KR20070057747A - High strength, low thermal expansion alloy having improved twisting properties and wire of said alloy - Google Patents

High strength, low thermal expansion alloy having improved twisting properties and wire of said alloy Download PDF

Info

Publication number
KR20070057747A
KR20070057747A KR1020070048747A KR20070048747A KR20070057747A KR 20070057747 A KR20070057747 A KR 20070057747A KR 1020070048747 A KR1020070048747 A KR 1020070048747A KR 20070048747 A KR20070048747 A KR 20070048747A KR 20070057747 A KR20070057747 A KR 20070057747A
Authority
KR
South Korea
Prior art keywords
less
thermal expansion
low thermal
alloy
high strength
Prior art date
Application number
KR1020070048747A
Other languages
Korean (ko)
Inventor
테츠로 카리야
타츠로 이소모토
타이찌로 니시카와
시니치 기타무라
Original Assignee
산요오도꾸슈세이꼬 가부시키가이샤
스미토모덴키고교가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 산요오도꾸슈세이꼬 가부시키가이샤, 스미토모덴키고교가부시키가이샤 filed Critical 산요오도꾸슈세이꼬 가부시키가이샤
Publication of KR20070057747A publication Critical patent/KR20070057747A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

A high strength low thermal expansion alloy which can maintain high tensile strength, excellent twisting properties and low thermal expansion very stably, and a high strength low thermal expansion alloy wire manufactured using the high strength low thermal expansion alloy are provided. A high strength low thermal expansion alloy having improved twisting properties comprises, by mass percent, 0.1 to 0.4% of C, 0.33 to 2.0% of Si, 2.0% or less of Mn, 3.0% or less of Cr, exceeding 0.5% to 3.0% of V, 25 to 40% of Ni, and the balance of Fe and inevitable impurities, wherein V, C and Cr satisfy the relational expressions 2<=V/C<=9 and 0.9<=V/Cr. The high strength low thermal expansion alloy further comprises 3.02% or less of Co, and Ni and Co satisfy the relational expression 37%<=Ni+Co<=40%. The high strength low thermal expansion alloy further comprises 0.05% or less of B or/and 0.05% or less of Ca. The high strength low thermal expansion alloy further comprises: 0.05% or less of B or/and 0.05% or less of Ca; and 1.20% or less of one or more of Al, Mo, Ti, Nb, Zr, Hf, W, and Cu.

Description

꼬임특성이 개선된 고강도 저열팽창 합금 및 합금선{HIGH STRENGTH, LOW THERMAL EXPANSION ALLOY HAVING IMPROVED TWISTING PROPERTIES AND WIRE OF SAID ALLOY}High strength low thermal expansion alloy and alloy wire with improved kink properties {HIGH STRENGTH, LOW THERMAL EXPANSION ALLOY HAVING IMPROVED TWISTING PROPERTIES AND WIRE OF SAID ALLOY}

본 발명은, 예를 들면 저처짐(low-sag) 전송선용 심선 재료로 사용하기 위한 개선된(우수한) 꼬임특성을 갖는 고강도 저열팽창 합금 및 합금선에 관한 것이다.The present invention relates to high strength low thermal expansion alloys and alloy wires with improved (excellent) twisting properties, for example for use as core material for low-sag transmission lines.

지금까지, 내열 알루미늄 합금의 꼬임선 형태의 고가(高架) 전송선에 심선으로서 철선이 주로 사용되어져 왔다. 또한, 최근 증가된 전력수요에 대처하기 위해,송전량의 증가가 요구된다. 그러나, 송전량이 증가되는 경우, 기존 철선은 높은 열팽창계수로 인해 전선에 처짐 문제가 나타난다. 이 문제를 극복하기 위해, 열팽창계수가 낮은 인바르(Invar) 합금이 처짐을 감소시키고, 그것에 의해 송전량을 증가시키기 위한 심선 재료로 사용되고 있다. 이 경우, 인바르 합금은 최종적으로 얇은 꼬임선으로 사용되므로, 인바르 합금은 높은 인장강도와 고도로 안정하게 유지될 수 있는 우수한 꼬임 특성을 가져야만 한다. Until now, iron wires have been mainly used as core wires in high-priced transmission lines in the form of twisted wires of heat-resistant aluminum alloys. In addition, in order to cope with the recently increased power demand, an increase in the amount of transmission is required. However, when the amount of power transmission is increased, the existing steel wires have a sagging problem due to the high coefficient of thermal expansion. In order to overcome this problem, an Invar alloy having a low coefficient of thermal expansion has been used as a core material for reducing deflection and thereby increasing the amount of power transmission. In this case, the Invar alloy is finally used as a thin twisted line, so the Invar alloy must have good tensile properties that can be maintained with high tensile strength and high stability.

상기 관점에서, 고강도 저열팽창 합금이, 예를 들면 일본특허공고 21622/1991와 21623/1991 및 일본특허 제2968430에서 제안되어졌다. 특히, 일본특허공고 21622/1991에는 탄소: 0.1% 초과 ~ 0.3% 미만, 코발트: 0.1% ~ 0.5 미만%, 및 구리:0.1% ~ 7.0% 이하이고, 코발트+구리: 0.8% 이하로 이루어진 고강도 저열팽창 합금이 기재되어 있고, 상기 합금은 추가로 니켈+코발트+구리: 38.8%~ 50.0%의 요건을 충족시키는 양의 니켈과, 실리콘, 망간 및 크롬으로부터 선택된 적어도 한가지 1.0% 이하, 및 몰리브덴, 티탄, 바나듐, 지르코늄, 니오브, 하프늄, 탈탄 및 텅스텐 중 선택되는 적어도 한가지 0.20% ~ 4.0%를 함유하며, 나머지는 실질적으로 철로 이루어진다. In view of the above, high-strength low thermal expansion alloys have been proposed in, for example, Japanese Patent Publications 21622/1991 and 21623/1991 and Japanese Patent No. 2968430. In particular, Japanese Patent Publication No. 21622/1991 has a high strength, low carbon consisting of more than 0.1% to less than 0.3%, cobalt: 0.1% to less than 0.5%, and copper: 0.1% to 7.0% or less, cobalt + copper: 0.8% or less Thermal expansion alloys are described, which alloys further comprise nickel + cobalt + copper: an amount that meets the requirements of 38.8% -50.0%, at least 1.0% or less selected from silicon, manganese, and chromium, and molybdenum, titanium At least one selected from vanadium, zirconium, niobium, hafnium, decarburized and tungsten, from 0.20% to 4.0%, with the remainder substantially consisting of iron.

일본특허공고 21623/1991은 탄소: 0.1% 초과 ~ 0.3% 미만과 구리: 0.1% ~ 7.0%, 니켈+구리: 35.0 ~ 50.0% 의 요건을 충족하는 양의 니켈을 함유하며, 실리콘, 망간 및 크롬으로부터 선택된 적어도 한가지 1.0% 초과 ~ 5.0%, 및 티탄, 니오브, 바나듐, 지르코늄, 탄탈, 텅스텐, 하프늄, 및 알루미늄 중 선택되는 적어도 한가지 4.5% 이하로 이루어지며, 나머지는 실질적으로 철로 이루어져 있는 고강도 저열팽창 합금을 기재한다. 일본특허 2968430호는 중량 기준으로, 탄소: 0.1% ~ 0.4%, 실리콘: 0.2% ~ 1.5%, 망간: 0.1% ~ 1.5%, 니켈: 33% ~ 42%, 코발트: 5.0% 이하, 크롬: 0.75% ~3.0%, 바나듐: 0.2% ~3.0%, 붕소: 0.003% 이하, 산소 0.003% 이하, 알루미늄 0.1% 이하, 마그네슘 0.1% 이하, 티탄: 0.1% 이하, 및 칼슘: 0.1% 이하, 나머지의 실질적으로 철 및 피할 수 없는 불순물로 이루어지며, 1.0% ≤바나듐+크롬≤5.0%의 식으로 표현되는 요건을 만족하는 것으로 이루어지는 고강도, 저열팽창 합금을 기재한다.Japanese Patent Publication 21623/1991 contains nickel in an amount that satisfies the requirements of carbon: more than 0.1% and less than 0.3%, copper: 0.1% to 7.0%, nickel + copper: 35.0 to 50.0%, and silicon, manganese and chromium At least one selected from more than 1.0% to 5.0%, and at least one selected from titanium, niobium, vanadium, zirconium, tantalum, tungsten, hafnium, and aluminum, up to 4.5%, the remainder being substantially high-strength low thermal expansion Describe the alloy. Japanese Patent No. 2968430, by weight, carbon: 0.1% to 0.4%, silicon: 0.2% to 1.5%, manganese: 0.1% to 1.5%, nickel: 33% to 42%, cobalt: 5.0% or less, chromium: 0.75 % To 3.0%, vanadium: 0.2% to 3.0%, boron: 0.003% or less, oxygen 0.003% or less, aluminum 0.1% or less, magnesium 0.1% or less, titanium: 0.1% or less, and calcium: 0.1% or less, substantially the rest The high strength, low thermal expansion alloy which consists of iron and an unavoidable impurity, and which satisfy | fills the requirements expressed by the formula of 1.0% <vanadium + chromium <5.0% is described.

한편, 종래의 고강도 합금선이 예를 들면 일본특허 공개공보 279945/1994 및 346193/1994에 기재되어 있다. 일본특허 공개공보 279945/1994는 주로 오스테나이트상으로 이루어진 구조를 갖고 가공유도 마르텐사이트상을 함유하는 고강도 저열팽창 합금선을 기재하며, 상기 합금선은 중량 기준으로, 탄소: 0.06 ~ 0.50%, 코발트: 65% 이하, 니켈: 30% 이하로 이루어지며, 코발트+니켈: 25 ~ 65%이고, 나머지는 주로 철로 이루어진다.On the other hand, conventional high strength alloy wires are described in, for example, Japanese Patent Laid-Open Nos. 279945/1994 and 346193/1994. Japanese Patent Laid-Open No. 279945/1994 describes a high strength low thermal expansion alloy wire having a structure mainly composed of an austenite phase and containing a process-induced martensite phase, wherein the alloy wire is carbon: 0.06 to 0.50% by weight and cobalt. : 65% or less, nickel: 30% or less, cobalt + nickel: 25 to 65%, and the rest mainly made of iron.

일본특허 공개공보 346193/1994는 오스테나이트 상 및 가공유도 변태에 의해 형성된 마르텐사이트상의 적어도 2개의 상을 갖는 고강도 저열팽창 합금선을 기재하며, 상기 합금선은 중량 기준으로, 탄소: 0.06 ~ 0.05%, 실리콘: 1%이하, 망간: 2% 이하, 니켈: 25 ~ 30%, 코발트: 2 ~ 16.3%로 이루어지고, 52-(5/3)니켈 ≤코발트≤58-(5/3)니켈의 식으로 표현되는 요건을 충족시키며, 바나듐, 티탄, 니오브, 탄탈, 하프늄, 및 지르코늄 중에서 선택되는 1 종 1% 이하 또는 2 종 총 1% 이하 및 피할 수 없는 불순물로 이루어진다.Japanese Patent Laid-Open Publication No. 346193/1994 describes a high strength low thermal expansion alloy wire having at least two phases of an austenite phase and a martensite phase formed by a process induced transformation, wherein the alloy wire is carbon: 0.06 to 0.05% by weight. , Silicon: 1% or less, manganese: 2% or less, nickel: 25-30%, cobalt: 2-16.3%, and 52- (5/3) nickel ≤cobalt≤58- (5/3) nickel It satisfies the requirements expressed by the formula, and consists of 1% or less or 1% or less in total of 2 kinds selected from vanadium, titanium, niobium, tantalum, hafnium, and zirconium and inevitable impurities.

일본특허공고 21622/1991 및 21623/1991에 기재된 상기 종래의 기술에서, 필요에 따라, 바나듐이 다수의 강화 원소 중 하나로서 첨가될 수 있다. 그러나, 꼬임 특성에 관하여 기타 원소들의 첨가에 대한 바나듐 첨가의 우수성은 특별히 기재되어있지 않다. 일본특허 2968430호는 꼬임 특성에 관한 기타 원소들의 첨가에 대한 바나듐 첨가의 우수성을 기재한다. 그러나, 상기 특허에 기재된 합금은 저처짐 전송선용 심선 재료로 사용될 때, 높은 인장강도, 우수한 꼬임 특성, 및 저열팽창 모두를 매우 안정하게 유지하기에는 여전히 불충분하다.In the above conventional techniques described in Japanese Patent Publications 21622/1991 and 21623/1991, vanadium may be added as one of a plurality of reinforcing elements as necessary. However, the superiority of vanadium addition over the addition of other elements with respect to the kink properties is not particularly described. Japanese Patent 2968430 describes the superiority of vanadium addition over the addition of other elements with regard to the kink properties. However, the alloys described in this patent are still insufficient to maintain very stable both high tensile strength, good twisting properties, and low thermal expansion when used as core material for low deflection transmission lines.

일본 특허공개공보 279945/1994 및 346193/1994에 기재된 종래의 기술들은 가공유도 마르텐사이트 변태를 이용한다. 그러나, 이들 공보에 기재된 재료들을 사용하여 생산된 합금선들은 코발트가 약 10% 존재함에 따른 고비용 문제를 포함한다. 또한, 이들 재료들에서 비록 가공유도 마르텐사이트 변태에 의해 인장강도가 개선되지만 열팽창계수가 증가하고, 그 결과 불리하게도 꼬임 특성이 열화된다.The conventional techniques described in Japanese Patent Laid-Open Nos. 279945/1994 and 346193/1994 use a process induced martensite transformation. However, alloy wires produced using the materials described in these publications include the high cost problem of about 10% cobalt present. In addition, in these materials, although the tensile strength is improved by the induction of martensite transformation, the coefficient of thermal expansion increases, and as a result, the twisting property is disadvantageously deteriorated.

본 발명자들은 선행기술의 상기 문제점들을 해결하고자 광범위하고 집중적인 연구를 하였고, 그 결과 시효(aging) 강화원소로서의 탄소와 바나듐의 함량비(V/C; 바나듐/탄소)의 조절, 및 크롬이 함유되는 경우에는 V/Cr(바나듐/크롬)의 비의 조절에 의해 선행기술의 상기 문제들을 해결할 수 있음을 발견하였다.The present inventors have conducted extensive and intensive studies to solve the above problems of the prior art, and as a result, control of the content ratio of carbon and vanadium (V / C; vanadium / carbon) as an aging reinforcing element, and containing chromium It has been found that the above problems of the prior art can be solved by adjusting the ratio of V / Cr (vanadium / chromium).

따라서, 본 발명의 목적은 높은 인장강도, 우수한 꼬임 특성 및 저열팽창 등 각각 매우 안정하게 유지될 수 있는 특성을 갖는 고강도 저열팽창 합금을 제공하는 것이다. Accordingly, it is an object of the present invention to provide a high strength low thermal expansion alloy having properties that can be maintained very stably, such as high tensile strength, excellent twisting properties and low thermal expansion.

본 발명의 또 다른 목적은 바나듐-함유 철-니켈-기재 합금을 이용한 고강도, 저열팽창 합금선을 제공하는 것으로, 상기 선은 1300 MPa 이상, 바람직하게 1400 MPa 이상의 인장강도, 및 우수한 꼬임특성, 즉 20 회/100D 이상, 바람직하게 60 회/100D 이상을 갖는다.It is yet another object of the present invention to provide a high strength, low thermal expansion alloy wire using vanadium-containing iron-nickel-based alloy, the wire having a tensile strength of at least 1300 MPa, preferably at least 1400 MPa, and excellent twisting properties, namely 20 times / 100D or more, preferably 60 times / 100D or more.

본 발명은 다음과 같이 요약된다.The present invention is summarized as follows.

(1)질량 기준으로, (1) On a mass basis,

탄소: 0.1 ~ 0.4%Carbon: 0.1 ~ 0.4%

바나듐: 0.5 초과 ~ 3.0%, 및Vanadium: greater than 0.5 to 3.0%, and

니켈: 25 ~ 50%을 포함하며,Nickel: Contains 25-50%

2≤바나듐/탄소≤9의 식으로 표현되는 요건을 충족시키고, Satisfies the requirements expressed by the formula 2 ≦ vanadium / carbon ≦ 9,

나머지의 철과 피할 수 없는 불순물로 이루어진, 개선된 꼬임 특성을 갖는 고강도 저열팽창 합금.High strength low thermal expansion alloy with improved kink properties, consisting of the remaining iron and inevitable impurities.

(2)상기 항목(1)에 따른 합금으로, 질량 기준으로 실리콘: 2.0% 이하, 망간 : 2.0% 이하, 크롬: 3.0% 이하 및 코발트: 10% 이하로 이루어진 군으로부터 선택된 적어도 한가지를 추가로 포함하는 고강도 저열팽창 합금.(2) the alloy according to item (1), further comprising at least one selected from the group consisting of silicon: 2.0% or less, manganese: 2.0% or less, chromium: 3.0% or less and cobalt: 10% or less on a mass basis; High strength low thermal expansion alloy made.

(3)항목 (1) 또는 (2)에 따른 합금으로, 0.5 ≤바나듐/크롬인 고강도 저열팽창 합금.(3) An alloy according to item (1) or (2), wherein 0.5 ≤ vanadium / chromium.

(4)상기 (1) 내지 (3)중 어느 하나의 항목에 따른 합금으로, 37 질량% ≤니켈+코발트≤40 질량%인 고강도 저열팽창 합금.(4) The high strength low thermal expansion alloy, wherein the alloy according to any one of (1) to (3) is 37 mass%? Nickel + cobalt? 40 mass%.

(5)상기 (1) 내지 (4) 중 어느 하나의 항목에 따른 합금으로, 질량기준으로, 붕소: 0.05% 이하, 칼슘 0.05% 이하, 및 마그네슘: 0.05% 이하로 이루어진 군으로부터 선택되는 적어도 한가지를 추가로 포함하는 고강도 저열팽창 합금.(5) at least one selected from the group consisting of boron: 0.05% or less, calcium 0.05% or less, and magnesium: 0.05% or less by weight based on the alloy according to any one of (1) to (4) above High strength low thermal expansion alloy further comprising.

(6)상기 (1) 내지 (5)중 어느 하나의 항목에 따른 합금으로, 질량기준으로, 알루미늄, 몰리브덴, 티탄, 니오브, 탄탈, 지르코늄, 하프늄, 텅스텐, 및 구리로 이루어진 군으로부터 선택되는 적어도 한가지를 총 5 질량% 이하로 추가로 포함하는 고강도 저열팽창 합금.(6) an alloy according to any one of (1) to (5), wherein, on a mass basis, at least one selected from the group consisting of aluminum, molybdenum, titanium, niobium, tantalum, zirconium, hafnium, tungsten, and copper; High strength low thermal expansion alloy further comprising one or less in total 5% by mass.

(7)상기 (1) 내지 (6) 중 어느 하나의 항목에 따른 고강도, 저열팽창 합금을 사용하여 제조된, 개선된 꼬임 특성을 갖는 고강도 저열팽창 합금선. (7) A high strength low thermal expansion alloy wire having improved braiding properties, manufactured using the high strength, low thermal expansion alloy according to any one of (1) to (6) above.

(8)상기 (1) 내지 (6) 중 어느 하나의 항목에 따른 고강도 저열팽창 합금을 사용하여 제조되고, 인장강도 1300 MPa 이상, 꼬임값 20 회/100D 이상의 개선된 꼬임 특성을 갖는 고강도 저열팽창 합금선. 단, 여기서 D는 최종 선직경. (8) a high strength low thermal expansion prepared by using the high strength low thermal expansion alloy according to any one of the items (1) to (6) and having improved twisting characteristics of tensile strength of 1300 MPa or more and twist value of 20 times / 100 D or more Alloy wire. Where D is the final linear diameter.

(9)상기 항목 (7) 또는 (8)에 따른, 0.8% 이상의 신장율을 갖는 개선된 꼬임 특성을 갖는 고강도 저열팽창 합금선.(9) A high strength low thermal expansion alloy wire having improved twisting properties with an elongation of at least 0.8% according to item (7) or (8) above.

(10)15 ~ 100 ℃범위의 온도에서 두지점 사이의 평균 선팽창 계수가 3 ×10-6 /℃ 이하이고 (15 ~ 100 ℃), 15 ~ 230 ℃범위의 온도에서 두 지점 사이의 평균 선팽창 계수가 4 ×10-6/℃ 이하이고 (15 ~ 230 ℃), 100 ~ 240 ℃범위의 온도에서 두 지점 사이의 평균 선팽창 계수가 4 ×10-6/℃ 이하이고 (100 ~ 240℃), 230 ~ 290 ℃범위의 온도에서 두 지점간의 평균 선팽창 계수가 11 ×10-6/℃ 이하 (230 ~ 290℃)인 특성 요건을 만족시키는 상기 항목 (7) ~ (9)중 어느 하나에 따른 개선된 꼬임 특성을 갖는 고강도 저열팽창 합금선.The average linear expansion coefficient between the following 6 / ℃ and (15 to 100 ℃), two points at a temperature of 15 to 230 ℃ range - 10 15 - average coefficient of linear expansion is 3 × 10 between two points at a temperature of 100 ℃ range Is 4 × 10 -6 / ℃ or less (15 to 230 ° C), and the average coefficient of linear expansion between two points at temperatures in the range of 100 to 240 ° C is 4 × 10 -6 / ℃ or less (100 to 240 ° C), 230 Improved according to any one of items (7) to (9) above, which satisfies the characteristic requirement that the mean coefficient of linear expansion between two points at temperatures in the range of 290 占 폚 is below 11 x 10 -6 / 占 폚 (230-290 占 폚) High strength low thermal expansion alloy wire with twisting properties.

(11)상기 항목 (7) 내지 (10)중 어느 하나의 항목에 따른, 알루미늄 코팅 또는 아연도금된, 개선된 꼬임 특성을 갖는 고강도 열팽창 합금선.(11) A high strength, thermally expandable alloy wire having improved twisting properties, either aluminum coated or galvanized according to any one of items (7) to (10) above.

본 발명의 Of the present invention 구현예Embodiment

본 발명에 따른 개선된 꼬임 특성을 갖는 고강도, 저열팽창 합금의 화학 조성의 제한 이유를 기재할 것이다. 다음에서, 합금의 성분비율 중 "%"라는 표현은 다른 언급이 없는 한 질량%이다.Reasons for limiting the chemical composition of high strength, low thermal expansion alloys with improved kink properties according to the present invention will be described. In the following, the expression "%" in the component ratio of the alloy is% by mass unless otherwise indicated.

탄소: 0.1 ~ 0.4%Carbon: 0.1 ~ 0.4%

탄소는 고용체 강화와 탄화물 석출강화를 통해 재료를 강화하는데 필요한 원소이다. 그러나, 탄소함량이 초과하면, 꼬임 특성이 열화되며 선팽창 계수가 증가한다. 그러므로, 탄소 함량은 0.1 ~ 0.4%로 제한된다.Carbon is an element necessary to strengthen materials through solid solution strengthening and carbide precipitation strengthening. However, if the carbon content is exceeded, the twisting property is deteriorated and the coefficient of linear expansion increases. Therefore, the carbon content is limited to 0.1 to 0.4%.

바나듐: 0.5% 초과 ~ 3.0%Vanadium: greater than 0.5% to 3.0%

바나듐은 탄화물의 석출강화를 통해 재료를 강화하는데 필요한 원소이다. 또한, 바나듐은 조(coares) 탄화물의 입자간 석출을 억제하고 미세 입자내 탄화물의 석출을 촉진한다. 그러므로, 바나듐은 꼬임 특성을 향상시키기에 알맞다. 그러나, 바나듐의 함량이 초과되면, 꼬임 특성이 열화되고 선팽창 계수가 증가한다. 그러므로, 바나듐 함량은 0.5 초과 ~ 3.0%로 제한된다.Vanadium is an element necessary to strengthen the material through precipitation strengthening of carbides. Vanadium also inhibits interparticle precipitation of coarse carbides and promotes precipitation of carbides in fine particles. Therefore, vanadium is suitable for improving the twisting property. However, if the content of vanadium is exceeded, the twisting property is deteriorated and the coefficient of linear expansion increases. Therefore, the vanadium content is limited to more than 0.5 to 3.0%.

니켈: 25 ~ 50%Nickel: 25-50%

니켈은 저열팽창을 실현하기 위해 필수적이며, 니켈의 함량은 25 ~ 50%로 제한된다.Nickel is essential to realize low thermal expansion, and the content of nickel is limited to 25-50%.

2 ≤바나듐/탄소(V/C)≤9 2 ≤ vanadium / carbon (V / C) ≤ 9

V/C 는 본 발명의 가장 큰 특징이다. 바나듐 함량이 탄소 함량과 비교하여 극히 낮으면, 석출강화가 불충분하다. 또한 이 경우, 고용체 중의 탄소량이 증가하며 선팽창 계수가 증가한다. 또한, 바나듐 함량이 탄소 함량과 비교하여 극단적으로 크면, 선팽창 계수가 증가하고, 추가로 꼬임 특성이 열화된다. 따라서, V/C 비율은 2 ≤V/C/≤9 , 바람직하기는 3 ≤V/C ≤5로 제한된다.V / C is the biggest feature of the present invention. If the vanadium content is extremely low compared to the carbon content, precipitation strengthening is insufficient. Also in this case, the amount of carbon in the solid solution increases and the coefficient of linear expansion increases. In addition, if the vanadium content is extremely large compared to the carbon content, the coefficient of linear expansion increases and further the twisting property is degraded. Thus, the V / C ratio is limited to 2 ≦ V / C / ≦ 9, preferably 3 ≦ V / C ≦ 5.

실리콘: 2.0% 이하Silicone: 2.0% or less

실리콘은 재료를 강화하기 위해 필요하다. 그러나 많은 양의 실리콘을 첨가하면 선팽창 계수가 증가한다. 그러므로, 실리콘 함량의 상한값은 2.0%로 제한된다. Silicone is needed to reinforce the material. However, adding a large amount of silicon increases the coefficient of linear expansion. Therefore, the upper limit of the silicon content is limited to 2.0%.

망간: 2.0% 이하Manganese: 2.0% or less

망간은 탈산제이며 추가로 재료를 강화하는데 사용된다. 그러나 망간을 다량으로 첨가하면 선팽창 계수를 증가시킨다. 그러므로, 망간 함량의 상한치는 2.0%로 제한된다.Manganese is a deoxidizer and is used to further strengthen the material. However, adding a large amount of manganese increases the coefficient of linear expansion. Therefore, the upper limit of manganese content is limited to 2.0%.

크롬: 3.0% 이하Chromium: 3.0% or less

크롬은 재료를 강화하는데 유용하다. 그러나 크롬을 다량으로 첨가하면 선 팽창계수를 증가시킨다. 그러므로, 크롬 함량의 상한치는 3.0%로 제한된다.Chromium is useful for reinforcing materials. However, the addition of large amounts of chromium increases the coefficient of linear expansion. Therefore, the upper limit of the chromium content is limited to 3.0%.

0.5 ≤바나듐/크롬(V/Cr)0.5 ≤ vanadium / chromium (V / Cr)

V/Cr에 관하여, 크롬 함량이 바나듐의 함량과 비교하여 지나치게 많으면 조 크롬계 탄화물과 조 바나듐-크롬계 복합 탄화물이 생성되어 꼬임 특성이 열화된다.꼬임 특성이 추가로 매우 안정하게 유지되어야 하는 경우, V/Cr 비율은 0.5 ≤V/Cr이 바람직하며, 0.9 ≤V/Cr이 더욱 바람직하다.With respect to V / Cr, too much chromium content compared to the content of vanadium results in the formation of crude chromium-based carbides and crude vanadium-chromium-based composite carbides, resulting in deterioration of the kink properties. The V / Cr ratio is preferably 0.5 ≦ V / Cr, more preferably 0.9 ≦ V / Cr.

코발트: 10% 이하 Cobalt: 10% or less

코발트는 많은 경우, 원료중에 피할 수 없는 불순물로서 함유된다. 의도적으로 첨가되는 경우, 코발트는 니켈과 함께 선팽창 계수를 감소하는데 유용하다. 그러나, 다량의 코발트를 첨가하면 비용이 증가된다. 그러므로, 코발트 함량의 상한 치는 10%로 제한된다.Cobalt is often contained as an inevitable impurity in raw materials. When intentionally added, cobalt is useful to reduce the coefficient of linear expansion with nickel. However, the addition of large amounts of cobalt increases the cost. Therefore, the upper limit of the cobalt content is limited to 10%.

37% ≤ 니켈(Ni) + 코발트(Co) ≤40%37% ≤ nickel (Ni) + cobalt (Co) ≤40%

재료가 저처짐 전송선용 심선 재료로 사용되는 경우, 재료는 실온에서 약 300 ℃까지의 온도 범위 전체에 걸쳐 평균적으로 낮은 선팽창 계수를 가져야 한다. 그러므로, 니켈과 코발트의 총함량은 37% ≤ Ni + Co ≤40%으로 제한된다. 필요에 따라, 니켈과 코발트의 총함량은 37.5% ≤ Ni + Co ≤39%이다.If the material is used as a core material for low deflection transmission lines, the material should have an average low coefficient of linear expansion throughout the temperature range from room temperature to about 300 ° C. Therefore, the total content of nickel and cobalt is limited to 37% ≦ Ni + Co ≦ 40%. If necessary, the total content of nickel and cobalt is 37.5% ≦ Ni + Co ≦ 39%.

붕소: 0.05% 이하Boron: 0.05% or less

붕소는 열간작업성을 향상시키는데 유용하다. 그러나, 다량의 붕소를 첨가하면 인성(靭性)이 열화된다. 그러므로, 붕소 함량의 상한치는 0.05%이다.Boron is useful for improving hot workability. However, the addition of a large amount of boron deteriorates toughness. Therefore, the upper limit of the boron content is 0.05%.

칼슘: 0.05% 이하, 및 마그네슘: 0.05% 이하Calcium: 0.05% or less, and magnesium: 0.05% or less

칼슘과 마그네슘은 재료의 인성을 향상시키기 위해 황과 같은 불순물들을 고정하는 작용을 하는 원소들이다. 그러나 이들 원소들을 다량으로 첨가하면 인성이 열화된다. 그러므로, 칼슘 함량과 마그네슘 함량 각각의 상한치는 0.05%이다.Calcium and magnesium are elements that act to fix impurities such as sulfur to improve the toughness of the material. However, the addition of these elements in large amounts deteriorates toughness. Therefore, the upper limit of each of the calcium content and the magnesium content is 0.05%.

알루미늄, 몰리브덴, 티탄, 니오브, 탄탈, 지르코늄, 하프늄, 텅스텐, 및 구리로부터 선택되는 한가지의 함량 또는 적어도 두가지의 총 함량은 5% 이하이다.One or at least two total contents selected from aluminum, molybdenum, titanium, niobium, tantalum, zirconium, hafnium, tungsten, and copper are 5% or less.

알루미늄, 몰리브덴, 티탄, 니오브, 탄탈, 지르코늄, 하프늄, 텅스텐, 및 구리는 재료의 강화에 유용하다. 그러나 이들 원소들을 다량으로 첨가하면 재료의 연성과 열팽창 특성이 열화된다. 그러므로, 이들 원소들의 총함량의 상한치는 5% 이하이다.Aluminum, molybdenum, titanium, niobium, tantalum, zirconium, hafnium, tungsten, and copper are useful for reinforcing materials. However, the addition of these elements in large amounts deteriorates the ductility and thermal expansion properties of the material. Therefore, the upper limit of the total content of these elements is 5% or less.

본 발명에 따른 개선된 꼬임 특성을 갖는 고강도 저열팽창 합금은 1300 MPa 이상의 인장강도와 20 회/100D 이상의 꼬임값을 갖는다. 인장강도가 1300 MPa보다 작으면, 전선으로서 필요한 장력이 공급될 수 없고, 처짐을 어려움 없이 원하는 수준으로 감소시킬 수 없으며, 즉, 용량을 증가시키는 것이 어렵게 된다. 꼬임값이 20 회/100D 보다 작으면, 선의 꼬임은 선의 절단 등을 발생시키며, 그러므로 선으로서의 신뢰성이 상실된다. 그러므로, 고강도 저열팽창 합금선은 1300 MPa 이상의 인장강도 및 20 회/100D 이상의 꼬임값을 가져야 한다. 그 밖에, 바람직하게 본 발명에 따른 향상된 꼬임 특성을 갖는 고강도 저열팽창 합금선은 0.8% 이상의 신장율을 갖는다. 신장율이 0.8%보다 작은 경우, 선가공시 선의 절단 등이 발생하므로 합금선을 신뢰할 수 없다. 상기 이유로, 신장율은 0.8%이상으로 제한된다. The high strength low thermal expansion alloy with improved twist properties according to the present invention has a tensile strength of at least 1300 MPa and a twist value of at least 20 times / 100D. If the tensile strength is less than 1300 MPa, the required tension as the wire cannot be supplied, and the deflection cannot be reduced to the desired level without difficulty, that is, it is difficult to increase the capacity. If the twist value is less than 20 times / 100D, the twisting of the line causes the cutting of the line or the like, and thus the reliability as the line is lost. Therefore, high strength low thermal expansion alloy wire should have a tensile strength of 1300 MPa or more and a twist value of 20 times / 100D or more. In addition, the high strength low thermal expansion alloy wire with improved twisting characteristics according to the present invention preferably has an elongation of 0.8% or more. If the elongation is less than 0.8%, the cutting of the wire occurs during the line processing, so the alloy wire is unreliable. For this reason, the elongation rate is limited to 0.8% or more.

그 밖에, 본 발명에 따른 개선된 꼬임 특성을 갖는 고강도, 저열팽창 합금선은 바람직하기는 선팽창 계수가, 15 ~ 100 ℃의 온도범위의 두 지점 사이의 평균 선팽창 계수가 3 ×10-6/℃ 이하이고(15 ~ 100℃), 15 ~ 230 ℃의 온도범위의 두 지점 사이의 평균 선팽창 계수가 4 ×10-6/℃ 이하이고(15 ~ 230 ℃), 100 ~ 240 ℃의 온도범위의 두 지점 사이의 평균 선팽창 계수가 4 ×10-6/℃ 이하이고(100 ~ 240 ℃), 및 230 ~ 290 ℃의 온도범위의 두 지점 사이의 평균 선팽창 계수가 11 ×10-6/℃ 이하(230 ~ 290 ℃)인 요건을 만족시킨다. 선팽창 계수가 상기 범위보다 클때, 원하는 수준의 처짐을 얻을 수 없어 용량 증가가 불가능해 진다. In addition, to have improved kink characteristic high strength, low thermal expansion alloy wire is preferred according to the present invention, a linear coefficient of expansion, and 3 have an average linear expansion coefficient between the two points in the temperature range of 15 ~ 100 ℃ × 10 -6 / ℃ Less than (15 to 100 ° C), the average coefficient of linear expansion between two points in the temperature range of 15 to 230 ° C is 4 × 10 -6 / ° C or less (15 to 230 ° C), and the temperature range of 100 to 240 ° C The average coefficient of linear expansion between points is 4 × 10 -6 / ° C or less (100-240 ° C), and the average coefficient of linear expansion between two points in the temperature range of 230-290 ° C is 11 × 10 -6 / ° C or less (230 ~ 290 ° C). When the coefficient of linear expansion is larger than the above range, the desired level of deflection cannot be obtained and capacity increase is impossible.

본 발명에 따른 개선된 꼬임 특성을 갖는 고강도 저열팽창 합금은 바람직하 게 합금 표면에 내부식성 덮개를 갖는다. 덮개는 생산성 관점에서 알루미늄 코팅 또는 아연 도금이 바람직하다. 그러나, 동일 수준의 내부식성을 갖는 다른 덮개들도 사용될 수 있다. High strength low thermal expansion alloys with improved kink properties according to the invention preferably have a corrosion resistant cover on the alloy surface. The lid is preferably aluminum coated or galvanized in terms of productivity. However, other covers with the same level of corrosion resistance can also be used.

본 발명에 따른 개선된 꼬임 특성을 갖는 고강도 저열팽창 합금은 바람직하게 다음과 같이 생산된다. 주조 및 압연을 완료한 후, 단면감소율 30 ~ 90%로 냉간가공 및 450 ~ 750 ℃의 온도범위에서의 열처리를 순차적으로 실시한 다음, 30 ~ 99%의 단면감소율로 냉간가공을 실시한다. 압연을 완료한 후 단면감소율 30 ~ 90%로 냉간가공을 하는 이유는, 냉간가공에 의한 변형이 존재하는 상태에서 적절한 온도로 열처리할 때, 효과적인 석출강화가 실행될 수 있기 때문이다. 단면 감소율이 30% 미만일 때, 이 효과는 불충분하며 단면 감소율이 90%를 넘으면 생산비용이 증가한다.  The high strength low thermal expansion alloy with improved kink properties according to the invention is preferably produced as follows. After the casting and rolling is completed, cold processing is performed at a cross-sectional reduction rate of 30 to 90% and heat treatment in a temperature range of 450 to 750 ° C is sequentially performed, followed by cold processing at a reduction ratio of 30 to 99%. The reason why the cold working is performed at a cross-sectional reduction rate of 30 to 90% after the rolling is completed is that effective precipitation strengthening can be carried out when heat treatment is performed at an appropriate temperature in the presence of deformation by cold working. When the section reduction rate is less than 30%, this effect is insufficient, and when the section reduction rate is above 90%, the production cost increases.

냉간가공 후의 열처리는 석출강화와 변형 회복을 목적으로 실시된다. 열처리 온도가 450 ℃ 미만이면, 효과적인 석출강화가 수행되지 않는다. 다른 한편, 열처리 온도가 750 ℃를 초과하면, 초과 시효와 재결정 때문에 강도저하가 일어난다. 열처리는 꼬임 특성을 열화시키는 스케일(scale)을 생성한다. 스케일을 제거하기 위해, 필링 단계 또는 필링 단계와 동일한 효과를 달성할 수 있는 단계가 열처리 후 제공될 수 있다. 열처리 후 냉간가공이 30 ~ 99%의 단면감소율로 실시되는 이유는 상기 냉간가공이 가공경화를 제공할 수 있기 때문이다. 단면감소율이 30% 미만이면, 의도된 효과가 불충분하며, 단면감소율이 99%를 초과하면 꼬임 특성과 신장율과 같은 인성이 열화된다.Heat treatment after cold working is performed for the purpose of strengthening precipitation and restoring deformation. If the heat treatment temperature is lower than 450 ° C., no effective precipitation strengthening is performed. On the other hand, if the heat treatment temperature exceeds 750 ° C., the strength decreases due to excess aging and recrystallization. The heat treatment produces a scale that degrades the kink characteristics. To remove the scale, a step may be provided after the heat treatment that can achieve the same effect as the peeling step or the peeling step. The reason why the cold working after the heat treatment is performed at a cross-sectional reduction rate of 30 to 99% is because the cold working can provide work hardening. If the cross sectional reduction rate is less than 30%, the intended effect is insufficient, and if the cross sectional reduction rate exceeds 99%, toughness such as twisting property and elongation rate deteriorates.

실시예Example

다음의 실시예들은 본 발명을 구체적으로 설명한다.The following examples illustrate the invention in detail.

표 1에 나타낸 원소들과 통상적인 불순물들을 포함하는 본 발명의 합금강(alloy of steel)과 비교 강들을 용융공정에 의해 생산하였다. 그 다음, 본 발명의 강(steel) 번호 1에서 12 및 비교 강 번호 24에서 30까지에 대해, 직경 12 mm까지 선봉 압연을 실시하고, 선봉을 51%의 단면감소율로 즉, 직경 8.4mm까지 신선(wire drawing)하였다. 선들을 650 ℃에서 열처리한 다음, 직경 8.0 mm로 껍질을 벗겼다(필링). 최종적으로 86%의 단면 감소율, 즉 직경 3.0mm 까지 신선하여 합금선을 제조하였다. 본 발명의 강 번호 13에서 23 및 비교 강 번호 31에서 33에 대해, 직경 16 mm 까지 선봉 압연을 실시하고, 선봉을 72%의 단면감소율로 즉, 직경 8.4mm 까지 신선하였다. 선들을 580 ℃에서 열처리 후, 직경 8.0 mm까지 껍질을 벗겼다(필링). 최종적으로, 단면감소율 92%로, 즉 직경 2.2mm 까지 신선하여 합금선을 제조하였다.The alloy of steel and comparative steels of the present invention containing the elements shown in Table 1 and conventional impurities were produced by a melting process. Then, for steel numbers 1 to 12 and comparative steel numbers 24 to 30 of the present invention, the rod is rolled to a diameter of 12 mm, and the rod is drawn to a diameter of 51%, that is, to 8.4 mm in diameter. (wire drawing). The wires were heat treated at 650 ° C. and then peeled (pilling) to 8.0 mm in diameter. Finally, an alloy wire was manufactured by drawing a section reduction rate of 86%, that is, up to 3.0 mm in diameter. For steel numbers 13 to 23 and comparative steel numbers 31 to 33 of the present invention, the rod was rolled to a diameter of 16 mm, and the rod was drawn to a diameter of 72%, that is, to 8.4 mm in diameter. The wires were heat treated at 580 ° C. and then peeled (pilling) up to 8.0 mm in diameter. Finally, the alloy wire was manufactured by drawing a 92% reduction in section, that is, up to 2.2 mm in diameter.

이들 재료에 대해 인장강도, 신장율, 꼬임특성 및 열팽창 특성을 조사하였다. 그 결과를 표 1에 나타내었다. 인장강도와 신장율에 관하여, 직경이 3.0 또는 2.2 mm 이고 게이지 길이가 250 mm 인 인장시험 조각을 사용하였다. 열팽창 특성에 관하여, 직경 3.0 mm 또는 2.2 mm ×길이 10 mm 인 시편을 유도가열로 가열하거나 또는 냉각시키고, 길이의 변화를 동력변압기로 측정하였다. 꼬임특성에 대해, 직경이 3.0 mm이고 길이가 300 mm(직경보다 100배 큰)이거나 또는 직경이 2.2mm 이고 길이가 220mm 인(직경보다 100배 큰) 합금선의 한 말단을 고정시키고, 절단되는데 필요한 꼬임 회수를 세기 위해 절단시까지 꼬았다. 꼬임 회수로 꼬임값을 측정하였다. 그 결과, 표 1에 나타낸 바와 같이, 본 발명에 따른 합금선은 인장강도가 1300 MPa 이상, 바람직하기는 1400 MPa 이상까지 증가하는 경우에도, 우수한 꼬임특성, 신장율 및 낮은 선팽창 계수를 가졌다.Tensile strength, elongation, kink and thermal expansion of these materials were investigated. The results are shown in Table 1. Regarding tensile strength and elongation, tensile test pieces of 3.0 or 2.2 mm in diameter and 250 mm in gauge length were used. Regarding the thermal expansion characteristics, specimens with a diameter of 3.0 mm or 2.2 mm x 10 mm in length were heated or cooled by induction heating, and the change in length was measured by a power transformer. For twisting characteristics, it is necessary to fix and cut one end of an alloy wire of 3.0 mm in diameter and 300 mm in length (100 times larger than diameter) or 2.2 mm in diameter and 220 mm in length (100 times larger than diameter). Twist until cutting to count twist counts. The twist value was measured by the number of twists. As a result, as shown in Table 1, the alloy wire according to the present invention had excellent twisting properties, elongation rate and low linear expansion coefficient even when the tensile strength increased to 1300 MPa or more, preferably 1400 MPa or more.

Figure 112007036759539-PAT00001
Figure 112007036759539-PAT00001

상기와 같이, 인장강도가 1300 MPa 이상, 바람직하기는 1400 MPa이상인 경우에도, 2≤바나듐/탄소≤9의 식으로 표현된 요건을 만족시키는 본 발명에 따른 바나듐-함유 고강도 저열팽창 합금을 사용하여 생산된 합금선들은 우수한 꼬임 특성, 즉 20회/100 D 이상, 심지어 100 회/100D 이상의 꼬임값을 가졌다. 그밖에, 어느 가공유도 마르텐사이트도 발생하지 않으므로, 본 발명의 합금선은 우수한 효과를 가지며, 즉 선팽창 계수가 낮다.As described above, even when the tensile strength is 1300 MPa or more, preferably 1400 MPa or more, by using the vanadium-containing high strength low thermal expansion alloy according to the present invention, which satisfies the requirement expressed by the formula 2≤Vanadium / Carbon≤9 The alloy wires produced had good twisting properties, that is, a twist of 20 times / 100 D or more, even 100 times 100D or more. In addition, since neither the processing oil nor martensite occur, the alloy wire of the present invention has an excellent effect, that is, the coefficient of linear expansion is low.

Claims (9)

질량%로서, As mass%, C: 0.1 ~ 0.4%,C: 0.1-0.4%, Si: 0.33 ~ 2.0%,Si: 0.33-2.0%, Mn: 2.0% 이하,Mn: 2.0% or less, Cr: 3.0% 이하,Cr: 3.0% or less, V: 0.5% 초과 ~ 3.0%, 및V: greater than 0.5% to 3.0%, and Ni: 25 ~ 40%를 포함하되,Ni: Including 25-40%, 2≤V/C≤9 및 0.9≤V/Cr의 요건을 충족시키고, 나머지는 철과 피할 수 없는 불순물로 이루어지는 것을 특징으로 하는 개선된 꼬임 특성을 갖는 고강도 저열팽창 합금. A high strength, low thermal expansion alloy with improved kink properties characterized by meeting the requirements of 2 ≦ V / C ≦ 9 and 0.9 ≦ V / Cr, with the remainder being iron and inevitable impurities. 제 1항에 있어서, Co: 3.02 질량% 이하를 포함하고, 37%≤ Ni+Co ≤40%인 것을 특징으로 하는 꼬임 특성이 우수한 고강도 저열팽창 합금.The high-strength low-expansion alloy having excellent kink characteristics according to claim 1, comprising Co: 3.02 mass% or less and 37% ≦ Ni + Co ≦ 40%. 제 1항 또는 제 2항에 있어서, B: 0.05 질량% 이하, Ca: 0.05 질량% 이하 중 1종 또는 2종을 포함하는 것을 특징으로 하는 꼬임 특성이 우수한 고강도 저열팽창 합금.The high-strength low thermal expansion alloy having excellent kink characteristics according to claim 1 or 2, comprising one or two of B: 0.05% by mass or less and Ca: 0.05% by mass or less. 제 1항 또는 제 2항에 있어서, B: 0.05 질량% 이하, Ca: 0.05 질량% 이하 중 1종 또는 2종을 포함하고; 그리고 Al, Mo, Ti, Nb, Zr, Hf, W, Cu 중 1종 또는 2종 이상을 총 1.20 질량% 이하로 포함하는 것을 특징으로 하는 꼬임 특성이 우수한 고강도 저열팽창 합금.The compound according to claim 1 or 2, comprising one or two of B: 0.05% by mass or less and Ca: 0.05% by mass or less; And one or two or more of Al, Mo, Ti, Nb, Zr, Hf, W, and Cu in a total amount of 1.20% by mass or less. 제 1항 또는 제 2항에 따른 합금을 사용하여 제조되는 꼬임 특성이 우수한 고강도 저열팽창 합금선.A high strength low thermal expansion alloy wire having excellent kink characteristics produced using the alloy according to claim 1. 제 1항 또는 제 2항에 따른 합금을 사용하여 제조되고, 인장강도가 1300 MPa 이상, 꼬임값이 20 회/100D 이상(여기서 D는 최종 선직경)인 것을 특징으로 하는 꼬임 특성이 우수한 고강도 저열팽창 합금선.Prepared using the alloy according to claim 1 or 2, the tensile strength is 1300 MPa or more, the twist value is 20 times / 100D or more (where D is the final linear diameter), characterized by excellent high strength properties Thermal expansion alloy wire. 제 6항에 있어서, 신장율이 0.8% 이상인 특성을 갖는 것을 특징으로 하는 꼬임 특성이 우수한 고강도 저열팽창 합금선.The high-strength low thermal expansion alloy wire excellent in the twisting property of Claim 6 which has a characteristic that elongation rate is 0.8% or more. 제 7항에 있어서, 선팽창 계수는, 15 ~ 100 ℃ 온도 범위에서 두 지점간의 평균 선팽창 계수가 3 ×10-6 /℃ 이하(15 ~ 100 ℃)이고, 15 ~ 230 ℃ 온도 범위에서 두 지점간의 평균 선팽창 계수가 4 ×10-6/℃ 이하(15 ~ 230 ℃)이고, 100 ~ 240 ℃ 온도 범위에서 두 지점간의 평균 선팽창 계수가 4 ×10-6/℃ 이하(100 ~ 240℃) 이고, 그리고 230 ~ 290 ℃ 온도 범위에서 두 지점간의 평균 선팽창 계수가 11 ×10-6/℃ 이하(230 ~ 290℃)를 만족하는 특성을 갖는 것을 특징으로 하는 꼬임 특성이 우수한 고강도 저열팽창 합금선.The coefficient of linear expansion according to claim 7, wherein the coefficient of linear expansion between the two points in the temperature range of 15 ~ 100 ℃ is 3 × 10 -6 / ℃ or less (15 ~ 100 ℃), between the two points in the temperature range of 15 ~ 230 ℃ The average linear expansion coefficient is 4 × 10 -6 / ℃ or less (15 ~ 230 ℃), the average linear expansion coefficient between two points in the temperature range of 100 ~ 240 ℃ is 4 × 10 -6 / ℃ or less (100 ~ 240 ℃), And high-strength low-expansion alloy wire having excellent twisting characteristics, characterized in that the average linear expansion coefficient between the two points in the 230 ~ 290 ℃ temperature range satisfies 11 × 10 -6 / ℃ or less (230 ~ 290 ℃). 제 7항 또는 제 8항에 있어서, 합금선이 알루미늄 코팅되거나 또는 아연 도금 처리되어 이루어지는, 꼬임 특성이 우수한 고강도 저열팽창 합금선.The high strength low thermal expansion alloy wire of Claim 7 or 8 by which an alloy wire is aluminum-coated or galvanized, and is excellent in twisting characteristics.
KR1020070048747A 2001-03-02 2007-05-18 High strength, low thermal expansion alloy having improved twisting properties and wire of said alloy KR20070057747A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001058301A JP3842053B2 (en) 2001-03-02 2001-03-02 High strength low thermal expansion alloy with excellent twisting characteristics and its alloy wire
JPJP-P-2001-00058301 2001-03-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020060137467A Division KR20070009960A (en) 2001-03-02 2006-12-29 High strength, low thermal expansion alloy wire having improved twisting properties

Publications (1)

Publication Number Publication Date
KR20070057747A true KR20070057747A (en) 2007-06-07

Family

ID=18918043

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020020009934A KR20020070815A (en) 2001-03-02 2002-02-25 High strength, low thermal expansion alloy having improved twisting properties and wire of said alloy
KR1020050074311A KR20050087773A (en) 2001-03-02 2005-08-12 High strength, low thermal expansion alloy having improved twisting properties and wire of said alloy
KR1020060137467A KR20070009960A (en) 2001-03-02 2006-12-29 High strength, low thermal expansion alloy wire having improved twisting properties
KR1020070048747A KR20070057747A (en) 2001-03-02 2007-05-18 High strength, low thermal expansion alloy having improved twisting properties and wire of said alloy

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020020009934A KR20020070815A (en) 2001-03-02 2002-02-25 High strength, low thermal expansion alloy having improved twisting properties and wire of said alloy
KR1020050074311A KR20050087773A (en) 2001-03-02 2005-08-12 High strength, low thermal expansion alloy having improved twisting properties and wire of said alloy
KR1020060137467A KR20070009960A (en) 2001-03-02 2006-12-29 High strength, low thermal expansion alloy wire having improved twisting properties

Country Status (3)

Country Link
JP (1) JP3842053B2 (en)
KR (4) KR20020070815A (en)
DE (1) DE10208855B4 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3871894B2 (en) * 2001-03-12 2007-01-24 山陽特殊製鋼株式会社 Method for producing high-strength, low-thermal-expansion alloy with excellent ductility
FR2855185B1 (en) * 2003-05-21 2006-08-11 Usinor FE-NI ALLOY METAL WIRE HAVING HIGH MECHANICAL STRENGTH AND LOW THERMAL EXPANSION COEFFICIENT FOR HIGH VOLTAGE CABLES AND METHOD OF MANUFACTURE
JP6372348B2 (en) * 2014-02-27 2018-08-15 新日鐵住金株式会社 Low thermal expansion alloy
CN105132823B (en) * 2015-09-15 2017-12-22 重庆材料研究院有限公司 The controlled expansion alloy of high intensity containing Cr
JP6822238B2 (en) * 2016-03-22 2021-01-27 日本製鉄株式会社 Low thermal expansion alloy
JP6822237B2 (en) * 2016-03-22 2021-01-27 日本製鉄株式会社 Low thermal expansion alloy
JP6812461B2 (en) * 2017-04-19 2021-01-13 山陽特殊製鋼株式会社 High-strength low thermal expansion alloy wire
WO2018193809A1 (en) * 2017-04-19 2018-10-25 山陽特殊製鋼株式会社 High strength and low thermal expansion alloy
JP7218605B2 (en) * 2018-03-16 2023-02-07 日本製鉄株式会社 Low thermal expansion alloy and its manufacturing method
JP6831489B1 (en) * 2020-08-06 2021-02-17 住友電気工業株式会社 Iron alloys, iron alloy wires, and iron alloy stranded wires
CN114107838A (en) * 2020-09-01 2022-03-01 宝武特种冶金有限公司 High-strength invar alloy wire and manufacturing method thereof
CN114107829A (en) * 2020-09-01 2022-03-01 宝武特种冶金有限公司 High-strength low-expansion invar alloy wire
CN114752846A (en) * 2021-01-08 2022-07-15 宝武特种冶金有限公司 High-strength invar alloy wire and preparation method thereof
CN114807765B (en) * 2022-05-05 2022-11-01 东南大学 Invar alloy with high strength and low expansion coefficient and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2553330A (en) * 1950-11-07 1951-05-15 Carpenter Steel Co Hot workable alloy
GB708820A (en) * 1951-03-29 1954-05-12 Carpenter Steel Co Improvements in alloys
DE1024719B (en) * 1951-04-16 1958-02-20 Carpenter Steel Company Hot-formable alloys
GB1410732A (en) * 1973-05-04 1975-10-22 Int Nickel Ltd Low expansion alloys
JPS5631345B2 (en) * 1972-01-27 1981-07-21
JPS55122855A (en) * 1979-03-12 1980-09-20 Daido Steel Co Ltd High strength low thermal expansion alloy
JPH0660369B2 (en) * 1988-04-11 1994-08-10 新日本製鐵株式会社 Cr-Ni type stainless steel that is less likely to crack during the casting process or the subsequent hot rolling process
JPH06346193A (en) * 1993-06-10 1994-12-20 Hitachi Metals Ltd Alloy with high strength and low thermal expansion
JPH06279945A (en) * 1993-03-26 1994-10-04 Hitachi Metals Ltd Wire with high strength and low thermal expansion and its production
JP2968430B2 (en) * 1994-02-17 1999-10-25 山陽特殊製鋼株式会社 High strength low thermal expansion alloy
US6165627A (en) * 1995-01-23 2000-12-26 Sumitomo Electric Industries, Ltd. Iron alloy wire and manufacturing method
JPH0941100A (en) * 1995-08-03 1997-02-10 Res Inst Electric Magnetic Alloys Iron-chromium-silicon base alloy and its production and strain gauge

Also Published As

Publication number Publication date
KR20020070815A (en) 2002-09-11
KR20070009960A (en) 2007-01-19
DE10208855A1 (en) 2002-10-17
JP2002256395A (en) 2002-09-11
KR20050087773A (en) 2005-08-31
DE10208855B4 (en) 2013-01-03
JP3842053B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
KR20070057747A (en) High strength, low thermal expansion alloy having improved twisting properties and wire of said alloy
JP3838216B2 (en) Austenitic stainless steel
EP0381121B1 (en) High-strength heat-resistant steel with improved workability
JP2002537486A (en) Heat-resistant austenitic stainless steel
US20090038717A1 (en) Process for Manufacturing High Strength Corrosion Resistant Alloy For Oil Patch Applications
EP2280089B1 (en) Duplex stainless steels
JP2023526739A (en) High-strength high-temperature corrosion-resistant martensitic stainless steel and method for producing the same
CZ402497A3 (en) Ferritic steel, process of its manufacture and use
US5824264A (en) High-temperature stainless steel and method for its production
JPS5938365A (en) Heat-resistant cast steel
KR101746404B1 (en) Lean duplex stainless steel with improved corrosion resistance and formability and method of manufacturing the same
CN111448326A (en) General ferritic stainless steel having excellent hot workability and method for manufacturing same
JPH07228947A (en) Alloy with high strength and low thermal expansion
CN114080463B (en) High-strength steel sheet and method for producing same
JP2819906B2 (en) Ni-base alloy for tools with excellent room and high temperature strength
KR20190066734A (en) High hardness austenitic stainless steel with excellent corrosion resistance
KR101554771B1 (en) Super ductile lean duplex stainless steel
JP3520109B2 (en) High strength galvanized steel wire and method of manufacturing the same
JPH0382739A (en) Duplex stainless steel excellent in hot workability and corrosion resistance
CN114829658B (en) High-strength steel sheet excellent in workability and method for producing same
KR102021277B1 (en) C+n austenitic stainless steel with excellent mechanical properties and corrosion resistance
KR100361969B1 (en) Extra high-strength invar alloys with low thermal expansion
KR101263794B1 (en) High strength and heat-resistance cold-rolled steel sheet having excellent formability, heat resistance, surface properties for working and manufacturing method thereof
JPS6152354A (en) Low-alloy steel for pressure vessel
JPH10152723A (en) Production of free cutting ferritic stainless steel strip excellent in toughness

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J121 Written withdrawal of request for trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20080122

Effective date: 20081008