KR20070002575A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
KR20070002575A
KR20070002575A KR1020050058169A KR20050058169A KR20070002575A KR 20070002575 A KR20070002575 A KR 20070002575A KR 1020050058169 A KR1020050058169 A KR 1020050058169A KR 20050058169 A KR20050058169 A KR 20050058169A KR 20070002575 A KR20070002575 A KR 20070002575A
Authority
KR
South Korea
Prior art keywords
channel
groove
semiconductor device
substrate
film
Prior art date
Application number
KR1020050058169A
Other languages
Korean (ko)
Inventor
김용택
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020050058169A priority Critical patent/KR20070002575A/en
Publication of KR20070002575A publication Critical patent/KR20070002575A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66537Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a self aligned punch through stopper or threshold implant under the gate region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66621Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A method for manufacturing a semiconductor device is provided to restrain the increase of threshold voltage at edges of a channel and to improve tWR(Write Recovery Time) by applying different doping concentration according to the channel position. A groove(23) is formed by recessing a channel forming region of a substrate(21). A screen layer(24) is formed on the resultant structure including the groove. Dopants for controlling threshold voltage of a channel are implanted into the substrate. At this time, the doping concentration at the channel edge portion is lower than the doping concentration at the channel center portion by using the screen layer formed at both sidewalls of the groove.

Description

반도체 소자의 제조방법{METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE}Manufacturing method of semiconductor device {METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE}

도 1은 종래 기술에 따라 형성된 반도체 소자를 도시한 단면도.1 is a cross-sectional view showing a semiconductor device formed according to the prior art.

도 2a 내지 도 2c는 본 발명의 실시예에 따른 반도체 소자의 제조방법을 설명하기 위한 공정별 단면도.2A to 2C are cross-sectional views of processes for describing a method of manufacturing a semiconductor device according to an embodiment of the present invention.

도 3은 본 발명의 다른 실시예에 따른 반도체 소자의 제조방법을 설명하기 위한 단면도.3 is a cross-sectional view illustrating a method of manufacturing a semiconductor device in accordance with another embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

21 : 반도체기판 22 : 소자분리막21 semiconductor substrate 22 device isolation film

23 : 홈 24 : 스크린막 23: home 24: screen film

25 : 게이트절연막 26 : 게이트도전막 25 gate insulating film 26 gate conductive film

27 : 하드마스크막 28 : 게이트27: hard mask film 28: gate

본 발명은 반도체 소자의 제조방법에 관한 것으로, 보다 상세하게는, 소자의 tWR(Write Recovery Time) 특성을 개선할 수 있는 반도체 소자의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device that can improve the write recovery time (tWR) characteristics of the device.

최근, 고집적 모스펫(MOSFET) 소자의 디자인 룰이 100nm급 이하로 급격히 감소함에 따라 그에 대응하는 셀 트랜지스터의 채널 길이도 매우 감소되는 실정이다. 또한, 반도체기판의 도핑 농도 증가로 인한 전계(Electric field) 증가에 따른 접합 누설 전류 증가 현상으로 인해 기존의 플래너(planer) 채널 구조를 갖는 트랜지스터의 구조로는 리프레쉬 특성을 향상시키는 데 그 한계점에 이르렀다. 이에 따라, 유효 채널 길이(effective channel length)를 확보할 수 있는 다양한 형태의 리세스 채널(recess channel)을 갖는 모스펫 소자의 구현에 대한 아이디어 및 실제 공정개발 연구가 활발히 진행되고 있다.Recently, as the design rule of a high-density MOSFET device rapidly decreases to 100 nm or less, the channel length of a corresponding cell transistor is also greatly reduced. In addition, due to the increase in the junction leakage current due to the increase in the electric field due to the increased doping concentration of the semiconductor substrate, the transistor structure having the planar channel structure has reached the limit of improving the refresh characteristics. . Accordingly, studies on the implementation of the MOSFET and the actual process development research have been actively conducted on the implementation of a MOSFET having various types of recess channels capable of securing an effective channel length.

도 1은 종래 기술에 따라 형성된 리세스 채널을 갖는 반도체 소자의 단면도로서, 이를 설명하면 다음과 같다. 1 is a cross-sectional view of a semiconductor device having a recess channel formed according to the prior art, which will be described below.

도 1을 참조하면, 소자분리막(2)이 구비된 반도체기판(1)의 게이트 형성 영역을 리세스하여 홈(3)을 형성하고, 상기 홈(3)을 포함하는 기판 전면 상에 채널 문턱전압 조절을 위한 불순물 이온주입을 수행한다. 그런다음, 상기 기판 결과물 전면 상에 게이트절연막(4), 게이트도전막(5) 및 하드마스크막(6)을 차례로 형성하고, 상기 하드마스크막(6)을 패터닝한 후, 패터닝된 하드마스크막(6)을 식각장벽으로 이용해서 게이트도전막(5)과 게이트절연막(4)을 순차로 식각하여 게이트(7)를 형성한다. Referring to FIG. 1, a groove 3 is formed by recessing a gate formation region of a semiconductor substrate 1 having an isolation layer 2, and a channel threshold voltage on the entire surface of the substrate including the groove 3. Impurity ion implantation is performed for regulation. Then, the gate insulating film 4, the gate conductive film 5, and the hard mask film 6 are sequentially formed on the entire surface of the substrate resultant, the hard mask film 6 is patterned, and then the patterned hard mask film is patterned. The gate 7 is formed by sequentially etching the gate conductive film 5 and the gate insulating film 4 using (6) as an etch barrier.

이후, 도시하지는 않았지만, 상기 게이트(7) 양측에 소오스/드레인 접합영역을 형성하고, 계속해서, 공지된 일련의 후속 공정을 차례로 진행하여 반도체 소자를 제조한다. Subsequently, although not shown, a source / drain junction region is formed on both sides of the gate 7, and then a series of well-known subsequent steps are sequentially performed to manufacture a semiconductor device.

상기한 바와 같이, 리세스 게이트(7)를 형성하게 되면, 채널 도핑 농도를 줄일 수 있어 누설 전류가 감소되므로 데이터 유지 시간을 증가시킬 수 있고, 채널의 유효 길이가 증가되어 소자의 특성이 향상된다. As described above, when the recess gate 7 is formed, the channel doping concentration can be reduced and the leakage current can be reduced, thereby increasing the data retention time, and the effective length of the channel is increased, thereby improving device characteristics. .

그러나, 종래 기술에 따른 리세스 채널을 갖는 반도체 소자에서는, 상기 홈(3) 바닥면에 대응하는 채널영역과 게이트(7) 양측의 소오스/드레인 접합영역이 접하는 부분, 즉, 홈(3)의 바닥면에 대응하는 채널의 양측 가장자리(도 1에서 E영역)영역에서 전계가 분산되어, 국부적으로 문턱전압이 증가하므로, 소자의 tWR(Write Recovery Time) 특성이 열화되는 문제점이 있다. However, in the semiconductor device having the recess channel according to the related art, the portion where the channel region corresponding to the bottom surface of the groove 3 and the source / drain junction region on both sides of the gate 7 are in contact with each other, that is, the groove 3 is formed. Since the electric field is dispersed in both edge regions (region E in FIG. 1) of the channel corresponding to the bottom surface and the threshold voltage is locally increased, the write recovery time (tWR) characteristic of the device is deteriorated.

따라서, 본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출된 것으로서, 소자의 tWR(Write Recovery Time) 특성을 개선할 수 있는 리세스 게이트를 갖는 반도체 소자의 제조방법을 제공함에 그 목적이 있다. Accordingly, an object of the present invention is to provide a method of manufacturing a semiconductor device having a recess gate that can improve the write recovery time (tWR) characteristics of the device, which is devised to solve the conventional problems as described above. .

상기와 같은 목적을 달성하기 위한 본 발명의 반도체 소자의 제조방법은, 반도체기판의 채널 형성 영역을 리세스하여 홈을 형성하는 단계; 상기 홈을 포함한 기판 전면 상에 스크린막을 형성하는 단계; 및 상기 홈의 양측벽에 형성된 스크린막을 이온주입 장벽으로 이용해서 기판 내에 채널 문턱전압 조절을 위해 불순물을 이온주입하여 홈의 양측 가장자리부분 하부의 채널 영역의 도핑농도가 채널 중앙부의 도핑농도 보다 낮아지도록 만드는 단계;를 포함한다.According to an aspect of the present invention, there is provided a method of fabricating a semiconductor device, the method comprising: recessing a channel formation region of a semiconductor substrate to form a groove; Forming a screen film on the entire surface of the substrate including the groove; And using a screen film formed on both side walls of the groove as an ion implantation barrier so that the doping concentration of the channel region under both edge portions of the groove is lower than that of the channel center by implanting impurities into the substrate to control the channel threshold voltage. Making; includes.

여기서, 상기 스크린막은 50∼300Å 두께로 형성한다.Here, the screen film is formed to a thickness of 50 ~ 300Å.

상기 불순물 이온주입은 B, BF2 및 In로 구성된 그룹으로부터 선택되는 어느 하나의 도펀트를 사용하여 수행한다.The impurity ion implantation is performed using any one dopant selected from the group consisting of B, BF 2 and In.

또한, 본 발명의 반도체 소자의 제조방법은, 상기 스크린막을 형성하는 단계 후, 그리고, 상기 불순물을 이온주입하는 단계 전, 상기 스크린막을 이방성 식각하는 단계를 더 포함한다. In addition, the method of manufacturing a semiconductor device of the present invention may further include anisotropically etching the screen film after the forming of the screen film and before the ion implantation of the impurities.

여기서, 상기 이방성 식각은, 스크린막의 증착두께가 100∼300Å 인 경우, 홈 저면의 스크린막 잔류두께가 30∼50Å이 되도록 수행한다. Here, when the deposition thickness of the screen film is 100 ~ 300 잔류, the anisotropic etching is performed so that the screen film residual thickness of the groove bottom is 30 ~ 50 30.

(실시예)(Example)

이하, 첨부된 도면에 의거하여 본 발명의 바람직한 실시예를 상세하게 설명하도록 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2c는 본 발명의 실시예에 따른 반도체 소자의 게이트 형성방법을 설명하기 위한 공정별 단면도이다.2A through 2C are cross-sectional views illustrating processes of forming a gate of a semiconductor device according to an exemplary embodiment of the present invention.

도 2a를 참조하면, 소자분리막(22)이 구비된 반도체기판(21)의 채널 형성 영역을 리세스하여 1000∼2500Å 깊이의 홈(23)을 형성한다. Referring to FIG. 2A, the channel forming region of the semiconductor substrate 21 having the device isolation film 22 is recessed to form the groove 23 having a depth of 1000 to 2500 Å.

그런다음, 상기 홈(23)을 포함하는 기판 전면 상에 실리콘산화막 또는 질화막 재질의 스크린막(24)을 50∼300Å 두께로 형성한다. Then, a screen film 24 of silicon oxide film or nitride film material is formed on the entire surface of the substrate including the groove 23 to have a thickness of 50 to 300 Å.

이어서, 도 2b에 도시된 바와 같이, 상기 홈(23)의 양측벽에 형성된 스크린막(24)을 이온주입 장벽으로 이용해서 기판(21) 내에 채널 문턱전압 조절을 위해 불순물을 이온주입한다. Subsequently, as shown in FIG. 2B, impurities are implanted into the substrate 21 to control the channel threshold voltage using the screen film 24 formed on both side walls of the groove 23 as an ion implantation barrier.

이 경우, 홈(23)의 양측벽에 형성된 스크린막(24) 하부의 기판 영역으로는 이온주입이 되지 않으므로, 홈(23) 양측 가장자리부분 하부의 채널 영역의 도핑농도가 채널 중앙부의 도핑농도 보다 낮아지게 된다. In this case, since ion implantation is not performed in the substrate region under the screen film 24 formed on both side walls of the groove 23, the doping concentration of the channel region under the edge portions on both sides of the groove 23 is greater than that of the channel center portion. Will be lowered.

그러므로, 본 발명에서는 홈(23) 저면에 대응하는 채널의 가장자리부분(E)의 전계 분산 효과가 감소하고, 이에 따라, 국부적인 문턱전압 증가 현상이 억제되어 tWR 특성이 개선된다. Therefore, in the present invention, the electric field dispersion effect of the edge portion E of the channel corresponding to the bottom surface of the groove 23 is reduced, whereby the local threshold voltage increase phenomenon is suppressed and the tWR characteristic is improved.

한편, 상기 불순물 이온주입은 B, BF2 및 In로 구성된 그룹으로부터 선택되는 어느 하나의 도펀트를 사용하여 수행한다. Meanwhile, the impurity ion implantation is performed using any one dopant selected from the group consisting of B, BF 2 and In.

도 2c를 참조하면, 스크린막(24)이 제거된 상태에서, 상기 기판 결과물 전면 상에 게이트절연막(25), 게이트도전막(26) 및 하드마스크막(27)을 차례로 형성하고, 상기 하드마스크막(27)을 패터닝한 후, 패터닝된 하드마스크막(27)을 식각장벽으로 이용해서 게이트도전막(26)과 게이트절연막(25)을 순차로 식각하여 게이트(28)를 형성한다. Referring to FIG. 2C, in a state in which the screen layer 24 is removed, the gate insulating layer 25, the gate conductive layer 26, and the hard mask layer 27 are sequentially formed on the entire surface of the substrate resultant, and the hard mask is formed. After the patterned layer 27 is patterned, the gate conductive layer 26 and the gate insulating layer 25 are sequentially etched using the patterned hard mask layer 27 as an etch barrier to form the gate 28.

여기서, 상기 게이트절연막(25)은 실리콘산화막으로 형성하는데, 이 경우, 홈(23) 양측 가장자리부분 하부의 채널 영역(E)의 도핑농도가 채널 중앙부(C)의 도핑농도 보다 낮은 것과 관련하여, 홈(23) 양측 가장자리부분에서 형성되는 게이트산화막의 두께가 홈(23)의 중앙부에서 형성되는 게이트산화막의 두께보다 얇아지게 된다. 이에 따라, 채널의 문턱전압 균일성이 향상되는 효과를 추가적으로 얻을 수 있다. In this case, the gate insulating layer 25 is formed of a silicon oxide layer. In this case, the doping concentration of the channel region E under both edges of the groove 23 is lower than the doping concentration of the channel center portion C. The thickness of the gate oxide film formed at both edges of the groove 23 is thinner than the thickness of the gate oxide film formed at the center of the groove 23. Accordingly, the effect of improving the threshold voltage uniformity of the channel can be additionally obtained.

이후, 도시하지는 않았지만, 상기 게이트(28) 양측에 소오스/드레인 접합영역을 형성하고, 계속해서, 공지된 일련의 후속 공정을 차례로 진행하여 반도체 소 자를 제조한다. Subsequently, although not shown, a source / drain junction region is formed on both sides of the gate 28, and then a series of well-known subsequent steps are sequentially performed to manufacture a semiconductor device.

한편, 전술한 본 발명의 실시예에서는 스크린막(24)을 형성한 후 불순물 이온주입을 수행하였지만, 본 발명의 다른 실시예로서, 도 3에 도시된 바와 같이, 상기 스크린막(24)에 대한 이방성 식각을 추가 수행하고, 그리고나서, 불순물 이온주입을 수행할 수도 있다. 이때, 상기 이방성 식각은 스크린막(24)의 최초 증착두께가 100∼300Å인 경우에 홈(23) 저면에서의 스크린막(24)의 잔류 두께가 30∼50Å 정도가 되도록 수행한다. Meanwhile, in the above-described embodiment of the present invention, impurity ion implantation is performed after the screen film 24 is formed. As another embodiment of the present invention, as shown in FIG. Anisotropic etching may be further performed, and then impurity ion implantation may be performed. At this time, the anisotropic etching is performed so that the remaining thickness of the screen film 24 at the bottom of the groove 23 is about 30 to 50 kPa when the initial deposition thickness of the screen film 24 is 100 to 300 kPa.

이와 같이 스크린막(24)에 대한 이방성 식각을 진행하는 경우에는 홈(23)의 양측벽을 제외한 기판(21) 표면 및 홈 저면의 스크린막 두께를 낮출 수 있어서 불순물 이온주입 공정의 신뢰성을 높일 수 있다. When the anisotropic etching is performed on the screen film 24 as described above, the thickness of the screen film on the surface of the substrate 21 and the bottom of the grooves excluding both side walls of the grooves 23 can be reduced, thereby increasing the reliability of the impurity ion implantation process. have.

이상, 여기에서는 본 발명을 특정 실시예에 관련하여 도시하고 설명하였지만, 본 발명이 그에 한정되는 것은 아니며, 이하의 특허청구의 범위는 본 발명의 정신과 분야를 이탈하지 않는 한도 내에서 본 발명이 다양하게 개조 및 변형될 수 있다는 것을 당업계에서 통상의 지식을 가진 자가 용이하게 알 수 있다.As mentioned above, although the present invention has been illustrated and described with reference to specific embodiments, the present invention is not limited thereto, and the following claims are not limited to the scope of the present invention without departing from the spirit and scope of the present invention. It can be easily understood by those skilled in the art that can be modified and modified.

이상에서와 같이, 본 발명은 리세스 게이트를 갖는 반도체 소자를 제조함에 있어서, 리세스된 기판 부분의 저면 양측에 대응하는 채널 가장자리의 도핑농도가 채널 중앙부의 도핑농도 보다 낮아지게 함으로써, 채널 가장자리부분에서의 전계 분산 효과가 감소하고, 이에 따라, 국부적인 문턱전압 증가 현상이 억제되어 tWR 특성이 개선된다. 따라서, 소자의 신뢰성 및 수율이 향상되는 효과를 얻을 수 있 다. As described above, according to the present invention, in the fabrication of a semiconductor device having a recess gate, the doping concentration of the channel edge corresponding to both sides of the bottom surface of the recessed substrate portion is lower than the doping concentration of the channel center portion. The electric field dispersion effect at is reduced, thereby suppressing the local threshold voltage increase and improving the tWR characteristic. Therefore, the effect of improving the reliability and yield of the device can be obtained.

또한, 본 발명은, 채널 가장자리부분과 채널 중앙부분의 도핑농도 차이로 인해 채널 가장자리부분에 대응하는 게이트산화막이 채널 중앙부에 대응하는 게이트산화막 보다 얇게 형성되므로, 채널의 문턱전압 균일성이 향상되는 효과를 부가적으로 얻을 수 있다.In addition, according to the present invention, since the gate oxide film corresponding to the channel edge portion is formed thinner than the gate oxide film corresponding to the channel center portion due to the difference in the doping concentration between the channel edge portion and the center channel portion, the threshold voltage uniformity of the channel is improved. Can additionally be obtained.

Claims (5)

반도체기판의 채널 형성 영역을 리세스하여 홈을 형성하는 단계; Recessing the channel forming region of the semiconductor substrate to form a groove; 상기 홈을 포함한 기판 전면 상에 스크린막을 형성하는 단계; 및Forming a screen film on the entire surface of the substrate including the groove; And 상기 홈의 양측벽에 형성된 스크린막을 이온주입 장벽으로 이용해서 기판 내에 채널 문턱전압 조절을 위해 불순물을 이온주입하여 홈의 양측 가장자리부분 하부의 채널 영역의 도핑농도가 채널 중앙부의 도핑농도 보다 낮아지도록 만드는 단계;를 포함하는 것을 특징으로 하는 반도체 소자의 제조방법. Using the screen films formed on both sidewalls of the grooves as an ion implantation barrier, impurities are implanted into the substrate to control the channel threshold voltage so that the doping concentration of the channel region below both edge portions of the grooves is lower than that of the center portion of the channel. Method of manufacturing a semiconductor device comprising a. 제 1 항에 있어서, 상기 스크린막은 50∼300Å 두께로 형성하는 것을 특징으로 하는 반도체 소자의 제조방법. The method of manufacturing a semiconductor device according to claim 1, wherein the screen film is formed to a thickness of 50 to 300 GPa. 제 1 항에 있어서, 상기 불순물 이온주입은 B, BF2 및 In로 구성된 그룹으로부터 선택되는 어느 하나의 도펀트를 사용하여 수행하는 것을 특징으로 하는 반도체 소자의 제조방법. The method of claim 1, wherein the impurity ion implantation is performed using any one dopant selected from the group consisting of B, BF 2, and In. 제 1 항에 있어서, 상기 스크린막을 형성하는 단계 후, 그리고, 상기 불순물을 이온주입하는 단계 전, 상기 스크린막을 이방성 식각하는 단계를 더 포함하는 것을 특징으로 하는 반도체 소자의 제조방법. The method of claim 1, further comprising anisotropically etching the screen layer after the forming of the screen layer and before the ion implantation of the impurity. 제 4 항에 있어서, 상기 이방성 식각은, 스크린막의 증착두께가 100∼300Å 인 경우, 홈 저면의 스크린막 잔류두께가 30∼50Å이 되도록 수행하는 것을 특징으로 하는 반도체 소자의 제조방법. The method of claim 4, wherein the anisotropic etching is performed so that the remaining thickness of the screen film on the bottom of the groove is 30 to 50 kPa when the deposition thickness of the screen film is 100 to 300 kPa.
KR1020050058169A 2005-06-30 2005-06-30 Method of manufacturing semiconductor device KR20070002575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050058169A KR20070002575A (en) 2005-06-30 2005-06-30 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050058169A KR20070002575A (en) 2005-06-30 2005-06-30 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
KR20070002575A true KR20070002575A (en) 2007-01-05

Family

ID=37869544

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050058169A KR20070002575A (en) 2005-06-30 2005-06-30 Method of manufacturing semiconductor device

Country Status (1)

Country Link
KR (1) KR20070002575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861298B1 (en) * 2007-03-30 2008-10-01 주식회사 하이닉스반도체 Method for forming of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861298B1 (en) * 2007-03-30 2008-10-01 주식회사 하이닉스반도체 Method for forming of semiconductor device

Similar Documents

Publication Publication Date Title
KR100640159B1 (en) Semiconductor device increased channel length and method for manufacturing the same
KR100801729B1 (en) Transistor having a gate to be subsided into substrate and method of fabricating the same
KR100801315B1 (en) Method of fabricating semiconductor device with the finfet transistor
US20110057261A1 (en) Semiconductor device having recess channel structure and method for manufacturing the same
US20080296670A1 (en) Semiconductor Devices Including Transistors Having a Recessed Channel Region and Methods of Fabricating the Same
US7732877B2 (en) Gated diode with non-planar source region
KR20070002575A (en) Method of manufacturing semiconductor device
KR100905168B1 (en) Semiconductor device and method for forming the same
KR20070002576A (en) Method of manufacturing semiconductor device
KR101132297B1 (en) Method for forming gate of semiconductor device
KR20080088095A (en) Method for forming gate of semiconductor device
KR100660327B1 (en) Transistor of semiconductor device and method for forming the same
KR100691009B1 (en) Method of manufacturing semiconductor device
KR20070100028A (en) Method of manufacturing semiconductor device
KR100743637B1 (en) Method of manufacturing mosfet device
KR100876886B1 (en) Method of manufacturing semiconductor device
KR100772115B1 (en) Method of manufacturing mosfet device
KR20050047659A (en) Method for manufacturing semiconductor device having recess channel mos transistor
KR100660337B1 (en) Method for forming transistor of semiconductor device
KR100618705B1 (en) Method for forming gate of semiconductor device
KR100876833B1 (en) Semiconductor device and method for manufacturing the same
KR100943133B1 (en) Transistor of semiconductor device and forming method thereof
KR100596810B1 (en) Method of manufacturing semiconductor device
KR100608384B1 (en) Method of manufacturing semiconductor device
KR100587090B1 (en) Method for manufacturing transistor in semiconductor device

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination