードおよび停止制限モードを示したフローチャートである。
符号の説明 [0028] 1 ターボ冷凍機 (熱源機)
3 圧縮機
5 凝縮器
7 膨張弁
9 蒸発器
34 冷水還配管
35 冷水往配管
40 冷水入口温度センサ
42 冷水出口温度センサ
50 制御部
発明を実施するための最良の形態
[0029] 以下に、本発明にかかる実施形態について、図面を参照して説明する。
図 1には、本発明のターボ冷凍機 (熱源機) 1の概略構成が示されている。 図 1に示されているように、ターボ冷凍機 1は、冷媒を圧縮するターボ式の圧縮機 3 と、圧縮機 3により圧縮された冷媒を凝縮させる凝縮器 5と、凝縮器 5によって凝縮さ れた液冷媒を膨張させる膨張弁 7と、膨張弁 7によって膨張させられた冷媒を蒸発さ せる蒸発器 9とを備えている。
[0030] 圧縮機 3は、遠心羽根車 10を備えたターボ式の遠心圧縮機とされ、電動モータに よって回転駆動される。
圧縮機 3の冷媒吸込口には、吸込冷媒の吸込量を調整する入ロベーン 12が設け られている。この入ロベーン 12の開度は、ターボ冷凍機 1の制御部 50によって制御 される。
[0031] 凝縮器 5は、シェル 'アンド ' ·チューブ式の熱交換器とされている。凝縮器 5には、冷 却水還配管 5aおよび冷却水往配管 5bが接続されて!/、る。冷却水還配管 5aから凝 縮器 5内に流れ込んだ冷却水は、伝熱管 14内を通過してヘッダ 15で折り返した後、 伝熱管 14を通過して冷却水往配管 5bへと流出する。このように、冷却水とシェル内 の冷媒とが熱交換を行い、冷媒から凝縮熱を除去する。なお、伝熱管 14は、図 1で は理解の容易のために単純な 2本の配管としている力 実際にはシェル内全体に多 数設けられた細管とされている(参考として、蒸発器 9について示した図 2参照)。冷 却水配管 5a, 5bは、外部に設置された冷却塔 6に接続されている。
[0032] 膨張弁 7は、凝縮器 5と蒸発器 9との間に設けられており、凝縮器 5から供給される 液冷媒を絞ることによって等ェンタルピー膨張させるものである。
膨張弁 7の開度は、ターボ冷凍機 1の制御部 50によって制御されるようになってい
[0033] 蒸発器 9は、シェル 'アンド ' ·チューブ式の熱交換器とされている。蒸発器 9には、冷 水還配管 34および冷水往配管 35が水平に接続されて!/、る。冷却水還配管 34から 蒸発器 9内に流れ込んだ冷水は、伝熱管 37内を通過してヘッダ 39で折り返した後、 伝熱管 37を通過して冷水往配管 35へと流出する。なお、伝熱管 37は、図 1では理 解の容易のために単純な 2本の配管としている力 実際には、図 2に示したように、シ エル内に多数設けられた細管とされている。このように、冷水とシェル内の冷媒とが熱 交換を行い、冷媒が冷水から蒸発熱を奪うことによって冷水を冷却する。冷却された 冷水は、冷水往配管 35を介して外部負荷 100へと送られ、外部負荷 100に対して冷 熱を供給する。
[0034] 冷水還配管 34の下流側には蒸発器 9流入直前の冷水入口温度 TE0を計測する 複数の冷水入口温度センサ 40が、冷水往配管 35の上流側には蒸発器 9流出直後 の冷水出口温度 TE'を計測する複数の冷水出口温度センサ 42が、それぞれ設けら れている。温度センサとしては、 JIS A級の測温抵抗体を用いることが好ましい。一 般に、冷水入口温度 TE0は 12°Cに、冷水出口温度 TE'は 7°Cに設定される。
[0035] 図 3には、冷水往配管 35の横断面が示されている。同図に示すように、冷水往配 管 35の同一横断面には、 4つの温度センサ 42a, 42b, 42c, 42dが設けられている 。各温度センサ 42の先端の測温部は、同一半径位置に配置されており、それぞれが 周方向に異なる位置に 90° 間隔で設けられている。即ち、第 1温度センサ 42aが最 下端の 6時の位置に、第 2温度センサ 42bが高さ方向における中間位置である 9時の 位置に、第 3温度センサ 42cが最上端の 12時の位置に、第 4温度センサ 42dが高さ 方向における中間位置である 3時の位置に設けられている。これら 4つの温度センサ 42を用いて、冷水出口温度 TE'を算出する。具体的には、 4つの温度出力の算術 平均を用いる。つまり、図 4に示すように、第 1温度センサ 42aの温度出力を TE1 '、 第 2温度センサ 42bの温度出力を TE2'第 3温度センサ 42cの温度出力を TE3 ' 第 4温度センサ 42dの温度出力を TE4'とすると、冷水出口温度 TE'は、以下のよう に表される。
ΤΕ, = (ΤΕΙ ' +TE2 ' +TE3' +ΤΕ4' ) /4
このように、複数の温度センサ 42の算術平均を用いることにより、冷水出口温度 ΤΕ 'の精度を上げること力できる。なぜなら、上述のように、蒸発器 9内には多数の伝熱 管 37が設けられており(図 2参照)、図 1に示すように液冷媒の液位 Lが蒸発器 9内の 全部を満たしておらず、また冷媒の液位 Lが上下動することから、それぞれの伝熱管 37内を流れた後の冷水の温度は伝熱管 37の位置によって異なる。冷水は、合流し た後に冷水往配管 35へと流されることになるので、十分に混ざっていない状態で冷 水往配管 35に流れ込むことになる。したがって、冷水往配管 35に流れ込んだ直後 の冷水は、同一横断面において温度分布を有することになる(図 4参照)。したがって 、本実施形態のように複数の温度センサを用いて算術平均値を用いることが有効と なる。
さらに、冷水出口温度 TE'の精度を上げるために、以下の補正を行っている。 図 5に示すように、ターボ冷凍機 1が停止している場合のように蒸発器 9による熱交 換が行われず冷水出口温度が定常状態になったときに、各温度センサ 42の指示値 を取得する。そして、各温度センサの指示値と平均値 ΤΕとの差をそれぞれ算出する 。例えば、第 1温度センサについては、 ATE1 =TE1— ΤΕといった差分を算出する 。定常状態であれば同一横断面における配管内の冷水温度に分布は生じず平均値 と各温度センサの指示値とは一致するはずなので、この差分 ΔΤΕ1が平均値 TEに 対する誤差といえる。したがって、この差分をターボ冷凍機 1の制御部 50において補 正する。例えば、制御部 50のマイコン盤には、温度センサの取付け状態によるドリフ トを補正するオフセット値が設定可能となって!/、るので、このオフセット値を上記差分 に基づいて変更するようにする。このように、定常状態における温度センサの指示値 を用いて各温度センサのオフセット値を補正することにより、冷水出口温度の精度を 向上させること力 Sでさる。 [0037] また、このような各温度センサのオフセット値の補正は、定期的に実施し、頻度によ る重み付けをする。例えば、過去 10回の計測のうち、直近の 1回のみ特異な温度を 出力したとしても、この 1回のみの温度をそのまま採用するのではなぐ過去 10回の 温度をも考慮に入れる。例えば、過去 10回の平均値を採用するといつたように頻度 による重み付けを行う。さらに、異常なオフセット値 (補正幅)とならないように、オフセ ット値の最大値 (例えば 1°C)を定めておき、この最大値を超えたオフセットは行わな いようにする。これにより、温度センサ出力の大幅な変動を抑え計測精度を高めること 力できる。なお、このように定めたオフセット値の最大値を大幅に超える場合には、温 度センサの異常として、爾後のセンシング対象から外すことが好まし!/、。
[0038] また、温度センサの過渡的な応答遅れを補償するために、一次遅れの時定数を予 め把握しておき、この時定数を考慮して応答遅れによる誤差を補正しても良い。本実 施形態のように、測温抵抗体を用いる場合には、過渡的な応答の際にはセンサ部の 熱容量が無視できないので有効である。具体的には、温度センサ毎に、室温の温度 センサを冷水または温水に浸漬させてステップ応答による温度履歴を計測し、実験 により時定数を把握する。
[0039] また、本実施形態では、冷水入口温度 TE0の精度を上げるために、冷水還配管 3 4にも 4本の温度センサ 40を設けている(図 1参照)。これは、外部負荷 100から戻さ れる冷水にも同一横断面内で温度分布が生じるおそれがある場合に有効である。温 度センサ 40の設置位置は、図 3と同様に、同一横断面内で周方向に 90° ずつ角度 をずらして設置することが好ましレ、。
[0040] 図 6には、図 1に示したターボ冷凍機 1の冷媒回路構成が示されている。
同図には、図 1にて図示を省略したホットガスバイパス管 45が示されている。ホット ガスバイパス管 45は、圧縮機 3の吐出側と圧縮機 3の吸込側との間に設けられている 。ホットガスバイパス管 45には、冷媒流量を調整するためのホットガスバイパス弁 45a が設けられて!/、る。このホットガスバイパス弁 45aによって流量が調整された高温高 圧の吐出冷媒が、圧縮機 3の吸込側へとバイパスされるようになっている。ホットガス バイパス弁 45aの開度は、ターボ冷凍機 1の制御部 50によって調整される。
[0041] 次に、上記構成のターボ冷凍機 1の動作について説明する。 圧縮機 3は、電動モータによって駆動され、所定周波数で回転させられる。入口べ ーン 12は、制御部 50によって、設定温度(例えば、冷水出口温度 7°C)を達成するよ うにその開度が調整される。
また、圧縮機 3から吐出された高温高圧のガス冷媒は、その一部がホットガスバイパ ス管 45を通りホットガスバイパス弁 45aで冷媒流量が調整された後、圧縮機 3へと導 かれるようになつている。
[0042] 蒸発器 9から吸い込まれた低圧ガス冷媒は、圧縮機 3によって圧縮され、高圧ガス 冷媒となる。圧縮機 3から吐出された高圧ガス冷媒は、凝縮器 5へと導かれる、 凝縮器 5において、冷却塔 6 (図 1参照)から冷却水配管 5a, 5bを介して導かれる 冷却水によって高圧のガス冷媒は略等圧に冷却され、高圧の液冷媒となる。高圧の 液冷媒は、膨張弁 7へと導かれ、この膨張弁 7によって等ェンタルピー膨張させられ る。このように膨張させられた冷媒は、蒸発器 9において蒸発し、伝熱管 37内を流れ る冷水から熱を奪う。これにより、冷水還配管 34から 12°Cで流入した冷水は、 7°Cま で冷却され、冷水往配管 35を介して外部負荷側に返送される。このとき、冷水出口 温度および冷水入口温度は、それぞれ温度センサ 40, 42によって計測され、この計 測値に基づいて制御部 50は、入ロベーン 12、膨張弁 7、ホットガスバイパス弁 45a 等の開度を制御する。温度センサ 40, 42の計測値は、上述のように、算術平均され 、この平均値が制御部 50にて用いられる。
蒸発器 9において蒸発した低圧ガス冷媒は、圧縮機 3へと導かれ、再び圧縮される
[0043] 次に、図 7を用いて、冬季のように負荷が小さいときのターボ冷凍機 1の運転方法に ついて説明する。
ターボ冷凍機 1の制御部 50には、後述する低負荷モードと停止制限モードとを切り 替える物理的なスィッチが設けられている。このスィッチは、作業者によって切り替え られる。このスィッチの設定により、低負荷時であっても停止させたくない場合は停止 制限モードを選択し、低負荷時に停止させたい場合は低負荷モードを選択する。な お、物理的なスィッチに代えて、ターボ冷凍機 1を含むシステムを統合制御する中央 制御室からの信号を受けて、遠隔操作によって切り替えることとしても良い。 [0044] 先ず、低負荷モードを説明する。
ターボ冷凍機 1の負荷が小さくなつていき(ステップ SO)、制御部 50にて低負荷モ ードが選択されてレ、る場合には(ステップ S 1における「NO」 )、ステップ S10へと進む 。そして、ステップ S 12では、所定時間が経過したか否かを判定する。これにより、低 負荷モードに移行した直後にターボ冷凍機 1が停止してしまうことを防止する。例え ば、冬季から夏季に移行する際に、停止制限モードから低負荷モードに切り替える 場合、作業者は機側に設けられた参照用の温度計をみて冷水入口温度が十分に高 くなつたと判断して制御部 50のスィッチを切り替える場合がある。このとき、機側の温 度計は第 1温度(後述するステップ S14参照)を上回っていても、制御部 50で把握し ている温度センサ 40による温度は第 1温度よりも低い場合が想定される。なぜなら、 本実施形態では図 1に示したように複数の温度センサを用いて高!/、精度で冷水入口 温度を測定してレ、るので、機側の比較的精度の低レ、温度計と偏差が大きくなつてレ、 ることが十分に考えられるからである。このような場合には、制御部 50のスィッチを切 り替えた直後にターボ冷凍機 1が停止してしまう。この事態を回避するために、ステツ プ S 12にて所定時間待機するようにして!/、る。
[0045] ステップ S12にて所定時間経過した後、ステップ S14へと進み、温度センサ 40によ つて計測される冷水入口温度が第 1温度を下回っているか否かを判定する。第 1温 度は、外部負荷が要求する冷水温度に対応する設定冷水出口温度 Toutseはりも高 い温度で、かつ、温度センサの誤差を超えた範囲で設定する。例えば、設定冷水出 口温度 Toutsetが 7°Cの場合、温度センサの誤差が 0. 4°Cとすると、第 1温度は 7. 5 °Cに設定される。なお、この第 1温度は、任意に変更できるようにしても良い。
[0046] 冷水入口温度が第 1温度を下回っている場合には、ステップ S16へと進み、ターボ 冷凍機 1を停止する。冷水入口温度が第 1温度を下回っているということは、温度セ ンサの誤差の範囲内での制御を強いられることになるので、ターボ冷凍機 1を一時停 止する制御を行う。そして、冷水入口温度が第 1温度以上に設定された所定値を上 回った場合に(ステップ S18)、ステップ S20へと進み、再びターボ冷凍機 1を起動す る。そして、冷水入口温度が第 1温度を下回るまで (ステップ S14)、再び運転を継続 する。低負荷モードでは、このように停止起動を繰り返すことにより、低負荷での運転 を行う。
[0047] 次に、停止制限モードを説明する。
ターボ冷凍機 1の負荷が小さくなつていき(ステップ SO)、制御部 50にて停止制限 モードが選択されている場合には (ステップ S 1)、制御部 50は、冷却水還配管 5aに 設けた温度センサ(図示せず)によって得られる冷却水温度が 15°Cを下回っている か否かを判定する。冷却水温度 15°C以上の場合には、次のステップ S5には進まな い。これは、冷却水温度が 15°C以上の場合には、一定以上の負荷がターボ冷凍機 1 に要求されていると考えられるので、このような場合には停止制限モードを行わない ようにする。これにより、低負荷でないにもかかわらずターボ冷凍機 1が停止してしまう 事態を回避する。なお、冷却水温度の閾値である 15°Cは、他の温度を用いてもよぐ 任意に変更できるものである。
[0048] ステップ S3にて、冷却水温度が 15°Cを下回っていると判断すると、ステップ S 5に進 み、冷水出口温度センサ 42によって得られた冷水出口温度または冷水入口温度セ ンサ 40によって得られた冷水入口温度が第 2温度を下回っているか否かを判定する 。この第 2温度は、第 1温度よりも小さい温度が設定される。これにより、低負荷モード では冷水入口温度が第 1温度を下回ると停止してしまう場合であっても、停止制限モ ードでは停止せず、運転が継続される制御が実現される。また、停止制限モードでは 、冷水出口温度が第 2温度を下回った場合にも停止する制御としている力 S、これは、 設定冷水出口温度 Toutsetに対して温度センサの誤差を考慮した第 1温度よりも低!/ヽ 第 2温度の範囲に入ってくると、温度センサの誤差範囲内での計測値となるため、冷 水入口温度だけでなく冷水出口温度も第 2温度を下回る可能性が考えられるからで ある。
[0049] また、第 2温度は、設定冷水出口温度 Toutseはりも小さい温度とされている。これに より、ターボ冷凍機 1が低負荷時に停止することを実質的に回避できる。なぜなら、冷 水出口温度は設定冷水出口温度 Toutsetとなるように制御部 50によって制御されて V、るので、現実には、冷水出口温度および冷水入口温度が設定冷水出口温度 Tout seはりも小さくなることはないからである。ただし、温度センサの計測誤差によって、こ れらの計測値が設定冷水出口温度 Toutsetを下回る場合があるので、この測定誤差 を考慮して第 2温度を決定することが好ましい。例えば、温度センサの誤差を 0. 2°C とした場合、冷水入口および冷水出口の両者を考慮すると最大で 0. 4°Cの誤差が考 えられるので、設定冷水出口温度 Toutsetが 7°Cであれば第 2温度を 6. 5°C以下とす るのが好ましい。
[0050] また、第 2温度は、外部負荷が許容する最小温度以上とされて!/、る。一般に、外部 負荷は、設定冷水出口温度 Toutsetを要求する力 この設定冷水出口温度 Toutset よりも低い最小温度まで許容する設計となっている。この最小温度以上で、なるべく 最小温度に近い温度を第 2温度とすれば、さらにターボ冷凍機 1が停止せずに継続 運転できる制御が実現される。例えば、最小温度が 5°Cの場合には、第 2温度も 5°C とする。
[0051] ステップ S5にて、冷水出口温度または冷水入口温度が第 2温度を下回っていると 判断した場合には、ターボ冷凍機 1は停止される。冷水出口温度または冷水入口温 度が第 2温度を下回っている場合には、負荷が限りなく 0%に近いことを意味するの で、ターボ冷凍機 1を停止することとする。
[0052] 上述のターボ冷凍機によれば、以下の作用効果を奏する。
冷水出口温度または冷水入口温度が第 1温度よりも低!/、第 2温度以下となった場 合にのみターボ冷凍機 1を停止する停止制限モードを設けたので、冷水入口温度が 第 1温度を下回ってもターボ冷凍機 1を停止させず、冷水入口温度または冷水出口 温度が第 2温度以下となった場合に初めてターボ冷凍機 1を停止させる制御が実現 される。つまり、低負荷となってもターボ冷凍機 1が停止しにくいモードが達成される。 これにより、冬季におけるターボ冷凍機 1の導入時の調整運転であっても、ターボ冷 凍機 1が低負荷モードによって停止してしまう負荷よりも大きな負荷を与えるためのボ イラ等を別途設置する必要がない。したがって、冬季であっても低負荷での継続運転 が可能となり、コストの力、からない調整運転が可能となる。
また、負荷が小さい運転初期であっても、低負荷モードによってターボ冷凍機 1の 起動停止を繰り返す運転を回避することができる。
[0053] また、本実施形態のターボ冷凍機 1を複数備えた熱源システムの場合には、外部 負荷の要求に応じて、ターボ冷凍機 1の台数を増減させる台数制御運転を行う。具 体的には、負荷が小さい場合は 1台目のターボ冷凍機 1を起動し、負荷の増大に応 じて 2台目、 3台目といったように起動していき、複数台同時運転を行う。負荷が小さく なっていく場合は、負荷に応じてターボ冷凍機 1を停止させていき、起動台数を 1台 ずつ少なくしていく。このような熱源システムの場合、ターボ冷凍機 1の制御部 50のス イッチによって、停止制限モードと低負荷モードとを切り替えることができるので、低 負荷時に最初に立ち上げられて最後に停止させられる 1台目のターボ冷凍機 1に対 しては停止制限モードを選択しておき、 2台目以降に立ち上げられ 1台目よりも先に 停止させられるターボ冷凍機 1に対しては低負荷モードを選択しておく。これにより、 減台運転のときには 2台目以降のターボ冷凍機 1は低負荷モードによって速やかに 停止させられ、最後に停止させられる 1台目のターボ冷凍機 1は低負荷であっても停 止制限モードによって停止しないように運転を継続することができる。これにより、円 滑に減台運転が行われ、かつ、低負荷であっても停止しない熱源システムを実現す ること力 Sでさる。
なお、本実施形態では、冷凍運転を専ら行うターボ冷凍機 1につ!/、て説明したが、 ヒ一トポンプ運転を備えたヒ一トポンプ式ターボ冷凍機であつても本発明を適用する こと力 Sでさる。
また、熱源機としては、ターボ冷凍機を例として説明した力 他の形式の熱源機でも 良ぐ例えばスクリューチラ一であっても良い。

Claims

請求の範囲
[1] 冷媒を圧縮する圧縮機と、
該圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、
該凝縮器によって凝縮された冷媒を膨張させる膨張弁と、
該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、
該蒸発器によって熱交換された冷水を外部負荷に対して供給する冷水往配管と、 該冷水往配管を流れる冷水の冷水出口温度を測定する冷水出口温度測定手段と 前記外部負荷と熱交換を行!/ \前記蒸発器へと前記冷水を戻す冷水還配管と、 該冷水還配管を流れる冷水の冷水入口温度を測定する冷水入口温度測定手段と 前記冷水出口温度が設定冷水出口温度となるように制御する制御部とを備え、 該制御部は、前記冷水入口温度測定手段によって測定された冷水入口温度が前 記設定冷水出口温度との間で所定温度差を形成する第 1温度以下となった場合に、 当該熱源機の停止および起動を繰り返して制御する低負荷モードを有する熱源機に おいて、
前記制御部は、前記冷水入口温度または前記冷水出口温度が前記第 1温度よりも 低い第 2温度以下となった場合に当該熱源機を停止する停止制限モードを備えてい ることを特徴とする熱源機。
[2] 前記第 2温度は、前記設定冷水出口温度よりも小さいことを特徴とする請求項 1記 載の熱源機。
[3] 前記第 2温度は、前記外部負荷が許容する最小温度以上とされていることを特徴と する請求項 1または 2に記載の熱源機。
[4] 前記制御部は、前記低負荷モードと、前記停止制限モードとを択一的に切替可能 とされて!/、ることを特徴とする請求項 1から 3の!/、ずれかに記載の熱源機。
[5] 前記制御部は、当該熱源機の運転中に、前記各モードを択一的に切替可能とされ ており、前記停止制限モードから前記低負荷モードへと切り替えた場合に、所定時 間経過後に該低負荷モードを実行することを特徴とする請求項 4記載の熱源機。
[6] 前記凝縮器を流れる冷媒から凝縮熱を奪う冷却水を供給する冷却水供給手段を 備え、
前記制御部は、前記凝縮器に流れ込む前記冷却水の温度が所定値以下の場合 に、前記停止制限モードが選択可能とすることを特徴とする請求項 4又 5に記載の熱 源機。
[7] 前記冷水出口温度測定手段および/または前記冷水入口温度測定手段は、前記 冷水往配管および/または前記冷水還配管の同一横断面における同一半径位置 に周方向に異なる位置に設けられた複数の温度センサを備え、
前記制御部は、各前記温度センサの出力値の平均値を用いることを特徴とする請 求項 1から 6の!/、ずれかに記載の熱源機。
[8] 請求項 1乃至 7のいずれかに記載された熱源機を複数備えていることを特徴とする 熱原システム。
[9] 冷媒を圧縮する圧縮機と、
該圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、
該凝縮器によって凝縮された冷媒を膨張させる膨張弁と、
該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、
該蒸発器によって熱交換された冷水を外部負荷に対して供給する冷水往配管と、 該冷水往配管を流れる冷水の冷水出口温度を測定する冷水出口温度測定手段と 前記外部負荷と熱交換を行!/ \前記蒸発器へと前記冷水を戻す冷水還配管と、 該冷水還配管を流れる冷水の冷水入口温度を測定する冷水入口温度測定手段と を備え、
前記冷水出口温度が設定冷水出口温度となるように制御し、
前記冷水入口温度測定手段によって測定された冷水入口温度が前記設定冷水出 口温度との間で所定温度差を形成する第 1温度以下となった場合に、当該熱源機の 停止および起動を繰り返して制御する低負荷モードを行う熱源機の制御方法におい て、
前記冷水入口温度または前記冷水出口温度が前記第 1温度よりも低!/、第 2温度以 下となった場合に当該熱源機を停止する停止制限モードを行うことを特徴とする熱源 機の制御方法。
PCT/JP2007/070430 2006-10-20 2007-10-19 Dispositif de source de chaleur, système de source de chaleur et procédé de contrôle du dispositif de source de chaleur WO2008047901A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800196570A CN101454622B (zh) 2006-10-20 2007-10-19 热源机、热源系统以及热源机的控制方法
EP07830164.5A EP2075515B1 (en) 2006-10-20 2007-10-19 Heat source device, heat source system, and method of controlling heat source device
US12/225,061 US20090301113A1 (en) 2006-10-20 2007-10-19 Heat Source Apparatus , Heat Source System, And Method Of Controlling Heat Source Apparatus
KR1020087028199A KR101056974B1 (ko) 2006-10-20 2007-10-19 열원기 및 열원 시스템 그리고 열원기의 제어 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006286693A JP5106819B2 (ja) 2006-10-20 2006-10-20 熱源機および熱源システムならびに熱源機の制御方法
JP2006-286693 2006-10-20

Publications (1)

Publication Number Publication Date
WO2008047901A1 true WO2008047901A1 (fr) 2008-04-24

Family

ID=39314112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070430 WO2008047901A1 (fr) 2006-10-20 2007-10-19 Dispositif de source de chaleur, système de source de chaleur et procédé de contrôle du dispositif de source de chaleur

Country Status (6)

Country Link
US (1) US20090301113A1 (ja)
EP (1) EP2075515B1 (ja)
JP (1) JP5106819B2 (ja)
KR (1) KR101056974B1 (ja)
CN (1) CN101454622B (ja)
WO (1) WO2008047901A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110513930A (zh) * 2019-09-05 2019-11-29 四川长虹空调有限公司 空气源热泵机组变频压缩机加减载控制方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495499B2 (ja) * 2008-02-27 2014-05-21 三菱重工業株式会社 ターボ冷凍機および冷凍システムならびにこれらの制御方法
JP5642448B2 (ja) * 2010-08-02 2014-12-17 三菱重工業株式会社 流量推定装置、熱源機、及び流量推定方法
JP5881282B2 (ja) * 2010-09-30 2016-03-09 三菱重工業株式会社 ターボ冷凍装置、その制御装置及びその制御方法
JP2012159255A (ja) * 2011-02-02 2012-08-23 Toshiba Carrier Corp ヒートポンプ式熱源機および加温システム
CN102094817A (zh) * 2011-02-15 2011-06-15 四川长虹空调有限公司 用于冷水机组的无级调节压缩机及其载荷控制方法
ES2584178T3 (es) * 2012-08-23 2016-09-26 Danfoss A/S Método para calibrar un sensor de temperatura de un sistema de compresión de vapor
US20140345307A1 (en) * 2013-05-23 2014-11-27 Air To Water Technologies, Inc. Energy efficient dehumidifying refrigeration system
KR101586906B1 (ko) * 2014-04-30 2016-01-20 하이에어코리아 주식회사 터보냉동기의 압축기 운전제어방법
KR102201745B1 (ko) * 2014-05-20 2021-01-12 엘지전자 주식회사 터보 칠러 및 이를 포함하는 칠러 시스템
JP6716306B2 (ja) * 2016-03-23 2020-07-01 三菱重工サーマルシステムズ株式会社 熱源システムの設定温度制御装置、及びそれを備えた熱源システム、並びに熱源システムの設定温度制御方法
CN106403175B (zh) * 2016-09-12 2019-03-26 珠海格力电器股份有限公司 冷水机组的控制方法及冷水机组
US20180372385A1 (en) * 2017-06-26 2018-12-27 Trane International Inc. Compressor cycling control for variable flow systems
JP6533256B2 (ja) * 2017-07-06 2019-06-19 本田技研工業株式会社 内燃機関の制御装置
JP2021038897A (ja) * 2019-09-05 2021-03-11 パナソニックIpマネジメント株式会社 冷凍サイクル装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510186A (ja) 1991-07-04 1993-01-19 Matsushita Electric Ind Co Ltd 内燃機関におけるステツプモータ制御装置
JPH1068792A (ja) * 1996-03-18 1998-03-10 Westinghouse Electric Corp <We> 原子力蒸気供給系の温度測定システム及び温度測定方法
JPH10197079A (ja) * 1997-01-06 1998-07-31 Yakiii Kk 冷水式冷凍機の省エネルギー運転制御装置
JP2000121175A (ja) * 1998-10-15 2000-04-28 Hitachi Ltd 冷凍装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528827U (ja) * 1978-08-16 1980-02-25
JPS5934257B2 (ja) * 1979-07-06 1984-08-21 三菱電機株式会社 水冷却装置
JPH0426868Y2 (ja) * 1986-11-12 1992-06-26
JPH0833242B2 (ja) * 1987-04-13 1996-03-29 三菱重工業株式会社 冷凍装置
JP2501947B2 (ja) * 1990-10-24 1996-05-29 富士電機株式会社 冷凍装置
JPH05296516A (ja) * 1992-04-18 1993-11-09 Osaka Gas Co Ltd 冷房装置
JP2708053B2 (ja) * 1992-07-23 1998-02-04 株式会社日立製作所 冷凍装置の温度調節器
JP2000111182A (ja) * 1998-10-09 2000-04-18 Sanden Corp 空調装置
JP3693038B2 (ja) * 2002-05-22 2005-09-07 ダイキン工業株式会社 冷凍装置の制御方法および冷凍装置
JP4269616B2 (ja) * 2002-09-24 2009-05-27 株式会社Ihi 過冷却水製造装置の制御方法及び装置
JP3851285B2 (ja) * 2003-03-14 2006-11-29 株式会社三菱地所設計 制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510186A (ja) 1991-07-04 1993-01-19 Matsushita Electric Ind Co Ltd 内燃機関におけるステツプモータ制御装置
JPH1068792A (ja) * 1996-03-18 1998-03-10 Westinghouse Electric Corp <We> 原子力蒸気供給系の温度測定システム及び温度測定方法
JPH10197079A (ja) * 1997-01-06 1998-07-31 Yakiii Kk 冷水式冷凍機の省エネルギー運転制御装置
JP2000121175A (ja) * 1998-10-15 2000-04-28 Hitachi Ltd 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2075515A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110513930A (zh) * 2019-09-05 2019-11-29 四川长虹空调有限公司 空气源热泵机组变频压缩机加减载控制方法
CN110513930B (zh) * 2019-09-05 2021-07-13 四川长虹空调有限公司 空气源热泵机组变频压缩机加减载控制方法

Also Published As

Publication number Publication date
US20090301113A1 (en) 2009-12-10
JP5106819B2 (ja) 2012-12-26
EP2075515B1 (en) 2018-02-28
EP2075515A1 (en) 2009-07-01
CN101454622B (zh) 2010-12-08
JP2008101884A (ja) 2008-05-01
KR20090037855A (ko) 2009-04-16
CN101454622A (zh) 2009-06-10
KR101056974B1 (ko) 2011-08-16
EP2075515A4 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
WO2008047901A1 (fr) Dispositif de source de chaleur, système de source de chaleur et procédé de contrôle du dispositif de source de chaleur
US11378314B2 (en) Air cooled chiller with heat recovery
EP2232169B1 (en) Vapor compression system
EP2313709B1 (en) Chiller with setpoint adjustment
EP2730859B1 (en) Refrigeration cycle device
KR101445992B1 (ko) 열매체 유량 추정 장치, 열원기 및 열매체 유량 추정 방법
US8701424B2 (en) Turbo chiller, heat source system, and method for controlling the same
CN110494701B (zh) 空调机
JP2007333219A (ja) マルチ式空気調和システム
JP5010364B2 (ja) 熱源機およびその制御方法、並びに、熱源システムおよびその運転方法
US7380411B2 (en) Heat source unit with switching means between heating and cooling
JP5034066B2 (ja) 空気調和装置
JP2010164270A (ja) 多室型空気調和機
JP5927670B2 (ja) 空気調和装置
JP2014129912A (ja) 直膨コイルを使用した空気調和機
JP2016217559A (ja) 空気調和装置
WO2019008660A1 (ja) 空気調和システム
JP2004286253A (ja) 冷媒高圧回避方法およびそれを用いた空気調和システム
JP7282207B2 (ja) 室外ユニットおよび冷凍サイクル装置
JP2013007500A (ja) 冷凍装置
CN114909815A (zh) 可逆热泵
CN117588807A (zh) 具有供风温度可调及精确控湿的空调系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780019657.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830164

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007830164

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12225061

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE