KR20050054788A - 다결정 실리콘 박막 제조 방법 및 이를 적용한트랜지스터의 제조방법 - Google Patents
다결정 실리콘 박막 제조 방법 및 이를 적용한트랜지스터의 제조방법 Download PDFInfo
- Publication number
- KR20050054788A KR20050054788A KR1020030088423A KR20030088423A KR20050054788A KR 20050054788 A KR20050054788 A KR 20050054788A KR 1020030088423 A KR1020030088423 A KR 1020030088423A KR 20030088423 A KR20030088423 A KR 20030088423A KR 20050054788 A KR20050054788 A KR 20050054788A
- Authority
- KR
- South Korea
- Prior art keywords
- thin film
- poly
- cvd
- icp
- ela
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 53
- 229910021420 polycrystalline silicon Inorganic materials 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 238000005224 laser annealing Methods 0.000 claims abstract description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 24
- 229910052710 silicon Inorganic materials 0.000 claims description 24
- 239000010703 silicon Substances 0.000 claims description 24
- 238000000151 deposition Methods 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 15
- 230000008021 deposition Effects 0.000 claims description 13
- 229910052734 helium Inorganic materials 0.000 claims description 12
- 239000001307 helium Substances 0.000 claims description 10
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 10
- 229910004298 SiO 2 Inorganic materials 0.000 abstract description 24
- 239000004033 plastic Substances 0.000 abstract description 14
- 229920003023 plastic Polymers 0.000 abstract description 14
- 239000002245 particle Substances 0.000 abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 230000005527 interface trap Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 2
- 238000003949 trap density measurement Methods 0.000 abstract description 2
- 238000005229 chemical vapour deposition Methods 0.000 abstract 1
- 238000009616 inductively coupled plasma Methods 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 230000008569 process Effects 0.000 description 19
- 239000010408 film Substances 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 229920001621 AMOLED Polymers 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000096 monohydride Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02345—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
- H01L21/02354—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light using a coherent radiation, e.g. a laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02422—Non-crystalline insulating materials, e.g. glass, polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02595—Microstructure polycrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
- H01L21/02686—Pulsed laser beam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
- H01L21/31604—Deposition from a gas or vapour
- H01L21/31608—Deposition of SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4908—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
- H01L29/6675—Amorphous silicon or polysilicon transistors
- H01L29/66757—Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78651—Silicon transistors
- H01L29/7866—Non-monocrystalline silicon transistors
- H01L29/78672—Polycrystalline or microcrystalline silicon transistor
- H01L29/78675—Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Materials Engineering (AREA)
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
저온에서 ICP-CVD(Inductively coupled plasma chemical vapor deposition) 에 의한 다결정 실리콘 박막의 제조방법 및 이를 이용한 다결정 실리콘(poly-Si) TFT 제조방법이 개시된다. 다결정 실리콘 박막 형성 시 ICP-CVD 에 이어서 ELA(Excimer Laser Annealing)가 수행된다. ELA 는 소정 시간동안 단계적으로 에너지를 증가시키면서 수회 수행된다.
poly-Si 활성층과 SiO2 게이트 절연층은 예를 들어 150℃의 저온에서 ICP-CVD에 의해 증착(deposit)된다. poly-Si은 예를 들어 3000Å 이상의 큰 입경을 가지며, 그리고 실리콘 디옥사이드(SiO2)의 계면트랩밀도가 1011/cm2 에 달하였다. 이와 같이 전기적으로 양호 특성을 가지는 트랜지스터는 저온에서 제조가 가능하며, 따라서 플라스틱 등과 같이 열에 약한 재료로 된 기판에 형성하기에 적합니다.
Description
본 발명은 다결정 실리콘 박막 제조방법 및 이를 적용한 박막트랜지스터의 제조방법(fabrication method of poly-crystalline Si Thin Film and Transistor thereby)에 관한 것으로 높은 이동도를 가지는 다결정 실리콘 박막 제조방법 및 이를 적용한 다결정 실리콘 박막트랜지스터의 제조방법에 관한 것이다.
다결정 실리콘(poly crystalline Si, poly-Si)은 비정질 실리콘(amorphous Si, a-Si)에 비해 높은 이동도(mobility)를 가지기 때문에 평판 디스플레이 소자 뿐 아니라 태양전지 등 다양한 전자 소자등에 응용된다. 일반적으로 다결정 실리콘 전자소자는 유리 등과 같은 열에 강한 재료의 기판에 형성된다. 그러나 최근에는 플라스틱 기판에 다결정 실리콘 전자소자를 형성하는 방법이 연구되고 있다. 플라스틱의 열변형을 방지하기 위하여 저온에서 다결정 실리콘 전자소자를 형성하기 위한 소위 저온 성막 공정의 도입이 불가피하다. 이러한 저온 공정은 기판에 대한 열충격을 방지하기에 필요하지만 소자 제조시 고온 공정에서 발생되는 공정 결함을 억제하기 위해서도 필요하다. 플라스틱 기판은 가볍고 유연하면서도 튼튼하기 때문에 최근에 평판 디스플레이 소자의 기판으로서 연구되고 있다.
poly-Si TFT 는 상기와 같은 기대에 걸맞게 플라스틱 기판에 형성될 수 있는 소자로서 인식된다. 그러나, 상기한 바와 같이 플라스틱은 열에 취약한 성질을 가지므로 저온에서의 TFT의 제조가 요구된다.
예를 들어 200℃ 에서 열적으로 변형되는 플라스틱 기판에 400℃ 정도의 공정 온도에서 물질 증착이 이루어지는 종래 방법은 적용될 수 없다. Y.-J Tung 등과 S.D.Theiss 등이 제안한 방법은 200℃ 이하의 공정 온도에서 큰 입경을 가지는 poly-Si 박막과 0(zero)V에 가까운 플랫밴드 전압(flat-band voltage)를 갖는 실리콘 디옥사이드를 얻기 어렵다.(Y.-J Tung, X.Meng. T.-J.King. P.G. Carey, P.M. Smith, S.D. Theiss, R. Weiss, G.A. Davis V. Aebi, Tech, Digest of SID98, pp.887-890
; D.D. Theiss, P.G. Carey, P.M. Smith, P. Wickboldt, T.W. Sigmon, Y.J. Tung, T.-J King,
IEDM 98, pp.257~260
)
한편 종래의 poly-Si 제조방법은 일반적으로 CVD 나 PECVD 법을 이용한다. 이러한 증착 방법에 의해서는 a-Si 이 얻어지며 이를 열처리함으로써 poly-Si 을 얻을 수 있게 된다. 즉 종래방법은 poly-Si 얻기위하여 열처리를 필수적으로 수반한다.
본 발명이 이루고자하는 기술적 과제는 열처리 의존하지 않고도 큰 입경을 가지는 poly-Si를 형성할 수 있는 다결정 실리콘 박막의 제조방법 및 이를 이용한 박막트랜지스터의 제조방법을 제공하는 것이다.
본 발명이 이루고자 하는 다른 기술적 과제는 높은 전자 이동도를 가지는 다결정 실리콘 박막의 제조방법 및 이를 이용한 박막트랜지스터의 제조방법을 제공하는 것이다.
본 발명이 이루고자 하는 또 다른 기술적과제는 저온 공정에서 큰 입경을 가지는 poly-Si과 낮은 플랫밴드 전압을 가지는 게이트 절연층을 가지는 poly-Si TFT를 제공하는 것이다.
본 발명에 따른 poly-Si 박막의 제조방법은 희석헬륨을 이용한 ICP-CVD에 의해 기판에 실리콘 박막을 형성한다.
본 발명에 따른 TFT 제조방법은, poly-Si 활성층, 활성층 위에 형성되는 게이트 절연층 그리고 상기 게이트 절연층 위에 형성되는 게이트를 구비하는 TFT를 제조하는 방법에 있어서, 상기 활성층을 형성하는 단계는 희석헬륨을 이용한 ICP-CVD에 의해 기판에 실리콘 박막을 증착하는 단계;를 포함한다.
상기 희석헬륨은 He/SiH4 이며, He/SiH4 의 비(ratio)는 6 내지 12이며 바람직하게는 10, 즉 20:2 이며, 증착율은 2.8Å/sec 이다. 본 발명의 제조방법은 증착에 의해 얻어진 poly-Si를 열처리함으로써 Si의 결정립의 크기를 증가시키며, 바람직하게는 ELA(Excimer Laser annealing)에 의해 poly-Si를 열처리한다. ELA는 소정시간동안 소정 시간동안 단계적으로 에너지를 증가시키면서 수회 수행된다.
상기 TFT 제조방법은 상기 게이트절연층을 형성하기 위하여 ICP-VCD를 이용하며, 바람직하기는 게이트절연층을 열처리한다. 게이트절연층의 열처리는 역시 ELA를 이용한다.
이하 첨부된 도면을 참조하면서 본 발명에 poly-Si 박막 제조방법 및 이를 이용한 TFT의 제조방법을 상세히 설명한다.
1. 실리콘 박막의 증착
ICP-CVD에 의한 고밀로 플라즈마는 높은 증착율(deposition ration)을 보장한다. 이러한 ICP-CVD는 필름-성장 영역(film-growth zone)에 대한 이온 손상(ion damage)을 감소시킬 수 있는 원격 플라즈마의 일종으로 알려져 있다.
이러한 ICP-CVD에 의해 poly-Si TFT의 활성층을 형성하였다. 이때에 헬륨으로 희석된 실란 가스(He/SiH4)가 이용되며, 기판 온도는 150℃, 압력은 25mTorr를 유지한다. 그리고 He/SiH4 의 비(ratio)는 10, 즉 20:2 [sccm]이며, 증작율은 2.8Å/sec 이다.
도 1은 증착된 실리콘 필름의 라만 스펙트럼(Raman spectrum)을 보인다. 얻어진 실리콘 필름의 결정구조는 도 1의 520cm-1 의 도미넌트 피이크(dominant peak)에 의해 예견되었던 바와 같이 성공적으로 형성되었다. 비정질/중간 상 (amorphous /intermediate phase)은 증착된 실리콘 필름에서 관측되었다.
약 60%의 결정 체적 프랙션(Fraction) 과 결정 성분이 얻어졌음이 계산되었다. 성공적인 다결정 실리콘 필름의 형성은 강한 이온이 결정성장을 방해하는 필름 성장 영역에서 이온 충격(ion bombardment)의 감소에 기인한 것으로 보인다.
실리콘 박막을 형성하기 위하여 수소 희석제(hydrogen dilution)가 사용되면, 실리콘 박막의 수소 성분은 10 ~12% 에 이를 수 있는데, 높은 수소 성분으로 인해 ELA에 의한 수소의 폭발적 분출 현상이 심해지므로 수소 성분을 낮추는 방식이 필요하다. 헤륨 희석제를 사용하여 성막한 실리콘 필름의 수소 성분이 도 2에 도시된 바와 같이 FT-IR에 의해 계산되었다. 도 2를 참조하면, 대부분이 디하이드라이드(dihydride) 즉, Si-H2 본딩(2090cm-1)이며 일부가 모노하이드라이드 (monohydride) 즉, Si-H 본딩이며, 그러나 전체 H 성분은 4% 에 불과하게 계산되었다. 이러한 수소 성분의 감소는 표면 반응(surface reaction)를 일으키는데 넘어야 하는 에너지 장벽(energy barrier)을 감소시키는 불활성 가스인 He 의 효과에 기인한다.
2. ELA의 의한 열처리
본 실시예에서는 퍼니스(furnace)를 이용하지 않고 엑시머 레이저를 이용한다. 위에서 설명된 바와 같이 ICP-CVD에 의해 형성된 실리콘 박막을 XeCl(λ=308nm) 엑시머 레이저를 어닐링한다. 이때에 수소의 급작스러원 분출(abrupt effusion)을 방지하기 위하여, 엑시머 레이저 조사(excimer laser irradiation)는 낮은 에너지 밀도(100mJ/cm2)로 부터 높은 에너지 밀도(210mJ/cm2)로 단계적으로 에너지 밀도를 증가시키면서 진행된다. 에너지 증가치는 10mJ/cm2 이며 따라서 100mJ/cm2 로 부터 10mJ/cm2 씩 10 단계 증가된다.
단계적으로 증가되는 열에너지에 의한 단계적 엑시머 레이저 조사에 의해, 실리콘 박막으로 부터의 탈수소(dehydrogenation)가 진행되며 이와 동시에 실리콘의 재결정화(recrystallization)가 진행된다. 도 3은 위에서 설명된 ELA에 의해 큰 입자를 가지는 800Å의 두께를 가지는 poly-Si 박막을 보이는 SEM 이미지이다. 도 3을 통해서 ICP-CVD에 의해 얻어진 poly-Si 이 ELA에 의해 보다 큰 입경을 가지도록 재결정화되었음을 알수 있다. 도 4는 ELA에 의해 재결정화된 poly-Si 박막의 단면을 보인다. 도 4을 통해서, 상기 poly-Si이 충분히 재결정화 되었고 그리고 ELA에 의해 형성된 입자 경계(grain boundary)가 명확히 되었음이 관측된다.
위에서 설명된 두 과정, 즉 ICP-CVD에 의한 실리콘 박막의 증착 및 ELA 에 의한 열처리 과정은 본 발명의 다결정 실리콘 박막의 제조방법의 실시예에 관련된다.
후속되는 설명은 위의 두과정에 연속되는 것으로 전자소자의 일종으로서 동적 스위칭 소자를 널리 이용되는 TFT의 제조방법의 실시예에 관한 것이다.
3. 게이트 절연층의 증착
전술한 과정을 통해 얻어진 poly-Si 를 활성층으로 이용하는 TFT를 제조하기 위해 먼저 상기 poly-Si 위에 He, N2O 가스와 실란(SiH4) 가스를 이용한 ICP-CVD에 의해 게이트 절연막으로서의 SiO2 박막을 형성한다. 이때에 기판 온도는 150℃를 유지시키며 공정압력은 30mTorr를 설정한다. 이때에 He:N2O:SiH4 의 성분 비(contents ratio)는 100:20:5 [sccm]이다.
도 5는 제조된 게이트 절연층의 RF 파워(200W, 400W, 600W)별 항복전계(breakdown field)의 차이를 보인다. 도 5에 도시된 바와 같이 RF 파워가 400W 인 경우 항복전계는 6.2MV/cm 이며, 그리고 특성상 RF 파워가 높을 수록 항복전계를 증가시키는데 유리함을 알수 있다.
도 6은 ICP-CVD에 의한 SiO2 박막의 C-V 특성(1MHz에서 LCR 미터로 측정)을 보이는 그래프이다. 도 6은 25mTorr의 공정압력하에서 400W, 450W, 500W의 RF 파워로 증착된 게이트 절연층에 대한 특성으로서 가스성분비는 He:N2O:SiH4 = 100:20:5 [sccm]이다.
도 6에 도시된 바와 같이, SiO2 박막과 계면(interface)에 존재하는 전하(charges)에 의해 플랫밴드 전압은 -5V 이하이다. RF 파워가 증가하면, 플랫밴드 전압은 음의 방향으로 더 증가(shift)한다. 계면과 SiO2 박막에 존재하는 전하는 RF 파워가 감소할수록 같이 감소한다. 계면 트랩(interface trap)의 유효 밀도는 1011/cm2 오더(order)이다. 도 7은 400W의 RF 파워, He:N2O:SiH
4 = 100:20:5 [sccm], 25mTorr 공정 조건의 ICP-CVD에 의해 증착된 상기 SiO2 박막(initial)과 이를 핫플레이트 상에서 200℃와 400℃로 열처리(annealing)한 SiO2 박막의 C-V 특성(1MHz에서 LCR 미러로 계측)을 비교해 보인 그래프이다. 도 7에 도시된 바와 같이 열처리 온도가 높을 수 록 플랫밴드 전압과 같은 C-V 특성이 개선되고 그리고 계면 트랩 밀도(interface trap density)가 괄목할 만하게 개선된다. 즉 양질의 poly-S TFT을 얻기 위해서는 게이트 절연층으로 사용되는 SiO2 박막의 열처리가 필요하다. 그러나, TFT의 기판이 유리가 아닌 플라스틱 재료로 되었을 경우 SiO2 박막 열처리시 가해지는 열에 의해 기판이 변형되는 것은 방지되어야 하므로 SiO2 박막 열처리시의 온도는 적절히 절충되어야 한다.
SiO2 박막을 효과적으로 열처리하면서도 플라스틱과 같은 기판의 열변형을 방지하기 위한 다양한 실험을 행하는 과정에서 ELA에 의해 SiO2 박막의 열처리함으로써 좋은 결과를 얻게 된다. 편의상 실리콘 웨이퍼 상에 SiO2 박막을 전술한 바와 같은 조건의 ICP-CVD로 증착한 후 ELA를 수행한 경과 도 8에 도시된 바와 같은 C-V 특성이 양호한 SiO2 박막을 얻었다.
도 8은 ELA 수행전(before ELA)과 그 후의 SiO2 박막(after ELA)의 C-V 특성을 보인다. ELA 시, 레이저는 430mJ/cm2
의 에너지 밀도로 총 20회(shot) 조사되었다. 그 결과 플랫밴드 전압이 +1.4V 쉬프트되었고 이를 통해 계면 또는 SiO2에 존재하는 전하의 감소가 일어났다.
4. TFT 제조를 위한 전공정의 개략적 설명
위에서 설명된 1~3 단계는 TFT 를 제조하는 공정 중 가장 중요한 공정이며 그 외의 공정은 일반적으로 알려진 방법을 따르며, 이에 대해 아래에 개략적으로 설명된다.
본 발명에 따른 TFT 제조공정의 특징은 150℃의 저온 공정을 통해 poly-Si 및 SiO2를 제조함으로써 플라스틱과 같은 열에 약한 기판에 양질의 TFT를 얻을 수 있는 것이다. 즉, 본 발명에 따라 플라스틱을 TFT의 기판으로 별 구애없이 사용할 수 있게 되었다.
도 9에 도시된 공정 흐름도를 참조하면, 먼저, 기판, 예를 들어 유리 또는 플라스틱 기판에 Si 을 증착한다(10). 이때에 ICP-CVD를 이용하며 증착 공정은 전술한 1.실리콘 박막의 증착 에서 설명된 조건을 따른다. 이를 통해서 기판 상에 poly-Si 실리콘이 형성되게 된다. 이와 같은 열처리없이 증착에 의해서 곧 바로 poly-Si를 얻을 수 있는 것은 본 발명의 기술적 특징의 하나이다.
poly-Si 증착된 후 이를 TFT에서 활성층으로 이용하기 위하여 소스 드레인 등에 대한 불순물 주입(S/D implantation)행하고(11) 이를 단계적 ELA에 의해 열처리한다(12). ELA는 역시 전술한 2. ELA에 의한 열처리 에서 설명된 조건을 따른다.
열처리 이후에는 상기 poly-Si을 활성층의 형태로 패터닝한다(13). 패터닝은 일반적으로 알려진 RIE 등의 건식 식각법을 이용한다.
활성층이 패터닝 된 이후에 게이트 절연층으로 사용될 SiO2 박막을 형성한다.(14) SiO2 박막은 전술한 3. 게이트 절연층의 증착 의 조건을 따르며, 이 과정을 통해서 SiO2 의 ELA 열처리도 수행된다.(15) SiO2dml 의 열처리시에는 120~140mJ/cm2의 에너지 밀도의 레이저를 조사한다.
SiO2 게이트 절연층이 완성된 후에는 전면적으로 120℃의 온도에서 Al 등의 금속막을 증착한 후(16) 이를 패터닝하여 게이트(전극)을 완성한다.(17)
게이트가 완성된 후 이 위에 역시 150℃ 에서 ICP-CVD에 의해 ILD(intermetal dielectric)로서 예를 들어 SiO2를 형성하고(18), 이에 후속하여 소위 콘택홀의 형성 및 메탈라이제이션을 거침으로써 목적하는 poly-Si TFT를 얻는다.
표 1은 ELA 조건이 다른 열처된 것으로 도핑된 Si 박막들의 면저항(sheet resistance)들을 보인다. 첫번째 데이타는 110mJ/cm2 의 에너지 밀도를 가지는 엑시머 레이저는 10회 조사한 결과로서 면저항이 1138 Ω/sq 를 나타내 보임을 알수 있다. 두번째 데이타는 에너지 밀도가 120mJ/cm2 이며 조사회수는 10회로서 그 결과는 830Ω/sq 임을 알수 있다. 한편 세번째 데이타는 단계적으로 에너지 밀도를 증가시키면서 레이저를 수회씩 조사한 결과를 보이는데 이때의 결과는 224 Ω/sq 임을 알수 있다. 세번째 데이타는 110 mJ/cm2 의 에너지 밀도로 10회 조사, 140 mJ/cm2 의 에너지 밀도로 5회 조사 그리고 160 mJ/cm2 의 에너지 밀도로 5회 조사한 결과이다.
Laser energy density(mJ/cm2) | Number of shot | Sheet resistance(Ω/sq) |
110 | 10 | 1138 |
120 | 10 | 830 |
110 + 140 + 160 | 10 + 5 + 5 | 224 |
도 10과 도 11은 일반적으로 알려진 100cm2/Vs 의 이동도에 비해 현저히 개선된 본 발명에 따른 poly-Si TFT의 전기적 특성을 보인다. 이러한 본 발명에 따라 제조된 TFT의 전기적 특성이 표 2에 요약되었다.
TFT parameters | Typical Value (max. or min. value) |
Ion (VGS=15V, VDS=5V) [㎂] | 140 (200) |
Mobility [cm2/Vs] | 107 (140) |
Minimum off current [nA](VDS=5V) | 0.4 (0.1) |
Subthreshold Swing [V/dec] | 0.76 (0.52) |
On/off current ratio | 5 ×105 (1 ×106) |
위의 표 2에 나타내 보인 바와 같이 본 발명에 따라 제조된 TFT의 최대 이동도가 140cm2/Vs 로 종래의 이동도인 100 cm2/Vs 에 비해 매우 크게 향상되었다. 그리고 서브스레스홀드 스로프는 0.52V/dec 이다. 이 TFT는 열처리 또는 후속 어닐링이 수행되지 않았다는 것을 주목해야 한다. 본 발명을 위한 실험을 통하여 게이트 절연층에 대한 레이저 소자의 효과에 대한 분석에 따르면, 도 10에 도시된 바와 같이 에너지 밀도가 120~140mJ/cm2의 바람직하기로는 130mJ/cm2의 조절된 엑시머 레이저(modurate eximer laser)가 TFT의 전기적 특성을 개선하는데 도움이 됨이 확인되었다. 그리고 에너지 밀도가 200mJ/cm 2로 증가한 경우 오히려 전기적 특성이 감퇴되어 드레인 전류(drain current)가 크게 감소하였음을 알수 있다. 이는 게이트 절연층에 대한 과다한 에너지 밀도의 레이저 조사에 의해 추가적인 결함이 발생되었음에 기인하는 것으로 예측된다.
도 11은 본 발명에 따른 TFT의 게이트-소스 전압(VGS)이 1, 3, 5 V 일때, 드레인 바이어스 변화에 따른 드레인 전류의 변화를 보인다. 도 11의 그래프에서 3 개의 변화곡선을 밑으로 부터 1, 3, 5V의 VGS 에 대응하며, 이때에 게이트의 폭과길이는 각각 20 및 10 ㎛ 이다.
상기와 같은 본 발명에 따르면 150℃의 저온에서 ICP-CVD에 의해 헬륨으로 희석된 실란가스로 Si 박막을 형성하므로 비정질이 아닌 다결정 상태의 Si 박막을 얻을 수 있게 된다. 이와 같이 증착 당시에 이미 다결정화된 Si 는 선택적이고 추가적인 ELA에 의해 입경이 더 커지고 따라서 전기적 특성이 더욱 개선되어 예를 들어 100cm2/Vs 이상의 이동도가 달성되었다.
이러한 본 발명의 다결정 실리콘 박막 제조방법은 평판 표시소자 특히 플라스틱을 기판으로 사용하는 AMLCD, AMOLED, 태양전지, 반도체 메모리 소자 등에 적용되기에 적합하다. 이러한 다결정 실리콘 박막은 특히 높은 이동도와 응답성을 요구하며, 특히 플라스틱을 기판으로 사용하는 TFT에 매우 적합하다. 이러한 TFT는 상기와 같은 AMLCD, AMOLED 외에 TFT를 스위칭 소자 또는 증폭소자 등으로 이용하는 어떤한 전자 장치에도 적용될 수 있다.
이러한 본원 발명의 이해를 돕기 위하여 몇몇의 모범적인 실시예가 설명되고 첨부된 도면에 도시되었으나, 이러한 실시예들은 단지 넓은 발명을 예시하고 이를 제한하지 않는다는 점이 이해되어야 할 것이며, 그리고 본 발명은 도시되고 설명된 구조와 배열에 국한되지 않는다는 점이 이해되어야 할 것이며, 이는 다양한 다른 수정이 당 분야에서 통상의 지식을 가진 자에게 일어날 수 있기 때문이다.
도 1은
Claims (12)
- 희석 헬륨을 이용한 ICP-CVD에 의해 기판에 실리콘 박막을 형성하는 것을 특징으로 하는 실리콘 박막 제조방법.
- 제 1 항에 있어서, 상기 희석헬륨은 He/SiH4 이며, He/SiH4 의 비(ratio)는 6 내지 12인 것을 특징으로 하는 실리콘 박막제조방법.
- 제 1 항에 있어서,상기 ICP-CVD 에 의한 실리콘의 증착율은 실질적으로 2.8Å/sec 인 것을 특징으로 하는 실리콘 박막제조방법.
- 제 1 항 내지 제 3 항 중의 어느 한 항에 있어서,증착된 상기 실리콘 박막을 열처리하는 단계를 더 포함하는 것을 특징으로 하는 실리콘 박막제조방법.
- 제 4 항에 있어서,상기 열처리는 ELA(Excimer Laser Annealing)에 의해 수행하는 것을 특징으로 하는 실리콘 박막제조방법.
- 제 5 항에 있어서,상기 ELA는 소정시간동안 소정 시간동안 단계적으로 에너지를 증가시키면서 수회 수행되는 것을 특징으로 하는 실리콘 박막제조방법.
- 기판과 기판에 형성되는 poly-Si 활성층, 활성층 위에 형성되는 게이트 절연층 그리고 상기 게이트 절연층 위에 형성되는 게이트를 구비하는 TFT를 제조하는 방법에 있어서,상기 활성층을 형성하는 단계는 희석헬륨을 이용한 ICP-CVD에 의해 상기 기판에 실리콘 박막을 증착하는 단계;를 포함하는 것을 특징으로 하는 TFT 제조방법.
- 제 7 항에 있어서,상기 TFT 제조방법은 상기 게이트절연층을 형성하기 위하여 ICP-CVD를 이용하는 것을 특징으로 하는 TFT 제조방법.
- 제 7 항에 있어서,ELA에 의해 상기 실리콘 박막과 게이트 절연층 중 적어도 어느 하나를 열처리하는 단계를 더 포함하는 것을 특징으로 하는 TFT 제조방법.
- 제 9 항에 있어서,상기 ELA는 소정시간동안 소정 시간동안 단계적으로 에너지를 증가시키면서 수회 수행되는 것을 특징으로 하는 실리콘 박막제조방법.
- 제 7 항에 있어서, 상기 희석헬륨은 He/SiH4 이며, He/SiH4 의 비(ratio)는 6 내지 12인 것을 특징으로 하는 실리콘 박막제조방법.
- 제 7 항에 있어서,상기 ICP-CVD 에 의한 실리콘의 증착율은 실질적으로 2.8Å/sec 인 것을 특징으로 하는 실리콘 박막제조방법.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030088423A KR20050054788A (ko) | 2003-12-06 | 2003-12-06 | 다결정 실리콘 박막 제조 방법 및 이를 적용한트랜지스터의 제조방법 |
US11/003,326 US7563659B2 (en) | 2003-12-06 | 2004-12-06 | Method of fabricating poly-crystalline silicon thin film and method of fabricating transistor using the same |
JP2004352198A JP2005175476A (ja) | 2003-12-06 | 2004-12-06 | 多結晶シリコン薄膜の製造方法およびそれを利用したトランジスタの製造方法 |
CNB2004100822553A CN100490074C (zh) | 2003-12-06 | 2004-12-06 | 制造多晶硅薄膜的方法及用其制造晶体管的方法 |
US12/457,586 US20090298268A1 (en) | 2003-12-06 | 2009-06-16 | Method of fabricating poly-crystalline silicon thin film and method of fabricating transistor using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030088423A KR20050054788A (ko) | 2003-12-06 | 2003-12-06 | 다결정 실리콘 박막 제조 방법 및 이를 적용한트랜지스터의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20050054788A true KR20050054788A (ko) | 2005-06-10 |
Family
ID=34737861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030088423A KR20050054788A (ko) | 2003-12-06 | 2003-12-06 | 다결정 실리콘 박막 제조 방법 및 이를 적용한트랜지스터의 제조방법 |
Country Status (4)
Country | Link |
---|---|
US (2) | US7563659B2 (ko) |
JP (1) | JP2005175476A (ko) |
KR (1) | KR20050054788A (ko) |
CN (1) | CN100490074C (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7964417B2 (en) | 2006-09-26 | 2011-06-21 | Samsung Mobile Display Co., Ltd. | Method of measuring degree of crystallinity of polycrystalline silicon substrate, method of fabricating organic light emitting display using the same, and organic light emitting display fabricated using the same |
US7998843B2 (en) | 2008-09-23 | 2011-08-16 | Samsung Electronics Co., Ltd. | Method of forming amorphous silicon layer and method of fabricating LCD using the same |
US8351317B2 (en) | 2009-11-23 | 2013-01-08 | Samsung Display Co., Ltd. | Laser irradiation apparatus, irradiation method using the same, and method of crystallizing amorphous silicon film using the same |
Families Citing this family (217)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8178221B2 (en) * | 2000-07-10 | 2012-05-15 | Amit Goyal | {100}<100> or 45°-rotated {100}<100>, semiconductor-based, large-area, flexible, electronic devices |
US7723242B2 (en) * | 2004-03-15 | 2010-05-25 | Sharp Laboratories Of America, Inc. | Enhanced thin-film oxidation process |
US20060128147A1 (en) * | 2004-12-09 | 2006-06-15 | Honeywell International Inc. | Method of fabricating electrically conducting vias in a silicon wafer |
ATE495697T1 (de) * | 2005-12-28 | 2011-02-15 | Era Endoscopy S R L | Selbstfortbewegende endoskopische vorrichtung |
TWI364839B (en) * | 2006-11-17 | 2012-05-21 | Au Optronics Corp | Pixel structure of active matrix organic light emitting display and fabrication method thereof |
CA2742128C (en) * | 2008-01-28 | 2016-11-29 | Amit Goyal | Semiconductor-based large-area flexible electronic devices |
US9509313B2 (en) | 2009-04-14 | 2016-11-29 | Monolithic 3D Inc. | 3D semiconductor device |
US8373439B2 (en) | 2009-04-14 | 2013-02-12 | Monolithic 3D Inc. | 3D semiconductor device |
US9711407B2 (en) | 2009-04-14 | 2017-07-18 | Monolithic 3D Inc. | Method of manufacturing a three dimensional integrated circuit by transfer of a mono-crystalline layer |
US8669778B1 (en) | 2009-04-14 | 2014-03-11 | Monolithic 3D Inc. | Method for design and manufacturing of a 3D semiconductor device |
US8362482B2 (en) | 2009-04-14 | 2013-01-29 | Monolithic 3D Inc. | Semiconductor device and structure |
US8384426B2 (en) | 2009-04-14 | 2013-02-26 | Monolithic 3D Inc. | Semiconductor device and structure |
US8405420B2 (en) | 2009-04-14 | 2013-03-26 | Monolithic 3D Inc. | System comprising a semiconductor device and structure |
US9577642B2 (en) | 2009-04-14 | 2017-02-21 | Monolithic 3D Inc. | Method to form a 3D semiconductor device |
US8362800B2 (en) | 2010-10-13 | 2013-01-29 | Monolithic 3D Inc. | 3D semiconductor device including field repairable logics |
US8754533B2 (en) | 2009-04-14 | 2014-06-17 | Monolithic 3D Inc. | Monolithic three-dimensional semiconductor device and structure |
US8395191B2 (en) | 2009-10-12 | 2013-03-12 | Monolithic 3D Inc. | Semiconductor device and structure |
US7986042B2 (en) | 2009-04-14 | 2011-07-26 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8427200B2 (en) | 2009-04-14 | 2013-04-23 | Monolithic 3D Inc. | 3D semiconductor device |
US8258810B2 (en) | 2010-09-30 | 2012-09-04 | Monolithic 3D Inc. | 3D semiconductor device |
US8058137B1 (en) | 2009-04-14 | 2011-11-15 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8378715B2 (en) | 2009-04-14 | 2013-02-19 | Monolithic 3D Inc. | Method to construct systems |
US10388863B2 (en) | 2009-10-12 | 2019-08-20 | Monolithic 3D Inc. | 3D memory device and structure |
US9099424B1 (en) | 2012-08-10 | 2015-08-04 | Monolithic 3D Inc. | Semiconductor system, device and structure with heat removal |
US10157909B2 (en) | 2009-10-12 | 2018-12-18 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10354995B2 (en) | 2009-10-12 | 2019-07-16 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US8742476B1 (en) | 2012-11-27 | 2014-06-03 | Monolithic 3D Inc. | Semiconductor device and structure |
US8476145B2 (en) | 2010-10-13 | 2013-07-02 | Monolithic 3D Inc. | Method of fabricating a semiconductor device and structure |
US10910364B2 (en) | 2009-10-12 | 2021-02-02 | Monolitaic 3D Inc. | 3D semiconductor device |
US8581349B1 (en) | 2011-05-02 | 2013-11-12 | Monolithic 3D Inc. | 3D memory semiconductor device and structure |
US11984445B2 (en) | 2009-10-12 | 2024-05-14 | Monolithic 3D Inc. | 3D semiconductor devices and structures with metal layers |
US8450804B2 (en) | 2011-03-06 | 2013-05-28 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
US10043781B2 (en) | 2009-10-12 | 2018-08-07 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12027518B1 (en) | 2009-10-12 | 2024-07-02 | Monolithic 3D Inc. | 3D semiconductor devices and structures with metal layers |
US8294159B2 (en) | 2009-10-12 | 2012-10-23 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US10366970B2 (en) | 2009-10-12 | 2019-07-30 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11018133B2 (en) | 2009-10-12 | 2021-05-25 | Monolithic 3D Inc. | 3D integrated circuit |
US11374118B2 (en) | 2009-10-12 | 2022-06-28 | Monolithic 3D Inc. | Method to form a 3D integrated circuit |
US8536023B2 (en) | 2010-11-22 | 2013-09-17 | Monolithic 3D Inc. | Method of manufacturing a semiconductor device and structure |
US8373230B1 (en) | 2010-10-13 | 2013-02-12 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8492886B2 (en) | 2010-02-16 | 2013-07-23 | Monolithic 3D Inc | 3D integrated circuit with logic |
US9099526B2 (en) | 2010-02-16 | 2015-08-04 | Monolithic 3D Inc. | Integrated circuit device and structure |
US8298875B1 (en) | 2011-03-06 | 2012-10-30 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US8541819B1 (en) | 2010-12-09 | 2013-09-24 | Monolithic 3D Inc. | Semiconductor device and structure |
US8026521B1 (en) | 2010-10-11 | 2011-09-27 | Monolithic 3D Inc. | Semiconductor device and structure |
US8461035B1 (en) | 2010-09-30 | 2013-06-11 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US10217667B2 (en) | 2011-06-28 | 2019-02-26 | Monolithic 3D Inc. | 3D semiconductor device, fabrication method and system |
US9219005B2 (en) | 2011-06-28 | 2015-12-22 | Monolithic 3D Inc. | Semiconductor system and device |
US8901613B2 (en) | 2011-03-06 | 2014-12-02 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
US9953925B2 (en) | 2011-06-28 | 2018-04-24 | Monolithic 3D Inc. | Semiconductor system and device |
US8642416B2 (en) | 2010-07-30 | 2014-02-04 | Monolithic 3D Inc. | Method of forming three dimensional integrated circuit devices using layer transfer technique |
US11482440B2 (en) | 2010-12-16 | 2022-10-25 | Monolithic 3D Inc. | 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits |
US8273610B2 (en) | 2010-11-18 | 2012-09-25 | Monolithic 3D Inc. | Method of constructing a semiconductor device and structure |
US10497713B2 (en) | 2010-11-18 | 2019-12-03 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US8163581B1 (en) | 2010-10-13 | 2012-04-24 | Monolith IC 3D | Semiconductor and optoelectronic devices |
US11469271B2 (en) | 2010-10-11 | 2022-10-11 | Monolithic 3D Inc. | Method to produce 3D semiconductor devices and structures with memory |
US10290682B2 (en) | 2010-10-11 | 2019-05-14 | Monolithic 3D Inc. | 3D IC semiconductor device and structure with stacked memory |
US11600667B1 (en) | 2010-10-11 | 2023-03-07 | Monolithic 3D Inc. | Method to produce 3D semiconductor devices and structures with memory |
US10896931B1 (en) | 2010-10-11 | 2021-01-19 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11257867B1 (en) | 2010-10-11 | 2022-02-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with oxide bonds |
US11227897B2 (en) | 2010-10-11 | 2022-01-18 | Monolithic 3D Inc. | Method for producing a 3D semiconductor memory device and structure |
US8114757B1 (en) | 2010-10-11 | 2012-02-14 | Monolithic 3D Inc. | Semiconductor device and structure |
US11158674B2 (en) | 2010-10-11 | 2021-10-26 | Monolithic 3D Inc. | Method to produce a 3D semiconductor device and structure |
US11315980B1 (en) | 2010-10-11 | 2022-04-26 | Monolithic 3D Inc. | 3D semiconductor device and structure with transistors |
US11024673B1 (en) | 2010-10-11 | 2021-06-01 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11018191B1 (en) | 2010-10-11 | 2021-05-25 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11133344B2 (en) | 2010-10-13 | 2021-09-28 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US11163112B2 (en) | 2010-10-13 | 2021-11-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with electromagnetic modulators |
US11694922B2 (en) | 2010-10-13 | 2023-07-04 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11327227B2 (en) | 2010-10-13 | 2022-05-10 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with electromagnetic modulators |
US12080743B2 (en) | 2010-10-13 | 2024-09-03 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11869915B2 (en) | 2010-10-13 | 2024-01-09 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11164898B2 (en) | 2010-10-13 | 2021-11-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US10833108B2 (en) | 2010-10-13 | 2020-11-10 | Monolithic 3D Inc. | 3D microdisplay device and structure |
US11043523B1 (en) | 2010-10-13 | 2021-06-22 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US11404466B2 (en) | 2010-10-13 | 2022-08-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US10943934B2 (en) | 2010-10-13 | 2021-03-09 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US8379458B1 (en) | 2010-10-13 | 2013-02-19 | Monolithic 3D Inc. | Semiconductor device and structure |
US11855100B2 (en) | 2010-10-13 | 2023-12-26 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US10978501B1 (en) | 2010-10-13 | 2021-04-13 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with waveguides |
US11855114B2 (en) | 2010-10-13 | 2023-12-26 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11437368B2 (en) | 2010-10-13 | 2022-09-06 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11063071B1 (en) | 2010-10-13 | 2021-07-13 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with waveguides |
US9197804B1 (en) | 2011-10-14 | 2015-11-24 | Monolithic 3D Inc. | Semiconductor and optoelectronic devices |
US8283215B2 (en) * | 2010-10-13 | 2012-10-09 | Monolithic 3D Inc. | Semiconductor and optoelectronic devices |
US12094892B2 (en) | 2010-10-13 | 2024-09-17 | Monolithic 3D Inc. | 3D micro display device and structure |
US10998374B1 (en) | 2010-10-13 | 2021-05-04 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US10679977B2 (en) | 2010-10-13 | 2020-06-09 | Monolithic 3D Inc. | 3D microdisplay device and structure |
US11929372B2 (en) | 2010-10-13 | 2024-03-12 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11605663B2 (en) | 2010-10-13 | 2023-03-14 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11984438B2 (en) | 2010-10-13 | 2024-05-14 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11355381B2 (en) | 2010-11-18 | 2022-06-07 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11804396B2 (en) | 2010-11-18 | 2023-10-31 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11610802B2 (en) | 2010-11-18 | 2023-03-21 | Monolithic 3D Inc. | Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes |
US11211279B2 (en) | 2010-11-18 | 2021-12-28 | Monolithic 3D Inc. | Method for processing a 3D integrated circuit and structure |
US11495484B2 (en) | 2010-11-18 | 2022-11-08 | Monolithic 3D Inc. | 3D semiconductor devices and structures with at least two single-crystal layers |
US11521888B2 (en) | 2010-11-18 | 2022-12-06 | Monolithic 3D Inc. | 3D semiconductor device and structure with high-k metal gate transistors |
US11443971B2 (en) | 2010-11-18 | 2022-09-13 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US11018042B1 (en) | 2010-11-18 | 2021-05-25 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11854857B1 (en) | 2010-11-18 | 2023-12-26 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11569117B2 (en) | 2010-11-18 | 2023-01-31 | Monolithic 3D Inc. | 3D semiconductor device and structure with single-crystal layers |
US11004719B1 (en) | 2010-11-18 | 2021-05-11 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US11482438B2 (en) | 2010-11-18 | 2022-10-25 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US12033884B2 (en) | 2010-11-18 | 2024-07-09 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11508605B2 (en) | 2010-11-18 | 2022-11-22 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US12068187B2 (en) | 2010-11-18 | 2024-08-20 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding and DRAM memory cells |
US11121021B2 (en) | 2010-11-18 | 2021-09-14 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11164770B1 (en) | 2010-11-18 | 2021-11-02 | Monolithic 3D Inc. | Method for producing a 3D semiconductor memory device and structure |
US11862503B2 (en) | 2010-11-18 | 2024-01-02 | Monolithic 3D Inc. | Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11355380B2 (en) | 2010-11-18 | 2022-06-07 | Monolithic 3D Inc. | Methods for producing 3D semiconductor memory device and structure utilizing alignment marks |
US11923230B1 (en) | 2010-11-18 | 2024-03-05 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11901210B2 (en) | 2010-11-18 | 2024-02-13 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US12100611B2 (en) | 2010-11-18 | 2024-09-24 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11107721B2 (en) | 2010-11-18 | 2021-08-31 | Monolithic 3D Inc. | 3D semiconductor device and structure with NAND logic |
US11735462B2 (en) | 2010-11-18 | 2023-08-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with single-crystal layers |
US11482439B2 (en) | 2010-11-18 | 2022-10-25 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device comprising charge trap junction-less transistors |
US11784082B2 (en) | 2010-11-18 | 2023-10-10 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11094576B1 (en) | 2010-11-18 | 2021-08-17 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US11615977B2 (en) | 2010-11-18 | 2023-03-28 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11031275B2 (en) | 2010-11-18 | 2021-06-08 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US8975670B2 (en) | 2011-03-06 | 2015-03-10 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
US10388568B2 (en) | 2011-06-28 | 2019-08-20 | Monolithic 3D Inc. | 3D semiconductor device and system |
US8687399B2 (en) | 2011-10-02 | 2014-04-01 | Monolithic 3D Inc. | Semiconductor device and structure |
US9029173B2 (en) | 2011-10-18 | 2015-05-12 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US9000557B2 (en) | 2012-03-17 | 2015-04-07 | Zvi Or-Bach | Semiconductor device and structure |
US11476181B1 (en) | 2012-04-09 | 2022-10-18 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11881443B2 (en) | 2012-04-09 | 2024-01-23 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US8557632B1 (en) | 2012-04-09 | 2013-10-15 | Monolithic 3D Inc. | Method for fabrication of a semiconductor device and structure |
US11694944B1 (en) | 2012-04-09 | 2023-07-04 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11410912B2 (en) | 2012-04-09 | 2022-08-09 | Monolithic 3D Inc. | 3D semiconductor device with vias and isolation layers |
US11088050B2 (en) | 2012-04-09 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device with isolation layers |
US10600888B2 (en) | 2012-04-09 | 2020-03-24 | Monolithic 3D Inc. | 3D semiconductor device |
US11164811B2 (en) | 2012-04-09 | 2021-11-02 | Monolithic 3D Inc. | 3D semiconductor device with isolation layers and oxide-to-oxide bonding |
US11616004B1 (en) | 2012-04-09 | 2023-03-28 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11594473B2 (en) | 2012-04-09 | 2023-02-28 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11735501B1 (en) | 2012-04-09 | 2023-08-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US8574929B1 (en) | 2012-11-16 | 2013-11-05 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US8686428B1 (en) | 2012-11-16 | 2014-04-01 | Monolithic 3D Inc. | Semiconductor device and structure |
US11217565B2 (en) | 2012-12-22 | 2022-01-04 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US11916045B2 (en) | 2012-12-22 | 2024-02-27 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11309292B2 (en) | 2012-12-22 | 2022-04-19 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11967583B2 (en) | 2012-12-22 | 2024-04-23 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11784169B2 (en) | 2012-12-22 | 2023-10-10 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US8674470B1 (en) | 2012-12-22 | 2014-03-18 | Monolithic 3D Inc. | Semiconductor device and structure |
US11018116B2 (en) | 2012-12-22 | 2021-05-25 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US11063024B1 (en) | 2012-12-22 | 2021-07-13 | Monlithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US12051674B2 (en) | 2012-12-22 | 2024-07-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11961827B1 (en) | 2012-12-22 | 2024-04-16 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US10903089B1 (en) | 2012-12-29 | 2021-01-26 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10651054B2 (en) | 2012-12-29 | 2020-05-12 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11430667B2 (en) | 2012-12-29 | 2022-08-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US9385058B1 (en) | 2012-12-29 | 2016-07-05 | Monolithic 3D Inc. | Semiconductor device and structure |
US10115663B2 (en) | 2012-12-29 | 2018-10-30 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11004694B1 (en) | 2012-12-29 | 2021-05-11 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11430668B2 (en) | 2012-12-29 | 2022-08-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US10600657B2 (en) | 2012-12-29 | 2020-03-24 | Monolithic 3D Inc | 3D semiconductor device and structure |
US9871034B1 (en) | 2012-12-29 | 2018-01-16 | Monolithic 3D Inc. | Semiconductor device and structure |
US11177140B2 (en) | 2012-12-29 | 2021-11-16 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10892169B2 (en) | 2012-12-29 | 2021-01-12 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11087995B1 (en) | 2012-12-29 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11935949B1 (en) | 2013-03-11 | 2024-03-19 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US10325651B2 (en) | 2013-03-11 | 2019-06-18 | Monolithic 3D Inc. | 3D semiconductor device with stacked memory |
US8902663B1 (en) | 2013-03-11 | 2014-12-02 | Monolithic 3D Inc. | Method of maintaining a memory state |
US11869965B2 (en) | 2013-03-11 | 2024-01-09 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US12094965B2 (en) | 2013-03-11 | 2024-09-17 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US12100646B2 (en) | 2013-03-12 | 2024-09-24 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US10840239B2 (en) | 2014-08-26 | 2020-11-17 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11088130B2 (en) | 2014-01-28 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US8994404B1 (en) | 2013-03-12 | 2015-03-31 | Monolithic 3D Inc. | Semiconductor device and structure |
US11398569B2 (en) | 2013-03-12 | 2022-07-26 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11923374B2 (en) | 2013-03-12 | 2024-03-05 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US9117749B1 (en) | 2013-03-15 | 2015-08-25 | Monolithic 3D Inc. | Semiconductor device and structure |
US10224279B2 (en) | 2013-03-15 | 2019-03-05 | Monolithic 3D Inc. | Semiconductor device and structure |
US11341309B1 (en) | 2013-04-15 | 2022-05-24 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11270055B1 (en) | 2013-04-15 | 2022-03-08 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11030371B2 (en) | 2013-04-15 | 2021-06-08 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US9021414B1 (en) | 2013-04-15 | 2015-04-28 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11574109B1 (en) | 2013-04-15 | 2023-02-07 | Monolithic 3D Inc | Automation methods for 3D integrated circuits and devices |
US11720736B2 (en) | 2013-04-15 | 2023-08-08 | Monolithic 3D Inc. | Automation methods for 3D integrated circuits and devices |
US11487928B2 (en) | 2013-04-15 | 2022-11-01 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US12094829B2 (en) | 2014-01-28 | 2024-09-17 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11031394B1 (en) | 2014-01-28 | 2021-06-08 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11107808B1 (en) | 2014-01-28 | 2021-08-31 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10297586B2 (en) | 2015-03-09 | 2019-05-21 | Monolithic 3D Inc. | Methods for processing a 3D semiconductor device |
CN104538404B (zh) * | 2015-01-04 | 2017-05-10 | 京东方科技集团股份有限公司 | 一种阵列基板及其制作方法、显示面板、显示装置 |
US11056468B1 (en) | 2015-04-19 | 2021-07-06 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10825779B2 (en) | 2015-04-19 | 2020-11-03 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10381328B2 (en) | 2015-04-19 | 2019-08-13 | Monolithic 3D Inc. | Semiconductor device and structure |
US11011507B1 (en) | 2015-04-19 | 2021-05-18 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11956952B2 (en) | 2015-08-23 | 2024-04-09 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US11114427B2 (en) | 2015-11-07 | 2021-09-07 | Monolithic 3D Inc. | 3D semiconductor processor and memory device and structure |
CN115942752A (zh) | 2015-09-21 | 2023-04-07 | 莫诺利特斯3D有限公司 | 3d半导体器件和结构 |
US12100658B2 (en) | 2015-09-21 | 2024-09-24 | Monolithic 3D Inc. | Method to produce a 3D multilayer semiconductor device and structure |
US11978731B2 (en) | 2015-09-21 | 2024-05-07 | Monolithic 3D Inc. | Method to produce a multi-level semiconductor memory device and structure |
US11937422B2 (en) | 2015-11-07 | 2024-03-19 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US10522225B1 (en) | 2015-10-02 | 2019-12-31 | Monolithic 3D Inc. | Semiconductor device with non-volatile memory |
US11114464B2 (en) | 2015-10-24 | 2021-09-07 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11991884B1 (en) | 2015-10-24 | 2024-05-21 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US11296115B1 (en) | 2015-10-24 | 2022-04-05 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12016181B2 (en) | 2015-10-24 | 2024-06-18 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US12035531B2 (en) | 2015-10-24 | 2024-07-09 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US10847540B2 (en) | 2015-10-24 | 2020-11-24 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US12120880B1 (en) | 2015-10-24 | 2024-10-15 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US10418369B2 (en) | 2015-10-24 | 2019-09-17 | Monolithic 3D Inc. | Multi-level semiconductor memory device and structure |
US11869591B2 (en) | 2016-10-10 | 2024-01-09 | Monolithic 3D Inc. | 3D memory devices and structures with control circuits |
US11251149B2 (en) | 2016-10-10 | 2022-02-15 | Monolithic 3D Inc. | 3D memory device and structure |
US11711928B2 (en) | 2016-10-10 | 2023-07-25 | Monolithic 3D Inc. | 3D memory devices and structures with control circuits |
US11930648B1 (en) | 2016-10-10 | 2024-03-12 | Monolithic 3D Inc. | 3D memory devices and structures with metal layers |
US11329059B1 (en) | 2016-10-10 | 2022-05-10 | Monolithic 3D Inc. | 3D memory devices and structures with thinned single crystal substrates |
US11812620B2 (en) | 2016-10-10 | 2023-11-07 | Monolithic 3D Inc. | 3D DRAM memory devices and structures with control circuits |
RU189283U1 (ru) * | 2018-03-26 | 2019-05-17 | Частное акционерное общество "Укргидропроект" | Модуль гравитационно-волновой энергоустановки |
KR102548825B1 (ko) | 2018-12-03 | 2023-06-29 | 삼성디스플레이 주식회사 | 레이저 결정화 장치 및 표시 장치의 제조 방법 |
CN113454755A (zh) | 2019-02-19 | 2021-09-28 | 应用材料公司 | 多晶硅衬垫 |
US11158652B1 (en) | 2019-04-08 | 2021-10-26 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US10892016B1 (en) | 2019-04-08 | 2021-01-12 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11296106B2 (en) | 2019-04-08 | 2022-04-05 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11763864B2 (en) | 2019-04-08 | 2023-09-19 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures with bit-line pillars |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07263354A (ja) * | 1994-03-25 | 1995-10-13 | Kobe Steel Ltd | プラズマcvd膜の形成方法 |
JPH0883914A (ja) * | 1994-09-14 | 1996-03-26 | Toshiba Corp | 多結晶半導体装置及びその製造方法 |
JP3649797B2 (ja) * | 1995-12-01 | 2005-05-18 | 株式会社半導体エネルギー研究所 | 半導体装置製造方法 |
JPH1064816A (ja) * | 1996-08-20 | 1998-03-06 | Fujitsu Ltd | 半導体装置の製造方法 |
JPH10265212A (ja) * | 1997-03-26 | 1998-10-06 | Nippon Telegr & Teleph Corp <Ntt> | 微結晶および多結晶シリコン薄膜の製造方法 |
US6312979B1 (en) * | 1998-04-28 | 2001-11-06 | Lg.Philips Lcd Co., Ltd. | Method of crystallizing an amorphous silicon layer |
JP4174862B2 (ja) * | 1998-08-04 | 2008-11-05 | ソニー株式会社 | 薄膜トランジスタの製造方法および半導体装置の製造方法 |
JP2001085701A (ja) * | 1999-04-06 | 2001-03-30 | Matsushita Electric Ind Co Ltd | 多層構造を有する素子、その素子の製造装置、及びその素子の製造方法 |
JP2001023899A (ja) * | 1999-07-13 | 2001-01-26 | Hitachi Ltd | 半導体薄膜とその半導体膜を用いた液晶表示装置及びその製造方法 |
JP2001195011A (ja) * | 2000-01-11 | 2001-07-19 | Furontekku:Kk | 表示装置用薄膜トランジスタアレイ基板および表示装置 |
US6905920B2 (en) * | 2000-09-04 | 2005-06-14 | Seiko Epson Corporation | Method for fabrication of field-effect transistor to reduce defects at MOS interfaces formed at low temperature |
JP2002164290A (ja) * | 2000-11-28 | 2002-06-07 | Tokuyama Corp | 多結晶シリコン膜の製造方法 |
JP2003168646A (ja) * | 2001-12-04 | 2003-06-13 | Sanyo Electric Co Ltd | 半導体装置の製造方法 |
-
2003
- 2003-12-06 KR KR1020030088423A patent/KR20050054788A/ko not_active Application Discontinuation
-
2004
- 2004-12-06 JP JP2004352198A patent/JP2005175476A/ja active Pending
- 2004-12-06 US US11/003,326 patent/US7563659B2/en not_active Expired - Fee Related
- 2004-12-06 CN CNB2004100822553A patent/CN100490074C/zh not_active Expired - Fee Related
-
2009
- 2009-06-16 US US12/457,586 patent/US20090298268A1/en not_active Abandoned
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7964417B2 (en) | 2006-09-26 | 2011-06-21 | Samsung Mobile Display Co., Ltd. | Method of measuring degree of crystallinity of polycrystalline silicon substrate, method of fabricating organic light emitting display using the same, and organic light emitting display fabricated using the same |
US7998843B2 (en) | 2008-09-23 | 2011-08-16 | Samsung Electronics Co., Ltd. | Method of forming amorphous silicon layer and method of fabricating LCD using the same |
US8351317B2 (en) | 2009-11-23 | 2013-01-08 | Samsung Display Co., Ltd. | Laser irradiation apparatus, irradiation method using the same, and method of crystallizing amorphous silicon film using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2005175476A (ja) | 2005-06-30 |
US20090298268A1 (en) | 2009-12-03 |
CN1638043A (zh) | 2005-07-13 |
US20060008957A1 (en) | 2006-01-12 |
US7563659B2 (en) | 2009-07-21 |
CN100490074C (zh) | 2009-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20050054788A (ko) | 다결정 실리콘 박막 제조 방법 및 이를 적용한트랜지스터의 제조방법 | |
US5275851A (en) | Low temperature crystallization and patterning of amorphous silicon films on electrically insulating substrates | |
US7265393B2 (en) | Thin-film transistor with vertical channel region | |
US5512494A (en) | Method for manufacturing a thin film transistor having a forward staggered structure | |
US6905920B2 (en) | Method for fabrication of field-effect transistor to reduce defects at MOS interfaces formed at low temperature | |
KR100222319B1 (ko) | 박막 트랜지스터 및 그의 제작방법 | |
KR100280171B1 (ko) | 비단결정반도체장치(박막트랜지스터)와 이것을 이용한 액정표시장치 및 그 제조방법 | |
KR100863446B1 (ko) | 반도체층의 도핑방법, 박막 반도체 소자의 제조방법, 및박막 반도체 소자 | |
KR20040021758A (ko) | 다결정 실리콘 박막트랜지스터 제조방법 | |
US20070155067A1 (en) | Method of fabricating polycrystalline silicon film and method of fabricating thin film transistor using the same | |
US20060145158A1 (en) | Poly-crystalline silicon thin film transistor | |
KR100695154B1 (ko) | 실리콘 박막 트랜지스터 및 이의 제조방법 | |
KR100624427B1 (ko) | 다결정 실리콘 제조방법 및 이를 이용하는 반도체 소자의제조방법 | |
US20060088961A1 (en) | Method of fabricating poly crystalline silicon TFT | |
Yoon et al. | High-performance poly-Si TFTs made by Ni-mediated crystallization through low-shot laser annealing | |
JP2004288864A (ja) | 薄膜半導体、薄膜トランジスタの製造方法、電気光学装置及び電子機器 | |
JP2002299235A (ja) | 半導体薄膜形成方法及び薄膜半導体装置 | |
Hastas et al. | Effect of interface roughness on gate bias instability of polycrystalline silicon thin-film transistors | |
KR101100423B1 (ko) | 실리콘 박막트랜지스터, 실리콘 박막트랜지스터의 게이트절연층 형성 방법 및 이를 이용한 실리콘 박막트랜지스터의제조방법 | |
KR100624430B1 (ko) | 다결정 실리콘 제조방법 | |
KR20050113294A (ko) | 다결정 실리콘 박막 구조체 및 그 제조 방법 및 이를이용하는 tft의 제조방법 | |
JP2002237598A (ja) | 薄膜トランジスタの製造方法 | |
JP2002208707A (ja) | 薄膜トランジスタの製造方法 | |
WO2010024278A1 (ja) | 薄膜トランジスタの製造方法及び薄膜トランジスタ | |
JP2000077672A (ja) | 半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E601 | Decision to refuse application |