KR20080034409A - 비대칭 충전 셀들로 구성된 고출력 이차전지 시스템 - Google Patents

비대칭 충전 셀들로 구성된 고출력 이차전지 시스템 Download PDF

Info

Publication number
KR20080034409A
KR20080034409A KR1020070103822A KR20070103822A KR20080034409A KR 20080034409 A KR20080034409 A KR 20080034409A KR 1020070103822 A KR1020070103822 A KR 1020070103822A KR 20070103822 A KR20070103822 A KR 20070103822A KR 20080034409 A KR20080034409 A KR 20080034409A
Authority
KR
South Korea
Prior art keywords
battery
cell line
cell
battery system
charge
Prior art date
Application number
KR1020070103822A
Other languages
English (en)
Other versions
KR100890158B1 (ko
Inventor
파울젠얀스
윤성훈
박홍규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20080034409A publication Critical patent/KR20080034409A/ko
Application granted granted Critical
Publication of KR100890158B1 publication Critical patent/KR100890158B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Hybrid Cells (AREA)

Abstract

본 발명은 병렬로 연결된 충방전 특성이 다른 적어도 두 종류의 셀 라인들을 포함하고 있고, 각각의 셀 라인에는 하나 또는 둘 이상의 전지셀들이 직렬로 연결되어 있는 이차전지 시스템을 제공한다.
즉, 본 발명에 따른 전지시스템은 적어도 하나의 셀 라인의 전지셀들이 고율 충전 특성을 발휘하고 다른 하나의 셀 라인의 전지셀들이 고율 방전 특성을 발휘함으로써, 고율 충전 특성과 방전 특성의 향상과 균형을 맞춤으로써 고출력의 동력원을 제공할 수 있는 효과가 있다.

Description

비대칭 충전 셀들로 구성된 고출력 이차전지 시스템 {High Power Secondary Battery System Comprising Asymmetric Charged Cells}
본 발명은 비대칭 충전 셀들로 구성된 고출력 이차전지 시스템에 관한 것으로, 더욱 상세하게는, 병렬로 연결된 적어도 두 종류의 셀 라인을 포함하고 있고, 각각의 셀 라인에는 하나 또는 둘 이상의 전지셀들이 직렬로 연결되어 있으며, 상기 셀 라인들 중 적어도 하나의 셀 라인의 전지셀들은 고율 충전 특성을 발휘하고, 적어도 하나의 다른 셀 라인의 전지셀들은 고율 방전 특성을 발휘함으로써, 전체적으로 고출력을 제공할 수 있는 전지시스템을 제공한다.
최근, 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 방전 전압의 리튬 이차전지에 대해 많은 연구가 행해져 왔고 또한 상용화되어 널리 사용되고 있다.
또한, 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차, 하이브리드 전기자동차 등의 동력원으로는 주로 니켈 수소금속 이차전지가 사용되고 있지만, 높은 에너지 밀도와 방전 전압의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부는 상용화 단계에 있다.
리튬 이차전지는 집전체 상에 각각 활물질이 도포되어 있는 양극과 음극 사이에 다공성의 분리막이 개재된 전극조립체에 리튬염을 포함하는 비수계 전해액이 함침되어 있는 구조로 이루어져 있다. 양극 활물질로는 주로 리튬 코발트계 산화물, 리튬 망간계 산화물, 리튬 니켈계 산화물, 리튬 복합 산화물 등이 사용되고 있으며, 음극 산화물로는 주로 탄소계 물질이 사용되고 있다.
상기 리튬 이차전지를 전기자동차, 하이브리드 전기자동차 등의 동력원으로 사용하기 위해서는 고출력 및 대용량의 전지시스템이 필요하며, 이러한 전지시스템에는 고율의 충전 및 방전 특성이 요구된다.
그 중, 하이브리드 전기자동차의 경우, 작동의 효율성을 향상시키면서 연료의 사용을 최소화하기 위해, 차량의 운행 조건에 따라 엔진과 전지시스템의 작동 상태가 변하게 된다. 예를 들어, 차량이 정상 속도로 운행되거나 경사면을 내려오는 운행을 할 때에는, 엔진을 사용하지 않고 전지시스템이 작용하므로 고율의 방전 특성이 요구되며, 반대로 가속 운행을 행하거나 경사면을 올라가는 운행을 할 경우에는 엔진이 주로 작동하고 그로 인한 운동 에너지를 전기 에너지로 변환시켜 전지를 충전하게 되므로 고율의 충전 특성이 요구된다. 따라서, 방전 특성과 충전 특 성이 모두 우수한 것이 가장 이상적이다.
그러나, 충전 특성과 방전 특성은 상보적 관계를 가지므로, 충전 특성이 상대적으로 우수한 전극 활물질은 방전 특성이 상대적으로 떨어지고, 반대로 방전 특성이 상대적으로 우수한 전극 활물질은 충전 특성이 상대적으로 떨어지는 경향이 있다. 따라서, 이러한 활물질 구성으로 인해 이를 포함하는 이차전지 역시 충전 특성과 방전 특성이 모두 우수하기는 어렵다. 예를 들어, 리튬 철 인산화물(olivine 화합물)은 방전 특성 보다는 충전 특성이 뛰어나고, 그것을 양극 활물질로 포함하는 리튬 이차전지 역시 방전 특성에 대해 상대적으로 고율의 충전 특성을 나타내게 된다. 반면에, 리튬 티타늄 산화물(spinel 결정구조)은 방전 특성이 더욱 뛰어나며, 그것을 양극 활물질로 포함하는 리튬 이차전지 역시 충전 특성에 대해 상대적으로 고율의 방전 특성을 나타내게 된다.
결과적으로, 현재까지 개발된 전지시스템들은 충전 특성과 방전 특성이 모두 우수한 구성을 가지지는 못하고 있다. 이와 관련하여, 각기 다른 충방전 특성을 갖는 리튬 이차전지들을 단순히 함께 사용하여 전지시스템을 구성하는 방안도 고려할 수는 있으나, 소망하는 효과를 얻을 수 없는 것으로 확인되었다.
따라서, 본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
구체적으로, 본 발명의 목적은 고율의 충전 특성과 방전 특성을 모두 만족하는 고출력 대용량의 전지시스템을 제공하는 것이다.
본 발명의 또 다른 목적은 높은 충전상태를 갖는 전지셀과 낮은 충전상태를 갖는 전지셀을 특정한 조합으로 혼용 사용하고, 각각의 셀 라인에 상이한 충전상태를 공급함으로써, 상대적으로 긴 전지 수명 특성을 가진 전지시스템을 제공하는 것이다.
본 발명의 기타 목적은 전지셀을 단위체로 사용하여, 이들의 조합을 통해 소망하는 출력과 용량으로 제조되는 중대형 전지시스템을 제공하는 것이다.
이러한 목적을 달성하기 위한 본 발명에 따른 전지시스템은, 병렬로 연결된 충전 및 방전 특성을 달리하는 둘 또는 그 이상의 종류의 셀 라인들을 포함하고 있고, 각각의 셀 라인에는 하나 또는 둘 이상의 전지셀들이 직렬로 연결되어 있으며, 전지시스템의 작동 조건에서 적어도 하나의 셀 라인은 고율 충전 특성에 기여하고, 적어도 다른 하나의 셀 라인은 고율 방전 특성에 기여하는 것으로 구성되어 있다.
즉, 셀 라인에 따라 포함되어 있는 전지셀이 상이한 충방전 특성을 가지도록 구성하고, 그에 따라 셀 라인 별로 비대칭의 충전상태가 나타나도록 되어 있다. 이를 통해, 전지시스템의 충전 및 방전 특성을 향상시킴과 동시에, 양자간의 균형을 유지하고 수명 특성이 향상된다.
예를 들어, 전지의 전력을 소비하는 경우에는 고율 충전 특성의 셀 라인은 고율 방전 특성의 셀 라인을 보완하게 되는데, 고율 방전 특성의 셀 라인의 전지셀이 먼저 방전을 일으키게 되고, 이후 고율 충전 특성의 셀 라인의 전지셀과 평형을 이루면서 방전된 전지셀에 부분적으로 충전이 일어나게 된다. 전지를 충전하는 경우에는 그 역의 과정이 진행되어, 결과적으로는 양 셀 라인의 충/방전 특성이 서로 보완되게 된다.
일반적으로, 반복적인 충방전 과정이 이루어지는 설비의 동력원 등에 사용되는 전지시스템은 30 내지 70% 충전상태에서 원할한 작동이 가능하다. 따라서, 전체적인 작동조건이 30 내지 70% 충전상태에서, 그 중 하나 이상의 셀 라인(이하 '제 1 셀 라인'이라 한다)의 전지셀은 전지시스템 전체의 충전상태에 비해 높은 수준의 충전상태가 되고, 하나 이상의 또 다른 셀 라인(이하 '제 2 셀 라인'이라 한다)의 전지셀은 낮은 수준의 충전상태가 되도록 구성함으로써, 상기의 충/방전 특성을 서로 보완하여 향상시킬 수 있다.
특히, 하이브리드 자동차는 상기와 같이 차량의 운행 중에 충전과 방전이 반복되므로, 차량의 작동 조건에 따라 충전과 방전이 수시로 행해질 있도록 하기 위해, 전지시스템의 충전상태를 50% 전후로 유지하는 것이 바람직하다.
따라서, 상기 전지시스템의 전체적인 작동 조건이 50%인 충전상태에서, 그 중 하나 이상의 셀 라인의 전지셀은 55% 이상의 충전상태가 되고, 하나 이상의 또 다른 셀 라인의 전지셀은 45% 이하의 충전상태가 되도록 구성하는 것이 상기의 충/방전 특성을 서로 보완하는 작용과 수명 특성을 향상시킬 수 있어서 더욱 바람직하다. 특히, 상기 제 1 셀 라인의 전지셀은 60% 이상의 충전상태로 되고 상기 제 2 셀 라인은 40% 이하의 충전상태로 되는 것으로 구성할 수 있다.
하나의 바람직한 예에서, 제 2 셀 라인의 전지셀은 제 1 셀 라인의 전지셀 보다 적어도 2.5% 이상의 개방회로 전압을 갖도록 구성되어 있어서, 충방전 특성이 다른 전지셀을 사용하여 각각의 셀 라인 별로 충방전 특성이 달라지게 되며, 이로 인해 셀 라인 별로 상이한 개방회로 전압이 나타나게 된다.
예를 들어, 상기 각 셀 라인에 각기 하나의 전지셀이 포함되어 있을 때, 제 1 셀 라인의 전지셀은 음극 활물질로 Li4Ti5O12를 사용하고 Li-Mn-spinel 결정구조의 양극 활물질을 사용하는 경우, 2.5 V의 전위차를 나타내게 되고, 제 2 셀 라인의 전지셀은 음극 활물질로 하드 카본을 사용하고 양극 활물질로 LiFePO4를 사용하는 경우, 3.5 V의 전위차를 나타내게 된다. 이 경우, 전체 전지시스템이 3.0 V로 충전되면, 제 1 셀 라인은 완전히 충전되고, 제 2 셀 라인은 완전히 방전되게 된다. 즉, 개방회로 전압의 차이가 커지게 되면, 각각의 셀 라인별로 충/방전 특성의 차이가 커져 전지시스템 전체적으로는 방전 특성 및 충전 특성 양자 모두가 향상되게 된다. 특히, 충전 및 방전 특성의 향상을 최적화 하기 위해서는 상기 제 2 셀 라인의 전지셀이 제 1 셀 라인의 전지셀에 비해 5% 이상의 개방회로 전압을 갖도록 하는 것이 바람직하다.
하나의 바람직한 예에서, 상기 전지시스템은 두 종류의 셀 라인들로 구성되어 있고, 그 중 제 1 셀 라인의 전지셀은 제 2 셀 라인의 전지셀과 비교하여 상대적으로 다공성의 음극 구조를 가지며, 제 2 셀 라인의 전지셀은 제 1 셀 라인의 전 지셀과 비교하여 상대적으로 다공성의 양극 구조를 가지는 구조일 수 있다.
상기 전지셀에서 어느 한쪽이 상대적으로 다공성의 양극 내지 음극 구조를 가지게 됨으로써, 상대적으로 다공성인 쪽이 전해액과 반응하는 표면적이 넓어져 충전 또는 방전 특성이 더욱 향상되게 된다. 즉, 제 1 셀 라인은 상대적으로 다공성의 음극 구조를 가짐으로써 충전시 양극 활물질로 배출된 Li 이온이 음극 활물질에서 흡장되는 속도가 빨라져 충전 특성이 더욱 향상되고, 제 2 셀 라인은 상대적으로 다공성의 양극 구조를 가짐으로써 방전시 Li 이온이 양극 활물질로 흡장되는 속도가 빨라져 방전 특성이 더욱 향상될 수 있다.
또 다른 예에서, 상기 전지시스템은 두 종류의 셀 라인들로 구성되어 있고 전체적인 작동 조건은 50% 충전상태이며, 그 중 제 1 셀 라인의 전지셀은 상기 작동 조건에서 제 2 셀 라인의 전지셀 보다 상대적으로 큰 충전 펄스 파워를 가지며, 제 2 셀 라인의 전지셀은 상기 작동 조건에서 제 1 셀 라인의 전지셀 보다 상대적으로 큰 방전 펄스 파워를 가지는 구조일 수 있다.
제 1 셀 라인의 전지셀이 제 2 셀 라인의 전지셀 보다 상대적으로 큰 충전 펄스 특성을 가짐으로써, 제 1 셀 라인의 전지셀의 충전 속도가 빨라지게 된다. 즉, 충율 방전 특성이 뛰어난 제 1 셀 라인의 충전 펄스 특성을 크게 함으로써 전지셀의 충전 특성이 더욱 향상되고, 결과적으로 양 셀 라인간에 선택적인 충전이 가능하게 된다. 역으로, 제 2 셀 라인의 전지셀이 상대적으로 큰 방전 펄스 특성을 가지도록 함으로써, 양 셀 라인간 방전되는 순서를 선택적으로 조절 가능하게 하는 것이다.
상기 전지시스템에 있어서, 양극 및 음극 활물질의 바람직한 예로는 하기와 같이 구성을 들 수 있다.
상기 제 1 셀 라인의 전지셀은, 양극 활물질의 주성분으로서 스피넬 결정구조의 도핑 또는 비도핑 리튬 망간 산화물, 층상 결정구조의 도핑 또는 비도핑 리튬 전이금속 산화물, 또는 상기 리튬 망간 산화물과 리튬 전이금속 산화물의 혼합물을 포함하고 있고, 음극 활물질의 주성분으로서 스피넬 결정구조의 리튬 티타늄 산화물을 포함하고 있으며; 제 2 셀 라인의 전지셀은 양극 활물질의 주성분으로서 리튬 철 인산화물(olivine 화합물)을 포함하고 있고, 음극 활물질의 주성분으로서 흑연, 하드 카본, 또는 이들의 혼합물을 포함하고 있는 구성일 수 있다.
상기와 같이 양극 및 음극 활물질을 사용하는 경우, 제 1 셀 라인은 상대적으로 고율의 충전 특성을 나타내고 제 2 셀 라인은 상대적으로 고율의 방전 특성을 나타내게 된다.
더욱이, 상기와 같은 양극 및 음극 활물질을 사용함으로써, 제 1 셀 라인의 전지셀은 기본적으로 높은 충전상태에서 상대적으로 긴 수명 특성을 가지게 되고, 제 2 셀 라인의 전지셀은 낮은 충전상태에서 오랜 수명 특성을 가지게 되어, 전지시스템 전체로 보아 전지 수명 특성이 향상된다.
일반적으로 이차전지는 반복적인 충방전 상태에서 전해액이 분해됨으로써 수명 특성이 저하되는 경향이 있다. 따라서, 작동 전위가 상대적으로 낮은 전지셀에서 우선적으로 충전이 이루어질 수 있도록 전지시스템을 설정하면, 전해액의 분해를 억제하여 수명 특성을 향상시킬 수 있다. 상기 제 1 셀 라인의 전지셀은 낮은 작동전위로 우선적으로 충전되므로, 전지시스템 전체의 수명 특성이 향상된다.
상기의 "수명 특성(calendar life)"이란, 일반적인 이차전지의 작동 수명 뿐만 아니라 충전상태에서 장시간 유지할 때의 전지 수명을 포함하는 포괄적 의미의 이차전지의 수명 특성을 의미한다.
본 발명에 따른 전지시스템은 소망하는 출력 및 용량에 따라 전지셀 내지 셀 라인을 조합하여 제조될 수 있으며, 한정된 장착공간을 가지며 고출력 및 대용량의 전지시스템이 요구되는 전기자동차, 하이브리드 전기자동차, 전기오토바이, 전기자전거 등에 바람직하게 사용될 수 있다. 특히, 작동 조건에 따라 수시로 충전과 방전이 행해짐으로써 30 내지 70%, 바람직하게는 50%의 충전상태를 유지하는 것이 하이브리드 자동차 등의 디바이스에 효과적으로 사용될 수 있다.
이하에서는 실시예를 통해 본 발명의 내용을 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
[실시예 1]
두 개의 셀 라인으로 구성된 전지시스템을 제조하였다.
그 중, 제 1 셀 라인의 전지셀은, 음극 활물질의 주성분으로서 Li4Ti5O12를, 양극 활물질의 주성분으로서 스피넬 결정구조의 리튬 망간 산화물을 각각 사용하여 리튬 전지셀로 구성하였다. 또한, 음극 활물질의 충전 용량이 양극 활물질의 충전 용량보다 더 작도록 구성하였다. 반면에, 제 2 셀 라인의 전지셀은, 양극 활물질의 주성분으로서 리튬 철 인산화물(olivine 결정구조)을, 음극 활물질의 주성분으로서 하드 카본을 각각 사용하여 리튬 전지셀로 구성하였다.
상기 두 종류 전지셀들의 가용 용량은 거의 동일하도록 설정하였고, 두 셀 라인을 병렬로 연결하여, 전체 이차전지 시스템을 구성하였다.
그 결과, 상기 전지시스템의 작동 전압은 2.6 V이었고, 50% 충전상태에서의 상기 작동 전압에서 상기 제 1 셀 라인은 기본적으로 완전히 충전되고 상기 제 2 셀 라인은 완전히 방전되었다.
[실시예 2]
두 개의 셀 라인으로 구성된 전지시스템을 제조하였다. 그 중, 제 1 셀 라인은 직렬로 연결된 5 개의 전지셀로 구성하였고, 제 2 셀 라인은 직렬로 연결된 4 개의 전지셀로 구성하였다.
상기 제 1 셀 라인의 전지셀은, 음극 활물질의 주성분으로서 Li4Ti5O12을, 양극 활물질로서 스피넬 결정구조의 리튬 망간 산화물을 각각 사용하여 리튬 전지셀로 구성하였다. 제 2 셀 라인의 전지셀은, 양극 활물질의 주성분으로서 리튬 철 인산화물(olivine 화합물)을, 음극 활물질의 주성분으로서 카본(흑연과 하드 카본의 혼합물)을 각각 사용하여 리튬 전지셀로 구성하였다.
상기 두 가지 전지셀의 가용 용량은 거의 동일하도록 설정하였고, 두 셀 라인을 병렬로 연결하여, 전체 이차전지 시스템을 구성하였다.
그 결과, 상기 전지시스템의 작동 전압은 12.7 V이었고, 50% 충전상태에서의 상기 작동 전압에서 상기 제 1 셀 라인의 전지셀은 최소 70% 이상 충전되고, 제 2 셀 라인의 전지셀은 30% 이하로 충전되었다.
[실시예 3]
두 개의 셀 라인으로 구성된 전지시스템을 제조하였다. 그 중, 제 1 셀 라인은 직렬로 연결된 10 개의 전지셀로 구성하였고, 제 2 셀 라인은 직렬로 연결된 11 개의 전지셀로 구성하였다.
상기 제 1 셀 라인의 전지셀은 고율 방전 특성을 가지며 높은 충전상태에서 긴 전지 수명 특성을 가지도록 설정하였다. 즉, 음극 활물질로의 주성분으로서 흑연을 사용하고, 양극 활물질로서 스피넬 결정구조의 리튬 전이금속을 사용하였다.
상기 제 2 셀 라인의 전지셀은 고율 충전 특성을 가지고, 낮은 충전상태에서 긴 전지 수명 특성을 가지도록 설정하였다. 즉, 음극 활물질로는 하드 카본을, 양극 활물질로는 LiNiO2을 각각 사용하였다.
그 결과, 상기 전지시스템의 작동 전압은 40 V이었고, 50% 충전상태에서의 상기 작동 전압에서 제 1 셀 라인의 전지셀은 최소 60% 이상 충전되고, 제 2 셀 라인의 전지셀은 40% 이하로 충전되었다.
[실시예 4]
두 개의 셀 라인으로 구성된 전지시스템을 제조하였다. 그 중, 제 1 셀 라인과 제 2 셀 라인에 직렬로 연결된 전지셀의 수를 동일하게 구성하였고, 양극/음극 활물질 역시 두 셀 라인에 동일하게 설정하였다. 즉, 양극 활물질로서 스피넬 구조의 LiMO2(M=Mn-Ni-Co)을, 음극 활물질로서 흑연과 하드 카본의 혼합물을 각각 사용하였다.
다만, 두 셀 라인들 간에 충전 및 방전 특성을 달리하기 위하여, 제 1 셀 라인의 전지셀은 빠른 방전이 가능하도록 설정하였고, 제 2 셀 라인의 전지셀은 빠른 충전이 가능하도록 설정하였다. 특히, 양극과 음극 활물질의 다공성(전해액으로 채워진 상태)은 전해질 감소 효과를 줄이기 위해 비대칭으로 설계되었다. 그로 인해, 제 1 셀 라인의 전지셀에서는 양극 활물질의 다공률이 더 커서 빠른 방전 특성을 나타내게 되고, 제 2 셀 라인의 전지셀은 음극 활물질의 다공률이 더 커서 빠른 충전 특성을 나타내게 된다.
그 결과, 상기 전지시스템의 전체적으로 50%의 충전상태에서, 제 1 셀 라인은 55% 이상 충전되고, 제 2 셀 라인의 전지셀은 45% 이하로 충전되었다. 이를 통해, 각 전지셀의 양극 및 음극 활물질의 조성을 변화시키는 것 뿐만 아니라, 양 극에 대한 용량의 평형을 달리하는 것으로도 어느 정도 충전 또는 방전 특성의 변화를 줄 수 있음을 확인하였다.
[비교예 1]
두 개의 셀 라인으로 구성된 전지시스템을 제조하였다. 그 중, 제 1 셀 라인은 직렬로 연결된 5 개의 전지셀로 구성하였고, 제 2 셀 라인도 직렬로 연결된 5 개의 전지셀로 구성하였다.
상기 제 1 셀 라인과 제 2 셀 라인의 전지셀들이 동일한 충방전 특성을 가지도록 설정하였다. 즉, 제 1 셀 라인과 제 2 셀 라인의 전지셀 모두 동일한 음극 활물질 및 양극 활물질을 사용하였으며, 동일한 구조로 전지셀들을 구성하였다.
그 결과, 상기 전지시스템의 작동 전압은 40 V이었고, 50% 충전상태에서의 상기 작동 전압에서 제 1 셀 라인과 제 2 셀 라인 모두 50%의 동일한 충전 및 방전상태를 보였다.
[실험예 1]
상기 실시예 1 내지 4, 및 비교예 1에 의한 전지시스템에 대하여, 50%의 충전상태에서 10초간 일정한 전류로 충전 및 방전시켰을 때, 각 전지시스템의 출력을 측정하였다.
<표 1>
Figure 112007073839315-PAT00001
상기 표 1에서 보는 바와 같이, 비교예 1에 의한 전지시스템의 충방전 특성을 기준으로 실시예 1 내지 4에 의한 전지시스템을 비교할 경우, 충전 특성 및 방전 특성 모두 상승하였음을 확인할 수 있다. 즉, 셀 라인별로 상이한 충방전 특성을 가지도록 전지시스템을 구성하게 되면, 셀 라인 별로 비대칭의 충방전 상태가 나타나면서 상호간에 보완적을 역할을 하게 된다. 이를 통해, 전지시스템의 충전 및 방전 특성을 향상시킴과 동시에 양자간의 균형을 유지하게 된다.
이상에서 설명한 바와 같이, 본 발명에 따른 이차 전지시스템은 각 셀 라인별로 서로 다른 충방전 특성을 가지도록 함으로써, 전지시스템 전체적으로는 충전 특성과 방전 특성의 균형을 맞출 수 있는 동시에, 양자의 특성을 모두 향상시키고 수명 특성을 향상시키는 효과가 있다. 또한, 전지셀을 단위체로 조합하여 소망하는 출력과 용량의 전지시스템을 제공할 수 있는 효과가 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (10)

  1. 충전 및 방전 특성을 달리하는 둘 또는 그 이상의 종류의 셀 라인들을 포함하고 있고, 각각의 셀 라인에는 하나 또는 둘 이상의 전지셀들이 직렬로 연결되어 있으며, 전지시스템의 작동 조건에서 적어도 하나의 셀 라인은 고율 충전 특성에 기여하고, 적어도 다른 하나의 셀 라인은 고율 방전 특성에 기여하는 구조의 전지시스템.
  2. 제 1 항에 있어서, 상기 전지시스템은 두 종류의 셀 라인들로 구성되어 있고 전체적인 작동 조건은 30 내지 70% 충전상태이며, 그 중 제 1 셀 라인의 전지셀은 전지시스템 전체의 충전상태에 비해 높은 수준의 충전상태로 되고 제 2 셀 라인은 낮은 수준의 충전상태로 되는 것을 특징으로 하는 전지시스템.
  3. 제 2 항에 있어서, 상기 전지시스템은 두 종류의 셀 라인들로 구성되어 있고 전체적인 작동 조건은 50% 충전상태이며, 그 중 제 1 셀 라인의 전지셀은 상기 작동 조건에서 55% 이상의 충전상태로 되고 제 2 셀 라인의 전지셀은 45% 이하의 충전상태로 되는 것을 특징으로 하는 전지시스템.
  4. 제 3 항에 있어서, 상기 제 1 셀 라인의 전지셀은 60% 이상의 충전상태로 되고 상기 제 2 셀 라인의 전지셀은 40% 이하의 충전상태로 되는 것을 특징으로 하는 전지시스템.
  5. 제 1 항에 있어서, 상기 전지시스템은 두 종류의 셀 라인들로 구성되어 있고 전체적인 작동 조건은 50% 충전상태이며, 그 중 제 2 셀 라인의 전지셀은 50% 충전상태에서 제 1 셀 라인의 전지셀 보다 적어도 5% 이상의 개방회로 전압을 갖는 것을 특징으로 하는 전지시스템.
  6. 제 1 항에 있어서, 상기 전지시스템은 두 종류의 셀 라인들로 구성되어 있고, 그 중 제 1 셀 라인의 전지셀은 제 2 셀 라인의 전지셀과 비교하여 상대적으로 다공성의 음극 구조를 가지며, 제 2 셀 라인의 전지셀은 제 1 셀 라인의 전지셀과 비교하여 상대적으로 다공성의 양극 구조를 가지는 것을 특징으로 하는 전지시스템.
  7. 제 1 항에 있어서, 상기 전지시스템은 두 종류의 셀 라인들로 구성되어 있고 전체적인 작동 조건은 50% 충전상태이며, 그 중 제 1 셀 라인의 전지셀은 상기 작동조건에서 제 2 셀 라인의 전지셀 보다 상대적으로 큰 충전 펄스 파워를 가지며, 제 2 셀 라인의 전지셀은 상기 작동 조건에서 제 1 셀 라인의 전지셀 보다 상대적으로 큰 방전 펄스 파워를 가지는 것을 특징으로 하는 전지시스템.
  8. 제 1 항에 있어서, 상기 전지시스템은 두 종류의 셀 라인들로 구성되어 있 고,
    그 중 제 1 셀 라인의 전지셀은, 양극 활물질의 주성분으로서 스피넬 결정구조의 도핑 또는 비도핑 리튬 망간 산화물, 층상 결정구조의 도핑 또는 비도핑 리튬 전이금속 산화물, 또는 상기 리튬 망간 산화물과 리튬 전이금속 산화물의 혼합물을 포함하고 있고, 음극 활물질의 주성분으로서 스피넬 결정구조의 리튬 티타늄 산화물을 포함하고 있으며,
    제 2 셀 라인의 전지셀은 양극 활물질의 주성분으로서 리튬 철 인산화물을 포함하고 있고, 음극 활물질의 주성분으로서 흑연, 하드 카본, 또는 이들의 혼합물을 포함하고 있는 것을 특징으로 하는 전지시스템.
  9. 제 1 항 내지 제 8 항 중 어느 하나에 있어서, 상기 전지시스템은 전기자동차 또는 하이브리드 전기자동차의 동력원으로 사용되는 것을 특징으로 하는 전지시스템.
  10. 제 1 항에 있어서, 상기 전지시스템은 작동 조건에 따라 수시로 충전과 방전이 행해짐으로써 30 내지 70%의 충전상태에서 작동하는 것을 특징으로 하는 전지시스템.
KR1020070103822A 2006-10-16 2007-10-16 비대칭 충전 셀들로 구성된 고출력 이차전지 시스템 KR100890158B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20060100095 2006-10-16
KR1020060100095 2006-10-16

Publications (2)

Publication Number Publication Date
KR20080034409A true KR20080034409A (ko) 2008-04-21
KR100890158B1 KR100890158B1 (ko) 2009-03-25

Family

ID=39314206

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070103822A KR100890158B1 (ko) 2006-10-16 2007-10-16 비대칭 충전 셀들로 구성된 고출력 이차전지 시스템

Country Status (6)

Country Link
EP (1) EP2076929B1 (ko)
JP (1) JP5053382B2 (ko)
KR (1) KR100890158B1 (ko)
CN (1) CN101529617B (ko)
AT (1) ATE549756T1 (ko)
WO (1) WO2008048028A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862919B2 (en) 2007-11-08 2011-01-04 Samsung Sdi Co., Ltd. Battery pack and electronic device using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189607B2 (ja) 2010-02-04 2013-04-24 トヨタ自動車株式会社 車両用電源装置
CN101826607A (zh) * 2010-04-18 2010-09-08 王卫平 单芯电池连接条
KR20140066050A (ko) 2012-11-22 2014-05-30 주식회사 엘지화학 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
FR3022400A1 (fr) * 2014-06-17 2015-12-18 St Microelectronics Tours Sas Protection d'une batterie contre une absence de charge prolongee
JP2019003803A (ja) * 2017-06-14 2019-01-10 株式会社Gsユアサ 蓄電装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825155A (en) * 1993-08-09 1998-10-20 Kabushiki Kaisha Toshiba Battery set structure and charge/ discharge control apparatus for lithium-ion battery
JP3349321B2 (ja) * 1995-12-27 2002-11-25 三洋電機株式会社 組電池
JP3617183B2 (ja) * 1996-05-08 2005-02-02 トヨタ自動車株式会社 電気自動車の電源装置
JPH10304588A (ja) * 1997-02-25 1998-11-13 Matsushita Electric Ind Co Ltd 電源装置
JP3363738B2 (ja) * 1997-03-11 2003-01-08 三洋電機株式会社 電気自動車用組電池
KR100273872B1 (ko) * 1998-03-25 2000-12-15 김진경 방전사이트와 충전사이트가 분리된 전지장치
JPH11332023A (ja) * 1998-05-14 1999-11-30 Nissan Motor Co Ltd 電気自動車用バッテリー
JP4567109B2 (ja) 1998-11-24 2010-10-20 パナソニック株式会社 二次電池の充放電制御方法
WO2000054359A1 (en) * 1999-03-11 2000-09-14 Bolder Technologies Corporation Dual battery systems and methods for maintaining the charge state of high power batteries
KR100581200B1 (ko) * 1999-06-26 2006-05-17 도요시스템 가부시키가이샤 이차전지 충방전 장치용 전원장치
JP4615771B2 (ja) 2001-07-05 2011-01-19 パナソニック株式会社 組電池
US6586909B1 (en) * 2001-12-21 2003-07-01 Ron Trepka Parallel battery charging device
JP2003308817A (ja) * 2002-04-17 2003-10-31 Nissan Motor Co Ltd 組電池
JP2005293977A (ja) * 2004-03-31 2005-10-20 Enerstruct Kk 複合電池
US7811707B2 (en) * 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
US7985495B2 (en) * 2006-01-18 2011-07-26 Panasonic Corporation Assembled battery, power-supply system and production method of assembled battery
JP4413888B2 (ja) * 2006-06-13 2010-02-10 株式会社東芝 蓄電池システム、車載電源システム、車両、および蓄電池システムの充電方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862919B2 (en) 2007-11-08 2011-01-04 Samsung Sdi Co., Ltd. Battery pack and electronic device using the same

Also Published As

Publication number Publication date
CN101529617A (zh) 2009-09-09
KR100890158B1 (ko) 2009-03-25
JP5053382B2 (ja) 2012-10-17
EP2076929A4 (en) 2010-08-25
EP2076929B1 (en) 2012-03-14
JP2010507215A (ja) 2010-03-04
ATE549756T1 (de) 2012-03-15
WO2008048028A1 (en) 2008-04-24
EP2076929A1 (en) 2009-07-08
CN101529617B (zh) 2011-06-29

Similar Documents

Publication Publication Date Title
Berg Batteries for electric vehicles: materials and electrochemistry
KR102089264B1 (ko) 이차전지의 충방전 장치
JP5081886B2 (ja) 非水電解液型リチウムイオン二次電池
US20190058211A1 (en) Ether-based electrolyte system improving or supporting anodic stability of electrochemical cells having lithium-containing anodes
JP6368948B2 (ja) 蓄電システム、移動機構、搬送機構、車両及び自動車
RU2539318C1 (ru) СОДЕРЖАЩИЙ СПЛАВ Si АКТИВНЫЙ МАТЕРИАЛ ОТРИЦАТЕЛЬНОГО ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРИЧЕСКИХ УСТРОЙСТВ
US20100230191A1 (en) Electrochemical cell with a non-graphitizable carbon electrode and energy storage assembly
KR101724720B1 (ko) 층간삽입전극을 갖는 리튬이온공기배터리
KR100890158B1 (ko) 비대칭 충전 셀들로 구성된 고출력 이차전지 시스템
JP5789890B2 (ja) 高容量の正極活物質及びこれを含むリチウム二次電池
US8846224B2 (en) High power secondary battery system comprising asymmetric charged cells
CN108140868B (zh) 蓄电池组
CN105900276B (zh) 锂离子二次电池的制造方法
JP2010211990A (ja) リチウムイオン二次電池の充放電制御方法、二次電池システム、及びハイブリッド自動車
WO2024113992A1 (zh) 一种用于钠离子电池的正极极片及钠离子电池
Jayaprabakar et al. Review on hybrid electro chemical energy storage techniques for electrical vehicles: Technical insights on design, performance, energy management, operating issues & challenges
KR101551521B1 (ko) 혼합 양극활물질 및 이를 포함하는 리튬이차전지
CN111435729B (zh) 锂离子二次电池
CN115832277A (zh) 正极浆料、正极极片、电芯、电池单体、电池及用电装置
KR101546115B1 (ko) 직렬방식 phev용 리튬이차전지 양극재 및 이를 포함하는 리튬이차전지
JP6520624B2 (ja) 充電装置及び充電方法
JP2020126814A (ja) 二次電池
WO2023021781A1 (ja) リチウムイオン二次電池
KR20160074597A (ko) LiFePO₄및 적어도 2종의 다른 특정 화합물로 구성된 재료를 포함하는, 전기 에너지 저장 배터리용 전극
KR20240097913A (ko) Si 함유 애노드를 갖는 사전-리튬화 리튬 금속 산화물 리튬 이온 배터리 (Pre-lithiated Lithium Metal Oxide Lithium Ion Batteries with Si-Containing Anode)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160216

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170216

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 12