KR100691009B1 - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
KR100691009B1
KR100691009B1 KR1020050045073A KR20050045073A KR100691009B1 KR 100691009 B1 KR100691009 B1 KR 100691009B1 KR 1020050045073 A KR1020050045073 A KR 1020050045073A KR 20050045073 A KR20050045073 A KR 20050045073A KR 100691009 B1 KR100691009 B1 KR 100691009B1
Authority
KR
South Korea
Prior art keywords
active region
gate
stepped
film
forming
Prior art date
Application number
KR1020050045073A
Other languages
Korean (ko)
Other versions
KR20060122528A (en
Inventor
김보연
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020050045073A priority Critical patent/KR100691009B1/en
Publication of KR20060122528A publication Critical patent/KR20060122528A/en
Application granted granted Critical
Publication of KR100691009B1 publication Critical patent/KR100691009B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

본 발명은 반도체 소자의 제조방법을 개시한다. 개시된 본 발명의 방법은, STAR(Step-gated asymmetry recess) 셀을 형성하기 위한 반도체 소자의 제조방법으로서, 액티브영역을 한정하는 소자분리막이 구비된 반도체기판을 제공하는 단계와, 상기 소자분리막의 일부분 및 이에 접한 액티브영역 일부분을 제1깊이만큼 식각하여 단차진 액티브영역을 형성하는 단계와, 상기 단차진 액티브영역에서 식각되지 않은 영역의 모서리부분을 제1깊이보다 얕은 제2깊이만큼 식각하여 2단의 단차를 갖는 액티브영역을 형성하는 단계와, 상기 2단의 단차를 갖는 액티브영역을 포함한 기판 결과물 상에 게이트절연막, 게이트도전막 및 하드마스크막을 차례로 형성하는 단계와, 상기 하드마스크막과 게이트도전막을 패터닝하여 비대칭 단차 구조의 게이트를 형성하는 단계를 포함한다. 본 발명에 따르면, STAR 셀 구조를 형성함에 있어서 2회의 식각 공정을 통해 액티브영역이 이중으로 단차지도록 하여 전체적인 단차를 완화시킴으로써, 종래 1단으로 단차진 게이트에 비해 채널의 유효 길이를 증가시킬 수 있다. 그러므로, 게이트영역과 드레인영역의 전계 차이에 의한 전류 누설(GIDL) 현상이 감소되어 소자의 리프레쉬 시간이 증가된다.The present invention discloses a method for manufacturing a semiconductor device. The disclosed method is a method of manufacturing a semiconductor device for forming a step-gated asymmetry recess (STAR) cell, the method comprising the steps of: providing a semiconductor substrate having a device isolation film defining an active region; And etching a portion of the active region in contact with the first depth to form a stepped active region, and etching a corner portion of the unetched region in the stepped active region by a second depth shallower than the first depth. Forming an active region having a step difference, sequentially forming a gate insulating film, a gate conductive film, and a hard mask film on a substrate resultant including the two-step active area; and forming the hard mask film and the gate conductive film. Patterning the film to form a gate of an asymmetric stepped structure. According to the present invention, in forming the STAR cell structure, the active region is double-stepped through two etching processes to alleviate the overall step, thereby increasing the effective length of the channel compared to the stepped gate in the first step. . Therefore, the current leakage (GIDL) phenomenon due to the electric field difference between the gate region and the drain region is reduced, thereby increasing the refresh time of the device.

Description

반도체 소자의 제조방법{METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE}Manufacturing method of semiconductor device {METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE}

도 1a 내지 도 1c는 종래 기술에 따른 리세스 채널을 갖는 반도체 소자의 제조방법을 설명하기 위한 공정별 단면도.1A to 1C are cross-sectional views illustrating a method of manufacturing a semiconductor device having a recess channel according to the prior art.

도 2a 내지 도 2d는 본 발명의 실시예에 따른 리세스 채널을 갖는 반도체 소자의 제조방법을 설명하기 위한 공정별 단면도.2A to 2D are cross-sectional views illustrating processes of manufacturing a semiconductor device having a recess channel according to an exemplary embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

21 : 반도체기판 22 : 소자분리막21 semiconductor substrate 22 device isolation film

23 : 게이트절연막 24 : 폴리실리콘막 23 gate insulating film 24 polysilicon film

25 : 텅스텐실리사이드막 26 : 하드마스크막 25 tungsten silicide film 26 hard mask film

27 : 게이트 200 : 제1감광막 패턴27: gate 200: first photosensitive film pattern

300 : 제2감광막 패턴 S1 : 제1단차 300: second photosensitive film pattern S1: first step

S2 : 제2단차 S2: second step

본 발명은 반도체 소자의 제조방법에 관한 것으로, 보다 상세하게는, 소자의 리프레쉬(refresh) 특성을 향상시킬 수 있는 반도체 소자의 제조방법에 관한 것이 다.The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device capable of improving the refresh characteristics of the device.

최근, 고집적 모스펫(MOSFET) 소자의 디자인 룰이 100nm급 기술로 급격히 감소함에 따라 그에 대응하는 셀 트랜지스터의 채널 길이도 매우 감소되는 실정이다. 또한, 반도체기판의 도핑 농도 증가로 인한 전계(Electric field) 증가에 따른 접합 누설 전류 증가 현상으로 인해 기존의 플래너(planer) 채널 구조를 갖는 트랜지스터의 구조로는 리프레쉬 특성을 향상시키는 데 그 한계점에 이르렀다. 이에 따라, 유효 채널 길이(effective channel length)를 확보할 수 있는 다양한 형태의 리세스 채널(recess channel)을 갖는 모스펫 소자의 구현에 대한 아이디어 및 실제 공정개발 연구가 활발히 진행되고 있다.Recently, as the design rule of a highly integrated MOSFET device is rapidly reduced to 100 nm technology, the channel length of a corresponding cell transistor is also greatly reduced. In addition, due to the increase in the junction leakage current due to the increase in the electric field due to the increased doping concentration of the semiconductor substrate, the transistor structure having the planar channel structure has reached the limit of improving the refresh characteristics. . Accordingly, studies on the implementation of the MOSFET and the actual process development research have been actively conducted on the implementation of a MOSFET having various types of recess channels capable of securing an effective channel length.

이러한 노력의 하나로 최근 STAR(Step-gated asymmetry recess) 셀 구조가 제안되었다. STAR 셀은 액티브영역의 일부를 리세스시켜 상기 액티브영역이 단차지도록 만들고, 이렇게 단차진 액티브영역에 게이트를 형성하여 모스펫 소자에서의 유효 채널 길이를 증가시켜 준 구조로서, 단채널효과를 줄여주어 낮은 문턱전압 도우즈로도 원하는 정도의 문턱전압을 얻을 수 있으며, 그러므로, 모스펫 소자에 걸리는 전계를 낮출 수 있어서, 데이터를 갱신하는 리프레쉬 시간을 기존의 평면형 셀 구조에 비해 증가시킬 수 있다. As one of these efforts, a step-gated asymmetry recess (STAR) cell structure has recently been proposed. The STAR cell recesses a portion of the active region so that the active region is stepped, and a gate is formed in the stepped active region to increase the effective channel length in the MOSFET device. The threshold voltage dose can be used to obtain a desired threshold voltage. Therefore, the electric field applied to the MOSFET element can be lowered, so that the refresh time for updating data can be increased compared to the conventional planar cell structure.

특히, 이와 같은 STAR 셀은 기존 공정에 간단한 공정을 추가하거나 변경하여 구현할 수 있으므로, 그 적용이 매우 용이해서 현재로선 메모리 반도체 소자의 고집적화에 따른 문턱전압 마진 및 리프레쉬 시간의 감소 문제를 해결할 수 있는 매우 유효한 방법으로 대두되고 있다. In particular, such a STAR cell can be implemented by adding or modifying a simple process to an existing process, and thus is very easy to apply, which can solve the problem of reducing the threshold voltage margin and refresh time caused by high integration of memory semiconductor devices. It is emerging in a valid way.

도 1a 내지 도 1d는 종래 기술에 따른 리세스 채널을 갖는 반도체 소자의 게이트 형성방법을 설명하기 위한 공정별 단면도이다.1A to 1D are cross-sectional views illustrating processes for forming a gate of a semiconductor device having a recess channel according to the related art.

먼저, 도 1a에 도시된 바와 같이, 액티브영역을 한정하는 소자분리막(2)이 구비된 반도체기판(1) 상에 감광막패턴(100)을 형성한 후, 상기 감광막패턴(100)을 식각장벽으로로 이용하여 소자분리막(2)의 일부와 그와 인접한 액티브영역의 일부를 식각한다. First, as shown in FIG. 1A, a photoresist pattern 100 is formed on a semiconductor substrate 1 having an isolation layer 2 defining an active region, and then the photoresist pattern 100 is formed as an etch barrier. A portion of the device isolation layer 2 and a portion of the active region adjacent thereto are etched by using the N etch line.

이어서, 상기 감광막 패턴(100)을 제거한 후, 상기 결과물 내에 문턱 전압을 조절하기 위한 불순물 이온주입을 실시한다.Subsequently, after removing the photoresist pattern 100, impurity ions are implanted into the resultant to adjust the threshold voltage.

다음으로, 도 1b에 도시된 바와 같이, 상기 소자분리막(2)을 포함한 기판 결과물 상에 게이트절연막으로서 산화막(3)을 형성하고, 이어서, 상기 산화막(3) 상에 폴리실리콘막(4)과 텅스텐실리사이드막(5) 및 하드마스크막(6)을 차례로 형성한다.Next, as shown in FIG. 1B, an oxide film 3 is formed as a gate insulating film on the substrate product including the device isolation film 2, and then a polysilicon film 4 is formed on the oxide film 3. The tungsten silicide film 5 and the hard mask film 6 are sequentially formed.

그런다음, 도 1c에 도시된 바와 같이, 상기 하드마스크막(6)과 텅스텐실리사이드막(5) 및 폴리실리콘막(4)을 차례로 식각하여 게이트(7)를 형성한다. Then, as shown in FIG. 1C, the hard mask film 6, the tungsten silicide film 5, and the polysilicon film 4 are sequentially etched to form the gate 7.

이후, 도시하지는 않았으나, 공지된 일련의 후속 공정을 차례로 진행하여 반도체 소자를 제조한다. Subsequently, although not shown, a series of known subsequent processes are sequentially performed to manufacture the semiconductor device.

그러나, 종래의 STAR 셀 형성 공정에서는, 1회의 식각 공정을 수행하여 액티브영역의 단차를 형성하므로, 도 1c의 A영역에서와 같이, 1단의 비교적 큰 단차를 갖는 액티브영역이 형성된다. 그러므로, 채널의 유효 길이도 1단의 단차 길이만큼 만 증가하게 되는데, 이러한 채널의 증가는 단채널효과 및 리프레쉬 특성을 개선시키는데 효과가 있기는 하지만, 그 효과의 정도는 매우 제한적이라는 한계가 있다.However, in the conventional STAR cell forming process, since one step of etching is performed to form a step of the active region, an active region having a relatively large step of one step is formed as in the region A of FIG. 1C. Therefore, the effective length of the channel is also increased only by the step length of one stage. Although the increase of the channel is effective in improving the short channel effect and refresh characteristics, the degree of the effect is very limited.

따라서, 본 발명은 상기와 같은 종래 STAR 셀 제조기술의 한계를 극복하여 소자의 리프레쉬(refresh) 특성을 더욱 향상시킬 수 있는 반도체 소자의 제조방법을 제공함에 그 목적이 있다. Accordingly, an object of the present invention is to provide a method of manufacturing a semiconductor device capable of further improving the refresh characteristics of the device by overcoming the limitations of the conventional STAR cell manufacturing technology as described above.

상기와 같은 목적을 달성하기 위한 본 발명의 반도체 소자의 제조방법은, STAR(Step-gated asymmetry recess) 셀을 형성하기 위한 반도체 소자의 제조방법으로서, 액티브영역을 한정하는 소자분리막이 구비된 반도체기판을 제공하는 단계; 상기 소자분리막의 일부분 및 이에 접한 액티브영역 일부분을 제1깊이만큼 식각하여 단차진 액티브영역을 형성하는 단계; 상기 단차진 액티브영역에서 식각되지 않은 영역의 모서리부분을 제1깊이보다 얕은 제2깊이만큼 식각하여 2단의 단차를 갖는 액티브영역을 형성하는 단계; 상기 2단의 단차를 갖는 액티브영역을 포함한 기판 결과물 상에 게이트절연막, 게이트도전막 및 하드마스크막을 차례로 형성하는 단계; 상기 하드마스크막과 게이트도전막을 패터닝하여 비대칭 단차 구조의 게이트를 형성하는 단계를 포함한다.The semiconductor device manufacturing method of the present invention for achieving the above object is a semiconductor device manufacturing method for forming a step-gated asymmetry recess (STAR) cell, a semiconductor substrate having a device isolation film defining an active region Providing a; Etching a portion of the isolation layer and a portion of the active region in contact with the first isolation layer by a first depth to form a stepped active region; Etching an edge portion of the unetched region in the stepped active region by a second depth shallower than a first depth to form an active region having two steps; Sequentially forming a gate insulating film, a gate conductive film, and a hard mask film on the substrate product including the active region having the two steps; Patterning the hard mask layer and the gate conductive layer to form a gate having an asymmetric stepped structure.

(실시예)(Example)

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하도록 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2d는 본 발명에 따른 반도체 소자의 제조방법을 설명하기 위 한 공정별 단면도로서, 이를 설명하면 다음과 같다. 2A through 2D are cross-sectional views illustrating processes for manufacturing a semiconductor device according to the present invention.

도 2a를 참조하면, 공지의 STI(Shallow Trench Isolation) 공정에 따라 액티브영역을 한정하는 트렌치형의 소자분리막(22)이 구비된 반도체기판(21)을 마련한다. 그런다음, STAR 셀 구조를 형성하기 위해 제1감광막 패턴(200)을 형성하고 공지의 포토 공정 및 식각 공정을 통해 소자분리막(22)의 일부분 및 이에 인접한 액티브영역의 일부분을 1차로 식각해서 상기 액티브영역에 제1단차(S1)를 만든다. 그런다음, 상기 제1감광막 패턴(200)을 제거한다. Referring to FIG. 2A, a semiconductor substrate 21 having a trench type isolation layer 22 defining an active region is provided according to a known shallow trench isolation (STI) process. Then, the first photoresist film pattern 200 is formed to form a STAR cell structure, and a portion of the device isolation layer 22 and a portion of the active region adjacent thereto are primarily etched through a known photo process and an etching process. A first step S1 is made in the area. Then, the first photoresist pattern 200 is removed.

여기서, 상기 제1단차는 10∼1000Å 깊이로 형성하되, 바람직하게는, 350∼450Å 깊이로 형성한다. Here, the first step is formed to a depth of 10 ~ 1000∼, preferably, 350 ~ 450Å depth.

도 2b를 참조하면, 상기 기판 결과물 상에 제2감광막 패턴(300)을 형성하고, 상기 제2감광막 패턴(300)을 식각장벽으로 이용해서, 제1단차(S1)가 형성된 액티브영역의 일부분, 즉, 상기 제1단차(S1)에 인접한 액티브영역의 일부분을 2차로 식각하여 제1단차(S1)의 측면에 상기 제1단차(S1) 보다 낮은 제2단차(S2)를 형성하고, 이를 통해, 2단으로 단차진 액티브영역을 만든다. 이때, 상기 액티브영역은 2단으로 단차진 것으로 인해 전체적인 단차는 종래의 그것 보다 완화된다. Referring to FIG. 2B, a portion of an active region in which a first step S1 is formed by forming a second photoresist pattern 300 on the substrate resultant and using the second photoresist pattern 300 as an etch barrier, That is, a portion of the active area adjacent to the first step S1 is etched second to form a second step S2 lower than the first step S1 on the side of the first step S1. In step 2, a stepped active area is formed. At this time, since the active area is stepped in two steps, the overall step is relaxed than that of the conventional one.

다음으로, 도 2c에 도시된 바와 같이, 제2감광막 패턴(300)을 제거한 상태에서, 상기 2단으로 단차진 액티브영역을 포함하는 기판 결과물 상에 게이트절연막(23)을 형성한 후, 상기 게이트절연막(23) 상에 게이트도전막으로서 폴리실리콘막(24)과 텅스텐실리사이드막(25)을 차례로 형성하고, 이어서, 상기 텅스텐실리사이드막(25) 상에, 예컨데, 질화막으로 이루어진 하드마스크막(26)을 증착한다. Next, as shown in FIG. 2C, after the second photoresist pattern 300 is removed, the gate insulating film 23 is formed on the substrate product including the active region stepped into the second stage, and then the gate is formed. A polysilicon film 24 and a tungsten silicide film 25 are sequentially formed on the insulating film 23 as a gate conductive film, and then a hard mask film 26 made of, for example, a nitride film is formed on the tungsten silicide film 25. E).

도 2d를 참조하면, 상기 하드마스크막(26), 텅스텐실리사이드막(25), 폴리실리콘막(24)을 차례로 식각하여 2단으로 단차진 액티브영역에 비대칭 단차 게이트(asymmetry step gate) 구조의 게이트들(27)을 형성한다. Referring to FIG. 2D, the hard mask layer 26, the tungsten silicide layer 25, and the polysilicon layer 24 are sequentially etched to form a gate having an asymmetry step gate structure in an active region stepped into two stages. Form a field (27).

이때, 본 발명은 액티브영역에서의 단차를 1회의 식각 공정으로 형성하는 종래의 그것과는 달리 2회의 식각 공정을 통해 2단으로 단차지도록 만듦으로써, 전체적인 단차 정도가 완화된다.In this case, unlike the conventional method of forming the step in the active region in one etching process, the present invention makes the step in two steps through two etching processes, thereby reducing the overall level of steps.

따라서, 본 발명에서는 상기와 같이 2단으로 단차진 액티브영역을 형성하므로, 게이트 채널의 유효길이가 종래 1단의 단차를 갖는 채널에 비해 더욱 증가하게 되고, 채널 길이가 증가한 만큼 문턱전압이 증가하므로, 채널의 문턱전압 조절을 위한 불순물 이온주입 공정시 요구되는 이온주입 도우즈가 감소한다. Therefore, in the present invention, since the stepped active region is formed in two stages as described above, the effective length of the gate channel is further increased as compared with a channel having a step in the conventional first stage, and the threshold voltage increases as the channel length increases. In addition, the ion implantation dose required in the impurity ion implantation process for controlling the threshold voltage of the channel is reduced.

이와 같이, 본 발명의 방법에서는 1단으로 단차를 형성하는 종래에 비해 채널 쪽의 불순물 도핑농도가 감소하여, 채널과 소오스/드레인영역과의 전계 차이도 감소한다. 그러므로, 게이트 채널영역과 드레인 영역의 전압차에 의해 발생하는 누설 전류의 양(GIDL)이 감소되고, 이에 따라, 소자의 리프레쉬 시간을 더욱 증가시킬 수 있다. As described above, in the method of the present invention, the impurity doping concentration on the channel side is reduced, compared with the conventional step of forming a step in one stage, and the electric field difference between the channel and the source / drain region is also reduced. Therefore, the amount of leakage current GIDL generated by the voltage difference between the gate channel region and the drain region is reduced, and accordingly, the refresh time of the device can be further increased.

이후, 도시하지는 않았으나, 소오스/드레인 영역 형성용 이온주입 공정을 포함한 공지된 일련의 후속 공정들을 차례로 진행하여 본 발명에 따른 STAR 셀 구조를 갖는 반도체 소자의 제조를 완성한다. Subsequently, although not shown, a series of well-known subsequent processes including an ion implantation process for forming a source / drain region are sequentially performed to complete the manufacture of a semiconductor device having a STAR cell structure according to the present invention.

이상, 여기에서는 본 발명을 특정 실시예에 관련하여 도시하고 설명하였지만, 본 발명이 그에 한정되는 것은 아니며, 이하의 특허청구의 범위는 본 발명의 정신과 분야를 이탈하지 않는 한도 내에서 본 발명이 다양하게 개조 및 변형될 수 있다는 것을 당업계에서 통상의 지식을 가진 자가 용이하게 알 수 있다.As mentioned above, although the present invention has been illustrated and described with reference to specific embodiments, the present invention is not limited thereto, and the following claims are not limited to the scope of the present invention without departing from the spirit and scope of the present invention. It can be easily understood by those skilled in the art that can be modified and modified.

이상에서와 같이, 본 발명은 STAR 셀 구조를 형성함에 있어서 2회의 식각 공정을 통해 액티브영역이 이중으로 단차지도록 하여 전체적인 단차를 완화시킴으로써, 종래 1단으로 단차진 게이트에 비해 채널의 유효 길이를 증가시킬 수 있다. 이에 따라, 채널의 문턱전압 조절을 위한 불순물 이온주입 도우즈를 종래 보다 감소시킬 수 있고, 이에 따라, 게이트영역과 드레인영역의 전계 차이에 의한 전류 누설(GIDL) 현상이 감소되어, 결과적으로, 소자의 리프레쉬 시간이 증가되는 효과를 얻을 수 있다.As described above, the present invention increases the effective length of the channel compared to the stepped gate in the first stage by reducing the overall step by forming the STAR cell structure by making the active region double stepped through two etching processes. You can. As a result, the impurity ion implantation dose for controlling the threshold voltage of the channel can be reduced compared with the prior art, and accordingly, the current leakage (GIDL) phenomenon due to the electric field difference between the gate region and the drain region is reduced, and as a result, The refresh time can be increased.

또한, 본 발명은 상기한 바와 같이 채널의 유효 길이가 종래에 비해 더욱 증가되므로, 핫-캐리어(Hot carrier) 및 펀치-쓰루(punch-through)와 같은 단채널효과가 감소되어 소자의 신뢰성이 향상된다. In addition, the present invention further increases the effective length of the channel as described above, so that short channel effects such as hot carriers and punch-through are reduced, thereby improving device reliability. do.

Claims (1)

STAR(Step-gated asymmetry recess) 셀을 형성하기 위한 반도체 소자의 제조방법으로서, A method of manufacturing a semiconductor device for forming a step-gated asymmetry recess (STAR) cell, 액티브영역을 한정하는 소자분리막이 구비된 반도체기판을 제공하는 단계;Providing a semiconductor substrate having an isolation layer defining an active region; 상기 소자분리막의 일부분 및 이에 접한 액티브영역 일부분을 제1깊이만큼 식각하여 단차진 액티브영역을 형성하는 단계;Etching a portion of the isolation layer and a portion of the active region in contact with the first isolation layer by a first depth to form a stepped active region; 상기 단차진 액티브영역에서 식각되지 않은 영역의 모서리부분을 제1깊이보다 얕은 제2깊이만큼 식각하여 2단의 단차를 갖는 액티브영역을 형성하는 단계; Etching an edge portion of the unetched region in the stepped active region by a second depth shallower than a first depth to form an active region having two steps; 상기 2단의 단차를 갖는 액티브영역을 포함한 기판 결과물 상에 게이트절연막, 게이트도전막 및 하드마스크막을 차례로 형성하는 단계; 및Sequentially forming a gate insulating film, a gate conductive film, and a hard mask film on the substrate product including the active region having the two steps; And 상기 하드마스크막과 게이트도전막을 패터닝하여 비대칭 단차 구조의 게이트를 형성하는 단계;를 포함하는 것을 특징으로 하는 반도체 소자의 제조방법.And patterning the hard mask film and the gate conductive film to form a gate having an asymmetric stepped structure.
KR1020050045073A 2005-05-27 2005-05-27 Method of manufacturing semiconductor device KR100691009B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050045073A KR100691009B1 (en) 2005-05-27 2005-05-27 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050045073A KR100691009B1 (en) 2005-05-27 2005-05-27 Method of manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
KR20060122528A KR20060122528A (en) 2006-11-30
KR100691009B1 true KR100691009B1 (en) 2007-03-09

Family

ID=37707853

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050045073A KR100691009B1 (en) 2005-05-27 2005-05-27 Method of manufacturing semiconductor device

Country Status (1)

Country Link
KR (1) KR100691009B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697431A (en) * 1992-09-14 1994-04-08 Fujitsu Ltd Mis type semiconductor device
JPH11111981A (en) * 1997-09-24 1999-04-23 Lg Semicon Co Ltd Semiconductor device and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697431A (en) * 1992-09-14 1994-04-08 Fujitsu Ltd Mis type semiconductor device
JPH11111981A (en) * 1997-09-24 1999-04-23 Lg Semicon Co Ltd Semiconductor device and its manufacture

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
06097431 *
11111981 *

Also Published As

Publication number Publication date
KR20060122528A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
KR19980029024A (en) MOSFET and manufacturing method
KR20060013110A (en) Method of manufacturing semiconductor device
KR100840659B1 (en) Method for Manufacturing DEMOS Device
KR100691009B1 (en) Method of manufacturing semiconductor device
KR100608352B1 (en) Method for fabricating semiconductor device
KR100608384B1 (en) Method of manufacturing semiconductor device
KR100618705B1 (en) Method for forming gate of semiconductor device
KR100501935B1 (en) Semiconductor device manufacturing technology using second side wall process
KR100998958B1 (en) High voltage semiconductor device and method for fabricating the same
KR20050047659A (en) Method for manufacturing semiconductor device having recess channel mos transistor
KR20050108197A (en) Method for forming nmos transistor
KR100943133B1 (en) Transistor of semiconductor device and forming method thereof
KR100772115B1 (en) Method of manufacturing mosfet device
KR100541681B1 (en) Method for forming asymmetry junction of semiconductor device
KR100650772B1 (en) Method of manufacturing semiconductor device
KR100537272B1 (en) Method for fabricating of semiconductor device
KR100790264B1 (en) Semiconductor device and method for fabricating the same
KR100562330B1 (en) Mosfet having vertical oxide layer as isolation layer and method of fabricating the same
KR100327438B1 (en) method for manufacturing of low voltage transistor
KR20080112658A (en) Method for forming gate of semiconductor device
KR20060072959A (en) Method for forming gate of semiconductor device
KR20090088677A (en) Semiconductor device and method for manufacturing the same
KR20060075074A (en) Method for manufacturing transistor in semiconductor device
KR20050066835A (en) Method for fabricating the mosfet using selective silicidation
KR20040059994A (en) Method for manufacturing semiconductor memory device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110126

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee