KR20080015100A - 합금철의 제조방법 - Google Patents
합금철의 제조방법 Download PDFInfo
- Publication number
- KR20080015100A KR20080015100A KR1020077028728A KR20077028728A KR20080015100A KR 20080015100 A KR20080015100 A KR 20080015100A KR 1020077028728 A KR1020077028728 A KR 1020077028728A KR 20077028728 A KR20077028728 A KR 20077028728A KR 20080015100 A KR20080015100 A KR 20080015100A
- Authority
- KR
- South Korea
- Prior art keywords
- steel
- molten steel
- chromium
- particulate material
- lance
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/068—Decarburising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/5264—Manufacture of alloyed steels including ferro-alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/30—Regulating or controlling the blowing
- C21C5/32—Blowing from above
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/068—Decarburising
- C21C7/0685—Decarburising of stainless steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C2300/00—Process aspects
- C21C2300/02—Foam creation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4606—Lances or injectors
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/5211—Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
- C21C5/5217—Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace equipped with burners or devices for injecting gas, i.e. oxygen, or pulverulent materials into the furnace
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
합금철, 구체적으로 스테인레스 스틸은, 저탄소 스틸을 전형적으로 포움 슬래그 상태 하에 용융시키고, 상기 용융된 스틸을 그의 표면 위에 위치하는 랜스로부터 산소 분자를 용융된 스틸 내에 취입시킴으로써 적어도 일부 정제시킴으로써 제조된다. 정제 단계 동안, 하나 이상의 제 1 야금-허용 가능한 미립자 물질이 용융된 스틸 내로 도입된다. 미립자 물질은 크롬 금속, 크롬-함유 합금 및 크롬 광석으로부터 선택된다.
Description
본 발명은 스틸 단편(scrap)으로부터의 철 합금(ferrous alloy)("합금철")의 제조방법, 특히 스테인레스 스틸의 제조방법에 관한 것이다.
스테인레스 스틸은 합금화 원소들로서 전형적으로 크롬 및 니켈을 포함하는 저탄소 철 합금이다. 전형적인 조성물은 크롬 18중량%, 니켈 8중량%, 탄소 0.1중량% 미만을 함유하며, 나머지는 철 및 기타 다른 합금화 원소들이다(부수적인 불순물은 제외된다). 전형적으로 스테인레스 스틸은, 전기 아크 노에서 연강(mild steel) 단편의 충전물(charge) 및 고탄소 합금철을 용융시켜서, 생성물중에 원하는 것보다 0.5중량% 이하 더 많은 크롬을 함유하고 탄소 함량 0.25 내지 2.5중량% 및 규소 함량 0.2 내지 1.5중량%를 갖는 조질의 합금을 형성시킴으로써 제조된다. 탄소 및 규소의 구체적인 수준은 생성물의 사양, 스틸 제조 관행 및 용기 크기에 따라 달라진다. 조질의 합금은, 용융된 합금이 용융된 금속 표면 아래로부터 산소와 함께 취입되는 변환기에 용융 상태로 전달되어서, 생성된 스테인레스 스틸의 탄소 함량을 0.1중량% 미만으로 산화시킨다. 다수의 경우, 침지(submerged) 취입은 상 부 랜스(lance)를 사용하여 정제 사이클의 부분을 위해 추가 산소를 전달함으로써 보충된다.
취입 도중 탄소 수준이 점진적으로 감소함에 따라, 산소는 크롬과 반응하여 산화크롬을 형성하려는 경향을 갖는다. 또한 이와 관련하여, 산화 반응의 발열 속성 때문에 변환기에서 과도한 온도가 발생되려는 경향이 존재한다. 실제적으로 이 경향은, 아르곤-산소 탈탄화(Argon-Oxygen Decarburisation, AOD) 공정을 채택함으로써, 산소는 아르곤으로 점진적으로 또는 단계적으로 희석되어 일산화탄소의 분압을 감소시키며, 이로 인해 크롬의 산화에 대한 바람직한 탄소의 산화를 촉진시킴으로써 중화될 수 있다. 이 수단에 의해, 대부분의 크롬은 용융된 금속 내에 남아 있다. 크롬의 산화에 대한 회피는 온도를 허용 가능한 수준, 예컨대 1750℃ 이하의 온도로 유지하는데 도움이 된다. 종종, 비-미립자 단편을 첨가함으로써 온도 제어가 더욱 촉진된다. 전형적인 예에서, 취입은 3:1의 산소 대 질소 비율(부피 기준)로 시작된다. 이 비율은 일련의 단계들에서 변화되는데, 아르곤은 소정의 단계에서 질소를 대신하며, 아르곤 이외의 산소는 기체 혼합물의 소량의 성분이다. 기체 혼합물의 정확한 시리즈 및 상기 공정의 다른 상세한 내용은 생성되는 스틸의 등급에 따라 달라진다. 취입 후, 일부 페로실리콘이 첨가되어 슬래그 내의 산화크롬을 환원시킬 수 있으며, 석회가 탈황화제(desulphurisation agent)로서 도입될 수 있다.
상기 AOD 공정의 대안으로서 크뢰조-뢰어-우데홈(Creusot-Loire-Uddeholm, CLU) 공정을 사용하여 스테인레스 스틸을 제조할 수 있다. CLU 공정은 AOD 공정과 유사하지만, 전형적으로는 아르곤 대신 스팀을 사용하여 표면 아래로부터 용융물 내로 취입되는 산소를 희석시킨다.
전자 아크 노 내에서의 스틸 단편과 합금화 물질의 용융 기간 동안, 일부 산소 원자들이 미가공 물질 부분으로서 화학적으로 조합된 형태로 첨가될 수 있는데, 예컨대 단편이 산화된 상태인 경우 또는 산소-함유 플럭스화제(fluxing agent), 예컨대 석회 또는 석회석이 사용되는 경우이다. 또한, 주변 환경으로부터의 일부 산소 및 가능한 일부 수분이 용융된 금속과 반응한다. 결과적으로, 합금화 원소들의 일부, 특히 크롬이 산화되고, 그 결과 전기 아크 노 내에서 스틸 단편의 용융 동안 용융된 금속의 상부에 형성된 슬래그 층으로 상기 크롬이 소실된다.
슬래그 층으로의 산화크롬의 소실은, 그 결과 불필요하게 많은 양의 크롬이 전기 아크 노 내에서 스틸 단편에 첨가되어야 하기 때문에 불리할 뿐만 아니라, 또한 슬래그 층의 특성들에 대해 부정적인 영향을 미치므로 불리하다. 합금된 스틸보다 오히려 연강을 형성하게 되는 전기 아크 노의 통상적 작동 동안, 탄소-함유 물질이 슬래그에 첨가되어 슬래그 내에서의 탄소 및 환원 가능한 산화물 사이의 반응에 의한 일산화탄소의 기포를 생성시킨다. 일산화탄소의 기포의 형성은 포움 슬래그를 발생시킨다. 포움 슬래그와의 전기 아크 노의 작동은 비활성(quiescent) 슬래그와의 작동에 비해 몇몇 이점들을 제공하는 것으로 인식된다. 특히, 에너지 소모가 전자의 경우보다 적고, 노의 벽을 라이닝하는 내화물 및 전극의 소모는 또한 비활성 슬래그 작동에서보다 포움 슬래그 작동에서 적다. 그러나, 상당량의 양쪽성(amphoteric) 산화물, 예컨대 산화크롬의 존재는 슬래그의 점도를 부가하며, 환원성 산화물, 예컨대 철 산화물의 형성에 허용 가능한 산소의 양을 감소시킨다. 실제 목적을 위해서는, 스테인레스 스틸의 제조시 포움 슬래그와 함께 전기 아크 노를 작동시킬 수 없다.
WO-A-00/34532호에서는, 용융된 스틸이 전기 아크 노로부터 레이들(ladle)을 통해 변화기에 전달될 수 있고, 용융된 스틸 및 슬래그가 노로부터 태핑되기(tap) 전에 미세한 미립자 페로실리콘이 전기 아크 노 내에서 슬래그에 첨가될 수 있음을 개시하고 있다. 결과적으로, 페로실리콘은 슬래그 내에서 산화크롬과 반응하고, 용융된 금속 내로 하향하는 최종의 용융된 크롬 금속이 형성된다. 그러나, 이러한 절차는 만족스러운 제어가 어렵다. 아크 노 내에서 용융물로 유입되는 산소의 정확한 양을 정확하게 알 수 없다. 너무 적은 규소가 첨가되면, 슬래그의 산화크롬 함량은 너무 높게 유지될 것이고, 너무 많은 규소가 첨가되면, 변환기에 전달된 스틸 내의 규소의 최종 함량은 너무 높게 될 것이며, 이로 인해 정제 시간이 증가되고, 변환기 내에 형성된 슬러그의 양이 증가될 것이다. WO-A-03/104508호에서는, 산소 분자 또는 산소 분자가 포함된 기체 혼합물을 합금철의 용융물로 취입시키는 단계를 포함하되, 여기서 야금-허용 가능한(metallurgically acceptable) 미립자 물질, 예컨대 페로크롬 또는 크로마이트는 위로부터 용융물 내에 도입되고, 미립자 물질은 제 2 기체 제트에 의해 슈라우딩된(shroud) 용융물로 이송되는 제 1 초음파 기체 제트 중의 용융물 내로 이동되는, 합금철(예: 스테인레스 스틸)의 정제 방법이 개시된다. 그러나, WO-A-03/104508호는 전기 아크 노 내에서 초기에 스틸을 용융시키는데 있어서의 문제점들을 다루고 있지 않다.
본 발명에 따르면, a) 스틸의 충전물을 용융시키는 단계; b) 용융된 스틸의 표면 위에 위치하는 랜스로부터 산소 분자를 용융된 스틸 내로 취입시킴으로써 상기 생성된 용융된 스틸을 적어도 일부 정제시키는 단계; 및 c) 정제 단계 동안, 크롬 금속, 크롬-함유 합금 및 크롬 광석으로부터 선택된 하나 이상의 제 1 야금-허용 가능한 미립자 물질을 랜스로부터 용융된 스틸 내로 도입시키는 단계를 포함하되, 상기 스틸을 포움 슬래그 상태 하에 용융시키는, 스테인레스 스틸의 제조방법이 제공된다.
미립자 크롬 및 필요하다면 다른 합금화 구성성분(또는 이들의 전구체)을 정제 단계 동안 도입시키는 것은, 포밍화 특성들에 대해 불리한 산화크롬과 같은 종류의 슬래그 내로의 유입을 제거, 최소화 또는 하향 유지시킴으로써 전기 아크 노에서의 포움 슬래그 실시를 촉진시키며, 용융 단계에 사용된 크롬의 양은 최소화 또는 제거될 수 있다. 그러므로, 충분하게 낮은 점도의 슬래그가 형성되는데, 이는 충분한 비율의 환원성 산화물을 함유하여 통상의 방법, 예컨대 랜스로부터 미립자 탄소를 슬래그로 주입함으로써 슬래그를 포밍시키는데 있어서 어떠한 어려움도 존재하지 않는다. 사실상 본 출원인은, (비록 용융되는 스틸이 합금화 성분으로서 크롬을 포함하는 종류의 단편을 필연적으로 함유할 수 있을지라도) 상기 단계(a)에서 용융되는 스틸의 충전물에 임의의 크롬 금속, 크롬-함유 합금 또는 크롬 광석을 첨가하지 않고서도 본 발명에 따른 방법을 작동시킬 수 있는 것으로 생각된다. 그럼에도 불구하고 필요하다면, 크롬 금속 일부 또는 크롬-함유 합금을, 제공된 용융된 스틸의 충전물에 계획적으로 첨가할 수 있으나, 물론 슬래그를 포밍하는데 있어서 어려움을 초래할 정도로 첨가하지 않는다.
바람직하게는, 상기 단계(a)에서 용융되는 스틸은 저탄소 스틸, 예컨대 연강이다. 저탄소 스틸은 0.3중량% 미만의 탄소를 함유하는 스틸을 의미한다. 이러한 저탄소 스틸은 포밍의 정도를 지속하기 위해 충분하게 높은 철 산화물 함량의 슬래그(전형적으로 5중량% 초과)로 평형시킬 수 있다.
바람직하게는, 스틸의 충전물은 전기 아크 노 내에서 용융되지만, 필요하다면 다른 종류의 용융 노가 대신 사용될 수 있다.
바람직하게는, 산소 분자는 초음파 속도로 랜스로부터 방출된다. 이러한 초음파 속도의 사용은 용융된 스틸 내로의 산소 분자의 관통을 촉진시키며, 따라서 용융된 스틸 내에서 산소와 탄소 사이의 신속한 반응을 촉진시킬 수 있다. 산소 분자는 바람직하게는 마하 1.5 내지 마하 4, 더욱 바람직하게는 마하 2 내지 마하 3의 속도로 랜스로부터 방출된다.
전형적으로, 제 1 야금-허용 가능한 미립자 물질은 캐리어 기체로 랜스로 운반된다. 캐리어 기체는 화재의 위험을 최소화하기 위해 순수 산소일 수 있지만, 공기, 질소 또는 희귀 기체인 것이 바람직하다. 제 1 야금-허용 가능한 미립자 물질은 희석 상 또는 농축 상으로서 운반될 수 있다.
랜스는 간단하게 2개의 파이프의 배열을 포함하는데, 산소 분자를 방출하기 위한 제 1 파이프, 및 제 1 야금-허용 가능한 미립자 물질을 방출하기 위한 제 2 파이프가 존재한다. 여러 상이한 배치구조의 파이프들이 가능하다. 예를 들면, 제 1 및 제 2 파이프는 제 2 파이프 주위에 제 1 파이프가 있는 동축-구조일 수 있다(coaxial). 이러한 배치구조의 이점은 제 1 야금-허용 가능한 미립자 물질이 랜스로부터 방출된 산소 분자의 유동 내로 도입되고 용융된 스틸 내로 운반될 수 있다는 것이다. 결론적으로, WO-A-03/104508호에서 개시된 바와 같이 슈라우딩 기체 제트를 특히 불꽃의 형태로 사용할 필요가 없다. 따라서, 상기 문헌에 개시된 더욱 복잡한 형태의 랜스를 사용할 필요가 없을 지라도, 이러한 형태는 불꽃에 의해 부여된 추가 에너지가 용해를 돕거나 또는 흡열 반응을 보상하는데 사용될 수 있기에 유리할 수 있다.
본 발명에 따른 방법에 의해 제공된 이점들 중 하나는, 제 1 야금-허용 가능한 미립자 물질이 반응성 종류를 함유하는 경우, 산소 분자를 사용하여 상기 종류들의 반응을 촉진시켜서, 제 1 야금-허용 가능한 미립자 물질이 도입될 수 있는 용융된 스틸 내에 국지화된 조밀한 과열된 영역을 생성시킬 수 있다는 점이다. 용융된 스틸의 평균 온도에 비해 높은 온도의 이러한 영역은, 더욱 신속한 제 1 미립자 물질의 용해 및 더욱 신속한 화학 반응들을 촉진시키는 것을 도와주며, 이로 인해 다른 것과 비교하여 정제 단계의 전체 기간을 단축시키는데 도움이 된다. 또한, 온도를 증가시키면 크롬에 비해 탄소의 산화가 유리하게 된다. 고온 영역을 국지화시킴으로써, 용기 벽을 보호하는 내화성 물질의 크게 보강된 마모율에 대한 위험이 하향 유지된다.
제 1 야금-허용 가능한 미립자 물질은 페로크롬이 유리하다. 페로크롬은 탄소 5 내지 10중량%를 전형적으로 함유하는 철과 크롬의 합금이다. 따라서, 정제 단계의 제 1 부분 동안 모든 페로크롬을 용융된 스틸 내로 도입시킨 후, 페로크롬이 용융된 금속 내에 전혀 도입되지 않은 정제 단계의 제 2 부분에서 허용 가능한 값까지 탄소 수준을 감소시키는 것이 요구된다. 바람직하게는, 정제 단계의 제 1 부분은 정제 단계의 전체 기간의 60% 이하를 차지한다. 놀랍게도, 본 출원인이 실시한 모의실험에서는, 페로크롬의 높은 탄소 함량에도 불구하고, 제 1 미립자 물질로서의 그의 사용은, 정제 단계 동안 합금화 부가가 전혀 없으며 용융된 스틸 내에 도입된 모든 기체가 송풍구로부터 공급되는 필적할만한 통상의 방법(이는 용용된 스틸의 표면 아래에서 종결됨)과 비교하여, 정제 단계의 기간을 단축시킬 수 있음이 예측된다. 이 결과에 기여하는 인자는 미립자 페로크롬이 갖는 냉각 효과일 수 있다. 이 냉각 효과는 일산화탄소가 형성되는 탄소와 산소 사이의 발열 반응으로부터 초래되는 온도 상승을 제한 또는 제어하는데 도움이 된다. 냉각 효과에 대한 2개의 주요 기여가 있다. 첫째는 페로크롬에 의해 제공되는 민감한 냉각으로부터이다. 둘째는 그의 용융 엔탈피로부터이다.
제 1 야금-허용 가능한 미립자 물질의 중간 입자 크기는 5mm 미만인 것이 바람직하다. 미세 미립자 물질을 사용하는 것이 특히 바람직하다. 본 발명에 따른 방법의 정제 단계가 전형적으로 실시되는 변환기 내로 중력 하에 미세 미립자 물질이 간편하게 공급되었다면, 용융된 금속의 표면을 관통하지 못할 것이므로 기껏해야 무시할 정도의 효과만을 나타냈을 것이다.
제 1 야금-허용 가능한 물질은 대안적일 수 있지만 여전히 크롬 광석, 바람직하게는 산화물 광석인 것이 유리하다. 이러한 광석 중 하나는 철과 크롬의 혼합된 산화물인 크로마이트이다. 이러한 광석의 사용은 정제 단계의 야금을 크게 변화시킨다. 이제, 크롬 금속을 방출시키기 위해 광속을 환원시키는 것이 필수적이다. 따라서, 크롬 광석을 용융된 스틸 중에 용해시켜, 적합한 환원제와 반응시킨다. 또한, 산화크롬의 환원이 흡열반응이기 때문에, 추가의 연료를 전형적으로 미립자 탄소의 형태로 첨가하는 것이 요구된다. 따라서, 탄소와 하나 이상의 탈산소제(deoxidizing agent)의 혼합물이 포함된 제 2 미립자 물질을 랜스를 통해 용융된 스틸 내에 도입시키는 것이 바람직하다. 적합한 탈산소제로는 야금-허용 가능한 경우 페로실리콘, 페로망가니즈, 알루미늄 및 페로알루미늄이 포함된다.
스테인레스 스틸은 전형적으로 망간과 더불어 다른 합금화 원소들을 함유하기 때문에, 본 발명에 따른 생성물은 이러한 목적하는 추가의 합금화 원소를 확실하게 포함해야 할 것이 요구된다. 필요하다면, 이러한 합금화 원소들을 정제 단계 동안 용융된 스틸에 첨가할 수 있다. 따라서, 이러한 합금화 원소들의 공급원으로부터 선택된 제 3 야금-허용 가능한 미립자 물질을 정제 단계 동안 용융된 스틸 내로 도입하는 것이 바람직하다. 제 3 야금-허용 가능한 미립자 물질은 예컨대 니켈 금속, 니켈 합금(예컨대, 페로니켈), 니켈 광석, 몰리브데늄 금속, 몰리브데늄 합금(예컨대 페로몰리브데늄) 및 몰리브데늄 광석 중 하나 이상을 포함할 수 있다.
전형적으로 정제 단계에서, 랜스는 산소 분자의 유일한 공급원이 아니다. 산소 분자는 전형적으로 정제 단계 동안 용융된 스틸의 수준 아래에서 종결하는 하나 이상의 송풍구를 통해 용융된 스틸 내로 취입된다. 통상의 스테인레스 스틸 정제 방법들과 유사하게, 산소 이외의 기체 중 하나 이상이 정제 단계 동안 용융된 스틸 내로 도입되어서, 크롬의 산화에 비해 탄소의 산화가 유리하게 되는 정제 조건들의 성향을 증가시킬 수 있다. 다른 기체는 아르곤, 질소 및 스팀으로부터 선택된 하나 이상일 수 있으며, 산소와 동일한 또는 상이한 송풍구를 통해 적어도 일부가 도입될 수 있다. 또한, 랜스로부터 용융된 스틸 내로 도입되는 산소 분자를 다른 기체와 혼합시킬 수 있다. 본 발명에 따른 방법에서 랜스의 사용은 그의 열역학 변수들의 제어를 돕는데 이용될 수 있다.
본 발명에 따른 방법은 다수의 일반적인 이점들을 제공한다. 포움 슬래그 하에서 작동시킴으로써 스틸 용융 작동을 개선시킬 수 있다. 이는 정제 시간을 단축시키며, 이로 인해 생산성이 증가된다. 또한, 달리 폐기물이 되는 미세 미립자 물질을 사용할 수 있다.
본 발명에 따른 방법은 이하 첨부된 도면을 참고하여 실시예를 통해 설명될 것이다.
본 발명에 따른 방법의 제 1 단계는 전기 아크 노 내에서 연강 단편의 배치를 용융시키는 것을 포함한다. 아크 노 내에서 스틸을 용융시키는 것은 통상적인 것이다. 전형적으로, 석회와 같은 플럭스화제가 첨가되어 기초 슬래그의 형성을 촉진시킨다. 니켈 및 몰리브데늄과 같은 일부 합금화 원소들이 또한 초기 충전물에 포함될 수 있지만, 이들은 모두 본 발명에 따른 방법의 후속 단계에서 첨가될 수 있다.
노 내에서 아크를 스트라이킹하여 스틸 단편의 용융을 유도할 것이다. 산화칼슘은 스틸 내의 불순물들과 반응하여 용융된 스틸의 표면에 기초 슬래그를 형성한다. 슬래그는 전형적으로 철 산화물 성분을 포함한다. 슬래그를 포밍화시키기 위해 그리고 이로 인해 전기 아크 노의 작동에 대해 앞서 언급된 이점들을 획득하기 위해, 랜스를 사용하여 미립자 탄소질 물질을 위로부터 슬래그 내로 도입시킨다. 미립자 탄소질 물질은 캐리어 기체로 랜스에 운반되며, 이로부터 슬래그 층을 관통하기에 충분한 속도로 방출된다. 미립자 탄소는 슬래그 중의 철 산화물을 환원시켜 일산화탄소를 형성한다. 이에 의해 이산화탄소의 기포들이 형성된다. 결과적으로, 슬래그는 포밍화된다.
필요하다면, 하나 이상의 옥시-연료 버너를 충전물 내에 직접 열을 가하는데 사용하여 스틸을 용융시키는데 소요되는 시간을 감소시킬 수 있다. 일반적으로, 노의 작동자는 옥시-연료 버너의 사용시 통상 절차에서보다 더욱 넓은 허용범위를 갖는데, 이는 충전물 내의 크롬의 상대적 부재가 금속으로의 역 환원이 어려운 산화크롬과 같은 산화물 형성의 증가를 크게 방해할 수 있기 때문이다.
전혀 또는 낮은 크롬 함량만을 갖는 충전물 사용의 또 다른 결과는, 산화크롬을 크롬으로 환원시키도록 페로실리콘 또는 다른 탈산소제를 용융시키기 전, 도중 또는 후의 첨가가 감소되거나 또는 제거될 수 있다는 점이다.
일단 스틸 단편이 용융되면, 이는 전형적으로 도 1에 제시된 종류의 변환기로 전달된 레이들로 전달된다. 레이들을 통한 전기 아크 노로부터 변환기로의 용융된 스틸의 전달은 스테인레스 스틸의 제조시 표준 작동이며, 본원에서 추가로 설명할 필요가 없다.
도 1을 참고하면, 변환기(2)는 내부 내화성 라이닝(8)이 제공된 벽(6)을 갖는 용기(4)의 형태로 존재한다. 용기는 그의 상부가 개방되어 있으며, 그의 내부에서 종결되는 축형 랜스(10)가 구비되어 있다. 작동시, 용기(4)에는 앞서 언급된 레이들로부터 전달된 용융된 스틸이 충전된다. 용기(4)는, 작동시 다수의 송풍구(12)가 일정 부피(16)의 용융된 스틸 중에 침지된 유출구들을 갖도록 일정 수준까지 충전된다. 랜스(10)는 2개의 동축 파이프(22,24)를 포함한다. 내부 파이프(22)는, 미립자 물질이 공급될 수 있는 캐리어 기체의 공급원(제시되지 않음)과 연통하게 위치하도록 채택된다. 외부 파이프(24)는 상업용 순수 산소의 공급원(제시되지 않음)과 연통하게 위치된다. 외부 파이프(24)는 전형적으로 라발(Laval) 노즐(25)에서 종결되며, 산소는 초음파 속도로 라발 노즐(25)로부터 방출되도록 하는 압력에서 공급된다. 작동시, 파이프(22)로부터 방출되는 미립자 물질은 점점 라발 노즐(25)로부터 방출하는 산소 제트 중에 비말동반되며, 용융된 스틸의 상부에 형성되는 슬래그(28)의 층을 통해 전형적으로 용융된 스틸 내로 운반된다.
랜스(10)로부터 용융된 스틸 내로 도입된 산소는 용융된 스틸 중의 산화 가능한 성분들 또는 불순물과 발열적으로 반응하며, 따라서 스틸을 그의 용융 상태로 유지하도록 열을 제공한다. 추가 산소가 송풍구(12)로부터 용융된 스틸에 공급된다. 송풍구(12)에 공급된 산소는 아르곤과 질소 중 하나 또는 둘다와 선택적으로 혼합될 수 있다. 따라서, 용융된 스틸에 공급된 산소의 분압은 산소와 혼합되는 아르곤과 질소의 몰 분율을 조정함으로써 조정될 수 있다.
도 1에 제시된 변환기의 전형적인 작동 예에서, 랜스(10)로부터 용융된 스틸 내로 도입된 미립자 물질은 미세 미립자 형태의 페로크롬이다. 페로크롬은 전형적으로 5 내지 10중량%의 탄소를 함유한다. 필요하다면, 다른 합금화 원소들이 랜스(10)를 통해 용융된 스틸에 첨가될 수 있다. 예를 들면, 니켈이 페로니켈의 형태로 첨가될 수 있으며, 몰리브네늄이 페로몰리브데늄의 형태로 첨가될 수 있다. 페로실리콘 형태의 규소가 또한 첨가될 수 있다. 첨가되는 이들 합금화 원소들의 양은 원하는 스테인레스 스틸 조성에 따라 부분적으로 좌우될 것이다. 본 발명의 주목할만한 특징은, 변환기에서 용융된 스틸로의 이러한 합금화 원소들의 첨가로 인해, 전기 아크 노로의 이들의 첨가가 그 안에서 슬래그의 포밍화를 저해하지 않는 수준으로 유지되거나 또는 완전하게 제거되게 하는 점이다.
페로크롬이 높은 함량의 탄소를 갖기 때문에, 도면에 제시된 변환기의 작동이 용융된 스틸 중의 페로크롬의 용해와 관련될 뿐만 아니라, 산소와의 반응에 의한 실질적으로 모든 탄소의 제거와 관련된다. 페로크롬의 용해와 정제 반응 모두는 랜스(10)로부터 방출하는 산소 제트가 용융된 스틸 내로 유입하는 영역 부근에서 국지화된 조밀한 과열된 부피의 용융된 스틸을 생성시킨다는 사실에 의해 촉진된다. 이 영역에서의 고온은 특히 용해된 탄소와 산소 사이의 반응을 유리하게 만들어서 일산화탄소를 형성한다. 랜스는 전형적으로 변환기(2)의 수직 축 상에 위치하여서, 과열된 영역이 중심이도록 하며, 내화성 라이닝(8) 부근에서 용융된 스틸의 온도에 거의 영향을 미치지 않는다. 따라서, 랜스(10)로부터 용융된 스틸 내로의 산소의 도입은 이 라이닝의 침식 속도를 거의 증가시키지 않는다.
스테인레스 스틸의 통상의 AOD 정제와 유사하게, 용융된 스틸 중의 산소와 탄소 사이의 반응은 산화물을 형성하게 되는 합금화 원소들(예컨대 크롬)과 산소 사이의 원하지 않는 반응들과 경쟁 관계에 있다. 페로크롬이 상당한 탄소 함량을 갖기 때문에, 이들의 용융된 스틸로의 첨가는 이들이 제거됨에 따라 동시에 탄소를 도입시킨다. 이 관점에서, 본 발명에 따른 방법은 통상의 AOD 작동과 상이하다. 따라서, 정제 작동의 말단 전에 페로크롬의 첨가를 잘 중단시키는 것이 바람직하다. 전형적으로, 페로크롬은 변환기(2) 내에서 정제 단계의 총 기간의 75% 이하의 기간 동안 도입된다. 페로크롬의 도입이 일단 중단되면, 변환기(2) 내의 탄소 수준은 상대적으로 급속하게 떨어지며, 이 단계에서 용융된 금속 내에 도입되는 희석 기체(예: 아르곤 및 질소)에 대한 산소의 몰비를 조정하여 산소의 분압을 저하시키는 것이 중요하다. 이렇게 실시하는 것은 크롬의 산화에 비해 탄소의 산화를 유리하게 만드는데 도움이 된다.
본 발명에 따른 방법의 정제 단계를 위한 전형적인 작동 파라미터들을 평가하기 위해, 본 출원인은 시판 중인 메트심(Metsim) 소프트웨어 패키지를 사용하여 변환기(2)의 작동을 모델링하였다. 모델링의 결과는 이하 제시된다. 이들은 스틸 150톤의 배치를 정제하는 것에 관한 것이다. 모델링 작업을 실시하는데 있어서, 하기 제약들이 준수되었다.
침지된 송풍구들을 통한 총 유량은 6800Nm3/h를 초과하도록 허용되지 않았다.
최대 온도는 1708℃를 크게 초과하도록 허용되지 않았다.
랜스는 6000Nm3/h의 최대 기체 유량을 전달할 수 있는 크기인 것으로 추정된다. (이 유량은 통상의 랜스 범위 내에 속하는 것이다)
3개의 상이한 작동들을 모델링화하였다. 이들은 달리 지적되지 않는 한 모두 중량%이다.
도 1은 정제 단계를 실시하는데 사용될 수 있는 변환기의 개략도이다.
도 2 내지 4는 도 1에 제시된 변환기의 작동을 위한 모의실험된 작동 파라미터를 제시하는 그래프들이다.
실시예 1:
산소 분자의 상부 취입을 6000Nm3/h의 속도로 실시하지만 최소 페로크롬을 도입시키며 단지 덩어리 형태로 실시하는, 통상의 스테인레스 스틸 조성물(크롬 18중량%, 니켈 8중량% 및 탄소 0.1중량% 미만)의 정제. 이 정제 작동에서, 탄소 농도를 2.2중량%의 출발 값으로부터 0.1중량% 미만의 최종 값으로 감소시켰다.
실시예 2:
산소를 6000Nm3/h의 속도로 랜스(10)를 통해 도입시키고, Fe 36%, Cr 53%, C 6.5%, Si 2.7%, 나머지 소량의 성분과 불순물로 구성된 조성의 페로크롬 30톤을 첨가하는 본 발명에 따른 스테인레스 스틸의 제조. 변환기에 공급된 스틸의 출발 조 성은 Fe 82%, Cr 8.2%, Ni 7.9%, C 1.1% 및 Si 0.18%이었다.
실시예 3:
실시예 2와 동일하되, 페로크롬을 30톤 대신 45톤을 도입시킴. 스테인레스 스틸의 출발 조성은 Fe 90%, Ni 8.8%, Cr 0.18%, C 0.35% 및 Si 0.18%이었다.
실시예 2에서는 본 발명에 따른 방법의 용융 단계 동안 크롬의 첨가가 일부 요구되었지만, 실시예 3에서는 이러한 첨가가 필요하지 않았다.
관련 작동 파라미터는 이하 표 1에 제시한다. 이들 작동 파라미터는 또한 각각이 실시예 1 내지 3을 그래프로 설명하고 있는 도 2 내지 4에 제시한다.
각각의 실시예 1 내지 4에서 수득된 최종 야금 조성물을 이하 표 2에 요약한다.
수득된 결과들의 비교내용을 이하 표 3에 개시한다.
놀랍게도, 상기 표들에서 개시된 결과들로부터, 랜스(10)를 통해 용융된 스틸 내로 도입된 페로크롬의 양이 증가함에 따라 전체 취입 시간을 감소시킬 수 있음을 알 수 있다. 이 결과는 미립자 페로크롬의 흡열 효과를 산소와 탄소 사이의 발열 반응으로 적절하게 평형시킴으로써 달성된다. 따라서, 산소 분자의 총 첨가 속도는 페로크롬을 첨가하는 경우가 그렇지 않은 경우보다 높다. 산소, 질소 및 아르곤 분자의 상대 첨가 속도는 크롬의 산화에 비해 탄소의 산화가 유리한 조건을 유지시키도록 조정된다.
페로크롬 대신, 스테인레스 스틸을 위한 크롬의 공급원으로서 광석을 사용할 수 있다. 이러한 광석 중 하나는 철과 크롬의 혼합된 산화물인 크로마이트이다. 산화크롬의 환원이 흡열반응이기 때문에, 정제 단계 동안 모든 크롬이 스틸에 첨가되게 하기 위해 요구되는 높은 속도의 주입은 추가 연료와 환원제의 첨가를 필요로 하게 된다. 추가 연료는 크로마이트와 동시 주입된 고체 물질의 형태인 것이 바람직하다. 추가 연료는 미립자 탄소질 물질일 수 있다. 또한, 산화크롬의 크롬 금속으로의 환원을 촉진시키도록 하나 이상의 탈산소제, 예컨대 페로실리콘 및 페로알루미늄을 도입시키는 것이 요구된다. 산화물의 흡열반응성 환원은 특정 산소 전달 속도를 증가시켜 탈탄화와 관련된 열 발생 속도를 증가시킴으로써 적어도 부분적으로 보상될 수 있다. 따라서, 본 발명의 이러한 대안적 방법들에서, 포움으로 형성될 수 있는 슬래그를 형성하는 조건 하에 상술한 전기 아크 노를 여전히 작동시킬 수 있다.
Claims (20)
- a) 스틸의 충전물(charge)을 용융시키는 단계;b) 상기 생성된 용융된 스틸을, 상기 용융된 스틸의 표면 위에 위치하는 랜스로부터 산소 분자를 상기 용융된 스틸 내로 취입시킴으로써 적어도 부분적으로 정제시키는 단계; 및c) 상기 정제 단계 동안, 크롬 금속, 크롬-함유 합금 및 크롬 광석으로부터 선택된 하나 이상의 제 1 야금-허용 가능한 미립자 물질을 랜스로부터 용융된 스틸 내로 도입시키는 단계를 포함하되, 상기 스틸을 포움 슬래그 상태 하에 용융시키는스테인레스 스틸의 제조방법.
- 제 1 항에 있어서,상기 단계(a)에서 용융된 스틸의 충전물에 크롬 금속, 크롬-함유 합금 또는 크롬 광석을 첨가하지 않는, 스테인레스 스틸의 제조방법.
- 제 1 항에 있어서,상기 단계(a)에서 용융된 스틸의 충전물에 일부 크롬 금속 또는 크롬-함유 합금을 첨가하는, 스테인레스 스틸의 제조방법.
- 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,상기 단계(a)에서 용융된 스틸이 저탄소 스틸인, 스테인레스 스틸의 제조방법.
- 제 4 항에 있어서,상기 저탄소 스틸이 연강(mild steel)인, 스테인레스 스틸의 제조방법.
- 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,상기 스틸의 충전물을 전기 아크 노 내에서 용융시키는, 스테인레스 스틸의 제조방법.
- 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,상기 산소 분자를 초음파 속도로 랜스로부터 방출하는, 스테인레스 스틸의 제조방법.
- 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,상기 제 1 미립자 물질을 캐리어 기체 중에 랜스로 전달하는, 스테인레스 스틸의 제조방법.
- 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,상기 랜스가 산소 분자를 방출하기 위한 제 1 파이프 및 상기 제 1 미립자 물질을 방출하기 위한 제 2 파이프를 포함하는, 스테인레스 스틸의 제조방법.
- 제 9 항에 있어서,상기 제 1 및 제 2 파이프가 동축이되, 상기 제 1 파이프는 상기 제 2 파이프 주위에 존재하는, 스테인레스 스틸의 제조방법.
- 제 1 항 내지 제 10 항 중 어느 한 항에 있어서,상기 산소 분자가, 상기 제 1 미립자 물질이 도입되는 용융된 스틸 내에 국지화된 조밀한 과열된 영역을 생성시키는, 스테인레스 스틸의 제조방법.
- 제 1 항 내지 제 11 항 중 어느 한 항에 있어서,상기 제 1 미립자 물질이 산화크롬을 포함하는, 스테인레스 스틸의 제조방법.
- 제 12 항에 있어서,탄소와 하나 이상의 탈산소제(deoxidising agent)의 혼합물이 포함된 제 2 미립자 물질을 랜스를 통해 상기 용융된 스틸 내로 도입시키는, 스테인레스 스틸의 제조방법.
- 제 13 항에 있어서,상기 탈산소제가 페로실리콘, 페로망가니즈, 알루미늄 또는 페로알루미늄인, 스테인레스 스틸의 제조방법.
- 제 1 항 내지 제 11 항 중 어느 한 항에 있어서,상기 제 1 미립자 물질이 페로크롬을 포함하는, 스테인레스 스틸의 제조방법.
- 제 15 항에 있어서,상기 정제 단계가, 상기 제 1 미립자 물질 모두를 용융된 스틸 내로 도입시키는 제 1 부분, 및 제 1 미립자 물질을 상기 용융된 스틸 내로 도입시키지 않는 제 2 부분을 포함하는, 스테인레스 스틸의 제조방법.
- 제 1 항 내지 제 16 항 중 어느 한 항에 있어서,하나 이상의 제 3 미립자 물질을 랜스로부터 용융된 스틸 내로 도입시키는 단계를 추가로 포함하되,상기 제 3 미립자 물질이 니켈 금속, 니켈-함유 합금, 니켈 광석, 몰리브데늄 금속, 몰리브데늄-함유 합금 및 몰리브데늄 광석으로부터 선택되는, 스테인레스 스틸의 제조방법.
- 제 1 항 내지 제 17 항 중 어느 한 항에 있어서,상기 정제 단계 동안 용융된 스틸의 수준 아래에서 종결하는 적어도 송풍구를 통해 추가 산소 분자, 및 아르곤, 질소 및 스팀으로부터 선택된 하나 이상의 다른 기체를 용융된 스틸 내로 취입시키되, 상기 다른 기체의 적어도 일부를 상기 추가 산소 분자와 동일한 또는 상이한 송풍구를 통해 도입시키는 단계를 추가로 포함하는, 스테인레스 스틸의 제조방법.
- 제 1 항 내지 제 18 항 중 어느 한 항에 있어서,상기 제 1 미립자 물질이 1mm 이하의 중간 입자 크기를 갖는 미세 미립자로 이루어진, 스테인레스 스틸의 제조방법.
- 제 1 항 내지 제 19 항 중 어느 한 항에 있어서,상기 단계(b)에서, 제 1 및 다른 기타 야금-허용 가능한 미립자 물질의 도입 속도를, 산소 분자의 총 도입 속도와 평형시켜서 용융된 스틸을 1710℃ 이하의 온도로 유지하는, 스테인레스 스틸의 제조방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0511883.1 | 2005-06-10 | ||
GBGB0511883.1A GB0511883D0 (en) | 2005-06-10 | 2005-06-10 | Manufacture of ferroalloys |
PCT/GB2006/050136 WO2006131764A1 (en) | 2005-06-10 | 2006-06-01 | Manufacture of ferroalloys |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080015100A true KR20080015100A (ko) | 2008-02-18 |
KR101418125B1 KR101418125B1 (ko) | 2014-07-10 |
Family
ID=34855362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020077028728A KR101418125B1 (ko) | 2005-06-10 | 2006-06-01 | 합금철의 제조방법 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20090173187A1 (ko) |
EP (1) | EP1888793B1 (ko) |
KR (1) | KR101418125B1 (ko) |
CN (1) | CN101194031A (ko) |
ES (1) | ES2632501T3 (ko) |
GB (1) | GB0511883D0 (ko) |
WO (1) | WO2006131764A1 (ko) |
ZA (1) | ZA200708932B (ko) |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101229212B1 (ko) * | 2007-03-29 | 2013-02-01 | 엠.케이.엔. 테크놀로지스 게엠베하 | 금속 용해물을 제조하는 방법, 및 상기 제조방법에 사용하기 위한 전이 금속 함유 첨가제 |
US9058653B1 (en) | 2011-06-10 | 2015-06-16 | Flir Systems, Inc. | Alignment of visible light sources based on thermal images |
US9143703B2 (en) | 2011-06-10 | 2015-09-22 | Flir Systems, Inc. | Infrared camera calibration techniques |
US9208542B2 (en) | 2009-03-02 | 2015-12-08 | Flir Systems, Inc. | Pixel-wise noise reduction in thermal images |
US9207708B2 (en) | 2010-04-23 | 2015-12-08 | Flir Systems, Inc. | Abnormal clock rate detection in imaging sensor arrays |
US9235876B2 (en) | 2009-03-02 | 2016-01-12 | Flir Systems, Inc. | Row and column noise reduction in thermal images |
US9235023B2 (en) | 2011-06-10 | 2016-01-12 | Flir Systems, Inc. | Variable lens sleeve spacer |
US9292909B2 (en) | 2009-06-03 | 2016-03-22 | Flir Systems, Inc. | Selective image correction for infrared imaging devices |
USD765081S1 (en) | 2012-05-25 | 2016-08-30 | Flir Systems, Inc. | Mobile communications device attachment with camera |
US9451183B2 (en) | 2009-03-02 | 2016-09-20 | Flir Systems, Inc. | Time spaced infrared image enhancement |
US9473681B2 (en) | 2011-06-10 | 2016-10-18 | Flir Systems, Inc. | Infrared camera system housing with metalized surface |
US9509924B2 (en) | 2011-06-10 | 2016-11-29 | Flir Systems, Inc. | Wearable apparatus with integrated infrared imaging module |
US9517679B2 (en) | 2009-03-02 | 2016-12-13 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
US9521289B2 (en) | 2011-06-10 | 2016-12-13 | Flir Systems, Inc. | Line based image processing and flexible memory system |
US9635285B2 (en) | 2009-03-02 | 2017-04-25 | Flir Systems, Inc. | Infrared imaging enhancement with fusion |
US9635220B2 (en) | 2012-07-16 | 2017-04-25 | Flir Systems, Inc. | Methods and systems for suppressing noise in images |
US9674458B2 (en) | 2009-06-03 | 2017-06-06 | Flir Systems, Inc. | Smart surveillance camera systems and methods |
US9706137B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Electrical cabinet infrared monitor |
US9706139B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Low power and small form factor infrared imaging |
US9706138B2 (en) | 2010-04-23 | 2017-07-11 | Flir Systems, Inc. | Hybrid infrared sensor array having heterogeneous infrared sensors |
US9716843B2 (en) | 2009-06-03 | 2017-07-25 | Flir Systems, Inc. | Measurement device for electrical installations and related methods |
US9723227B2 (en) | 2011-06-10 | 2017-08-01 | Flir Systems, Inc. | Non-uniformity correction techniques for infrared imaging devices |
US9756264B2 (en) | 2009-03-02 | 2017-09-05 | Flir Systems, Inc. | Anomalous pixel detection |
US9756262B2 (en) | 2009-06-03 | 2017-09-05 | Flir Systems, Inc. | Systems and methods for monitoring power systems |
US9807319B2 (en) | 2009-06-03 | 2017-10-31 | Flir Systems, Inc. | Wearable imaging devices, systems, and methods |
US9811884B2 (en) | 2012-07-16 | 2017-11-07 | Flir Systems, Inc. | Methods and systems for suppressing atmospheric turbulence in images |
US9819880B2 (en) | 2009-06-03 | 2017-11-14 | Flir Systems, Inc. | Systems and methods of suppressing sky regions in images |
US9843742B2 (en) | 2009-03-02 | 2017-12-12 | Flir Systems, Inc. | Thermal image frame capture using de-aligned sensor array |
US9848134B2 (en) | 2010-04-23 | 2017-12-19 | Flir Systems, Inc. | Infrared imager with integrated metal layers |
US9900526B2 (en) | 2011-06-10 | 2018-02-20 | Flir Systems, Inc. | Techniques to compensate for calibration drifts in infrared imaging devices |
US9918023B2 (en) | 2010-04-23 | 2018-03-13 | Flir Systems, Inc. | Segmented focal plane array architecture |
US9948872B2 (en) | 2009-03-02 | 2018-04-17 | Flir Systems, Inc. | Monitor and control systems and methods for occupant safety and energy efficiency of structures |
US9961277B2 (en) | 2011-06-10 | 2018-05-01 | Flir Systems, Inc. | Infrared focal plane array heat spreaders |
US9973692B2 (en) | 2013-10-03 | 2018-05-15 | Flir Systems, Inc. | Situational awareness by compressed display of panoramic views |
US9986175B2 (en) | 2009-03-02 | 2018-05-29 | Flir Systems, Inc. | Device attachment with infrared imaging sensor |
US9998697B2 (en) | 2009-03-02 | 2018-06-12 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
US10051210B2 (en) | 2011-06-10 | 2018-08-14 | Flir Systems, Inc. | Infrared detector array with selectable pixel binning systems and methods |
US10079982B2 (en) | 2011-06-10 | 2018-09-18 | Flir Systems, Inc. | Determination of an absolute radiometric value using blocked infrared sensors |
US10091439B2 (en) | 2009-06-03 | 2018-10-02 | Flir Systems, Inc. | Imager with array of multiple infrared imaging modules |
US10169666B2 (en) | 2011-06-10 | 2019-01-01 | Flir Systems, Inc. | Image-assisted remote control vehicle systems and methods |
US10244190B2 (en) | 2009-03-02 | 2019-03-26 | Flir Systems, Inc. | Compact multi-spectrum imaging with fusion |
US10389953B2 (en) | 2011-06-10 | 2019-08-20 | Flir Systems, Inc. | Infrared imaging device having a shutter |
US10757308B2 (en) | 2009-03-02 | 2020-08-25 | Flir Systems, Inc. | Techniques for device attachment with dual band imaging sensor |
US10841508B2 (en) | 2011-06-10 | 2020-11-17 | Flir Systems, Inc. | Electrical cabinet infrared monitor systems and methods |
US11297264B2 (en) | 2014-01-05 | 2022-04-05 | Teledyne Fur, Llc | Device attachment with dual band imaging sensor |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL198017A (en) * | 2009-04-05 | 2015-02-26 | Rafael Advanced Defense Sys | Means and method of protecting a fighter cell in a wheeled vehicle against explosives |
EP3495514A1 (en) * | 2017-12-06 | 2019-06-12 | Linde Aktiengesellschaft | Process for injecting particulate material into a liquid metal bath |
CN113661259A (zh) * | 2019-04-01 | 2021-11-16 | 沙特基础全球技术有限公司 | 回收氧化铬和形成铬合金钢的方法 |
TWI711702B (zh) * | 2019-09-03 | 2020-12-01 | 中國鋼鐵股份有限公司 | 鐵碳複合材料及鐵氧化物的還原方法 |
JP7215638B2 (ja) * | 2021-02-01 | 2023-01-31 | Jfeスチール株式会社 | 転炉の上吹きランスの制御方法、副原料添加方法および溶鉄の精錬方法 |
CN113430334B (zh) * | 2021-06-25 | 2022-08-30 | 宝钢德盛不锈钢有限公司 | 一种提高200系不锈钢废钢比的gor冶炼方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4426224A (en) * | 1981-12-25 | 1984-01-17 | Sumitomo Kinzoku Kogyo Kabushiki Gaisha | Lance for powder top-blow refining and process for decarburizing and refining steel by using the lance |
JPS59159963A (ja) * | 1983-02-28 | 1984-09-10 | Kawasaki Steel Corp | 高クロム溶湯の溶製方法 |
US4919714A (en) * | 1988-11-14 | 1990-04-24 | Daido Tokushuko Kabushiki Kaisha | Method and apparatus for refining steel |
JP2683406B2 (ja) * | 1989-03-07 | 1997-11-26 | 川崎製鉄株式会社 | ステンレス鋼の溶製方法 |
JPH089730B2 (ja) * | 1991-02-07 | 1996-01-31 | 新日本製鐵株式会社 | 含クロム溶鋼の脱炭精錬法 |
US6125133A (en) * | 1997-03-18 | 2000-09-26 | Praxair, Inc. | Lance/burner for molten metal furnace |
IT1302798B1 (it) * | 1998-11-10 | 2000-09-29 | Danieli & C Ohg Sp | Dispositivo integrato per l'iniezione di ossigeno e gastecnologici e per l'insufflaggio di materiale solido in |
NO308418B1 (no) | 1998-12-09 | 2000-09-11 | Elkem Materials | FremgangsmÕte ved fremstilling av rustfritt stÕl |
JP4532106B2 (ja) * | 2001-07-02 | 2010-08-25 | 新日本製鐵株式会社 | 含クロム溶鋼の脱炭精錬方法 |
GB0213376D0 (en) * | 2002-06-11 | 2002-07-24 | Boc Group Plc | Refining ferroalloys |
-
2005
- 2005-06-10 GB GBGB0511883.1A patent/GB0511883D0/en not_active Ceased
-
2006
- 2006-06-01 ES ES06744338.2T patent/ES2632501T3/es active Active
- 2006-06-01 WO PCT/GB2006/050136 patent/WO2006131764A1/en active Application Filing
- 2006-06-01 CN CNA2006800207335A patent/CN101194031A/zh active Pending
- 2006-06-01 KR KR1020077028728A patent/KR101418125B1/ko active IP Right Grant
- 2006-06-01 EP EP06744338.2A patent/EP1888793B1/en active Active
- 2006-06-01 US US11/920,405 patent/US20090173187A1/en not_active Abandoned
-
2007
- 2007-10-17 ZA ZA200708932A patent/ZA200708932B/xx unknown
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101229212B1 (ko) * | 2007-03-29 | 2013-02-01 | 엠.케이.엔. 테크놀로지스 게엠베하 | 금속 용해물을 제조하는 방법, 및 상기 제조방법에 사용하기 위한 전이 금속 함유 첨가제 |
US9998697B2 (en) | 2009-03-02 | 2018-06-12 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
US10244190B2 (en) | 2009-03-02 | 2019-03-26 | Flir Systems, Inc. | Compact multi-spectrum imaging with fusion |
US9208542B2 (en) | 2009-03-02 | 2015-12-08 | Flir Systems, Inc. | Pixel-wise noise reduction in thermal images |
US10033944B2 (en) | 2009-03-02 | 2018-07-24 | Flir Systems, Inc. | Time spaced infrared image enhancement |
US9235876B2 (en) | 2009-03-02 | 2016-01-12 | Flir Systems, Inc. | Row and column noise reduction in thermal images |
US9635285B2 (en) | 2009-03-02 | 2017-04-25 | Flir Systems, Inc. | Infrared imaging enhancement with fusion |
US9986175B2 (en) | 2009-03-02 | 2018-05-29 | Flir Systems, Inc. | Device attachment with infrared imaging sensor |
US9948872B2 (en) | 2009-03-02 | 2018-04-17 | Flir Systems, Inc. | Monitor and control systems and methods for occupant safety and energy efficiency of structures |
US9451183B2 (en) | 2009-03-02 | 2016-09-20 | Flir Systems, Inc. | Time spaced infrared image enhancement |
US9843742B2 (en) | 2009-03-02 | 2017-12-12 | Flir Systems, Inc. | Thermal image frame capture using de-aligned sensor array |
US10757308B2 (en) | 2009-03-02 | 2020-08-25 | Flir Systems, Inc. | Techniques for device attachment with dual band imaging sensor |
US9517679B2 (en) | 2009-03-02 | 2016-12-13 | Flir Systems, Inc. | Systems and methods for monitoring vehicle occupants |
US9756264B2 (en) | 2009-03-02 | 2017-09-05 | Flir Systems, Inc. | Anomalous pixel detection |
US9756262B2 (en) | 2009-06-03 | 2017-09-05 | Flir Systems, Inc. | Systems and methods for monitoring power systems |
US9807319B2 (en) | 2009-06-03 | 2017-10-31 | Flir Systems, Inc. | Wearable imaging devices, systems, and methods |
US10091439B2 (en) | 2009-06-03 | 2018-10-02 | Flir Systems, Inc. | Imager with array of multiple infrared imaging modules |
US9674458B2 (en) | 2009-06-03 | 2017-06-06 | Flir Systems, Inc. | Smart surveillance camera systems and methods |
US9292909B2 (en) | 2009-06-03 | 2016-03-22 | Flir Systems, Inc. | Selective image correction for infrared imaging devices |
US9716843B2 (en) | 2009-06-03 | 2017-07-25 | Flir Systems, Inc. | Measurement device for electrical installations and related methods |
US9843743B2 (en) | 2009-06-03 | 2017-12-12 | Flir Systems, Inc. | Infant monitoring systems and methods using thermal imaging |
US9819880B2 (en) | 2009-06-03 | 2017-11-14 | Flir Systems, Inc. | Systems and methods of suppressing sky regions in images |
US9207708B2 (en) | 2010-04-23 | 2015-12-08 | Flir Systems, Inc. | Abnormal clock rate detection in imaging sensor arrays |
US9706138B2 (en) | 2010-04-23 | 2017-07-11 | Flir Systems, Inc. | Hybrid infrared sensor array having heterogeneous infrared sensors |
US9918023B2 (en) | 2010-04-23 | 2018-03-13 | Flir Systems, Inc. | Segmented focal plane array architecture |
US9848134B2 (en) | 2010-04-23 | 2017-12-19 | Flir Systems, Inc. | Infrared imager with integrated metal layers |
US9900526B2 (en) | 2011-06-10 | 2018-02-20 | Flir Systems, Inc. | Techniques to compensate for calibration drifts in infrared imaging devices |
US9235023B2 (en) | 2011-06-10 | 2016-01-12 | Flir Systems, Inc. | Variable lens sleeve spacer |
US10841508B2 (en) | 2011-06-10 | 2020-11-17 | Flir Systems, Inc. | Electrical cabinet infrared monitor systems and methods |
US9521289B2 (en) | 2011-06-10 | 2016-12-13 | Flir Systems, Inc. | Line based image processing and flexible memory system |
US9723227B2 (en) | 2011-06-10 | 2017-08-01 | Flir Systems, Inc. | Non-uniformity correction techniques for infrared imaging devices |
US9473681B2 (en) | 2011-06-10 | 2016-10-18 | Flir Systems, Inc. | Infrared camera system housing with metalized surface |
US9723228B2 (en) | 2011-06-10 | 2017-08-01 | Flir Systems, Inc. | Infrared camera system architectures |
US9538038B2 (en) | 2011-06-10 | 2017-01-03 | Flir Systems, Inc. | Flexible memory systems and methods |
US9716844B2 (en) | 2011-06-10 | 2017-07-25 | Flir Systems, Inc. | Low power and small form factor infrared imaging |
US9058653B1 (en) | 2011-06-10 | 2015-06-16 | Flir Systems, Inc. | Alignment of visible light sources based on thermal images |
US9961277B2 (en) | 2011-06-10 | 2018-05-01 | Flir Systems, Inc. | Infrared focal plane array heat spreaders |
US10389953B2 (en) | 2011-06-10 | 2019-08-20 | Flir Systems, Inc. | Infrared imaging device having a shutter |
US9706139B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Low power and small form factor infrared imaging |
US9509924B2 (en) | 2011-06-10 | 2016-11-29 | Flir Systems, Inc. | Wearable apparatus with integrated infrared imaging module |
US9706137B2 (en) | 2011-06-10 | 2017-07-11 | Flir Systems, Inc. | Electrical cabinet infrared monitor |
US10051210B2 (en) | 2011-06-10 | 2018-08-14 | Flir Systems, Inc. | Infrared detector array with selectable pixel binning systems and methods |
US10079982B2 (en) | 2011-06-10 | 2018-09-18 | Flir Systems, Inc. | Determination of an absolute radiometric value using blocked infrared sensors |
US10250822B2 (en) | 2011-06-10 | 2019-04-02 | Flir Systems, Inc. | Wearable apparatus with integrated infrared imaging module |
US10169666B2 (en) | 2011-06-10 | 2019-01-01 | Flir Systems, Inc. | Image-assisted remote control vehicle systems and methods |
US10230910B2 (en) | 2011-06-10 | 2019-03-12 | Flir Systems, Inc. | Infrared camera system architectures |
US9143703B2 (en) | 2011-06-10 | 2015-09-22 | Flir Systems, Inc. | Infrared camera calibration techniques |
USD765081S1 (en) | 2012-05-25 | 2016-08-30 | Flir Systems, Inc. | Mobile communications device attachment with camera |
US9635220B2 (en) | 2012-07-16 | 2017-04-25 | Flir Systems, Inc. | Methods and systems for suppressing noise in images |
US9811884B2 (en) | 2012-07-16 | 2017-11-07 | Flir Systems, Inc. | Methods and systems for suppressing atmospheric turbulence in images |
US9973692B2 (en) | 2013-10-03 | 2018-05-15 | Flir Systems, Inc. | Situational awareness by compressed display of panoramic views |
US11297264B2 (en) | 2014-01-05 | 2022-04-05 | Teledyne Fur, Llc | Device attachment with dual band imaging sensor |
Also Published As
Publication number | Publication date |
---|---|
US20090173187A1 (en) | 2009-07-09 |
KR101418125B1 (ko) | 2014-07-10 |
EP1888793B1 (en) | 2017-05-10 |
EP1888793A1 (en) | 2008-02-20 |
ES2632501T3 (es) | 2017-09-13 |
GB0511883D0 (en) | 2005-07-20 |
CN101194031A (zh) | 2008-06-04 |
WO2006131764A1 (en) | 2006-12-14 |
ZA200708932B (en) | 2008-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101418125B1 (ko) | 합금철의 제조방법 | |
AU2009236006B2 (en) | Refining ferroalloys | |
JP2013209703A (ja) | 溶融鉄の精錬方法 | |
EP0033780B1 (en) | Method for preventing slopping during subsurface pneumatic refining of steel | |
WO2020152945A1 (ja) | 低炭素フェロマンガンの製造方法 | |
JPH0477046B2 (ko) | ||
JP2020125541A (ja) | 転炉精錬方法 | |
JP2564604B2 (ja) | 含クロム鋼の電気炉精錬法 | |
JP7036993B2 (ja) | 低炭素フェロマンガンの製造方法 | |
JP5928095B2 (ja) | 溶融鉄の精錬方法 | |
JP2002371313A (ja) | ステンレス溶鋼の溶製方法 | |
JP3577988B2 (ja) | 低Al極低硫鋼の製造方法 | |
RU2186856C1 (ru) | Композиционная шихта для выплавки легированных сталей | |
KR970004985B1 (ko) | 용선의 동시 탈인 탈질 처리방법 | |
KR20020042721A (ko) | 제강 슬래그의 발포 방법 및 제강 슬래그의 발포용 칼슘질화물의 용도 | |
JP2727627B2 (ja) | 高合金鋼用溶銑の製造方法 | |
CN113614255A (zh) | 利用二氧化碳进行钢脱碳 | |
JPH02221310A (ja) | 含Ni,Cr溶湯の製造方法 | |
JPS6152208B2 (ko) | ||
RU2398887C1 (ru) | Способ выплавки рельсовой стали | |
JP2004010939A (ja) | 高Cr溶鋼の溶製方法 | |
JP2020105553A (ja) | 溶銑脱硫方法 | |
JPS63192841A (ja) | 低炭素フエロクロムの製造方法 | |
JPH01172505A (ja) | 含Cr銑の脱炭方法 | |
JPH0873917A (ja) | 底吹き転炉製鋼法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170616 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20190627 Year of fee payment: 6 |