KR20060022255A - 거리 검출 시스템 - Google Patents

거리 검출 시스템 Download PDF

Info

Publication number
KR20060022255A
KR20060022255A KR1020057023084A KR20057023084A KR20060022255A KR 20060022255 A KR20060022255 A KR 20060022255A KR 1020057023084 A KR1020057023084 A KR 1020057023084A KR 20057023084 A KR20057023084 A KR 20057023084A KR 20060022255 A KR20060022255 A KR 20060022255A
Authority
KR
South Korea
Prior art keywords
quasi
electric field
distance
frequency
frequencies
Prior art date
Application number
KR1020057023084A
Other languages
English (en)
Other versions
KR101031154B1 (ko
Inventor
기요아끼 다끼구찌
Original Assignee
소니 가부시끼 가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소니 가부시끼 가이샤 filed Critical 소니 가부시끼 가이샤
Publication of KR20060022255A publication Critical patent/KR20060022255A/ko
Application granted granted Critical
Publication of KR101031154B1 publication Critical patent/KR101031154B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/06Systems for determining distance or velocity not using reflection or reradiation using radio waves using intensity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/04Systems for determining distance or velocity not using reflection or reradiation using radio waves using angle measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

간이한 구성으로 거리의 검출 정밀도를 향상시킬 수 있는 거리 검출 시스템, 전계 형성 장치 및 전계 형성 방법을 제안한다. 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 준정전계를 형성하도록 하였다. 따라서, 거리가 강도에 최대한 명료하게 반영되는 준정전계를, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 형성하고 있으므로, 번잡한 제어나 특별한 장치를 필요로 하지 않고, 해당 강도에 기초하는 거리를 고정밀도로 검출시킬 수 있으며, 이리하여 간이한 구성으로 거리의 검출 정밀도를 향상시킬 수 있다.
거리 검출 시스템, 주파수, 준정전계, 검출 정밀도

Description

거리 검출 시스템{DISTANCE DETECTION SYSTEM}
본 발명은 거리 검출 시스템에 관한 것으로, 무선 통신을 행하는 단말기 사이의 거리를 검출하는 거리 검출 시스템에 적용하기에 적합한 것이다.
종래, 거리 검출 시스템에서는, 무선 통신을 행하는 단말기 사이의 거리를 검출하는 방법으로서, 예를 들면 전파(방사 전계)가 거리 r에 선형으로 반비례하여 감쇠하는 것을 이용하여, 수신측의 단말기에서 수신한 신호의 전계 강도에 기초하여 송신측의 단말기 사이에서의 거리를 검출하는 제1 방법(예를 들면 비특허 문헌1 ∼ 비특허 문헌3 참조)이나, 해당 단말기 사이의 클럭을 항상 정확하게 동기시켜 두고, 수신측의 단말기에서 송신측의 단말기로부터 송신되는 펄스 신호나 M 계열 신호의 위상 시프트(지연 성분)에 따라 거리를 검출하는 제2 방법(예를 들면 비특허 문헌4 참조)을 이용하도록 이루어진 거리 검출 시스템이 제안되어 있다.
비특허 문헌1 GIDIN F(Silicon Graphics., CA), PANTIC-TANNER Z(San Francisco State Univ., CA) : Analysis of the Measurement Uncertainty with 1/R Extapolation of Radiated Emission Measurements on an Open Area Test Site(OATS)., IEEE Int Symp Electromagn Compat, OL. 1998, NO. Vol.1 ; PAGE. 137-140 ; 1998.
비특허 문헌2 HASHIOTO H, YAMAZAKI M(Tokai Univ., Kanagawa, JPN) : M 계열 바코드를 지표로 한 거리 센서, J Adv Sci, Vol. 12, NO. 1/2 ; PAGE.144-145 ; 2000년.
비특허 문헌3 滯谷昭範, 中津川征士, 梅比良正弘(NTT 미래 네트 연구소), 久保田 周治(NTT 첨단 기술 연구소) : 정규화된 최소 제곱법에 의한 고정밀도 위치 검출의 검토, 정보 처리학회 연구 보고, VOL. 2001, NO. 83(MBL-18 ITS-6) ; PAGE. 9-14 ; 2001년.
비특허 문헌4 小山愼二, 島田寬三, 芝伸之, 安田明生(도쿄상선대) : GPS 측위 계산 프로그램에 대하여, 전자 정보 통신학회 기술 연구 보고, VOL. 101, NO. 33(SANE2001 1-11) ; PAGE.39-44 ; 2001년.
그런데 이러한 제1 방법을 이용하여 거리를 검출하는 거리 검출 시스템에서는, 전파의 지표면 반사에 의한 거리 손실, 주파수, 편파, 발사체의 지표면 고도나 송수신 안테나의 형상이나 방향 등의 여러 요인에 의해, 수신측의 단말기에서 수신하는 신호의 전계 강도가 크게 좌우되기 때문에, 거리에 선형으로 반비례하는 관계가 성립되지 않게 된 결과, 해당 거리의 검출 정밀도가 나빠진다고 하는 문제가 있었다.
한편, 제2 방법을 이용하여 거리를 검출하는 거리 검출 시스템에서는, 송신측 및 수신측의 단말기에서의 클럭을 항상 정확하게 동기시켜 두기 위해, 예를 들면 GPS(Global Positioning System)를 이용하는 등, 매우 번잡한 제어나, 클럭을 동기시키기 위한 장치가 필요하게 되기 때문에, 시스템 전체적으로 복잡한 구성이 필요하다고 하는 문제가 있었다.
<발명의 개시>
본 발명은 이상의 점을 고려하여 이루어진 것으로, 간이한 구성으로 거리의 검출 정밀도를 향상시킬 수 있는 거리 검출 시스템, 전계 형성 장치, 전계 형성 방법, 전계 수신 장치 및 전계 수신 방법을 제안하려고 하는 것이다.
이러한 과제를 해결하기 위해 본 발명에서는, 전계 형성 장치와 전계 수신 장치에 의해 구성되는 거리 검출 시스템에서, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도를 얻을 수 있도록 준정전계를 형성하는 준정전계 형성 수단을 전계 형성 장치에 구비하고, 전계 수신 장치에서 수신된 준정전계의 주파수에 기초하여 거리를 검출하는 거리 검출 수단을, 전계 형성 장치 또는 전계 수신 장치 중 어느 한 쪽에 구비하도록 하였다.
이 결과, 이 거리 검출 시스템에서는, 거리가 강도에 최대한 명료하게 반영되는 준정전계를, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 전계 형성 장치가 형성하고 있으므로, 번잡한 제어나 특별한 장치를 필요로 하지 않고, 전계 수신 장치에서 수신된 준정전계의 주파수에 기초하는 거리의 검출 정밀도를 향상시킬 수 있다.
또한 본 발명에서는, 전계 형성 장치에서, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 준정전계를 형성하는 준정전계 형성 수단을 구비하도록 하였다.
이 결과, 이 전계 형성 장치에서는, 거리가 강도에 최대한 명료하게 반영되 는 준정전계를, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 형성하고 있으므로, 번잡한 제어나 특별한 장치를 필요로 하지 않고, 수신측에서 수신되는 준정전계의 주파수에 기초하는 거리의 검출 정밀도를 향상시킬 수 있다.
또한 본 발명에서는, 전계 형성 방법에서, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 준정전계를 형성하는 준정전계 형성 스텝을 구비하도록 하였다.
이 결과, 이 전계 형성 방법에서는, 거리가 강도에 최대한 명료하게 반영되는 준정전계를, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 형성하고 있으므로, 번잡한 제어나 특별한 장치를 필요로 하지 않고, 수신측에서 수신되는 준정전계의 주파수에 기초하는 거리의 검출 정밀도를 향상시킬 수 있다.
또한 본 발명에서는, 이동 대상에 설치된 전계 수신 장치에서, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 형성된 준정전계를 수신하는 수신 수단과, 수신 수단에 의해 수신된 준정전계의 주파수에 기초하여 거리를 검출하는 거리 검출 수단을 구비하도록 하였다.
이 결과, 이 전계 수신 장치에서는, 거리가 강도에 최대한 명료하게 반영되는 준정전계를, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 형성하고 있으므로, 번잡한 제어나 특별한 장치를 필요로 하지 않고, 수신한 준정전계의 주파수에 기초하는 거리의 검출 정밀도를 향상시킬 수 있다.
또한 본 발명에서는, 이동 대상에 설치된 전계 수신 장치의 전계 수신 방법에서, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 형성된 준정전계를 수신하는 수신 수단과, 수신 수단에 의해 수신된 준정전계의 주파수에 기초하여 거리를 검출하는 거리 검출 수단을 구비하도록 하였다.
이 결과, 이 전계 수신 방법에서는, 거리가 강도에 최대한 명료하게 반영되는 준정전계를, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 형성하고 있으므로, 번잡한 제어나 특별한 장치를 필요로 하지 않고, 수신한 준정전계의 주파수에 기초하는 거리의 검출 정밀도를 향상시킬 수 있다.
도 1은 거리에서의 각 전계 각각의 상대적인 강도의 변화를 나타내는 그래프.
도 2는 강도 경계 거리와, 주파수의 관계를 나타내는 그래프.
도 3은 각 주파수에서 진동하는 준정전계를 나타내는 개략 선도.
도 4는 강도 경계 거리에 따른 각 전계의 상대적인 강도(1)를 나타내는 그래프.
도 5는 강도 경계 거리에 따른 각 전계의 상대적인 강도(2)를 나타내는 그래프.
도 6은 수신 상태와 거리의 관계를 나타내는 개략 선도 및 도표.
도 7은 거리 검출 시스템의 전체 구성을 나타내는 개략 선도.
도 8은 고정국에 의해 형성된 준정전계를 나타내는 개략 선도.
도 9는 강도 경계 거리와 주파수의 관계를 나타내는 도표.
도 10은 고정국의 구성을 도시하는 개략 선적 블록도.
도 11은 고정국에서의 제어부의 처리를 도시하는 기능 블록도.
도 12는 이동 각도의 산출의 설명을 위한 개략 선도.
도 13은 종래의 PC 제어와, 본 발명에 따른 PC 제어의 비교의 설명을 위한 개략 선도.
도 14는 고정국에서의 제어 처리 수순을 나타내는 플로우차트.
도 15는 PC 제어 처리 수순을 나타내는 플로우차트.
도 16은 이동국의 구성을 도시하는 개략 선적 블록도.
도 17은 이동국에서의 제어부의 처리를 도시하는 기능 블록도.
도 18은 보행에 수반하는 대전 변화 파형을 도시하는 개략 선도.
도 19는 보행 주파수와 보폭의 관계를 나타내는 그래프.
도 20은 파형의 잘라내기 및 분할의 설명을 위한 개략 선도.
도 21은 이동국에서의 제어 처리 수순을 나타내는 플로우차트.
도 22는 보행 속도 추정 처리 수순을 나타내는 플로우차트.
도 23은 개인 식별 처리 수순을 나타내는 플로우차트.
도 24는 다른 실시예에서의 강도 경계 거리와 주파수의 관계를 나타내는 도표.
<발명을 실시하기 위한 최량의 형태>
(1) 본 발명의 개요
본 발명은, 준정전계를 이용한 근방 통신(이하, 이것을 근접장 통신이라고 함)에 의해, 정보를 송수신한다. 이하, 이 준정전계의 성질의 관계에서 본 발명의 개요를 설명한다.
(1-1) 준정전계
일반적으로, 전기 쌍극자(다이폴 안테나)에 전류를 흘린 경우, 상기 다이폴 안테나로부터 발생되는 전계는, 맥스웰이라고 불리는 전계에 관한 방정식(이하, 이것을 맥스웰 방정식이라고 함)에 따라, 다음 수학식
Figure 112005070494081-PCT00001
으로서 표현할 수 있다. 이 수학식 1에서, 「cosωt」는 전하의 진동, 「A」는 진동하는 이 전하의 전하량과, 이 전하의 거리를 포함시킨 상수(출력에 상당하는 계수), 「θ」는 다이폴 안테나의 중심으로부터의 각도, 「r」은 다이폴 안테나의 중심으로부터의 거리(단위는 [m]), 「ε」은 유전율, 「j」는 허수, 「k」는 파수(波數)(단위는 [1/m])로서 각각 정의하고 있다.
그리고 수학식 1에 의해 표현되는 전계 중, 거리에 선형으로 반비례하는 성 분(이하, 이것을 방사 전계라고 함) E1r, E1 θ는, 다음 수학식
Figure 112005070494081-PCT00002
로서 표현할 수 있으며, 또한 거리의 제곱에 반비례하는 성분(이하, 이것을 유도 전자계라고 함)은, 다음 수학식
Figure 112005070494081-PCT00003
으로서 표현할 수 있으며, 또한 거리의 3제곱에 반비례하는 성분(이하, 이것을 준정전계라고 함) E2r, E2 θ는, 다음 수학식
Figure 112005070494081-PCT00004
으로서 표현할 수 있다.
여기서, 맥스웰 방정식을 다이폴 안테나에 적용한 것에 대하여, 방사 전계, 유도 전자계 및 준정전계 각각의 상대적인 강도와, 거리의 관계를 그래프화하면 도 1에 도시한 바와 같은 결과로 된다. 단, 도 1에서는, 주파수 1〔㎒〕에서의 각 전계 각각의 상대적인 강도를 지수(지수척도)로 치환하여 정성적으로 도시하고 있다.
도 1에서도 알 수 있듯이, 방사 전계, 유도 전자계 및 준정전계 각각의 상대적인 강도가 동일하게 되는 거리(이하, 이것을 강도 경계 거리라고 함)가 존재하고 있고, 해당 강도 경계 거리보다도 먼 곳에서는 방사 전계가 지배적으로 되어, 이것에 대하여 강도 경계 거리보다도 근방에서는 준정전계가 지배적으로 되어 있는 것을 알 수 있었다.
이 강도 경계 거리는, 맥스웰 방정식의 전계 강도에 관해서 유도되는 식에 따르면, 다음 수학식
Figure 112005070494081-PCT00005
을 충족할 때의 거리 r이다.
이 수학식 5에서의 파수 k는, 광속을 c(c = 3 × 108[㎧]),
주파수를 f라고 하면, 다음 수학식
Figure 112005070494081-PCT00006
으로 표현되는 관계에 있으며, 수학식 5와 수학식 6을 정리하면, 다음 수학식
Figure 112005070494081-PCT00007
로 된다.
이 수학식 7에 따르면, 강도 경계 거리 r는, 도 2에서도 알 수 있듯이, 주파수 f에 따라 일의적으로 결정된다.
따라서, 도 3에 도시한 바와 같이 임의의 송신 단말기 TX로부터 복수의 강도 경계 거리 r1 ∼ rn을 설정한 경우에, 각 강도 경계 거리 r1 ∼ rn에 따라 수학식 7을 충족하도록 주파수 f1 ∼ fn을 선정하면, 해당 각 주파수 f1 ∼ fn에서 진동하는 복수의 준정전계(도면에서 파선으로 나타냄)를 지배적으로 되는 공간으로서 각각 형성할 수 있다.
여기서, 예를 들면 송신 단말기 TX에서 두 가지의 주파수(5[㎒] 및 50[㎒])에서 진동하는 전계를 동일한 출력에 기초하여 형성시킨 경우에, 소정의 레벨 이상의 전계 강도를 수신할 수 있는 수신 단말기 RX가 해당 전계 내를 이동한 것을 상정하면, 도 4에 도시한 바와 같은 결과로 된다. 단, 도 4에서는, 강도 경계 거리에 따른 방사 전계, 유도 전자계 및 준정전계 각각의 상대적인 강도를 지수(지수 척도)로 치환하여 정성적으로 도시하고 있다.
즉, 이 도 4에서 5[㎒]의 주파수에서는, 수신 단말기 RX가 수신할 수 있는 소정의 레벨 이상의 전계 강도까지 준정전계가 지배적으로 되지만, 50[㎒] 주파수에서는, 1[m]를 초과하면 완전하게 방사 전계가 지배적으로 되어 버리는 것을 시각적으로 알 수 있다.
한편, 50[㎒]의 주파수에서의 전계 강도가 5[㎒]의 주파수에서의 전계 강도와 동일하게 되도록, 50[㎒]의 주파수에 대한 출력을 조정하면, 도 5에 도시한 바와 같이 5[㎒] 및 50[㎒] 중 어느 한 쪽의 주파수에서도, 수신 단말기 RX가수신할 수 있는 소정의 레벨 이상의 전계 강도까지 준정전계가 지배적으로 되는 것을 시각적으로 알 수 있다.
따라서 송신 단말기 TX(도 3)에서는, 각 강도 경계 거리 r1 ∼ rn에 따라 수학식 7을 충족하도록 선정한 주파수 f1 ∼ fn 중, 가장 작은 주파수 fn(4.8[㎒])에서의 전계 강도와 동일하게 되도록 다른 주파수 f1 ∼ f(n - 1)(47.7[㎒], 23.9[㎒], 15.9[㎒]……)에 대한 출력을 조정함으로써, 해당 각 주파수 f1 ∼ fn에서 진동하는 복수의 준정전계를 확실하게 지배적으로 되는 공간으로서 각각 형성할 수 있다. 이 경우, 수신 단말기 RX에서는, 수신한 준정전계의 주파수에 기초하여, 송신 단말기 TX와 수신 단말기 RX 사이의 거리를 검출하는 것이 가능하게 된다.
그리고, 이러한 출력을 조정에 대해서는, 해당 출력을 조정하기 위한 계수(이하, 이것을 출력 조정 계수라고 함)를 Ai로서 정의하면, 주파수 fi에 대응하는 강도 경계 거리 ri에서의 θ 방향 성분의 전계 강도 Eθ 및 r 방향 성분의 전계 강도 Er의 절대값 Ei는, 다음 수학식
Figure 112005070494081-PCT00008
과 같이 표현할 수 있기 때문에, 이 수학식 8에 기초하여, 각 주파수 fi에 각각 대응하는 강도 경계 거리 ri에서 전계 강도 Ei가 소정의 레벨 E*로 된 출력 조정 계수 Ai를, 다음 수학식
Figure 112005070494081-PCT00009
와 같이 구할 수 있다. 따라서, 송신 단말기 TX(도 3)에서는, 이 수학식 9를 이용하여, 주파수 f1 ∼ f(n - 1)(47.7[㎒], 23.9[㎒], 15.9[㎒]……)에 대한 출력을 조정할 수 있다.
이와 같이 하여 복수의 준정전계를 확실하게 지배적으로 되는 공간으로서 각각 형성한 경우, 주파수 f1 ∼ fn에 대응하는 각 준정전계의 강도는, 거리의 3제곱에 반비례하기 때문에, 방사 전계나 유도 전자계에 비하여 매우 명료하게 강도 경계 거리 r1 ∼ rn에 반영되는 특징을 갖는다.
이 특징에 주목하면, 도 6에 도시한 바와 같이 임의의 송신 단말기 TX 근방에 소정의 레벨 E* 이상의 전계 강도로 되는 신호(이하, 이것을 전계 강도 신호라고 함)를 수신할 수 있는 수신 단말기 RX가 존재하는 경우, 이 수신 단말기 RX는, 수신하는 주파수 f1 ∼ f3의 수가 많을수록, 송신 단말기 TX로부터 가까운 거리에 존재하는 것을 도표로부터도 알 수 있다. 따라서, 수신 단말기 RX는, 수신하는 주파수 f1 ∼ f3의 수에 따라, 그 수신한 시점에서의 송신 단말기 TX로부터의 거리를 고정밀도로 판정할 수 있다.
이와 같이 본 발명에서는, 송신측에서, 각 강도 경계 거리 r1 ∼ rn에 따라 수학식 7을 충족하도록 선정한 주파수 f1 ∼ fn 중, 가장 작은 주파수 fn에서의 전계 강도와 동일하게 되도록 다른 주파수 f1 ∼ f(n - 1)에 대한 출력을 조정하여 복수의 준정전계를 확실하게 지배적으로 되는 공간으로서 각각 형성해 두고, 수신측에 서 수신하는 주파수 f1 ∼ f3의 수에 따라, 해당 수신한 시점에서의 송신 단말기 TX로부터의 거리를 판정한다.
(1-2) 준정전계와 인체
그런데, 인체에 방사 전계나 유도 전자계를 발생시키고자 하면 해당 인체에 전류를 흘릴 필요가 있지만, 인체는 임피던스가 매우 높으므로, 해당 인체에 전류를 효율적으로 흘리는 것은 물리적으로 곤란하며, 또한 생리적으로도 바람직하지 못하다. 그러나 정전기에 대해서는 양상이 완전히 상이하다.
즉, 일상적으로 우리들이 정전기를 체감한다고 하는 경험적 사실로부터도 시사되듯이, 인체는 대전이 매우 잘된다. 또한 동작에 따른 인체 표면의 대전에 의해 준정전계가 발생하는 것도 잘 알려져 있기 때문에, 인체에 준정전계를 발생시키는 경우에는 해당 인체에 통전할 필요없이 대전시키면 된다.
즉, 인체에서는 매우 적은 전하의 이동에 의해 대전하여, 해당 대전 변화가 순간적으로 인체 표면 주위에 전해져 그 주위로부터 거의 동일한 방향으로 준정전계의 등전위면으로서 형성됨과 함께, 준정전계가 지배적으로 되는 공간 내에서는 방사 전계나 유도 전자계의 영향도 적으므로 안테나로서 효율적으로 기능한다. 이 것은 본 출원인에 의한 실험 결과에 의해 이미 확인되었다.
본 발명에서는, 송신측에서, 소정의 정보에 의해 변조한 신호에 따라 인체를 대전시킴으로써 해당 인체 근방의 주위에 등방으로 정보를 갖는 준정전계를 형성시키도록 하여 정보를 송신(이하, 이 송신 방법을 적절하게 인체 안테나 송신이라고 함)하고, 수신측에서, 해당 정보를 갖는 준정전계의 강도 변화를 검출하도록 하여 수신(이하, 이 수신 방법을 적절하게 인체 안테나 수신이라고 함)하여 복조함으로써 정보를 취득한다.
(1-3) 준정전계와 인체의 보행 운동
이미 설명한 바와 같이, 인체의 동작에 따라 인체 표면이 대전하지만, 인체의 주된 동작 중 하나인 보행과 대전의 관계를 좀더 상세히 설명한다.
즉, 인체의 보행 운동에 의한 인체 표면의 대전에 수반하여 형성되는 준정전계(이하, 이것을 보행 준정전계라고 함)의 강도의 변위에 대해서는, 노면과 발 저면 사이에서의 전하의 이동뿐만 아니라, 노면에 대한 발 저면의 박리 면적(또는 접촉 면적)의 변화, 및 해당 노면과 발 저면의 거리 변화도 밀접하게 관여하고 있다.
즉, 보행 운동에 의한 인체 표면의 대전 변화에서는, 해당 보행 운동에 의한 발의 궤적에 따른 해당 발과 노면 사이에서의 정전 용량 변화 및 전하의 변화에 따른 것으로, 좌우발 상호의 움직임이 조합된, 개인 고유의 패턴을 반영하고 있다.
한편, 오른발(왼발)의 발 끝이 노면으로부터 완전히 떨어진 순간에는, 보행양태의 특성상, 해당 보행 양태의 차이와 상관없이 왼발(오른발)은 노면에 완전히 붙어 있는 상태로 된다.
따라서, 이러한 상태 시에는 좌우발 상호간의 대전 상호 작용(간섭 작용)이 발생하지 않고, 해당 상태 시에서의 보행 준정전계의 강도의 변위에 대해서는 가장 큰 진폭의 피크로서 8 ± 2[㎐]의 대역 내에 특이적으로 출현한다.
본 발명에서는, 보행 운동에 의한 인체 표면의 대전 변화가 특이적으로 출현 하는 진폭의 피크(이하, 이것을 8 ㎐ 피크라고 함)를 지표로 하여 인체의 보행 속도를 계측하거나, 8 ㎐ 피크 사이에 개인 고유의 패턴으로서 출현하는 강도 변위에 기초하여 인증 처리를 행한다.
즉, 8 ㎐ 피크의 상세 내용에 대해서는, 본 출원인에 의해 이미 공개된 일본 특원2002-314920호(5페이지[0024] ∼ 12페이지[0056])를 참조하면 된다.
이상과 같이, 준정전계 혹은 인체의 성질을 이용한 본 발명의 개요를 각 항목마다 나누어 설명하였지만, 이하 이들 항목에서 설명한 본 발명을 적용한 일 실시예에 대하여 상세히 설명한다.
또한, 이하의 일 실시예에서는, 자율 분산형 무선 네트워크(소위 Ad hoc 네트워크)에 관한 문제점을 해결하기 위한 1 방법으로서 유효해지는 것이라고 생각한다.
(2) 본 발명의 1 실시예
(2-1) 거리 검출 시스템(1)의 전체 구성
도 7에서, 참조 부호 1은 본 실시예에 따른 거리 검출 시스템을 나타내며, 고정형의 무선 통신 장치(이하, 이것을 고정국이라고 함)(2)와, 가반형의 무선 통신 장치(이하, 이것을 이동국이라고 함)(3)에 의해 구성된다.
이 고정국(2)은, 제어 대상으로 삼은 퍼스널 컴퓨터(이하, 이것을 PC라고 함)(4)에 접속되어 있다. 한편, 이동국(3)은, PC(4)를 사용하는 인체(이하, 이것을 이용자라고 함)의, 예를 들면 팔(착의한 포켓 속이나, 소지하는 가방 속 등, 즉 이용자 근방이면 됨)에 배치되어 있다. 그리고 고정국(2) 및 이동국(3)은, 서로 근 접장 통신을 행한다.
구체적으로 고정국(2)에서는, 예를 들면 도 8에 도시한 바와 같이 이동국(3) 사이에서 근접장 통신을 행하기 위한 거리로서, 고정국(2)으로부터 상호 상이한 복수의 강도 경계 거리 r1 ∼ rn을 설정하고 있고, 이들 거리 r1 ∼ rn 에 따라 수학식 7을 충족하도록 송신할 신호의 주파수 f1 ∼ fn을 선정하고 있다.
그리고 고정국(2)에서는, 도 3 ∼ 도 5에 대하여 전술한 경우와 마찬가지로, 각 신호의 주파수 f1 ∼ fn 중 가장 작은 주파수 fn에서의 전계 강도 E*와 동일하게 되도록, 다른 주파수 f1 ∼ f(n-1)의 각 신호에 대한 출력을 수학식 9를 이용하여 조정함으로써, 해당 각 주파수 f1 ∼ fn에서 진동하는 복수의 준정전계가 확실하게 지배적으로 되는 공간으로서 각각 형성하도록 이루어져 있다.
예를 들면, 고정국(2)은, 도 9a에 도시한 바와 같은 강도 경계 거리에 각각 대응시켜 주파수를 선정하고 있고, 해당 강도 경계 거리와, 대응하는 주파수의 관계에서 도 9b에 도시한 바와 같은 강도를 갖는 복수의 준정전계를 형성할 수 있도록 이루어져 있다. 즉, 도 9에서는, 이동국(3)에서의 수신 감도로서, 준정전계를 수신할 수 있는 최저 강도와, 방사 전계를 수신할 수 있는 최저 강도의 차가 20[㏈]라고 가정하여, 주파수를 선정하고 있다.
한편, 이동국(3)은, 복수의 준정전계 내에 들어 간 것에 의해 해당 준정전계의 주파수에 따라 변화하는 이용자로부터 준정전계의 주파수를 수신하고, 해당 수 신한 준정전계의 주파수에 기초하여, 도 6에 대하여 전술한 바와 같이 하여, 고정국(2)까지의 거리(이하, 이것을 송수신간 거리라고 함)를 검출한다. 이 때 이동국(3)은, 준정전계의 주파수에 따라 변화하는 이용자의 대전 상태(강도의 변화)에 기초하여 이용자의 보행 속도(이하, 이것을 이용자 보행 속도라고 함)를 산출함과 함께, 소정의 인증 처리를 실행한다.
그리고 이동국(3)에서는, 이러한 인증 처리의 결과로서, 이용자가 정규 이용자의 결과를 얻었을 때, 미리 내부 메모리에 기억된 PC(4)의 ID 및 패스 워드(이하, 이들을 이용자 ID라고 함)와, 이용자 보행 속도와, 송수신간 거리를, 현 시점(대전 상태를 검출한 시점)에서의 이용자의 정보(이하, 이것을 이용자 정보라고 함)로서 생성하여, 이 이용자 정보를 인체 안테나 송신한다.
이 경우, 고정국(2)은, 이동국(3)으로부터 인체 안테나 송신된 이용자 정보를 인체 안테나 수신한 후에 복조함으로써 취득하고, 해당 취득한 이용자 정보에 기초하여 이동국(3)의 이동 상태를 추정하여, 해당 추정 결과에 기초하여 PC(4)를 제어한다.
이와 같이 하여 거리 검출 시스템(1)에서는, PC(4)에 접근하는 사용자의 이동국(3)과, 고정국(2) 사이에서 이용자 정보를 서로 근접장 통신하고, 해당 이동국(3)(이용자)가 PC(4)에 도달할 때까지 PC(4)를 기동한 후, 필요에 따라 로그인하도록 이루어져 있다.
(2-2) 고정국(2)의 구성
도 10에 도시한 바와 같이 고정국(2)은, 통신용 전극(10), 송수신 절환 스위 치(11), 송신부(20), 수신부(30) 및 제어부(40)에 의해 구성된다.
송신부(20)는, 각각 독립하여 동작하는 복수의 송신 처리부(21A ∼ 21N)를 갖고, 해당 송신 처리부(21A ∼ 21N)에는 복수의 발신기(22A ∼ 22N)가 설치되어 있다.
이 경우, 미리 설정된 복수의 강도 경계 거리 r1 ∼ rn에 각각 대응시켜, 수학식 7을 충족하는 주파수 f1 ∼ fn에서 이루어지는 반송파 신호 CAa ∼ CAn을 발생하는 발신기(22A ∼ 22N)가 선정되어 있다.
송신 처리부(21A ∼ 21N)는, 반송파 신호 CAa ∼ CAn을 변조 회로(23A ∼ 23N)를 통하여 표지 정보에 따라 주파수 변조한 후에 출력 조정부(24A ∼ 24N)를 통하여 출력 조정하여, 해당 조정 결과를 표식파 신호 MKa ∼ MKn으로서 선택 스위치(25A ∼ 25N)를 통하여 합성기(26)에 송출한다.
이 경우, 가장 작은 주파수 fn에서 이루어지는 반송파 신호 CAn에 대응하는 출력 조정부(24N) 이외의 출력 조정부(24A ∼ 24(N - 1))는, 해당 주파수 fn에서의 전계 강도와 동일하게 되도록, 반송파 신호 CAa ∼ CA(n - 1)에 대한 출력을 수학식 9에 따라 출력 조정하도록 이루어져 있다.
합성기(26)는, 표식파 신호 MKa ∼MKn을 합성하여, 이 합성 결과를 합성 표식파 신호 MK로서 송수신 절환 스위치(11)를 통하여 통신용 전극(10)에 인가한다. 이 결과, 통신용 전극(10)를 통하여, 복수의 주파수 f1 ∼ fn에 따라 진동하는 복수의 준정전계(도 8)가 형성된다.
이와 같이 하여 송신부(20)에서는, 각 표식파 신호 MKa ∼ MKn에 각각 대응하는 주파수 f1 ∼ fn에서 진동하는 복수의 준정전계를 확실하게 지배적으로 되는 공간으로서 각각 형성한다. 이에 따라 이동국(3)에서는, 고정국(2)으로부터의 거리(즉 해당 이동국(3)의 존재 위치)에 따른 주파수 f에서 진동하는 준정전계를 수신할 수 있도록 이루어져 있다.
수신부(30)는, 이러한 각 준정전계 내에 이용자가 들어간 결과, 이동국(3)(3a ∼ 3n)에 의해 이용자 근방에 형성되는 준정전계의 강도 변위를 통신용 전극(10), 송수신 절환 스위치(11) 및 FET(31)의 게이트를 순차적으로 통하여 검출(인체 안테나 수신)하고, 이것을 앰프(32)를 통하여 증폭시킨 후에 복조 회로(33)를 통하여 복조하고, 이 결과 얻어지는 이용자 정보 D1(D1a∼D1n)을 제어부(40)에 송출한다.
제어부(40)는, 도시하지 않은 CPU(Central Processing Unit), 워크 메모리 및 정보 저장용 메모리를 갖고, CPU의 제어에 기초하여, 정보 저장용 메모리에 기억된 소정의 제어 프로그램을 워크 메모리에 판독하여 제어 처리를 실행한다. 이 정보 저장용 메모리에는, 제어 프로그램 이외에도 각종 정보가 저장되어 있다.
여기서, 이 제어부(40)에서의 제어 처리의 내용을 기능적으로 분류하면, 도 11에 도시한 바와 같이 수신부(30)로부터 공급되는 이용자 정보 D1을 검출하는 수신 데이터 해석부(41)와, 수신 데이터 해석부(41)에 의해 검출된 이용자 정보 D1에 기초하여 송신부(20)의 사용 주파수(즉 송신부(20)로부터 출력하는 표식파 신호 MKa ∼ MKn의 주파수 f1 ∼ fn을 결정하는 주파수 선택부(42)와, 해당 이용자 정보 D1에 기초하여 이동국(3)의 이동 상태를 산출하는 이동 상태 산출부(43)와, 이동 상태 산출부(43)의 산출 결과에 기초하여 PC(4)를 제어하는 PC 제어부(44)로 나눌 수 있다. 이하, 이들 수신 데이터 해석부(41), 주파수 선택부(42), 이동 상태 산출부(43) 및 PC 제어부(44)의 처리에 대하여 설명한다.
(2-2-1) 수신 데이터 해석부(41)의 처리
수신 데이터 해석부(41)는, 수신부(30)로부터 공급되는 이용자 정보(이용자 ID, 이용자 보행 속도 및 송수신간 거리) D1을 소정 주기로 검출하도록 이루어져 있고, 그 검출 결과가 단수인 경우(즉 고정국(2)에 의해 형성된 복수의 준정전계 중에 한 대의 이동국(3)만 존재하는 경우)에는, 그 검출한 이용자 정보 D1을 그대로 주파수 선택부(42) 및 이동 상태 산출부(43)에 송출한다.
이것에 대하여 수신 데이터 해석부(41)는, 검출 결과가 복수인 경우(즉 고정국(2)에 의해 형성된 복수의 준정전계 중에 복수의 이동국(3a ∼ 3n)이 존재하는 경우)에는, 해당 검출한 복수의 이용자 정보 D1a ∼ D1n 각각의 송수신간 거리를 비교함으로써, 최소값의 송수신 거리를 나타내는 이용자 정보 D1(D1a, D1b, ……, 또는 D1n)을, 고정국(2)에 가장 가까운 이동국(3)으로부터 인체 안테나 송신된 이용자 정보 D1로서 특정하여, 이것을 주파수 선택부(42) 및 이동 상태 산출부(43)에 송출한다.
이 경우, 수신 데이터 해석부(41)는, 고정국(2)로부터의 강도 경계 거리 r1 ∼ rn에 따라 일의적인 관계에 있는 주파수 f1 ∼ fn 중, 이동국(3)이 존재하는 위치에서 수신된 주파수 f에 기초한 송수신간 거리를 비교 대상으로 하고 있기 때문에, 해당 송수신 거리를 비교하는 간이한 처리에 의해, 고정국(2)에 가장 가까운 이동국(3)으로부터 인체 안테나 송신된 이용자 정보 D1을 정밀도 좋게 특정할 수 있도록 이루어져 있다.
(2-2-2) 주파수 선택부(42)의 처리
주파수 선택부(42)는, 강도 경계 거리 r1 ∼ rn과, 주파수 f1 ∼ fn을 대응시킨 테이블(이하, 이것을 주파수 거리 변환 테이블이라고 함)로서 정보 저장용 메모리에 미리 저장되어 있고, 해당 주파수 거리 변환 테이블과, 수신 데이터 해석부(41)로부터 공급되는 이용자 정보 D1의 송수신간 거리에 기초하여 사용 주파수를 선택한다.
구체적으로 주파수 선택부(42)는, 도 6에 도시한 도표와 마찬가지로, 이용자 정보 D1의 송수신간 거리를 d라고 하면, 다음 수학식
Figure 112005070494081-PCT00010
으로 되는 k(k = 2, 3, ……, n)를 구하고, 주파수 f1 ∼ fk를 선택한다.
그리고 주파수 선택부(42)는, 전술된 바와 같이 하여 선택한, 예를 들면 주파수 f1 ∼ f3에 대응하는, 예를 들면 표식파 신호 MKa ∼ MKc만을 출력시키기 위한 출력 제어 데이터 D2를 생성하고, 이것을 송신부(20)에 송출한다.
이 경우, 송신부(20)에서는, 출력 제어 데이터 D2에 의해, 표식파 신호 MKa ∼ MKc에 대응하는 선택 스위치(25A ∼ 25C) 이외의 선택 스위치(25D ∼ 25N)가 개방되고, 그 결과, 표식파 신호 MKa ∼ MKc에 각각 대응하는 주파수 f1 ∼ f3에서 진동하는 각 준정전계만이 형성된다.
이와 같이 하여 주파수 선택부(42)에서는, 이용자 정보 D1의 송수신간 거리(즉 이동국(3)의 존재 위치)에 기초하여 송신부(20)로부터 출력할 표식파 신호 MKa ∼ MKn의 주파수 f1 ∼ fn을 선택할 수 있도록 이루어져 있다.
이에 따라 주파수 선택부(42)는, 이동국(3)의 존재 위치에 따라 적절하게 불필요한 주파수에서 진동하는 준정전계의 전파를 회피할 수 있기 때문에, 해당 고정국에서의 전력 소비를 저감시킬 수 있음과 함께, 이용자에 대하여 불필요한 전력의 인가를 억제할 수 있도록 이루어져 있다.
이 실시예의 경우에는, 주파수 선택부(42)는, 수학식 10에 기초하여 선택한 주파수 f1 ∼ fk 대신에, 이용자 정보 D1의 송수신간 거리(즉 이동국(3)의 존재 위치)보다도 먼 거리를 포함하도록, 주파수 f1 ∼ f(k + 1)를 선택하도록 이루어져 있다.
이에 따라 주파수 선택부(42)는, 고정국(2)으로부터 멀어지는 방향으로의 이용자(이동국(3))가 급한 이동에 의해 통신이 끊어진다고 하는 사태를 회피할 수 있도록 이루어져 있다.
(2-2-3) 이동 상태 산출부(43)의 처리
이동 상태 산출부(43)는, 수신 데이터 해석부(41)로부터 이용자 정보 D1을 받으면, 그 받은 시점의 시각을 시각 정보로서 생성하고, 이것을 대응하는 이용자 정보 D1과 함께 정보 저장용 메모리에 기억 또는 갱신한다.
이 때 이동 상태 산출부(43)는, 이용자 정보 D1의 송수신간 거리 및 이용자 보행 속도에 기초하여, 고정국(2)을 중심으로 한 경우의 이동국(3)의 속도(이하, 이것을 접근 속도라고 함) Va[㎝/s]와, 이용자 보행 속도의 벡터와 접근 속도의 벡터가 이루는 각도(이하, 이것을 이동 각도라고 함) φ를 이동 상태로 하여 산출한다.
구체적으로 이동 상태 산출부(43)는, 우선 접근 속도 Va에 대하여, 이용자 정보 D1을 받은 현 시각을 Nt, 그 이용자 정보 D1의 송수신간 거리를 Nd, 정보 저장용 메모리에 기억된 과거의 이용자 정보 D1을 받은 시점의 시각을 Pt, 그 과거의 이용자 정보 D1의 송수신간 거리를 Pd, 이용자 정보 D1의 이용자 ID를 IDz(단, z = 1, 2, ……, n)라고 하면, 다음 식
Figure 112005070494081-PCT00011
과 같이, 어떤 이동국(3)의 단위 시간에서의 거리 변화에 따라 산출한다.
이 접근 속도 Va는, 플러스로서 얻어진 경우에는, 이동국(3)이 고정국(2)에 접근하고 있는 것을 나타내고 있고, 이것에 대하여 마이너스로서 얻어진 경우에는, 이동국(3)이 고정국(2)으로부터 접근하지 않는(이격하고 있는) 것을 나타내고 있다.
다음으로 이동 상태 산출부(43)는, 이동 각도 φ에 대하여, 코사인의 역함수를 arccos로 하고, 이용자 정보 D1에 나타내는 이용자 보행 속도를 Vwalk라고 하면, 다음 식
Figure 112005070494081-PCT00012
에 따라 산출한다.
이 이동 각도 φ는, 이용자 보행 속도 Vwalk와, 접근 속도 Va의 벡터가 이루는 각도이므로, 도 12에 도시한 바와 같이 「0°」에 가까울수록, 이동국(3)이 고정국(2)에 대하여 직선적으로 이동하고 있는 것을 나타내고 있다.
이와 같이 하여 이동 상태 산출부(43)는, 수신 데이터 해석부(41)로부터 이용자 정보 D1을 받을 때마다, 고정국(2)에 대한 이동국(3)의 접근 속도 Va와, 이동국(3)과 고정국(2) 사이를 연결하는 직선을 기준으로 한 이동국(3)의 이동 각도 φ를 이동국(3)의 이동 상태로 하여 산출하고, 그 산출 결과를 이동 상태 정보 D3으로서 이용자 정보 D1과 함께 PC 제어부(44)에 송출한다.
(2-2-4) PC 제어부(44)의 처리
PC 제어부(44)는, 이동 상태 산출부(43)로부터 공급되는 이용자 정보 D1 및 이동 상태 정보 D3에 기초하여 PC(4)를 제어한다. 구체적으로 PC 제어부(44)는, 이동 상태 정보 D3의 접근 속도 Va가 마이너스인 경우에는, 이동국(3)이 고정국(2)으로부터 이격되어 있기 때문에, 소정의 제어 데이터 D4를 통하여 PC(4)를 정지시킨다.
이것에 대하여 PC 제어부(44)는, 이동 상태 정보 D3의 접근 속도 Va가 플러스인 경우, 이동국(3)(이용자)이 정체하고 있다고 하는 소정의 임계값(이하, 이것을 임계 속도라고 함)보다도 접근 속도 Va가 크고, 또한, 단순히 가로지르고만 있다고 하는 소정의 각도(이하, 이것을 임계 각도라고 함)보다도 이동 상태 정보 D3의 이동 각도 φ가 작으면 이동국(3)이 고정국(2)에 접근하고 있기 때문에, 제어 데이터 D4를 통하여 PC(4)를 기동시킨다.
이 때 PC 제어부(44)는, 이용자 정보 D1의 송수신간 거리가, 예를 들면 고정국(2)으로부터 30[㎝] 등, 고정국(2)에 도달하기 직전으로 되는 소정의 거리(이하, 이것을 임계 거리라고 함) 이내인 경우에는, 해당 이용자 정보 D1의 이용자 ID를 이용하여 PC(4)에 로그인한다.
이와 같이 하여 PC 제어부(44)는, 이동 상태 산출부(43)로부터 이용자 정보 D1 및 이동 상태 정보 D3이 공급될 때마다, 해당 이용자 정보 D1 및 이동 상태 정보 D3에 기초하여 PC(4)를 제어함으로써, 이용자가 접근 또는 이격하는 것만으로 자동적으로 PC(4)를 기동, 정지 및 로그인할 수 있도록 이루어져 있다.
여기서, 도 13에서, 종래의 수동에 의한 PC(4)의 제어와, 본 발명의 자동에 의한 PC(4)의 제어의 시간차를 도시한다. 도 13에서도 알 수 있듯이, 본 발명에서 는, 고정국(2)에 대한 이용자의 존재 위치에 따라 PC(4)를 자동적으로 제어할 수 있는 만큼, PC(4)를 기동 및 로그인하여 조작 가능하게 되기까지의 시간을 종래에 비하여 대폭 단축할 수 있다.
(2-2-5) 제어 처리 수순
실제로, 제어부(40)는, 도 14에 도시하는 제어 처리 수순 RT1에 따라 전술한 바와 같은 각종 처리를 실행한다.
즉 제어부(40)는, 예를 들면 고정국(2)의 전원이 투입되면, 제어 처리 수순 RT1을 스텝 SP0에서 개시하고, 계속되는 스텝 SP1에서 이용자 정보 D1을 수신할 때까지 대기한다.
여기서 긍정 결과가 얻어지면, 이것은 통신용 전극(10)을 통하여 형성되는 복수의 준정전계 내에 이동국(3)(이용자)이 존재하는 것을 나타내고 있으며, 이 때 제어부(40)는, 계속되는 스텝 SP2로 이행한다.
스텝 SP2에서, 제어부(40)는, 복수의 이용자 정보 D1a ∼ D1n을 수신하였는지의 여부를 판정하여, 부정 결과를 얻은 경우에는 스텝 SP5로 이행하고, 이것에 대하여 긍정 결과를 얻은 경우에는 스텝 SP3으로 이행한다.
스텝 SP3에서 제어부(40)는, 복수의 이용자 정보 D1a ∼ D1n 각각의 송수신간 거리를 비교함으로써, 최소값의 송수신 거리를 나타내는 이용자 정보 D1(D1a, D1b, ……, 또는 D1n)을, 고정국(2)에 가장 가까운 이동국(3)으로부터 인체 안테나 송신된 이용자 정보 D1로서 특정하여, 계속되는 스텝 SP4로 이행한다.
스텝 SP4에서 제어부(40)는, 스텝 SP1에서 수신하고 또는 스텝 SP3에서 특정 한 이용자 정보 D1의 송수신간 거리를 이용하여, 전술한 수학식 10에 기초하여 사용할 주파수 f1 ∼ fk를 선택하고, 그 선택한 주파수 f1 ∼ fk에 대응하는 준정전계만을 형성시키도록 하여 사용 주파수를 제한한 후, 계속되는 스텝 SP5로 이행한다.
스텝 SP5에서 제어부(40)는, 이용자 정보 D1의 송수신간 거리와, 미리 정보 저장용 메모리에 기억해 둔 과거의 이용자 정보 D1의 송수신간 거리를 이용하여, 전술한 수학식 11에 따라 고정국(2)에 대한 이동국(3)의 접근 속도 Va를 산출하여, 계속되는 스텝 SP6으로 이행한다.
스텝 SP6에서 제어부(40)는, 스텝 SP5에서 산출한 접근 속도 Va와, 이용자 정보 D1의 이용자 보행 속도를 이용하여, 전술한 수학식 12에 따라 이동국(3)과 고정국(2) 사이를 연결하는 직선을 기준으로 한 이동국(3)의 이동 각도 φ를 산출한 후, 도 15에 도시하는 PC 제어 처리 루틴 SRT1로 이행한다.
제어부(40)는, PC 제어 처리 루틴 SRT1을 스텝 SP10에서 개시하고, 계속되는 스텝 SP11에서 이동 상태 정보 D3의 접근 속도 Va가 마이너스인지의 여부를 판정한다.
여기서 긍정 결과가 얻어지면, 이것은 이동국(3)(이용자)이 고정국(2)으로부터 이격되어 있는 것을 나타내고 있으며, 이 때 제어부(40)는, 스텝 SP12로 이행하고, PC(4)가 기동되어 있는 경우에는 정지시킨 후, 스텝 SP7(도 14)로 이행한다.
이것에 대하여 스텝 SP11에서 부정 결과가 얻어지면, 제어부(40)는, 스텝 SP13으로 이행하고, 스텝 SP5(도 14)에서 산출한 접근 속도 Va가 임계 속도보다도 크고, 또한 스텝 SP6(도 14)에서 산출한 이동 각도 φ가 임계 각도보다도 작은지의 여부를 판정한다.
여기서 부정 결과가 얻어지면, 이것은 이동국(3)(이용자)이 접근하고 있지만 정체하고 있는 것과 거의 동일한 것을 나타내고 있으며, 이 때 제어부(40)는, 스텝 SP15로 이행한다.
이것에 대하여 긍정 결과가 얻어지면, 이것은 이동국(3)(이용자)이 고정국(2)에 접근하고 있는 것을 나타내고 있는데, 이 때 제어부(40)는, 계속되는 스텝 SP14로 이행하고, PC(4)가 정지하고 있는 경우에는 기동시킨 후, 계속되는 스텝 SP15로 이행한다.
스텝 SP15에서 제어부(40)는, 스텝 SP1에서 수신하거나 또는 스텝 SP3에서 특정한 이용자 정보 D1의 송수신간 거리가 임계 거리 이내인 경우에만, 계속되는 스텝 SP16으로 이행하고, 또한 PC(4)에 로그인하지 않은 경우에 그 이용자 정보 D1의 이용자 ID를 이용하여 PC(4)에 로그인한 후, 계속되는 스텝 SP7(도 14)로 이행한다.
스텝 SP7에서 제어부(40)는, 스텝 SP1에서 수신하거나 또는 스텝 SP3에서 특정한 이용자 정보 D1을 정보 저장용 메모리에 기억 또는 갱신하고, 스텝 SP1로 되돌아간다.
이와 같이 하여 제어부(40)는, 도 14에 도시하는 제어 처리 수순 RT1에 따라 각종 처리를 실행할 수 있도록 이루어져 있다. 또한, 제어부(40)는, 도 14에 도시하는 제어 처리 수순 RT1에서의 각종 처리의 순서를 적절하게 변경할 수도 있다.
(2-3) 이동국의 구성
도 16에 도시한 바와 같이 이동국(3)은, 한 쌍의 통신용 전극(60A 및 60B), 보행 검출용 전극(61), 송수신 절환 스위치(62), 수신부(70), 보행 검출부(80), 송신부(90) 및 제어부(100)에 의해 구성된다.
수신부(70)에서는, 고정국(2)에 의해 형성된 복수의 준정전계 내에 이용자가 들어간 것에 의해, 해당 준정전계 내에 존재하는 위치에서의 1 또는 2 이상의 주파수 f에 따라 변화하는 이용자의 대전 상태(강도의 변화)를, 통신용 전극(60A), 송수신 절환 스위치(62) 및 FET(71)의 게이트를 순차적으로 통하여 수신하고, 그 수신 결과를, 앰프(72)를 통하여 증폭시켜 리미터(73)를 통하여 소정 레벨 이하의 전계 강도 신호를 제거한 후에 복조 회로(33)를 통하여 수신 주파수 신호 S10으로서 제어부(100)에 송출한다.
이 수신 주파수 신호 S10은, 고정국(2)에 의해 형성된 복수의 준정전계 내의 가장 외측에 이용자가 존재하면 주파수 fn(도 8)으로서 표현되고, 이것에 대하여 가장 내측에 존재하면 주파수 f1 ∼ fn(도 8)으로서 표현된다.
한편, 보행 검출부(80)에서는, 이용자와 정전 결합된 보행 검출용 전극(61)을 통하여, 해당 이용자의 보행 운동에 의한 인체 표면의 대전 변화를 FET(81)의 게이트를 통하여 검출하고, 이것을 앰프(82)를 통하여 증폭시켜 로우 패스 필터(83)를 통하여 고주파 성분을 제거하고, 그 결과 얻어지는 보행 파형 신호 S12를 제어부(100)에 송출한다.
이 보행 파형 신호 S12는, 전술한 바와 같이, 이용자의 보행 운동에 의한 발의 궤적에 따른 해당 발과 노면 사이에서의 정전 용량 변화 및 전하의 변화에 따라, 해당 이용자 고유의 패턴으로서 나타낸다.
송신부(90)에서는, 발신기(91)로부터 발생되는 반송파 신호를, 변조 회로(92)를 통하여 이용자 정보 D1에 따라 주파수 변조한 후에 출력 제어부(93)를 통하여 출력 제어하여, 해당 제어 결과를 송수신 절환 스위치(62) 및 통신용 전극(60A)을 순차적으로 인체 안테나 송신한다.
이 때, 송신부(90)에서는, 제어부(100)의 제어에 따라, 수신 주파수 신호 S10에 기초하여 검출한 송수신간 거리까지 준정전계가 형성되도록 출력 제어하도록 이루어져 있다.
제어부(100)는, 도시하지 않은 CPU(Central Processing Unit), 워크 메모리 및 정보 저장용 메모리를 갖고, CPU의 제어에 기초하여, 정보 저장용 메모리에 기억된 소정의 제어 프로그램을 워크 메모리에 판독하여 파형 처리를 실행한다. 이 정보 저장용 메모리에는, 제어 프로그램 이외에도 각종 정보가 저장되어 있다.
여기서, 이 제어부(100)에서의 제어 처리의 내용을 기능적으로 분류하면, 도 17에 도시한 바와 같이 수신부(70)로부터 공급되는 수신 주파수 신호 S10에 기초하여 고정국(2)까지의 송수신간 거리로 변환하는 거리 검출부(101)와, 보행 검출부(80)로부터 공급되는 보행 파형 신호 S12에 기초하여 이용자의 보행 속도를 추정하는 보행 속도 추정부(102)와, 그 보행 파형 신호 S12에 기초하여 이용자가 정규의 이용자인지의 여부를 식별하는 개인 식별부(103)와, 거리 검출부(101), 보행 속도 추정부(102) 및 개인 식별부(103)의 각 처리 결과에 기초하여 이용자 정보 D1을 생성하는 정보 생성부(104)로 나눌 수 있다. 이하, 이들 거리 검출부(101), 보행 속도 추정부(102), 개인 식별부(103) 및 정보 생성부(104)의 처리에 대하여 설명한다.
(2-3-1) 거리 검출부(101)의 처리
거리 검출부(101)는, 주파수 선택부(42)(도 10)와 동일한 주파수 거리 변환 테이블을 정보 저장용 메모리에 미리 저장하고 있어, 해당 주파수 선택용 테이블을 참조함으로써, 도 6에 도시한 도표 혹은 고정국(2)의 경우와 마찬가지로 하여, 수신부(70)로부터 공급되는 수신 주파수 신호 S10으로 나타내는 주파수 f1 ∼ fk에 기초하여 송수신간 거리를 검출하고, 그 검출한 송수신간 거리를 정보 생성부(104)에 송출한다.
(2-3-2) 보행 속도 추정부(102)의 처리
보행 속도 추정부(102)는, 보행 검출부(80)로부터 공급되는 보행 파형 신호 S12를 소정 시간만큼 디지털화하고, 그 디지털화된 보행 파형을 일시적으로 정보 저장용 메모리에 기억함과 함께, 도 18에 도시한 바와 같이 그 보행 파형 중 8 ± 2[㎐]의 대역에 출현하는 8 ㎐ 피크를 순차적으로 검출하고, 그 검출 결과에 기초하여 이용자의 보폭을 추정한다.
여기서, 보행 주파수와 보폭의 관계를 그래프화한 결과를 도 19에 도시한다. 도 19로부터도 알 수 있듯이, 임의의 피실험자 A ∼ C 모두, 보행 주파수가 높아질 수록(보행 속도가 빠를수록) 보폭이 커지는 관계에 있다. 이 도 19에서, 굵은 파선으로 나타내는 직선은, 보행 주파수와 보폭의 평균적인 관계를 나타내고 있고, 다음식
Figure 112005070494081-PCT00013
과 같이, 기울기를 「50」이라고 하고, 종축 절편(切片) 「-20」으로서 나타냄으로써, 보행 주파수에 기초하여 정밀도 좋게 보폭을 추정할 수 있다.
따라서, 보행 속도 추정부(102)는, 현 시점에서 검출한 8 ㎐ 피크(이하, 이것을 현 8 ㎐ 피크라고 함)를 tp1로 하고, 해당 현 8 ㎐ 피크 tp1보다도 하나 정도 전에 검출된 8 ㎐ 피크(이하, 이것을 전 8 ㎐ 피크라고 함)를 tp2라고 하면, 다음식
Figure 112005070494081-PCT00014
에 의해 보폭 ST를 추정할 수 있다.
그리고 수학식 14에서, α로서 수학식 13의 기울기에 상당하는 「50」을 선정하고, β로서 수학식 10의 종축 절편에 상당하는 「-20」을 선정함으로써, 보행 속도 추정부(102)는, 실제의 보폭에 근사한 보폭 ST를 추정할 수 있도록 이루어져 있다.
다음으로 보행 속도 추정부(102)는, 수학식 14에 의해 추정한 보폭 ST를 이용하여, 다음 식
Figure 112005070494081-PCT00015
에 따라 이용자 보행 속도 Vwalk를 추정한다.
이와 같이 하여 보행 속도 추정부(102)는, 보행 운동에 의한 인체 표면의 대전 변화로서 특이적으로 출현하는 8 ㎐ 피크를 지표로 함으로써, 고정밀도로 이용자 보행 속도 Vwalk를 추정할 수 있고, 그 추정 결과를 정보 생성부(104)에 송출한다.
(2-3-3) 개인 식별부(103)의 처리
개인 식별부(103)는, 정보 저장용 메모리에 일시적으로 기억된 보행 파형 중 8 ± 2[㎐]의 대역에 출현하는 8 ㎐ 피크를 모두 검출한 후, 그 검출한 8 ㎐ 피크 Px(도 20)에서의 피크 간격 PS 중, 미리 정보 저장용 메모리에 기억되어 있는 피크 간격의 평균 폭 정보에 비하여 소정의 허용 범위 외로 되는 피크간 폭 PS를 제거한다.
이 경우, 개인 식별부(103)는, 보행 운동의 양태에 상관없이 특이하게 출현하는 8 ㎐ 피크 Px를 지표로 함으로써, 정상 보행 운동 부분에 상당하는 피크간 폭 PS만을 적확하게 남길 수 있도록 이루어져 있다.
다음으로 개인 식별부(103)는, 대상의 8 ㎐ 피크 Px의 중심 위치로부터 해당 대상의 8 ㎐ 피크 Px에 대하여 전후의 8 ㎐ 피크 Px의 중간 위치까지를 1보 파형 TH로서 잘라낸다.
이 경우에도, 개인 식별부(103)는, 오른발(왼발)이 완전하게 붙어 있을 때에 출현하는 8 ㎐ 피크 Px를 지표로 함으로써, 보행 운동에서의 실제의 1보에 상당하는 1보 파형 TH로서 적확하게 잘라낼 수 있도록 이루어져 있다.
그리고 보행 정보 생성부(45)는, 오른발(왼발)이 완전하게 붙어 있을 때에 출현하는 1보 파형 TH를 시간축 방향에 거의 등간격으로 되는, 예를 들면 21개의 세분 구간 CSU1 ∼ CSU21로 분할하고, 그당 분할한 세분 구간 CSU1 ∼ CSU21에 따른 진폭값(대전 변화 강도의 값)을 각각 적분 및 정규화하여, 그 결과 얻어지는 21개의 적분값을, 1보 파형 TH에서의 부분마다의 특징(보행 패턴)을 나타내는 보행 정보로서 생성한다.
여기서, 개인 식별부(103)는, 이 보행 정보와, 예를 들면 이동국(3)을 이용자에게 지급할 때에 해당 보행 정보를 생성하는 경우와 마찬가지로 하여 미리 정보 저장용 메모리에 등록해 둔 등록 보행 정보를 비교하여, 그 비교 결과가 소정의 일치율 이상인 경우에는 정규의 이용자라고 판정하여, 그 판정 결과를 정보 생성부(104)에 송출한다.
이와 같이 하여 개인 식별부(103)는, 보행 운동에 의한 개인 고유의 패턴으로서 출현하는 1보 파형 TH에서의 강도 변위에 기초하여 인증 처리를 행함으로써, 정규의 이용자를 정밀도 좋게 식별할 수 있을 뿐만 아니라, 이동국(3)을 도용한 제 3자가 마치 이용자인 것 처럼 가장하는 것도 방지할 수 있도록 이루어져 있다.
(2-3-4) 정보 생성부(104)의 처리
정보 생성부(104)는, 개인 식별부(103)에서의 판별 결과가 정규의 이용자라고 판정된 경우에만, 거리 검출부(101)에 의해 변환된 송수신간 거리와, 보행 속도 추정부(102)에 의해 추정 이용자 보행 속도와, 미리 정보 저장용 메모리에 저장된 이용자 ID를 이용자 정보 D1로서 생성하고, 이것을 변조 회로(92)에 송출한다.
(2-3-5) 파형 처리 수순
실제로, 제어부(100)는, 도 21에 도시하는 파형 처리 수순 RT2에 따라 전술한 바와 같은 각종 처리를 실행한다.
즉 제어부(100)는, 예를 들면 이동국(3)의 전원이 투입되면, 파형 처리 수순 RT2를 스텝 SP20에서 개시하고, 계속되는 스텝 SP21에서 수신부(70)로부터 공급되는 수신 주파수 신호 S10을 대기하여, 그 수신 주파수 신호 S10을 받으면, 계속되는 스텝 SP22로 이행한다.
스텝 SP22에서 제어부(100)는, 수신 주파수 신호 S10으로 나타내는 주파수 fj ∼ fn을 송수신간 거리로 변환하고, 계속되는 도 22에 도시하는 보행 속도 추정 처리 루틴 SRT2로 이행한다.
제어부(100)는, 보행 속도 추정 처리 루틴 SRT2를 스텝 SP30에서 개시하고, 계속되는 스텝 SP31에서 보행 검출부(80)로부터 공급되는 보행 파형 신호 S12를 순차적으로 디지털화하고, 계속되는 스텝 SP32에서 해당 디지털화된 보행 파형 중 8 ± 2[㎐]의 대역에 출현하는 현 8 ㎐ 피크 tp1을 검출하였는지의 여부를 판정한다.
여기서, 긍정 결과가 얻어지면, 제어부(100)는, 계속되는 스텝 SP33에서, 스텝 SP32에서 검출한 현 8 ㎐ 피크 tp1과, 미리 정보 저장용 메모리에 일단 기억해 둔 전현 8 ㎐ 피크 tp2를 이용하여, 전술한 수학식 15에 따라 보폭 ST를 추정하고, 계속되는 스텝 SP34로 이행한다.
스텝 SP34에서 제어부(100)는, 스텝 SP33에서 추정한 보폭 ST와, 현 8 ㎐ 피크 tp1 및 전현 8 ㎐ 피크 tp2를 이용하여, 전술한 수학식 16에 따라 이용자 보행 속도 Vwalk를 추정하고, 계속되는 도 23에 도시하는 개인 식별 처리 루틴 SRT3으로 이행한다.
제어부(100)는, 개인 식별 처리 루틴 SRT3을 스텝 SP40에서 개시하고, 계속되는 스텝 SP41에서 정보 저장용 메모리에 일시적으로 기억된 보행 파형 중 8 ± 2[㎐]의 대역에 출현하는 8 ㎐ 피크를 모두 검출하여, 그 검출한 8 ㎐ 피크 Px 에서의 피크 간격 PS 중 소정의 허용 범위 외로 되는 피크간 폭 PS를 제거하고, 1보 파형 TH(도 20)를 잘라낸 후, 계속되는 스텝 SP42로 이행한다.
스텝 SP42에서 제어부(100)는, 스텝 SP41에서 잘라낸 1보 파형 TH를 시간축 방향으로 거의 등간격으로 되는 세분 구간 CSU1 ∼ CSU21로 분할하고, 그 분할한 세분 구간 CSU1 ∼ CSU21에 따른 진폭값(대전 변화 강도의 값)을 각각 적분 및 정규화함으로써, 그 1보 파형 TH에서의 부분마다의 특징(보행 패턴)을 나타내는 보행 정보를 생성한 후, 계속되는 스텝 SP43으로 이행한다.
스텝 SP43에서 제어부(100)는, 스텝 SP42에서 생성한 보행 정보와, 미리 정보 저장용 메모리에 저장해 둔 등록 보행 정보를 비교함으로써 정규의 이용자인지의 여부를 판정하여, 계속되는 스텝 SP23(도 21)으로 이행한다.
스텝 SP23에서 제어부(100)는, 스텝 SP43에서 정규의 이용자인 판정 결과가 얻어진 경우에만, 스텝 SP22에서 변환한 송수신간 거리와, 스텝 SP34에서 추정한 이용자 보행 속도와, 미리 정보 저장용 메모리에 저장된 이용자 ID를 이용자 정보 D1로서 생성하고, 계속되는 스텝 SP24로 이행한다.
스텝 SP24에서 제어부(100)는, 스텝 SP23에서 생성한 이용자 정보 D1을 변조 회로(92)에 송출함과 함께, 스텝 SP22에서 판정한 송수신간 거리까지 준정전계가 형성되도록 출력 제어부(93)를 제어한 후, 스텝 SP21로 되돌아간다.
이 경우, 이동국(3)으로부터 고정국(2)을 포함하는 준정전계가 이용자를 통하여 형성되며, 그 결과 이용자 정보 D1이 이동국(3)으로부터 인체 안테나 송신된다.
이와 같이 하여 제어부(100)는, 도 21에 도시하는 파형 처리 수순 RT2에 따라 각종 처리를 실행할 수 있도록 이루어져 있다. 또한, 제어부(100)는, 도 21에 도시하는 파형 처리 수순 RT2에서의 각종 처리의 순서를 적절하게 변경할 수도 있다.
(3) 작용 및 효과
이상의 구성에서, 이 거리 검출 시스템(1)의 고정국(2)은, 도 6 등에 도시한 바와 같이, 복수의 주파수 f1 ∼ fn에 각각 대응하는 각 강도 경계 거리 r1 ∼ rn 에서 일정한 강도 Ei가 얻어지도록 복수의 준정전계를 형성하였다.
따라서, 고정국(2)에서는, 거리가 강도에 최대한 명료하게 반영되는 준정전계를, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 형성하고 있기 때문에, 번잡한 제어나 특별한 장치를 필요로 하지 않고, 이동국(3)에서 수신되는 준정전계의 주파수에 기초하는 거리의 검출 정밀도를 향상시킬 수 있다. 이에 덧붙여서, 고정국(2)에서는, 강도가 거리의 3제곱에 반비례하는 준정전계를 형성하고 있기 때문에, 제3자의 이동국 등에 의한 방수를 방지할 수도 있다.
또한, 이 고정국(2)은, 준정전계를 형성하기 전에 그 준정전계가 지배적으로 되도록 출력을 제어하도록 함으로써, 그 출력을 제어하는 만큼 전력 절약화를 도모할 수 있음과 함께, 방사 전계나 유도 전자계에 의해 억제되지 않고, 이동국(3)에 대하여 준정전계의 주파수를 확실하게 수신시킬 수 있다. 이 결과, 이동국(3)에서 수신되는 준정전계의 주파수에 기초하는 거리의 검출 정밀도를 보다 향상시킬 수 있다.
또한, 이 고정국(2)은, 준정전계에서의 강도의 검출 결과에 기초하여, 각 주파수 f1 ∼ fn 중 사용 주파수를 선택하도록 함으로써, 불필요한 전력 소비를 억제할 수 있을 뿐 아니라, 불필요한 전계의 전파를 방지할 수 있다.
또한, 이 고정국(2)은, 준정전계에서의 강도의 검출 결과에 따라, PC(4)에 대한 제어 내용으로서 기동, 정지 또는 로그인을 절환하도록 함으로써, 그 검출 위 치에 따라 PC(4)를 자동적으로 제어할 수 있음과 함께, 자동화하는 만큼 조작을 간략화할 수 있을 뿐만 아니라, PC(4)를 기동 및 로그인하여 조작 가능하게 되기까지의 시간을 종래에 비하여 대폭 단축할 수 있다.
또한 이 경우, 해당 강도에 기초하는 거리를 고정밀도(높은 분해능)로 검출할 수 있기 때문에, 검출 위치에 따라 PC(4)를 자동적으로 제어할 때의 오동작을 저감시킬 수 있다.
이상의 구성에 따르면, 복수의 주파수 f1 ∼ fn에 각각 대응하는 각 강도 경계 거리 r1 ∼ rn에서 일정한 강도 Ei가 얻어지도록, 거리가 강도에 최대한 명료하게 반영되는 복수의 준정전계를 형성함으로써, 번잡한 제어나 특별한 장치를 필요로 하지 않고, 해당 강도에 기초하는 거리를 고정밀도로 검출할 수 있으며, 이리하여, 간이한 구성으로 거리의 검출 정밀도를 향상시킬 수 있다.
(4) 다른 실시예
또한 전술한 실시예에서는, 도 9에서 도시한 바와 같이 강도 경계 거리를 기준으로 하여 대응하는 주파수를 선정하도록 한 경우에 대해 설명하였지만, 본 발명은 이것에 한하지 않고, 도 24에 도시한 바와 같이 주파수를 기준으로 하여 대응하는 강도 경계 거리를 선정하도록 해도 된다.
또한 전술한 실시예에서는, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 준정전계를 형성하는 준정전계 형성 수단으로서, 복수의 주파수 f1 ∼ fn에 각각 대응하는 각 강도 경계 거리 r1 ∼ rn에서 일정한 강도 Ei 가 얻어지도록 준정전계를 형성하는 송신 처리부(21A ∼ 21N)를 적용한 경우에 대해 설명하였지만, 본 발명은 이것에 한하지 않고, 반드시 일정한 강도가 얻어지도록 준정전계를 형성하지 않아도 되고, 또한 반드시 준정전계가 항상 지배적으로 되는 공간으로서 형성하지 않아도 되며, 요는 각 거리에서 기준(예를 들면 이동국(3)이 수신할 수 있는 최저 레벨의 전계 강도)으로 되는 감도 이상으로 된 소정의 강도가 얻어지도록 준정전계를 형성하는 준정전계 형성 수단을 적용할 수 있다.
또한 전술한 실시예에서는, 이동 대상에 설치된 이동국(3)에서 수신된 준정전계의 주파수에 기초하여 거리를 검출하는 거리 검출 수단으로서의 거리 검출부(101)(제어부(100))를 이동국(3)에 설치하도록 한 경우에 대해 설명하였지만, 본 발명은 이것에 한하지 않고, 고정국(2)에 설치하도록 해도 된다. 이 경우, 이동국(3)에서는, 수신 결과(준정전계의 주파수의 수)를 고정국(2)에 인체 안테나 송신하면, 고정국(2)에서 준정전계의 주파수에 기초하여 거리를 검출할 수 있다.
또한 전술한 실시예에서는, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 형성된 준정전계를 수신하는 수신 수단으로서, FET(71)를 이용하여 수신하는 수신부(70)(도 16)를 적용하도록 한 경우에 대해 설명하였지만, 본 발명은 이것에 한하지 않고, 예를 들면 유도 전압에 유기된 전압을 트랜지스터나 FET로 구성됨으로써 측정하는 유도 전극형 전계 강도계나, 유도 전극으로부터 얻어지는 직류 신호를 쵸퍼 회로나 진동 용량 등을 이용하여 교류 변환하는 유도 전극형 변조 증폭 방식 전계 강도계나, 전기 광학 효과를 갖는 물질에 전계를 가함으로써 그 물질 내에 발생하는 광 전파 특성의 변화를 측정하는 전기 광학 효과형 전계 강도계 등, 그 외에 다양한 수신 수단을 본 발명에 적용할 수 있다.
또한 전술한 실시예에서는, 준정전계가 지배적인 공간으로 되도록 출력을 제어하는 출력 제어 수단으로서의 출력 조정부(24A ∼ 24N)에 의해, 가장 작은 주파수 fn에서의 전계 강도와 동일하게 되도록 다른 주파수 f1 ∼ f(n-1)에 대한 출력을 수학식 9에 따라 조정하도록 한 경우에 대해 설명하였지만, 본 발명은 이것에 한하지 않고, 예를 들면 2번째로 작은 주파수 fn에서의 전계 강도와 동일하게 되도록 다른 주파수 f1 ∼ f(n-1)에 대한 출력을 조정하거나, 수학식 9 이외의 방법을 이용하지 않고 필터 등을 이용함으로써 출력을 조정하는 등, 이 외 다양한 방법에 의해 출력을 조정하도록 해도 된다.
또한 전술한 실시예에서는, 이동 대상에 설치된 이동국(3)에서 수신된 준정전계의 주파수에 기초하여 사용할 주파수를 선택하는 선택 수단으로서, 이동국(3)에서 수신된 준정전계의 주파수의 수에 따른 송수신간 거리에 기초하여 사용 주파수를 선택하는 주파수 선택부(42)(제어부(100))를 적용하도록 한 경우에 대해 설명하였지만, 본 발명은 이것에 한하지 않고, 해당 송수신간 거리 외에 이용자 보행 속도도 이용하여 사용 주파수를 선택하도록 해도 된다.
이 경우, 구체적으로는 주파수 선택부(42)는, 2회 전의 측정 데이터(거리의 정보)를 유지할 수 있도록 해 둔다. 이 경우, 시각 tm -2에서의, 이동국(3)(이용자)과 고정국(2) 사이의 거리를 r(tm -2)로 하고, 시각 tm -1에서의, 이동국(3)(이용자)과 고정국(2) 사이의 거리를 r(tm -1)로 하고, 시각 tm -1에서의, 이동국(3)(이용자)과 고정국(2)의 방향에서의 접근 속도 v(tm -1)는, 다음식
Figure 112005070494081-PCT00016
과 같이 표현할 수 있다. 따라서 주파수 선택부(42)는, 시각 tm의 거리(즉 이제부터 측정하는 거리) r(tm)를, 다음식
Figure 112005070494081-PCT00017
에 의해 예측하고, 해당 예측된 거리 r(tm)에 대하여 rk - 1 < r(tm) < rk로 되는 k를 구하고, 사용 주파수 f1 ∼ fk를 선택한다. 이와 같이 하면, 이용자(이동국(3))가 고정국(2)으로부터 즉시 멀어진 경우에도 통신을 도중에 잘 끊어지기 않도록 할 수 있다.
이에 덧붙여서, 주파수 선택부(42)는, 수학식 17에 의해 예측된 거리 r(tm)에 대한 예측이 어긋났을 때의 것을 고려하여, 출력 주파수로서의 마진을 포함한 주파수 f1 ∼ fk + M을 선택하도록 해도 되고, 이 경우에는 주파수 fk + M + 1 ∼ fn은 불 필요한 주파수이므로, 출력을 생략할 수 있으며, 전력 소비량을 저감시킬 수도 있다.
또한 전술한 실시예에서는, 이동 대상의 속도를 추정하는 속도 추정 수단으로서의 보행 속도 추정부(102)에 의해, 이용자의 보행 속도를 추정하도록 한 경우에 대해 설명하였지만, 본 발명은 이것에 한하지 않고, 동물이나 반송물 등, 접근 속도의 산출 방법을 이동 대상에 따라 변경함으로써 이 외 다양한 이동 대상의 속도를 추정할 수 있다.
또한 전술한 실시예에서는, 이동 대상의 속도를 통지하는 통지 수단으로서의 송신부(90)에 의해, 인체 안테나 송신하도록 한 경우에 대해 설명하였지만, 본 발명은 이것에 한하지 않고, 이 외 다양한 통지 수단을 본 발명에 적용할 수 있다.
또한 전술한 실시예에서는, 이동 대상의 이동 상태에 따라, 소정의 제어 대상에 대한 제어 내용을 절환하는 제어 수단으로서, 이용자의 이동 상태에 따라, PC(4)에 대한 제어 내용으로서 기동, 정지 또는 로그인을 절환하는 PC 제어부(44)를 본 발명에 적용하도록 한 경우에 대해 설명하였지만, 본 발명은 이것에 한하지 않고, 해당 제어 내용으로서 인터넷에 접속하거나, 메일 서버에 로그인하는 등, 미리 설정된 어플리케이션을 상승시키는 처리로 절환하도록 해도 되고, 혹은 예를 들면 제어 대상이 차(車)인 경우에, 이용자의 이동 상태에 따라, 차에 대한 제어 내용으로서 엔진을 걸거나 또는 도어의 키를 연다고 하는 처리를 절환하는 등, 요는 이 외 다양한 제어 대상에 대한, 그 제어 대상에 따른 제어 내용을 이용자의 이동 상태에 따라 절환하는 제어 수단을 본 발명에 적용할 수 있다.
또한, 이 경우, 이용자의 이동 상태에 따라 제어 내용을 절환하도록 하였지만, 본 발명은 이용자에게 한하지 않고, 전술한 바와 같이 동물이나 반송물 등, 이 외 다양한 이동 대상을 적용할 수 있다.
또한 전술한 실시예에서는, 고정국(2)과, 이 고정국(2)에 근접하고자 하는 이동국(3) 사이의 거리를 검출하는 거리 검출 시스템(1)에 본 발명을 적용하도록 한 경우에 대해 설명하였지만, 본 발명은 이것에 한하지 않고, 이동국끼리의 거리 검출 시스템에도 본 발명을 적용할 수 있다. 또한 이 경우, 고정국(2)에 이용자에게 설치된 이동국(3)이 근접함에 따라 PC(4)를 제어하는 용도로 본 발명을 이용하였지만, 즉 거리를 검출(계측)하는 것이면, 이 외 다양한 용도로 되는 거리 검출 시스템에 본 발명을 폭넓게 적용할 수 있다.
전술된 바와 같이 본 발명에 따르면, 전계 형성 장치와 전계 수신 장치에 의해 구성되는 거리 검출 시스템에서, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 준정전계를 형성하는 준정전계 형성 수단을 전계 형성 장치에 구비하고, 전계 수신 장치에서 수신된 준정전계의 주파수에 기초하여 거리를 검출하는 거리 검출 수단을, 전계 형성 장치 또는 전계 수신 장치 중 어느 한 쪽에 구비하도록 하였다.
따라서, 이 거리 검출 시스템에서는, 거리가 강도에 최대한 명료하게 반영되는 준정전계를, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 전계 형성 장치가 형성되어 있으므로, 번잡한 제어나 특별한 장치를 필요로 하지 않고, 전계 수신 장치에서 수신된 준정전계의 주파수에 기초하는 거리의 검출 정밀도를 향상시킬 수 있어, 간이한 구성으로 거리의 검출 정밀도를 향상시킬 수 있다.
또한 전술된 바와 같이 본 발명에 따르면, 전계 형성 장치 또는 전계 형성 방법에서, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 준정전계를 형성하도록 하였다.
따라서, 이 전계 형성 장치 또는 전계 형성 방법에서는, 거리가 강도에 최대한 명료하게 반영되는 준정전계를, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 형성하고 있으므로, 번잡한 제어나 특별한 장치를 필요로 하지 않고, 수신측에서 수신되는 준정전계의 주파수에 기초하는 거리의 검출 정밀도를 향상시킬 수 있어, 간이한 구성으로 거리의 검출 정밀도를 향상시킬 수 있다.
또한 전술된 바와 같이 본 발명에 따르면, 이동 대상에 설치된 전계 수신 장치 또는 전계 수신 방법에서, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 형성된 준정전계를 수신하는 수신 수단과, 수신 수단에 의해 수신된 준정전계의 주파수에 기초하여 거리를 검출하는 거리 검출 수단을 구비하도록 하였다.
따라서, 이 전계 수신 장치 또는 전계 수신 방법에서는, 거리가 강도에 최대한 명료하게 반영되는 준정전계를, 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 형성하고 있으므로, 번잡한 제어나 특별한 장치를 필요로 하지 않고, 수신한 준정전계의 주파수에 기초하는 거리의 검출 정밀도를 향상시킬 수 있어, 간이한 구성으로 거리의 검출 정밀도를 향상시킬 수 있다.
본 발명은, 포유류나 곤충류 혹은 식물 등의 생체 또는 도전성의 물질로 이루어지는 이동 대상의 이동에 따라, 예를 들면 비디오 테이프 레코더, 텔레비전 장치, 휴대 전화기 또는 퍼스널 컴퓨터 등의 전자 기기나, 의료 기기, 차, 책상, 기타 제어 대상의 제어 내용을 절환하는 경우에 이용 가능하다.
예를 들면, 도어나 덮개 등의 개폐물 근방에 근접하였을 때에 필요에 따라 개폐물을 개방하는 경우, 전자 기기에 근접하였을 때에 필요에 따라 전원을 온 상태로 하거나 또는 소정의 처리를 개시하는 경우, 소정의 식별 대상물을 반송하는 반송로가 소정의 위치에 반송되었을 때에 필요에 따라 반송로를 절환하는 경우 등의 용도로 폭넓게 이용할 수 있다.

Claims (19)

  1. 전계 형성 장치와 전계 수신 장치에 의해 구성되는 거리 검출 시스템에 있어서,
    상기 전계 형성 장치는,
    복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 준정전계를 형성하는 준정전계 형성 수단
    을 구비하고,
    상기 전계 수신 장치에서 수신된 상기 준정전계의 상기 주파수에 기초하여 거리를 검출하는 거리 검출 수단을, 상기 전계 형성 장치 또는 상기 전계 수신 장치 중 어느 한 쪽에 구비하는 것을 특징으로 하는 거리 검출 시스템.
  2. 제1항에 있어서,
    상기 전계 수신 장치는,
    이동 대상에 설치되고, 상기 이동 대상의 속도를 추정하는 속도 추정 수단과,
    상기 속도 검출 수단에 의해 추정된 상기 이동 대상의 상기 속도를 통지하는 통지 수단
    을 구비하고,
    상기 전계 형성 장치는,
    상기 거리 검출 수단에 의해 검출된 상기 거리와, 상기 통지 수단에 의해 통지된 상기 이동 대상의 상기 속도에 기초하여 상기 이동 대상의 이동 상태를 추정하는 이동 상태 추정 수단
    을 구비하는 것을 특징으로 하는 거리 검출 시스템.
  3. 제2항에 있어서,
    상기 전계 형성 장치는,
    소정의 제어 대상에 접속되어, 상기 이동 상태 추정 수단에 의해 추정된 상기 이동 상태에 따라 상기 제어 대상에 대한 제어 내용을 절환하는 제어 수단
    을 구비하는 것을 특징으로 하는 거리 검출 시스템.
  4. 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 준정전계를 형성하는 준정전계 형성 수단
    을 구비하는 것을 특징으로 하는 전계 형성 장치.
  5. 제4항에 있어서,
    상기 준정전계 형성 수단에 의해 형성되는 상기 준정전계가 지배적인 공간으로 되도록 출력을 제어하는 출력 제어 수단
    을 구비하는 것을 특징으로 하는 전계 형성 장치.
  6. 제4항에 있어서,
    상기 준정전계 형성 수단에 의해 형성된 상기 준정전계의 각 상기 주파수 중, 이동 대상에 설치된 전계 수신 장치에서 수신된 상기 주파수에 기초하여, 상기 준정전계 형성 수단으로 사용할 상기 주파수를 선택하는 선택 수단
    을 구비하는 것을 특징으로 하는 전계 형성 장치.
  7. 상기 준정전계 형성 수단에 의해 형성된 상기 준정전계의 각 상기 주파수 중, 이동 대상에 설치된 전계 수신 장치에서 수신된 상기 주파수에 기초하여 거리를 검출하는 거리 검출 수단
    을 구비하는 것을 특징으로 하는 전계 형성 장치.
  8. 제7항에 있어서,
    상기 전계 수신 장치에서 추정된 상기 이동 대상의 속도와, 상기 거리 검출 수단에 의해 검출된 상기 거리에 기초하여, 상기 이동 대상의 이동 상태를 추정하는 이동 상태 추정 수단
    을 구비하는 것을 특징으로 하는 전계 형성 장치.
  9. 제8항에 있어서,
    상기 이동 상태 추정 수단에 의해 추정된 상기 이동 대상의 이동 상태에 따라, 소정의 제어 대상에 대한 제어 내용을 절환하는 제어 수단
    을 구비하는 것을 특징으로 하는 전계 형성 장치.
  10. 복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 준정전계를 형성하는 준정전계 형성 스텝을 구비하는 것을 특징으로 하는 전계 형성 방법.
  11. 제10항에 있어서,
    상기 준정전계 형성 스텝에서 상기 준정전계가 형성되기 전에, 상기 준정전계가 지배적인 공간으로 되도록 출력을 제어하는 출력 제어 스텝
    을 구비하는 것을 특징으로 하는 전계 형성 방법.
  12. 제10항에 있어서,
    상기 준정전계 형성 수단에 의해 형성된 상기 준정전계의 각 상기 주파수 중, 이동 대상에 설치된 전계 수신 장치에서 수신된 상기 주파수에 기초하여, 상기 준정전계 형성 스텝에서 사용할 상기 주파수를 선택하는 선택 스텝
    을 구비하는 것을 특징으로 하는 전계 형성 방법.
  13. 제10항에 있어서,
    상기 준정전계 형성 수단에 의해 형성된 상기 준정전계의 각 상기 주파수 중, 이동 대상에 설치된 전계 수신 장치에서 수신된 상기 주파수에 기초하여 거리를 검출하는 거리 검출 스텝
    을 구비하는 것을 특징으로 하는 전계 형성 방법.
  14. 제13항에 있어서,
    상기 전계 수신 장치에서 추정된 상기 이동 대상의 속도와, 상기 거리 검출 스텝에서 검출된 상기 거리에 기초하여, 상기 이동 대상의 이동 상태를 추정하는 이동 상태 추정 스텝
    을 구비하는 것을 특징으로 하는 전계 형성 방법.
  15. 제14항에 있어서,
    상기 이동 상태 추정 스텝에서 추정된 상기 이동 대상의 이동 상태에 따라, 소정의 제어 대상에 대한 제어 내용을 절환하는 제어 스텝
    을 구비하는 것을 특징으로 하는 전계 형성 장치.
  16. 이동 대상에 설치된 전계 수신 장치에 있어서,
    복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 형성된 준정전계를 수신하는 수신 수단과,
    상기 수신 수단에 의해 수신된 상기 준정전계의 상기 주파수에 기초하여 거리를 검출하는 거리 검출 수단
    을 구비하는 것을 특징으로 하는 전계 수신 장치.
  17. 제16항에 있어서,
    상기 이동 대상의 속도를 추정하는 속도 추정 수단과,
    상기 속도 추정 수단에 의해 추정된 상기 이동 대상의 상기 속도를 통지하는 통지 수단
    을 구비하는 것을 특징으로 하는 전계 수신 장치.
  18. 이동 대상에 설치된 전계 수신 장치의 전계 수신 방법에서,
    복수의 주파수에 각각 대응하는 각 거리에서 소정의 강도가 얻어지도록 형성된 준정전계를 수신하는 수신 스텝과,
    상기 수신 스텝에서 수신된 상기 준정전계의 상기 주파수에 기초하여 거리를 검출하는 거리 검출 스텝
    을 구비하는 것을 특징으로 하는 전계 수신 방법.
  19. 제18항에 있어서,
    상기 이동 대상의 속도를 추정하는 속도 추정 스텝과,
    상기 속도 추정 스텝에서 추정된 상기 이동 대상의 상기 속도를 통지하는 통지 스텝
    을 구비하는 것을 특징으로 하는 전계 수신 방법.
KR1020057023084A 2003-06-05 2004-05-19 거리 검출 시스템 KR101031154B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003160816A JP4507058B2 (ja) 2003-06-05 2003-06-05 距離検出システム
JPJP-P-2003-00160816 2003-06-05

Publications (2)

Publication Number Publication Date
KR20060022255A true KR20060022255A (ko) 2006-03-09
KR101031154B1 KR101031154B1 (ko) 2011-04-27

Family

ID=33508580

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020057023084A KR101031154B1 (ko) 2003-06-05 2004-05-19 거리 검출 시스템

Country Status (6)

Country Link
US (1) US8314619B2 (ko)
EP (1) EP1630572B1 (ko)
JP (1) JP4507058B2 (ko)
KR (1) KR101031154B1 (ko)
CN (1) CN1798985B (ko)
WO (1) WO2004109325A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200045283A (ko) * 2018-10-22 2020-05-04 현대자동차주식회사 속도 측정 장치 및 그 방법

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507058B2 (ja) * 2003-06-05 2010-07-21 ソニー株式会社 距離検出システム
EP1855124A4 (en) 2005-03-02 2008-10-08 Fujitsu Ltd POSITION DETECTION SYSTEM AND RFID TERMINAL
JP4586618B2 (ja) * 2005-04-18 2010-11-24 ソニー株式会社 人体通信システム及び通信装置
JP4536602B2 (ja) * 2005-06-09 2010-09-01 三菱電機株式会社 ギャップ検出装置
JP5714210B2 (ja) * 2005-09-01 2015-05-07 プロテウス デジタル ヘルス, インコーポレイテッド 移植可能なワイヤ無し通信システム
JP2007134998A (ja) 2005-11-10 2007-05-31 Sony Corp 電子機器及びその制御方法
JP4913455B2 (ja) * 2006-03-22 2012-04-11 Qファクター株式会社 加速度センサ及び加速度検出方法
CA2650920C (en) 2006-05-02 2016-10-18 Proteus Biomedical, Inc. Patient customized therapeutic regimens
JP4345850B2 (ja) 2006-09-11 2009-10-14 ソニー株式会社 通信システム及び通信装置
JP4345851B2 (ja) 2006-09-11 2009-10-14 ソニー株式会社 通信システム並びに通信装置
SG175681A1 (en) 2006-10-25 2011-11-28 Proteus Biomedical Inc Controlled activation ingestible identifier
EP2069004A4 (en) 2006-11-20 2014-07-09 Proteus Digital Health Inc PERSONAL HEALTH SIGNAL RECEIVERS WITH ACTIVE SIGNAL PROCESSING
MY165532A (en) 2007-02-01 2018-04-02 Proteus Digital Health Inc Ingestible event marker systems
AU2008216170B2 (en) 2007-02-14 2012-07-26 Otsuka Pharmaceutical Co., Ltd. In-body power source having high surface area electrode
US8115618B2 (en) 2007-05-24 2012-02-14 Proteus Biomedical, Inc. RFID antenna for in-body device
PT2192946T (pt) 2007-09-25 2022-11-17 Otsuka Pharma Co Ltd Dispositivo no corpo com amplificação de sinal dipolo virtual
CN102159134B (zh) 2008-07-08 2015-05-27 普罗透斯数字保健公司 可摄取事件标记数据框架
US20110208032A1 (en) * 2008-09-02 2011-08-25 Kiyoaki Takiguchi Detection device, detection method, vein sensing device, scanning probe microscope, distortion detection device and metal detection device
CA2750158A1 (en) 2009-01-06 2010-07-15 Proteus Biomedical, Inc. Ingestion-related biofeedback and personalized medical therapy method and system
JP5271183B2 (ja) * 2009-07-22 2013-08-21 アルプス電気株式会社 通信装置及び通信方法
TWI517050B (zh) 2009-11-04 2016-01-11 普羅托斯數位健康公司 供應鏈管理之系統
JP2011182340A (ja) * 2010-03-03 2011-09-15 Toshiba Tec Corp 質問器
TWI557672B (zh) 2010-05-19 2016-11-11 波提亞斯數位康健公司 用於從製造商跟蹤藥物直到患者之電腦系統及電腦實施之方法、用於確認將藥物給予患者的設備及方法、患者介面裝置
US8665210B2 (en) 2010-12-22 2014-03-04 Microsoft Corporation Sensing user input using the body as an antenna
US9279719B2 (en) * 2011-02-03 2016-03-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electric field quantitative measurement system and method
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
CN103827914A (zh) 2011-07-21 2014-05-28 普罗秋斯数字健康公司 移动通信设备、系统和方法
ITMO20120038A1 (it) * 2012-02-16 2013-08-17 Univ Bologna Alma Mater Metodo e apparato per la stima della distanza e della posizione mediante trasmissioni radio multi-frequenza in campo vicino
WO2013121564A1 (ja) * 2012-02-16 2013-08-22 株式会社日立システムズ Rfidタグ探索支援システムおよび位置マーカならびにリーダ装置
CN102621402A (zh) * 2012-04-06 2012-08-01 辽宁省电力有限公司丹东供电公司 控制人与带电设备距离的智能型安全帽及控制方法
EP3968263A1 (en) 2013-06-04 2022-03-16 Otsuka Pharmaceutical Co., Ltd. System, apparatus and methods for data collection and assessing outcomes
JP2015032927A (ja) * 2013-08-01 2015-02-16 株式会社東芝 生体検出センサ、生体検出センサを備えた装置、金属検出センサ
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US9804199B2 (en) 2013-11-19 2017-10-31 The United States of America as Represented by NASA Ephemeral electric potential and electric field sensor
US9749799B2 (en) * 2015-01-21 2017-08-29 Samsung Electronics Co., Ltd. Method and device for determining distance between devices
CN104914426B (zh) * 2015-06-15 2017-06-13 北京科技大学 一种基于自适应时延估计的近场测距系统及方法
CN104914427B (zh) * 2015-06-15 2017-06-16 北京科技大学 基于接收信号强度的自适应时延估计的测距方法及系统
WO2017145789A1 (ja) * 2016-02-26 2017-08-31 ソニー株式会社 測位装置、通信装置、および測位システム
US10024900B2 (en) 2016-06-09 2018-07-17 United States Of America As Represented By The Administrator Of Nasa. Solid state ephemeral electric potential and electric field sensor
US10712378B2 (en) 2016-07-01 2020-07-14 United States Of America As Represented By The Administrator Of Nasa Dynamic multidimensional electric potential and electric field quantitative measurement system and method
US10900930B2 (en) 2016-07-15 2021-01-26 United States Of America As Represented By The Administrator Of Nasa Method for phonon assisted creation and annihilation of subsurface electric dipoles
US9842438B1 (en) * 2016-07-15 2017-12-12 Cambridge Mobile Telematics, Inc. Mileage and speed estimation
US10281430B2 (en) 2016-07-15 2019-05-07 The United States of America as represented by the Administratior of NASA Identification and characterization of remote objects by electric charge tunneling, injection, and induction, and an erasable organic molecular memory
CN111493872B (zh) 2016-07-22 2023-05-05 大冢制药株式会社 可摄入事件标记的电磁感测和检测
US10620252B2 (en) 2017-01-19 2020-04-14 United States Of America As Represented By The Administrator Of Nasa Electric field imaging system
CN110634205A (zh) * 2018-06-21 2019-12-31 开利公司 用于无摩擦建筑物交互的目的地识别
CN113091225B (zh) * 2021-04-12 2022-09-06 青岛海尔空调器有限总公司 用于控制空调室内机的方法及装置、空调室内机

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3341810A (en) * 1965-04-27 1967-09-12 Melpar Inc Gunshot detector system
US4789267A (en) * 1985-03-13 1988-12-06 Hochtief Aktiengesellschaft Vorm. Gebr. Helfmann Method of and apparatus for concrete tunnel lining
US5170172A (en) * 1990-12-10 1992-12-08 Torrington Products Venture, Inc. Electronic assembly for range finding using radio wave signal strength
JPH06174831A (ja) * 1992-12-09 1994-06-24 Funai Electric Co Ltd 2地点間の距離の検出方法
JPH07218621A (ja) * 1994-02-04 1995-08-18 Honda Motor Co Ltd 距離測定装置
JPH07311887A (ja) * 1994-05-17 1995-11-28 Nippon Precision Kk 接近検知装置
JP4074661B2 (ja) 1995-05-08 2008-04-09 マサチューセッツ・インスティテュート・オブ・テクノロジー 信号伝送媒体として人体を用いた非接触検知及び信号システム
JPH08315276A (ja) * 1995-05-23 1996-11-29 Mk Seiko Co Ltd 車両後方接近検出装置
FI105370B (fi) * 1995-06-16 2000-07-31 Nokia Networks Oy Menetelmä nopean matkaviestimen tunnistamiseksi sekä tukiasema
US5796827A (en) * 1996-11-14 1998-08-18 International Business Machines Corporation System and method for near-field human-body coupling for encrypted communication with identification cards
JP3425347B2 (ja) 1996-12-12 2003-07-14 日本電信電話株式会社 人体経由情報伝達装置
US6223018B1 (en) 1996-12-12 2001-04-24 Nippon Telegraph And Telephone Corporation Intra-body information transfer device
US6507662B1 (en) * 1998-09-11 2003-01-14 Quid Technologies Llc Method and system for biometric recognition based on electric and/or magnetic properties
JP4147648B2 (ja) * 1998-11-10 2008-09-10 日産自動車株式会社 車両用歩行者検知システム
US6336031B1 (en) * 1998-12-22 2002-01-01 Nortel Networks Limited Wireless data transmission over quasi-static electric potential fields
JP2000216628A (ja) * 1999-01-20 2000-08-04 Toa Corp 無給電アンテナ
US6454708B1 (en) * 1999-04-15 2002-09-24 Nexan Limited Portable remote patient telemonitoring system using a memory card or smart card
US6307473B1 (en) * 1999-08-24 2001-10-23 Sensormatic Electronics Corporation Electronic article surveillance transmitter control using target range
JP2001134890A (ja) 1999-11-08 2001-05-18 Sony Corp 音声案内装置
JP2001144662A (ja) 1999-11-11 2001-05-25 Sony Corp 携帯型オーディオ・リスニング装置
JP4298119B2 (ja) * 2000-02-29 2009-07-15 株式会社日立メディコ 医用診断装置
JP3319462B2 (ja) 2000-06-26 2002-09-03 松下電工株式会社 信号伝送経路として人体を利用したデータ伝送システム
JP2002127059A (ja) * 2000-10-20 2002-05-08 Sony Corp 行動制御装置および方法、ペットロボットおよび制御方法、ロボット制御システム、並びに記録媒体
JP4823448B2 (ja) * 2000-11-24 2011-11-24 トヨタ自動車株式会社 警報装置
JP2002314920A (ja) 2001-04-10 2002-10-25 Matsushita Electric Ind Co Ltd 音声画像再生装置
JP3707463B2 (ja) 2002-09-20 2005-10-19 ソニー株式会社 信号伝送方式、信号送信装置及び信号受信装置
JP4385274B2 (ja) 2002-10-29 2009-12-16 ソニー株式会社 歩行波形特徴抽出方法及び個人識別装置
CN103634055A (zh) 2003-02-27 2014-03-12 奎法特股份有限公司 通信系统
JP4088896B2 (ja) 2003-02-27 2008-05-21 ソニー株式会社 通信システム及び通信装置
JP2004282643A (ja) * 2003-03-18 2004-10-07 Hitachi Ltd 無線基地局及び無線基地局の制御方法
JP4507058B2 (ja) * 2003-06-05 2010-07-21 ソニー株式会社 距離検出システム
US7653119B2 (en) * 2003-12-18 2010-01-26 Intel Corporation Extending orthogonal frequency division multiplexed wireless local area networks using direct sequence spread spectrum/complementary code keying
US7362258B2 (en) * 2004-03-31 2008-04-22 Honda Motor Co., Ltd. Transponder detection system using radio and light wave signals
JP2007134998A (ja) * 2005-11-10 2007-05-31 Sony Corp 電子機器及びその制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200045283A (ko) * 2018-10-22 2020-05-04 현대자동차주식회사 속도 측정 장치 및 그 방법

Also Published As

Publication number Publication date
KR101031154B1 (ko) 2011-04-27
EP1630572A1 (en) 2006-03-01
US20070040545A1 (en) 2007-02-22
CN1798985A (zh) 2006-07-05
EP1630572A4 (en) 2006-11-02
JP2004361276A (ja) 2004-12-24
CN1798985B (zh) 2010-06-23
US8314619B2 (en) 2012-11-20
EP1630572B1 (en) 2012-10-03
WO2004109325A1 (ja) 2004-12-16
JP4507058B2 (ja) 2010-07-21

Similar Documents

Publication Publication Date Title
KR101031154B1 (ko) 거리 검출 시스템
Nanzer A review of microwave wireless techniques for human presence detection and classification
Cardillo et al. Millimeter-wave radar cane: A blind people aid with moving human recognition capabilities
CN110115823A (zh) 跑步机和跑步机上的非接触式感测方法
US6252396B1 (en) Moving object control system
US20100090899A1 (en) Method and system for positioning object with adaptive resolution
EP1216423A2 (en) Ssb pulse doppler sensor and active reflector system
Carotenuto et al. Ranging RFID tags with ultrasound
US20180333103A1 (en) Algorithmic Approach for Estimation of Respiration and Heart Rates
US7183964B2 (en) Mine detection using radar vibrometer
EP1537439A2 (en) System and method for near-field electromagnetic ranging
WO1997040403A1 (en) Personal object detector
Billa et al. An overview of indoor localization technologies: Toward IoT navigation services
Trogh et al. Enhanced indoor location tracking through body shadowing compensation
Cardillo et al. Empowering blind people mobility: A millimeter-wave radar cane
KR20180088009A (ko) 레이더를 이용한 거리 측정 방법 및 장치
Paquit et al. Long range passive RADAR interrogation of subsurface acoustic passive wireless sensors using terrestrial television signals
Mohsen et al. V2I electromagnetic system for lateral position estimation of a vehicle
CN110852266A (zh) 一种基于无线信号的步态特征提取方法
Denny The physics of bat echolocation: signal processing techniques
CA3102603A1 (en) Method for passive wireless channel estimation in radio frequency network and apparatus for same
Ariffin et al. FMCW radar for slow moving target detection: Design and performance analysis
RU2108596C1 (ru) Радиокомплекс розыска маркеров
EP4010722A1 (en) Angle information estimation of ultra-wideband wireless signals
Tekir et al. Signal preprocessing routines for the detection and classification of human micro‐Doppler radar signatures

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee