KR20050100365A - 식물세포로부터 얻은 재조합 간염 에이 바이러스 항원 - Google Patents

식물세포로부터 얻은 재조합 간염 에이 바이러스 항원 Download PDF

Info

Publication number
KR20050100365A
KR20050100365A KR1020057012371A KR20057012371A KR20050100365A KR 20050100365 A KR20050100365 A KR 20050100365A KR 1020057012371 A KR1020057012371 A KR 1020057012371A KR 20057012371 A KR20057012371 A KR 20057012371A KR 20050100365 A KR20050100365 A KR 20050100365A
Authority
KR
South Korea
Prior art keywords
hepatitis
antigen
virus recombinant
recombinant antigen
sequence
Prior art date
Application number
KR1020057012371A
Other languages
English (en)
Inventor
알리나 로페즈 퀘사다
베아트리즈 곤잘레즈 바딜로
구일레르모 셀만하우세인 소사
아벨 헤르난데즈 벨라스퀘즈
자비에르 리오스 바살라오
야밀카 로사발 아욘
마를렌 페레즈 마르티네즈
리셀 로드리궤즈 라이
롤란도 가르시아 곤잘레즈
Original Assignee
센트로 데 인제니에리아 제네티카 와이 바이오테크놀로지아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 센트로 데 인제니에리아 제네티카 와이 바이오테크놀로지아 filed Critical 센트로 데 인제니에리아 제네티카 와이 바이오테크놀로지아
Publication of KR20050100365A publication Critical patent/KR20050100365A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/04Fusion polypeptide containing a localisation/targetting motif containing an ER retention signal such as a C-terminal HDEL motif
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/32011Picornaviridae
    • C12N2770/32411Hepatovirus, i.e. hepatitis A virus
    • C12N2770/32422New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Oncology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

본 발명은 식물세포에서 수득된 재조합 간염 A 바이러스(HAV)에 관련된 것이다. 더 특정적으로, 쿠바에서 분리된 M2 균주를 사용하여, 간염 A 바이러스(HAV) 게놈의 변형된 분획에 기초한 유전 컨스트럭션의 생성에 관한 것이다. 적절한 위치와 제어신호에 융합된 이들 분획의 뉴클레오티드 시퀀스는 형질도입 식물에서 발현되어 면역 반응을 전개할 수 있는 펜타머 및/또는 엠프티 엔벨롭을 포함하는 재조합 HAV항원이 된다.

Description

식물세포로부터 얻은 재조합 간염 에이 바이러스 항원{Recombinant Hepatitis A virus antigens obtained in plant cells}
본 발명은 생물공학 계통에 관한 것으로, 더욱 상세하게는 형질도입 식물에서 재조합 단백질의 발현과 항원 백신으로서의 이들 식물의 용도에 관한 것이다. 특히, 쿠바(Cuba)에서 분리된 M2 균주로부터 HAV 게놈의 변이된 분획의 발현으로부터 유도된 형질도입 식물에서 얻어진 간염 A 바이러스의 재조합 항원이 나타난다.
또한 다른 방법으로 접종 후 동물에서의 면역 반응을 향상시키는 이들 항원의 유용성이 입증된다.
HAV 게놈은 양성을 갖는 단순한 계통의 RNA이다. 이것은 253 kDa 폴리프로테인을 코드하는 약 7.5 kb이다(Cohen et al., Journal of Virology (1987), 61:3035-3039). 이 폴리프로테인은 번역 및 후-번역 과정을 모두 받고, 구조 성숙 단백질(VP1,VP2, VP3, VP4 및 2A) 및 비구조 단백질(2B,2C, 3A, 3B, 3C 및 3D)을 만든다.
바이러스의 폴리프로테인의 P3 도메인에 존재하는 프로테아제 3C (Pro3C)은 HAV의 폴리프로테인(Martin et al., J Virol. (1999), 73(8):6220-7)의 절단(cleavage)에 관여하는 프로테아제로, 이후로 진행되는 중간자 P1-2A, 2BC 및 P3의 유리를 허용한다. 따라서, 인벨롭의 적당한 형성과 HAV의 복제를 위해, HAV 폴리프로테인의 차등된 프로테오라이트 과정의 발생이 필요하다. P3 영역에서의 프로세싱 동안에, 단지 사이트 3C/3D 만이 효율적으로 단리된다. 사이트 3A/3B 및/또는 3B/3C에서는 지연된 프로세싱이 존재하고, 이는 매개 폴리펩티드 3ABC (Kusov et al., Journal of Virology (1999), 73:9867-9878)의 축적을 허용하고, 폴리펩티드 3ABC는 프로테아제 3C의 유사한 효능을 가지고 폴리펩티드 P1-2A를 단리한다. 이 단계는 펩타머(peptamers) 형성에의 효율을 촉진시킨다. 바이러스의 특징적인 형태는 바이러스 단백질의 결합으로부터 오고 그 삼차원적 형상은 방어적 면역 반응의 발생에 중요하다. HAV 비리온은 중화의 면역우세 항원적 사이트를 나타내어, 다른 지리적 지역에서 분리된 HAV의 균주 중에서 엄격하게 보전된다. 이것은 5가지 형태의 에피토프에 의해 배열되며, 이 에피토프는 펜타머 중에서 세개와 엔벨롭을 형성하기 위해 펜타머의 조합 후 형성된 다른 두개이다.
이들 최후의 에피토프는 항원 사이트에서의 형태적 변화에 기인하거나 또는 이들의 조합 중 펜타머에 존재하는 에피토프 분획의 병치(竝置)에 기인하여 형성된다고 생각되고 있다. 바이러스 입자 뿐 아니라 펜타머 양자는 중립화 항체를 유도하고 따라서 이들은 백신 개발에 유용하다(Stapleton et al., Journal of Virology (1993), 67:1080-1085). HAV의 완전 오픈 리딩 프레임(Open Reading Frame)을 포함하는 재조합 바큘로바이러스를 사용함으로, HAV의 거대 폴리프로테인이 발현된다. 곤충 세포에서 그 프로세싱의 결과로 다른 중간 단백질이 또한 발현된다(Stapleton et al., The Journal of Infectious Diseases (1995), 171:9-14). 부가하여, 재조합 우두(vaccinia) 바이러스는 포유동물 세포에 HAV의 동일 폴리프로테인을 발현하여 구성된다. 이들 유전적 컨스트럭션으로 감염된 세포의 추출물은 HAV의 것에 유사한 캡시드를 만드는 폴리프로테인의 후-번역 프로세싱을 나타낸다(Winokur et al., Journal of Virology (1994), 65:5029-5036). 바큘로바이러스 시스템 및 우두에 발현된 HAV에 대해 재조합 백신의 변형체를 기술하는 특허들이 있는데, 즉: 특허출원 공보 No WO9301279 Winokur et al. 1993. 1. 21; 특허 No US5294548 (McLinden et al., March, 1994); 특허출원 공보 WO09844122 (Probst, August 27, 2002); 특허출원 공보 WO9111460 및 특허 US5605692 (Thomas et al. On February 25, 1997)으로, 여기서는 오픈 리딘 프레임 (ORF)의 시퀀스가 면역유전의 캡시드 및 펜타머의 생산, 및 HAV의 캡시드의 획득을 위한 방법을 위해 사용되고, 이는 구조 영역을 발현하며 비시트론 컨스트럭션 뿐 아니라 정위 시스, 트랜스에서 영역 P3이 보호된다.
생물반응기로서 형질도입 식물.
리조박테리움 아그로박테리움 튬파션스(rhizobacterium Agrobacterium tumefaciens)에 의해 유전자 전이로부터 유래한 제일 형질도입 식물은 80년대 초기에 생산되었다(Zambryski et al., EMBO J. 1983, 2: 2143-2150). 이 기술은 병원체 미생물(Powell et al., Science 1986, 232: 738-743), 곤충(Vaeck et al., Nature 1987, 328: 33-37) 및 제초제(Of Block et al., 1987, EMBO J. 6: 2513-2518)에 대한 저항성을 달성하기 위해 처음으로 사용되었다. 그러나, 높은 구조적 복잡성을 갖는 외래 단백질을 정확하게 앙상블하기 위한 식물세포의 능력의 입증은 산업적으로 그리고 생약적으로 흥미있는 재조합 단백질의 경제적 생산을 끌어올리는데 새로운 전략으로서의 그 가능한 가치를 빠르게 지적했다.(Barta et al., Plant Mol. Biol 1986, 6: 347-357; Cramer et al., Ann. N And Acad. Sci. 1996, 792: 62-71; Staub et al., Nature Biotechn. 200l. 18: 333-338).
1992년에, 서브유닛 백신의 생산에 관련된 새로운 개념이 도입되었다. 이것은 형질도입 식물이 간염 B (HBsAg)의 표면 항원을 발현할 수 있다는 입증으로부터 유래된다. 이들 발견에 기초하여, 식물은 먹을 수 있는 생산물로 백신 후보를 생산하고, 단지 이들 생산물의 소비에 의해서 면역화를 달성하기 위해 사용되어 질 수 있음이 고려되었다. 이들 사실에 의해, "먹을 수 있는 백신"의 용어가 등장하였다(Arntzen et al., Plants. Vaccine 1994, 94:339-344). 이 후, HBsAg를 포함하는 형질도입 포테이토를 먹인 마우스는 상용 백신의 유일한 복용량이 복막내로 투여되었을 때 얻어진 것에 유사한 일차 면역 반응을 나타냈다는 것이 입증되었다. 이들 결과는 먹을 수 있는 식물 조직에 항원의 발현이 면역화반응의 새로운 경로로 고려되어 질 수 있다는 것을 나타냈다(Richter et al., Nature Biotechnology 2000, 18:1167-1171).
백신의 발현을 위한 식물의 사용을 기술하는 몇몇 특허가 있는데, 즉: 특허No US5484719 (Lam et al., January 16, 1996; 특허 No US5612487 (Lam et al., January 16, 1996); 특허 No US5914123, 분할특허 No US5612487 및 계속 특허출원 No PCT/US94/02332 (Arntzen et al., June 22, 1999); 특허 No US6136320 (Arntzen et al., June 22. 1999); 특허출원 공보 WO9612801 (Arntzen et al., May 28, 2002) 및 특허출원 No US2002006411 (Lam et al., On June 4, 2002)등 이다.
상기 언급된 문헌은 간염 B (VHB)의 바이러스를 언급하기 위해 용어 "바이러스 간염"를 사용하는 몇몇 경우 및 식물에서 HBsAg의 발현 뿐 아니라 백신으로서 식물의 사용을 기술한다. VHB는 매우 다른 특성을 갖는 간염 A의 바이러스와 유의적으로 다르고 따라서 이들은 분류학적 관점으로 다른 것에 속한다. 면역학적으로 중요한 반응을 상승할 수 있는 HAV 재조합 단백질을 달성하기 위해, 바이러스 게놈의 몇몇 단백질을 발현하고 그리고 나서 이런 입자가 펜타머 또는 엠프티 캡시드로 형성되는 것을 이룩하는 것이 필요하다. 면역유전 입자의 프로세싱 및 형성은 효모같은 보다 단순한 계에서가 아니라, 우두 및 바큘로바이러스같은 진핵생물계에서 만이 달성되어 졌다. 형질도입 식물에서, HAV로서 복잡한 항원이 발현되어 졌다. VHB의 경우에, 항원은 효모같은 보다 단순한 진핵생물계에서 효과적으로 미립자화되는 일 단백질에 의해서 만이 형성된다. 이미 밝혀진 의견에 기인하여, HBsAg의 발현이 식물에서 HAV의 펜타머 또는 엠프티 캡시드의 발현을 포함하지 않는다고 믿는다. 다른 특허출원은 특허출원 No WO0161022(Sohn et al., 2001. 8. 23)에의 인간 유두종의 바이러스의 항원; 특허출원 No CN1319670(Zhong et al., 2001. 10. 31)에의 아프토사 열(aftosa fever)의 바이러스의 항원; 특허출원 WO0159070(Reads et al., 2001. 8. 16)에의 로타바이러스의 항원 및 특허출원 No WO0197839(Shachar et al., 2001. 12. 27)에의 굼보로(gumboro) 바이러스의 항원같은 다른 바이러스 항원의 발현을 자세하게 기술하고 있다.
식물에 재조합 단백질의 생산은 임상의학에 중요한 백신 또는 약학적 화합물을 생산하기 위한 많은 잠재적인 이점을 제공한다. 첫번째로, 식물 시스템은 발효 시스템 또는 생물반응기에서 사용된 산업적 인프라 구조보다 경제적이다. 두번째로, 식물을 시도하고 수확하기 위한 기술과 산업적 규모로 그 생산이 이미 이용가능하다. 세번째로 재조합 단백질을 포함하는 식물이 음식으로 사용되는 때에는 화합물 정제의 필요성이 제거될 수 있다(먹을 수 있는 백신의 경우에서와 같이). 네번째로, 재조합 단백질을 미토콘드리아, 액포, 클로로플라스트 및 엔도플라즘의 레티클 같은 세포내 부분으로 하거나 또는 이들을 바로 이들 부분(예를 들어 클로로플라스트)에 발현할 수가 있다. 다섯번째로, 인간이 병원균을 가지는 재조합 생산물의 가능한 오염에 대한 건강에 대한 위험이 최소이다. 마지막으로, 약학적으로 중요한 재조합 단백질의 발현계로서 식물은 부가적인 이점으로 엔도플라즘의 레티클 수준에서 폴딩, 어셈블리, 글리코실화를 포함하는 많은 단계의 분비 경로가 포유동물의 세포에 유사하다는 사실을 갖는다(Ma y Hein, Plant Physiol. 1995, 109: 341- 346; Rayon et al., J. Exp. Bot. 1998, 49: 1463-1472; Sanderfoot y Raikhel, Plant Cell. 1999, 11: 629-641; Vitale and Denecke, Plant Cell 1999, 11: 615-628; Lerouge et al., Pharmaceutical Biotechnology 2000, 1: 347-354).
도 1은 식물 시토솔에서 엔벨롭 및 펜타머 발현을 위한 유전적 컨스트럭트이다. A) HAV의 M2 균주의 ORF 구성도. B) 구조 단백질(P1-2A)을 코드하는 시퀀스의 구성도. C) 3ABC 영역을 코드하는 시퀀스의 구성도. D) HAV의 ORFm의 구성도. E) 식물 발현을 위해 이중 벡터에 클론된 대상물의 삽입 구성도.
도 2는 식물 세포의 시토솔에서 펜타머 발현을 위한 유전적 컨스트럭트이다. A) VP4를 코드하는 시퀀스를 갖지 않는 ΔORFm의 구성도. B) ΔORFm 식물 발현을 위한 이중 벡터에 클론된 대상물의 삽입 구성도.
도 3은 식물 세포의 엔도플라즘 레티클에서 엔벨롭 및 펜타머 발현을 위한 유전적 컨스트럭트이다. A) KDEL 시퀀스에 융합된 P1-2A 시퀀스의 구성도. B) 엔도플라즘 레티클에서 발현을 위한 이중 벡터에 클론된 대상물의 삽입 구성도. E- 스페이서, K- KDEL을 의미.
도 4는 식물 세포의 엔도플라즘 레티클에서 펜타머의 발현을 위한 유전적 컨스트럭트이다. A) KDEL 시퀀스에 융합된 VP4 시퀀스가 없는 P1-2A 시퀀스의 구성도. B) 식물 발현을 위한 이중 벡터에 클론된 대상물의 삽입 구성도. E- 스페이서, K- KDEL을 의미.
도 5는 형질도입 식물로부터 게놈 DNA의 서던 블럿이다.
도 6은 캐럿 및 라이스 형질도입 식물로부터 PCR 산물의 서던 블럿이다.
도 7은 엔벨롭 및 펜타머의 시토솔에서 발현을 위한 유전적 컨스트럭트로 형질전환된 형질도입 타바코, 캐럿 및 라이스로부터 식물 단백질의 웨스턴 블럿이다.
도 8은 HAV 엔벨롭 및 펜타머의 시토솔에서 발현을 위한 유전적 컨스트럭트로 형질전환된 타바코, 캐럿 및 라이스 식물에 대해 수행된 면역-효소학적 어세이(ELISA)이다.
도 9는 컨스트럭트 pBMLAm로 형질전환된 타바코 식물의 일렉트로닉 이뮤노마이크로스코피이다. A) 비형질전환 식물. B) 형질전환 식물. C) 형질전환 식물.
도 10은 복막내로 HAV로 면역된 마우스로부터 혈청의 저해 ELISA이다.
도 11은 라이스 및 타바코 식물로부터 정제된 HAV 펜타머로 구강으로 면역된 마우스로부터 혈청의 저해 ELISA이다.
도 12는 HAV 펜타머를 발현하는 식물로부터 수집된 캐럿을 먹임에 의해 구강으로 면역된 마우스로부터 혈청의 저해 ELISA이다
본 발명의 목적의 기본적 디자인은 구조 단백질의 다른 변형체를 코드하는 유전자의 조합된 발현과 변이된 비구조 영역을 허용하는 유전적 컨스트럭션에 의해 지지되고, 면역반응을 형성할 수 있는 형질도입 식물에 HAV 항원 펜타머 및 캡시드의 재조합 발현에 대한 것이다.
본 발명의 신규성은 기본적으로 엄격한 구조 영역(단지 단백질 2A까지)에 의해 형성된 작은 사이즈의 폴리프로테인을 코드하는 신규한 오픈 리딩 프레임의 정합에 사용된 바이러스 게놈 및 단백질 3A/3B과 3B/3C 사이에 단리 사이트가 변이된다는 사실에 기인한 바이러스의 프로테아제 3C에 월등한 사이즈를 제공하는 프로테아제 변이 바이러스의 영역에 있다. 형질도입 식물에 HAV의 바이러스 캡시드의 엔도플라즘 레티클에서의 발현과 시토솔에서의 발현이 특히 사용된 프로모터와 제어 신호의 조절하에서 처음으로 이루어진다. 단백질 가수분해를 담당하는 영역 및 구조 영역의 조합된 발현의 산물로서 엔도플라즘 레티클에서 펜타머 및 캡시드 형성은, HAV의 경우에서와 같이 복잡한 구조의 저장 및 어셈블리를 위한 이 부분의 가능성을 입증한다. 식물에서의 펜타머 및 캡시드의 생산은 이들을 값싸고 확실한 백신을 얻기 위한 생물 반응기로 채택될 가능성을 허용한다.
유전적 컨스트럭션.
HAV의 cDNA 획득.
큐바에서 분리된 HAV의 M2 균주의 RNA로부터, 바이러스의 오픈 리딩 프레임(ORF) 을 코드하는 뉴클레오티드 시퀀스가 역전사기술-중합화 사슬 반응(RT-PCR)을 사용하여 증폭된다. 이 분획은 플라스미드에 클론되고, 그의 뉴클레오티드 시퀀스가 결정된다. 보고된 시퀀스에 관해 11 아미노산 잔기에서 이형이 발생하는 차이가 나타난다. 시퀀스의 분석은 거의 대부분 아메리카 균주에 속하는 서브지노타입 IA의 부분으로 M2 균주를 분류하는 것을 가능하게 한다. 이 균주의 게놈으로부터, 변이된 분획이 디자인되고 구성되고 그리고 나서 본 발명의 대상인 다른 유전적 컨스트럭션에 사용된다.
형질도입 식물에 캡시드 및 펜타머의 발현용 벡터의 유전적 컨스트럭션.
HAV의 재조합 프로테아제.
바이러스 캡시드를 형성하기 위해서는, 바이러스 단백질의 순서적인 방출을 가능하게 하는 폴리프로테인의 차등적인 프로테오라이트적 프로세싱이 발생하여야 할 필요가 있다. 캡시드 형성의 효율은 매개자 3ABC가 존재할 때 멤브레인 및 바이러스 단백질과 단백질 3AB의 소수성 상호작용이 기인하여 증가한다. 단백질 3A/3B와 3A/3C 사이의 프로테아제 3C의 단리 사이트는 변이되어 프로테아제 3C가 방출되지 않고 다음으로 HAV의 펜타머 및 캡시드의 형성에 필요한 그 프로테오리틱(proteolytic) 기능을 보유하는 것으로부터 폴리펩티드 3ABC를 수득한다. 치환은 3A/3B 사이의 발린 에 의한 글루탐산 및 3B/3C 사이의 류신에 의한 세린이다. 이 폴리펩티드는 면역 유전의 캡시드 및 펜타머를 형성하는 단백질의 발현에 대한 다른 신규한 방법의 디자인에 사용된다.
식물세포의 시토솔에 캡시드 및 펜타머의 발현용 재조합 HAV.
HAV에서, 폴리펩티드 P1-2A는 바이러스 캡시드의 형성에 중요한 기능을 갖는다. 이 폴리펩티드에는 캡시드의 형성을 조절하는 두 가지 신호가 있다. 그 카르복실 말단 영역에는 펜타머의 형성을 이루기 위해 조합하는 캡시드의 제일 단계에서 요구되는 단백질 2A가 발견된다. 이들은 폴리펩티드 P1-2A의 다섯의 비진행된 분자의 조합으로부터 발견된다. 단백질 VP4은 캡시드의 형성 및 펜타머의 조합을 위한 제2 단계에서 요구된다.
식물 세포의 시토졸 내의 변이된 폴리프로테인의 발현을 위해, 수정된 오픈 리딩 프레임(ORFm)의 시퀀스를 포함하는 벡터가 구성된다. 이들 구성은 유의적으로 마이너 사이즈 폴리프로테인(HAV의 원래 폴리프로테인과 비교하여)을 코드한다. 이 시퀀스는 변이된 프로테아제 3ABC를 코드하는 시퀀스와 P1-2A 폴리펩티드 코딩 시퀀스의 융합의 결과이다.
에이. 튬파션스에 의해 식물의 형질전환을 위해 사용된 플라스미드 벡터는 식물에서 이들의 발현의 제어 신호를 코드하는 뉴클레오티드 시퀀스에 융합된 HAV의 단백질을 코드하는 DNA를 포함한다. 이 경우에 있어서, 단백질을 코드하는 시퀀스는 식물세포의 분비 경로를 가로지르는 이동의 어떤 특정 신호에 융합되지 않고 따라서 이것은 세포의 시토솔에서 발현된다.
식물세포의 시토솔에 펜타머의 배타적 발현용 재조합 HAV.
오토프로세스 및 배타적으로 면역유전 바이러스 펜타머 형성. 캡시드에 대한 펜타머의 보다작은 사이즈는, 그것이 보다작은 것을 발생시키기 때문에 보다 높은 수준의 발현을 성취할 수 있게 한다. 이미 기술되어진 바와 같이, 폴리펩티드 VP0의 일부분으로서 단백질 VP4는 바이러스 캡시드의 형성과 펜타머의 조합을 위해 요구되어 진다.
폴리프로테인 ORFm를 코드하는 뉴클레오티드 시퀀스로부터, 단백질 VP4를 코드하는 분획이 제거되어, 소위 ΔORFm 라는 시퀀스가 나온다. 식물세포의 시토솔에서 그 발현을 제어하는 시퀀스에 융합된 폴리프로테인 ΔORFm 의 발현용 플라스미드 벡터가 구성된다. 이것은 에이. 튬파션스로 타바코, 라이스 및 캐럿의 잎의 감염에 의한 형질도입 식물을 얻기 위해 사용된다. 이 유전적 컨스트럭션으로부터 발현된 폴리프로테인은 유의적으로 보다 작은 사이즈를 가지고 이것은 식물세포에서 대사를 담당할 수 있다. 수득된 생산물은 백신 개발에 면역원같이 사용되는 거의 먹을 수 있는 것이다.
식물세포의 엔도플라즘 레티클에 캡시드 및 펜타머의 발현용 재조합 HAV.
식물에서 엔도플라즘 레티클에 이종유래 단백질의 축적은 그들을 분비경로, 따라서 엔도플라즘 레티클,로 구동하는 시퀀스의 사용과 또한 이 세포기관에서의 억제의 신호를 구동하는 시퀀스를 사용함으로써 달성된다.
신호 펩티드로서, 스윗트 포테이토 스포라민의 N-말단 펩티드를 코드하는 시퀀스가 사용된다. 엔도플라즘 레티클에서 단백질의 억제의 신호로서 단백질의 카르복실 말단에 위치된 펩티드 KDEL을 코드하는 시퀀스가 사용된다.
스윗트 포테이토 스포라민 신호 펩티드는 P1-2A 뉴클레오티드 코딩 시퀀스의 5' 영역에 융합되고, KDEL 코딩 시퀀스에 융합된 스페이서 펩티드용 시퀀스는 3' 영역에 삽입된다. 얻어진 DNA 분획은 이원벡터로 식물 발현 신호의 제어 하에 위치된다. 이 벡터는 스윗트 포테이토 신호 펩티드에 그 5' 최말단에서 융합된 변이된 폴리펩티드 3ABC와 그 3' 최말단에 KDEL 코딩 시퀀스를 포함한다. 모든 이들 요소는 또한 식물 발현 신호의 제어하에 있다. 양 폴리펩티드는 엔도플라즘 레티클에 위치되고 프로테아제 3ABC는 폴리펩티드 P1-2A를 프로세스 할 수 있고 효과적인 입자 형성을 이룰 수 있다.
식물세포의 엔도플라즘 레티클에 펜타머를 배타적으로 발현하기 위한 재조합 HAV.
폴리펩티드 ΔP1-2A는 P1-2A 폴리펩티드 코딩 시퀀스로부터 VP4 뉴클레오티드 코딩 시퀀스를 제거함에 의해 수득된다. 이 시퀀스는 스윗트 포테이토 스포라민 신호 펩티드에 그 5' 말단에서 융합되고, 그리고 그 3' 말단에서 KDEL 코딩 시퀀스에 결합된 스페이서 펩티드를 코드하는 시퀀스에 융합된다. 동일한 이중 벡터에서 변이된 폴리펩티드 3ABC를 코드하는 시퀀스는 그 5' 말단에서 동등하게 스윗트 포테이토 스포라민 신호 펩티드에 융합되고 그 3' 말단에서 KDEL 코딩 시퀀스에 융합된다. 모든 요소는 식물에서 발현을 위한 제어의 신호 하에 있다.
두 폴리펩티드는 엔도플라즘 레티클에 위치되고 프로테아제 3ABC는 폴리펩티드 ΔP 1-2A를 프로세스 할 수 있고 배타적으로 펜타머의 발현을 달성할 수 있다. 이들 식물은 보다 높은 수준의 발현 뿐 아니라 보다 양호한 성장 및 전개를 보여, 보다 나은 생물자원을 수득하게 한다.
변형된 HAV의 유전자 생산물을 발현하는 형질도입 식물의 동정.
에이. 튬파션스는 각 이중 벡터로 형질전환되고 이들 플라스미드를 포함하는 박테리아 콜로니가 얻어진다. 다른 유전적 컨스트럭션을 별도로 수반하는 에이. 튬파션스는 식물 형질전환을 위해 사용되어 최종적으로 셀렉션 마커로서 카나마이신에 내성인 식물을 얻는다. 식물 내의 외래 DNA의 합체는 서던 블럿 및 PCR 기술을 사용함에 따라 입증된다.
형질도입 식물의 잎으로부터, 이들을 특정 단백질 추출 완충액에서 액체 질소로 마쇄하여 가용성 단백질의 추출이 수행된다. 캡시드 및 펜타머는 HAV에 특정 항혈청 및 중화 모노크로날 항체을 사용하여 동정된다. 웨스턴 블럿, ELISA 또는 이뮤노마이크로스코피 같은 면역학적 방법이 수행되어, 형질도입 식물이 폴리프로테인을 발현하고 몇몇의 경우에는 기대된 폴리펩티드를 발현하고, 그리고 또한 이들은 펜타머 또는 캡시드로 조합되고 진행된다는 것이 입증된다.
재조합 단백질의 보다 높은 준위를 발현하는 식물이 중화 모노크로날 항체를 사용한 캡시드 및 펜타머 정제에 사용된다.
정제된 캡시드 및 펜타머의 면역원성의 결정.
HAV의 캡시드 및 펜타머 면역잠재성은 타바코 및 라이스의 식물 잎으로부터 정제된 생산물로 면역된 마우스의 면역학적 반응에 의해 결정된다. 또한 역가는 HAV 항원을 발현하는 형질도입 캐럿을 먹인 마우스에서 평가되었다. 경구 경로 및 비경구적 방법이 항원의 투여를 위한 방법으로 사용된다. 면역 반응은 생체외에서 HAV 감염을 중화하는 면역 혈청의 중화능에 대해, 그리고 HAV에 동물의 항혈청의 반응성을 결정하기 위해 Elisa의 기술을 사용하여 조절되고 입증되었다.
발명의 이점.
본 발명이 제공하는 가장 중요한 이점으로는, 원 바이러스와 본 컨스트럭트의 발현 산물로서 정제된 펜타머 및 엔벨롭에서의 항원적인 유사성; 여기서 청구하는 컨스트럭트의 산물로서 식물에서의 펜타머 및 엔벨롭의 발현 준위가 HAV 오픈 리딩 프레임이 발현되는 때, 또는 영역 P1-2A 및 영역 P3이 함께 발현되는 때에 얻어지는 것 보다 높다. 왜냐하면, 본 컨스트럭트의 발현의 산물로서 얻어진 폴리프로테인이 원 바이러스 사이즈보다 유의적으로 적은 사이즈를 가지기 때문이다; 폴리펩티드 3ABC는 단백질 3A, 3B 및 3C에 의해 배타적으로 구성되고 단백질 3A/3B와 3B/3C 사이의 자가진행 사이트를 변이하여, 폴리펩티드 프로세싱이 회피되고 따라서 폴리프로테인의 프로테오리틱 기능이 폴리펩티드 그 자체에 의해 보다 높은 효율성으로 간주됨; 식물 세포의 엔도플라즘 레티클에서 펜타머 및 HAV 바이러스 엔벨롭 발현 준위는 세포질에서 보다 높음; 식물 세포에서 펜타머의 배타적 발현은 보다 효율적이고 이들 입자의 보다 적은 사이즈에 기해 보다 양호한 식물 성장 및 전개를 가능하게함; 식물로부터 약학적 단백질의 스케일 엎 및 생산은 많은 양의 항원을 생산하기에 적당함; 생산 단가가 이 기술의 상황에서 설명된 현재 사용되고 있는 다른 시스템에 비하여 감소됨; 식물에서 HAV 항원 발현은 인간에 영향을 미치는 병원균으로의 오염위험을 감소함; HAV에 대한 경구 면역화반응은, 생산물을 정제할 필요성없이 식물을 사용하는 가능성에 기인하여 면역화 비용을 저렴하게 하는데 유의적으로 기여함;이라는 것이다.
미생물의 기탁.
플라스미드 pBVHARE, pBΔVHARE, pBMLAm 및 pBΔMLAm은 2003년 5월 19일자로 각각 어세스 넘버 LMBP 4721, LMBP 4722, LMBP 4723 및 LMBP 4724로 "Belgian Coordinated collection of Microorganisms BCCM, LMBP-COLLECTION"에 미생물 기탁에 대한 부다페스트 조약의 규정하에 기탁되었다.
실시예 1. 큐바 균주 M2의 HAV의 ORF 클로닝.
플라스미드 pMLA1의 대상 시퀀스가 도 1 (A)에 도시되어 있다. 큐바에서 분리되고 특징된 HAV 균주 M2로부터, RNA가 정제되고, 6.7 kb의 DNA 분획이 HAV의 이미 보고된 다른 시퀀스에 대한 특정 올리고뉴클레오티드(SEQ ID NO 1 및 2)를 사용한 역전사-중합화 사슬 반응 기술(RT - PCR)의 수단에 의해 증폭되었다. 이 밴드는 이미 SmaI 엔도뉴클레아제로 단리된 벡터 BlueScript (KS+)에 클론된다. 얻어진 플라스미드는 pMLA1로 명명되고, 큐바 M2 균주의 HAV's ORF의 시퀀스를 결정하기 위해 사용된다. DNA 시퀀스(SEQ ID NO 3)는 보고된 것과의 차이를 나타낸다. 11개의 다른 아미노산을 발생하는 차이를 갖는다. 이들 시퀀스의 분석은 균주 M2를 거의 전반적으로 아메리칸 균주에 속하는 서브게노타잎 IA 내로 분류할 수 있게 한다. 이 시퀀스는 큐바 균주 M2가 이미 보고된 것과 전혀 다른 HAV 균주임을 확인한다.
실시예 2. 식물 세포 시토솔에 캡시드 및 펜타머의 발현을 위한 유전적 컨스트럭트.
플라스미드 pP1-2A의 대상 시퀀스는 도 1(B)에 도시되어 있다. 이 플라스미드는 각각 플라스미드 pMLA1로부터 단백질 2A를 코드하는 시퀀스의 3' 영역 및 단백질 VP4를 코드하는 시퀀스의 5' 영역에 대한 상보적인 특정 올리고뉴클레오티드 (SEQ ID NO 4)를 사용하여, 구조 단백질(P1-2A)을 코드하는 시퀀스의 PCR 증폭에 의해 수득된다. 2.5 kb의 증폭된 밴드(SEQ ID NO 6)는 SmaI로 단리된 벡터 BlueScript (KS+)에 클론된다.
그 대상 시퀀스가 도 1(C)에 도시된 플라스미드 p3ABC를 수득하기 위해, 단백질 3A를 코드하는 0.2 kb의 영역이 이 유전자의 5' 및 3' 영역에 상보적인 올리고뉴클레오티드(SEQ ID NO 7 및 8)를 사용하여, PCR에 의해 증폭된다. 이것은 BamHI/EcoRV로 단리된 벡터 Blue Script (KS+)에 클론된다. 그 후, EcoRV/XbaI 사이트 중의 영역에 있지만 동일한 벡터에서, 단백질 3B를 코드하는 합성 뉴클레오티드 시퀀스(SEQ ID NO 9 및 10)가 클론된다. 수득된 플라스미드는 p3AB로 명명된다. 한편, 플라스미드 pMLA1로부터, 단백질 3C를 코드하는 0.65 kb의 시퀀스가 올리고뉴클레오티드 SEQ ID NO 11 및 12를 사용하여 PCR에 의해 증폭된다. 이 밴드는 벡터 P3AB의 사이트 XbaI/HindIII 중에 클론된다. 수득되어진 시퀀스는 3ABC (SEQ ID NO 13)로 명명된다.
이것은, 단백질 3A/B과 3B/C 사이의 컷팅 사이트가 T가 C에 의해 그리고 G가 C에 의해 각각 뉴클레오티드 치환의 수단에 의해 변이되기 때문에 프로테오라이트 활성은 있지만 자가진행 가능성은 없는 폴리프로테인을 코드한다.
플라스미드 pMLAm의 대상 시퀀스는 도 1(D)에 도시된다. 이를 얻기 위하여, 플라스미드 pP1-2A는 EcoRI 및 ClaI 단리된다. 변이된 폴리펩티드 3ABC를 코드하는 1kb 밴드 EcoRI/ClaI 단리에 의해 추출되고 이미 단리된 pP1-2A의 적당한 사이트에서 클론된다. 플라스미드 pMLAm은 원래의 폴리프로테인(SEQ ID NO 14)에 비하여 유의적으로 보다 적은 중량의 HAV 폴리프로테인을 코드하는 변형된 시퀀스를 포함한다.
플라스미드 pKMLAm은 벡터 pKTPL-2에 단리된 3.4 kb ORFm 밴드 SmaI/ClaI를 클로닝함에 의해 수득된다. 이 벡터는 프로모터 2X로 35SCaMV 프로모터의 시퀀스, TEV의 리더 시퀀스 및 35S CaMV의 터미네이터를 포함한다. ORFm 밴드를 클론하기 위해, 플라스미드 pKTPL-2는 NcoI로 단리되고, 이어서 DNA PolI의 Klenow 분획으로 블런팅되고 마지막으로 ClaI로 단리된다.
이중 플라스미드 pBMLAm의 대상 시퀀스는 도 1(F)에 도시된다. 이 플라스미드는 플라스미드 pKMLAm의 SphI 단리와 Mung Bean 뉴클레아제로의 연속적 처리에 의해 수득되어, 미리 SmaI 단리된 이중 벡터 pBin19에 클론된 4.7 kb의 밴드를 제공한다.
얻어진 플라스미드 pBMLAm는: 카나마이신 내성을 부여하는 셀렉션 마커로서 작용하는 네오마이신 포스포트랜스퍼라제 II 유전자(NPTII); CaMV의 터미네이터 뿐 아니라 TEV의 리더 및 2X 35S CaMV프로모터에 의해 제어된 변이된 HAV 폴리프로테인을 코드하는 ORFm 유전자를 포함한다. 또한 이것은 식물 게놈에 그의 전이를 용이하게 하는 T-DNA의 보더 시퀀스를 가진다.
실시예 3. 식물세포의 시토솔에서 펜타머의 발현을 위한 유전적 컨스트럭.
플라스미드 pΔMLAm의 대상 시퀀스가 도 2(A)에 도시되어 있다. 단백질 VP4을 제거하고 이 플라스미드를 얻기 위하여, 114bp의 분획이 효소 SmaI/PstI로 컷팅한 플라스미드 pMLAm로부터 제거되고 단백질 VP2를 코드하는 유전자의 시작을 전환하는 합성 뉴클레오티드 시퀀스(SEQ ID NO 15 및 16)로 재배치된다. 영역 ΔORFm의 시퀀스는 SEQ ID NO 17에 상응한다. 플라스미드 pKΔMLAm는 이미 NcoI/Klenow/ClaI로 단리된 플라스미드 pKTPL-2에서 단리된 밴드 ΔORFm (3.46 kb) SmaI/ClaI를 클론하여 수득된다. 이중 플라스미드 pBΔMLAm의 대상 시퀀스는 도 2(B)에 도시되어져 있고, 이 이중 플라스미드는 효소 SmaI로 Bin19의 단리에 의해 수득되고 효소 SphI로 플라스미드 pKMLAm의 단리 및 Mung Bean 뉴클레아제로 처리한 결과인 4.6 kb의 DNA 분획이 그런 다음 클론된다.
얻어진 플라스미드 pBΔMLAm는: 카나마이신 내성을 부여하는 셀렉션할 수 있는 마커로서 작용하는 네오마이신 포스포트랜스퍼라제 II 유전자(NPTII); 35S CaMV의 터미네이터 뿐 아니라 TEV의 리더 및 프로모터로서 시퀀스 2X 35S CaMV에 의해 제어된 HAV 변이 폴리프로테인을 코드하는 ORFm 유전자를 포함한다. 또한 이것은 식물 게놈에 전이되어지는 좌우 보더를 포함한다.
실시예 4. 식물세포의 엔도플라즘 레티클에서 캡시드 및 펜타머의 발현을 위한 유전적 컨스트럭.
플라스미드 pBVHARE의 대상 시퀀스가 도 3B에 도시되어 있다. 이 플라스미드를 얻기 위하여, KDEL 유보 신호를 코드하는 합성 분획(SEQ ID NO 18 및 19)이 벡터 BS (+)의 사이트 EcoRV/ClaI에 클론된다. 한편, 플라스미드 pP1-2A의 사이트 StyI/EcoRI에서, 단백질 2A의 3' 말단을 변형하고 KDEL 신호를 코드하는 유전자 및 시퀀스의 연합사이에 스페이스-바로서 작동하는 시퀀스를 도입할 뿐 아니라 이 영역에서 사이트를 컷팅하는 프로테아제를 제거하는 합성 분획(SEQ ID NO 20 및 21)이 클론된다. 이후 이 시퀀스(2.5 kb)는 효소 SmaI/EcoRV로 추출되고 벡터 BS-KDEL에 클론되어, 플라스미드 pP1-2ARE(도 3A, SEQ ID NO 22)를 얻는다. 플라스미드 p3ABCRE는 효소 XhoI/Klenow/EcoRI로 p3ABC 플라스미드를 단리하고 EcoRI/EcoRV 사이트(도 3A, SEQ ID NO 23)에서 3ABC 시퀀스를 클로닝하여 수득된다.
대상 유전자에 식물 발현 제어 신호를 제공하기 위해, 플라스미드 pP1-2ARE로 부터 효소 SmaI/ClaI로 추출된 구조 영역 P1-2A-KDEL (2.5 kb)이 플라스미드 pKTPL-2 단리 NcoI/Klenow/ClaI에 클론된다. 얻어진 플라스미드는 pKP1-2ARE로 명명된다. 1kb의 영역 3ABC-KDEL은 플라스미드 p3ABCRE로부터 효소 NcoI/ClaI로 추출되어 동일한 효소로 단리된 플라스미드 pKTPL-2에 클론된다. 얻어진 플라스미드는 pK3ABCRE이다.
마지막으로, 에이. 튬파션스에 의해 식물 형질전환을 위한 플라스미드를 얻기 위해, 플라스미드 pK3ABCRE로부터 효소 SalI로 추출된 2 kb의 시퀀스는 미리 동일한 효소로 단리된 이중 벡터 pBin 19에 클론된다. 얻어진 플라스미드는 pB3ABCRE로 명명된다. 그후, 동일한 벡터의 SphI 사이트에, SphI 단리에 의해 플라스미드 pKP1-2ARE로부터 추출된 시퀀스 P1-2A-KDEL에 상응하는 발현 카셋트가 클론된다. 얻어진 플라스미드 pBVHARE는 셀렉션할 수 있는 마커로서 작용하는 네오마이신 포스포트랜스퍼라제 II (NPTII) 유전자 및 식물 발현 제어 신호 하에 레티클에서 유보 신호에 융합된, 별도의 프로테아제 작용을 갖는 영역 및 구조 영역의 양자를 담지한다.
실시예 5. 식물세포의 엔도플라즘 레티클에서 펜타머의 발현을 위한 유전적 컨스트럭.
플라스미드 pBΔVHARE의 대상 시퀀스가 도 4(B)에 도시되어 있다. 이 플라스미드는 플라스미드 pP1-2ARE를 효소 SmaI/PstI로 컷팅하여 수득되고 이것은 단백질 VP2를 코드하는 시작을 전환하는 합성 뉴클레오티드 시퀀스(SEQ ID NO 15 및 16)로 대체된다. 얻어진 플라스미드 pΔP1-2ARE(도 4A, SEQ ID NO 24)는 SmaI/ClaI로 단리되고 2.4 kb의 밴드가 NcoI/Klenow/ClaI단리 벡터 pKTPL-2에 클론되어 플라스미드 pKΔP1-2ARE를 수득한다. 이것은 플라스미드 pB3ABCRE (3ABC-KDEL를 코딩하는 이중 플라스미드), SphI 효소로 단리된 발현 카셋트에 클론된다.
얻어진 이중 플라스미드는: 식물 발현 신호 하에서 KDEL 펩티드에 융합되고, 단백질 VP4을 코드하는 시퀀스를 갖지않는 구조 영역; 셀렉션할 수 있는 마커로서 네오마이신 포스포트랜스퍼라제 II (NPTII) 유전자 및 동일한 신호 하에서 3ABC-KDEL 영역을 포함한다.
실시예 6. 니코티나 타바큠 ( Nicotina tabacum) 형질도입 식물에서 HAV의 캡시드 및 펜타머의 획득.
니코티아나 타바큠 식물의 유전적 형질전환은 Zambryski et al., (1983)의 방법에 따라 수행된다.
에이. 튬파션스 균주 At 2260 (Deblaere et al., 1985)은 전개된 이중 플라스미드(pBΔVHARE , pBVHARE, pBΔMLAm, pBMLAm)로 액체 질소의 방법(Hofgen and Willmitzer, 1988)에 의하여 형질전환된다. 생체외에서 배양된 변형체 Petit Havana MR 1의 타바코 식물의 잎 화반은 재조합 아그로박테리움(Agrobacteriums)으로 형질 전환된다. 카나마이신(100 mg/L)이 셀렉션 마커로 사용되었다.
서던 블럿, 웨스턴 블럿, ELISA 및 이뮤노마이크로스코피와 같은 몇가지 절차가 바이러스 엔벨롭 또는 펜타머의 어느 것의 형성 뿐 아니라 타바코 식물 게놈에 대상 유전자의 존재 및 이들의 발현을 검지하기 위해 수행된다.
실시예 7. 형질도입 캐럿 식물( Daucus carota L.)에서 HAV의 캡시드 및 펜타머의 획득.
이 식물의 형질전환에 사용되기 위하여, 이중 플라스미드(pBΔVHARE, pBVHARE, pBΔMLAm, pBMLAm)로 형질전환된 에이. 튬파션스 균주 At 2260가 식물 형질전환을 위해 사용되었다. 발아된 3 주령의 변이체 New Kuroda의 배축이 1cm 단편으로 절단되어 BAN-9 배지(Murashige and Skoog, 1962 (MS), 0.5 mg/L의 NAA가 보충됨)에 3일 동안 이식된다. 그 후, 이것은 이미 기술된 컨스트럭션의 각 하나를 포함하는 At 현탁으로 30분 동안 접종된다. 다시, 외식편은 72시간 동안 BAN-9 배지에 옮겨진다. 이 후, 이들은 카나마이신(100 mg/l)으로 보충된 재생 배지에 이식된다. 슈트가 3주 후에 나타나고 이들은 개별화되고 그리고 또한 100 mg/L의 카나마이신이 보충된 MS 배지에 이식된다. 유전자 중합은 PCR 산물의 서던 블럿에 의해 다양화된다(도 6). 폴리프로테인 발현, 그의 프로세싱 및 바이러스 캡시드 및 펜타머의 형성은 ELISA(도 8) 및 웨스턴 블럿(도 7)에 의해 입증된다.
실시예 8. 형질도입 라이스 식물( Oryza sativa L.)에서 HAV의 캡시드 및 펜타머의 획득.
라이스 식물의 유전적 형질전환은 Hiei et al., (1994)에 의하여 사용된 방법에 따라 수행되었다. 에이. 튬파션스 균주 At 2260은 전개된 이중 플라스미드(pB VHARE , pBVHARE, pB MLAm, pBMLAm)로 액체 질소의 방법을 사용하여 형질전환된다. 라이스 에스큐텔로(escutelo)로 부터 수득된 유합조직은 재조합 에이. 튬파션스로 형질전환된다. 카나마이신(100 mg/L)이 셀렉션 마커로 사용되었다.
바이러스 캡시드 또는 펜타머의 형성 뿐 아니라 식물 라이스 게놈에 대상 유전자의 존재 및 이들의 발현을 입증하기 위해, 아래에 기술된 다른 절차가 수행되었다.
실시예 9. 형질도입 식물의 면역화학적 및 분자적 특징.
서던 블럿에 의한 분석.
Dellaporta et al., (1983)에 의해 기술된 방법이 타바코, 캐럿 및 라이스 식물로부터 서던 블럿의 목적을 위한 크로모좀 DNA를 얻기 위해 사용되었다. 샘플로서, 셀렉션 마커에 내성을 보이는 이미 기술된 컨스트럭트로 형질전환된 식물의 잎이 사용된다. 비형질전환된 식물의 잎은 음성 대조군으로 사용된다.
전체 DNA 단리, 아가로스 겔 일렉트로포르시스, 하이본드 N 멤브레인으로의 전이 및 교배는 표준 절차(Sambrook et al., 1989)에 따라 수행되었다. VP1 단백질 VP1을 코드하는 유전자를 포함하는 1.2 kb의 DNA 분획은 프라이머-에이-진 라벨링 시스템(Promega Corp., the USA)을 사용하여 32P로 라벨되어 방사능 탐침자로 사용된다. 동일한 분획은 양성 대조군으로 사용된다.
도 5는 HAV의 캡시드 및 펜타머 양자를 세포질에 발현하는 컨스트럭트 pBΔMLAm 및 pBMLAm로 형질전환된 형질도입 타바코 식물의 서던 블럿을 나타낸다. SmaI 및 ClaI로 DNA 단리에 의해 3.4 kb의 밴드가 얻어진다. 엔도플라즘 레티클에서 발현되어지는 컨스트럭트 pBΔVHARE 및 pBVHARE로 형질전환된 형질도입 식물로부터 전체 DNA는 SmaI-EcoRI로 단리되어 2.4 kb의 밴드를 얻는다. 도 5에 도시된 결과는 식물이 그들의 게놈에 구조 단백질을 코드하는 시퀀스를 포함한다는 것을 입증한다.
형질도입 캐럿 및 라이스 식물 양자에서, 시퀀스 SEQ ID NO 4 및 5에 상응하는 올리고뉴클레오티드로 PCR 증폭 산물에 대해 서던 블럿이 수행된다. 도 6에 나타난 바와 같이, 단백질 VP1을 코드하는 방사능으로 표지된 시퀀스는 구조 단백질을 코드하는 시퀀스의 예정된 사이즈에 상응하는 2.5 kb의 밴드로 보완한다.
웨스턴 블럿에 의한 분석.
웨스턴 블럿 결과는 도 7에 도시된다. 재조합 분자의 면역검지에 대한 웨스턴 블럿 분석은 Towbin et al., (1979)에 의해 기술된 방법론에 따라 수행되었다. 단지 펜타머를 발현하는 컨스트럭트로 형질전환된 형질도입 타바코, 캐럿 및 라이스 식물로부터 추출된 전체 가용성 단백질로 구성된 웨스턴 블럿 샘플: 엔도플라즘 레티클에 펜타머를 발현하는 컨스트럭트 pBΔVHARE로 형질전환된 클론 타바코 5, 캐럿 7 및 라이스 3; 및 세포질에 펜타머를 발현을 가능하게 하는 컨스트럭트 pBΔMLAm로 형질전환된 클론 타바코 25, 캐럿 10. 음성적 대조로서, 비형질전환된 타바코 잎에서 추출된 단백질이 사용되었다. 양성적 대조로서, E.coli에서 발현된 VP1 단백질을 사용하였다. 잎은 매우 얇은 더스트로 수득될 때까지 액체 질소로 마쇄된다. 잎의 그램 당 1 mL의 단백질 추출 완충액[Tris-HCl 61 mM pH 6.8, 트리톤 0.1%, 글리세롤 12.5% 및 페닐메틸술포닐로의 불화물(Fluoride of Fenilmetilsulfonilo; PMSF) 1 mM]이 보고된 Schouten et al., (1997)과 같이 부가된다. 불용성 물질은 13,000 rpm에서 원심분리에 의하여 제거된다.
SDS-PAGE의 전체 단백질은 니트로셀루로스 멤브레인에 옮겨지고, 대상 단백질은 효소 알카린 포스파타제(PhoA)에 컨쥬게이트된 폴리크로날 항체 안티-VP1을 사용하여 동정된다. 효소 검지는 색도계 반응 수단에 의해 수행된다.
도 7에서 배양물에서 VP1 단백질의 동일 사이즈의 단백질 밴드의 존재 뿐 아니라 폴리프로테인의 불완전한 프로세싱으로부터 얻어진 다른 중간자 산물을 관찰하는 것이 가능하다.
면역효소학적 시험(ELISA).
ELISA 결과가 도 8에 나타난다. "샌드위치" 분석이 수행되었다. 플레이트(Maxisorp, Nunc)는 37℃에서 4시간 동안 카보네이트 완충액(Na2CO3 0.015 M, NaHCO3 0.028 M, pH 9.6)에서 10 mg/mL의 모노크로날 항체 7E7로 커버된다. 블락킹은 37℃에서 2 시간 동안 PBS(NaCl 100 mM, Na2PO4 80 mM, NaH2PO4 20 mM, pH 7.4)내 5%의 밀크로 수행되었다. 그 후, 형질전환 및 비형질전환된 타바코, 캐럿 및 라이스 식물(웨스턴 블럿에 대해 기술된 것과 같은 방법으로 준비된 것)에 상응하는 100 ㎕의 샘플이 부가된다. 플레이트는 4℃에서 밤세워 인큐베이트된다. PBS로 수세한 후, 1/1000 희석된 알카린 포스페이트(0.5% 밀크를 포함하는 PBS 내에 1 mg/mL)로 컨쥬게이트된 100 ㎕의 모노크로날 항체 7E7이 부가된다. 이 플레이트는 37℃에서 1시간 동안 인큐베이트된다. 반응은 0.1%의 디에탄올아민에 제조된 4-니트로페닐포스페이트(효소의 기질)의 부가에 의해 전개된다. 칼라의 출현이 60분 기간동안 이어진다. 흡광도는 스펙트로포토메터에서 405nm의 파장에서 측정된다. ELISA의 매 단계에서의 플레이트의 수세는 0.1% 의 트윈 20을 포함하는 PBS로 삼회 수행된다.
일렉트로닉 이뮤노마이크로스코피에 대한 분석.
이뮤노마이크로스코피 결과는 도 9에 도시된다. 플라스미드 pBMLAm로 형질전환된 타바코 및 비형질전환된 식물의 샘플이, 양자 모두 조직 배양으로부터 준비되어 4%의 포름알데히드 및 그 후 0.2%의 글루타르알데히드 용액에 고정된다. 이들은 에탄올에서 탈수되고 그리고 나서 Lowicryl K 4M (Chemische Werke Lowi, Waldkraiburg) 용액에서 인큐베이트된다. 극히 얇은 절편이 니켈 그릴에 위치되어 모노크로날 항체 7E7로 인큐베이트된다. 이 단계 후, 15nm의 골드 콜로이드 입자(British Bio-Cell International)로 표지된 폴리크로날 항체 안티-마우스 IgG로 배양된다. 면역표지된 부분은 투과 전자 현미경(Jeol-Jem 2000EX, Japan)에 의해 검사되기 전에, 우라닐아세테이트 처리로 5분간 그리고 리드 시트레이트에서 7분간 대비된다. 결과는 단백질이 세포질에 발현되는 것의 수단에 의해, 컨스트럭션 pBMLAm을 가진 타바코 형질전환 식물에서만 대략 27nm 직경의 입자가 나타났다.
실시예 10. 형질도입 타바코 및 라이스 식물로부터 캡시드 및 펜타머의 정제.
캡시드 및 펜타머의 정제를 위해, 입자 및 면역유전 펜타머를 배타적으로 인지하는 CIGB 실험실에서 얻은 모노크로날 항체 안티 HAV가 사용되었다.
식물 세포 단백질은 웨스턴 블럿 분석에서 기술된 프로토콜을 사용하여 추출된다. 원심분리로부터 얻어진 상등액은 0.5M의 염화나트륨에 용해되고 항체가 부가된 어피니티 겔(Bio-rad Laboratories, Richmond, CA)과 혼합된다. 이 혼합물은 16시간 동안 4℃에서 인큐베이트된다. 겔은 10 부피의 PBS (NaCl 100 mM, Na2PO4 80 mM, NaH2PO4 20 mM, pH 7.4)로 수세되고, 그 후 대상 단백질은 pH 2.5에서 글리신 0.2 M로 용리된다. 용리액은 염기 트리스로 중화되고 PBS에 대해 투석된다. 이들 잎 추출물로부터 HAV 입자 및 펜타머의 존재는 HAV 바이러스 캡시드 및 펜타머의 인지에 특이적인 7E7 상업적 모노크로날 항체(Mediagnost)를 사용하여, ELISA에 의하여 검지된다.
실시예 11. 복막내 투여의 수단에 의하여 형질도입 식물로부터 정제된 캡시드 및 펜타머의 면역원성의 결정.
14주령의 화이트 ICR 마우스가 형질도입 타바코 및 라이스 식물로부터 정제된 750 EL.U의 캡시드 및 펜타머의 두번 복용으로 면역된다. 동일한 방법으로, 마우스의 그룹은 상업적 HAV 항원(Mediagnost)으로 접종되어 양성적 대조로서 사용된다. 다른 그룹은 PBS로 접종되어 음성적 대조로서 사용된다. 혈청 샘플은 접종 후 0, 15, 30, 50 및 70일에 채취된다.
항체 수준은 저해 ELISA의 수단에 의해 평가된다: 플레이트는 5㎍의 모노크로날 항체 7E7로 커버되고 그리고 나서 4시간 동안 인큐베이트된다. 그 후, 이것은 PBS-0.1% 트윈으로 일회 수세된다. 블락킹은 PBS-0.1% 트윈 내 5%의 밀크를 부가하여 수행되고 2시간 동안 37℃에서 인큐베이트된다. 이 플레이트는 PBS-0.1% 트윈으로 3회 수세된다. 미리 37℃에서 20분 동안 HAV 항원(Mediagnoct)으로 인큐베이트된, 면역된 마우스로부터의 혈청이 부가된다. 플레이트는 16℃에서 12시간 동안 인큐베이트되고, PBS-0.1% 트윈으로 5회 수세된다. 마지막으로, 0.5% 밀크를 포함하는 PBS 내에 1/1000로 희석된 알카린 포스페이트로 컨쥬게이트된 100㎕의 모노크로날 항체가 부가된다. 배양은 37℃에서 한시간 동안 수행된다. 반응은 디에탄올아민에 제조된 4-니트로페닐포스페이트(효소의 기질)의 부가에 의해 전개된다. 칼라의 출현이 60분 기간동안 이어진다. 흡광도는 스펙트로포토메터에서 405nm의 파장에서 판독된다. 도 10에는 타바코 및 라이스 식물에 의해 생산된 펜타머로 면역된 마우스의 혈액에서 검지된 형질도입 식물로부터 정제된 항원으로 접종된 마우스 혈청의 저해의 평균준위를 나타낸다. 동일한 방법으로, 유사한 수준의 항체가 캡시드 및 펜타머의 발현을 허용하는 컨스트럭트로 형질전환된 타바코 및 라이스 식물에서 생산된 항원으로 면역된 마우스에서 관찰된다.
실시예 12. 경구 투여의 수단에 의하여 형질도입 식물로부터 정제된 캡시드 및 펜타머의 면역원성의 결정.
항원 경구 투여는 두 경로로 수행된다: 정제된 항원을 사용하는 것과 항원을 발현한 캐럿을 동물에 섭식시키는 것.
경구로 투여된 정제된 캡시드 및 펜타머의 면역원성 결정을 위해, 펜타머 및 캡시드가 8 주의 Balb/c 마우스에 7500 EL.U의 4 복용량이 투여된다. 접종 후 0, 15, 30, 50 및 70 일에 200㎕의 혈액이 채취되어 항 HAV 항체의 존재를 저해 ELISA에 의해 검지한다.
저해 ELISA는 실시예 11에서 이미 기술된 절차에 따라 수행된다.
도 11에 나타난 결과에 따르면, 형질도입 식물에 발현된 HAV 펜타머의 경구 투여는 실험에서 사용된 마우스로부터 혈청의 평균적 저해에 의해 입증된 면역 반응을 생성한다. 경구로 투여된 마우스로부터 혈청의 평균적 저해는 복막내 투여 후 얻어진 것에 비하여 낮다. 식물을 통한 펜타머의 경구 투여는 5g의 미가공 캐럿(단지 펜타머만을 생산하도록 특히 디자인된 컨스트럭트 pBΔMLAm로 형질전환된 것)을 주 1회 4주 동안 투여로 수행되고, 비형질전환된 캐럿을 먹인 마우스로부터 혈청이 음성적 대조로 사용되었다. 면역 반응을 일으키는 이들 식물의 능력은 도 12에 도시된 저해 ELISA에 의해 입증된다.
본 발명은 형질도입 타바코, 라이스 및 캐럿 식물이 식물 세포에 바이러스의 면역유전의 캡시드 및 펜타머를 먼저 얻기 위해 사용된 실시예에 의해 입증된다. 본 발명의 결과물인 HAV의 캡시드 및 펜타머는 항원 백신으로 사용될 수 있고 또한 HAV 검지를 위한 진단적 분석에 사용될 수 있다.
<110> CENTER FOR GENETIC ENGINEERING AND BIOTECHNOLOGY <120> RECOMBINANT HEPATITIS A VIRUS ANTIGENS OBTAINED IN PLANT CELLS. <130> ORF <160> 24 <170> PatentIn Ver. 2.1 <210> 1 <211> 25 <212> DNA <213> Chimeric Sequence <220> <221> primer_bind <222> (1)..(25) <223> Sequence # 1. Sequence of the oligonocleotide # 1 used for the amplification of ORF coding sequence by RT-PCR. <400> 1 cttaatctag aatgaatatg tccaa 25 <210> 2 <211> 22 <212> DNA <213> Chimeric Sequence <220> <221> primer_bind <222> (1)..(22) <223> Sequence # 2. Sequence of the oligonocleotide # 2 used for the amplification of ORF coding sequence by RT-PCR. <400> 2 gaaagaaata aaggtacctc ag 22 <210> 3 <211> 6685 <212> DNA <213> Hepatitis A virus <220> <221> gene <222> Complement((1)..(6685)) <223> Sequence # 3. Nucleotide sequence coding for the HAV open reading frame (ORF) of the Cuban M2 strain. <400> 3 atgaatatgt ccaaacaagg aattttccag actgttggga gtggccttga ccacatcctg 60 tccttggcag atattgagga agagcaaatg attcagtccg ttgataggac tgcagtgact 120 ggagcttctt atttcacttc tgtggaccaa tcttcagttc atactgctga ggttggctca 180 caccaaattg aacctttgaa aacctctgtt gataaacctg gttctaagaa aactcagggg 240 gagaagtttt tcttgattca ttctgctgat tggctcacta cacatgctct ctttcatgaa 300 gttgcaaaat tggatgtggt gaaactgctg tacaatgagc agtttgccgt ccaaggtttg 360 ttgagatacc atacttatgc aagatttggc attgagattc aagttcagat aaatcccaca 420 ccctttcagc aaggaggact aatctgtgcc atggttcctg gtgaccaaag ttatggttca 480 atagcatcct tgactgttta tcctcatggt ctgttaaatt gcaatatcaa caatgtagtt 540 agaataaagg ttccatttat ttatactaga ggtgcttatc attttaaaga tccacagtac 600 ccagtttggg aattgacaat cagagtttgg tcagagttga atattggaac aggaacctca 660 gcttatactt cactcaatgt tttagctagg tttacagatt tggagttgca tggattaact 720 cctctttcta cacagatgat gagaaatgaa tttagagtta gtactactga aaatgttgta 780 aatttgtcaa attatgaaga tgcaagggca aaaatgtctt ttgctttgga tcaggaagat 840 tggaagtctg atccttccca aggtggtgga attaaaatta ctcatttcac tacctggaca 900 tccattccaa ccttagctgc tcagtttcca ttcaatgctt cagattcagt tgggcaacaa 960 attaaagtta taccagtgga cccatacttt ttccagatga caaacactaa tcctgatcaa 1020 aaatgtataa cagccttggc ctctatttgt cagatgttct gcttttggag gggagatctt 1080 gttttcgatt tccaggtttt tccaaccaaa tatcattcag gtaggctgtt gttttgtttt 1140 gttcctggga atgagttaat agatgttact ggaattacat taaaacaggc aactactgct 1200 ccttgtgcag tgatggacat tacaggagtg cagtcaacct tgagatttcg tgttccttgg 1260 atttctgata caccctatcg agtgaatagg tacacgaagt cagcacatca aaaaggtgag 1320 tatactgcca ttgggaagct tattgtgtat tgttataata gattgacttc tccttctaat 1380 gttgcttctc atgttagagt taatgtttat ctttcagcaa ttaatttgga atgttttgct 1440 cctctttacc atgctatgga tgttaccaca caggttggag atgattcagg aggtttctca 1500 acaacagttt ctacagagca gaatgttcct gatccccaag ttggcataac aaccatgagg 1560 gatttaaaag ggaaagccaa taggggaaag atggatgtat caggagtgca ggtacctgtg 1620 ggagctatta caacaattga ggatccagtt ttagcaaaga aagtacctga gacatttcct 1680 gaattgaagc ctggagaatc cagacataca tcagatcaca tgtctattta taaattcatg 1740 ggaaggtctc atttcttgtg tacttttact tttaattcaa acaataaaga gtacacattt 1800 ccaataactc tgtcttcgac ttctaatcct cctcatggtt taccatcaac attaaggtgg 1860 ttctttaatt tgtttcagtt gtatagagga ccattggatt tgacaattat aatcacagga 1920 gccactgatg tggatggtat ggcctggttt actccagtgg gccttgctgt cgacacccct 1980 tgggtggaaa agaagtcagc tttgtctatt gattataaaa ctgcccttgg agctgttaga 2040 tttaatacaa gaagaacagg gaacattcag attagattgc catggtattc ttatttgtat 2100 gccgtgtctg gagcactgga tggcttggga gataagacag attctacatt tggattggtt 2160 tctattcaga ttgcaaatta caatcattct gatgaatatt tgtcctttag ttgttatttg 2220 tctgtcacag agcaatcaga gttctatttc cctagagctc cattaaattc aaatgctatg 2280 ttgtccactg agtccatgat gagtagaatt gcagctggag acttggagtc atcagtggat 2340 gatcccagat cagaggagga cagaagattt gagagtcata tagaatgtag gaaaccatat 2400 aaagaattga gactggaggt tgggaaacaa agaatcaaat atgctcagga agagttatca 2460 aatgaagtgc ttccacctcc taggaaaatg aaggggttat tttcacaagc taaaatttct 2520 cttttttata cagaggacca tgaaataatg aaattttctt ggagaggagt gactgctaat 2580 actagggctt tgagaagatt tggattctct ctggctgctg gtagaagtgt gtggactctt 2640 gaaatggatg ctggagttct tactggaaga ttgatcagat tgaatgatga gaaatggaca 2700 gaaatgaagg atgataagat tgtttcatta attgaaaagt tcacaagcaa taaacattgg 2760 tctaaagtga attttccaca tggaatgttg gatcttgagg aaattgctgc caactctaaa 2820 gattttccaa atatgtctga gacagatttg tgtttcctgt tgcattggct aaatccaaag 2880 aaaattaatt tagcagatag aatgcttgga ttgtctggag tgcaggaaat taaagaacag 2940 ggtgttggac tgatagcaga gtgtagaact ttcttggatt ctattgctgg gactttgaaa 3000 tctatgattt ttgggtttca ttattctgtg actgttgaaa ttataaatat tgtgctttgt 3060 tttattaaga gtggaatcct gctttatgtc atacaacaat tgaaccaaga tgaacactct 3120 cacataattg gtttgttgag agttatgaat tatgcagata ttggctgttc agtcatttca 3180 tgtggtaaag ttttttccaa aatgttagaa acagttttta attggcaaat ggactctaga 3240 atgatggagc tgaggactca gagcttctcc aattggttaa gagatatttg ttcgggaatt 3300 actattttta aaagttttaa ggatgccata tattggttat gtacaaaatt gaaggatttt 3360 tatgaagtaa attatggcaa gaaaaaggat gttcttaata ttctcaaaga taaccagcaa 3420 aaaatagaaa aagccattga agaagcagac aatttttgca ttttgcaaat tcaagatgtg 3480 gagaaatttg atcagtatca gaaaggggtt gatttaatac aaaagctgag aactgtccat 3540 tcaatggctc aagttgaccc cagtttgggg gttcatttgt cacctctcag agattgcata 3600 gcaagagtcc atcaaaagct caagaatctt ggatctataa atcaggccat ggtaacaaga 3660 tgtgagccag ttgtttgcta tttgtatggc aaaagagggg gagggaaaag cttgacttca 3720 attgcattgg caaccaaaat ttgtaaacac tatggtgttg aacctgagaa aaatatttac 3780 accaaacctg tggcctcaga ttattgggat ggatatagtg gacaattagt ttgtattatt 3840 gatgatatcg gccaaaacac aacagatgaa gattggtcag atttttgtca attagtgtca 3900 ggatgcccaa tgagattgaa tatggcttct cttgaggaga agggcagaca tttttcctct 3960 ccttttataa tagcatcttc aaattggtca aatccaagtc caaaaacagt ttatgttaaa 4020 gaagcaattg atcgtaggct tcattttaag gttgaagtta aacctgcttc attttttaaa 4080 aatcctcaca atgatatgtt aaatgttaat ttggctaaaa caaatgatgc aattaaagac 4140 atgtcttgtg ttgatttgat aatggatgga cacaatattt cattgatgga tttacttagt 4200 tccttagtga tgacaggtga aattaggaaa cagaatatga gtgaattcat ggagttgtgg 4260 tctcagggaa tttcagatga tgacaatgat agtgcagtag ctgagttttt ccggtctttt 4320 ccatctggtg aaccatcaaa ttccaagtta tctagttttt tccaagctgt cactaatcac 4380 aagtgggttg ctgtgggagc tgcagttggt attcttggat tgctagtggg aggatggttt 4440 gtgtataagc atttttcccg caaagaggaa gaaccaattc cagctgaagg ggtttatcat 4500 ggagtgacta agcccaaaca agtgattaaa ttggatgcag atccagtaga gtctcagtca 4560 actctagaaa tagcaggatt agttaggaaa aatttggttc agtttggagt tggtgagaaa 4620 aatggatgtg tgagatgggt catgaatgcc ttaggagtga aggatgattg gttgttagta 4680 ccttctcatg cttataaatt tgaaaaggat tatgaaatga tggagtttta tttcaataga 4740 ggtggaactt actattcaat ttcagctggt aatgttgtta ttcaatcttt agatgtggga 4800 ttccaagatg ttgttctaat gaaggttcct acaattccca agtttagaga tattactcaa 4860 cattttatta agaaaggaga tgtgcctaga gccttgaatc gcttggcaac attagtgaca 4920 accgttaatg gaactcctat gttaatttct gagggacctt taaaaatgga agaaaaagcc 4980 acttatgttc ataagaagaa tgatggtact acggttgatt tgactgtaga tcaggcatgg 5040 agaggaaaag gtgaaggtct tcctggaatg tgtggtgggg ccctagtgtc atcaaatcag 5100 tccatacaaa atgcaatttt gggtattcat gttgctggag gaaattcaat tcttgtggca 5160 aagttgatta ctcaagaaat gtttcaaaac attgataaga aaattgaaag tcagagaata 5220 atgaaagtgg aatttactca atgttcaatg aatgtagtct ccaaaacgct ttttagaaag 5280 agtcccattc atcaccacat tgataaaacc atgattaatt ttcctgcagc tatgcctttc 5340 tctaaagctg aaattgatcc aatggctatg atgttgtcta aatattcatt acctattgtg 5400 gaagaaccag aggattacaa agaagcttca gttttttatc aaaataaaat agtaggcaag 5460 actcagctag ttgatgactt tctagatctt gatatggcca ttacaggggc tccaggcatt 5520 gatgctatta atatggattc atctcctggg tttccttatg ttcaagaaaa attgactaaa 5580 agagatttga tttggttgga tgaaaatggt ttactgttag gagttcaccc aagattggcc 5640 cagagaatct tatttaatac tgtcatgatg gaaaattgtt ctgacttaga tgttgttttt 5700 acaacttgtc caaaagatga attgagacca ttagagaaag ttttggaatc aaaaacaaga 5760 gctattgatg cttgcccttt ggattataca attttatgtc gaatgtattg gggtccagct 5820 attagttatt ttcatttgaa tccagggttt cacacaggtg ttgctattgg catagatcct 5880 gatagacagt gggatgaatt atttaaaaca atgataagat ttggagatgt tggtcttgat 5940 ttagattttt ctgcttttga tgccagtctt agtccattta tgattaggga agcaggtaga 6000 atcatgagtg aattatctgg aacaccatct cattttggaa cagctcttat caatactatc 6060 atttattcta aacatctgct gtacaattgt tgttatcacg tctgtggttc aatgccttct 6120 gggtctcctt gtacagcttt gttgaattca attattaata atattaattt gtattatgtg 6180 ttttctaaaa tatttggaaa gtctccagtt ttcttttgtc aagctttgag gatcctttgt 6240 tatggagatg atgttttgat agttttttcc agagatgttc aaattgataa tcttgacttg 6300 attggacaga aaattgtgga tgagttcaaa aaacttggca tgacagccac ttcagctgac 6360 aaaaatgtgc ctcaactgaa gccagtttca gaattgactt ttcttaaaag atcttttaat 6420 ttggtggagg acagaatcag acctgcaatt tcagaaaaga caatttggtc tttgatagct 6480 tggcagagaa gtaacgctga gtttgagcag aatttagaaa atgctcagtg gtttgctttc 6540 atgcatggct atgagttcta tcagaaattc tattattttg ttcagtcctg tttggagaaa 6600 gagatgatag aatatagact taaatcttat gattggtgga gaatgagatt ttatgaccag 6660 tgtttcattt gtgacctttc atgat 6685 <210> 4 <211> 40 <212> DNA <213> Chimeric Sequence <220> <221> primer_bind <222> (1)..(40) <223> Sequence # 4. Sequence of the oligonocleotide # 5 used for the amplification of P1-2A coding sequence by PCR. <400> 4 ttgaattcag cttgtgaaaa taaccccttc attttcctag 40 <210> 5 <211> 28 <212> DNA <213> Chimeric Sequence <220> <221> primer_bind <222> (1)..(28) <223> Sequence # 5. Sequence of the oligonocleotide # 5 used for the amplification of P1-2A coding sequence by PCR. <400> 5 cgcccgggtc tagaatgaat atgtccaa 28 <210> 6 <211> 2523 <212> DNA <213> Hepatitis A virus <220> <221> gene <222> Complement((1)..(2523)) <223> Sequence # 6. Nucleotide sequence coding for the structural P1-2A HAV proteins of the M2 strain. <400> 6 atgaatatgt ccaaacaagg aattttccag actgttggga gtggccttga ccacatcctg 60 tccttggcag atattgagga agagcaaatg attcagtccg ttgataggac tgcagtgact 120 ggagcttctt atttcacttc tgtggaccaa tcttcagttc atactgctga ggttggctca 180 caccaaattg aacctttgaa aacctctgtt gataaacctg gttctaagaa aactcagggg 240 gagaagtttt tcttgattca ttctgctgat tggctcacta cacatgctct ctttcatgaa 300 gttgcaaaat tggatgtggt gaaactgctg tacaatgagc agtttgccgt ccaaggtttg 360 ttgagatacc atacttatgc aagatttggc attgagattc aagttcagat aaatcccaca 420 ccctttcagc aaggaggact aatctgtgcc atggttcctg gtgaccaaag ttatggttca 480 atagcatcct tgactgttta tcctcatggt ctgttaaatt gcaatatcaa caatgtagtt 540 agaataaagg ttccatttat ttatactaga ggtgcttatc attttaaaga tccacagtac 600 ccagtttggg aattgacaat cagagtttgg tcagagttga atattggaac aggaacctca 660 gcttatactt cactcaatgt tttagctagg tttacagatt tggagttgca tggattaact 720 cctctttcta cacagatgat gagaaatgaa tttagagtta gtactactga aaatgttgta 780 aatttgtcaa attatgaaga tgcaagggca aaaatgtctt ttgctttgga tcaggaagat 840 tggaagtctg atccttccca aggtggtgga attaaaatta ctcatttcac tacctggaca 900 tccattccaa ccttagctgc tcagtttcca ttcaatgctt cagattcagt tgggcaacaa 960 attaaagtta taccagtgga cccatacttt ttccagatga caaacactaa tcctgatcaa 1020 aaatgtataa cagccttggc ctctatttgt cagatgttct gcttttggag gggagatctt 1080 gttttcgatt tccaggtttt tccaaccaaa tatcattcag gtaggctgtt gttttgtttt 1140 gttcctggga atgagttaat agatgttact ggaattacat taaaacaggc aactactgct 1200 ccttgtgcag tgatggacat tacaggagtg cagtcaacct tgagatttcg tgttccttgg 1260 atttctgata caccctatcg agtgaatagg tacacgaagt cagcacatca aaaaggtgag 1320 tatactgcca ttgggaagct tattgtgtat tgttataata gattgacttc tccttctaat 1380 gttgcttctc atgttagagt taatgtttat ctttcagcaa ttaatttgga atgttttgct 1440 cctctttacc atgctatgga tgttaccaca caggttggag atgattcagg aggtttctca 1500 acaacagttt ctacagagca gaatgttcct gatccccaag ttggcataac aaccatgagg 1560 gatttaaaag ggaaagccaa taggggaaag atggatgtat caggagtgca ggtacctgtg 1620 ggagctatta caacaattga ggatccagtt ttagcaaaga aagtacctga gacatttcct 1680 gaattgaagc ctggagaatc cagacataca tcagatcaca tgtctattta taaattcatg 1740 ggaaggtctc atttcttgtg tacttttact tttaattcaa acaataaaga gtacacattt 1800 ccaataactc tgtcttcgac ttctaatcct cctcatggtt taccatcaac attaaggtgg 1860 ttctttaatt tgtttcagtt gtatagagga ccattggatt tgacaattat aatcacagga 1920 gccactgatg tggatggtat ggcctggttt actccagtgg gccttgctgt cgacacccct 1980 tgggtggaaa agaagtcagc tttgtctatt gattataaaa ctgcccttgg agctgttaga 2040 tttaatacaa gaagaacagg gaacattcag attagattgc catggtattc ttatttgtat 2100 gccgtgtctg gagcactgga tggcttggga gataagacag attctacatt tggattggtt 2160 tctattcaga ttgcaaatta caatcattct gatgaatatt tgtcctttag ttgttatttg 2220 tctgtcacag agcaatcaga gttctatttc cctagagctc cattaaattc aaatgctatg 2280 ttgtccactg agtccatgat gagtagaatt gcagctggag acttggagtc atcagtggat 2340 gatcccagat cagaggagga cagaagattt gagagtcata tagaatgtag gaaaccatat 2400 aaagaattga gactggaggt tgggaaacaa agaatcaaat atgctcagga agagttatca 2460 aatgaagtgc ttccacctcc taggaaaatg aaggggttat atgcttctgg aggtgaattc 2520 gat 2523 <210> 7 <211> 27 <212> DNA <213> Chimeric Sequence <220> <221> primer_bind <222> (1)..(27) <223> Sequence # 7. Sequence of the oligonocleotide # 7 used for the amplification of 3A coding sequence by PCR. <400> 7 ccatgggaat ttcagatgat gacaatg 27 <210> 8 <211> 26 <212> DNA <213> Chimeric Sequence <220> <221> primer_bind <222> (1)..(26) <223> Sequence # 8. Sequence of the oligonocleotide # 7 used for the amplification of 3A coding sequence by PCR. <400> 8 ggatatcggt tcttcctctt tgcggg 26 <210> 9 <211> 85 <212> DNA <213> Chimeric Sequence <220> <221> gene <222> (1)..(85) <223> Sequence # 9. Synthetic fragment coding for 3B protein carrying T by C and G by C nucleotide substutions, respectively. <400> 9 tccagctgtt ggggtttatc atggagtgac taagcccaaa caagtgatta aattggatgc 60 agatccagta gagtctcagt tgact 85 <210> 10 <211> 89 <212> DNA <213> Chimeric Sequence <220> <221> gene <222> (1)..(89) <223> Sequence # 10. Synthetic fragment coding for 3B protein carrying T by C and G by C nucleotide substutions, respectively (complementary chain). <400> 10 ctagagtcaa ctgagactct actggatctg catccaattt aatcacttgt ttgggcttag 60 tcactccatg ataaacccca acagctgga 89 <210> 11 <211> 25 <212> DNA <213> Chimeric Sequence <220> <221> primer_bind <222> (1)..(25) <223> Sequence # 11. Sequence of the oligonocleotide # 11 used for the amplification of 3C coding sequence by PCR <400> 11 tctcagtcaa ctctagaaat agcag 25 <210> 12 <211> 21 <212> DNA <213> Chimeric Sequence <220> <221> primer_bind <222> (1)..(21) <223> Sequence # 12. Sequence of the oligonocleotide # 12 used for the amplification of 3C coding sequence by PCR <400> 12 ataagcttga tcaattttct t 21 <210> 13 <211> 978 <212> DNA <213> Hepatitis A virus <220> <221> gene <222> Complement((1)..(978)) <223> Sequence # 13. Sequence corresponding to the region of 3ABC polyprotein with proteolytic activity having the selfprocessing sites mutated. <400> 13 gaattcctgc agcccggggg atccatggga atttcagatg atgacaatga tagtgcagta 60 gctgagtttt tccggtcttt tccatctggt gaaccatcaa attccaagtt atctagtttt 120 ttccaagctg tcactaatca caagtgggtt gctgtgggag ctgcagttgg tattcttgga 180 ttgctagtgg gaggatggtt tgtgtataag catttttccc gcaaagagga agaaccaatt 240 ccagctgttg gggtttatca tggagtgact aagcccaaac aagtgattaa attggatgca 300 gatccagtag agtctcagtt gactctagaa atagcaggat tagttaggaa aaatttggtt 360 cagtttggag ttggtgagaa aaatggatgt gtgagatggg tcatgaatgc cttaggagtg 420 aaggatgatt ggttgttagt accttctcat gcttataaat ttgaaaagga ttatgaaatg 480 atggagtttt atttcaatag aggtggaact tactattcaa tttcagctgg taatgttgtt 540 attcaatctt tagatgtggg attccaagat gttgttctaa tgaaggttcc tacaattccc 600 aagtttagag atattactca acattttatt aagaaaggag atgtgcctag agccttgaat 660 cgcttggcaa cattagtgac aaccgttaat ggaactccta tgttaatttc tgagggacct 720 ttaaaaatgg aagaaaaagc cacttatgtt cataagaaga atgatggtac tacggttgat 780 ttgactgtag atcaggcatg gagaggaaaa ggtgaaggtc ttcctggaat gtgtggtggg 840 gccctagtgt catcaaatca gtccatacaa aatgcaattt tgggtattca tgttgctgga 900 ggaaattcaa ttcttgtggc aaagttgatt actcaagaaa tgtttcaaaa cattgataag 960 aaaattgaaa tcaagctt 978 <210> 14 <211> 3489 <212> DNA <213> Hepatitis A virus <220> <221> gene <222> Complement((1)..(3489)) <223> Sequence # 14. Nucleotide sequence CODING for the new modified open reading frame (ORFm) of the Cuban M2 strain. <400> 14 atgaatatgt ccaaacaagg aattttccag actgttggga gtggccttga ccacatcctg 60 tccttggcag atattgagga agagcaaatg attcagtccg ttgataggac tgcagtgact 120 ggagcttctt atttcacttc tgtggaccaa tcttcagttc atactgctga ggttggctca 180 caccaaattg aacctttgaa aacctctgtt gataaacctg gttctaagaa aactcagggg 240 gagaagtttt tcttgattca ttctgctgat tggctcacta cacatgctct ctttcatgaa 300 gttgcaaaat tggatgtggt gaaactgctg tacaatgagc agtttgccgt ccaaggtttg 360 ttgagatacc atacttatgc aagatttggc attgagattc aagttcagat aaatcccaca 420 ccctttcagc aaggaggact aatctgtgcc atggttcctg gtgaccaaag ttatggttca 480 atagcatcct tgactgttta tcctcatggt ctgttaaatt gcaatatcaa caatgtagtt 540 agaataaagg ttccatttat ttatactaga ggtgcttatc attttaaaga tccacagtac 600 ccagtttggg aattgacaat cagagtttgg tcagagttga atattggaac aggaacctca 660 gcttatactt cactcaatgt tttagctagg tttacagatt tggagttgca tggattaact 720 cctctttcta cacagatgat gagaaatgaa tttagagtta gtactactga aaatgttgta 780 aatttgtcaa attatgaaga tgcaagggca aaaatgtctt ttgctttgga tcaggaagat 840 tggaagtctg atccttccca aggtggtgga attaaaatta ctcatttcac tacctggaca 900 tccattccaa ccttagctgc tcagtttcca ttcaatgctt cagattcagt tgggcaacaa 960 attaaagtta taccagtgga cccatacttt ttccagatga caaacactaa tcctgatcaa 1020 aaatgtataa cagccttggc ctctatttgt cagatgttct gcttttggag gggagatctt 1080 gttttcgatt tccaggtttt tccaaccaaa tatcattcag gtaggctgtt gttttgtttt 1140 gttcctggga atgagttaat agatgttact ggaattacat taaaacaggc aactactgct 1200 ccttgtgcag tgatggacat tacaggagtg cagtcaacct tgagatttcg tgttccttgg 1260 atttctgata caccctatcg agtgaatagg tacacgaagt cagcacatca aaaaggtgag 1320 tatactgcca ttgggaagct tattgtgtat tgttataata gattgacttc tccttctaat 1380 gttgcttctc atgttagagt taatgtttat ctttcagcaa ttaatttgga atgttttgct 1440 cctctttacc atgctatgga tgttaccaca caggttggag atgattcagg aggtttctca 1500 acaacagttt ctacagagca gaatgttcct gatccccaag ttggcataac aaccatgagg 1560 gatttaaaag ggaaagccaa taggggaaag atggatgtat caggagtgca ggtacctgtg 1620 ggagctatta caacaattga ggatccagtt ttagcaaaga aagtacctga gacatttcct 1680 gaattgaagc ctggagaatc cagacataca tcagatcaca tgtctattta taaattcatg 1740 ggaaggtctc atttcttgtg tacttttact tttaattcaa acaataaaga gtacacattt 1800 ccaataactc tgtcttcgac ttctaatcct cctcatggtt taccatcaac attaaggtgg 1860 ttctttaatt tgtttcagtt gtatagagga ccattggatt tgacaattat aatcacagga 1920 gccactgatg tggatggtat ggcctggttt actccagtgg gccttgctgt cgacacccct 1980 tgggtggaaa agaagtcagc tttgtctatt gattataaaa ctgcccttgg agctgttaga 2040 tttaatacaa gaagaacagg gaacattcag attagattgc catggtattc ttatttgtat 2100 gccgtgtctg gagcactgga tggcttggga gataagacag attctacatt tggattggtt 2160 tctattcaga ttgcaaatta caatcattct gatgaatatt tgtcctttag ttgttatttg 2220 tctgtcacag agcaatcaga gttctatttc cctagagctc cattaaattc aaatgctatg 2280 ttgtccactg agtccatgat gagtagaatt gcagctggag acttggagtc atcagtggat 2340 gatcccagat cagaggagga cagaagattt gagagtcata tagaatgtag gaaaccatat 2400 aaagaattga gactggaggt tgggaaacaa agaatcaaat atgctcagga agagttatca 2460 aatgaagtgc ttccacctcc taggaaaatg aaggggttat tttcacaagc tgaattcctg 2520 cagcccgggg gatccatggg aatttcagat gatgacaatg atagtgcagt agctgagttt 2580 ttccggtctt ttccatctgg tgaaccatca aattccaagt tatctagttt tttccaagct 2640 gtcactaatc acaagtgggt tgctgtggga gctgcagttg gtattcttgg attgctagtg 2700 ggaggatggt ttgtgtataa gcatttttcc cgcaaagagg aagaaccaat tccagctgtt 2760 ggggtttatc atggagtgac taagcccaaa caagtgatta aattggatgc agatccagta 2820 gagtctcagt tgactctaga aatagcagga ttagttagga aaaatttggt tcagtttgga 2880 gttggtgaga aaaatggatg tgtgagatgg gtcatgaatg ccttaggagt gaaggatgat 2940 tggttgttag taccttctca tgcttataaa tttgaaaagg attatgaaat gatggagttt 3000 tatttcaata gaggtggaac ttactattca atttcagctg gtaatgttgt tattcaatct 3060 ttagatgtgg gattccaaga tgttgttcta atgaaggttc ctacaattcc caagtttaga 3120 gatattactc aacattttat taagaaagga gatgtgccta gagccttgaa tcgcttggca 3180 acattagtga caaccgttaa tggaactcct atgttaattt ctgagggacc tttaaaaatg 3240 gaagaaaaag ccacttatgt tcataagaag aatgatggta ctacggttga tttgactgta 3300 gatcaggcat ggagaggaaa aggtgaaggt cttcctggaa tgtgtggtgg ggccctagtg 3360 tcatcaaatc agtccataca aaatgcaatt ttgggtattc atgttgctgg aggaaattca 3420 attcttgtgg caaagttgat tactcaagaa atgtttcaaa acattgataa gaaaattgaa 3480 atcaagctt 3489 <210> 15 <211> 51 <212> DNA <213> Chimeric Sequence <220> <221> gene <222> (1)..(51) <223> Sequence # 15. Synthetic fragment that reverts the transcription start of the vp2 protein. <400> 15 gggatggata ttgaggaaga gcaaatgatt cagtccgttg ataggactgc a 51 <210> 16 <211> 47 <212> DNA <213> Chimeric Sequence <220> <221> gene <222> (1)..(47) <223> Sequence # 16. Synthetic fragment that reverts the transcription start of the vp2 protein (complementary chain). <400> 16 gtcctatcaa cggactgaat catttgctct tcctcaatat ccatccc 47 <210> 17 <211> 3426 <212> DNA <213> Hepatitis A virus <220> <221> gene <222> Complement((1)..(3426)) <223> Sequence # 17 Sequence coding for the modified open reading frame (ORFm) of the Cuban M2 strain of the HAV. This sequence does not have the gene coding for the VP4 protein. <400> 17 gggatggata ttgaggaaga gcaaatgatt cagtccgttg ataggactgc agtgactgga 60 gcttcttatt tcacttctgt ggaccaatct tcagttcata ctgctgaggt tggctcacac 120 caaattgaac ctttgaaaac ctctgttgat aaacctggtt ctaagaaaac tcagggggag 180 aagtttttct tgattcattc tgctgattgg ctcactacac atgctctctt tcatgaagtt 240 gcaaaattgg atgtggtgaa actgctgtac aatgagcagt ttgccgtcca aggtttgttg 300 agataccata cttatgcaag atttggcatt gagattcaag ttcagataaa tcccacaccc 360 tttcagcaag gaggactaat ctgtgccatg gttcctggtg accaaagtta tggttcaata 420 gcatccttga ctgtttatcc tcatggtctg ttaaattgca atatcaacaa tgtagttaga 480 ataaaggttc catttattta tactagaggt gcttatcatt ttaaagatcc acagtaccca 540 gtttgggaat tgacaatcag agtttggtca gagttgaata ttggaacagg aacctcagct 600 tatacttcac tcaatgtttt agctaggttt acagatttgg agttgcatgg attaactcct 660 ctttctacac agatgatgag aaatgaattt agagttagta ctactgaaaa tgttgtaaat 720 ttgtcaaatt atgaagatgc aagggcaaaa atgtcttttg ctttggatca ggaagattgg 780 aagtctgatc cttcccaagg tggtggaatt aaaattactc atttcactac ctggacatcc 840 attccaacct tagctgctca gtttccattc aatgcttcag attcagttgg gcaacaaatt 900 aaagttatac cagtggaccc atactttttc cagatgacaa acactaatcc tgatcaaaaa 960 tgtataacag ccttggcctc tatttgtcag atgttctgct tttggagggg agatcttgtt 1020 ttcgatttcc aggtttttcc aaccaaatat cattcaggta ggctgttgtt ttgttttgtt 1080 cctgggaatg agttaataga tgttactgga attacattaa aacaggcaac tactgctcct 1140 tgtgcagtga tggacattac aggagtgcag tcaaccttga gatttcgtgt tccttggatt 1200 tctgatacac cctatcgagt gaataggtac acgaagtcag cacatcaaaa aggtgagtat 1260 actgccattg ggaagcttat tgtgtattgt tataatagat tgacttctcc ttctaatgtt 1320 gcttctcatg ttagagttaa tgtttatctt tcagcaatta atttggaatg ttttgctcct 1380 ctttaccatg ctatggatgt taccacacag gttggagatg attcaggagg tttctcaaca 1440 acagtttcta cagagcagaa tgttcctgat ccccaagttg gcataacaac catgagggat 1500 ttaaaaggga aagccaatag gggaaagatg gatgtatcag gagtgcaggt acctgtggga 1560 gctattacaa caattgagga tccagtttta gcaaagaaag tacctgagac atttcctgaa 1620 ttgaagcctg gagaatccag acatacatca gatcacatgt ctatttataa attcatggga 1680 aggtctcatt tcttgtgtac ttttactttt aattcaaaca ataaagagta cacatttcca 1740 ataactctgt cttcgacttc taatcctcct catggtttac catcaacatt aaggtggttc 1800 tttaatttgt ttcagttgta tagaggacca ttggatttga caattataat cacaggagcc 1860 actgatgtgg atggtatggc ctggtttact ccagtgggcc ttgctgtcga caccccttgg 1920 gtggaaaaga agtcagcttt gtctattgat tataaaactg cccttggagc tgttagattt 1980 aatacaagaa gaacagggaa cattcagatt agattgccat ggtattctta tttgtatgcc 2040 gtgtctggag cactggatgg cttgggagat aagacagatt ctacatttgg attggtttct 2100 attcagattg caaattacaa tcattctgat gaatatttgt cctttagttg ttatttgtct 2160 gtcacagagc aatcagagtt ctatttccct agagctccat taaattcaaa tgctatgttg 2220 tccactgagt ccatgatgag tagaattgca gctggagact tggagtcatc agtggatgat 2280 cccagatcag aggaggacag aagatttgag agtcatatag aatgtaggaa accatataaa 2340 gaattgagac tggaggttgg gaaacaaaga atcaaatatg ctcaggaaga gttatcaaat 2400 gaagtgcttc cacctcctag gaaaatgaag gggttatttt cacaagctga attcctgcag 2460 cccgggggat ccatgggaat ttcagatgat gacaatgata gtgcagtagc tgagtttttc 2520 cggtcttttc catctggtga accatcaaat tccaagttat ctagtttttt ccaagctgtc 2580 actaatcaca agtgggttgc tgtgggagct gcagttggta ttcttggatt gctagtggga 2640 ggatggtttg tgtataagca tttttcccgc aaagaggaag aaccaattcc agctgttggg 2700 gtttatcatg gagtgactaa gcccaaacaa gtgattaaat tggatgcaga tccagtagag 2760 tctcagttga ctctagaaat agcaggatta gttaggaaaa atttggttca gtttggagtt 2820 ggtgagaaaa atggatgtgt gagatgggtc atgaatgcct taggagtgaa ggatgattgg 2880 ttgttagtac cttctcatgc ttataaattt gaaaaggatt atgaaatgat ggagttttat 2940 ttcaatagag gtggaactta ctattcaatt tcagctggta atgttgttat tcaatcttta 3000 gatgtgggat tccaagatgt tgttctaatg aaggttccta caattcccaa gtttagagat 3060 attactcaac attttattaa gaaaggagat gtgcctagag ccttgaatcg cttggcaaca 3120 ttagtgacaa ccgttaatgg aactcctatg ttaatttctg agggaccttt aaaaatggaa 3180 gaaaaagcca cttatgttca taagaagaat gatggtacta cggttgattt gactgtagat 3240 caggcatgga gaggaaaagg tgaaggtctt cctggaatgt gtggtggggc cctagtgtca 3300 tcaaatcagt ccatacaaaa tgcaattttg ggtattcatg ttgctggagg aaattcaatt 3360 cttgtggcaa agttgattac tcaagaaatg tttcaaaaca ttgataagaa aattgaaatc 3420 aagctt 3426 <210> 18 <211> 19 <212> DNA <213> Chimeric Sequence <220> <221> sig_peptide <222> (1)..(19) <223> Sequence #18. Synthetic fragment corresponding to the KDEL endoplasmic reticulum retention signal sequence. <400> 18 atcaaggatg aattgtaat 19 <210> 19 <211> 21 <212> DNA <213> Chimeric Sequence <220> <221> sig_peptide <222> (1)..(21) <223> Sequence #19. Synthetic fragment corresponding to the KDEL endoplasmic reticulum retention signal sequence. <400> 19 cgattacaat tcatccttga t 21 <210> 20 <211> 55 <212> DNA <213> Chimeric Sequence <220> <221> D_segment <222> (1)..(54) <223> Sequence # 20 synthetic fragment modifying the 3' end of the 2A protein and introduces a space-bar between this one and the KDEL signal. <400> 20 cctaggaaaa tgaaggggtt atatgcttct ggaggtgaat tcgatatcaa ggatg 55 <210> 21 <211> 54 <212> DNA <213> Chimeric Sequence <220> <221> D_segment <222> (1)..(54) <223> .Sequence # 21. synthetic fragment modifying the 3 ' end of the 2A protein and introduces a space-bar between this one and the KDEL signal. <400> 21 aattcatcct tgatatcgaa ttcacctcca gaagcatata accccttcat tttc 54 <210> 22 <211> 2555 <212> DNA <213> Hepatitis A virus <220> <221> gene <222> Complement((1)..(2555)) <223> Sequence # 22. sequence coding for the structural P1-2A proteins joined to endoplasmic reticulum retention signal. <400> 22 atgaatatgt ccaaacaagg aattttccag actgttggga gtggccttga ccacatcctg 60 tccttggcag atattgagga agagcaaatg attcagtccg ttgataggac tgcagtgact 120 ggagcttctt atttcacttc tgtggaccaa tcttcagttc atactgctga ggttggctca 180 caccaaattg aacctttgaa aacctctgtt gataaacctg gttctaagaa aactcagggg 240 gagaagtttt tcttgattca ttctgctgat tggctcacta cacatgctct ctttcatgaa 300 gttgcaaaat tggatgtggt gaaactgctg tacaatgagc agtttgccgt ccaaggtttg 360 ttgagatacc atacttatgc aagatttggc attgagattc aagttcagat aaatcccaca 420 ccctttcagc aaggaggact aatctgtgcc atggttcctg gtgaccaaag ttatggttca 480 atagcatcct tgactgttta tcctcatggt ctgttaaatt gcaatatcaa caatgtagtt 540 agaataaagg ttccatttat ttatactaga ggtgcttatc attttaaaga tccacagtac 600 ccagtttggg aattgacaat cagagtttgg tcagagttga atattggaac aggaacctca 660 gcttatactt cactcaatgt tttagctagg tttacagatt tggagttgca tggattaact 720 cctctttcta cacagatgat gagaaatgaa tttagagtta gtactactga aaatgttgta 780 aatttgtcaa attatgaaga tgcaagggca aaaatgtctt ttgctttgga tcaggaagat 840 tggaagtctg atccttccca aggtggtgga attaaaatta ctcatttcac tacctggaca 900 tccattccaa ccttagctgc tcagtttcca ttcaatgctt cagattcagt tgggcaacaa 960 attaaagtta taccagtgga cccatacttt ttccagatga caaacactaa tcctgatcaa 1020 aaatgtataa cagccttggc ctctatttgt cagatgttct gcttttggag gggagatctt 1080 gttttcgatt tccaggtttt tccaaccaaa tatcattcag gtaggctgtt gttttgtttt 1140 gttcctggga atgagttaat agatgttact ggaattacat taaaacaggc aactactgct 1200 ccttgtgcag tgatggacat tacaggagtg cagtcaacct tgagatttcg tgttccttgg 1260 atttctgata caccctatcg agtgaatagg tacacgaagt cagcacatca aaaaggtgag 1320 tatactgcca ttgggaagct tattgtgtat tgttataata gattgacttc tccttctaat 1380 gttgcttctc atgttagagt taatgtttat ctttcagcaa ttaatttgga atgttttgct 1440 cctctttacc atgctatgga tgttaccaca caggttggag atgattcagg aggtttctca 1500 acaacagttt ctacagagca gaatgttcct gatccccaag ttggcataac aaccatgagg 1560 gatttaaaag ggaaagccaa taggggaaag atggatgtat caggagtgca ggtacctgtg 1620 ggagctatta caacaattga ggatccagtt ttagcaaaga aagtacctga gacatttcct 1680 gaattgaagc ctggagaatc cagacataca tcagatcaca tgtctattta taaattcatg 1740 ggaaggtctc atttcttgtg tacttttact tttaattcaa acaataaaga gtacacattt 1800 ccaataactc tgtcttcgac ttctaatcct cctcatggtt taccatcaac attaaggtgg 1860 ttctttaatt tgtttcagtt gtatagagga ccattggatt tgacaattat aatcacagga 1920 gccactgatg tggatggtat ggcctggttt actccagtgg gccttgctgt cgacacccct 1980 tgggtggaaa agaagtcagc tttgtctatt gattataaaa ctgcccttgg agctgttaga 2040 tttaatacaa gaagaacagg gaacattcag attagattgc catggtattc ttatttgtat 2100 gccgtgtctg gagcactgga tggcttggga gataagacag attctacatt tggattggtt 2160 tctattcaga ttgcaaatta caatcattct gatgaatatt tgtcctttag ttgttatttg 2220 tctgtcacag agcaatcaga gttctatttc cctagagctc cattaaattc aaatgctatg 2280 ttgtccactg agtccatgat gagtagaatt gcagctggag acttggagtc atcagtggat 2340 gatcccagat cagaggagga cagaagattt gagagtcata tagaatgtag gaaaccatat 2400 aaagaattga gactggaggt tgggaaacaa agaatcaaat atgctcagga agagttatca 2460 aatgaagtgc ttccacctcc taggaaaatg aaggggttat atgcttctgg aggtgaattc 2520 gatatcaagg atgaattgta atcgataccg tcgac 2555 <210> 23 <211> 1012 <212> DNA <213> Hepatitis A virus <220> <221> gene <222> Complement((1)..(1012)) <223> Sequence # 23. Sequence coding for the 3ABC polyprotein and for the endoplasmic reticulum retention signal. <400> 23 gaattcctgc agcccggggg atccatggga atttcagatg atgacaatga tagtgcagta 60 gctgagtttt tccggtcttt tccatctggt gaaccatcaa attccaagtt atctagtttt 120 ttccaagctg tcactaatca caagtgggtt gctgtgggag ctgcagttgg tattcttgga 180 ttgctagtgg gaggatggtt tgtgtataag catttttccc gcaaagagga agaaccaatt 240 ccagctgttg gggtttatca tggagtgact aagcccaaac aagtgattaa attggatgca 300 gatccagtag agtctcagtt gactctagaa atagcaggat tagttaggaa aaatttggtt 360 cagtttggag ttggtgagaa aaatggatgt gtgagatggg tcatgaatgc cttaggagtg 420 aaggatgatt ggttgttagt accttctcat gcttataaat ttgaaaagga ttatgaaatg 480 atggagtttt atttcaatag aggtggaact tactattcaa tttcagctgg taatgttgtt 540 attcaatctt tagatgtggg attccaagat gttgttctaa tgaaggttcc tacaattccc 600 aagtttagag atattactca acattttatt aagaaaggag atgtgcctag agccttgaat 660 cgcttggcaa cattagtgac aaccgttaat ggaactccta tgttaatttc tgagggacct 720 ttaaaaatgg aagaaaaagc cacttatgtt cataagaaga atgatggtac tacggttgat 780 ttgactgtag atcaggcatg gagaggaaaa ggtgaaggtc ttcctggaat gtgtggtggg 840 gccctagtgt catcaaatca gtccatacaa aatgcaattt tgggtattca tgttgctgga 900 ggaaattcaa ttcttgtggc aaagttgatt actcaagaaa tgtttcaaaa cattgataag 960 aaaattgaaa tcaagcttcg acctcgaatc aaggatgaat tgtaatcgat ac 1012 <210> 24 <211> 2492 <212> DNA <213> Hepatitis A virus <220> <221> gene <222> Complement((1)..(2492)) <223> Sequence # 24 Sequence coding for the structural region, whitout the vp4 protein, fused to endoplasmic reticulum retention signal. <400> 24 gggatggata ttgaggaaga gcaaatgatt cagtccgttg ataggactgc agtgactgga 60 gcttcttatt tcacttctgt ggaccaatct tcagttcata ctgctgaggt tggctcacac 120 caaattgaac ctttgaaaac ctctgttgat aaacctggtt ctaagaaaac tcagggggag 180 aagtttttct tgattcattc tgctgattgg ctcactacac atgctctctt tcatgaagtt 240 gcaaaattgg atgtggtgaa actgctgtac aatgagcagt ttgccgtcca aggtttgttg 300 agataccata cttatgcaag atttggcatt gagattcaag ttcagataaa tcccacaccc 360 tttcagcaag gaggactaat ctgtgccatg gttcctggtg accaaagtta tggttcaata 420 gcatccttga ctgtttatcc tcatggtctg ttaaattgca atatcaacaa tgtagttaga 480 ataaaggttc catttattta tactagaggt gcttatcatt ttaaagatcc acagtaccca 540 gtttgggaat tgacaatcag agtttggtca gagttgaata ttggaacagg aacctcagct 600 tatacttcac tcaatgtttt agctaggttt acagatttgg agttgcatgg attaactcct 660 ctttctacac agatgatgag aaatgaattt agagttagta ctactgaaaa tgttgtaaat 720 ttgtcaaatt atgaagatgc aagggcaaaa atgtcttttg ctttggatca ggaagattgg 780 aagtctgatc cttcccaagg tggtggaatt aaaattactc atttcactac ctggacatcc 840 attccaacct tagctgctca gtttccattc aatgcttcag attcagttgg gcaacaaatt 900 aaagttatac cagtggaccc atactttttc cagatgacaa acactaatcc tgatcaaaaa 960 tgtataacag ccttggcctc tatttgtcag atgttctgct tttggagggg agatcttgtt 1020 ttcgatttcc aggtttttcc aaccaaatat cattcaggta ggctgttgtt ttgttttgtt 1080 cctgggaatg agttaataga tgttactgga attacattaa aacaggcaac tactgctcct 1140 tgtgcagtga tggacattac aggagtgcag tcaaccttga gatttcgtgt tccttggatt 1200 tctgatacac cctatcgagt gaataggtac acgaagtcag cacatcaaaa aggtgagtat 1260 actgccattg ggaagcttat tgtgtattgt tataatagat tgacttctcc ttctaatgtt 1320 gcttctcatg ttagagttaa tgtttatctt tcagcaatta atttggaatg ttttgctcct 1380 ctttaccatg ctatggatgt taccacacag gttggagatg attcaggagg tttctcaaca 1440 acagtttcta cagagcagaa tgttcctgat ccccaagttg gcataacaac catgagggat 1500 ttaaaaggga aagccaatag gggaaagatg gatgtatcag gagtgcaggt acctgtggga 1560 gctattacaa caattgagga tccagtttta gcaaagaaag tacctgagac atttcctgaa 1620 ttgaagcctg gagaatccag acatacatca gatcacatgt ctatttataa attcatggga 1680 aggtctcatt tcttgtgtac ttttactttt aattcaaaca ataaagagta cacatttcca 1740 ataactctgt cttcgacttc taatcctcct catggtttac catcaacatt aaggtggttc 1800 tttaatttgt ttcagttgta tagaggacca ttggatttga caattataat cacaggagcc 1860 actgatgtgg atggtatggc ctggtttact ccagtgggcc ttgctgtcga caccccttgg 1920 gtggaaaaga agtcagcttt gtctattgat tataaaactg cccttggagc tgttagattt 1980 aatacaagaa gaacagggaa cattcagatt agattgccat ggtattctta tttgtatgcc 2040 gtgtctggag cactggatgg cttgggagat aagacagatt ctacatttgg attggtttct 2100 attcagattg caaattacaa tcattctgat gaatatttgt cctttagttg ttatttgtct 2160 gtcacagagc aatcagagtt ctatttccct agagctccat taaattcaaa tgctatgttg 2220 tccactgagt ccatgatgag tagaattgca gctggagact tggagtcatc agtggatgat 2280 cccagatcag aggaggacag aagatttgag agtcatatag aatgtaggaa accatataaa 2340 gaattgagac tggaggttgg gaaacaaaga atcaaatatg ctcaggaaga gttatcaaat 2400 gaagtgcttc cacctcctag gaaaatgaag gggttatatg cttctggagg tgaattcgat 2460 atcaaggatg aattgtaatc gataccgtcg ac 2492

Claims (39)

  1. HAV 게놈(SEQ ID NO 3)의 변형된 분획에 기초된 키메르 HAV 유전자를 포함하는 유전적 컨스트럭트로 형질전환된 식물세포에서 수득되어진 간염 A 바이러스재조합 항원.
  2. 제 1항에 있어서, 항원은 단지 펜타머만을 포함함을 특징으로 하는 간염 A 바이러스 재조합 항원.
  3. 제 1항 및 제 2항에 있어서, 항원은 다음 요소의 융합을 포함하는 SEQ ID NO 17에 따른 키메르 유전자의 발현으로부터 얻어짐을 특징으로 하는 간염 A 바이러스 재조합 항원:
    a. 단백질 VP2, VP3, VP1 및 2A를 코드하는 뉴클레오티드 시퀀스(SEQ ID NO 25),
    b. 단백질 3A, 3B, 3C를 코드하는 뉴클레오티드 시퀀스(SEQ ID NO 13).
  4. 제 3항에 있어서, 키메르 유전자가 적절한 프로모터 및 터미네이터 신호에 의해 제어된 식물 세포에서 발현된 것을 특징으로 하는 간염 A 바이러스 재조합 항원.
  5. 제 4항에 있어서, 항원은 식물세포의 세포질에서 수득된 것을 특징으로 하는 간염 A 바이러스 재조합 항원.
  6. 제 5항에 있어서, 항원은 쌍떡잎식물에서 발현된 것을 특징으로 하는 간염 A 바이러스 재조합 항원.
  7. 제 6항에 있어서, 항원은 타바코, 캐럿 및 먹을 수 있는 식물의 과실에서 발현된 것을 특징으로 하는 간염 A 바이러스 재조합 항원.
  8. 제 5항에 있어서, 항원은 외떡잎식물에서 발현된 것을 특징으로 하는 간염 A 바이러스 재조합 항원.
  9. 제 8항에 있어서, 항원은 라이스 및 먹을 수 있는 식물의 과실에서 발현된 것을 특징으로 하는 간염 A 바이러스 재조합 항원.
  10. 제 1항에 있어서, 항원은 펜타머 및 엠프티 캡시드를 포함하는 것을 특징으로 하는 간염 A 바이러스 재조합 항원.
  11. 제 10항에 있어서, 항원은 다음 두 요소의 융합을 포함하는 키메르 유전자의 발현으로부터 수득된 간염 A 바이러스 재조합 항원:
    a. 단백질 VP4, VP2, VP3, VP1 및 2A를 코드하는 SEQ ID NO 6에 따른 뉴클레오티드 시퀀스.
    b. 청구항3의 b에 따른 단백질 3A, 3B 및 3C를 코드하는 뉴클레오티드 시퀀스.
  12. 제 11항에 있어서, 키메르 유전자는 적당한 프로모터와 터미네이터 신호에 의해 제어된 식물세포에서 발현된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  13. 제 12항에 있어서, 항원은 식물세포의 세포질에서 수득된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  14. 제 13항에 있어서, 항원은 쌍떡잎 식물에서 수득된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  15. 제 14항에 있어서, 항원은 타바코, 캐럿 및 식용 식물의 과실에서 수득된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  16. 제 13항에 있어서, 항원은 외떡잎 식물에서 수득된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  17. 제 16항에 있어서, 항원은 라이스 및 식용 식물의 과실에서 수득된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  18. 제 2항에 있어서, 항원은 다음 두 키메르 유전자의 조정된 발현으로부터 수득된 간염 A 바이러스 재조합 항원:
    a. KDEL 펩티드를 코드하는 시퀀스가 이어지는, 그 5' 말단에 신호 시퀀스와 그 3' 말단에 스페이서 시퀀스가 융합된 단백질 VP2, VP3, VP1, 2A를 코드하는 SEQ ID NO 24에 따른 뉴클레오티드 시퀀스.
    b. KDEL 펩티드를 코드하는 시퀀스가 이어지는, 그 5' 말단에 신호 시퀀스와 그 3' 말단에 스페이서 시퀀스가 융합된 청구항3의 b에 언급된 단백질 3A, 3B, 3C를 코드하는 SEQ ID NO 23에 따른 뉴클레오티드 시퀀스.
  19. 제 18항에 있어서, 키메르 유전자는 적당한 프로모터와 터미네이터 신호에 의해 제어된 식물세포에서 발현된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  20. 제 18항 및 제 19항에 있어서, 항원은 식물세포의 엔도플라즘 레티클에서 수득된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  21. 제 20항에 있어서, 항원은 쌍떡잎 식물에서 수득된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  22. 제 21항에 있어서, 항원은 타바코, 캐럿 및 식용 식물의 과실에서 수득된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  23. 제 20항에 있어서, 항원은 외떡잎 식물에서 수득된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  24. 제 23항에 있어서, 항원은 라이스 및 식용 식물의 과실에서 수득된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  25. 제 10항에 있어서, 항원은 다음 두 키메르 유전자의 조정된 발현으로부터 수득된 간염 A 바이러스 재조합 항원:
    a. KDEL 펩티드를 코드하는 시퀀스가 이어지는, 그 5' 말단에 신호 시퀀스와 그 3' 말단에 스페이서 시퀀스가 융합된 단백질 VP4, VP2, VP3, VP1, 2A를 코드하는 시퀀스 ID NO 22에 따른 뉴클레오티드 시퀀스.
    b. 청구항 18의 b에 따른 뉴클레오티드 시퀀스
  26. 제 25항에 있어서, 키메르 유전자는 적당한 프로모터와 터미네이터 신호에 의해 제어된 식물세포에서 발현된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  27. 제 25항 및 제 26항에 있어서, 항원은 식물세포의 엔도플라즘 레티클에서 수득된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  28. 제 27항에 있어서, 항원은 쌍떡잎 식물에서 수득된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  29. 제 28항에 있어서, 항원은 타바코, 캐럿 및 식용 식물의 과실에서 수득된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  30. 제 27항에 있어서, 항원은 외떡잎 식물에서 수득된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  31. 제 30항에 있어서, 항원은 라이스 및 식용 식물의 과실에서 수득된 것임을 특징으로 하는 간염 A 바이러스 재조합 항원.
  32. 제 1, 3, 11, 18 및 25항 중 어느 한 항에 있어서, 항원은 비경구적 경로로 투여되어지는 정제될 수 있는 것인 간염 A 바이러스 재조합 항원.
  33. 제 32항에 있어서, 항원은 다른 바이러스 항원과 조합되어 투여될 수 있는 것인 간염 A 바이러스 재조합 항원
  34. 제 1, 3, 11, 18 및 25항 중 어느 한 항에 있어서, 항원은 경구적 경로로 투여될 수 있는 것인 간염 A 바이러스 재조합 항원.
  35. 제 34항에 있어서, 항원은 동결건조된 추출물, 환 또는 캡슐로 투여될 수 있는 것인 간염 A 바이러스 재조합 항원.
  36. 제 1, 3, 11, 18 및 25항 중 어느 한 항에 있어서, 항원은 쥬스 형태로 투여될 수 있는 것인 간염 A 바이러스 재조합 항원.
  37. 제 1, 3, 11, 18 및 25항 중 어느 한 항에 있어서, 항원은 간염 A에 대해 면역원성이고 보호적 면역반응을 일으키는 것인 간염 A 바이러스 재조합 항원.
  38. 제 32항에 있어서, 항원은 간염 A에 대한 진단 키트의 일부로 사용될 수 있는 것인 간염 A 바이러스 재조합 항원.
  39. 간단하고 조합된 백신을 제조하기 위해 청구항 1 내지 38에 언급된 항원의 사용.
KR1020057012371A 2003-01-31 2003-12-19 식물세포로부터 얻은 재조합 간염 에이 바이러스 항원 KR20050100365A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU20030031A CU23202A1 (es) 2003-01-31 2003-01-31 ANTIGENOS RECOMBINANTES DEL VIRUS DE LA HEPATITIS A OBTENIDOS EN CéLULAS VEGETALES
CU2003-0031 2003-01-31

Publications (1)

Publication Number Publication Date
KR20050100365A true KR20050100365A (ko) 2005-10-18

Family

ID=40091669

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020057012371A KR20050100365A (ko) 2003-01-31 2003-12-19 식물세포로부터 얻은 재조합 간염 에이 바이러스 항원

Country Status (14)

Country Link
US (1) US20060147469A1 (ko)
EP (1) EP1589111A1 (ko)
JP (1) JP2006514078A (ko)
KR (1) KR20050100365A (ko)
CN (1) CN1745174A (ko)
AR (1) AR042960A1 (ko)
AU (1) AU2003291913A1 (ko)
BR (1) BR0318026A (ko)
CA (1) CA2510482A1 (ko)
CU (1) CU23202A1 (ko)
MX (1) MXPA05008221A (ko)
RU (1) RU2005127340A (ko)
WO (1) WO2004067747A1 (ko)
ZA (1) ZA200505187B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131423A2 (ko) * 2008-04-25 2009-10-29 경희대학교 산학협력단 신규 a형 간염 바이러스의 항원 유전자 및 상기 유전자로 형질전환된 식물체

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2615372A1 (en) * 2007-07-13 2009-01-13 Marc-Andre D'aoust Influenza virus-like particles (vlps) comprising hemagglutinin

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516630A (en) * 1983-09-30 1996-05-14 The United States Of America As Represented By The Department Of Health And Human Services Methods of detecting hepatitis A virus
DE3484244D1 (de) * 1983-09-30 1991-04-11 Massachusetts Inst Technology Herstellung von cdna die hepatitis a virale sequenzen darstellen.
US4614793A (en) * 1983-10-14 1986-09-30 Merck & Co., Inc. Hepatitis A--subunit antigen
SU1469856A1 (ru) * 1986-07-31 1990-09-30 Институт биоорганической химии им.М.М.Шемякина Способ конструировани рекомбинантной плазмидной ДНК, кодирующей синтез полипептидных субстанций против гепатита А
US5294548A (en) * 1990-04-02 1994-03-15 American Biogenetic Sciences, Inc Recombianant Hepatitis a virus
US5612487A (en) * 1991-08-26 1997-03-18 Edible Vaccines, Inc. Anti-viral vaccines expressed in plants
AU776855B2 (en) * 1998-12-23 2004-09-23 Boyce Thompson Institute For Plant Research Inc. Expression of immunogenic hepatitis B surface antigens in transgenic plants
US6368602B1 (en) * 2000-06-16 2002-04-09 Hadasit Medical Research Services And Development Ltd Mucosal immunization against hepatitis A virus (HAV) through rectal administration of HAV vaccine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131423A2 (ko) * 2008-04-25 2009-10-29 경희대학교 산학협력단 신규 a형 간염 바이러스의 항원 유전자 및 상기 유전자로 형질전환된 식물체
WO2009131423A3 (ko) * 2008-04-25 2009-12-23 경희대학교 산학협력단 신규 a형 간염 바이러스의 항원 유전자 및 상기 유전자로 형질전환된 식물체
KR101012830B1 (ko) * 2008-04-25 2011-02-10 메디칸(주) 신규 a형 간염 바이러스의 항원 유전자 및 상기 유전자로형질전환된 식물체

Also Published As

Publication number Publication date
CU23202A1 (es) 2007-05-18
BR0318026A (pt) 2005-12-06
AU2003291913A1 (en) 2004-08-23
AR042960A1 (es) 2005-07-13
RU2005127340A (ru) 2006-03-10
WO2004067747A1 (es) 2004-08-12
CA2510482A1 (en) 2004-08-12
JP2006514078A (ja) 2006-04-27
US20060147469A1 (en) 2006-07-06
CN1745174A (zh) 2006-03-08
ZA200505187B (en) 2006-04-26
MXPA05008221A (es) 2005-10-05
EP1589111A1 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
CN103031310B (zh) 在植物中表达蛋白质
US5294548A (en) Recombianant Hepatitis a virus
JP3228737B2 (ja) キメラヘパドナウイルスコア抗原蛋白
US7901691B2 (en) Chimeric G protein based rabies vaccine
KR102199018B1 (ko) 식물에서 인플루엔자 바이러스-유사 입자 생산
CN103890177B (zh) Hpv嵌合颗粒
Waheed et al. Plastid expression of a double‐pentameric vaccine candidate containing human papillomavirus‐16 L1 antigen fused with LTB as adjuvant: transplastomic plants show pleiotropic phenotypes
US20100172938A1 (en) Modified bacterial surface layer proteins
KR20190110605A (ko) 돼지 코로나바이러스 백신
Gedvilaite et al. Segments of puumala hantavirus nucleocapsid protein inserted into chimeric polyomavirus-derived virus-like particles induce a strong immune response in mice
JP2003525619A (ja) ウイルスコートタンパク質融合体としての植物における外来ポリペプチドの産生
US20080213293A1 (en) Prevention and Treatment of Recurrent Respiratory Papillomatosis
WO2000046350A1 (en) Production of biomedical peptides and proteins in plants using transcomplementation systems
CA1324094C (en) Hepatitis a virus vaccines
CA2205130A1 (en) Immunogens for stimulating mucosal immunity
AU729592B2 (en) Secretory immunoglobulin A as a mucosal vaccine delivery system
KR100880477B1 (ko) 외인성 내부 에피토프를 갖는 바이러스 입자
KR20050100365A (ko) 식물세포로부터 얻은 재조합 간염 에이 바이러스 항원
CZ297389B6 (cs) Fúzní protein pro vakcinaci proti lidskému papillomaviru a zpusob jeho produkce
CN110305225A (zh) Sva-pcv2融合蛋白及其制备方法、基因、生物材料、应用和疫苗
KR20240034182A (ko) 사이토카인 수준을 변경하고 갓 태어난 돼지에게 수동 면역을 제공하기 위한 코로나바이러스 스파이크 단백질의 경구 투여
Elkins Transient expression of ova antigen: RTB fusions in plants for production of improved subunit vaccines
Verch Engineering and use of plant viral expression vectors
JPH03503359A (ja) 外来シグナルペプチド及び任意のトランスメンブレンアンカー配列を包含する遺伝子発現系(特にロタウイルスvp7タンパク質)

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid