KR20070085986A - 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법 - Google Patents

도세탁셀에 대한 내성 또는 감수성을 측정하는 방법 Download PDF

Info

Publication number
KR20070085986A
KR20070085986A KR1020077013060A KR20077013060A KR20070085986A KR 20070085986 A KR20070085986 A KR 20070085986A KR 1020077013060 A KR1020077013060 A KR 1020077013060A KR 20077013060 A KR20077013060 A KR 20077013060A KR 20070085986 A KR20070085986 A KR 20070085986A
Authority
KR
South Korea
Prior art keywords
mrna
genbank accession
homo sapiens
protein
kinase
Prior art date
Application number
KR1020077013060A
Other languages
English (en)
Other versions
KR101323574B1 (ko
Inventor
도레 그루엔버그
시 황
스리다란 낫산
폴 어거스트
Original Assignee
아벤티스 파마슈티칼스 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아벤티스 파마슈티칼스 인크. filed Critical 아벤티스 파마슈티칼스 인크.
Publication of KR20070085986A publication Critical patent/KR20070085986A/ko
Application granted granted Critical
Publication of KR101323574B1 publication Critical patent/KR101323574B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 대조군에 비해서 특정의 유전자 마커의 증가 또는 감소를 측정함으로써 탁소이드 계열의 분자에 대한 환자의 반응을 예견하거나 모니터하는 신규하고 유용한 방법에 관한 것이다. 본 발명은 또한, 특정의 유전자 마커의 핵산 또는 단백질 수준을 측정하고, 이들 수준을 대조군 또는 기준 마커와 비교함으로써 탁소이드 계열의 분자에 대한 환자의 반응을 예견하거나 모니터하는 키트를 제공한다.
도세탁셀, 탁소이드 계열, 유전자 마커, 내성, 감수성

Description

도세탁셀에 대한 내성 또는 감수성을 측정하는 방법{Method for measuring resistance or sensitivity to docetaxel}
본 발명은 대조군에 비해서 특정한 유전자 마커의 증가 또는 감소를 측정함으로써 탁소이드 계열의 분자에 대한 환자의 반응을 예견하거나 모니터할 수 있는 신규하고 유용하며, 지금까지 알려지지 않은 방법에 관한 것이다. 본 발명은 또한, 특정한 유전자 마커의 핵산 또는 단백질 수준을 측정하고, 이들 수준을 대조군 또는 표준 마커와 비교함으로써 탁소이드 계열의 분자에 대한 환자의 반응을 예견하거나 모니터하는 키트를 제공한다.
도세탁셀은 유방암, 폐암 및 난소암의 치료를 위해서 광범하게 사용되고, 두경부암, 위암 및 전립선암을 치료하는 데는 보다 적은 정도로 사용되는 항유사분열제이다 (Hong, Oncology 16:9, 2002). 도세탁셀은 베타-튜불린에 결합하고, 알파- 및 베타-튜불린 이종이량체의 분해를 차단하여 종양 성장을 저지함으로써 미세소관 동력학을 억제한다 (Ringel and Horwitz, J Natl Cancer Inst 83:288, 1991). 도세탁셀 및 관련된 탁산, 파클리탁셀의 항종양 활성은 유사분열 방추의 미세소관이 염색체 정렬 및 분리를 방해하고, 세포 주기 진행을 차단하며, 세포 소멸 경로를 활성화시키는 것을 표적화하는 것으로부터 야기된다 (Wang 등., Cancer 88:2619, 2000). 파클리탁셀의 세포사멸-촉진 활성(proapoptoic activity)은 p53/p21waf1/Cip1, raf/ras 및 미토젠-활성화된 단백질 키나제 (MAPKs)를 수반하는 세포 시그날링 이벤트를 통한 Bcl-2의 포스포릴화 및 불활성화와 연관되었다 (Wang 등., Cancer 88:2619, 2000). 도세탁셀은 파클리탁셀보다 더 강력한 항암제이지만, 이의 세포독성에 관여하는 경로는 잘 정의되어 있지 않다 (Katsumata, Br J Cancer 89:S9, 2003). 도세탁셀-유도된 세포사멸은 Bcl-2 포스포릴화 및 카스파제-3 활성화를 수반하는 메커니즘을 통해서 선택된 세포주에서 관찰되었다 (Kolfschoten 등., Biochem Pharmacol 63:733, 2002). 다양한 배양된 세포주에서 탁산-유도된 세포 사멸을 변조시키는 그 밖의 다른 단백질에는 HeLa 세포 내의 오로라 (Aurora)-A (Anand 등., Cancer Cell 3:51, 2003), 유방암 세포 내의 HER-2 (Tanabe 등., Int J Oncol 22:875, 2003), 신경교아세포종 세포 내의 p21waf1/Cip1 (Li 등., J Biol Chem 277:11352, 2002) 및 난소암 세포 내의 JNK/MKK1 (Lee 등., J Biol Chem 273:28253, 1998)이 포함된다.
본 기술분야에서는, 그들의 생체내 기능을 저지하고, 세포를 항종양 약물 화학요법에 대해서 잠재적으로 감작시키는 시약 (소분자, siRNA 등)을 확인하기 위한 약물 개발에서의 그들의 이용을 유도할 수 있는, 도세탁셀 내성을 매개하는 약물작용성 단백질을 확인할 필요성이 남아 있다. 또한, 본 기술분야에서는 화학요법 치료에 앞서서 어떤 환자가 항종양 도세탁셀 약물-기본 화학요법에 대해 반응할 수 있고 반응할 수 없는지를 확실하게 예견할 수 있는 분석법에 대한 필요성이 남아 있다. 본 출원인들은 본 명세서에서 도세탁셀에 대한 내성 및 감수성을 예견할 수 있으며, 암에서 약물 내성을 저지하는 신규의 치료법을 개발하기 위한 선별 분석법을 제공할 수 있는 신규의 분석법을 기술하고 있다.
발명의 요약
본 발명에 따르면, 환자 및 대조군에서 특정한 유전자 마커의 활성화 및/또는 발현의 수준을 비교함으로써 탁소이드 계열의 분자에 대한 환자의 반응을 모니터하고/하거나 예견하는 신규하고 유용한 방법이 제공된다.
한가지 구체예에서, 본 발명은 a) 암 환자의 암 영역으로부터 시험 샘플을 수득하는 단계; b) 대조 샘플을 수득하는 단계; c) 하나 이상의 유전자 마커의 수준을 측정하는 단계; d) 시험 샘플 및 대조 샘플 내의 하나 이상의 유전자 마커들의 측정된 수준들을 비교하는 단계를 포함하고, 여기에서, 대조 샘플과 비교하여 시험 샘플에서 측정된 하나 이상의 유전자 마커의 수준의 감소가 탁소이드 계열의 분자에 대한 증가된 내성을 시사하는, 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하는 방법을 제공한다.
본 발명의 이러한 관점에서 제공되는 특정한 유전자 마커에는 다음의 마커들이 포함된다:
BubR1, 단백질 키나제(BUBR1) mRNA와 유사한 호모 사피엔스 (Homo sapiens), 완전한 cds (GenBank 수탁번호: AF046079);
Mad2, MAD2 단백질에 대한 호모 사피엔스 mRNA (GenBank 수탁번호: AJ000186);
Mps1, 호모 사피엔스 TTK 단백질 키나제 (TTK), mRNA (GenBank 수탁번호: NM_003318);
Rac1/CDC42에 대한 GEFT, 호모 사피엔스 RAC/CDC42 교환인자 (GEFT), 전사 변이체 2, mRNA (GenBank 수탁번호: NM_133483);
Bub1, 벤즈이미다졸 1 상동체 (효모) (BUB1)에 의해서 억제되지 않는 호모 사피엔스 BUB1 발아(budding), mRNA (GenBank 수탁번호: NM_004336);
hSepharase, 호모 사피엔스 엑스트라 스핀들 폴 유사 1(extra spindle pole like 1)(에스. 세레비지애(S. cerevisiae))(ESPL1), mRNA (GenBank 수탁번호: NM_012291);
CamKIId, 호모 사피엔스 칼슘/칼모듈린-의존성 단백질 키나제(CaM 키나제) II 델타 (CAMK2D), 전사 변이체 3, mRNA (GenBank 수탁번호: NM_001221);
CDK6, 호모 사피엔스 사이클린-의존성 키나제 6(CDK6), mRNA (GenBank 수탁번호: NM_001259); 및
GRB2, 호모 사피엔스 성장인자 수용체-결합된 단백질 2(GRB2), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_002086).
또 다른 구체예에서, 본 발명은 a) 암 환자의 암 영역으로부터 시험 샘플을 수득하는 단계; b) 대조 샘플을 수득하는 단계; c) 하나 이상의 유전자 마커의 수준을 측정하는 단계; d) 시험 샘플 및 대조 샘플 내의 하나 이상의 유전자 마커들의 측정된 수준들을 비교하는 단계를 포함하고, 여기에서, 대조 샘플과 비교하여 시험 샘플에서 측정된 하나 이상의 유전자 마커의 수준의 감소가 탁소이드 계열의 분자에 대한 증가된 감수성을 시사하는, 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하는 방법에 관한 것이다.
본 발명의 이러한 특정 관점에서, 특정 유전자 마커는 다음을 포함한다:
P21(Waf1), 호모 사피엔스 사이클린-의존성 키나제 억제제 1A (p21, Cip1) (CDKN1A), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_000389);
Pim-1, 호모 사피엔스 pim-1 종양유전자 (PIM1), mRNA (GenBank 수탁번호: NM_002648);
GBP-1, 호모 사피엔스 구아닐레이트 결합 단백질 1, 인터페론-유도성, 67kDa (GBP1), mRNA (GenBank 수탁번호: NM_002053);
RXRA, 호모 사피엔스 레티노이드 X 수용체, 알파 (RXRA), mRNA (GenBank 수탁번호: NM_002957);
SPF45, 호모 사피엔스 RNA 결합 모티프 단백질 17 (RBM17), mRNA (GenBank 수탁번호: NM_032905);
Hec1, 호모 사피엔스 동원체 연관된 2(kinetochore associated 2)(KNTC2), mRNA (GenBank 수탁번호: NM_006101);
Raf1, raf 종양유전자에 대한 인간 mRNA (GenBank 수탁번호: X03484);
오로라 A, 호모 사피엔스 오로라-관련된 키나제 1 (ARK1) mRNA, 완전한 cds (GenBank 수탁번호: AF008551);
TACC3, 호모 사피엔스 변형성, 산성 코일화-코일(coiled-coil) 함유 단백질 3 (TACC3), mRNA (GenBank 수탁번호: NM_006342);
RelB, 호모 사피엔스 v-rel 세망내피증 바이러스성 종양유전자 상동체 B, B-세포 3에서 카파 경쇄 폴리펩타이드 유전자 인핸서(enhancer)의 핵인자 (조류) (RELB), mRNA (GenBank 수탁번호: NM_006509);
PRKCD, 호모 사피엔스 단백질 키나제 C, 델타(PRKCD), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_006254);
BRAF35, 호모 사피엔스 고-이동성 군 20B(HMG20B), mRNA (GenBank 수탁번호: NM_006339);
HSPA1L, 호모 사피엔스 열쇼크(heat shock) 70kDa 단백질 1A (HSPA1A), mRNA (GenBank 수탁번호: NM_005345);
STK11, 호모 사피엔스 세린/트레오닌 키나제 11 (포이츠-제거스 (Peutz-Jeghers) 증후군) (STK11), mRNA (GenBank 수탁번호: NM_000455); 및
MKK3, 호모 사피엔스 MAP 키나제 키나제 3(MKK3) mRNA, 완전한 cds (GenBank 수탁번호: L36719).
추가의 구체예에서, 본 발명은
a) 암 환자의 암 영역으로부터 시험 샘플을 수득하는 단계,
b) BubR1, 단백질 키나제(BUBR1) mRNA와 유사한 호모 사피엔스, 완전한 cds (GenBank 수탁번호: AF046079);
Mad2, MAD2 단백질에 대한 호모 사피엔스 mRNA (GenBank 수탁번호: AJ000186);
Mps1, 호모 사피엔스 TTK 단백질 키나제 (TTK), mRNA (GenBank 수탁번호: NM_003318);
Rac1/CDC42에 대한 GEFT, 호모 사피엔스 RAC/CDC42 교환인자 (GEFT), 전사 변이체 2, mRNA (GenBank 수탁번호: NM_133483);
Bub1, 벤즈이미다졸 1 상동체 (효모) (BUB1)에 의해서 억제되지 않는 호모 사피엔스 BUB1 발아, mRNA (GenBank 수탁번호: NM_004336);
hSepharase, 호모 사피엔스 엑스트라 스핀들 폴 유사 1 (에스. 세레비지애) (ESPL1), mRNA (GenBank 수탁번호: NM_012291);
CamKIId, 호모 사피엔스 칼슘/칼모듈린-의존성 단백질 키나제(CaM 키나제) II 델타 (CAMK2D), 전사 변이체3, mRNA (GenBank 수탁번호: NM_001221);
CDK6, 호모 사피엔스 사이클린-의존성 키나제 6(CDK6), mRNA (GenBank 수탁번호: NM_001259); 및
GRB2, 호모 사피엔스 성장인자 수용체-결합된 단백질 2(GRB2), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_002086)로 구성된 그룹으로부터 선택된 하나 이상의 유전자 마커의 수준을 측정하는 단계,
c) GAPDH, 호모 사피엔스 글리세르알데히드-3-포스페이트 데하이드로게나제 (GAPD), mRNA (GenBank 수탁번호: NM_002046); 및
RPS9, 호모 사피엔스 cDNA 클론 IMAGE:6647283, 부분적 cds (GenBank 수탁번호: BC071941)로 구성된 그룹으로부터 선택된 하나 이상의 기준 유전자 마커의 수준을 측정하는 단계 및
d) 시험 샘플 내의 상기 하나 이상의 유전자 마커 및 상기 하나 이상의 기준 유전자 마커들의 측정된 수준들을 비교하는 단계를 포함하고, 여기에서, 상기 하나 이상의 기준 유전자 마커의 수준과 비교하여 하나 이상의 유전자 마커의 수준의 감소가 탁소이드 계열의 분자에 대한 증가된 내성을 시사하는, 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하는 방법에 관한 것이다.
본 발명의 추가의 구체예는
a) 암 환자의 암 영역으로부터 시험 샘플을 수득하는 단계;
b) P21(Waf1), 호모 사피엔스 사이클린-의존성 키나제 억제제 1A (p21, Cip1) (CDKN1A), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_000389);
Pim-1, 호모 사피엔스 pim-1 종양유전자 (PIM1), mRNA (GenBank 수탁번호: NM_002648);
GBP-1, 호모 사피엔스 구아닐레이트 결합 단백질 1, 인터페론-유도성, 67kDa (GBP1), mRNA (GenBank 수탁번호: NM_002053);
RXRA, 호모 사피엔스 레티노이드 X 수용체, 알파 (RXRA), mRNA (GenBank 수탁번호: NM_002957);
SPF45, 호모 사피엔스 RNA 결합 모티프 단백질 17 (RBM17), mRNA (GenBank 수탁번호: NM_032905);
Hec1, 호모 사피엔스 동원체 연관된 2 (KNTC2), mRNA (GenBank 수탁번호: NM_006101);
Raf1, raf 종양유전자에 대한 인간 mRNA (GenBank 수탁번호: X03484);
오로라 A, 호모 사피엔스 오로라-관련된 키나제 1 (ARK1) mRNA, 완전한 cds (GenBank 수탁번호: AF008551);
TACC3, 호모 사피엔스 변형성, 산성 코일화-코일 함유 단백질 3 (TACC3), mRNA (GenBank 수탁번호: NM_006342);
RelB, 호모 사피엔스 v-rel 세망내피증 바이러스성 종양유전자 상동체 B, B-세포 3에서 카파 경쇄 폴리펩타이드 유전자 인핸서의 핵인자 (조류) (RELB), mRNA (GenBank 수탁번호: NM_006509);
PRKCD, 호모 사피엔스 단백질 키나제 C, 델타(PRKCD), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_006254);
BRAF35, 호모 사피엔스 고-이동성 군 20B (HMG20B), mRNA (GenBank 수탁번호: NM_006339);
HSPA1L, 호모 사피엔스 열쇼크 70kDa 단백질 1A (HSPA1A), mRNA (GenBank 수탁번호: NM_005345);
STK11, 호모 사피엔스 세린/트레오닌 키나제 11 (포이츠-제거스 증후군) (STK11), mRNA (GenBank 수탁번호: NM_000455); 및
MKK3, 호모 사피엔스 MAP 키나제 키나제 3(MKK3) mRNA, 완전한 cds (GenBank 수탁번호: L36719)로 구성된 그룹으로부터 선택된 하나 이상의 유전자 마커의 수준을 측정하는 단계,
c) GAPDH, 호모 사피엔스 글리세르알데히드-3-포스페이트 데하이드로게나제 (GAPD), mRNA (GenBank 수탁번호: NM_002046); 및
RPS9, 호모 사피엔스 cDNA 클론 IMAGE:6647283, 부분적 cds (GenBank 수탁번호: BC071941)로 구성된 그룹으로부터 선택된 하나 이상의 기준 유전자 마커의 수준을 측정하는 단계 및
d) 시험 샘플 내의 상기 하나 이상의 유전자 마커 및 상기 하나 이상의 기준 유전자 마커들의 측정된 수준들을 비교하는 단계를 포함하고, 여기에서, 상기 하나 이상의 기준 유전자 마커의 수준과 비교하여 하나 이상의 유전자 마커의 수준의 감소가 탁소이드 계열의 분자에 대한 증가된 감수성을 시사하는, 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하는 방법에 관한 것이다.
본 발명은 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하는 방법에 관한 것이다. 이러한 본 발명의 추가의 구체예에는 탁소이드 계열 분자 파클리탁셀, 도세탁셀 XRP9881 및 XRP6258이 포함된다.
본 발명에 기술된 유전자 마커는 이하에 더 상세히 기술하는 다양한 기술을 사용하여 RNA, DNA 또는 단백질의 수준을 측정함으로써 평가될 수 있다. 본 발명의 그 밖의 다른 구체예는 탁소이드 계열의 분자에 대한 환자의 반응을 예견하거나 모니터하기 위한 키트 (kit)에 관한 것이다.
본 발명의 상기 관점 및 그 밖의 다른 관점, 특징 및 이점은 첨부된 도면과 함께 이하의 상세한 설명으로부터 더 잘 이해될 수 있을 것이다.
도 1은 이의 하향-조절이 도세탁셀 내성을 부여하는 유전자의 특정화를 나타 낸 것이다. 도세탁셀은 대조 siRNA(□)와 비교하여 RB1, BubR1, Mad2 및 Mps1 siRNA(■)에 의해서 형질감염된 HCT116 세포에 대해서 나타낸 용량반응곡선을 생성하였다. RB1은 스크린에서 결과를 나타내지 않은 siRNA의 예이었다. 세포 생존도는 WST-1 첨가 후에 450 nM의 흡광도에서 측정되었다. 최소비 (MR)는 40 nM 도세탁셀에서 대조군에 대비하여 유전자에 대한 WST-1 값이다.
도 2는 대조군 shRNA(□)와 비교한 BubR1 및 Mps1 shRNA(■)의 용량반응곡선을 나타낸다.
도 3은 각각 BubR1 및 Mps1 shRNA를 함유하는 세포에서 BubR1 및 Mps1 mRNA 수준의 TaqMan 실시간 PCR 분석을 나타낸 것이다.
도 4는 도세탁셀 처리의 존재 또는 부재 하에서 Mad2, BubR1 및 Mps1 siRNA로 형질감염된 HCT116 세포에 대해서 나타낸 세포 생존도 및 형태학을 보여주는 것이다. 형질감염시킨 지 24 시간 후에, 세포는 비처리한 채로 두거나 (-도세탁셀), 또는 200 nM 도세탁셀로 처리하고 (+도세탁셀), 칼세인-AM으로 염색하여 처리한지 16 및 72 시간 후의 생존 세포를 가시화시켰다.
도 5는 도세탁셀 처리한 후에 Mad2, BubR1, Mps1 및 대조용 siRNA로 형질감염시킨 HCT116 세포에 대한 유사분열지수를 나타낸 것이다. 형질감염시킨 지 24 시간 후에, 세포를 200 nM 도세탁셀로 16 및 72 시간 동안 처리하고, 시험하였다. 유사분열성 세포는 포스포릴화된 히스톤 H3 항체에 의해서 검출되었으며, 여기에서는 세포의 핵에 대한 적색으로 강조된 염색으로 나타난다 (Mitotic Index Kit, Cellomics). 핵은 획스트(Hoechst) 염료에 의해서 청색으로 염색되었다.
도 6은 각각 Mps1, BubR1 및 Mad2 siRNA로 형질감염된 HCT116 세포에서 Mps1, BubR1 및 Mad2 mRNA 수준의 TaqMan 실시간 PCR 분석을 나타낸 것이다.
도 7은 3 개의 유사분열 체크포인트 유전자 siRNA로 형질감염된 HCT116 세포의 세포 주기 분석을 나타낸 것이다. Mps1, BubR1 및 Mad2 siRNA로 형질감염시킨 후에, 세포를 비처리한 채로 두거나 (-도세탁셀), 24 시간 동안 200 nM 도세탁셀 (+도세탁셀)로 처리하였다. 도세탁셀을 첨가한 지 24 시간 후에, 세포를 수확하여 세포주기에 대해서 분석하였다. 상기 피크의 수는 2N, 4N, 8N, 16N 또는 32N과 같은 DNA 함량을 시사한다.
도 8은 안정한 녹다운(knockdown) 세포주를 사용하는 클론원성 (clonogenic) 세포생존 분석을 나타낸 것이다. BubR1 또는 벡터 대조군 shRNAs를 함유하는 HCT116 세포를 10 cm 접시에 도말하고, 5 nM 도세탁셀 중에서 10일 동안 유지시켰다. 콜로니를 PBS로 세척하고, 크리스탈 바이올렛 (crystal violet)으로 염색하였다.
도 9는 이의 하향-조절이 도세탁셀에 대한 증가된 감수성을 부여하는 유전자의 몇가지 용량반응곡선을 나타낸 것이다. 도세탁셀은 대조 siRNA(□)와 비교하여 RB1, Pim-1, p21, 오로라 A 및 TACC3 siRNA(■)에 의해서 형질감염된 HCT116 세포에 대해서 나타낸 용량반응곡선을 생성하였다. 최소비 (MR)는 40 nM 도세탁셀 농도에서 대조군에 비해서 유전자의 WST-1 판독치의 비이다. IC50 (IR) 비는 대조군과 비교한 유전자의 IC50의 비이다.
도 10은 벡터 대조군 (□)과 비교한 오로라 A shRNA (■)의 용량반응곡선을 나타낸다.
도 11은 오로라 A shRNA를 함유하는 세포에서 오로라 A mRNA 수준의 TaqMan 실시간 PCR 분석을 나타낸 것이다.
도 12는 대조군 siRNA(□)와 비교한 Pim-1 및 TACC3 siRNA(■)에 의해서 형질감염된 HCT116 세포의 증식에 있어서의 차이를 나타낸 것이다. Pim-1, TACC3 및 대조 siRNA에 의한 형질감염 후의 상이한 시점에서 6-웰 플레이트 내에 잔류하는 세포의 수.
도 13은 siRNA 형질감염 후의 Pim-1 및 TACC3 mRNA 수준의 TaqMan 분석을 나타낸 것이다.
도 14는 Pim-1 및 BubR1 siRNA에 의해서 형질감염된 HCT116 세포에서의 활성 카스파제-3 수준을 나타낸 것이다. 활성 카스파제-3 수준은 활성 카스파제-3 비드메이트 키트 (beadmates kit)(Upstate)를 사용하여 형광강도로 나타내었다. 3 가지의 도세탁셀 농도 0, 5 및 40 nM, 및 도세탁셀 첨가 후의 3 개의 시점 24, 48 및 72 시간이 검사되었다.
도 15는 Pim-1 및 BubR1 siRNA에 의해서 형질감염된 HCT116 세포에서의 AKT 포스포릴화 수준을 나타낸 것이다. 포스포릴화된 AKT 수준과 총 AKT 수준의 비는 비드-기본 분석 (bead-based assay; Biosource)을 사용하여 결정하였다. 형질감염시킨지 24 시간 후에, 세포를 처리하지 않은 채로 두거나, 5 및 40 nM 도세탁셀로 처리하였다. 도세탁셀 처리한지 48 시간 후에, 용해물을 분석하였다. 포스포릴화 수준은 총 AKT (t-AKT)에 대비한 포스포릴화된 AKT (p-AKT)의 비로서 계산되었다.
도 16은 형질감염시킨지 48 시간 후에, Pim-1 및 BubR1의 감소된 수준을 나타내는 웨스턴 블럿을 나타낸 것이다.
본 발명은 광범하게는, 시험 피검자가 탁소이드 계열의 약물에 대해 내성인지, 또는 감수성인지를 예견할 수 있는 유전자 마커의 출원인들에 의한 확인을 기본으로 한다. 세포-기본 RNA 간섭 (RNAi) 스크린을 사용하여, 본 출원인들은 도세탁셀에 대한 약물 내성 또는 감수성이 특정한 유전자 마커와 연관되었음을 관찰하였다.
본 명세서 및 특허청구범위 전체에 걸쳐서 다수의 용어 및 어구가 사용되었음에 주목하여야 한다. 이들 용어 및 어구의 정의는 이하에 제시되었다:
본 명세서에서 사용된 것으로서, 용어 "예후"는 약물 내성, 및 재발, 전이성 확산 및 종양성 질병을 포함하는 암-기인성 사망 또는 진행의 예견 또는 가망성을 의미한다.
본 명세서에서 사용된 것으로서, 용어 "예견"은 환자가 약물 또는 약물의 셋트에 대해서 바람직하게 또는 바람직하지 않게 반응할 수 있는 가능성, 및 환자가 일차 종양의 외과적 제거 및/또는 화학요법 후에 암 재발이 없이 특정 기간 동안 생존할 수 있는 것과 같은 반응의 정도를 의미한다. 본 발명에 의해서 생각되는 예견적 방법은 어떤 특정의 환자를 위해서 가장 적절한 치료양식, 특히 탁소이드 계열의 화학요법제를 선택함으로써 치료법을 결정하는데 임상적으로 사용될 수 있다. 본 발명의 예견적 방법은 환자가 소정의 약물 또는 약물 배합물에 의한 화학요법, 및/또는 방사선요법과 같은 치료 용법에 대해서 바람직하게 반응할 것인지, 또는 화학요법 또는 그 밖의 다른 치료양식의 종료 후에 환자의 생존할 것인지 여부를 예견하는 유용한 수단이다.
본 명세서에서 사용된 것으로서, 용어 "종양"은 악성이든 양성이든 모든 신생 세포 성장 및 증식, 및 모든 전암성 및 암성 세포 및 조직을 의미한다.
본 명세서에서 사용된 것으로서, 용어 "암" 및 "암성"은 일반적으로, 조절되지 않은 세포 성장을 특징으로 하는 포유동물에서의 생리학적 상태를 의미한다. 암의 예로는 다음의 암들이 포함되나, 이들로 제한되지는 않는다: 유방암; 결장암; 폐암; 전립선암; 간세포암; 위암; 췌장암; 경부 및 난소암; 간암; 방광암; 요도암; 암종; 흑색종; 신경교아세포종 및 수아세포종을 포함하는 뇌암; 담도암; 융모암; 식도암; 위암; 급성 림프성 및 골수성 백혈병을 포함하는 혈액학적 신생물; 다발성 골수종; AIDS-연관된 백혈병 및 성인 T-세포 백혈병 림프종; 보웬병(Bowen's disease) 및 파제트병(Paget's disease)을 포함하는 상피내 신생물; 호지킨병 (Hodgkin's disease) 및 림프구성 림프종을 포함하는 림프종; 신경아세포종; 편평세포암을 포함하는 구강암, 평활근육종, 횡문근육종, 지방육종, 섬유육종 및 골육종을 포함하는 육종; 흑색종, 카포시 육종 (Kaposi's sarcoma), 기저세포암 (basocellular cancer) 및 편평세포암을 포함하는 피부암; 정상피종, 비-정상피종 (기형종, 융모막암종), 간질종양, 및 생식세포종양과 같은 배아성종양을 포함하는 고환암; 갑상선 선암 및 수양암을 포함하는 갑상선암; 및 선암 및 윌름스 종양 (Wilms tumor)을 포함하는 신장암.
본 명세서에서 사용된 것으로서, 용어 "환자"는 바람직하게는 인간을 의미하지만, 또한 비-인간 영장류, 소, 말, 돼지, 양, 염소, 개, 고양이 또는 설치류를 포함할 수도 있다. 바람직하게는, 피검자는 암에 걸린 것으로 의심되거나, 암으로 진단되거나 암의 발현에 대한 고위험군, 예를 들어, 암의 가족력이 있는 인간이다. 본 발명의 바람직한 구체예에서, 암은 유방암이다. 암에 걸린 것으로 의심되는 피검자를 확인하는 방법에는 수동 검사(manual examination), 조직생검, 피검자의 가족 병력, 피검자의 병력 또는 유방X선조영법, 자기공명영상법, 자기공명분광법, 또는 양전자 방사 단층촬영법과 같은 다수의 영상화 기술이 포함될 수 있다. 암을 진단하는 방법 및 암 진단의 임상적 특정화는 의료기술분야에서 숙련된 전문가에게 잘 알려져 있다.
본 명세서에서 사용된 것으로서, 용어 "샘플"은 관련된 의료기술분야에서 통상적인 기술을 갖는 전문가에게 잘 알려진 방법을 사용하여 수득된 조직이다. 조직생검과 같은 방법에는 매스, 현미해부, 레이저-기본 현미해부, 또는 그 밖의 본 기술분야에서 공지된 세포-분리방법의 총체적인 분배가 포함된다. 질병에 걸린 조직 조직생검 물질에서 세포 타입의 가변성, 및 사용된 진단방법의 감수성에서의 가변성으로 인하여, 분석에 필요한 샘플 크기는 1, 10, 50, 100, 200, 300, 500, 1000, 5000, 10,000, 내지 50,000개 이상의 세포의 범위일 수 있다. 적절한 샘플 크기는 세포 조성 및 조직생검의 조건을 기초로 하여 결정될 수 있으며, 본 발명에서 사용하기 위한 핵산의 이러한 결정 및 후속 분리를 위한 표준 제조단계들은 본 기술분야에서 통상의 기술을 가진 자들에게 잘 공지되어 있다. 예를 들어, 조직생검으로부터의 샘플은 증폭이 없이도 RNA 발현을 평가하는데 충분할 수 있다. 반대로, 작은 조직생검 부분에서 적합한 수의 세포가 결여된 경우에는 RNA 전환 및/또는 증폭방법 또는 핵산 분자의 분해를 증진시키는 그 밖의 다른 방법의 사용이 필요할 수 있다. 제한된 조직생검 물질의 사용을 허용하는 이러한 방법은 본 기술분야에서 통상의 기술을 가진 자들에게 잘 알려져 있다. 몇가지 예로는 직접 RNA 증폭, RNA의 cDNA로의 역전사, cDNA의 증폭, 또는 방사성-표지된 핵산의 생성이 포함되나, 이들로 제한되지는 않는다.
본 명세서에서 사용된 것으로서, 샘플과 관련된 용어 "시험"은 신체의 암성 영역으로부터, 또는 암의 단계 또는 특징을 나타내는 신체의 영역으로부터 취한 샘플을 의미한다.
본 명세서에서 사용된 것으로서, 샘플과 관련된 용어 "대조"는 비교 목적으로 사용되는 샘플을 의미한다. 바람직하게는, 이들 샘플은 특히 이들이 표준물로서 사용될 질병에 관하여, 샘플이 유전자 발현에 영향을 미칠 수 있는 어떤 질병 또는 상태의 증상을 나타내지 않거나, 이들 질병 또는 상태를 갖는 것으로 믿어진다는 점에서 "대조군"이다. 대신으로, 질병 또는 상태의 상이한 단계가 비교될 수도 있는 것으로 이해될 수 있으며, 이러한 경우에 "대조" 샘플은 해당 질병 또는 상태의 더 조기 단계에 해당하는 것이다. 예를 들어, 대조 샘플은 비-암성인 신체의 동등한 영역으로부터 취한 샘플일 수 있다. 추가로, 대조 샘플은 동일한 피검자로부터의 신체의 동등한 영역, 또는 첫번째 피검자와 실질적으로 유사한 두번째 피검자 (동일하거나 유사한 종, 연령, 체중, 성별 등)로부터의 신체의 비-암성 영역일 수도 있다. 마지막으로, 대조 샘플은 또한, 탁소이드 계열의 분자를 사용한 치료에 대하여 잘 반응하는 두번째 피검자의 암성 영역으로부터 취할 수도 있다.
"핵산 분자"는 단일 스트랜드 형태 또는 이중-스트랜드 나선인, 리보뉴클레오사이드 (아데노신, 구아노신, 유리딘 또는 사이티딘 "RNA 분자") 또는 데옥시리보뉴클레오사이드 (데옥시아데노신, 데옥시구아노신, 데옥시티미딘 또는 데옥시사이티딘; "DNA 분자")의 포스페이트 에스테르 중합체 형태, 또는 포스포로티오에이트 및 티오에스테르와 같은 이의 임의의 포스포에스테르 동족체를 의미한다. 이중 스트랜드 DNA-DNA, DNA-RNA 및 RNA-RNA 나선이 있을 수 있다. 용어 핵산 분자, 및 특히 DNA 또는 RNA 분자는 단지 분자의 일차 및 이차 구조를 의미하는 것이며, 이것을 어떤 특정한 삼차 형태로 제한하는 것은 아니다. 따라서, 이 용어는 특히, 선형 또는 원형 DNA 분자 (예를 들어, 제한단편), 플라스미드 및 염색체에 존재하는 이중-스트랜드 DNA를 포함한다. 특정한 이중-스트랜드 DNA 분자의 구조를 거론하는 경우에, 서열은 단지 DNA의 비-전사 스트랜드 (즉, mRNA에 대해서 상동성인 서열을 갖는 스트랜드)를 따라서 5'에서 3' 방향으로 서열을 제시하는 표준 협약에 따라서 본 명세서에 기술될 수 있다. "재조합체 DNA 분자"는 분자생물학적 조작을 수행한 DNA 분자이다.
본 명세서에서 사용된 것으로서, 특정의 단백질을 암호화하는 분리된 핵산 분자의 "일부분"이라는 용어는 펩타이드 또는 폴리펩타이드를 암호하하는 충분한 수의 인접한 뉴클레오타이드를 포함하는 분리된 핵산 분자의 일부 또는 단편을 의미한다. 천연적으로, 분리된 핵산 분자의 "일부분"은 하나보다 많은 뉴클레오타이드이며, 이러한 일부분에 의해서 암호화되는 펩타이드 또는 폴리펩타이드는 이하의 펩타이드 및 폴리펩타이드의 정의에서 기술된 바와 같이 다수의 아미노산 잔기를 함유한다.
본 명세서에서 사용된 것으로서, 용어 "펩타이드"는 펩타이드 결합에 의해서 공유적으로 결합된 두개 또는 그 이상의 아미노산을 의미한다. 특정한 구체예에서, 펩타이드는 적어도 10 개, 바람직하게는 적어도 20 개, 더욱 바람직하게는 적어도 30 개, 더 더욱 바람직하게는 적어도 40 개, 가장 바람직하게는 50 개 또는 그 이상의 아미노산을 포함한다.
본 명세서에서 사용된 것으로서, 용어 "폴리펩타이드"는 다수의 인접한 아미노산으로 구성된 선형 중합체를 의미한다. 특히, 폴리펩타이드는 100 kD보다 큰 분자량을 가질 수 있다.
본 명세서에서 사용된 것으로서, 용어 "유전자 마커"는 샘플 내에서 측정된 이의 RNA, DNA 또는 단백질 수준이 시험 피검자가 탁소이드 계열의 약물에 대해서 내성인지 감수성인지 여부를 예견하는 작용을 하는 생리학적 조성물을 의미한다. 더구나, 유전자 마커는 특정의 단백질을 암호화할 수 있거나, 또는 대신으로 이의 활성이 신체 기원 샘플 내의 유전자 마커의 수준과 관련되는 단백질에 대한 "대리 (surrogate)" 마커로 작용할 수 있다. 이러한 관계는 단백질 활성의 수준에 있어서의 감소가 유전자 마커의 수준의 감소에 상응하는 경우로 직접적일 수 있거나, 또는 대신으로 이 관계는 단백질 활성의 수준에 있어서의 감소가 유전자 마커의 수준의 증가에 상응하는 경우로 반대 관계일 수도 있다. 이러한 생리학적 조성물에는 단지 몇 개를 언급하여 세포 (예를 들어, 전구 줄기세포) 단백질, 폴리펩타이드, DNA, RNA, 탄수화물, 또는 지방산이 포함되나, 확실히 이들로 제한되지는 않는다. 본 발명의 특정한 구체예에서, 어떤 유전자 마커의 측정된 수준은 시험 피검자가 탁소이드 계열의 약물에 대해서 내성인지 감수성인지 여부를 예견할 수 있다. 이러한 유전자 마커의 예로는 다음의 마커들이 포함되나, 확실히 이들로 제한되지는 않는다:
BubR1, 단백질 키나제(BUBR1) mRNA와 유사한 호모 사피엔스, 완전한 cds (GenBank 수탁번호: AF046079);
Mad2, MAD2 단백질에 대한 호모 사피엔스 mRNA (GenBank 수탁번호: AJ000186);
Mps1, 호모 사피엔스 TTK 단백질 키나제 (TTK), mRNA (GenBank 수탁번호: NM_003318);
Rac1/CDC42에 대한 GEFT, 호모 사피엔스 RAC/CDC42 교환인자 (GEFT), 전사 변이체 2, mRNA (GenBank 수탁번호: NM_133483);
Bub1, 벤즈이미다졸 1 상동체 (효모) (BUB1)에 의해서 억제되지 않는 호모 사피엔스 BUB1 발아 (budding), mRNA (GenBank 수탁번호: NM_004336);
hSepharase, 호모 사피엔스 엑스트라 스핀들 폴 유사 1 (에스. 세레비지애) (ESPL1), mRNA (GenBank 수탁번호: NM_012291);
CamKIId, 호모 사피엔스 칼슘/칼모듈린-의존성 단백질 키나제(CaM 키나제) II 델타 (CAMK2D), 전사 변이체 3, mRNA (GenBank 수탁번호: NM_001221);
CDK6, 호모 사피엔스 사이클린-의존성 키나제 6(CDK6), mRNA (GenBank 수탁번호: NM_001259); 및
GRB2, 호모 사피엔스 성장인자 수용체-결합된 단백질 2(GRB2), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_002086);
P21(Waf1), 호모 사피엔스 사이클린-의존성 키나제 억제제 1A (p21, Cip1) (CDKN1A), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_000389);
Pim-1, 호모 사피엔스 pim-1 종양유전자 (PIM1), mRNA (GenBank 수탁번호: NM_002648);
GBP-1, 호모 사피엔스 구아닐레이트 결합 단백질 1, 인터페론-유도성, 67kDa (GBP1), mRNA (GenBank 수탁번호: NM_002053);
RXRA, 호모 사피엔스 레티노이드 X 수용체, 알파 (RXRA), mRNA (GenBank 수탁번호: NM_002957);
SPF45, 호모 사피엔스 RNA 결합 모티프 단백질 17 (RBM17), mRNA (GenBank 수탁번호: NM_032905);
Hec1, 호모 사피엔스 동원체 연관된 2 (KNTC2), mRNA (GenBank 수탁번호: NM_006101);
Raf1, raf 종양유전자에 대한 인간 mRNA (GenBank 수탁번호: X03484);
오로라 A, 호모 사피엔스 오로라-관련된 키나제 1 (ARK1) mRNA, 완전한 cds (GenBank 수탁번호: AF008551);
TACC3, 호모 사피엔스 변형성, 산성 코일화-코일(coiled-coil) 함유 단백질 3 (TACC3), mRNA (GenBank 수탁번호: NM_006342);
RelB, 호모 사피엔스 v-rel 세망내피증 바이러스성 종양유전자 상동체 B, B-세포 3에서 카파 경쇄 폴리펩타이드 유전자 인핸서(enhancer)의 핵인자 (조류) (RELB), mRNA (GenBank 수탁번호: NM_006509);
PRKCD, 호모 사피엔스 단백질 키나제 C, 델타(PRKCD), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_006254);
BRAF35, 호모 사피엔스 고-이동성 군 20B (HMG20B), mRNA (GenBank 수탁번호: NM_006339);
HSPA1L, 호모 사피엔스 열쇼크 70kDa 단백질 1A (HSPA1A), mRNA (GenBank 수탁번호: NM_005345);
STK11, 호모 사피엔스 세린/트레오닌 키나제 11 (포이츠-제거스 (Peutz-Jeghers) 증후군) (STK11), mRNA (GenBank 수탁번호: NM_000455); 및
MKK3, 호모 사피엔스 MAP 키나제 키나제 3(MKK3) mRNA, 완전한 cds (GenBank 수탁번호: L36719).
본 명세서에서 사용된 것으로서, 용어 "기준 유전자 마커"는 이의 측정된 RNA, DNA 또는 단백질 수준이 탁소이드 계열의 약물에 노출시키기 전, 그 동안 또는 후에 변화하지 않고 유지되는 생리학적 조성물을 의미한다. "기준 유전자 마커"는 하우스피킹 유전자 (housekeeping genes)로 불린다. 이들은 검사된 시스템에서, 예를 들어, 암과 같은 특정 질병에서 발현의 비교적 불변하는 수준을 기초로 하여 선택된 유전자이다. 하우스키핑 유전자는 발현의 결과를 표준화하기 위하여 사용된다. 이러한 유전자 마커의 예로는 다음의 마커들이 포함되나, 확실히 이들로 제한되는 것은 아니다:
GAPDH, 호모 사피엔스 글리세르알데히드-3-포스페이트 데하이드로게나제 (GAPD), mRNA (GenBank 수탁번호: NM_002046); 및
RPS9, 호모 사피엔스 cDNA 클론 IMAGE:6647283, 부분적 cds (GenBank 수탁번호: BC071941).
본 명세서에서 사용된 것으로서, 용어 "탁소이드 계열의 분자"는 탁산 계열에 속하는 화학요법제 화합물의 부류를 의미한다. 탁소이드 계열의 구체적인 구성원에는 파클리탁셀 (탁솔), 도세탁셀 (탁소테레) 및 이의 동족체 (즉, XRP9881 및 XRP6258; 참조: Ojima and Geney, Curr Opin Investig Drugs 4:737, 2004)가 포함되나, 이들로 제한되지는 않는다. 이러한 부류의 분자들은 베타-튜불린 결합제이며, 도세탁셀과 유사한 미세소관의 중합된 형태를 안정화시키기 때문에, 여기에 기술된 바이오마커 (biomarker)의 임상적 발현이 이들 약물에 대한 유사한 반응상태를 반영할 수 있는 것으로 예상된다.
본 명세서에서 사용된 것으로서, 용어 "분자", "화합물" 또는 "약제"는 현재 공지되어 있거나 추후에 발견되는 모든 조성물을 의미한다. 본 발명에서 적용성을 갖는 화합물 또는 약제의 예로는 유기화합물 (예를 들어, 합성되거나, 천연적으로 존재하거나, 광학적 활성인 화합물), 펩타이드 (합성되거나, 천연적으로 존재하거나, 광학적 활성인, 즉 D 또는 L 아미노산), 탄수화물, 핵산 분자 등이 포함된다.
본 명세서에서 사용된 것으로서, "하이브리드화의 엄격도 (stringency of hybridization)" 또는 "엄격한 조건 하에서의 하이브리드화"는 본 기술분야에서 통상의 기술을 가진 자들에 의해서 쉽게 결정될 수 있는 조건을 의미하며, 일반적으로는 프로브 길이, 세척 온도, 및 염 농도에 따르는 경험적 계산이다. 일반적으로, 더 긴 프로브는 적절한 어닐링(annealing)을 위해서 더 고온을 필요로 하는 한편, 더 짧은 프로브는 더 낮은 온도를 필요로 한다. 하이브리드화는 일반적으로, 상보적 스트랜드가 그들의 융점 이하의 환경에 존재하는 경우에 변성된 DNA가 재어닐링하는 능력에 따라 좌우된다. 프로브와 하이브리드화 가능한 서열 사이의 원하는 상동성의 정도가 더 클수록 사용될 수 있는 상대온도는 더 높다. 결과적으로, 더 높은 상대온도는 반응조건을 더 엄격하게 만드는 경향이 있는 반면에, 더 낮은 온도는 그렇게 덜 엄격하게 만든다. 하이브리드화 반응의 엄격성에 대한 추가의 상세한 사항 및 설명은 문헌 (Ausubel 등., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995))을 참고로 한다.
본 명세서에서 사용된 것으로서, "엄격한 조건" 또는 "높은 엄격성 조건"은 (1) 세척을 위해서 낮은 이온 강도 및 고온, 예를 들어, 50℃에서 0.015 M 나트륨 클로라이드/0.0015 M 나트륨 시트레이트/0.1% 나트륨 도데실설페이트를 사용하거나 (2) 하이브리드화하는 중에 42℃에서 변성제, 예를 들어, 포름아미드, 예를 들어, 50% (v/v) 포름아미드와 0.1% 소혈청알부민/0.1% 피콜 (Ficoll)/0.1% 폴리비닐피롤리돈/pH 6.5의 50 mM 나트륨 포스페이트 완충액과 750 mM 나트륨 클로라이드, 75 mM 나트륨 시트레이트를 사용하거나 (3) 42℃에서 50% 포름아미드, 5x SSC (0.75 M NaCl, 0.075 M 나트륨 시트레이트), 50 mM 나트륨 포스페이트(pH 6.8), 0.1% 나트륨 피로포스페이트, 5x 덴하르트 용액 (Denhardt's solution), 초음파처리된 연어 정액 DNA (50 .mu.g/ml), 0.1% SDS, 및 10% 덱스트란 설페이트를 이용하는 용액 중에서 밤새 하이브리드화시키고, 42℃에서 0.2x SSC (나트륨 클로라이드/나트륨 시트레이트) 중에서 10분 동안 세척하고, 이어서 55℃에서 EDTA를 함유하는 0.1x SSC로 구성된 10분 고-엄격성 세척액으로 세척하는 파라메터를 의미한다. 적절히 엄격한 조건은 문헌 (Sambrook 등., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989)에 기술된 바와 같이 확인될 수 있으며, 상술한 것보다 덜 엄격한 세척용액 및 하이브리드화 조건 (예를 들어, 온도, 이온 강도 및 % SDS)의 사용을 포함한다. 적절히 엄격한 조건의 예는 20% 포름아미드, 5x SSC (150 mM NaCl, 15 mM 트리나트륨 시트레이트), 50 mM 나트륨 포스페이트 (pH 7.6), 5x 덴하르트 용액, 10% 덱스트란 설페이트 및 20 mg/ml 변성된 전단된 연어 정액 DNA를 포함하는 용액 중에서 37℃로 밤새 배양하고, 이어서 필터를 약 37-50℃에서 1x SSC 중에서 세척하는 것이다. 숙련된 전문가는 프로브 길이 등과 같은 인자들을 조절하는데 필요한 것으로서 온도, 이온 강도 등을 어떻게 조정하는지를 인식할 것이다. 핵산을 하이브리드화하는데 적당한 엄격성은 핵산의 길이 및 상보성의 정도, 본 기술분야에서 잘 알려진 변수들에 따라 좌우된다. 두개의 뉴클레오타이드 서열 사이의 유사성 또는 상동성의 정도가 크면 클수록 이들 서열을 갖는 핵산의 하이브리드에 대한 Tm의 값은 더 크다. 핵산 하이브리드화의 상대적 안정성 (더 큰 Tm에 상응함)은 다음의 순서로 감소한다: RNA:RNA, DNA:RNA, DNA:DNA. 바람직하게는, 하이브리드화 가능한 핵산에 대한 최소 길이는 적어도 약 12 개의 뉴클레오타이드이며 바람직하게는 적어도 약 16 개의 뉴클레오타이드이고 더욱 바람직하게는 길이가 적어도 약 24 개의 뉴클레오타이드이며, 가장 바람직하게는 적어도 36 개의 뉴클레오타이드이다.
본 명세서에서 사용된 것으로서, "라벨" 또는 "검출가능한-라벨"은 항체, 올리고펩타이드 또는 그 밖의 다른 유기분자에 직접 또는 간접적으로 접합되어 "표지된" 항체, 올리고펩타이드 또는 그 밖의 다른 유기분자를 생성하는 검출가능한 라벨 화합물 또는 조성물을 의미한다. 라벨은 그 자체로 검출할 수 있거나 (예를 들어, 방사성동위원소 라벨 또는 형광 라벨), 또는 효소적 라벨의 경우에는 검출할 수 있는 기질 화합물 또는 조성물의 화학적 변형을 촉진시킬 수 있다.
본 명세서에서 사용된 것으로서, "직접 라벨"은 이의 천연 상태에서 육안으로나, 광학 필터 및/또는 적용된 자극, 예를 들어, 형광을 촉진하는 자외선의 도움을 받아서 용이하게 가시화할 수 있는 물질을 의미한다. 이의 예로는 착색된 라벨, 금속성 졸 입자, 염료 졸 입자 염색된 라텍스, 또는 염료 캅셀화된 리포좀이 포함되나, 이들로만 제한되지는 않는다 (미국 특허 제 4,313,734 호, 미국 특허 제 4,373,932호, WO 88/08534, EP-A 0 280 559, 0 281 327, 미국 특허 제 4,703,017 호에 기술됨). 그 밖의 다른 직접 라벨에는 방사성뉴클레오타이드, 방사선불투과성 물질, 형광 부위 또는 발광 부위가 포함된다.
본 명세서에서 사용된 것으로서, "간접 라벨"은 또한 본 발명에 따라서 사용될 수 있는 효소를 의미한다. 다양한 타입의 효소 결합된 면역학적 검정법은 본 기술분야에서 잘 알려져 있으며, 예를 들어, 알칼리성 포스파타제 및 홀스래디시 (horseradish) 퍼옥시다제, 라이소자임, 글루코즈-6-포스페이트 데하이드로게나제, 락테이트 데하이드로게나제, 우레아제, 이들 및 그 밖의 다른 것들은 문헌 (Eva Engvall, Enzyme Immunoassay ELISA and EMIT in Methods in Enzymology, 70:419-439 (1980) 및 미국 특허 제 4,857,453 호)에 상세히 기술되어 있다.
본 명세서에서 사용된 것으로, 용어 "키트"는 하나 이상의 용기, 및 용기 상에 또는 용기와 결합된 라벨 또는 제품설명서 (package insert)를 포함하는 물품을 의미한다. 바람직한 구체예에서, 용기는 검출가능한-표지된 항체, 검출가능한-표지된 항체 단편 또는 검출가능한-표지된 올리고뉴클레오타이드를 함유할 수 있다. 또 다른 구체예에서, 용기는 신체 기원 샘플로부터 총 RNA를 수득하고, 총 RNA를 역전사시켜 cDNA를 수득하고, cDNA를, 프라이머 하나 또는 둘다가 검출가능하게-표지된 프라이머의 셋트를 사용하는 폴리머라제 연쇄반응에 적용하는 수단을 제공한다. 예를 들어, 희석제 및 완충제, 대조 항체, 올리고펩타이드 또는 작은 유기분자를 함유하는 키트의 추가의 용기가 포함될 수 있다. 라벨 또는 제품설명서는 조성물의 설명과 저장 및 의도한 시험관내 또는 진단적 용도에 대한 지침을 제공할 수 있다.
또한, 본 발명에 따르면 본 기술분야의 기술 범위 내의 통상적인 분자생물학, 미생물학 및 재조합체 DNA 기술이 사용될 수 있다. 이러한 기술들은 문헌에 상세히 설명되어 있다 (참조예: Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (이하, "Sambrook 등., 1989"); DNA Cloning: A Practical Approach, Volumes I and II (D.N. Glover 편집가. 1985); Oligonucleotide Synthesis (M.J. Gait 편집가. 1984); Nucleic Acid Hybridization [B.D. Hames & S.J.편집가. (1985)]; Transcription And Translation [B.D. Hames & S.J. Higgins, 편집가. (1984)]; Animal Cell Culture [R.I. Freshney, 편집가. (1986)]; Immobilized Cells And Enzymes [IRL Press, (1986)]; B.A Practical Guide To Molecular Cloning (1984); F.M. Ausubel등. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (1994)).
일반적으로, RNAi 기술은 상동성 서열을 함유하는 mRNA의 분해를 유도하기 위하여 합성 또는 벡터-생성된 이중 스트랜드 RNA를 사용한다 (McManus and Sharp, Nat Rev Genet3:737, 2002). RNAi 스크리닝을 사용하여 캐노라브디티스 엘레간스 (Caenorhabditis elegans) (Simmer 등., PloS Biol 1:E12, 2003), 드로소필라 (Drosophila)(Lum 등., Science 299:2039, 2003) 및 포유동물 세포 (Aza-Blanc 등., Mol Cell12:627, 2003)와 같은 다수의 유기체에서의 유전자 기능을 설명하였다.
본 발명에서는, HCT116 결장암 세포를 사용하여 키나제 부류의 구성원을 대부분 포함하는 101 개의 암-관련된 유전자에 대해서 지향된 siRNA를 스크리닝하였으며, 도세탁셀 치사효과는 고-분할(high-resolution) 용량-반응곡선에 의해서 정량화되었다. 이러한 접근방법을 사용하여, 본 출원자들은 BubR1, Bub1, Mad2, Mps1 및 GEFT Rac/CDC를 포함하는 9 개의 유전자의 저-발현 (under-expression)은 도세탁셀에 의한 치사효과를 억제할 수 있는 반면에 Pim1, p21, TACC3 및 오로라-A를 포함하는 15 개의 다른 유전자의 저-발현은 도세탁셀-유도된 세포사를 상승시킬 수 있음을 나타내었다.
따라서, 광범하게는 본 발명은 도세탁셀을 복용하거나 복용할 것을 고려하고 있는 개체가 이 약물에 대해서 내성인지 감수성인지 여부를 확인하기 위해서 사용될 수 있는 진단적 방법 및 키트에까지 확대된다.
본 출원자들은 도세탁셀에 대한 약물 내성을 관찰하였으며, 이에 의해서 약물 내성은 BubR1, Bub1, Mad2, Msp1 및 GEFT Rac/CDC를 포함하는 체크포인트 대조 유전자의 확대된 셋트의 상실과 연관된다.
증가된 도세탁셀 감수성은 GBP-1, STK11, RXRA, Hec1, SPF45, Raf1, RELB, MKK3, PRKCD, HSPA1A, BRAF35, 오로라-A, Pim-1, TACC3 및 p21waf1/Cip1을 포함한 몇가지 유전자 중의 어느 하나의 상실에 상응하며, 이들 유전자에 대한 억제제는 도세탁셀 요법에 대해서 이용가능한 유용한 보조제로 작용할 수 있다.
유사분열 체크포인트 유전자는 Cdc20-APC (후기 (anaphase)-촉진성 콤플렉스)의 억제에 의해서 후기를 자매염색분체 (sister chromatids)의 동원체가 유사분열 방추에 적절히 부착하고 적도에 정렬될 때까지 지연시키는 안전 메커니즘 (failsafe mechanism)으로 작용함으로써 (Zhou 등., J Cell Sci 115:3547, 2002), 세포가 확실하게 유사분열에서 나와서 DNA의 정확한 보체를 갖는 추가의 세포주기에 들어가도록 한다. 미세소관 억제제의 존재 하에서, 유사분열로부터 나온 세포는 더 이상 그들의 염색체를 적절하게 분리시킬 수 없으며, 일반적으로 몇 개의 세포주기 직후 또는 그 후에 세포사멸을 겪을 수 있다 (Taylor and McKeon, Cell 89:727, 1997). 미세소관 억제제와 BubR1과 같은 유사분열 체크포인트 유전자의 상실의 조합은 세포가 세포사멸을 겪지 않으면서 유사분열 정지를 면하고, 염색체 불안정성 (CIN) 및 이수배수체 (aneuploidy)를 유도하도록 허용한다 (Shin 등., Cancer Cell 4:483, 2003). 최근에, 약물 내성 데이터는 미세소관 억제제 파클리탁셀을 사용하여 BubR1 및 Mad2 하향-조절된 MCF-7 세포를 치료한 경우에 생성되었다 (Sudo 등., Cancer Res 64:2502, 2004).
Pim-1 유전자는 관련된 키나제의 작은 집단에 속하는 세린/트레오닌 키나제를 암호화한다. Pim-1 기능은 증식, 분화, 세포사멸, 종양형성, 저산소증, 혈관형성 및 유사분열과 연관되어 있다 (Wang 등., Biochim Biophys Acta 1593:45, 2002). AKT 저포스포릴화 데이터 및 증가된 카스파제-3 활성 측정과 함께 현미경 영상화 데이터는 Pim-1 하향-조절이 세포 생존을 매개하는 AKT 시그날링을 불활성화시킴으로써 도세탁셀-유도된 세포사멸을 증진시켰음을 나타낸다. Pim-1 및 p21은 도세탁셀에 대해서 HCT116 세포를 감작시키는데 있어서 매우 유사한 특징을 가지며 이것은 p21이 Pim-1의 포스포릴화 기질임을 나타내는 보고와 일치한다 (Wang 등., Biochim Biophys Acta 1593:45, 2002). Pim-1 하향-조절은 도세탁셀의 부재 하에서 약간의 세포사멸을 유도하였지만, 약물의 존재하에서 더 효과적이었고, 그 반면에 변형성 산성 코일화-코일 단백질 TACC3의 하향-조절은 도세탁셀의 부재 하에서 세포사를 유도하지 않았으며, 이는 RNAi 단독은 세포 증식에 대한 효과가 없음을 나타내는 것이다. 이들 결과는 상이한 단백질의 고갈이 세포를 도세탁셀에 대해 감작시키는 상이한 메커니즘을 유도할 수 있음을 시사하는 것이다.
따라서, 본 발명의 한가지 관점에서는 표 I 및 II에 기술된 유전자 중의 하나 이상의 활성화 및 이들 유전자의 단백질 수준을 이용하여 치료학적 치료 전략을 선택하고, 선택된 치료 전략의 유효성을 모니터할 수 있다.
특정의 구체예에서는, 화학요법의 과정 중에 표 I 및 II에 나타낸 하나 이상의 유전자의 활성화 수준을 모니터하여 환자에 대한 화학요법의 유효성을 평가 및 예견하는 방법이 제공된다. DNA (Hafner 등., Arch Pathol Lab Med 127:1221, 2003; Rodriguez ., Clin Cancer Res 10:5785, 2004), 메센저 RNA (Chang 등., Lancet. 362:340, 2003) 및/또는 단백질 (Espina 등., J Immunol Methods 290:121, 2004)을 분리시키기 위해서 종양 (예를 들어, 유방암, 결장암, 비-소세포 폐암, 및 위종양)으로부터의 조직생검, 또는 진단되지 않은 암 환자 또는 현재 치료가 진행중인 환자로부터의 종양 조직생검의 단기간 배양을 수행하여 표 I 및 II에 기술된 유전자 또는 이의 서브셋의 유전자 활성화의 수준 또는 단백질 수준을 평가한다. 유전자 전사 및 단백질 발현 프로파일링 (profiling)은 잠재적인 치료 전략에 대한 치료학적 반응의 예견, 진단에 유용성을 가지며, 치료법에 대한 환자의 반응을 모니터하는 유용한 도구일 수 있다.
본 발명에 따르면, RNA는 본 기술분야에서 통상적으로 사용되는 이용가능한 어떤 방법을 사용하여서라도 종양 샘플로부터 분리될 수 있다 (Ullmann 등., J Biomol Screen 9:95, 2004; Badiee 등., BMC Biotechnol 3:23, 2003). 시험 피검자로부터 하나 이상의 세포를 수득하고, 이들 세포로부터 RNA를 분리시킨다. 예를 들어, 말초혈액 백혈구 (PBLs) 세포는 피검자로부터 수득될 수 있거나, 또한 세포 샘플을 수득하거나 샘플을 원하는 세포 타입이 풍부하게 만들 수도 있다. 세포는 원하는 세포 타입 상의 특정한 에피토프에 결합하는 항체를 사용한 세포 분리와 같은 다양한 기술을 사용하여 세포 혼합물로부터 분리될 수도 있다. 원하는 세포가 고형조직인 경우에, 특정의 세포는 예를 들어, 현미해부술에 의해서, 또는 레이저 포착 현미해부술 (LCM)에 의해서 절제될 수 있다 (Bonner 등., Science 278:1481, 1997; Fend 등., Am J Path 154:61, 1999). RNA는 다양한 방법, 예를 들어, 구아니디늄 티오시아네이트 용해에 이은 CsCl 원심분리에 의해서 조직 또는 세포 샘플로부터 추출될 수도 있다 (Chirgwin 등., Biochemistry 18:5294, 1979). 단일 세포로부터의 RNA는 단일 세포로부터 cDNA 라이브러리를 제조하는 방법에서 기술된 바와 같이 수득될 수 있다 (Dulac, Curr Top Dev Biol. 36:245, 1998). RNA 샘플은 특정한 종에 대해서 더 풍부하게 할 수 있다. 한가지 구체예에서, 예를 들어, 폴리(A)+RNA는 RNA 샘플로부터 분리될 수 있다. 특히, 폴리-T 올리고뉴클레오타이드는 고체 지지체 상에 고정화되어 mRNA에 대한 친화성 리간드로 작용할 수 있다 이러한 목적의 키트는 시판품으로 이용할 수 있으며, 예를 들어, 메시지마커 키트 (MessageMaker kit Life Technologies, Grand Island, N.Y.)이다. 풍부화 (enrichment)는 예를 들어, 프라이머-특이적 cDNA 합성, 또는 cDNA 합성을 기본으로 하는 선형 증폭 및 주형-지시된 시험관내 전사의 수차례 라운드에 의해서 성취될 수 있다 (Wang 등., Proc Natl Acad. Sci USA 86:9717, 1989; Dulac , supra).
예를 들어, PCR; 리가제 연쇄반응 (LCR) (Wu and Wallace, Genomics 4:560, 1989); 자율적 서열 복제 (self-sustained sequence replication SSR) (Guatelli 등., Proc Natl Acad Sci USA 87:1874, 1990); 핵산 기본 서열 증폭 (NASBA) 및 전사 증폭 (Kwoh 등., Proc Natl Acad Sci USA 86:1173, 1989)을 포함하는 다양한 증폭방법이 본 발명의 방법에서 사용하기에 적합하다. PCR 기술에 대한 방법들은 본 기술분야에서 잘 알려져 있다 (참조예:PCR Technology: Principles and Applications for DNA Amplification (ed. H. A. Erlich, Freeman Press, N.Y., N.Y., 1992); PCR Protocols: A Guide to Methods and Applications (eds. Innis, 등., Academic Press, San Diego, Calif., 1990)).
RNA는 본 기술분야에서 숙련된 전문가에게 공지된 어떤 방법을 사용하여서도, 예를 들어, 아피메트릭스 (Affymetrix)에 의해서 제조된 것과 같은 마이크로어레이 (microarrays)를 사용하여 검출을 위해서 표지될 수 있다. RNA는 시아닌-3 또는 시아닌-5 (Perkin Elmer MPS544001KT)와 같은 염료에 의한 직접 RNA 라벨링과 같이 통상적으로 사용되는 어떤 방법을 사용한 하이브리드화에 의해서도 표지되고 검출된다. 추가의 방법에는 시아닌-3 또는 시아닌-5 (Badiee A 2003), 플루오레세인 또는 알렉사 (Alexa) 염료 (Molecular Probes), 또는 그 밖의 다른 형광발색단 (fluorophores)에 의해서 표지된 뉴클레오타이드를 사용한 역전사에 의해서 수행되는 직접 cDNA 표지가 포함된다. 추가로, 페어플레이 (FairPlayTM)/아미노알릴 표지 (Stratagene Catalog number: 252002), 3DNA 덴드리머 (dendrimer) 표지 (Genisphere Inc) 또는 효소적 시그날 증폭 (MICROMAX TSA, Perkin Elmer)과 같은 간접 cDNA 표지가 이용될 수 있다. 대신으로, RNA는 효소적, 형광, 방사성 또는 광방출 방법에 의해서 검출되는 RNA 프로브를 사용하여 정량화될 수 있다.
본 발명의 한가지 관점에서, RNA는 종양 샘플로부터 수득되며, 타크만 (Taqman) 기술이 유전자 마커의 검출에 사용된다. 프라이머는 표 I 및 II에 지정된 특정의 RNAs를 검출하기 위해서 생성되며, 역전사효소를 사용하여 증폭된다. 역전사에 의해서 증폭된 특정 단편의 검출은 겔 전기영동, 중합체 전기영동, 직접 DNA 서열결정, 광검출, 형광 시그날의 상실, 효소적 반응, 또는 상보적 RNA에 대한 하이브리드화에 의한 검출에 의해서 성취된다.
본 발명의 또 다른 관점에서는, 실시간 PCR을 이용하여 올리고뉴클레오타이드를 검출한다. 종양 샘플로부터 수득된 mRNA를 cDNA로 역해독한다. 폴리머라제 연쇄반응 기술을 사용하여 표 I 및 II에 명시된 특정 RNAs 또는 이의 서브셋을 증폭시키기 위하여 프라이머를 생성시킨다. mRNA 수준의 검출은 겔 전기영동 및 에티듐 브로마이드 또는 CYBR 그린 (green) 염색에 의해서, 또는 폴리머라제에 의해서 방출된 형광발색단-표지된 서열 특이적 프로브로부터의 형광강도를 측정함으로써 이루어진다.
본 발명의 추가의 관점에서는 노던 블럿팅 (Northern blotting) 기술이 이용된다. RNA를 종양 샘플로부터 수득한 다음에, 겔 전기영동에 의해서 분리하고, 막 위에 옮긴다. RNA 풍부성은 P32와 같은 방사성 동위원소로 표지된 프로브를 사용한 하이브리드화에 의해서, 또는 효소-기본 색소생산성 또는 발광성 분석에 의해서 측정한다.
본 발명의 또 다른 추가의 관점에서, 유전자 투여량은 전사체 수준의 대리 지표 (surrogate indicator)로 사용될 수 있다. 표 I 및 II에서 전사체 또는 이의 서브셋의 유전자 투여량은 정량적으로 측정하여, 종양이 도세탁셀 치료법에 대해서 반응성인지 아닌지 여부에 대해서 평가될 수 있다 (Rodriguez ., Clin Cancer Res 10:5785, 2004). 이러한 평가는 선행보조 (수술에 앞선 치료) 치료법 이전에 도출될 수 있기 때문에, 환자는 이들이 응답자 (responder)로서 분류되는 경우에는 도세탁셀로 치료될 수 있거나, 이들이 비-응답자로 분류되는 경우에는 또 다른 화학요법제가 투여될 수 있다.
DNA는 환자 종양 조직생검으로부터 추출하고, 본 기술분야에서 숙련된 전문가에 의해서 수행되는 것과 같은 방법을 사용해서 정제하여 오염물질을 제거한다. 종양 DNA에서 유전자 투여량을 결정하기 위해서 이용된 방법에는 정량적 PCR, 게놈 DNA-칩, 동소 하이브리드화(in situ hybridization) 또는 써던 (Southern)이 포함되나, 이들로 제한되지는 않는다 (Hafner 등., Arch Pathol Lab Med 127:1221, 2003; Rodriguez ., Clin Cancer Res 10:5785, 2004). 따라서, 이들 방법을 이용하여 표 I 및 II에서의 하나 이상의 유전자의 카피수 (copy number)를 측정하고, 대조 샘플 또는 기준 마커와 비교할 수 있다.
본 발명의 또 다른 관점에서는 단백질 수준이 전사체 수준의 대리 척도로서 사용된다. 단백질 수준은 전사체 수준의 억제 또는 상승과 상관관계가 있는 것으로 나타났다. 따라서, 본 발명은 표 I 및 II에서의 전사체에 의해서 암호화된 폴리펩타이드 생성물에 상응하는 단백질의 수준을 측정하는 기술을 포함한다. 단백질을 검출하여 도세탁셀에 대한 예측 반응의 마커로 사용한다. 단백질 검출의 방법은 본 기술분야에서 잘 알려져 있다. 예를 들어, 면역학적 검정법은 항체를 이용하여 표적 단백질의 발현을 검출하는 방법이다.
특정의 구체예에서는 면역학적 검정법을 사용하여 표 I 및 II에 열거된 하나 이상의 유전자의 단백질 생성물을 검출한다. 추가로, 표 I 및 II에 열거된 단백질 중의 어느 하나에 대한 항체는 다수의 다른 검출방법에서 사용될 수 있다. 이들 검출방법에는 다음의 방법들이 포함되나, 이들로 제한되지는 않는다: 웨스턴 블럿 (Western blots), ELISA 분석, 샌드위치 ELISA. 대신으로, 항체를 사용하지 않는 다른 분석 방법이 고려되며, 이에는 표 I 및 II에서의 전사체에 의해서 암호화된 단백질을 인식하는 DNA 올리고뉴클레오타이드 또는 폴리펩타이드 (예를 들어, 앱타머)를 이용하는 방법이 포함된다. 또한, 단백분해적 분열 후에 펩타이드 단편의 정밀한 분자량을 측정함으로써 폴리펩타이드의 조성을 결정하는 생물학적 샘플의 질량분광분석이 사용될 수도 있다.
본 발명은 추가로, 효소, 형광발색단 (예를 들어, 플루오레세인 이소티오시아네이트 (FITC), 피코에리트린 (PE), 텍사스 레드 (Texas red TR), 로다민, 유리 또는 킬레이트화 란탄족 계열 염류, 발색단, 방사성동위원소, 킬레이트화제, 염료, 콜로이드성 금, 라텍스 입자, 리간드 (예를 들어, 비오틴) 및 화학발광제를 포함한 적합한 라벨을 포함한다.
본 발명의 하나의 관점에서, 사용된 방사성 라벨은 3H, 14C, 32P, 35S, 36 Cl, 51 Cr, 57Co, 58Co, 59Fe, 90Y, 125 I, 131I, 및 186Re와 같은 동위원소일 수 있다. 방사능 수준의 정량분석은 현재 공지되어 있고 이용가능한 계수방법을 통해서 수행될 수 있다. 반대로, 방사선불투과성 물질이 사용될 수도 있다. 라벨이 효소인 구체예에서, 검출은 본 기술분야에서 공지되어 있고 현재 이용되는 비색, 분광광도, 형광분광광도, 전류측정 또는 가스정량 기술 중의 어떤 것에 의해서도 수행될 수 있다.
본 발명의 추가의 관점은 항체 또는 항체의 단편과 같은 펩타이드 결합제의 용도이다. 항체에는 통상적인 방법에 따라서 제조된 폴리클로날 및 모노클로날 항체가 포함된다. 단지 항체 분자의 작은 부분인 파라토프 (paratope)가 이의 에피토프에 대한 항체의 결합에 포함된다 (일반적으로 문헌 (Clark, W. R. (1986) The Experimental Foundations of Modem Immunology Wiley & Sons, Inc., New York; Roitt, I. (1991) Essential Immunology, 7th Ed., Blackwell Scientific Publications, Oxford)을 참조). 예를 들어, pFc' 및 Fc 부위는 보체 캐스케이드 (cascade)의 효과기 (effector)이지만, 항원 결합에 포함되지 않는다. 이의 pFc' 부위가 효소적으로 분할되었거나, pFc' 부위가 없이 생산된, F(ab')2 단편으로 지정된 항체는 온전한 항체의 항원 결합부위 둘 다를 보유한다. 따라서, 본 발명의 구체예는 F(ab')2 단편과 같이 검출가능하게-표지된 항체 단편을 이용한다. 유사하게, 이의 Fc 부위가 효소적으로 분할되었거나, Fc 부위가 없이 생산된, Fab 단편으로 지정된 항체는 온전한 항체 분자의 항원 결합부위 중의 하나를 보유한다. Fab 단편은 공유적으로 결합된 항체 경쇄 및 Fd로 표시된 항체 중쇄의 일부분으로 구성된다. Fd 단편은 항체 특이성의 주된 결정요소이며 (단일 Fd 단편은 항체 특이성을 변화시키지 않으면서 10 개의 상이한 경쇄와 결합될 수 있다), Fd 단편은 분리하여 에피토프-결합능을 보유한다.
본 기술분야에서 잘 알려진 바와 같이, 항체의 항원-결합 부분 내에는 항원의 에피토프와 직접적으로 상호작용하는 상보적 결정부위 (CDR), 및 파라토프의 삼차 구조를 유지하는 골격 부위(framework region; FR)가 존재한다 (일반적으로, 문헌 (Clark, 1986; Roitt, 1991)을 참조). 중쇄 Fd 단편 및 IgG 면역글로불린의 경쇄 둘 다에는 각각 3 개의 상보적 결정 부위 (CDR1 내지 CDR3)에 의해서 분리된 4 개의 골격 부위 (FR1 내지 FR4)가 존재한다. CDR, 및 특히 CDR3 부위, 및 더욱 특히 중쇄 CDR3가 대부분 항체 특이성의 원인이 된다. 포유동물 항체의 비-CDR 부위가 원래 항체의 에피토프 특이성을 보유하면서 동종 또는 이종 항체의 유사한 부위에 의해서 치환될 수 있다는 것은 현재 본 기술분야에서 잘 정립되어 있다. 이것은 비-인간 CDR을 인간 FR 및/또는 Fc/pFc' 부위에 공유적으로 결합시켜 작용적 항체를 생산한 "인간화된 (humanized)" 항체의 개발 및 사용에서 가장 명백하게 나타난다 (참조: 미국 특허 제 4,816,567, 5,225,539, 5,585,089, 5,693,762 및 5,859,205 호).
완전한 인간 모노클로날 항체는 또한, 인간 면역글로불린 중쇄 및 경쇄 위치의 대부분에 대한 형질전환 마우스를 면역화시킴으로써 제조될 수 있다. 이들 마우스 (예를 들어, 제노마우스 (XenoMouse Abgenix), HuMAb 마우스 (Medarex/GenPharm))를 면역시킨 후에, 모노클로날 항체는 표준 하이브리도마 기술에 따라서 제조될 수 있다. 이들 모노클로날 항체는 인간 면역글로불린 아미노산 서열을 가질 수 있으며, 따라서 인간에게 투여하는 경우에 인간 안티-마우스 항체 (HAMA) 반응을 야기하지 않을 것이다.
따라서, 본 기술분야에서 통상적의 기술을 가진 자들에게 쉽게 자명한 것으로서 본 발명은 또한 F(ab')2, Fab, Fv 및 Fd 단편 Fc 및/또는 FR 및/또는 CDR1 및/또는 CDR2 및/또는 경쇄 CDR3 부위가 상동성 인간 또는 비-인간 서열에 의해서 대체된 키메릭 항체 FR 및/또는 CDR1 및/또는 CDR2 및/또는 경쇄 CDR3 부위가 상동성 인간 또는 비-인간 서열로 대체된 키메릭 F(ab')2 단편 항체 FR 및/또는 CDR1 및/또는 CDR2 및/또는 경쇄 CDR3 부위가 상동성 인간 또는 비-인간 서열에 의해서 대체된 키메릭 Fab 단편 항체 및 FR 및/또는 CDR1 및/또는 CDR2 부위가 상동성 인간 또는 비-인간 서열에 의해서 대체된 키메릭 Fd 단편 항체를 포함한다. 본 발명은 또한, 소위 단일쇄 항체를 포함한다.
본 발명은 발명의 예로서 제공된 이하의 비-제한적 실시예를 참고로 하여 더 잘 이해될 수 있을 것이다. 이하의 실시예는 본 발명의 바람직한 구체예를 더 충분히 설명하기 위해서 제시된다. 그러나, 이들은 어떤 식으로든 본 발명의 광범한 범주를 제한하는 것으로 이해되지는 않는다.
실시예 1: siRNA 스크리닝
세포가 도세탁셀 치료에 대해서 더 내성이거나 감수성이 되도록 하는 유전자를 확인하기 위하여, 101 개의 유전자에 대한 siRNA를 용량-반응곡선의 생성을 위 해서 일정 범위의 도세탁셀 농도를 사용하여 HCT116 세포에서 스크리닝하였다. 인간 결장암 세포주 HCT116은 ATCC로부터 수득하여, 95% CO2 및 5% O2 하에 37℃에서 100 유닛/ml 페니실린, 100 mg/ml 스트렙토마이신, 4 mM L-글루타민 및 10% 소태자혈청이 보충된 맥코이(McCoy) 5A 중에서 배양하였다. siRNA 리스트는 유전자 발현 프로파일링 실험에 의해서 검출된 것으로서 도세탁셀-내성 유방종양에서 과발현된 것을 포함한 암-관련된 유전자로 이루어졌다 (Chang 등., Lancet 362:362, 2003). 추가의 기준은 표적이 약물 개발에 적절한 것인 지였다. 전반적인 계획은 다음과 같이 요약된다. 첫째날에, HCT116 세포를 96-웰 포맷(format)에서 웰당 5,000 세포로 도말하고, 다음날에 유전자당 3-4 siRNA의 풀(pool)로 형질감염시켰다. 사용된 siRNA의 대표적인 샘플은 표 I 및 II에 나타내었다. 리포펙타민 2000 (Invitrogen)을 사용하여 96 웰 플레이트 내에서 siRNA (Dharmacon)를 HCT 116 세포에 형질감염시켰다. 3 일째에 siRNA를 제거하고, 도세탁셀을 0 내지 40nM 범위의 농도로 첨가하였다. 6 일째에 세포 생존도는 WST-1 분석법을 사용하여 정량화하였다. 이것은 테트라졸륨 염 WST-1의 전달을 야기하여 포르마잔을 형성하는, 생존 세포에 존재하는 미토콘드리아 데하이드로게나제의 활성을 모니터하는 분석이다. 분석일에는 배지를 96 웰 플레이트로부터 제거하였다. WST-1 시약 (Roche)을 맥코이 5A 배지 내에서 10배로 희석하고, 각각의 웰에 100㎕를 첨가하였다. 그 후, 플레이트를 37℃에서 40-80분 동안 배양한 다음에 스펙트로맥스 (SpectroMax; Molecular Devices) 상에서 450 nm에서 판독하였다. WST-1 값은 대조 siRNA에 대한 실험적 siRNA의 비를 계산함으로써 단계적으로 수집하였으며, 총 15 개의 유전 자는 감수성을 부여하는 것으로 특정화되었으며, 내성을 부여하는 9 개의 유전자는 이하의 표 III에 나타내었다. 감수성 및 내성 집단은 추가의 그룹으로 더 나누었다: 1) siRNA 효과가 도세탁셀의 저농도 (1 내지 6 nM)에서 관찰되어 IC50을 이동시킨 경우, 또는 2) 주효과가 더 고농도(> 6nM) 에서 관찰되고 IC50의 이동이 적은 경우.
Mad2, BubR1 및 Mps1 siRNA와 비교하여, Grb2, CDK6, 세파로즈, 및 칼슘/칼모듈린-의존성 단백질 키나제 II 델타 (CamKIID)를 표적화하는 siRNA는 IC50에서 특징적인 이동을 가지고 더 낮은 도세탁셀 농도 (1 내지 6 nM)에서 더 현저한 효과를 나타내었다. 전반적으로, 이 서브그룹은 유사분열 체크포인트 유전자보다 더 약한 내성을 나타내었으며, CamKIID siRNA는 대조 세포에 비해서 2-배인 최대 수준의 보호를 제공하였다. 이들 데이터는 몇 개의 다른 유전자와 함께 4 개의 유사분열 체크포인트 유전자의 상실이 도세탁셀 내성을 다양한 정도로 증가시킬 수 있음을 입증한다. 도 1에서의 데이터는 siRNA로 형질감염시키고, 이어서 다양한 농도의 도세탁셀에 노출시킨 세포에 대한 몇 개의 특징적인 용량-반응곡선을 나타낸다. BubR1, Bub1, Mad2, 및 Mps1을 포함하는 4 개의 유사분열 체크포인트 유전자 (Bub1에 대해서는 데이터를 나타내지 않음) 및 Rac/Cdc42에 관한 구아닌 뉴클레오타이드 교환인자 (GEFT) 대한 siRNA는 상당한 도세탁셀 내성을 나타내었으며, 그 효과는 더 높은 도세탁셀 농도 (>6 nM)에서 더 현저하였다. 내성의 최대 수준은 세포 생존도가 대조 siRNA 형질감염된 세포에 비해서 5-배 증가한 경우인 Mad2에 대해서 나타났다. 대부분의 siRNA는 스크린에서 평가되지 않았으며, 여기에서는 대표적인 예로서 인간 망막아종 1 (RB1)을 나타낸다.
종합하면, 이들 결과는 siRNA 스크리닝이, 유전자 발현을 하향-조절하는 것이 어떻게 세포를 도세탁셀 치료에 대해서 감작시키는지 또는 도세탁셀 치료로부터 보호하는지, 및 농도에 따라서 도세탁셀-매개된 세포사를 변조시키는 작용의 상이한 메커니즘을 유도하는지에 대한 통찰력을 제공할 수 있음을 보여준다.
Figure 112007041865612-PCT00001
Figure 112007041865612-PCT00002
Figure 112007041865612-PCT00003
실시예 2: 증가된 도세탁셀 내성을 부여하는 siRNA의 서브셋트에 대한 교차 확인(cross validation)
siRNA 스크리닝 방법에 대한 잠재적인 단점은, siRNA가 부분적 동일성을 갖는 전사체에 어닐링하거나 마이크로-RNA (miRNA) 해독 블록을 개시시킴으로써 이것이 표적-특이적 효과와 비특이적 (오프-사이트 (off-site)) 효과를 구별하기 어렵게 만들 수 있다는 관찰결과에 근거한다 (Jackson 등., Nat Biotechnol 21:635, 2003). 두번째 서열을 사용한 독립적인 방법을 사용하여 내성을 확인하기 위해서는, HCT116 세포를 짧은 헤어핀 (sh)RNA를 암호화하는 DNA 올리고뉴클레오타이드를 보유하는 레트로바이러스 벡터로 감염시킴으로써 BubR1 및 Mps1에 대한 안정한 녹다운 세포주를 생성시켰다. shRNA는 개방 판독 프레임의 별개의 부위를 표적화하여 siRNA와는 상이한 서열을 함유하였다. 레트로바이러스 패키징 (packaging) 세포주 GP2-293은 클론테크 (Clontech)로부터 수득되었다. 세포를 100 유닛/ml 페니실린, 100 mg/ml 스트렙토마이신, 4 mM L-글루타민 및 10% 소태자혈청이 보충된 DMEM 내에서 유지시켰다. 바이러스는 GP2-293 세포를 일시적으로 형질감염시킴으로써 생성되었다. 총 3.6 x 106 세포를 형질감염시키기 24 시간 전에 10 cm 접시에 접종하였다. 형질감염시키기 4 시간 전에 배지를 항생제 비함유 10% FBS를 함유하는 DMEM으로 대체시켰다. 세포를 6 mg의 벡터 DNA, 6 mg의 인벨로프 (envelope) 플라스미드 VSV-G (Clontech) 및 72 ml의 리포펙타민-2000으로 형질감염시켰다. 배지는 14-16 시간 후에 교환하였으며; 바이러스 상등액을 24 시간 후에 수확하고, 0.45 mM 필터를 통해서 여과하고, 8 mg/ml 폴리브렌의 존재 하에 5의 M.O.I에서 HCT116 세포를 감염시키기 위해서 사용하였다. 감염시킨지 48 시간 후에, 세포를 7 일 동안, 또는 백그라운드 (background) 세포가 사멸할 때까지 0.5 mg/ml 퓨로마이신 중에서 선택하였다. 다시, BubR1 및 Mps1 녹다운 세포주를 사용하여 생성된 용량반응곡선은 siRNA 일시적 형질감염에 의해서 수득된 결과와 유사하게 더 높은 도세탁셀 농도에서 더 현저한 증진된 내성을 나타내었다 (도 2). shRNAs가 mRNA 수준을 감소시켰는지 여부를 검사하기 위해서 본 발명자들은 실시간 PCR을 이용하여 내인성 전사체를 검출하였으며, RNA 수준이 안정한 벡터 대조 세포주에 비해서 BubR1 및 Mps1 안정한 녹다운 세포주에서 감소하였음을 확인하였다 (도 3).
세포를 용해시키고, RNAqueous-96 (Ambion)을 사용하여RNA를 추출하였다. 타크만 (TaqmanTM) 프로브 및 전방향 및 역방향 프라이머는 프라이머 익스프레스 (Primer ExpressTM) 소프트웨어 (PE Applied Biosystems, UK)를 사용하여 디자인하였다. 프로브와 프라이머 서열의 BLAST 탐구는 시험 중인 특정 유전자가 아닌 다른 서열에 대해서 상당한 동일성을 나타내지 않았다. 실시간 PCR을 위해서, 각각의 웰에 대해서 다음과 같은 20 ml의 매스터 타크만 (master TaqManTM) 혼합물을 제조하였다: 4.825 ml Rnase-비함유 물, 12.5 ml 2x 유니버샬 (Universal) PCR 매스터 혼합물 및 0.625 ml 40x 멀티스크라이브 (MultiscribeTM) 및 Rnase 억제제 혼합물 (Applied BioSystems), 0.9 ml 전진 및 역전 프라이머 (100 mM), 0.25㎕ 프로브 (100 mM). 각각의 웰에 5㎕의 샘플 RNA (약 1ng/ml)를 첨가하였다. 플레이트를 타크만(TaqManTM) ABI 프리즘 7700 Sequence DetecterTM (Perkin-Elmer, UK) 상에서 분석하였다. 사이클링 (cycling) 파라메터는 30분 동안 48℃, 10분 동안 95℃, 15 초 동안 95℃의 40 사이클, 및 1 분 동안 60℃였다. 시험 유전자 mRNA 값은 표준곡선으로부터 외삽되었으며, 나머지%로 나타내었다.
실시예 3: Mad2, BubR1 및 Mps1의 하향-조절은 이수배수체(aneuploidy)의 생성과 커플링된 유사분열 정지를 회피함으로써 도세탁셀-유도된 사멸로부터 세포를 보호한다.
WST-1 분석에 의해서 측정된 것으로서, 도세탁셀의 존재 하에서의 유사분열 체크포인트 유전자의 상실은 내성을 나타내는 증가된 세포 생존도와 연관되었다 (도 1). WST-1 측정의 유효성을 더 시험하기 위하여, 세포학적 실험을 수행하여 세포 형태학 및 생존도를 조사하였다(도 4). 세포는 공초점 현미경검사, 및 대사적 활성세포의 지표로 작용하는 세포내 에스테라제에 의해서 녹색 형광으로 전환되는 생체염색 색소인 칼세인-AM을 사용하여 추적되었다. 도 4는, 도세탁셀을 첨가한지 16시간 후에 Mad2, BubR1 및 더 적은 정도로는 Mps1 siRNA 형질감염된 세포는 조기에, 편평하게 된 세포 형태학과 일치하는 명백한 세포분열중간기 상태로의 유사분열을 나타내는 반면에, 대조 siRNA 형질감염된 세포의 대부분은 유사분열에서 둥글게 된 세포 형태학으로 정지되었음을 나타낸다. 편평세포 표현형은 다른 미세소관 억제제에 대해서 이미 기술되었으며, 이것은 세포가 유사분열 정지에서 벗어나서 실제로 유사분열을 완료함이 없이 명백한 세포분열중간기 상태로 되는 능력을 나타낸다 (Kung 등., Proc Natl Acad Sci 87:9553, 1990; Lanni and Jacks, Mol Cell Biol 18:1055, 1998). 치료 후 72 시간째에 Mad2, BubR1 또는 Mps1 siRNA 하향-조절된 세포에 대한 가장 놀라운 관찰결과는 도세탁셀 치료에 의해서 실질적으로 제거된 siRNA 대조 형질감염된 세포에 비해서 다수의 더 많은 세포의 존재 및 그들의 매우 큰 크기였다. 도세탁셀의 부재 하에서, 유사분열 체크포인트 하향-조절된 세포는 두개의 상이한 시점에서 대조 세포와 유사하게 나타났으며, 72 시간째에 세포의 증가된 수는 세포가 siRNA의 존재 하에서 활발하게 성장하였음을 시사하였다.
유사분열 체크포인트-손상된 세포는 유사분열 정지를 우회할 수 있으며, 콜세미드, 노코다졸 및 파클리탁셀과 같은 미세소관 억제제에 의한 처리에 의해서 조기에 유사분열을 벗어날 수 있다 (Taylor and McKeon, Cell 89:727, 1997; Shin 등., Cancer Cell 4:483, 2003; Masuda 등., Am J Pathol 163:1109, 2003; Sudo 등., Cancer Res 64:2502, 2004). 도세탁셀 처리된 HCT116 세포가 세가지 특정한 체크포인트 유전자 Mad2, BubR1 또는 Mps1의 억제로 인하여 유사분열로부터 벗어나는지 여부를 측정하기 위하여, 본 발명자들은 형질감염된 세포의 유사분열 지수를 측정하였다. 따라서, siRNA 형질감염된 Mad2, BubR1 또는 Mps1 세포를 도세탁셀의 처리가 없이 (0), 또는 도세탁셀 처리한 지 8, 16, 24, 36, 48 및 72 시간 후에 수확한 다음에, 고정시키고, 유사분열의 지표로서 히스톤 H3의 포스포릴화를 검출하는 폴리클로날 항체와 함께 배양하였다 (Mitotic Index Kit, Cellomics). 모든 시점에 대한 그래프적 표현은 도 5에 나타내었다. 유사분열 지수는 처리한 후 16 내지 24 시간 사이에 최고였으며, 이것은 모든 경우에 유사분열 정지가 있었음을 시사하는 것이다. 유사분열 지수는 대조 siRNA에 의해서 형질감염된 세포에 대해서 최고 값에 도달하였으며, 그 반면에 Mad2 및 BubR1 siRNA에 의해서 형질감염된 세포는 유사분열 지수에 있어서 상당한 감소를 나타내었다. Mps1 siRNA 효과는 Mad2 및 BubR1만큼 심하지는 않았다. 이들 결과는, 유사분열 체크포인트 손상된 세포가 도세탁셀에 의해서 유도된 유사분열 정지를 우회할 수 있으며, BubR1 siRNA가 가장 효과적이었고, 이어서 Mad2 및 Mps1였음을 분명하게 나타낸다.
유사분열 지수에 있어서의 변화가 녹다운 효율에 있어서의 큰 차이와 일치하였다는 가능성을 배제하기 위하여, 본 발명자들은 실시간 PCR을 사용하여 유사분열 체크포인트 전사 수준을 측정하였다. 도 6에 나타낸 실험은 mRNA 수준이 Mad2, BubR1 및 Mps1 siRNA 형질감염된 세포에서 동등한 수준로 감소되었음을 나타내며, 이것은 유사분열 지수 차이가 유전자 기능을 더 반영하는 것이었음을 시사한다.
현미경검사 데이터로부터, 매우 큰 세포는 비정상적인 DNA 함량을 수용할 수 있음이 나타났다. 이들 유사분열 체크포인트 손상된 세포가 도세탁셀-유도된 세포 사이클 정지를 번복시킬 수 있는지 여부를 더 조사하고, S-상에 다시 들어가서 이수배수체 세포를 생성시키기 위해서, 본 발명자들은 FACS 분석을 수행하여 DNA 함량을 측정하였다. Mps1, BubR1, Mad2 및 대조 siRNA 형질감염된 세포를 도세탁셀의 부재 또는 존재 하에서 성장시키고, 고정시킨 다음에 프로피듐 요오다이드로 염색하여 FACS에 의해서 분석하였다. 데이터를 도세탁셀 첨가 후의 몇가지 상이한 시점에서 수집하였으며 (데이터는 나타내지 않음), 72 시간 시점에 대한 히스토그램 (histogram)은 도 7에 나타내었다. 도세탁셀 첨가한 후 72 시간째에, Mps1, BubR1, Mad2 및 siRNA에 의한 형질감염은 8N, 16N 및 BubR1의 경우에는 32N DNA 함량으로 세포의 축적을 야기하였다. 단지 대조 siRNA를 사용함으로써, 세포의 8N 집단은 도세탁셀의 존재 하에서 검출되었지만, 8N의 수는 유사분열 체크포인트 하향-조절된 세포에 대해서 훨씬 더 컸다. 도세탁셀 첨가 후의 더 빠른 시점에서 (데이터는 나타내지 않음), 대부분의 대조 세포는 4N에서 정지되었으며, 그 반면에 Mps1, BubR1 및 Mad2 siRNA에 의해서 형질감염된 세포는 4N으로부터 8N으로 진행하였다. 이들 결과는, 유사분열 체크포인트 유전자의 녹다운은 세포가 더 빨리 비정상적인 DNA 수준을 축적하고, 야생형 세포에 비해서 배수성의 더 큰 역치를 지나가도록 허용함을 시사한다. 본 발명자들의 결과는 이전에 특정화되지 않은 미세소관 억제제 도세탁셀에 의해서 유사분열 지수 및 세포 사이클 진행을 조절하는데 있어서의 Mad2, BubR1 및 Mps1에 대한 역할을 입증한다.
실시예 4: BubR1 하향-조절된 세포에서 도세탁셀 내성 콜로니의 형성
BubR1의 세포사멸 기능은, 항미세소관제와 함께 BubR1의 저발현이 이수배수체와 연관되었고 BubR1의 복구가 활성화된 체크포인트 및 세포사멸과 연관되었다는 점을 고려하면, 염색체 충실도(fidelity)의 조절에 중요한 것으로 보인다 (Shin 등., Cancer Cell 4:483, 2003). 유사분열 체크포인트 유전자를 영구적으로 하향-조절하는 것이 세포를 더 큰 증식능으로 성장시킬 수 있는지 여부를 측정하기 위하여, BubR1 및 Mps1 안정한 녹다운 세포주 (도 4)을 도세탁셀의 연속적 존재 하에서 콜로니를 증식 및 정착시키는 그들의 능력에 대하여 시험하였다. Mad2 안정한 녹다운 세포주는 Mad2의 손상이 세포에 대해서 치명적이었기 때문에 생성될 수 없었다 (Michel 등., Proc Natl Acad Sci 101:4459, 2004). BubR1, Mps1 및 대조 shRNA 안정한 녹다운 세포주를 10일 동안 5 nM 도세탁셀에 적용한 후에 크리스탈 바이올렛으로 염색하였다. 도 8은 BubR1 녹다운 세포주가 대조 세포주에 비해서 다수의 큰 콜로니를 생산하였음을 나타낸다. Mps1 녹다운 세포주는 5 nM 도세탁셀의 존재 하에서 콜로니를 성장시킬 수 없었다. 플레이트를 17 일 정도로 장기간 동안 배양하는 경우에, 콜로니는 대조 플레이트 상에서는 관찰되었지만, BubR1 녹다운 세포주에 비해서는 수가 한층 더 적었다. 이들 결과는 낮은 수준의 BubR1를 화학요법제 약물인 도세탁셀의 존재 하에서 진행된 세포 성장과 결부시키지만, Mps1은 결부시키지 않는다.
실시예 5: 증가된 도세탁셀 감수성을 부여하는 siRNA의 교차 검증
도세탁셀-유도된 사멸로부터 세포를 보호하는 siRNA를 확인하는 것 이외에도, 스크린은 세포를 사멸에 대해서 감작시키는 siRNA를 확인하였다. 표 III에서, Pim-1, p21waf1/Cip1, GBP-1, RXRA, Hec1, SPF45, Raf1은 단지 IC50에서의 작은 이동으로 더 높은 도세탁셀 농도 (>6 nM)에서 현저한 사멸을 나타내는 siRNA의 그룹을 나타낸다. 종양원성 세린/트레오닌 키나제 Pim-1 및 세포 사이클 억제제 p21waf1/Cip1에 대한 siRNA 용량-반응곡선은 시그날링 경로 내에서의 중복성 또는 협동성 역할을 반영할 수 있는 것으로 매우 유사하였으며 (도 9); 이전의 보고들은 p21waf1/Cip1이 Pim-1에 대한 기질임을 나타내었다 (Wang 등., Biochim Biophys Acta 1593:45, 2002). 추가의 흥미로운 것은 유사분열 체크포인트 간섭 및 유전자 불안정성을 유도하는 전립선 상피세포에 있어서의 Pim-1 과발현에 대한 데이터였다 (Roh 등., Cancer Res 63:8079, 2003). 이들 결과는 반대되는 유전자 발현 수준을 갖는 필적하는 표현형을 나타내는 Mad2, BubR1 및 Mps1 저발현 데이터와 일치한다 (참조 도 1). 도세탁셀에 대한 감수성을 부여하는 또 다른 siRNA는 Hec1이었다.
표 III에서, TACC3, RELB, 오로라-A, PRKCD (PKC), HSPA1A, 및 BRAF35는 IC50에서 특징적인 이동을 가지고 더 낮은 도세탁셀 농도 (1 내지 6 nM)에서 감수성을 증가시키는 siRNA를 나타낸다. 오로라-A는 유사분열의 개시에 작용하는 세린/트레오닌 키나제이며, 중심체 성숙 및 방추체 조립에 연루되었다 (문헌 (Meraldi 등., Curr Opin Genet Dev 14:29, 2004)에서 검토됨). 매우 흥미로운 것은 오로라-A의 저발현이 도세탁셀 치사를 증진시켰다는 본 발명자들의 결과와 일치하는 것으로, HeLa 세포에서의 오로라-A 과발현이 세포를 파클리탁셀로부터 보호하였음을 보여주는 공개된 데이터였다 (Anand 등., Cancer Cell 3:51, 2003). 명백하게, 이것은 생존의 25% 감소를 나타내는 오로라-A에 대한 IC50의 작은 감소였다; 그러나, 결과는 HCT116 세포에서의 오로라-A의 안정한 녹다운을 발생시키는 shRNA의 레트로바이러스 전달을 사용함으로써 정확하게 배가되었다 (도 9를 도 10 및 11과 비교).
실시예 6: Pim1은 도세탁셀의 부재 하에서 HCT116 세포의 증식을 억제한다.
스크린으로부터의 양성을 더 평가하기 위해서, 도세탁셀의 부재 하에서 세포 생존도에 영향을 미치는 siRNA와 사멸을 증진시키도록 도세탁셀과 협동적으로 작용하는 것들 사이를 구별하는 것이 중요하였다. 가능성을 구별하기 위하여, 본 발명자들은 형질감염시킨 후 24, 48, 72 시간째에 6-웰 플레이트에서 생존 세포의 수를 결정하기 위한 세포 계수와 함께 트립판 블루 배제 분석을 사용하여 증식에 대한 siRNA 형질감염의 영향을 연구하였다. 본 발명자들의 결과는 Pim-1 siRNA가 HCT116 세포에서의 성장을 억제하는 반면에 TACC3 siRNA는 성장에 대하여 영향이 없음을 보여주었지만 (도 12; 도 13에서 정량화된 녹다운), 두가지 siRNA는 모두 도세탁셀-유도된 세포사를 증진시켰다 (도 9).
실시예 7: 생존/사멸 분석을 사용한 내성 및 감수성 유전자의 서브셋의 검증
도세탁셀 감수성 및 내성을 부여하는 siRNA를 시각적으로 비교하기 위하여, 현미경 영상화를 사용하여 생존 세포 대비 사멸된 세포의 비를 측정하며, 여기에서는 칼세인-AM을 사용하여 생존 세포를 녹색으로 염색하고, 프로피듐 요오다이드 (PI)는 사멸된 세포의 핵을 적색으로 염색한다. 도세탁셀 첨가 후 (72 시간)에, siRNA 형질감염된 BubR1 세포는 더 큰 수의 생존 세포를 갖는 반면에, siRNA 형질감염된 Pim-1 및 TACC3는 가장 큰 수의 사멸된 세포를 가졌고, 대조 세포는 그 사이였다 (데이터는 나타내지 않음). 비록 BubR1 siRNA 단독은 72 시간까지 세포사를 증가시켰지만, 세포는 궁극적으로 도세탁셀에 대해서 더 내성으로 되었다. Pim-1 siRNA 단독은 24 시간까지 세포사를 유도한 반면에 TACC3 siRNA는 세포사를 야기하지 않았다. 이들 결과는, BubR1 하향-조절이 증가된 세포 생존도 및 약물 내성과 연관되는 반면에 Pim-1 및 TACC3 하향-조절은 증가된 세포사 및 약물 감수성과 연관되었음을 입증한다. Pim-1 및 TACC3 둘 다는 도세탁셀의 존재 하에서 더 많은 사멸을 나타내었지만, 이 분석은 부가적 효과와 협동적 사멸 사이를 구별할 수 없었다.
실시예 8: 도세탁셀-유도된 카스파제-3 활성은 BubR1 하향-조절에 의해서 감소되었으며, Pim-1 하향-조절에 의해서 증진되었다.
도세탁셀은 세포사멸의 유도를 통해서 세포사를 야기할 수 있다 (Kim 등., Int J Mol Med 11:799, 2003). Pim-1 및 BubR1 siRNA가 도세탁셀의 부재 및 존재 하에서 정통적(canonical) 세포사멸 경로를 변조시킬 수 있었는지 여부를 결정하기 위하여, 본 발명자들은 HCT116 세포에서 활성화된 카스파제-3 수준을 연구하였다 (바이오플렉스 (bioplex) 분석법을 사용) (도 14). 40 nM 도세탁셀 처리한지 48 시간 후에, 카스파제-3 활성은 대조세포에서 유도되었으며, 이러한 유도는 Pim-1을 하향-조절함으로써 더 증진되었고, BubR1을 하향-조절함으로써 감소되었다 (중앙 및 하부 패널). 도세탁셀의 부재 하에서, Pim-1의 하향-조절은 24 시간째에 카스파제-3 활성에 있어서 약간의 증가를 야기하였지만, 48 및 72 시간까지는 대조 수준로 복귀하였으며 (상부 패널), 이것은 다른 세포사멸 기구가 활성화되어 WST-1 및 생/사 분석에 의해서 72 시간째에 관찰된 증진된 사멸을 유지하였음을 시사하는 것이다. 도세탁셀의 부재 하에서 BubR1의 하향-조절은 카스파제-3 활성에서 매우 약간의 증가를 야기하였으며, 이것은 BubR1 녹다운이 일차적으로 생/사 분석에서 72 시간째에 세포사를 야기하였다는 관찰결과와 일치하는 것이다. 이들 결과는 카스파제-3 활성의 변조를 통한 도세탁셀 사멸의 효과기로서 Pim-1 및 BubR1를 더 포함시킨다.
실시예 9: 도세탁셀-유도된 Pim-1-연관된 감수성 및 BubR1-연관된 내성에 수반된 시그날링 경로
Pim-1에 기인한 활성은 이것이 세포 생존을 조장하는 것은 촉진시키면서 세포사를 유도하는 시그날링 이벤트를 차단하는데 중추적 역할을 한다는 것을 시사한다. Pim-1 녹다운과 연관된 증진된 세포사에 대한 분자적 기초를 규정하기 위한 시도로, 본 발명자들은 세포 생존에 수반된 중추적 세포성 경로인 AKT의 활성화 상태를 검사하였다. HCT116을 6-웰 플레이트 상에 4 X 105 세포/웰로 접종하고, 다음날에 리포펙타민 2000 (Invitrogen)을 사용하여 siRNA로 16 nM에서 형질감염시켰다. 24 시간 후에, 세포를 5 및 40 nM 도세탁셀로 처리하거나 처리하지 않았다. 도세탁셀을 첨가한지 24, 28 및 72 시간 후에 세포를 빙냉 용해 완충액 (50 mM HEPES 완충액 (PH7.4), 1% NP40, 2.5 mM EDTA, 100 mM 나트륨 플루오라이드, 10 mM 나트륨 PPI, 프로테아제 억제제 칵테일 정제 (Roche), 2 mM 나트륨 오르토바나데이트)으로 용해시키고, 12,000 g으로 10분 동안 원심분리하였다. 그 후, 용해물을 DC 단백질 분석법 (BioRad)을 사용하여 총 단백질 수준에 대하여 정량분석하였다. 활성 카스파제-3 수준은 제조자에 의해서 제시된 프로토콜에 따라서 루미넥스 (Luminex) 100TM 시스템 및 활성 카스파제-3 비드메이트 키트 (beadmates kit) (Upstate)를 사용하여 측정되었다. 전체 및 포스포릴화 AKT 수준은 제조자에 의해서 제시된 프로토콜에 따라서 루미넥스 (Luminex) 100TM 시스템 및 총 AKT 항체 비드 키트 및 포스포특이적 AKT S473 항체 비드 키트 (Biosource)를 사용하여 측정하였다.
도 15에 나타낸 실험은, Pim-1 하향-조절이 대조군에 비해서 AKT의 기준선 포스포릴화를 감소시켰으며, 효과는 도세탁셀의 농도를 증가시킴에 따라서 유의적으로 강화되었음을 나타낸다. 비교하여, BubR1 하향-조절은 AKT의 기준선 포스포릴화를 증가시켰으며, 효과는 도세탁셀의 더 높지 않고 더 낮은 농도에서 강화되었고, 이것은 대체-시그날링 경로가 더 고용량에서 활성화될 수 있음을 시사한다.
본 출원인은 Pim-1 및 BubR1에 대한 항체를 사용한 웨스턴 블럿 분석을 수행하여 48 시간 시점에서의 단백질 수준을 측정하였다. 동등한 양의 단백질을 뉴페이지 노벡스 비스-트리스 겔 (NuPAGE Novex Bis-Tris gels; Invitrogen)에 부하시켰다. 제조자에 의해서 제시된 바와 같이 Pim-1 (Santa Cruz biotechnology), BubR1 (BD bioscience) 및 a-튜불린 (Sigma)에 대한 항체를 사용하였다. 이차 항체를 HRP (BioRad)에 컨쥬게이트시키고, ECL 웨스턴 블럿 검출 시스템 (Amhersham Biosciences)에 의해서 검출하고, 이어서 하이퍼필름 (Hyperfilm) ECL (Amhersham Biosciences)에 노출시켰다. 도 16에 나타낸 실험은 Pim-1 및 BubR1 단백질 수준이 대조군에 비해서 감소되었음을 나타내었으며, 이것은 감소된 단백질 수준이 기능적 변화에 상응하였음을 보여주는 것이다 (도 15). 이들 데이터는, Pim-1 단백질 수준을 하향-조절하는 것이 세포를 세포사멸하도록 강요하기 위해서 AKT의 포스포릴화 및 활성화를 차단할 수 있음을 시사한다. Pim-1은 프로-생존경로 (pro-survival pathways)를 활성화시킴으로써 세포 생존을 매개하는 것으로 보인다.
본 발명은 본 명세서에 기술된 특정의 구체예에 의해서 그 범위가 제한되지 않는다. 실제로, 본 명세서에 기술된 것 이외에도 발명의 다양한 변형은 전술한 설명 및 첨부된 도면으로부터 본 기술분야에서 숙련된 전문가에게 명백해 질 것이다. 이러한 변형은 첨부된 특허청구범위의 범주 내에 포함시키고자 한다.
본 명세서에 인용된 모든 문헌들은 온전히 참고로 포함된 것이다.
Figure 112007041865612-PCT00004
Figure 112007041865612-PCT00005
Figure 112007041865612-PCT00006
Figure 112007041865612-PCT00007
<110> AVENTIS PHARMACEUTICALS INC. <120> Method for measuring resistance or sensitivity to docetaxel <130> USAV2004/0088 US PSP <150> US 60/634,298 <151> 2004-12-08 <160> 89 <170> KopatentIn 1.71 <210> 1 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 1 gcgauggaac uucgacuuu 19 <210> 2 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 2 uggaacuucg acuuuguca 19 <210> 3 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 3 agaccaugug gaccuguca 19 <210> 4 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 4 ccuucgaaga aauccagaa 19 <210> 5 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 5 uggugugugg agauauucc 19 <210> 6 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 6 uauuccuuuc gagcaugac 19 <210> 7 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 7 cgaaaggcau guaccauaa 19 <210> 8 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 8 gauacaggcu gaagagauu 19 <210> 9 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 9 gaacaggagc aacuacuaa 19 <210> 10 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 10 gcaaggaccu gaccuacac 19 <210> 11 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 11 gcaaggaccg gaacgagaa 19 <210> 12 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 12 gacccuguca ccaacauuu 19 <210> 13 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 13 caaauccgcu gacugaaau 19 <210> 14 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 14 gaacaagaca gaccgagau 19 <210> 15 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 15 gacccuaugu uuccuaaug 19 <210> 16 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 16 guguauucga caacucugu 19 <210> 17 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 17 gauugcaaga uuggaacaa 19 <210> 18 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 18 guacucaguu gcagacauu 19 <210> 19 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 19 guaucacaaa uuggcuaga 19 <210> 20 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 20 gcacggagau guugcagua 19 <210> 21 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 21 gcaaagaaca ucauccaua 19 <210> 22 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 22 gacaugaaau ccaacaaua 19 <210> 23 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 23 ggaaugagcu ugcaugacu 19 <210> 24 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 24 gagaacugcu acuuauaua 19 <210> 25 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 25 gaauaugcac cacuuggaa 19 <210> 26 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 26 gaaggucgga ugcaugaug 19 <210> 27 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 27 guaaaggaaa guuugguaa 19 <210> 28 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 28 gcaccucgcu ucccacaag 19 <210> 29 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 29 gagcggaccu guaaaacua 19 <210> 30 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 30 gaacgaagag ucacugaag 19 <210> 31 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 31 gcagaaagag gacauauca 19 <210> 32 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 32 gcagcgagcc auugccuuu 19 <210> 33 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 33 gcccgucuau gacaagaaa 19 <210> 34 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 34 ggacguggau ugcaaacaa 19 <210> 35 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 35 gcaugaaugu gcaccauaa 19 <210> 36 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 36 gaaagaacgc uucaacauc 19 <210> 37 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 37 gggcguacca gcagucuga 19 <210> 38 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 38 gcucugggcu caugaacac 19 <210> 39 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 39 gucugaagcc uauaagaug 19 <210> 40 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 40 gagaucgacu cccuguuug 19 <210> 41 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 41 uggaggaguu caagagaaa 19 <210> 42 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 42 gaucaacgac ggagacaag 19 <210> 43 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 43 gaagaaggaa auucaacua 19 <210> 44 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 44 gagaagcguu ucccagugu 19 <210> 45 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 45 gaaacauccu ccggcugaa 19 <210> 46 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 46 gguggaggcu gaugacuug 19 <210> 47 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 47 ggagauugcu gugucuauc 19 <210> 48 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 48 ggagggccau gugaagaug 19 <210> 49 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 49 gaugugaagc ccuccaaug 19 <210> 50 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 50 gcaaugagcc uuuggauau 19 <210> 51 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 51 ggaacaaccu cauucuaaa 19 <210> 52 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 52 ggaagaagau cuagaugua 19 <210> 53 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 53 gaaaucgugg ccgaguucu 19 <210> 54 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 54 guggcauaua uccaucuga 19 <210> 55 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 55 gccgaguucu ucucauucg 19 <210> 56 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 56 ggaacaacug aaagauugg 19 <210> 57 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 57 gucguuacag ucaagcaau 19 <210> 58 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 58 gcacgugacu acuuucaaa 19 <210> 59 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 59 gaugaacuaa gcuugaaua 19 <210> 60 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 60 gagcaguacc acuagaaau 19 <210> 61 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 61 gagcaguacc acuagaaau 19 <210> 62 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 62 gcaccgagac uauuucuug 19 <210> 63 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 63 ggaugaagau gagcuguaa 19 <210> 64 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 64 gcauguggcu cagaucuug 19 <210> 65 <211> 18 <212> RNA <213> Artificial <220> <223> siRNA <400> 65 guacaacagu gaccucca 18 <210> 66 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 66 gaugcuggau gugugaaua 19 <210> 67 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 67 gcuugugaua aagagucaa 19 <210> 68 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 68 gauccaccag augcuauug 19 <210> 69 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 69 gcugucagau aguugauuu 19 <210> 70 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 70 gccuacagcu ucuauaguc 19 <210> 71 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 71 guggacaguu guaaaucua 19 <210> 72 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 72 gaagaucguu uccuauaca 19 <210> 73 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 73 gcacgaaagc aagagauua 19 <210> 74 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 74 gaagaaacca gauggagua 19 <210> 75 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 75 gcuagaaucu gccgucuuu 19 <210> 76 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 76 gaucaaggcu ggagcuuau 19 <210> 77 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 77 gaacaugucg aucaagacu 19 <210> 78 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 78 guuuguaaca gauaucgau 19 <210> 79 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 79 gaguagugca ucgcgaucu 19 <210> 80 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 80 guaacagaua ucgaugaac 19 <210> 81 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 81 gaacgaagaa ugugaucag 19 <210> 82 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 82 guggauuauc acagaucua 19 <210> 83 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 83 gguacaaggc agagcuuaa 19 <210> 84 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 84 gugccacagc agccgacau 19 <210> 85 <211> 21 <212> RNA <213> Artificial <220> <223> siRNA <400> 85 gucgaccauu auguaccgga u 21 <210> 86 <211> 21 <212> RNA <213> Artificial <220> <223> siRNA <400> 86 ggauucguaa cgugauuagc g 21 <210> 87 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 87 gaaacagaag aaccugauu 19 <210> 88 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 88 gaaaggacau gugaacuua 19 <210> 89 <211> 19 <212> RNA <213> Artificial <220> <223> siRNA <400> 89 guacaucuca gaaucuuga 19

Claims (31)

  1. a) 암 환자의 암 영역으로부터 시험 샘플을 수득하는 단계;
    b) 대조 샘플을 수득하는 단계;
    c) 하나 이상의 유전자 마커의 수준을 측정하는 단계; 및
    d) 시험 샘플 및 대조 샘플 내의 하나 이상의 유전자 마커들의 측정된 수준들을 비교하는 단계를 포함하고, 여기에서, 대조 샘플과 비교하여 시험 샘플에서 측정된 하나 이상의 유전자 마커의 수준의 감소가 탁소이드 계열의 분자에 대한 증가된 내성을 시사하는, 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하는 방법.
  2. 제1항에 있어서, 하나 이상의 유전자 마커가
    BubR1, 단백질 키나제(BUBR1) mRNA와 유사한 호모 사피엔스(Homo sapiens), 완전한 cds (GenBank 수탁번호: AF046079);
    Mad2, MAD2 단백질에 대한 호모 사피엔스 mRNA (GenBank 수탁번호: AJ000186);
    Mps1, 호모 사피엔스 TTK 단백질 키나제 (TTK), mRNA (GenBank 수탁번호: NM_003318);
    Rac1/CDC42에 대한 GEFT, 호모 사피엔스 RAC/CDC42 교환인자 (GEFT), 전사 변이체 2, mRNA (GenBank 수탁번호: NM_133483);
    Bub1, 벤즈이미다졸 1 상동체 (효모) (BUB1)에 의해서 억제되지 않는 호모 사피엔스 BUB1 발아 (budding), mRNA (GenBank 수탁번호: NM_004336);
    hSepharase, 호모 사피엔스 엑스트라 스핀들 폴 유사 1(extra spindle pole like 1)(에스. 세레비지애(S. cerevisiae)) (ESPL1), mRNA (GenBank 수탁번호: NM_012291);
    CamKIId, 호모 사피엔스 칼슘/칼모듈린-의존성 단백질 키나제(CaM 키나제) II 델타 (CAMK2D), 전사 변이체3, mRNA (GenBank 수탁번호: NM_001221);
    CDK6, 호모 사피엔스 사이클린-의존성 키나제 6(CDK6), mRNA (GenBank 수탁번호: NM_001259); 및
    GRB2, 호모 사피엔스 성장인자 수용체-결합된 단백질 2(GRB2), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_002086)로 구성된 그룹으로부터 선택되는 방법.
  3. 제1항에 있어서, 탁소이드 계열의 분자가 파클리탁셀, 도세탁셀 XRP9881 및 XRP6258로 구성된 그룹으로부터 선택되는 것인 방법.
  4. 제1항에 있어서, 하나 이상의 유전자 마커의 수준이 mRNA, DNA 또는 단백질에 의해서 측정되는 방법.
  5. 제4항에 있어서, mRNA가 동소 하이브리드화, 역전사효소 폴리머라제 연쇄반응, 핵산 하이브리드화, 전기영동, 노던 블럿팅 및 질량분광법으로 구성된 그룹으 로부터 선택되는 기술을 사용하여 측정되는 방법
  6. 제4항에 있어서, DNA가 정량적 폴리머라제 연쇄반응, 게놈 DNA-칩, 동소 하이브리드화, 전기영동, 써던 블럿팅 및 질량분광법으로 구성된 그룹으로부터 선택된 기술을 사용하여 측정되는 방법.
  7. 제4항에 있어서, 단백질이 면역학적 검정법, 웨스턴 블럿, ELISA 및 질량분광법으로 구성된 그룹으로부터 선택된 기술을 사용하여 측정되는 방법.
  8. a) 암 환자의 암 영역으로부터 시험 샘플을 수득하는 단계;
    b) 대조 샘플을 수득하는 단계;
    c) 하나 이상의 유전자 마커의 수준을 측정하는 단계; 및
    d) 시험 샘플 및 대조 샘플 내의 하나 이상의 유전자 마커들의 측정된 수준들을 비교하는 단계를 포함하고, 여기에서, 대조 샘플과 비교하여 시험 샘플에서 측정된 하나 이상의 유전자 마커의 수준의 감소가 탁소이드 계열의 분자에 대한 증가된 감수성을 시사하는, 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하는 방법.
  9. 제8항에 있어서, 하나 이상의 유전자 마커가
    P21(Waf1), 호모 사피엔스 사이클린-의존성 키나제 억제제 1A (p21, Cip1) (CDKN1A), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_000389);
    Pim-1, 호모 사피엔스 pim-1 종양유전자 (PIM1), mRNA (GenBank 수탁번호: NM_002648);
    GBP-1, 호모 사피엔스 구아닐레이트 결합 단백질 1, 인터페론-유도성, 67kDa (GBP1), mRNA (GenBank 수탁번호: NM_002053);
    RXRA, 호모 사피엔스 레티노이드 X 수용체, 알파 (RXRA), mRNA (GenBank 수탁번호: NM_002957);
    SPF45, 호모 사피엔스 RNA 결합 모티프 단백질 17 (RBM17), mRNA (GenBank 수탁번호: NM_032905);
    Hec1, 호모 사피엔스 동원체 연관된 2(kinetochore associated 2)(KNTC2), mRNA (GenBank 수탁번호: NM_006101);
    Raf1, raf 종양유전자에 대한 인간 mRNA (GenBank 수탁번호: X03484);
    오로라 A, 호모 사피엔스 오로라-관련된 키나제 1 (ARK1) mRNA, 완전한 cds (GenBank 수탁번호: AF008551);
    TACC3, 호모 사피엔스 변형성, 산성 코일화-코일 (coiled-coil) 함유 단백질 3 (TACC3), mRNA (GenBank 수탁번호: NM_006342);
    RelB, 호모 사피엔스 v-rel 세망내피증 바이러스성 종양유전자 상동체 B, B-세포 3에서 카파 경쇄 폴리펩타이드 유전자 인핸서(enhancer)의 핵인자 (조류) (RELB), mRNA (GenBank 수탁번호: NM_006509);
    PRKCD, 호모 사피엔스 단백질 키나제 C, 델타(PRKCD), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_006254);
    BRAF35, 호모 사피엔스 고-이동성 군 20B (HMG20B), mRNA (GenBank 수탁번호: NM_006339);
    HSPA1L, 호모 사피엔스 열쇼크(heat shock) 70kDa 단백질 1A (HSPA1A), mRNA (GenBank 수탁번호: NM_005345);
    STK11, 호모 사피엔스 세린/트레오닌 키나제 11 (포이츠-제거스 (Peutz-Jeghers) 증후군) (STK11), mRNA (GenBank 수탁번호: NM_000455); 및
    MKK3, 호모 사피엔스 MAP 키나제 키나제 3(MKK3) mRNA, 완전한 cds (GenBank 수탁번호: L36719)로 구성된 그룹으로부터 선택되는 방법.
  10. 제8항에 있어서, 탁소이드 계열의 분자가 파클리탁셀, 도세탁셀 XRP9881 및 XRP6258로 구성된 그룹으로부터 선택되는 것인 방법.
  11. 제8항에 있어서, 하나 이상의 유전자 마커의 수준이 mRNA, DNA 또는 단백질에 의해서 측정되는 방법.
  12. 제11항에 있어서, mRNA가 동소 하이브리드화, 역전사효소 폴리머라제 연쇄반응, 핵산 하이브리드화, 전기영동, 노던 블럿팅 및 질량분광법으로 구성된 그룹으로부터 선택되는 기술을 사용하여 측정되는 방법.
  13. 제11항에 있어서, DNA가 정량적 폴리머라제 연쇄반응, 게놈 DNA-칩, 동소 하이브리드화, 전기영동, 써던 블럿팅 및 질량분광법으로 구성된 그룹으로부터 선택된 기술을 사용하여 측정되는 방법.
  14. 제11항에 있어서, 단백질이 면역학적 검정법, 웨스턴 블럿, ELISA 및 질량분광법으로 구성된 그룹으로부터 선택된 기술을 사용하여 측정되는 방법.
  15. 엄격한 조건 하에서
    BubR1, 단백질 키나제(BUBR1) mRNA와 유사한 호모 사피엔스 (Homo sapiens), 완전한 cds (GenBank 수탁번호: AF046079);
    Mad2, MAD2 단백질에 대한 호모 사피엔스 mRNA (GenBank 수탁번호: AJ000186);
    Mps1, 호모 사피엔스 TTK 단백질 키나제 (TTK), mRNA (GenBank 수탁번호: NM_003318);
    Rac1/CDC42에 대한 GEFT, 호모 사피엔스 RAC/CDC42 교환인자 (GEFT), 전사 변이체 2, mRNA (GenBank 수탁번호: NM_133483);
    Bub1, 벤즈이미다졸 1 상동체 (효모) (BUB1)에 의해서 억제되지 않는 호모 사피엔스 BUB1 발아 (budding), mRNA (GenBank 수탁번호: NM_004336);
    hSepharase, 호모 사피엔스 엑스트라 스핀들 폴 유사 1 (에스. 세레비지애) (ESPL1), mRNA (GenBank 수탁번호: NM_012291);
    CamKIId, 호모 사피엔스 칼슘/칼모듈린-의존성 단백질 키나제(CaM 키나제) II 델타 (CAMK2D), 전사 변이체3, mRNA (GenBank 수탁번호: NM_001221);
    CDK6, 호모 사피엔스 사이클린-의존성 키나제 6(CDK6), mRNA (GenBank 수탁번호: NM_001259); 및
    GRB2, 호모 사피엔스 성장인자 수용체-결합된 단백질 2(GRB2), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_002086)로 구성된 그룹으로부터 선택된 하나 이상의 유전자 마커에 하이브리드화할 수 있는 핵산을 포함하는 검출가능한-표지된 항체, 검출가능한-표지된 항체 단편 또는 검출가능한-표지된 올리고뉴클레오타이드를 포함하는, 제1항의 방법에 따라 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하기 위한 키트.
  16. 엄격한 조건 하에서
    P21(Waf1), 호모 사피엔스 사이클린-의존성 키나제 억제제 1A (p21, Cip1) (CDKN1A), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_000389);
    Pim-1, 호모 사피엔스 pim-1 종양유전자 (PIM1), mRNA (GenBank 수탁번호: NM_002648);
    GBP-1, 호모 사피엔스 구아닐레이트 결합 단백질 1, 인터페론-유도성, 67kDa (GBP1), mRNA (GenBank 수탁번호: NM_002053);
    RXRA, 호모 사피엔스 레티노이드 X 수용체, 알파 (RXRA), mRNA (GenBank 수탁번호: NM_002957);
    SPF45, 호모 사피엔스 RNA 결합 모티프 단백질 17 (RBM17), mRNA (GenBank 수탁번호: NM_032905);
    Hec1, 호모 사피엔스 동원체 연관된 2 (KNTC2), mRNA (GenBank 수탁번호: NM_006101);
    Raf1, raf 종양유전자에 대한 인간 mRNA (GenBank 수탁번호: X03484);
    오로라 A, 호모 사피엔스 오로라-관련된 키나제 1 (ARK1) mRNA, 완전한 cds (GenBank 수탁번호: AF008551);
    TACC3, 호모 사피엔스 변형성, 산성 코일화-코일 (coiled-coil) 함유 단백질 3 (TACC3), mRNA (GenBank 수탁번호: NM_006342);
    RelB, 호모 사피엔스 v-rel 세망내피증 바이러스성 종양유전자 상동체 B, B-세포 3에서 카파 경쇄 폴리펩타이드 유전자 인핸서 (enhancer)의 핵인자 (조류) (RELB), mRNA (GenBank 수탁번호: NM_006509);
    PRKCD, 호모 사피엔스 단백질 키나제 C, 델타(PRKCD), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_006254);
    BRAF35, 호모 사피엔스 고-이동성 군 20B (HMG20B), mRNA (GenBank 수탁번호: NM_006339);
    HSPA1L, 호모 사피엔스 열쇼크(heat shock) 70kDa 단백질 1A (HSPA1A), mRNA (GenBank 수탁번호: NM_005345);
    STK11, 호모 사피엔스 세린/트레오닌 키나제 11 (포이츠-제거스(Peutz-Jeghers) 증후군) (STK11), mRNA (GenBank 수탁번호: NM_000455); 및
    MKK3, 호모 사피엔스 MAP 키나제 키나제 3(MKK3) mRNA, 완전한 cds (GenBank 수탁번호: L36719)로 구성된 그룹으로부터 선택된 하나 이상의 유전자 마커에 하이브리드화할 수 있는 핵산을 포함하는 검출가능한-표지된 항체, 검출가능한-표지된 항체 단편 또는 검출가능한-표지된 올리고뉴클레오타이드를 포함하는, 제8항의 방법에 따라 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하기 위한 키트.
  17. a) 신체 기원 샘플로부터 총 RNA를 수득하는 수단,
    b) 총 RNA를 역전사시켜 cDNA를 수득하는 수단 및
    c) cDNA를, 프라이머 하나 또는 둘다가 검출가능하게-표지되고, 프라이머 둘다가
    BubR1, 단백질 키나제(BUBR1) mRNA와 유사한 호모 사피엔스 (Homo sapiens), 완전한 cds (GenBank 수탁번호: AF046079);
    Mad2, MAD2 단백질에 대한 호모 사피엔스 mRNA (GenBank 수탁번호: AJ000186);
    Mps1, 호모 사피엔스 TTK 단백질 키나제 (TTK), mRNA (GenBank 수탁번호: NM_003318);
    Rac1/CDC42에 대한 GEFT, 호모 사피엔스 RAC/CDC42 교환인자 (GEFT), 전사 변이체 2, mRNA (GenBank 수탁번호: NM_133483);
    Bub1, 벤즈이미다졸 1 상동체 (효모) (BUB1)에 의해서 억제되지 않는 호모 사피엔스 BUB1 발아 (budding), mRNA (GenBank 수탁번호: NM_004336);
    hSepharase, 호모 사피엔스 엑스트라 스핀들 폴 유사 1 (에스. 세레비지애) (ESPL1), mRNA (GenBank 수탁번호: NM_012291);
    CamKIId, 호모 사피엔스 칼슘/칼모듈린-의존성 단백질 키나제(CaM 키나제) II 델타 (CAMK2D), 전사 변이체3, mRNA (GenBank 수탁번호: NM_001221);
    CDK6, 호모 사피엔스 사이클린-의존성 키나제 6(CDK6), mRNA (GenBank 수탁번호: NM_001259); 및
    GRB2, 호모 사피엔스 성장 인자 수용체-결합된 단백질 2(GRB2), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_002086)로 구성된 그룹으로부터 선택된 하나 이상의 유전자 마커의 뉴클레오타이드 서열로부터 유도되는 프라이머의 셋트를 사용하는 폴리머라제 연쇄반응에 적용하는 수단을 포함하는, 제1항의 방법에 따라 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하기 위한 키트.
  18. a) 신체 기원 샘플로부터 총 RNA를 수득하는 수단,
    b) 총 RNA를 역전사시켜 cDNA를 수득하는 수단 및
    c) cDNA를, 프라이머 하나 또는 둘다가 검출가능하게-표지되고, 프라이머 둘다가
    P21(Waf1), 호모 사피엔스 사이클린-의존성 키나제 억제제 1A (p21, Cip1) (CDKN1A), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_000389);
    Pim-1, 호모 사피엔스 pim-1 종양유전자 (PIM1), mRNA (GenBank 수탁번호: NM_002648);
    GBP-1, 호모 사피엔스 구아닐레이트 결합 단백질 1, 인터페론-유도성, 67kDa (GBP1), mRNA (GenBank 수탁번호: NM_002053);
    RXRA, 호모 사피엔스 레티노이드 X 수용체, 알파 (RXRA), mRNA (GenBank 수탁번호: NM_002957);
    SPF45, 호모 사피엔스 RNA 결합 모티프 단백질 17 (RBM17), mRNA (GenBank 수탁번호: NM_032905);
    Hec1, 호모 사피엔스 동원체 연관된 2 (KNTC2), mRNA (GenBank 수탁번호: NM_006101);
    Raf1, raf 종양유전자에 대한 인간 mRNA (GenBank 수탁번호: X03484);
    오로라 A, 호모 사피엔스 오로라-관련된 키나제 1 (ARK1) mRNA, 완전한 cds (GenBank 수탁번호: AF008551);
    TACC3, 호모 사피엔스 변형성, 산성 코일화-코일 (coiled-coil) 함유 단백질 3 (TACC3), mRNA (GenBank 수탁번호: NM_006342);
    RelB, 호모 사피엔스 v-rel 세망내피증 바이러스성 종양유전자 상동체 B, B-세포 3에서 카파 경쇄 폴리펩타이드 유전자 인핸서 (enhancer)의 핵인자 (조류) (RELB), mRNA (GenBank 수탁번호: NM_006509);
    PRKCD, 호모 사피엔스 단백질 키나제 C, 델타(PRKCD), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_006254);
    BRAF35, 호모 사피엔스 고-이동성 군 20B (HMG20B), mRNA (GenBank 수탁번 호: NM_006339);
    HSPA1L, 호모 사피엔스 열쇼크 (heat shock) 70kDa 단백질 1A (HSPA1A), mRNA (GenBank 수탁번호: NM_005345);
    STK11, 호모 사피엔스 세린/트레오닌 키나제 11 (포이츠-제거스 (Peutz-Jeghers) 증후군) (STK11), mRNA (GenBank 수탁번호: NM_000455); 및
    MKK3, 호모 사피엔스 MAP 키나제 키나제 3(MKK3) mRNA, 완전한 cds (GenBank 수탁번호: L36719)로 구성된 그룹으로부터 선택된 하나 이상의 유전자 마커의 뉴클레오타이드 서열로부터 유도되는 프라이머의 셋트를 사용하는 폴리머라제 연쇄반응에 적용하는 수단을 포함하는, 제8항의 방법에 따라 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하기 위한 키트.
  19. 제15항 내지 제18항 중의 어느 한 항에 있어서, 검출가능한 라벨이 효소, 방사성 동위원소, 또는 형광을 발하는 화학물질, 화학발광성 분자, 방사선불투과성 물질, 리포좀 및 합텐 분자로 구성된 그룹으로부터 선택되는 것인 키트.
  20. a) 암 환자의 암 영역으로부터 시험 샘플을 수득하는 단계,
    b) BubR1, 단백질 키나제(BUBR1) mRNA와 유사한 호모 사피엔스, 완전한 cds (GenBank 수탁번호: AF046079);
    Mad2, MAD2 단백질에 대한 호모 사피엔스 mRNA (GenBank 수탁번호: AJ000186);
    Mps1, 호모 사피엔스 TTK 단백질 키나제 (TTK), mRNA (GenBank 수탁번호: NM_003318);
    Rac1/CDC42에 대한 GEFT, 호모 사피엔스 RAC/CDC42 교환인자 (GEFT), 전사 변이체 2, mRNA (GenBank 수탁번호: NM_133483);
    Bub1, 벤즈이미다졸 1 상동체 (효모) (BUB1)에 의해서 억제되지 않는 호모 사피엔스 BUB1 발아, mRNA (GenBank 수탁번호: NM_004336);
    hSepharase, 호모 사피엔스 엑스트라 스핀들 폴 유사 1 (에스. 세레비지애) (ESPL1), mRNA (GenBank 수탁번호: NM_012291);
    CamKIId, 호모 사피엔스 칼슘/칼모듈린-의존성 단백질 키나제(CaM 키나제) II 델타 (CAMK2D), 전사 변이체 3, mRNA (GenBank 수탁번호: NM_001221);
    CDK6, 호모 사피엔스 사이클린-의존성 키나제 6(CDK6), mRNA (GenBank 수탁번호: NM_001259); 및
    GRB2, 호모 사피엔스 성장인자 수용체-결합된 단백질 2(GRB2), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_002086)로 구성된 그룹으로부터 선택된 하나 이상의 유전자 마커의 수준을 측정하는 단계,
    c) GAPDH, 호모 사피엔스 글리세르알데히드-3-포스페이트 데하이드로게나제 (GAPD), mRNA (GenBank 수탁번호: NM_002046); 및
    RPS9, 호모 사피엔스 cDNA 클론 IMAGE:6647283, 부분적 cds (GenBank 수탁번호: BC071941)로 구성된 그룹으로부터 선택된 하나 이상의 기준 유전자 마커의 수준을 측정하는 단계 및
    d) 시험 샘플 내의 상기 하나 이상의 유전자 마커 및 상기 하나 이상의 기준 유전자 마커들의 측정된 수준들을 비교하는 단계를 포함하고, 여기에서, 상기 하나 이상의 기준 유전자 마커의 수준과 비교하여 하나 이상의 유전자 마커의 수준의 감소가 탁소이드 계열의 분자에 대한 증가된 내성을 시사하는, 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하는 방법.
  21. a) 암 환자의 암 영역으로부터 시험 샘플을 수득하는 단계;
    b) P21(Waf1), 호모 사피엔스 사이클린-의존성 키나제 억제제 1A (p21, Cip1) (CDKN1A), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_000389);
    Pim-1, 호모 사피엔스 pim-1 종양유전자 (PIM1), mRNA (GenBank 수탁번호: NM_002648);
    GBP-1, 호모 사피엔스 구아닐레이트 결합 단백질 1, 인터페론-유도성, 67kDa (GBP1), mRNA (GenBank 수탁번호: NM_002053);
    RXRA, 호모 사피엔스 레티노이드 X 수용체, 알파 (RXRA), mRNA (GenBank 수탁번호: NM_002957);
    SPF45, 호모 사피엔스 RNA 결합 모티프 단백질 17 (RBM17), mRNA (GenBank 수탁번호: NM_032905);
    Hec1, 호모 사피엔스 동원체 연관된 2 (KNTC2), mRNA (GenBank 수탁번호: NM_006101);
    Raf1, raf 종양유전자에 대한 인간 mRNA (GenBank 수탁번호: X03484);
    오로라 A, 호모 사피엔스 오로라-관련된 키나제 1 (ARK1) mRNA, 완전한 cds (GenBank 수탁번호: AF008551);
    TACC3, 호모 사피엔스 변형성, 산성 코일화-코일 함유 단백질 3 (TACC3), mRNA (GenBank 수탁번호: NM_006342);
    RelB, 호모 사피엔스 v-rel 세망내피증 바이러스성 종양유전자 상동체 B, B-세포 3에서 카파 경쇄 폴리펩타이드 유전자 인핸서의 핵인자 (조류) (RELB), mRNA (GenBank 수탁번호: NM_006509);
    PRKCD, 호모 사피엔스 단백질 키나제 C, 델타 (PRKCD), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_006254);
    BRAF35, 호모 사피엔스 고-이동성 군 20B (HMG20B), mRNA (GenBank 수탁번호: NM_006339);
    HSPA1L, 호모 사피엔스 열쇼크 70kDa 단백질 1A (HSPA1A), mRNA (GenBank 수탁번호: NM_005345);
    STK11, 호모 사피엔스 세린/트레오닌 키나제 11 (포이츠-제거스 증후군) (STK11), mRNA (GenBank 수탁번호: NM_000455); 및
    MKK3, 호모 사피엔스 MAP 키나제 키나제 3(MKK3) mRNA, 완전한 cds (GenBank 수탁번호: L36719)로 구성된 그룹으로부터 선택된 하나 이상의 유전자 마커의 수준을 측정하는 단계,
    c) GAPDH, 호모 사피엔스 글리세르알데히드-3-포스페이트 데하이드로게나제 (GAPD), mRNA (GenBank 수탁번호: NM_002046); 및
    RPS9, 호모 사피엔스 cDNA 클론 IMAGE:6647283, 부분적 cds (GenBank 수탁번호: BC071941)로 구성된 그룹으로부터 선택된 하나 이상의 기준 유전자 마커의 수준을 측정하는 단계 및
    d) 시험 샘플 내의 상기 하나 이상의 유전자 마커 및 상기 하나 이상의 기준 유전자 마커들의 측정된 수준들을 비교하는 단계를 포함하고, 여기에서, 상기 하나 이상의 기준 유전자 마커의 수준과 비교하여 하나 이상의 유전자 마커의 수준의 감소가 탁소이드 계열의 분자에 대한 증가된 감수성을 시사하는, 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하는 방법.
  22. 제20항 또는 제21항에 있어서, 탁소이드 계열의 분자가 파클리탁셀, 도세탁셀 XRP9881 및 XRP6258로 구성된 그룹으로부터 선택되는 것인 방법.
  23. 제20항 또는 제21항에 있어서, 하나 이상의 유전자 마커의 수준이 mRNA, DNA 또는 단백질에 의해서 측정되는 것인 방법.
  24. 제23항에 있어서, mRNA가 동소 하이브리드화, 역전사효소 폴리머라제 연쇄반응, 핵산 하이브리드화, 전기영동, 노던 블럿팅 및 질량분광법으로 구성된 그룹으로부터 선택되는 기술을 사용하여 측정되는 것인 방법.
  25. 제23항에 있어서, DNA가 정량적 폴리머라제 연쇄반응, 게놈 DNA-칩, 동소 하 이브리드화, 전기영동, 써던 블럿팅 및 질량분광법으로 구성된 그룹으로부터 선택된 기술을 사용하여 측정되는 것인 방법.
  26. 제23항에 있어서, 단백질이 면역학적 검정법, 웨스턴 블럿, ELISA 및 질량분광법으로 구성된 그룹으로부터 선택된 기술을 사용하여 측정되는 것인 방법.
  27. 엄격한 조건 하에서
    BubR1, 단백질 키나제(BUBR1) mRNA와 유사한 호모 사피엔스 (Homo sapiens), 완전한 cds (GenBank 수탁번호: AF046079);
    Mad2, MAD2 단백질에 대한 호모 사피엔스 mRNA (GenBank 수탁번호: AJ000186);
    Mps1, 호모 사피엔스 TTK 단백질 키나제 (TTK), mRNA (GenBank 수탁번호: NM_003318);
    Rac1/CDC42에 대한 GEFT, 호모 사피엔스 RAC/CDC42 교환인자 (GEFT), 전사 변이체 2, mRNA (GenBank 수탁번호: NM_133483);
    Bub1, 벤즈이미다졸 1 상동체 (효모) (BUB1)에 의해서 억제되지 않는 호모 사피엔스 BUB1 발아 (budding), mRNA (GenBank 수탁번호: NM_004336);
    hSepharase, 호모 사피엔스 엑스트라 스핀들 폴 유사 1 (에스. 세레비지애) (ESPL1), mRNA (GenBank 수탁번호: NM_012291);
    CamKIId, 호모 사피엔스 칼슘/칼모듈린-의존성 단백질 키나제(CaM 키나제) II 델타 (CAMK2D), 전사 변이체3, mRNA (GenBank 수탁번호: NM_001221);
    CDK6, 호모 사피엔스 사이클린-의존성 키나제 6(CDK6), mRNA (GenBank 수탁번호: NM_001259);
    GRB2, 호모 사피엔스 성장인자 수용체-결합된 단백질 2(GRB2), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_002086);
    GAPDH, 호모 사피엔스 글리세르알데히드-3-포스페이트 데하이드로게나제 (GAPD), mRNA (GenBank 수탁번호: NM_002046); 및
    RPS9, 호모 사피엔스 cDNA 클론 IMAGE:6647283, 부분적 cds (GenBank 수탁번호: BC071941)로 구성된 그룹으로부터 선택된 하나 이상의 유전자 마커 및 하나 이상의 기준 유전자 마커에 하이브리드화할 수 있는 핵산을 포함하는 검출가능한-표지된 항체, 검출가능한-표지된 항체 단편 또는 검출가능한-표지된 올리고뉴클레오타이드를 포함하는, 제20항의 방법에 따라 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하기 위한 키트.
  28. 엄격한 조건 하에서
    P21(Waf1), 호모 사피엔스 사이클린-의존성 키나제 억제제 1A (p21, Cip1) (CDKN1A), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_000389);
    Pim-1, 호모 사피엔스 pim-1 종양유전자 (PIM1), mRNA (GenBank 수탁번호: NM_002648);
    GBP-1, 호모 사피엔스 구아닐레이트 결합 단백질 1, 인터페론-유도성, 67kDa (GBP1), mRNA (GenBank 수탁번호: NM_002053);
    RXRA, 호모 사피엔스 레티노이드 X 수용체, 알파 (RXRA), mRNA (GenBank 수탁번호: NM_002957);
    SPF45, 호모 사피엔스 RNA 결합 모티프 단백질 17 (RBM17), mRNA (GenBank 수탁번호: NM_032905);
    Hec1, 호모 사피엔스 동원체 연관된 2 (KNTC2), mRNA (GenBank 수탁번호: NM_006101);
    Raf1, raf 종양유전자에 대한 인간 mRNA (GenBank 수탁번호: X03484);
    오로라 A, 호모 사피엔스 오로라-관련된 키나제 1 (ARK1) mRNA, 완전한 cds (GenBank 수탁번호: AF008551);
    TACC3, 호모 사피엔스 변형성, 산성 코일화-코일 (coiled-coil) 함유 단백질 3 (TACC3), mRNA (GenBank 수탁번호: NM_006342);
    RelB, 호모 사피엔스 v-rel 세망내피증 바이러스성 종양유전자 상동체 B, B-세포 3에서 카파 경쇄 폴리펩타이드 유전자 인핸서 (enhancer)의 핵인자 (조류) (RELB), mRNA (GenBank 수탁번호: NM_006509);
    PRKCD, 호모 사피엔스 단백질 키나제 C, 델타(PRKCD), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_006254);
    BRAF35, 호모 사피엔스 고-이동성 군 20B (HMG20B), mRNA (GenBank 수탁번호: NM_006339);
    HSPA1L, 호모 사피엔스 열쇼크 (heat shock) 70kDa 단백질 1A (HSPA1A), mRNA (GenBank 수탁번호: NM_005345);
    STK11, 호모 사피엔스 세린/트레오닌 키나제 11 (포이츠-제거스 (Peutz-Jeghers) 증후군) (STK11), mRNA (GenBank 수탁번호: NM_000455);
    MKK3, 호모 사피엔스 MAP 키나제 키나제 3(MKK3) mRNA, 완전한 cds (GenBank 수탁번호: L36719);
    GAPDH, 호모 사피엔스 글리세르알데히드-3-포스페이트 데하이드로게나제 (GAPD), mRNA (GenBank 수탁번호: NM_002046); 및
    RPS9, 호모 사피엔스 cDNA 클론 IMAGE:6647283, 부분적 cds (GenBank 수탁번호: BC071941)로 구성된 그룹으로부터 선택된 하나 이상의 유전자 마커 및 하나 이상의 기준 유전자 마커에 하이브리드화할 수 있는 핵산을 포함하는 검출가능한-표지된 항체, 검출가능한-표지된 항체 단편 또는 검출가능한-표지된 올리고뉴클레오타이드를 포함하는, 제21항의 방법에 따라 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하기 위한 키트.
  29. a) 신체 기원 샘플로부터 총 RNA를 수득하는 수단,
    b) 총 RNA를 역전사시켜 cDNA를 수득하는 수단 및
    c) cDNA를, 프라이머 하나 또는 둘다가 검출가능하게-표지되고, 프라이머 둘다가
    BubR1, 단백질 키나제(BUBR1) mRNA와 유사한 호모 사피엔스 (Homo sapiens), 완전한 cds (GenBank 수탁번호: AF046079);
    Mad2, MAD2 단백질에 대한 호모 사피엔스 mRNA (GenBank 수탁번호: AJ000186);
    Mps1, 호모 사피엔스 TTK 단백질 키나제 (TTK), mRNA (GenBank 수탁번호: NM_003318);
    Rac1/CDC42에 대한 GEFT, 호모 사피엔스 RAC/CDC42 교환인자 (GEFT), 전사 변이체 2, mRNA (GenBank 수탁번호: NM_133483);
    Bub1, 벤즈이미다졸 1 상동체 (효모) (BUB1)에 의해서 억제되지 않는 호모 사피엔스 BUB1 발아 (budding), mRNA (GenBank 수탁번호: NM_004336);
    hSepharase, 호모 사피엔스 엑스트라 스핀들 폴 유사 1 (에스. 세레비지애) (ESPL1), mRNA (GenBank 수탁번호: NM_012291);
    CamKIId, 호모 사피엔스 칼슘/칼모듈린-의존성 단백질 키나제(CaM 키나제) II 델타 (CAMK2D), 전사 변이체3, mRNA (GenBank 수탁번호: NM_001221);
    CDK6, 호모 사피엔스 사이클린-의존성 키나제 6(CDK6), mRNA (GenBank 수탁번호: NM_001259);
    GRB2, 호모 사피엔스 성장인자 수용체-결합된 단백질 2(GRB2), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_002086);
    GAPDH, 호모 사피엔스 글리세르알데히드-3-포스페이트 데하이드로게나제 (GAPD), mRNA (GenBank 수탁번호: NM_002046); 및
    RPS9, 호모 사피엔스 cDNA 클론 IMAGE:6647283, 부분적 cds (GenBank 수탁번호: BC071941)로 구성된 그룹으로부터 선택된 하나 이상의 유전자 마커의 뉴클레오 타이드 서열로부터 유도되는 프라이머의 셋트를 사용하는 폴리머라제 연쇄반응에 적용하는 수단을 포함하는, 제20항의 방법에 따라 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하기 위한 키트.
  30. a) 신체 기원 샘플로부터 총 RNA를 수득하는 수단,
    b) 총 RNA를 역전사시켜 cDNA를 수득하는 수단 및
    c) cDNA를, 프라이머 하나 또는 둘다가 검출가능하게-표지되고, 프라이머 둘다가
    P21(Waf1), 호모 사피엔스 사이클린-의존성 키나제 억제제 1A (p21, Cip1) (CDKN1A), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_000389);
    Pim-1, 호모 사피엔스 pim-1 종양유전자 (PIM1), mRNA (GenBank 수탁번호: NM_002648);
    GBP-1, 호모 사피엔스 구아닐레이트 결합 단백질 1, 인터페론-유도성, 67kDa (GBP1), mRNA (GenBank 수탁번호: NM_002053);
    RXRA, 호모 사피엔스 레티노이드 X 수용체, 알파 (RXRA), mRNA (GenBank 수탁번호: NM_002957);
    SPF45, 호모 사피엔스 RNA 결합 모티프 단백질 17 (RBM17), mRNA (GenBank 수탁번호: NM_032905);
    Hec1, 호모 사피엔스 동원체 연관된 2 (KNTC2), mRNA (GenBank 수탁번호: NM_006101);
    Raf1, raf 종양유전자에 대한 인간 mRNA (GenBank 수탁번호: X03484);
    오로라 A, 호모 사피엔스 오로라-관련된 키나제 1 (ARK1) mRNA, 완전한 cds (GenBank 수탁번호: AF008551);
    TACC3, 호모 사피엔스 변형성, 산성 코일화-코일 (coiled-coil) 함유 단백질 3 (TACC3), mRNA (GenBank 수탁번호: NM_006342);
    RelB, 호모 사피엔스 v-rel 세망내피증 바이러스성 종양유전자 상동체 B, B-세포 3에서 카파 경쇄 폴리펩타이드 유전자 인핸서 (enhancer)의 핵인자 (조류) (RELB), mRNA (GenBank 수탁번호: NM_006509);
    PRKCD, 호모 사피엔스 단백질 키나제 C, 델타(PRKCD), 전사 변이체 1, mRNA (GenBank 수탁번호: NM_006254);
    BRAF35, 호모 사피엔스 고-이동성 군 20B (HMG20B), mRNA (GenBank 수탁번호: NM_006339);
    HSPA1L, 호모 사피엔스 열쇼크 70kDa 단백질 1A (HSPA1A), mRNA (GenBank 수탁번호: NM_005345);
    STK11, 호모 사피엔스 세린/트레오닌 키나제 11 (포이츠-제거스 (Peutz-Jeghers) 증후군) (STK11), mRNA (GenBank 수탁번호: NM_000455);
    MKK3, 호모 사피엔스 MAP 키나제 키나제 3(MKK3) mRNA, 완전한 cds (GenBank 수탁번호: L36719);
    GAPDH, 호모 사피엔스 글리세르알데히드-3-포스페이트 데하이드로게나제 (GAPD), mRNA (GenBank 수탁번호: NM_002046); 및
    RPS9, 호모 사피엔스 cDNA 클론 IMAGE:6647283, 부분적 cds (GenBank 수탁번호: BC071941)로 구성된 그룹으로부터 선택된 하나 이상의 유전자 마커의 뉴클레오타이드 서열로부터 유도되는 프라이머의 셋트를 사용하는 폴리머라제 연쇄반응에 적용하는 수단을 포함하는, 제19항의 방법에 따라 탁소이드 계열의 분자에 대한 암 환자의 반응을 예견하거나 모니터하기 위한 키트.
  31. 제24항 내지 제27항 중의 어느 한 항에 있어서, 검출가능한 라벨이 효소, 방사성 동위원소, 또는 형광을 발하는 화학물질, 화학발광성 분자, 방사선불투과성 물질, 리포좀 및 합텐 분자를 포함하는 키트.
KR1020077013060A 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법 KR101323574B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US63429804P 2004-12-08 2004-12-08
US60/634,298 2004-12-08
PCT/US2005/043578 WO2006062811A2 (en) 2004-12-08 2005-12-01 Method for measuring resistance or sensitivity to docetaxel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020127030823A Division KR101347106B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법

Publications (2)

Publication Number Publication Date
KR20070085986A true KR20070085986A (ko) 2007-08-27
KR101323574B1 KR101323574B1 (ko) 2013-10-30

Family

ID=36512512

Family Applications (10)

Application Number Title Priority Date Filing Date
KR1020137023621A KR101357032B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020137023647A KR101357040B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020137023637A KR101357038B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020127030823A KR101347106B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020137023642A KR101357039B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020137023625A KR101357033B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020137020949A KR101347107B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020137023633A KR101357037B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020137023626A KR101357035B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020077013060A KR101323574B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법

Family Applications Before (9)

Application Number Title Priority Date Filing Date
KR1020137023621A KR101357032B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020137023647A KR101357040B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020137023637A KR101357038B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020127030823A KR101347106B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020137023642A KR101357039B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020137023625A KR101357033B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020137020949A KR101347107B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020137023633A KR101357037B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
KR1020137023626A KR101357035B1 (ko) 2004-12-08 2005-12-01 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법

Country Status (16)

Country Link
US (2) US20090226894A1 (ko)
EP (10) EP2395102A1 (ko)
JP (5) JP5139811B2 (ko)
KR (10) KR101357032B1 (ko)
CN (10) CN102605067A (ko)
AR (1) AR051523A1 (ko)
AU (1) AU2005314335C1 (ko)
BR (1) BRPI0518884A2 (ko)
CA (1) CA2589918A1 (ko)
HK (2) HK1111441A1 (ko)
IL (9) IL183718A (ko)
MX (1) MX2007006867A (ko)
RU (2) RU2403574C2 (ko)
SG (2) SG194337A1 (ko)
TW (10) TW201237178A (ko)
WO (1) WO2006062811A2 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0606096D0 (en) 2006-03-27 2006-05-03 Cbmm Sa Screening method
JP2010512730A (ja) * 2006-12-13 2010-04-30 オンコセラピー・サイエンス株式会社 肺癌の腫瘍マーカーおよび治療標的としてのttk
ES2447868T3 (es) * 2007-03-14 2014-03-13 Bionsil S.R.L. In Liquidazione Inhibidores de la BTK para uso en el tratamiento de tumores epiteliales resistentes a fármacos quimioterapéuticos
CN101932938B (zh) * 2007-11-30 2014-08-27 克雷特诊疗服务公司 作为标记物用于化学疗法的tle3
EP2177630A1 (en) 2008-10-02 2010-04-21 Institut Gustave Roussy Methods for predicting or monitoring whether a patient affected by a cancer is responsive to a treatment with a molecule of the taxoid family
TW201102081A (en) 2009-05-11 2011-01-16 Oncotherapy Science Inc TTK peptides and vaccines including the same
CA2779009A1 (en) 2009-10-29 2011-05-05 Aventis Pharma S.A. Novel antitumoral use of cabazitaxel
WO2011124669A1 (en) 2010-04-08 2011-10-13 Institut Gustave Roussy Methods for predicting or monitoring whether a patient affected by a cancer is responsive to a treatment with a molecule of the taxoid family
JP2012005479A (ja) * 2010-05-26 2012-01-12 Japanese Foundation For Cancer Research 抗癌剤のスクリーニング方法
PT2666016T (pt) * 2011-01-21 2017-04-03 Basilea Pharmaceutica Ag Utilização de bubr1 como um biomarcador da resposta farmacológica a furazanobenzimidazolos
CN104395752B (zh) * 2011-11-21 2017-09-15 泰纬生命科技股份有限公司 对hec1活性调节剂具有反应的癌症的生物标记
CA2857191A1 (en) * 2011-11-28 2013-06-06 National Research Council Of Canada Paclitaxel response markers for cancer
CN102621325B (zh) * 2012-04-06 2014-11-12 上海蓝怡科技有限公司 用于检测血液中多西他赛浓度的试剂盒
CN105803053B (zh) * 2014-12-31 2021-03-16 上海吉凯基因科技有限公司 人rbm17基因的用途及其相关药物
CN105925611A (zh) * 2016-04-23 2016-09-07 同济大学苏州研究院 靶向hsp70基因rna干扰重组慢病毒载体及其构建方法
CN107447028A (zh) * 2017-09-13 2017-12-08 赵小刚 检测rb1基因i680t位点突变的试剂盒
CN108931633B (zh) * 2018-05-22 2021-08-27 郑州大学第一附属医院 胆囊癌诊断和预后判断标志物pim1
CN111944905B (zh) * 2020-08-20 2023-06-02 武汉凯德维斯医学检验实验室有限公司 人类基因组合及其在制备评估宫颈癌新辅助化疗药物敏感性试剂盒中的应用
KR102605155B1 (ko) 2022-03-04 2023-11-23 우순 다기능 표적 이송장치
KR102596893B1 (ko) 2022-03-04 2023-11-01 우순 표적지 이송장치

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7807532A (nl) 1978-07-13 1980-01-15 Akzo Nv Metaal-immunotest.
NL8000173A (nl) 1980-01-11 1981-08-03 Akzo Nv Toepassing van in water dispergeerbare, hydrofobe kleurstoffen als label in immunochemische testen.
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4703017C1 (en) 1984-02-14 2001-12-04 Becton Dickinson Co Solid phase assay with visual readout
JPS61231031A (ja) * 1985-04-08 1986-10-15 Agency Of Ind Science & Technol 二硫化炭素重合体の製造方法
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
JPH0664061B2 (ja) 1987-02-27 1994-08-22 イーストマン コダック カンパニー 免疫反応性試薬、その製造法及び免疫反応性種を測定するためのその用途
EP0280559B1 (en) 1987-02-27 1993-10-20 EASTMAN KODAK COMPANY (a New Jersey corporation) Agglutination immunoassay and kit for determination of a multivalent immune species using a buffered salt wash solution
US4857453A (en) 1987-04-07 1989-08-15 Syntex (U.S.A.) Inc. Immunoassay device
JPH0746107B2 (ja) 1987-04-27 1995-05-17 ユニリーバー・ナームローゼ・ベンノートシヤープ 検定法
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5859205A (en) * 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
WO1997005157A1 (en) * 1995-08-01 1997-02-13 Sloan-Kettering Institute For Cancer Research Gene encoding the human homolog of mad2
US6410312B1 (en) * 1997-12-19 2002-06-25 Chiron Corporation huBUB3 gene involved in human cancers
US6489137B2 (en) * 1997-06-11 2002-12-03 Chiron Corporation Detection of loss of the wild-type huBUB1 gene
CA2311414A1 (en) * 1997-11-27 1999-06-10 Chugai Research Institute For Molecular Medicine, Inc. Diagnostic method, diagnostic reagent and therapeutic preparation for diseases caused by variation in lkb1 gene
CA2321480A1 (en) * 1998-02-18 1999-08-26 Laurence Anthony Seabra Treating cancer
DE69937835T2 (de) * 1998-09-24 2009-01-02 Promega Corp., Madison Antikörper für apoptosemarker und anwendungsverfahren
EP1140137A2 (en) * 1998-12-18 2001-10-10 Scios Inc. Method for detection and use of differentially expressed genes in disease states
US20020120004A1 (en) * 2000-02-17 2002-08-29 Roth Frederick P. Methods and compositions for the identification, assessment, prevention and therapy of human cancers
WO2001061048A2 (en) * 2000-02-17 2001-08-23 Millennium Pharmaceuticals, Inc. Methods and compositions for the identification, assessment, prevention and therapy of human cancers
KR100876327B1 (ko) * 2001-02-21 2008-12-31 노바티스 백신즈 앤드 다이아그노스틱스 인코포레이티드 진단에서의, 그리고 암에서 치료 표적으로서의 ttk
US6783597B2 (en) * 2001-03-13 2004-08-31 3M Innovative Properties Company Filament recoating apparatus and method
US7229774B2 (en) * 2001-08-02 2007-06-12 Regents Of The University Of Michigan Expression profile of prostate cancer
DE10139283A1 (de) * 2001-08-09 2003-03-13 Epigenomics Ag Verfahren und Nukleinsäuren zur Analyse von Colon-Krebs
US20030235581A1 (en) * 2002-06-20 2003-12-25 George Pieczenik Ligands for Reproductive Science
ES2359055T3 (es) * 2002-09-11 2011-05-18 Genentech, Inc. Composiciones y métodos para el diagnóstico y el tratamiento de tumores.
US20040214203A1 (en) * 2002-12-12 2004-10-28 Oncotech, Inc. Genes related to sensitivity and resistance to chemotherapeutic drug treatment
DE10260264A1 (de) * 2002-12-20 2004-07-01 GSF-Forschungszentrum für Umwelt und Gesundheit GmbH Verfahren und Zelllinie zur Identifizierung proliferationshemmender, anti-inflammatorischer oder proliferationsfördender Wirkstoffe
EP1661991A4 (en) * 2003-08-24 2007-10-10 Univ Nihon WITH HEPATOCELLULAR CARCINOMA ASSOCIATED GEN
US20050136177A1 (en) * 2003-08-25 2005-06-23 Anthony Hesse Method for coloring landscaping materials using foamable dry colorant
ES2550614T3 (es) * 2004-04-09 2015-11-11 Genomic Health, Inc. Marcadores de expresión génica para predecir la respuesta a la quimioterapia
JP2006014722A (ja) * 2004-06-02 2006-01-19 Keio Gijuku 遺伝子マーカー及びその利用
GB0426393D0 (en) * 2004-12-01 2005-01-05 Cancer Rec Tech Ltd Materials and methods relating to modulators of spindle checkpoint kinases
US7957910B2 (en) * 2005-01-31 2011-06-07 Sysmex Corporation Method for predicting effectiveness of chemotherapy
EP2177630A1 (en) * 2008-10-02 2010-04-21 Institut Gustave Roussy Methods for predicting or monitoring whether a patient affected by a cancer is responsive to a treatment with a molecule of the taxoid family

Also Published As

Publication number Publication date
IL210298A0 (en) 2011-03-31
AU2005314335C1 (en) 2012-08-16
TW201237174A (en) 2012-09-16
EP1831398B1 (en) 2014-10-29
EP2395103A1 (en) 2011-12-14
EP2395110A1 (en) 2011-12-14
KR101357039B1 (ko) 2014-02-03
KR101323574B1 (ko) 2013-10-30
US20090226894A1 (en) 2009-09-10
KR101347106B1 (ko) 2014-01-02
KR101357032B1 (ko) 2014-02-03
IL221772A0 (en) 2012-10-31
CN102618641A (zh) 2012-08-01
SG194337A1 (en) 2013-11-29
TW201237179A (en) 2012-09-16
IL225469A0 (en) 2013-06-27
CN102605066A (zh) 2012-07-25
EP2395102A1 (en) 2011-12-14
MX2007006867A (es) 2007-08-06
HK1153786A1 (en) 2012-04-05
CA2589918A1 (en) 2006-06-15
CN102605067A (zh) 2012-07-25
IL210299A (en) 2012-12-31
KR101357037B1 (ko) 2014-02-03
IL225468A0 (en) 2013-06-27
KR20130105759A (ko) 2013-09-25
RU2403574C2 (ru) 2010-11-10
EP2395108A1 (en) 2011-12-14
RU2007125722A (ru) 2009-01-20
CN102747141A (zh) 2012-10-24
CN101072883A (zh) 2007-11-14
EP2395107A1 (en) 2011-12-14
JP2012120532A (ja) 2012-06-28
TW201237178A (en) 2012-09-16
TW201237176A (en) 2012-09-16
IL183718A (en) 2013-04-30
JP2008522615A (ja) 2008-07-03
TW201237177A (en) 2012-09-16
SG156625A1 (en) 2009-11-26
CN101072883B (zh) 2012-05-23
EP2395106A1 (en) 2011-12-14
IL183718A0 (en) 2007-09-20
CN102618641B (zh) 2014-08-13
CN102634574A (zh) 2012-08-15
JP5531001B2 (ja) 2014-06-25
KR20130105758A (ko) 2013-09-25
TW201241178A (en) 2012-10-16
CN102618642B (zh) 2014-12-31
TW201237175A (en) 2012-09-16
CN102618642A (zh) 2012-08-01
EP2395104A1 (en) 2011-12-14
IL205636A (en) 2012-08-30
TW200636076A (en) 2006-10-16
KR20130113526A (ko) 2013-10-15
JP2012100666A (ja) 2012-05-31
IL210298A (en) 2012-12-31
KR101357033B1 (ko) 2014-02-03
KR20130113527A (ko) 2013-10-15
KR20130105761A (ko) 2013-09-25
KR101357040B1 (ko) 2014-02-03
WO2006062811A2 (en) 2006-06-15
RU2010122759A (ru) 2011-12-10
EP2395105A1 (en) 2011-12-14
TW201241177A (en) 2012-10-16
CN102747142A (zh) 2012-10-24
AU2005314335A1 (en) 2006-06-15
IL210299A0 (en) 2011-03-31
JP2012100665A (ja) 2012-05-31
KR101357038B1 (ko) 2014-02-03
CN101974619A (zh) 2011-02-16
CN101974619B (zh) 2012-11-21
KR20130099246A (ko) 2013-09-05
JP2012115267A (ja) 2012-06-21
IL221772A (en) 2014-06-30
EP2395109A1 (en) 2011-12-14
KR20130105760A (ko) 2013-09-25
AU2005314335B2 (en) 2012-02-02
WO2006062811A3 (en) 2006-09-14
BRPI0518884A2 (pt) 2008-12-30
IL205702A0 (en) 2011-07-31
AR051523A1 (es) 2007-01-17
CN102634574B (zh) 2014-11-12
JP5139811B2 (ja) 2013-02-06
KR101347107B1 (ko) 2014-01-02
TW201241176A (en) 2012-10-16
KR101357035B1 (ko) 2014-02-03
KR20130004381A (ko) 2013-01-09
CN102747140A (zh) 2012-10-24
US20130252837A1 (en) 2013-09-26
EP1831398A2 (en) 2007-09-12
JP5530999B2 (ja) 2014-06-25
HK1111441A1 (en) 2008-08-08
JP5531000B2 (ja) 2014-06-25
JP5531002B2 (ja) 2014-06-25
IL205635A (en) 2013-02-28
KR20130105762A (ko) 2013-09-25

Similar Documents

Publication Publication Date Title
KR101347107B1 (ko) 도세탁셀에 대한 내성 또는 감수성을 측정하는 방법
AU2012200305A1 (en) Method for measuring resistance or sensitivity to docetaxel
AU2012200306A1 (en) Method for measuring resistance or sensitivity to docetaxel
AU2012200293A1 (en) Method for measuring resistance or sensitivity to docetaxel
AU2012202512A1 (en) Method for measuring resistance or sensitivity to docetaxel
AU2012200307A1 (en) Method for measuring resistance or sensitivity to docetaxel

Legal Events

Date Code Title Description
AMND Amendment
A201 Request for examination
AMND Amendment
A107 Divisional application of patent
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee