KR20080025127A - 자동 테스트 장치 및 이의 동작 방법 - Google Patents
자동 테스트 장치 및 이의 동작 방법 Download PDFInfo
- Publication number
- KR20080025127A KR20080025127A KR1020087000299A KR20087000299A KR20080025127A KR 20080025127 A KR20080025127 A KR 20080025127A KR 1020087000299 A KR1020087000299 A KR 1020087000299A KR 20087000299 A KR20087000299 A KR 20087000299A KR 20080025127 A KR20080025127 A KR 20080025127A
- Authority
- KR
- South Korea
- Prior art keywords
- test channel
- test
- channel
- testing device
- automatic
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 251
- 230000007257 malfunction Effects 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 23
- 239000011159 matrix material Substances 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 abstract description 7
- 230000004044 response Effects 0.000 description 13
- 230000002950 deficient Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/073—Multiple probes
- G01R1/07307—Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
- G01R1/07364—Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
- G01R1/07385—Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using switching of signals between probe tips and test bed, i.e. the standard contact matrix which in its turn connects to the tester
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2832—Specific tests of electronic circuits not provided for elsewhere
- G01R31/2834—Automated test systems [ATE]; using microprocessors or computers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/319—Tester hardware, i.e. output processing circuits
- G01R31/31903—Tester hardware, i.e. output processing circuits tester configuration
- G01R31/31908—Tester set-up, e.g. configuring the tester to the device under test [DUT], down loading test patterns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2801—Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
- G01R31/2806—Apparatus therefor, e.g. test stations, drivers, analysers, conveyors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/319—Tester hardware, i.e. output processing circuits
- G01R31/31901—Analysis of tester Performance; Tester characterization
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Tests Of Electronic Circuits (AREA)
Abstract
자동 반도체 디바이스 테스트 장치는 DUT(device under test)를 위한 다수의 테스트 채널을 포함한다. 자동 반도체 디바이스 테스트 장치는 오동작하는 것으로 검출된 임의의 테스트 채널을 사용하지 않은 양호한 테스트 채널로 스위칭하는 자동 스위칭 모듈을 포함한다. 자동 반도체 디바이스 테스트 장치는 테스트 채널의 오동작과 상관없이 테스트 동작을 계속 실행할 수 있다.
Description
본 발명은 DUT(device under test)를 테스트하는 분야에 관한 것이다.
집적 회로(IC)는 양호하게 동작할 필요가 있으므로 테스트되어야 한다. 테스트 동안에, 집적 회로와 같은 DUT는 ATE(Automatic Test Equipment)의 자극 데이터 신호에 노출된다. 집적 회로는 대응하는 응답 데이터를 ATE로 재전송한다. 이어서, ATE는 이 응답 데이터를 측정 및 처리하여 통상적으로 예상 응답 데이터와 비교한다. ATE는 통상적으로 이러한 작업을 디바이스 특정성 테스트 프로그램에 따라서 수행한다. 테스트 동안에 DUT가 소유한 다수의 핀 중 각 핀이 하나의 ATE 핀에 접속되어 있는 개별 핀 아키텍처(per-pin architecture)를 기반으로 하는 분산형 자원들을 갖는 ATE는 공지되어 있다. 개별 핀 아키텍처는 일반적으로 고성능 및 스케일링 능력을 제공한다.
개별 핀 아키텍처를 갖는 ATE의 실례는 Agilent Technologies로부터 입수가능한 Semiconductor Test Systems의 Agilent 83000 계열 및 Agilent 93000 계열이 다. Agilent 83000 족 및 Agilent 93000 족의 세부 사항들은 가령 EP-A-0 859 318, EP-A-0 864 977, EP-A-0 886 214, EP-A-0 882 991, US-A-5 499 248 및 US-A-5 453 995에 개시되어 있다.
본질적으로는, 전술한 문헌에서 개시된 종류의 테스트 장치는 독립적인 테스트 기기로서 각각 동작하는 일련의 테스트 채널로 구성된다. 가령, Agilent 93000 (93K) 테스트 장치에서, 테스트 채널들은 각각이 16 개의 테스트 채널들을 포함하는 다수의 채널 보드 내에서 그룹화되어 있으며 표준 93K 구성에서는 Agilent 93K 테스트 장치는 1024 개의 테스트 채널까지 포함한다.
단지 단일 테스트 채널이 오동작하게 되면, 전체 테스트 장치가 다운되는 현상이 발생하게 된다. 따라서, 임의의 테스트 채널이 오동작해도 테스트 장치는 전체적으로 다운 상태가 되기 때문에, 임의의 테스트 채널에서의 오동작이 바로 전체 테스트 장치의 다운 상태에 대한 이유가 된다. 이러한 테스트 장치가 다운되는 시간은 생산 처리량에 지대한 영향을 주게 되고 테스트 관련 비용에도 영향을 준다. 어떠한 경우라도, 이러한 "다운(down)" 이벤트는 테스트 장치의 신뢰성에 악영향을 주게 된다.
이러한 테스트 채널 오동작이 발생할 때에, 다음과 같은 단계들이 취해질 수 있다.
(a) 테스트가 정지되고 테스트 장치가 다운된다.
(b) 진단 소프트웨어가 실행되어서 오동작하는 테스트 채널의 위치를 파악한다.
(c) 이 오동작하는 테스트 채널을 포함하고 있는 테스트 채널 보드가 새로운 테스트 채널 보드로 대체된다. 이 새로운 테스트 채널 보드는 여분의 부품으로부터 대체되기 때문에, 이러한 대체 작업은 여분의 부품이 있는 소스에 주문을 하는 것과 24 내지 48 시간의 배달 시간을 필요로 한다.
(d) 새로운 테스트 채널 보드가 일단 수령되었으면, 이 새로운 테스트 채널 보드는 훈련된 기술자에 의해 설치된다.
(e) 진단 소프트웨어가 다시 실행되는데 이는 평균 1 시간을 필요로 한다.
(f) 통상적으로 자가 캘리브레이션(self-calibration)이 수행되는데 이는 평균 3 시간을 필요로 한다.
이러한 단계들이 끝나는 시점에서야, ATE 테스트 장치는 "업(up)" 상태가 되어 재동작하기 시작한다.
따라서, 테스트 장치가 다운되는 시간, 즉 테스트 장치가 동작을 하지 않는 시간이 상술한 단계 (a) 내지 (f)를 모두 실행하는데 필요한 시간의 합에 더해질 것이다.
본 발명의 목적은 개선된 DUT 테스트 장치 및 DUT 테스트 방법을 제공하는 것이다. 이러한 목적 및 다른 목적이 첨부된 청구 범위에서 규정된 바와 같은 본 발명에 의해서 달성된다.
본 발명의 바람직한 실시예의 기초를 이루고 있는 기술적 사상은 오동작하는 테스트 채널을 입수 가능하고 양호하게 동작하는 양호한 다른 테스트 채널로 자동 스위칭하는 것에 있다.
바람직하게는, 이러한 자동 스위칭 동작은 소프트웨어(S/W) 스위치 및 하드웨어(H/W) 스위치를 통해서 수행된다. 이러한 H/W 스위칭 기능을 구현하기 위한 다수의 방식이 이용될 수 있다. 가령, 이러한 방식들은 ATE 내부에서 테스트 채널을 스위칭하는 방식(가령, 이웃하는 테스트 채널 간의 스위칭 방식), DUT 보드 설계 방식(즉, DUT 보드 상의 릴레이 방식) 또는 재구성 가능한 스캔 체인들을 사용하는 방식을 포함한다.
이로써, 새로운 테스트 보드가 오동작하는 테스트 채널을 포함하는 테스트 보드를 대체할 것을 대기하면서, 테스트 장치 그 자체는 테스트 동작을 정지하지 않는다. 이로써, ATE와 같은 반도체 테스트 장치가 다운되는 시간이 줄어든다.
바람직하게는, 테스트 소프트웨어는 테스트 프로그램 디렉토리 내에 저장된 다음과 같은 소정의 파일을 기반으로 하여서 동작한다.
(a) 모델 파일 : 이 파일은 테스트 장치 자체로부터 입수가능한 모든 테스트 채널에 대한 정보를 포함한다.
(b) 핀 구성 파일 : 이 파일은 테스트 프로그램에 의해서 사용되는 테스트 장치 내의 모든 테스트 채널들에 대한 정보를 포함한다.
(c) 진단 기록 파일 : 이 파일은 테스트 장치상의 오동작 테스트 채널에 대한 정보를 포함한다.
테스트 채널에 대한 오동작이 진단 소프트웨어에 의해서 검출되면, PERL(Practical Extraction and Reporting Language) 스크립트와 같은 스크립트가 오동작 테스트 채널을 테스트 장치로부터 입수가능한 다른 테스트 채널로 자동 대체한다.
일 실시예에서, 반도체 테스트 장치는 자가 검출이 가능하고 자가 복구가 가능하며 거의 다운되는 시간이 없는 테스트 장치의 형태로 제공된다.
이제, 본 발명의 실시예들이 첨부된 도면을 참조하여 예시적으로 설명될 것이다.
도 1은 본 명세서에서 기술된 구성을 포함하도록 된 테스트 장치의 부분적으로 확대된 개략적 사시도,
도 2는 도 1에 도시된 테스트 장치의 기능적 블록도,
도 3은 본 명세서에서 기술된 반도체 테스트 장치의 가능한 동작을 나타내는 흐름도.
다음의 상세한 설명 부분에서는 본 발명의 철저한 이해를 돕기 위해서 수많은 특정 세부 사항들이 제공될 것이다. 그러나, 본 기술 분야의 당업자는 이러한 특정 세부 사항 없이도 본 발명이 실현될 수 있거나 아니면 다른 방법, 구성 요소 등에 의해서도 본 발명이 구현될 수 있음을 이해할 것이다.
특히, 본 발명의 기술적 사상을 이해하는 것이 방해받지 않도록, 본 기술 분야의 당업자에게 잘 알려진 구조, 구성 요소 또는 동작들에 대한 설명을 생략된다.
본 명세서 전체에 걸쳐서 "일 실시예" 또는 "실시예"라는 용어는 이러한 실시예에서 기술된 특정 구조 또는 특성이 본 발명의 적어도 하나의 실시예 내에 포함된다는 사실을 의도한다. 따라서, 명세서 전체에 걸쳐서 "일 실시예에서" 또는 "실시예에서"라는 구절이 나타나면, 이는 실시예가 서로 동일한 것을 의미하지는 않는다. 또한, 특정 구조 또는 특성들은 하나의 실시예 내에서 또는 2 개의 이상의 실시예들 간에서 적합한 방식으로 결합될 수 있다.
도 1은 집적 회로의 양호한 동작을 보장하기 위해서 집적 회로를 테스트할 시에 사용되는 테스트 장치(1)의 개략적 사시도이다. 테스트 동안, 집적 회로와 같은 DUT는 ATE(1)에 의해 생성된 자극 데이터 신호에 노출된다. 집적 회로는 대응하는 응답 데이터를 ATE에 재전송한다. ATE는 이 응답 데이터를 측정 및 처리하여 통상적으로 예상 응답 데이터와 비교한다. ATE는 통상적으로 이러한 작업을 디바이스 특정성 테스트 프로그램에 따라서 수행한다.
통상적이며 예시적인 구성에서, ATE(1)는 벤치 구조물(2)을 포함하는데, DUT는 이 벤치 구조물(2) 상으로 배치된다.
구체적으로 말하자면, 도 1에서, 반도체 집적 회로(C)의 형태로 된 하나 이상의 DUT가 DUT 보드(3) 상에 실장되어 있다. 이 DUT 보드(3)는 본질적으로는 이 반도체 집적 회로(C)가 그 상으로 배치되는 중앙 부분을 포함하는 대형(60cm*40cm)의 인쇄 회로 기판(PCB)의 형태로 되어 있다. 이 DUT 보드(3)는 각각이 DUT(패키징 된 디바이스 또는 "네이키드(naked)" 칩)의 하나의 핀 또는 하나의 컨택트(볼:ball)를 보드 주변에 배치된 적어도 하나의 접속 패드에 접속시키는 다수의 라인(4)을 포함한다. 이 접속 패드는 통상적으로 보드(3)의 하부 측에서 어레이(5)로 구성되어 있다.
더 양호하게 도시된 도 2에서, 각 어레이(5)는 통상적으로 접속 패드들의 행렬로 구성된다. DUT 보드 내의 각 어레이(5)는 ATE(1)의 벤치 구조물(2)의 상부 면에 있는 대응하는 접촉 핀 어레이(6)를 대면하고 있다. 이들 접촉 핀(본 명세서에서 "포고 핀(pogo pin)"으로 지칭됨)은 접촉 패드(5)로의 전기적 접속을 확립하고 따라서 DUT(C)의 핀 또는 볼로의 전기적 접속을 확립한다.
테스트 프로세스 동안에, 라인(4), 어레이(5) 내의 접촉 패드와 포고 핀(6)을 통해서 확립된 전기적 접속은 자극 형태로 된 신호를 DUT(C)에 인가하고 이 DUT(C)로부터 대응하는 응답 또는 반응 데이터를 수집하기 위해서 사용된다. 이러한 응답 데이터 또는 반응 데이터가 존재하지 않거나 예상된 응답 데이터와는 상이한 반응 데이터 또는 응답 데이터가 존재한다면, 일반적으로 테스트 중인 임의의 집적 회로(C)에 오동작 또는 고장이 있다는 증거이다.
지금까지 기술된 바들은 본 기술 분야의 당업자에게 잘 알려진 동작의 원리에 관한 것이며 따라서 본 명세서에서는 더 상세하게 설명되지 않을 것이다.
더 양호하게 도시된 도 2에서, 각 포고 핀(6) 어레이는 대응하는 테스트 채널(7)의 윈위 단부(distal end)를 나타낸다. 각 테스트 채널은 이하에서 더 상세하게 설명될 스위칭 행렬(8)을 통해서 테스트 보드(9)에 접속된다. 통상적으로, Agilent 93K 시리즈의 ATE는 64 개의 테스트 보드 내로 그룹화된 1024 개의 채널들을 포함하며, 따라서 각 테스트 보드는 자신과 관련된 16 개의 테스트 채널을 갖게 된다. 테스트 보드(9)는 통상적으로 ATE의 벤치 구조물(2) 내에 배치되고 사용자 인터페이스(가령 GUI)가 배치되어 있는 중앙 선반(11) 내에 하우징된 주 테스트 유닛(10)으로 연장되어 있다.
임의의 테스트 채널(7)의 오동작은 매우 바람지하지 않은 현상이며 주 테스트 유닛(10)은 이러한 오동작 테스트 채널을 검출하는 자동 검출 소프트웨어를 포함한다.
본 명세서에서 기술된 구성에 관한 본 바람직한 실시예에서는, 오동작 테스트 채널의 검출은 그 자체로 알려진 수단에 의해서, 가령 Agilent 93K 테스트 기기를 구비한 소프트웨어 모듈 HPSmartestTM에서 사용되고 있는 진단 루틴을 통해서 수행될 수 있다.
이 테스트 소프트웨어는 주 테스트 유닛(10)의 해당 메모리 내에 저장된 소정의 파일을 기초로 하여서 동작한다. 구체적으로, 테스트 프로그램 디렉토리 내에 저장된 이러한 파일들은 다음과 같다.
(a) 모델 파일 : 이 파일은 테스트 장치 자체로부터 입수가능한 모든 테스트 채널에 대한 정보를 포함한다.
(b) 핀 구성 파일 : 이 파일은 테스트 프로그램에 의해서 사용되는 테스트 장치 내의 모든 테스트 채널들에 대한 정보를 포함한다.
(c) 진단 기록 파일 : 이 파일은 테스트 장치상의 오동작 테스트 채널에 대한 정보를 포함한다.
본 명세서에서 기술된 구성이 기초로 하는 기술적 사상은 테스트 채널들(7) 하나의 테스트 채널이 결함이 있는 것으로 발견되면, 상기 핀 구성 파일 내에서는, 사용되지 않은 다른 양호한 테스트 채널이 결함이 있는 테스트 채널을 대체한다는 것이다.
구체적으로 말하자면, PERL 스크립트와 같은 스크립트가 핀 구성 파일 내에서 상기 결함이 있는 테스트 채널을 양호하고 새로운 테스트 채널로 대체한다. 이어서, 실제로 물리적으로, DUT 상에서 결함이 있는 테스트 채널이 결함이 없는 양호한 사용되지 않은 테스트 채널로 대체된다.
이러한 기술적 구성의 예시적인 동작 모드가 이제 도 3의 흐름도를 참조하여 설명될 것이다.
테스트 장치의 정규 동작 상태인 대기 단계(100)로 시작되어, 단계(102)에서 테스트 채널 오동작 이벤트가 본 명세서에서 기술되지 않은 잘 알려진 수단에 의해서 검출된다.
이로써, 단계(104)에서, 테스트 동작이 정지된다. 즉, 테스트 장치(1)가 다운된다.
이어서, 단계(106)에서, 진단 소프트웨어(이 진단 소프트웨어는 Agilent 93K 테스트 소프트웨어의 일부로서 입수가능함)가 실행되고 오동작 테스트 채널(7)이 식별된다.
단계(108)에서, PERL(Practical Extraction and Reporting Language) 스크립트와 같은 스크립트가 전술한 바와 같은 진단 기록 파일을 스캔하여서 오동작이 있는 테스트 채널을 발견한다. 구체적으로 말하자면, 이 스크립트는 다음의 같은 주 테스트 유닛(10) 내에 저장된 테스트 소프트웨어 디렉토리 내에 포함된 2 개의 파일을 스캔한다.
(i) 모델 파일 : 이 파일은 테스트 장치 자체로부터 입수가능한 모든 테스트 채널(즉, tester_channels)"에 대한 정보를 포함한다.
(ii) 핀 구성 파일 : 이 파일은 테스트 프로그램에 의해서 사용되는 테스트 장치 내의 모든 테스트 채널들(즉, used_channels")에 대한 정보를 포함한다.
이 스크립트는 상기 모델 파일과 핀 구성 파일을 스캔하고 비교하여 입수가능하고 사용되지 않은 테스트 채널을 알아낸다. 이 스크립트는 "tester_channels" 그룹 대 "used channels" 그룹을 비교함으로써 입수가능하고 사용되지 않은 테스트 채널을 알아낸다.
이로써, PERL 스크립트는 "spare_channels" 그룹을 알아낸다. "spare_channels" 그룹 내에 속한 임의의 테스트 채널이 "used_channels" 그룹에 속한 오동작 테스트 채널을 대체한다.
이 스크립트는 오동작하는 것으로 발견된 테스트 채널(7)을 "spare_channels" 그룹으로부터 선택된 테스트 채널로 대체함으로써 핀 구성 파일을 수정한다. 이러한 방식으로, 오동작 테스트 채널을 입수가능하고 양호한 테스트 채널로 대체함으로써 스위칭 동작이 수행된다.
이어서, 단계(110)에서, 실제로 물리적으로, 오동작 테스트 채널을 입수가능하고 양호한 테스트 채널, 즉 적합한 테스트 동작을 보장하는 테스트 채널로 대체함으로써 물리적 스위칭 동작이 수행된다.
여기서 고려되고 있는 물리적 스위칭 동작은 여러 선택 사양적인 방식에 의해서 수행될 수 있다.
먼저, 본 바람직한 물리적 스위칭 동작의 선택 사양적 방식은 도 2에 도시된 스위칭 행렬(8)에 의존한다. 바람직한 실시예에서, 이 스위칭 행렬(8)은 고체 상태 릴레이 스위칭 행렬(solid state relay switch matrix)이다. 이 고체 상태 릴레이 스위칭 행렬은 통상적으로 가령 전화 네트워크 내의 민간 교환기 및 공용 교환기와 같은 광범위한 전자 디바이스 내에서 사용되고 있다. 또한, 이러한 행렬이 가령 이른바 "스택"(이 스택은 각각이 이 스택 내의 다양한 디바이스들을 테스트하기 위해서 서로 다른 접속 구성을 필요로 하는 핀 또는 볼로 구성된 층을 각기 구비한 다수의 중첩된 디바이스들을 포함하고 있음)을 테스트하기 위해서 ATE 내에서 이용되는 바가 제안되었다.
요약하면, 소정의 테스트 채널(7)이 오동작하는 것으로 발견되면, 주 테스트 유닛(10)의 제어 하에서 동작하는 행렬(8)에 의해서, 상기 오동작하는 테스트 채널을 통해서 상호접속된 테스트 보드(9)와 포고 핀(6) 어레이가 기능적으로 양호한 테스트 채널을 통해서 다시 접속되며 이로써 테스트 프로세스가 다시 계속 진행될 수 있게 된다.
이와 달리, 대응하는 동작 모드는 DUT 보드(3) 내에 포함된 (도 2에서 파선 으로 개략적으로 도시된) 릴레이(12)를 통해서 모든 테스트 채널들을 위한 전용 보드 설계에 의존함으로써 보장될 수 있다. 이러한 방식으로, 모든 테스트 채널(7)은 임의의 결함 테스트 채널을 입수가능하며 사용되지 않은 테스트 채널로 대체하는 책임을 감당하는 각각의 릴레이(12)에 접속된다. 이러한 다른 방식의 구성은 DUT 보드(3)의 표면 점유 정도를 어느 정도 증가시킬 수 있으며, 스위칭 릴레이(12)가 DUT 보드(3) 상에서 이미 입수가능하게 된 이른바 "유틸리티" 라인(12)을 통해서 주 테스트 유닛(10)에 의해서 제어될 수 있다는 점에서 고유한 장점을 갖는다.
도면에서는 명시적으로 도시되지 않은 또 다른 방식은 디바이스 DUT의 이른바 스캔 체인에서의 대응하는 변화를 통해서 달성되며 전술한 바와 같은 라인들을 따르는 가상 스위칭을 제공한다.
채널 H/W 스위칭을 위해서 상술한 바와 같은 선택 사양 방식 중 어느 것이 선택되더라도, 일단 이러한 테스트 채널 스위칭이 달성되면, 단계(112)에서 진단 소프트웨어가 실행된다. 단계(114)에서 진단 루틴이 긍정적이 결과를 나타내면, 단계(116)에서 테스트 장치는 ON으로 설정되고 이로써 테스트 프로세스가 다시 시작되며 이어서 단계(118)에서 대기 상태로 들어간다. 단계(114)에서 부정적인 결과를 진단 루틴이 나타내면, 이 프로세스는 단계(106)로 돌아간다.
진단 루틴이 일단 오동작하는 테스트 채널을 검출하면 진단 루틴은 PERL 스크립트를 호출할 것이기 때문에 전술한 바와 같은 단계들은 바람직하게는 단일 단계 소프트웨어 프로세스로 통합될 수 있다. 이는 상술한 단계들이 사실상 진단 루틴으로 통합되고, 임의의 테스트 장치가 오동작이 검출됨으로 인해서 정지된 후에 이러한 단계들이 자동으로 실행되는 것을 의미한다.
이러한 동작 타입은 진정한 자가 검출/자가 복구 테스트 장치의 개념을 구현한다는 것을 잘 이해할 것이다. 또한, 본 기술 분야의 당업자는 상술한 동작 타입은 테스트 장치가 가용한 모든 테스트 채널을 이미 사용하고 있는 경우에 테스트 장치에서 사용될 여분의 스페어 테스트 채널을 도입해야 함을 잘 이해할 것이다.
본 명세서에서 기술된 구성의 프레임워크 내부에서 사용되도록 되는 PERL 스크립트를 나타내는 의사 코드(pseudo-code)가 이제 상세하게 설명될 것이다.
이 스크립트의 메인 프로그램은 다음과 같은 기능들을 실행한다.
&scan_diag() ; # 진단 파일로부터 결함이 있는 테스트 채널을 검출함
&scan__model() ; # 모델 파일로부터 가용한 테스트 채널을 검출함
&scan_config() ; # 핀 구성 파일로부터 사용된 테스트 채널을 검출함
&scan_free() ; # 사용되지 않은 테스트 채널을 검출함
&backup_config() ; # 핀 구성의 백업을 생성함
&modify_config() ; # 핀 구성 내에서 결함이 있는 테스트 채널을 사용되지 않은 가용한 테스트 채널로 대체함
&scan__model()은 다음과 같은 모델 파일 부분을 스캐닝함으로써, 테스트 장치 내에서 가용한 테스트 채널(즉, tester_channels)을 검출한다.
IOCHANNEL
10101-10216: sram = 2M, sdram = 112M
10301-11416: sram = 2M, sdram = 14M
11501-11616: sram = 2M, sdram = 112M
11701-13216: sram = 2M, sdram = 14M
20101-20516: sram = 2M, sdram = 14M
...................................
&scan_config()은 다음과 같은 핀 구성 파일 부분을 스캐닝함으로써, 테스트 프로그램에 의해서 사용된 테스트 채널(즉, used_channels)을 검출한다.
hp93000,config, 0.1
DFPN 10702, "3", (cari_pwm)
DFPN 10703, "4", (paper_pwm)
DFPN 10704, "5", (serv_pwm_b)
DFPN 10705, "8", (rom_adrl8)
DFPN 10706, "9", (serv_pwm_a)
DFPN 10707, "10", (aload)
DFPN 10708, "11", (obs busl3)
.............................
이어서, &scan_free()은 사용되지 않은 테스트 채널을 검출하고 &modify_config()은 핀 구성 내에서 결함이 있는 테스트 채널을 사용되지 않은 가용한 테스트 채널로 대체한다.
이 시점에서 테스트 장치의 화면상에 다음과 같은 통보 사항이 표시된다.
print
"\n\n\n\n";
print
"
!!!!!
ATTENTION
!!!!!
THIS
CHANNEL
IS
FAILING
: $failing_channels [$t] \n";
print
"
REPLACE
IT
ON
THE
BOARD
WITH
THIS
UNUSED
CHANNEL
: $free_channels [$t] \n";
print
"\n\n";
print
"
CONFIGURATION
HAS
BEEN
ALREADY
UPDATED
BY
THIS
SCRIPT
";
진단 소프트웨어(단계(106))는 테스트 장치에서 결함이 발생한 후에 기술자에 의해서 수동으로 테스트 장치상에서 실행될 수 있다. 그러나, 본 명세서에서 기술된 구성에서는 바람직하게는 이 진단 소프트웨어는 테스트 장치가 다운되지는 않고 정지될 때에 마치 PC 상에서 실행되는 SCANDISK 프로그램과 같이 주기적으로 실행될 수 있다. 오동작 테스트 채널이 검출되면, 상술한 바와 같은 테스트 채널 스위칭 동작이 자동적으로 수행된다.
본 명세서에서 기술된 구성은 MTBF(mean time between failures) 측면에서 테스트 장치의 성능을 개선함으로써 테스트 장치의 업 타임을 크게 증가시키게 된다. 이는 특히 비용에 민감한 다중 사이트 환경에서 사용될 것으로 예상되는 높은 핀 개수를 갖는 디지털 시스템에서 중요하다.
본 명세서에서 기술된 구성은 DUT 보드 상의 릴레이 유닛(20)을 사용하는 것과 관련된다. 소정의 애플리케이션에 있어서, 이러한 구성은 공간 및 신뢰성 측면에서 실용적이지 않다고 판명되었다. 그러나, 전술한 바와 같은 스위칭 프로세스는 가령 이웃하는 테스트 채널 간의 스위칭 동작, DUT 내부에서의 스위칭 동작 또는 재구성 가능한 스캔 체인을 사용하는 동작에 의해서 자동 테스트 장치(ATE) 내의 어디에서도 수행될 수 있다.
본 명세서의 요약서의 내용을 포함한, 본 발명의 예시된 실시예들에 대한 상술한 바는 본 발명을 개시된 바대로 정확하게 한정하는 것이 아니다. 본 발명의 이러한 실시예 또는 실례들은 단지 본 발명을 예시적으로 설명하기 위해서 기술되었기에, 이에 대한 수정 및 변경이 본 발명의 범위 내에서 가능하고 이러한 수정 및 변경은 본 발명의 기술적 사상 및 범위를 일탈하지 않게 이루어진다.
이러한 수정 및 변경은 전술한 발명의 상세한 설명 부분의 조명하에서 이루어질 수 있다. 다음의 청구 범위에서 사용된 용어들은 본 발명을 본 청구 범위 및 명세서에서 개시된 특정 실시예로 한정하는 것으로 해석되지 말아야 한다. 이보다는, 본 발명의 범위는 전적으로 다음의 청구 범위에 의해서 결정되며 이 청구 범위는 확립된 청구 범위 해석 원칙에 따라서 해석되어야 한다.
Claims (17)
- 자동 테스트 장치로서,제 1 테스트 채널 및 제 2 테스트 채널과,상기 제 1 테스트 채널 및 제 2 테스트 채널의 가용성 여부를 표시하는 모델 파일과,상기 제 1 테스트 채널 및 제 2 테스트 채널이 사용중인지의 여부를 표시하는 핀 구성 파일과,상기 모델 파일과 상기 핀 구성 파일을 스캐닝하여서 상기 제 1 테스트 채널이 오동작하는 테스트 채널일 때에 상기 제 1 테스트 채널을 대신하는 테스트 채널로서 상기 제 2 테스트 채널이 이용될 수 있다는 것을 식별하는 스크립트를 포함하는자동 테스트 장치.
- 제 1 항에 있어서,상기 제 1 테스트 채널이 오동작할 때에 상기 제 1 테스트 채널을 식별하는 기록 파일을 생성하는 오동작 검출 모듈을 더 포함하는자동 테스트 장치.
- 제 2 항에 있어서,상기 스크립트는 상기 기록 파일을 스캐닝하여서 상기 제 1 테스트 채널이 오동작할 때에 상기 제 1 테스트 채널을 식별하는자동 테스트 장치.
- 제 1 항에 있어서,상기 스크립트는 PERL(Practical Extraction and Reporting Language) 스크립트인자동 테스트 장치.
- 제 1 항에 있어서,상기 제 1 테스트 채널을 상기 제 2 테스트 채널로 스위칭하는 스위치를 더 포함하는자동 테스트 장치.
- 제 1 항에 있어서,제 3 테스트 채널과,상기 제 1 테스트 채널을 상기 제 2 테스트 채널 또는 상기 제 3 테스트 채널 중 어느 하나의 테스트 채널로 스위칭하도록 제어될 수 있는 스위칭 행렬을 더 포함하는자동 테스트 장치.
- 제 5 항에 있어서,상기 스위치는 상기 제 1 테스트 채널 대신에 상기 제 2 테스트 채널을 활성화시키는 릴레이(relay)를 포함하는자동 테스트 장치.
- 자동 테스트 장치로서,제 1 테스트 채널 및 제 2 테스트 채널과,상기 제 1 테스트 채널의 오동작을 검출하는 검출 모듈과,상기 검출 모듈이 상기 제 1 테스트 채널의 오동작을 검출할 때에 상기 제 1 테스트 채널을 상기 제 2 테스트 채널로 스위칭하는 스위치를 포함하는자동 테스트 장치.
- 제 8 항에 있어서,상기 검출 모듈은 상기 제 1 테스트 채널이 오동작할 때에 상기 제 1 테스트 채널을 식별하는 기록 파일을 생성하는자동 테스트 장치.
- 제 8 항에 있어서,제 3 테스트 채널과,상기 제 1 테스트 채널을 상기 제 2 테스트 채널 또는 상기 제 3 테스트 채널 중 어느 하나의 테스트 채널로 스위칭하도록 제어될 수 있는 스위칭 행렬을 더 포함하고,상기 스위치는 상기 스위칭 행렬의 구성 요소인자동 테스트 장치.
- 제 8 항에 있어서,상기 스위치는 상기 제 1 테스트 채널 대신에 상기 제 2 테스트 채널을 활성화시키는 릴레이를 포함하는자동 테스트 장치.
- 제 8 항에 있어서,상기 제 1 테스트 채널과 상기 제 2 테스트 채널의 동작을 정지시키는 모듈을 더 포함하며,상기 검출 모듈은 상기 정지 동작과 동시에 활성화되는자동 테스트 장치.
- 제 8 항에 있어서,테스트 채널 오동작과 상관없이 테스트 동작을 계속 진행하는자동 테스트 장치.
- 제 1 테스트 채널 및 제 2 테스트 채널을 포함하는 자동 테스트 장치를 동작시키는 방법으로서,상기 제 1 테스트 채널 및 제 2 테스트 채널의 가용성 여부를 표시하는 모델 파일을 제공하는 단계와,상기 제 1 테스트 채널 및 제 2 테스트 채널이 사용중인지의 여부를 표시하는 핀 구성 파일을 제공하는 단계와,상기 모델 파일과 상기 핀 구성 파일을 스캐닝하여서 상기 제 1 테스트 채널이 오동작하는 테스트 채널일 때에 상기 제 1 테스트 채널을 대신하는 테스트 채널로서 상기 제 2 테스트 채널이 이용될 수 있다는 것을 식별하는 단계와,상기 제 1 테스트 채널이 오동작할 때에 상기 제 1 테스트 채널을 상기 제 2 테스트 채널로 대체하는 단계를 포함하는자동 테스트 장치 동작 방법.
- 제 14 항에 있어서,상기 제 1 테스트 채널이 오동작하는 것을 검출하는 단계를 더 포함하며,상기 대체 단계는 상기 제 1 테스트 채널을 상기 제 2 테스트 채널로 스위칭하는 단계를 포함하는자동 테스트 장치 동작 방법.
- 제 15 항에 있어서,상기 제 1 테스트 채널과 상기 제 2 테스트 채널의 동작을 정지시키는 단계를 더 포함하며,상기 검출 단계는 상기 정지 단계와 동시에 수행되는자동 테스트 장치 동작 방법.
- 제 14 항에 있어서,테스트 채널 오동작과 상관없이 상기 테스트 장치가 테스트 동작을 계속 진행하도록 상기 대체 단계가 수행되는자동 테스트 장치 동작 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/176,928 US20070022349A1 (en) | 2005-07-07 | 2005-07-07 | Test apparatus with tester channel availability identification |
US11/176,928 | 2005-07-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20080025127A true KR20080025127A (ko) | 2008-03-19 |
Family
ID=37244209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020087000299A KR20080025127A (ko) | 2005-07-07 | 2006-07-07 | 자동 테스트 장치 및 이의 동작 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20070022349A1 (ko) |
EP (1) | EP1899738B1 (ko) |
JP (1) | JP2008545126A (ko) |
KR (1) | KR20080025127A (ko) |
DE (1) | DE602006005815D1 (ko) |
WO (1) | WO2007006501A1 (ko) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7570424B2 (en) * | 2004-12-06 | 2009-08-04 | Moxtek, Inc. | Multilayer wire-grid polarizer |
US7508724B2 (en) * | 2006-11-30 | 2009-03-24 | Mosaid Technologies Incorporated | Circuit and method for testing multi-device systems |
US7913128B2 (en) * | 2007-11-23 | 2011-03-22 | Mosaid Technologies Incorporated | Data channel test apparatus and method thereof |
JP2010101771A (ja) * | 2008-10-24 | 2010-05-06 | Yokogawa Electric Corp | 半導体試験装置、半導体試験方法および半導体試験プログラム |
US9182440B1 (en) * | 2012-01-30 | 2015-11-10 | Marvell International Ltd. | Pressure activated high density switch array |
CN102636741A (zh) * | 2012-04-27 | 2012-08-15 | 北京星河康帝思科技开发有限公司 | 电路板测试方法和系统 |
KR20230023000A (ko) * | 2021-04-28 | 2023-02-16 | 주식회사 아도반테스토 | 복수의 자동 테스트 장비 채널을 교정하기 위한 회로 및 방법 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4451916A (en) * | 1980-05-12 | 1984-05-29 | Harris Corporation | Repeatered, multi-channel fiber optic communication network having fault isolation system |
JPS61118078A (ja) * | 1984-11-14 | 1986-06-05 | Hitachi Ltd | Agcロツクアウト防止回路 |
DE69100204T2 (de) * | 1991-11-11 | 1994-01-13 | Hewlett Packard Gmbh | Einrichtung zur Erzeugung von Testsignalen. |
DE4305442C2 (de) * | 1993-02-23 | 1999-08-05 | Hewlett Packard Gmbh | Verfahren und Vorrichtung zum Erzeugen eines Testvektors |
US5596587A (en) * | 1993-03-29 | 1997-01-21 | Teradyne, Inc. | Method and apparatus for preparing in-circuit test vectors |
US5887146A (en) * | 1995-08-14 | 1999-03-23 | Data General Corporation | Symmetric multiprocessing computer with non-uniform memory access architecture |
US6363509B1 (en) * | 1996-01-16 | 2002-03-26 | Apple Computer, Inc. | Method and apparatus for transforming system simulation tests to test patterns for IC testers |
US6185708B1 (en) * | 1998-11-27 | 2001-02-06 | Advantest Corp. | Maintenance free test system |
US6950971B2 (en) * | 2001-11-05 | 2005-09-27 | Infineon Technologies Ag | Using data compression for faster testing of embedded memory |
US6971045B1 (en) * | 2002-05-20 | 2005-11-29 | Cyress Semiconductor Corp. | Reducing tester channels for high pinout integrated circuits |
US6870781B2 (en) * | 2002-12-30 | 2005-03-22 | Sun Microsystems, Inc. | Semiconductor device verification system and method |
US7209851B2 (en) * | 2003-02-14 | 2007-04-24 | Advantest America R&D Center, Inc. | Method and structure to develop a test program for semiconductor integrated circuits |
US7437261B2 (en) * | 2003-02-14 | 2008-10-14 | Advantest Corporation | Method and apparatus for testing integrated circuits |
DE10331068A1 (de) * | 2003-07-09 | 2005-02-17 | Infineon Technologies Ag | Verfahren zum Auslesen von Fehlerinformationen aus einem integrierten Baustein und integrierter Speicherbaustein |
US7073109B2 (en) * | 2003-09-30 | 2006-07-04 | Agilent Technologies, Inc. | Method and system for graphical pin assignment and/or verification |
-
2005
- 2005-07-07 US US11/176,928 patent/US20070022349A1/en not_active Abandoned
-
2006
- 2006-07-07 DE DE602006005815T patent/DE602006005815D1/de active Active
- 2006-07-07 JP JP2008518766A patent/JP2008545126A/ja active Pending
- 2006-07-07 KR KR1020087000299A patent/KR20080025127A/ko not_active Application Discontinuation
- 2006-07-07 WO PCT/EP2006/006669 patent/WO2007006501A1/en not_active Application Discontinuation
- 2006-07-07 EP EP06762479A patent/EP1899738B1/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
WO2007006501A1 (en) | 2007-01-18 |
DE602006005815D1 (de) | 2009-04-30 |
US20070022349A1 (en) | 2007-01-25 |
JP2008545126A (ja) | 2008-12-11 |
EP1899738A1 (en) | 2008-03-19 |
EP1899738B1 (en) | 2009-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100570134B1 (ko) | 자체 치유 칩과 칩 사이의 인터페이스 | |
KR20080025127A (ko) | 자동 테스트 장치 및 이의 동작 방법 | |
WO2014108048A1 (zh) | 触摸屏模组的测试装置和方法以及触摸屏模组 | |
KR20120062798A (ko) | 웨이퍼 레벨 컨택터 | |
US6933853B2 (en) | Apparatus and method for detecting and communicating interconnect failures | |
JP2680259B2 (ja) | 自動開放検出方法 | |
GB2278965A (en) | Electrical continuity testing apparatus | |
JP3624717B2 (ja) | マルチチップモジュール及びその試験方法 | |
KR0164836B1 (ko) | 무선장비 자동 시험장치와 그 방법 | |
CN101458624A (zh) | 可编程逻辑器件的加载方法、处理器和装置 | |
JP4705886B2 (ja) | 回路基板の診断方法、回路基板およびcpuユニット | |
WO2007090465A1 (en) | Testing devices under test by an automatic test apparatus having a multisite probe card | |
US6490694B1 (en) | Electronic test system for microprocessor based boards | |
CN111190091B (zh) | Wat设备的测试头及其诊断修复方法 | |
US6092224A (en) | Logic analyzer probe assembly with probe and interface boards | |
KR100683041B1 (ko) | 다수의 테스트될 반도체 소자를 동시에 테스트하는 반도체소자 실장 테스트 장치 | |
JP3698015B2 (ja) | モータ制御システムの自己診断方法 | |
JPH09211076A (ja) | 回路基板検査装置および半導体回路 | |
US7079983B2 (en) | Method, apparatus and computer program product for implementing physical interconnect fault source identification | |
US20030204825A1 (en) | Knowledge-based intelligent full scan dump processing methodology | |
JPH04268644A (ja) | 簡易型インサーキットエミュレータ | |
US7092836B2 (en) | Method for locating wiring swap in a hi-fix structure of a simultaneous multi-electronic device test system | |
JP3067687U (ja) | 半導体試験装置 | |
JP2000121703A (ja) | 半導体モジュールの電気的特性試験方法及びその装置 | |
JP2002333470A (ja) | Icテスタ診断装置及びicテスタ診断方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |