KR20010110296A - Hydrocarbon fuel gas reformer assembly for a fuel cell power plant - Google Patents

Hydrocarbon fuel gas reformer assembly for a fuel cell power plant Download PDF

Info

Publication number
KR20010110296A
KR20010110296A KR1020017005739A KR20017005739A KR20010110296A KR 20010110296 A KR20010110296 A KR 20010110296A KR 1020017005739 A KR1020017005739 A KR 1020017005739A KR 20017005739 A KR20017005739 A KR 20017005739A KR 20010110296 A KR20010110296 A KR 20010110296A
Authority
KR
South Korea
Prior art keywords
catalyst
tube
assembly
housing
reformer
Prior art date
Application number
KR1020017005739A
Other languages
Korean (ko)
Other versions
KR100563182B1 (en
Inventor
본크스탠리피
쉐플러글렌더블유
폴리피터에프
코리겐토마스제이
세더퀴스트리차드에이
코컴프란시스에이
Original Assignee
켈리 로버트 에이치
인터내셔널 퓨얼 셀즈, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 켈리 로버트 에이치, 인터내셔널 퓨얼 셀즈, 엘엘씨 filed Critical 켈리 로버트 에이치
Publication of KR20010110296A publication Critical patent/KR20010110296A/en
Application granted granted Critical
Publication of KR100563182B1 publication Critical patent/KR100563182B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/002Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions
    • B01J19/0026Avoiding carbon deposits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/0085Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction promoting uninterrupted fluid flow, e.g. by filtering out particles in front of the catalyst layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00247Fouling of the reactor or the process equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0218Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components of ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0866Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1023Catalysts in the form of a monolith or honeycomb
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1035Catalyst coated on equipment surfaces, e.g. reactor walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

본 발명은 생 연료로부터 수소 농후 처리 연료를 생산하고 콤팩트한 촉매 튜브(30) 배열체를 단열 하우징안에 형성하는 연료 개질체에 관한 것이다. 촉매 튜브 배열체는 배열체내에 배열된 다층 촉매 튜브(30)를 구비한다. 촉매 튜브의 내부는 연료 스트립에 부유동반하는 분진에 대한 분진 트랩으로서 역할을 하는 중공형 사단부 중앙 튜브(76)를 구비한다. 촉매 튜브는 촉매가 보존되는 촉매 베드(72)로 연장되는 상부 절두원추형 부분(64)이 형성되어 있다. 조립체는 개질체 상부에 분산 버너 오리피스 어레이를 허용하는 측부 점화 시동 버너를 갖는다. 촉매 튜브(30)는 조립체내의 튜브를 안정화시키는 조립체의 측벽에의해서 지지된다. 내부 횡방향 매니폴드판은 튜브 조립체의 부분들에 의해서 서로 연결되어 있어서 촉매 튜브 조합체의 중량을 지지한다.The present invention is directed to a fuel reformer that produces hydrogen enriched fuel from raw fuel and forms a compact array of catalyst tubes 30 in an adiabatic housing. The catalyst tube arrangement has a multilayer catalyst tube 30 arranged in the arrangement. The interior of the catalyst tube has a hollow quadrant central tube 76 which serves as a dust trap for dust suspended in the fuel strip. The catalyst tube is formed with an upper frusto-conical portion 64 extending into the catalyst bed 72 where the catalyst is preserved. The assembly has a side ignition start burner that allows a dispersion burner orifice array on top of the reformer. The catalyst tube 30 is supported by sidewalls of the assembly that stabilizes the tubes in the assembly. The inner transverse manifold plates are connected to each other by parts of the tube assembly to support the weight of the catalyst tube combination.

Description

연료 셀 동력장치용 탄화수소 연료 가스 개질체 조립체{HYDROCARBON FUEL GAS REFORMER ASSEMBLY FOR A FUEL CELL POWER PLANT}HYDROCARBON FUEL GAS REFORMER ASSEMBLY FOR A FUEL CELL POWER PLANT}

수소 농후 연료 가스와 같은 산업 가스를 발생시키는 촉매 반응 장치가 산업분야에 통상 사용되며 당해 기술분야에 널리 공지되어 있다. 수소를 발생시키는 대부분의 통상의 방법들은 생 연료 가스가 스트림과 혼합되고 튜브형 개질체로 배치되는 촉매 베드를 통과시키는 증기 개질 공정들이다. 이 흡열 반응열은 튜브가 멀리 이격되는 구조로 배치된 노로부터 발생된다.Catalytic reaction devices for generating industrial gases, such as hydrogen rich fuel gases, are commonly used in the industry and are well known in the art. Most conventional methods of generating hydrogen are steam reforming processes where a raw fuel gas is passed through a catalyst bed where it is mixed with a stream and placed into a tubular reformer. This endothermic heat of heat is generated from furnaces arranged in such a way that the tubes are spaced apart.

본 발명은 촉매 반응 시스템에 관한 것이다. 보다 상세하게는, 본 발명은 각각 환상 촉매 베드를 갖는 촉매 튜브 배열체를 갖는 시스템에 관한 것이다.The present invention relates to a catalytic reaction system. More particularly, the present invention relates to a system having a catalyst tube arrangement each having a cyclic catalyst bed.

도 1은 본 발명에 따라 형성된 개질체 조립체의 축방향 단면도이며,1 is an axial cross-sectional view of a reformer assembly formed in accordance with the present invention;

도 1a는 도 1에 도시된 환상 연료 가스 입구의 확대 단면도이며,1A is an enlarged cross-sectional view of the annular fuel gas inlet shown in FIG. 1,

도 2는 도 1의 개질체 조립체의 상부의 축방향 단면도이며,FIG. 2 is an axial cross-sectional view of the top of the reformer assembly of FIG. 1, FIG.

도 3은 개질체 조립체의 횡방향 단면도이며,3 is a cross-sectional view of the reformer assembly,

도 4는 개질체 조립체에 장착된 촉매 튜브 조립체를 도시하는 촉매 튜브 조립체중 하나의 축방향 단면도이며,4 is an axial cross-sectional view of one of the catalyst tube assemblies showing the catalyst tube assembly mounted to the reformer assembly;

도 5는 촉매 튜브 조립체중 하나의 하부의 축방향 단면도이다.5 is an axial cross-sectional view of the bottom of one of the catalyst tube assemblies.

이들 산업 장치는 대규모이고 작동 가용성이 제한되어 있기 때문에, 스트림 개질 기술은 미국 특허 제 4,098,587 호와, 미국 특허 제 4,098,588 호와, 미국 특허 제 4,098,589 호에 개시된 바와 같이 성공적으로 적용될 때까지 수소 소모 연료셀과 결합된 동력장치와 사용되도록 성공적으로 이용되지 못했다. 이들 특허에 의해서 대표되는 새로운 디자인에 의하면 연료 셀 동력 장치 내부에 적당한 많은 특징을 갖는 콤팩트한 반응 장치가 구성된다.Because these industrial devices are large in size and have limited operational availability, stream reforming techniques are used until hydrogen is successfully applied as disclosed in US Pat. No. 4,098,587, US Pat. No. 4,098,588, and US Pat. It has not been successfully used for use with power units combined with The new design represented by these patents constitutes a compact reactor having many features that are suitable inside a fuel cell power unit.

요약컨데, 생 연료를 스트림 개질하기 위한 콤팩트한 반응 장치는 노내에 긴밀하게 포장되고(종래 기술분야의 표준 상태에 의함) 튜브 배열체내의 임의의 위치의 튜브를 균일하게 가열하도록 단열된 복수개의 수직 튜브형 개질체와, 버너 공동 영역과 열전달 향상 영역과, 반응 제품과 처리 증기 사이에 재열 열전달 용량을 형성하는 환상 개질체를 갖는 것을 특징으로 한다.In summary, a compact reactor for stream reforming live fuel is packed in a furnace (by standard state of the art) and a plurality of vertical insulated to uniformly heat tubes at any location within the tube arrangement. And a tubular reformer, a burner cavity region and a heat transfer enhancement region, and a cyclic reformer that forms a reheat heat transfer capacity between the reaction product and the process vapor.

결과적으로 이러한 디자인은 연료 셀 동력 장치의 크기 및 작동 특성 조건을 만족시키는 스트림 개질체 장치가 제공되며 비교적 전체적으로 동력장치의 작동 효율을 보증하는데 필요한 고 열 효율을 유지할 수 있도록 한다.As a result, this design provides a stream reformer that meets the size and operating characteristics requirements of the fuel cell power unit and allows to maintain the high thermal efficiency needed to ensure the operating efficiency of the power unit on an overall basis.

전술한 특허에 개시된 디자인은 수소 발생 기술을 연료 셀 동력장치에 적용하는 중요한 실시예이며, 이들 초기 디자인은 더 콤팩트하고 경량으로 그 열 분포 및 촉매 베드 안정성이 균일하게 개량될 필요성이 있었다. 이들 문제들중 가장 해결해야 할 문제점은 튜브 다발을 정렬시켜 과도한 중량이나 고가의 복잡한 구조적 고정구의 필요없이 튜브와 촉매 및 보조 장치에 의한 부하력을 적당히 분배시키는 효율적인 지지 구조체를 개발할 필요성이 남아 있다는 것이다.The design disclosed in the aforementioned patents is an important embodiment of applying hydrogen generation technology to fuel cell power plants, and these initial designs needed to be more compact and lighter in order to uniformly improve their heat distribution and catalyst bed stability. The biggest problem to be solved among these problems is the need to develop an efficient support structure that aligns the tube bundles to adequately distribute the load forces by the tubes, catalysts and auxiliary devices without the need for excessive weight or expensive complex structural fixtures. .

본 발명은 천연 가스 등과 같은 생 연료로부터 수소-농후(hydrogen-enriched) 처리 연료를 발생시키도록 작동할 수 있는 콤팩트하고 효율적인 개질체에 관한 것이다. 본 발명의 개질체는 단열 하우징에 수납된 촉매 튜브의 콤팩트한배열체를 구비한다. 촉배 튜브 배열체는 육각형 배열로 배열된 다층 튜브를 구비한다. 하우징은 제조 효율 및 구조 효율이 바람직한 원형이며, 원형 하우징의 내부는 기하학적 정합 단열재로 끼워 맞춤된다. 예컨데, 개질체 튜브의 육각형 배열이 채용되는 경우에, 단열재는 개질체 튜브 배열체와 대면하는 육각형 주변부를 제공할 것이다. 따라서, 배열체의 최외부 튜브는 열 손실에 대해서 효율적으로 균일하게 단열된다. 튜브의 직경은 배열체내의 인접한 튜브 사이의 공간이 열전달 효율을 최소화시킬수 있도록 정해진다. 강성 튜브 지지 구조체는 튜브 사이의 임계 공간을 개질체 작동 온도에 적재된 물건의 무게(dead-ended)를 유지한다.The present invention relates to compact and efficient reformers that can be operated to generate hydrogen-enriched treated fuels from raw fuels such as natural gas. The reformer of the present invention includes a compact array of catalyst tubes housed in an insulating housing. The tentative tube arrangement has a multilayer tube arranged in a hexagonal arrangement. The housing is circular, in which manufacturing efficiency and structural efficiency are desirable, and the interior of the circular housing is fitted with geometrically matched insulation. For example, where a hexagonal arrangement of reformer tubes is employed, the insulation will provide a hexagonal perimeter facing the reformer tube arrangement. Thus, the outermost tube of the arrangement is efficiently and uniformly insulated against heat loss. The diameter of the tube is such that the space between adjacent tubes in the arrangement can minimize the heat transfer efficiency. The rigid tube support structure maintains the dead-ended weight of the object loaded at the reforming operating temperature between the critical spaces between the tubes.

각각의 촉매 튜브의 내부는 처리 연료가 촉매 반응 베드를 지나 이동되는 중공형 사단부(dead-ended) 중앙 튜브를 구비한다. 사단부 중앙 튜브는 연료 증기가 촉매 베드를 통과할 때 연료 증기와 비말동반되는 촉매 분진들을 수집하기 위한 분진 트랩으로서 작용을 한다. 또한, 촉매 튜브가 구성 및 조립되는 경우에 여분의 촉매가 베드에 장전될 수 있도록 촉매 베드로 연장되는 역할을 하는 최외측 원뿔꼴 캡을 촉매 튜브에 설치한다. 따라서, 조립 및 밀봉된 촉매 튜브는 촉매 침전 및 앙금이 일어나는 때조차 촉매 베드까지 소망 높이를 유지하도록 여분의 촉매를 함유할 것이다. 또한, 촉매 침전은 촉매 펠릿의 각각의 크기와 촉매 베드의 반경방향 두께에 의해서 제어된다. 또한, 유량 면적이 증가함에 따라 가스 유량 속도를 감소시킴으로써, 원추형 캡의 형상은 촉매 반응 영역의 상부에서 촉매 베드의 유동화를 방지한다. 유동화는 각각의 열 싸이클의 영역에서 촉매의 과도한 침전 및 분쇄를 야기한다. 이에 의해서 최소화되는 것이 바람직한 촉매층 높이 손실을 악화시킨다.The interior of each catalyst tube has a hollow dead-ended central tube through which the process fuel is moved past the catalytic reaction bed. The central end tube acts as a dust trap for collecting catalyst dust entrained with the fuel vapor as it passes through the catalyst bed. In addition, when the catalyst tube is constructed and assembled, the outermost conical cap is installed in the catalyst tube, which serves to extend to the catalyst bed so that excess catalyst can be loaded onto the bed. Thus, the assembled and sealed catalyst tube will contain extra catalyst to maintain the desired height up to the catalyst bed even when catalyst precipitation and sedimentation occur. The catalyst precipitation is also controlled by the size of each of the catalyst pellets and the radial thickness of the catalyst bed. In addition, by decreasing the gas flow rate as the flow rate area increases, the shape of the conical cap prevents fluidization of the catalyst bed at the top of the catalytic reaction zone. Fluidization causes excessive precipitation and pulverization of the catalyst in the region of each thermal cycle. This minimizes the desired catalyst bed height loss that is minimized.

또한, 이 디자인은 기존에 사용된 바와 같은 중앙 점화 시동 버너 대신에 측부 점화 시동 버너를 사용하는 것을 특징으로 한다. 이 측부 점화 시동 버너는 개질체의 상부에서 확산을 증가시키는 버너 오리피스 배열을 가능하게 한다. 따라서, 중앙에 배치된 시동 버너에 의해서 간섭받지 않는 버너 오리피스 배열이 분산 버너로부터의 열 분배가 더 쉽고 더 효율적으로 달성되도록 수행된다. 중앙에 배치된 시동 버너의 존재가 분산 버너 패턴을 방해할 것이며 시동 버너가 차단될 때 노의 상부 중앙에 보이드를 형성할 것이라는 것을 알 수 있을 것이다. 이 바람직하지 못한 결과는 본 발명에 따른 측부 점화 시동 버너가 사용되는 경우에 야기되지 않는다.The design also features the use of side ignition start burners instead of the central ignition start burners as previously used. This side ignition start burner enables a burner orifice arrangement that increases diffusion at the top of the modifier. Thus, a burner orifice arrangement that is not interfered by a centrally located starter burner is performed so that heat distribution from the distribution burner is more easily and more efficiently achieved. It will be appreciated that the presence of a centrally placed starter burner will interfere with the distribution burner pattern and will form a void in the top center of the furnace when the starter burner is shut off. This undesirable result is not caused when the side ignition start burner according to the invention is used.

또한, 이 디자인은 작동 범위가 부식 및 강도 조건에 의해서 주로 제한되기 때문에, 부가의 작동 온도 범위를 제공하기 위해서 통상 사용되는 것보다 훨씬 더 두꺼운 두께를 갖는 개질체 튜브 캡의 사용을 특징으로 한다.This design also features the use of a reformer tube cap with a much thicker thickness than is commonly used to provide additional operating temperature ranges, since the operating range is mainly limited by corrosion and strength conditions.

촉매 튜브는 조립체내의 튜브를 안정되게 하는 방식으로 조립체 하우징의 측벽에 의해서 지지되며, 이 조립체는 중량 또는 체적을 증가시킴없이 내열 변형성, 강도 및 강성을 증가시키는 균일한 구조적 특징을 제공하는 조립 구성요소를 사용할 수 있게 한다. 전술한 미국 특허 제 4,098,587 호에 있어서, 촉매 튜브의 중량은 장치의 저벽에 의해서 지지되며, 또한 이것은 용기의 압력 경계가 된다. 본 발명의 구성에 있어서, 내부 횡방향 매니폴드판은 촉매 튜브 어레이의 중량을 지지하는 복합재 비임을 형성하도록 튜브 조립체의 일부에 의해서 상호 결합된다. 매니폴드판과 결합 튜브 조립체 부분은 조립체의 실린더형 측벽을 지나 튜브로부터 부하를 전달하는 복합재 비임의 구성 및 효과를 달성하는 방식으로 상호 작용한다. 이렇게 형성된 구조체는 벌집형 패널과 마찬가지로 부하지지 강도를 증가시킨다.The catalyst tube is supported by the side wall of the assembly housing in a manner that stabilizes the tube in the assembly, which assembly provides a uniform structural feature that increases heat resistance, strength and stiffness without increasing weight or volume. Make the element available. In the aforementioned US Pat. No. 4,098,587, the weight of the catalyst tube is supported by the bottom wall of the apparatus, which also becomes the pressure boundary of the vessel. In the configuration of the present invention, the inner transverse manifold plates are joined together by a portion of the tube assembly to form a composite beam that supports the weight of the catalyst tube array. The manifold plate and coupling tube assembly portion interact in a manner that achieves the construction and effect of the composite beam that transfers load from the tube past the cylindrical sidewalls of the assembly. The structure thus formed increases the load bearing strength like honeycomb panels.

2개의 내부 횡방향 매니폴드판은 벌집형 구조체의 대면 시트로서 역할을 하며, 이것은 매니폴드판 사이의 부분이 벌집형 구조체용 코어로서 작용한다. 조립체의 저면이 중량 및 부하를 지지할 필요성이 없어짐으로써, 저면이 분진을 부가 포획하는 것과 같은 다른 기능 또는 집적형 열교환 옵션과 같은 기능을 하는데 이용될 수 있다. 이것은 중량 및 체적에 민감한 동력 장치의 디자인에서 최대 포장 밀도를 달성할 수 있는 바람직한 형상이다.The two inner transverse manifold plates serve as the facing sheets of the honeycomb structure, with the part between the manifold plates serving as the core for the honeycomb structure. By eliminating the need for the bottom of the assembly to support weight and load, the bottom can be used to perform other functions, such as additional capture of dust, or functions like an integrated heat exchange option. This is the preferred shape that can achieve maximum packing density in the design of power units that are sensitive to weight and volume.

따라서, 본 발명의 목적은 연료 공급부가 연료 셀 동력 장치에 사용되기에 적합하도록 연료 공급부를 개선한 보다 효율적이고 콤팩트한 장치를 제공하는 것이다.It is therefore an object of the present invention to provide a more efficient and compact apparatus in which the fuel supply is improved to be suitable for use in a fuel cell power unit.

본 발명의 부가의 목적은 촉매 베드의 밀도가 개선된 기술한 특징을 갖는 장치를 제공하는 것이다.It is a further object of the present invention to provide an apparatus having the described features in which the density of the catalyst bed is improved.

본 발명의 이들 다른 목적 및 장점은 첨부 도면과 관련된 이하의 상세한 설명으로부터 보다 자명해질 것이다.These and other objects and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings.

이제 도면을 참조하면, 도 1은 본 발명에 따라 형성되고 생 탄화수소 연료 스톡이 있는 복수개의 촉매 튜브(14)를 수납하는 하우징(12)을 구비하는 개질체 장치(10)의 실시예를 개시한다. 개질체 장치(10)는 생 탄화수소 연료가 도입되는 생 연료 유입구(16)와, 개선된 연료 출구(18)를 구비한다. 장치(10)는 버너 연료가 장치(10)로 도입되는 버너 연료 유입구(20)와, 대기 또는 다른 산소 공급원이 장치(10)로 도입되는 버너 공기 유입구(22)를 구비하여 생 탄화수소 연료 스톡의 처리를 위해서 열을 제공하도록 버너 연료를 연소시킨다. 버너 배출가스 유출구(24)가 장치(10)로부터 버너 연료 배기가스 스트림을 배기하도록 설치된다. 도면에 있어서, 화살표(A, B)는 각기 버너 가스 스트림 및 버너 공기 스트림의 방향을 지시한다. 화살표(C, D)는 각기 개질된 시동 버너 가스 스트림 및 처리 연료의 방향을 지시한다.Referring now to the drawings, FIG. 1 discloses an embodiment of a reformer device 10 having a housing 12 formed in accordance with the present invention and containing a plurality of catalyst tubes 14 having a live hydrocarbon fuel stock. . The reformer device 10 has a live fuel inlet 16 into which the live hydrocarbon fuel is introduced and an improved fuel outlet 18. The apparatus 10 includes a burner fuel inlet 20 through which burner fuel is introduced into the apparatus 10 and a burner air inlet 22 through which an atmosphere or other oxygen source is introduced into the apparatus 10 to provide a Burner fuel is burned to provide heat for processing. A burner exhaust gas outlet 24 is installed to exhaust the burner fuel exhaust stream from the device 10. In the figure, arrows A and B indicate the direction of the burner gas stream and the burner air stream, respectively. Arrows C and D indicate the directions of the reformed starting burner gas stream and process fuel, respectively.

도 1, 도 2 및 도 3에 도시된 바와 같이, 밀봉 포장된 육각형 배열체인 19개의 촉매 튜브 조립체(14)가 있다. 촉매 튜브 조립 배열체는 중앙 그룹의 7개의 촉매 튜브 조립체와 내부면(32)과 외부면(34)을 갖는 외부 개질체 튜브(30)를 구비한다. 개질체 튜브(30)의 밀봉 상단부(36)에는 개질체 튜브(30)의 최상부를 규정하는 단부 캡(38)이 설치되어 있다. 개질체 튜브(30)는 하단부(40)와, 하단부(40)로부터 단부 캡(38)까지 연장된 튜브 본체(36)를 구비한다. 재열기 튜브(50)는 개질체 튜브(30)의 동심 내측에 배치된다. 재열기 튜브(50)는 내외부면(52, 54)를 각기 가지며 촉매 튜브 조립체(14)의 하단부(56)로부터 그 상단부(64)까지 연장되어 있다. 도 2에 도시된 바와 같이, 재열기 튜브(50)는 3개의 주요부로 구성되는데, 즉, 하단부(40)로부터 상향으로 높이(H1)만큼 연장되는 실린더형 본체부(60)와, 본체부(60)로부터 높이(H2)만큼 상향으로 연장되는 절두원추형으로 내향으로 테이퍼진 중간부(62)와, 중간부(62)로부터 높이(H3)만큼 상향으로 연장되는 보다 소형의 상단부(64)를 포함한다. 중간부(62)는 수렴 각도(φ)를 가진다. 높이 및 각도는 여분의 촉매 용적이 열 싸이클 동안 나타나는 촉매의 용적 감소를 보상하고 촉매 베드의 유동화를 제한하고 촉매 베드를 통한 압력 강하를 최소화하도록 촉매를 보존할 수 있게 선택된다. 재열기 튜브(50)의 상부(64)의 상단부는 개방되어서 촉매 베드로부터의 가스 스트림이 화살표(D)로 나타낸 바와 같이 튜브(64, 74)로 도입될 수도 있다. 천공판(58)은 튜브(64)에 고정되며 개질 가스가 촉매 베드의 상단부를 나와서 튜브(64, 74)로 도입될 수 있게 한다. 봉 형태의 크로스 부재(66)는 그 단부가 단부 캡(38)의 내부면에 접촉되어 재열기 튜브 조립체(50)를 개질체 튜브(30)의 상단부의 중앙에 중심조정하도록 배치된다. 중간부(62)의 테이퍼 각도(φ)는장치에 대한 크기, 유량 및 압력 강하 조건이 꼭맞도록 선택된다.As shown in FIGS. 1, 2 and 3, there are nineteen catalyst tube assemblies 14, which are hermetically sealed hexagonal arrangements. The catalyst tube assembly arrangement has seven catalyst tube assemblies of the central group and an outer reformer tube 30 having an inner surface 32 and an outer surface 34. The sealing top end 36 of the reformer tube 30 is provided with an end cap 38 defining the top of the reformer tube 30. The reformer tube 30 has a lower end 40 and a tube body 36 extending from the lower end 40 to the end cap 38. The reheater tube 50 is disposed concentrically inside the reformer tube 30. The reheater tube 50 has inner and outer surfaces 52, 54, respectively, and extends from the lower end 56 to the upper end 64 of the catalyst tube assembly 14. As shown in FIG. 2, the reheater tube 50 is composed of three main parts, that is, a cylindrical body part 60 extending upwardly by a height H 1 from the lower end 40, and the body part. A middle portion 62 tapered inwardly in a frustoconical shape extending upwardly from height 60 by a height H 2 , and a smaller upper end 64 extending upwardly by height H 3 from the middle portion 62. ). The intermediate portion 62 has a convergence angle φ. The height and angle are selected to preserve the catalyst so that the excess catalyst volume compensates for the reduction in catalyst volume seen during the thermal cycle, limits fluidization of the catalyst bed and minimizes pressure drop through the catalyst bed. The upper end of the top 64 of the reheater tube 50 may be opened such that a gas stream from the catalyst bed may be introduced into the tubes 64, 74 as indicated by arrow D. Perforated plate 58 is secured to tube 64 and allows reformed gas to exit the upper end of the catalyst bed and be introduced into tubes 64 and 74. The rod-shaped cross member 66 is arranged such that its end contacts the inner surface of the end cap 38 so that the reheater tube assembly 50 is centered in the center of the upper end of the reformer tube 30. The taper angle φ of the intermediate part 62 is chosen so that the size, flow rate and pressure drop conditions for the device are matched.

환상 공간(70)은 개질체 튜브(30)의 내부면과 재생기 튜브(50)의 외부면 사이에 형성된다. 공간(70)은 재열기 튜브(50)의 3개의 주요부에 인접하여 있으며 이들 3개의 주요부를 결합한다. 바람직한 실시예에 있어서, 하부와 중간부가 있다. 중간부는 그 하단부가 하부와 일치하는 두께를 가지며 상향으로 두께가 감소된다. 공간(70)의 상부는 재열기 튜브(50)의 상부(64)의 테이퍼를 따라 상향으로 더 증가하는 두께를 가진다. 본 발명의 전술한 실시예에 있어서, 대부분의 환상 공간(70)은 촉매 베드를 포함한다. 촉매 베드는 니켈과 같은 적절한 촉매 물질로 형성된 외부면을 갖는 실린더형 펠릿(72)으로 형성된다. 재열기 튜브(50)는 재열기 튜브 본체부(60)를 따라 튜브(50)의 외부면으로부터 반경방향 외향으로 연장되는 복수개의 스페이서(73)가 형성되어 있다. 스페이서(73)는 개질체 튜브(30) 내부에 재열기 튜브(50)를 중심조정되게 한다.An annular space 70 is formed between the inner surface of the reformer tube 30 and the outer surface of the regenerator tube 50. The space 70 is adjacent to three main parts of the reheater tube 50 and combines these three main parts. In a preferred embodiment, there are lower and middle portions. The middle portion has a thickness whose lower portion coincides with the lower portion and the thickness decreases upward. The top of the space 70 has a thickness that increases further upward along the taper of the top 64 of the reheater tube 50. In the foregoing embodiment of the present invention, most annular space 70 comprises a catalyst bed. The catalyst bed is formed from cylindrical pellets 72 having an outer surface formed of a suitable catalyst material such as nickel. The reheater tube 50 is formed with a plurality of spacers 73 extending radially outward from the outer surface of the tube 50 along the reheater tube body 60. The spacer 73 allows the reheater tube 50 to be centered inside the reformer tube 30.

상하 내부 튜브(74, 76)를 구성하는 분진 수집 시스템은 재열기 튜브(50) 내부에 형성되어 있다. 상부 튜브(74)는 그 상하단부가 개방되어 있다. 상부 튜브(74)의 상단부는 재열기 튜브(50)의 중간부(62)의 내부면에 용접되어 있으며 중간부(62)의 상단부 아래에 홈이 형성되어 있다. 하부 튜브(76)의 상단부는 재열기 튜브 본체부(60)의 상단부와 거의 같은 높이이다. 상부 튜브(74)의 하단부는 다소 하부 튜브(76)를 향해 연장되어 있다. 하부 튜브(76)의 내직경은 상부 튜브(74)의 외직경을 수용하기에 충분하며 튜브(74, 76) 사이에 횡방향으로 환상 공간(78)을 형성한다. 하부 튜브의 밀봉 하단부는 재열기 튜브(50)의 본체부(60)하단부를 지나 돌출된다. 환상 공간(79)는 재열 챔버로서 역할을 하는 재열기 튜브(50)의 내부면과 하부 튜브(76)의 외부면 사이에 형성되어 있다. 촉매 베드로부터의 처리 연료는 천공부(64)를 통해서 상부 튜브(74)로 도입되며 하향으로 하부 튜브(76)로 유동하여 비교적 정적 방법으로 하부 튜브를 충전시킨다. 하부 튜브(76)는 사단부이므로 촉매 베드를 통해서 처리 연료 스트림이 진행할 때 이들이 부유동반된 촉매 펠릿 분진을 수집하기 위한 트랩으로서 역할을 한다. 처리 연료 스트림은 튜브(76)의 상부를 넘쳐나와서 재열기 챔버(79)를 통해 유동하여 처리 가스의 열 에너지가 도입 처리 유량 스트림으로 재 전달되게 하여 필수 반응열 공급을 보조한다.The dust collection system constituting the upper and lower inner tubes 74 and 76 is formed inside the reheater tube 50. The upper tube 74 is open at its upper and lower ends. The upper end of the upper tube 74 is welded to the inner surface of the middle portion 62 of the reheater tube 50 and a groove is formed below the upper end of the middle portion 62. The upper end of the lower tube 76 is about the same height as the upper end of the reheater tube body 60. The lower end of the upper tube 74 extends somewhat toward the lower tube 76. The inner diameter of the lower tube 76 is sufficient to accommodate the outer diameter of the upper tube 74 and forms an annular space 78 in the transverse direction between the tubes 74, 76. The sealed lower end of the lower tube protrudes past the lower end of the body portion 60 of the reheater tube 50. The annular space 79 is formed between the inner surface of the reheater tube 50 and the outer surface of the lower tube 76, which serve as reheat chambers. Process fuel from the catalyst bed is introduced into the upper tube 74 through the perforations 64 and flows downward into the lower tube 76 to fill the lower tube in a relatively static manner. The lower tube 76 is a four-sided portion and thus serves as a trap for collecting the entrained catalyst pellet dust as the process fuel stream proceeds through the catalyst bed. The process fuel stream overflows the top of the tube 76 and flows through the reheater chamber 79 to ensure that the thermal energy of the process gas is re-delivered to the inlet process flow stream to assist in supplying the necessary reaction heat.

개질체를 조립하기 위해서, 개질체 튜브(30)는 판(84)의 관련 구멍 내부에 배치되며 용접부(31)에 의해서 그 위치에 부착된다. 그 후 조립된 재열기 튜브(50)가 개질체 튜브(30)로 삽입되며 조합체가 전환된다. 전환 상태에 있어서, 재열기 튜브(50)는 크로스 부재(66)와 단부 캡(38) 사이에서 접촉에 의해서 ㅈ지된다. 스페이서(73)는 재열기 튜브(50)를 개질체 튜브(30)의 내부에 중심조정하여 이들 사이의 환상 공간(70)이 촉매 펠릿(72)으로 충전되게 한다. 적당량의 촉매가 스페이스(70)으로 도입된 후, 촉매 지지 조립체는 스페이스(70)로 삽입된다. 촉매 지지 조립체는 지지 로드(75)에 용접되는 환상 천공판(81)을 구비한다. 스페이스(70)의 하부 경계는 고상 디스크(77)의 내측 가장자리를 재열기 튜브(50)에 용접부(37)에 의해서 용접하고, 용접부(35)에 의해서 디스크(77)의 외측 가장자리를 하부 지지판(86)에 용접함으로써 밀봉된다. 일단 이렇게 밀봉되면, 개질체는적당하게 되어 촉매 펠릿(72)이 공간(70)을 기본적으로 충전시킬 것이다.In order to assemble the reformate, the reformer tube 30 is placed inside the associated hole of the plate 84 and attached in place by the weld 31. The assembled reheater tube 50 is then inserted into the reformer tube 30 and the combination is converted. In the switched state, the reheater tube 50 is interrupted by contact between the cross member 66 and the end cap 38. The spacer 73 centers the reheater tube 50 inside the reformer tube 30 so that the annular space 70 therebetween is filled with the catalyst pellet 72. After the appropriate amount of catalyst is introduced into the space 70, the catalyst support assembly is inserted into the space 70. The catalyst support assembly has an annular apertured plate 81 that is welded to the support rod 75. The lower boundary of the space 70 welds the inner edge of the solid disk 77 to the reheater tube 50 by the weld 37, and the outer edge of the disk 77 is welded by the weld 35 to the lower support plate ( 86) and sealed by welding. Once so sealed, the reformer will be suitable and the catalyst pellets 72 will basically fill the space 70.

버너 캐비티(100)는 각기 상하부(99, 101)로 구성되며, 각각의 촉매 튜브 조립체(14)의 상부는 버너 캐비티(100)의 하부(99)로 돌출된다. 개방 영역인 하부(101)는 버너 캐비티(100)의 이 영역의 체적이 완전한 버너 가스의 연소를 보증할 만한 크기이다. 또한, 상부 영역이나 하부 영역(101, 99)의 촉매 튜브 상의 버너 캐비티 폭은 튜브 배열체를 형성한 개별 튜브 조립체(14) 각각으로 균일한 유량을 촉진할 만한 크기이다. 돌출형 튜브 배열체를 수납하는 하부 영역(99)는 튜브 조립체(14)에 대한 열전달율을 최대화하는 크기이다. 버너 캐비티(100)의 하부 영역(99)의 주변부는 육각형 단열 벽(102)으로 둘러싸여 있다. 벽(102)은 세라믹 섬유재 단열 보드 패널로 형성된다. 패널은 촉매 튜브 조립체(14)의 육각형 조립체의 6개의 측면에 긴밀한 대면 관계로 배치된다. 벽(102)과 주변 촉매 튜브 조립체(14) 사이의 바람직한 공간은 대략 배열체의 인접한 촉매 튜브 조립체(14) 사이의 공간과 같다. 벽(102)의 육각형 구성과, 촉매 튜브 조립체 배열체에 대한 근접성으로 인하여 배열체를 가로질러 온도 균일성이 유지되어 주변부 촉매 튜브 조립체(14)와, 보다 상세하게는 그들의 외측부가 시스템의 효율을 최대화하도록 내부 촉매 튜브 조립체(14)의 온도와 거의 같이 될 것이다. 벽(102)의 상단부는 촉매 튜브 조립체(14)의 상단부 위로 연장되며 버너 캐비티(100)의 상하 영역(102, 99) 사이의 경계를 형성한다. 부가의 요소(도면에 도시안함)로 본 명세서에 전체적으로 인용된 미국 특허 제 4,740,357 호에 개시된 촉매 튜브 조립체(14)의 세마믹 캡이 있다.The burner cavity 100 consists of upper and lower portions 99 and 101, respectively, and an upper portion of each catalyst tube assembly 14 protrudes into a lower portion 99 of the burner cavity 100. The lower portion 101, which is an open area, is large enough to guarantee combustion of the complete burner gas in the volume of this area of the burner cavity 100. In addition, the burner cavity width on the catalyst tubes in the upper or lower regions 101, 99 is large enough to promote a uniform flow rate into each of the individual tube assemblies 14 forming the tube arrangement. The lower region 99 that houses the protruding tube arrangement is sized to maximize the heat transfer rate for the tube assembly 14. The periphery of the lower region 99 of the burner cavity 100 is surrounded by a hexagonal insulating wall 102. The wall 102 is formed of ceramic fiber insulation board panels. The panels are arranged in intimate face-to-face relationship on the six sides of the hexagonal assembly of the catalyst tube assembly 14. The preferred space between the wall 102 and the surrounding catalyst tube assembly 14 is approximately equal to the space between adjacent catalyst tube assemblies 14 of the arrangement. Due to the hexagonal configuration of the wall 102 and its proximity to the catalyst tube assembly arrangement, temperature uniformity is maintained across the arrangement such that the periphery catalyst tube assembly 14 and, more specifically, the outer portion thereof, may improve the efficiency of the system. It will be about the same as the temperature of the inner catalyst tube assembly 14 to maximize. The upper end of the wall 102 extends over the upper end of the catalyst tube assembly 14 and forms a boundary between the upper and lower regions 102, 99 of the burner cavity 100. There is a semamic cap of the catalyst tube assembly 14 disclosed in US Pat. No. 4,740,357, which is incorporated herein by reference in its entirety as an additional element (not shown in the figure).

버너 캐비티(100)의 하부 영역(99) 바로 아래에 버너 가스로부터 촉매 튜브 조립체(14)로의 열전달율을 향상시키도록 구성된 노(12)의 가열 촉진부(104)가 있다. 이 가열 촉진부(104)에 있어서, 각각의 촉매 튜브 조립체(14)는 연관된 동심 슬리브(106) 내부에 배치된다. 슬리브(106)는 슬리브(106)의 내부면과 개질체 촉매(30)의 외부면 사이의 환상 공간(108)을 형성하는 내부 직경을 가진다. 지지판(112)은 슬리브(106) 사이의 공간을 충전하는 세라믹 섬유 단열재(114)를 지지하며 경계(110)를 향해 상향으로 연장된다.Just below the lower region 99 of the burner cavity 100 is the heating promotion 104 of the furnace 12 configured to improve the heat transfer rate from the burner gas to the catalyst tube assembly 14. In this heating promotion 104, each catalyst tube assembly 14 is disposed within an associated concentric sleeve 106. The sleeve 106 has an inner diameter that forms an annular space 108 between the inner surface of the sleeve 106 and the outer surface of the reformer catalyst 30. The support plate 112 supports the ceramic fiber insulation 114 that fills the space between the sleeves 106 and extends upwardly toward the boundary 110.

도 1, 도 1A, 도 4 및 도 5는 개질체 장치(10)에 장착되어 있는 촉매 튜브 조립체(14)의 세부사항들을 나타낸다. 상하판(84, 86)은 하우징(12)의 하단벽(95)에 근접한 개질체 하우징(12)을 연결한다. 각각의 판(84, 86)은 각기 복수개의 구멍(85, 87)을 가진다. 각각의 촉매 튜브 조립체(14)는 상부판(84)의 연관 구멍(85)과 하부판(86)의 연관 구멍(87)을 통해 연장된다. 촉매 튜브(30)는 용접부(31)를 거쳐서 상부판(84)에 요접되며 용접부(33)를 거쳐서 하부판(86)에 용접된다. 촉매 튜브(30)가 판(4, 86)과 조합되어 벌집형 패널과 유사한 강성 구조체를 형성하며, 판(84, 86)은 대면 시이트이며, 판(84, 86) 사이에서 연장되는 촉매 튜브(30)는 코어로서 작용한다는 것을 주목하여야 할 것이다. 가스 유입구 매니폴드로서 역할을 하는 이 용접 구조는 또한 정상 작업중 그리고 일시적인 이동 및 심한 부하에 촉매 튜브 조립체(14)를 지지하도록 작용한다. 촉매 베드(72), 촉매 지지판(81), 지지봉(75) 및 재열기 튜브(50)로 구성된 촉매 튜브 조립체(14)내의 내부 구성요소의 무게는 환상판(77)과, 용접부(37)에 의해서 재열기 튜브(50)에 용접되는 내직경과, 용접부(35)에 의해서 판(86)에 용접되는 외직경에 의해서 지지된다. 상하부판(84, 86)의 외부 가장자리부는 개질체 외부 쉘(94, 96)에 의해서 지지된다. 판(84, 86)이 개질체 쉘 측벽(94, 96)에 고정되면, 촉매 튜브 조립체(14)의 무게가 판(84, 86)에 의해서 측벽(94, 96)을 향해 외측으로 전달되는 것을 보증한다. 튜브(76)는 개질 가스 스트림이 환상부(79)로부터 매니폴드(144)로 유동하게 하는 복수개의 이격 클립(7)에 의해서 튜브(50)에 고정된다.1, 1A, 4 and 5 show details of the catalyst tube assembly 14 mounted to the reformer apparatus 10. Top and bottom plates 84 and 86 connect the reformer housing 12 close to the bottom wall 95 of the housing 12. Each plate 84, 86 has a plurality of holes 85, 87, respectively. Each catalyst tube assembly 14 extends through an associative hole 85 in the upper plate 84 and an associating hole 87 in the lower plate 86. The catalyst tube 30 is contiguous with the upper plate 84 via the weld 31 and welded to the lower plate 86 via the weld 33. The catalyst tube 30 is combined with the plates 4 and 86 to form a rigid structure similar to the honeycomb panel, wherein the plates 84 and 86 are facing sheets and extend between the plates 84 and 86. It should be noted that 30) acts as a core. Serving as a gas inlet manifold, this welding structure also serves to support the catalyst tube assembly 14 during normal operation and during temporary movement and heavy loads. The weight of the internal components in the catalyst tube assembly 14, consisting of the catalyst bed 72, the catalyst support plate 81, the support rod 75, and the reheater tube 50, is applied to the annular plate 77 and the weld 37. It is supported by the inner diameter welded to the reheater tube 50 by the outer diameter welded to the plate 86 by the welding portion 35. The outer edges of the upper and lower plates 84 and 86 are supported by the reformer outer shells 94 and 96. Once the plates 84, 86 are secured to the reformer shell sidewalls 94, 96, the weight of the catalyst tube assembly 14 is transferred outwardly toward the sidewalls 94, 96 by the plates 84, 86. Guarantee. The tube 76 is secured to the tube 50 by a plurality of spaced apart clips 7 that allow the reformed gas stream to flow from the annular portion 79 to the manifold 144.

조립체(10)는 이하와 같이 작동한다. 버너 연료는 버너 캐비티(100)의 하부 영역(99)과 거의 높이가 같은 버너 연료 유입구(20)를 통해서 시스템에 도입된다. 연료는 환상 통로(122)로 유도되는 환상 매니폴드(120)에 도입된다. 통로(122)를 형성하는 벽(123, 125)은 연료가 통로(122)를 통해서 균일하게 하강하도록 촉매 튜브 배열체(14)를 둘러싼다. 연료는 통로(122)를 통해서 하향으로 유동하며 가열 촉진부(104)의 하부에서 환상 매니폴드(124)를 향해 하향으로 진행될 때 열을 포획한다.The assembly 10 operates as follows. Burner fuel is introduced into the system through a burner fuel inlet 20 that is approximately flush with the lower region 99 of burner cavity 100. Fuel is introduced into the annular manifold 120 that leads to the annular passageway 122. Walls 123 and 125 forming passage 122 surround catalyst tube arrangement 14 such that fuel descends uniformly through passage 122. The fuel flows downwardly through the passageway 122 and captures heat as it travels downwardly from the bottom of the heating facilitator 104 toward the annular manifold 124.

수직 도관(126)은 매니폴드(124)로부터 버너 캐비티(100)의 상부 영역(101)에 배치된 연료 매니폴드(128)까지 상향으로 예열 버너 연료를 배관한다. 버너 연료는 매니폴드(128)의 하부벽으로부터 하향으로 연장되는 튜브형 노즐(130)을 통해서 매니폴드(128)로부터 진행한다. 노즐(130)은 유입구(22)에 결합된 공기 매니폴드(132)를 통과하여 버너 캐비티(100)의 하부 영역(101)과 공기 매니폴드(132) 사이의 하나 또는 그 이상의 단열 패널을 통과한다. 이러한 패널내 구멍은 노즐(130) 둘레에 충분한 공극을 가져서 공기가 공기 매니폴드(132)로부터 흡인되는 대응 환상 통로를 형성하여 노즐(130)을 통해서 버너 캐비티(100)에 도입된 가스로 연소되게 한다. 시동 버너(140)는 촉매 튜브 조립체(14) 상부의 버너 캐비티(100) 측벽에 배치되며 화염 센서(141)는 버너 캐비티(100)의 대향 측벽에 배치된다. 도 1의 화살표(C)는 시동 버너 가스의 유량 방향을 지시한다.The vertical conduit 126 pipes the preheat burner fuel upwards from the manifold 124 to the fuel manifold 128 disposed in the upper region 101 of the burner cavity 100. Burner fuel runs from manifold 128 through tubular nozzle 130 extending downward from the bottom wall of manifold 128. The nozzle 130 passes through the air manifold 132 coupled to the inlet 22 and passes through one or more insulation panels between the lower region 101 of the burner cavity 100 and the air manifold 132. . These holes in the panel have sufficient voids around the nozzle 130 to form a corresponding annular passageway through which air is drawn from the air manifold 132 so that it is combusted with the gas introduced into the burner cavity 100 through the nozzle 130. do. The starter burner 140 is disposed on the side wall of the burner cavity 100 above the catalyst tube assembly 14 and the flame sensor 141 is disposed on the opposite side wall of the burner cavity 100. Arrow C in FIG. 1 indicates the flow direction of the starter burner gas.

버너 연료로부터의 고온 연소 가스와 버너 캐비티(100)를 통해서 하향으로 진행하는 공기는 유입구를 통해서 연관된 슬리브(106)의 상단부의 환상 공간(108)을 향해 이동하여 열을 촉매 튜브 조립체(14)에 전달한다. 선택적으로, 공간(108)은 그 내용이 전체적으로 인용된 미국 특허 제 4,847,051 호에 도시된 바와 같이 유지된다. 연소 가스가 슬리브(106)의 하단부의 환상 공간(108)을 나오는 경우, 이들은 판(112, 84) 사이의 배기 플레넘에 도입된다. 버너 가스는 통로(122) 내측 중간의 환상 통로(146)를 통해서 그로부터 상향으로 그리고 플레넘(152)의 외줍로 진행한다. 통로(146)를 통해서 상향으로 이동하는 버너 가스는 통로(122)를 통해서 하향으로 진행하는 도입 가열 연료에 열전달한다. 통로(146)의 상단부에 도달했을 때, 버너 가스는 배기가스 유출구(24)를 거쳐서 그로부터 나와서 환상 수집 공간(148)에 수집된다.Hot combustion gases from the burner fuel and air traveling downward through the burner cavity 100 travel through the inlet toward the annular space 108 of the upper end of the associated sleeve 106 to transfer heat to the catalyst tube assembly 14. To pass. Optionally, space 108 is maintained as shown in US Pat. No. 4,847,051, the contents of which are incorporated in their entirety. When the combustion gas exits the annular space 108 of the lower end of the sleeve 106, they are introduced into the exhaust plenum between the plates 112, 84. Burner gas proceeds upwardly therefrom through annular passageway 146 inside the passageway 122 and outwardly of the plenum 152. Burner gas traveling upwardly through passage 146 heat transfers to the introduced heating fuel traveling downward through passage 122. When reaching the upper end of the passage 146, the burner gas exits from the exhaust gas outlet 24 and is collected in the annular collection space 148.

처리 연료는 유입구(16)를 통해서 적절한 도관을 거쳐서 판(84, 86) 사이의 처리 연료 가스 유입구 플레넘(150)로 지향된다. 플레넘(150)으로부터, 처리 연료 가스는 플레넘(150) 내부에 배치된 개질체 튜브(30) 하부의 개구를 통과한다. 처리 연료는 촉매 베드를 통해서 상향으로 진행하며 반응실의 외측에 있는 환상 공간(108)의 하향 유동 버너 가스로부터 그리고 후술하는 재열실의 하향 유동 처리가스로부터 열을 수납한다. 처리 연료 가스는 처리된 채 촉매 베드의 상부면을 나와서 재열기 튜브(50)의 천공된 상부(64) 구멍을 통과한다.Process fuel is directed through the inlet 16 to the process fuel gas inlet plenum 150 between the plates 84 and 86 via appropriate conduits. From plenum 150, process fuel gas passes through an opening in the bottom of reformer tube 30 disposed inside plenum 150. The process fuel proceeds upward through the catalyst bed and receives heat from the downflow burner gas in the annular space 108 outside of the reaction chamber and from the downflow process gas in the reheat chamber described below. The process fuel gas exits the top surface of the catalyst bed while being processed and passes through the perforated top 64 holes of the reheater tube 50.

튜브(74)의 하단부를 나갈 때, 처리 가스는 화살표(D)로 지시된 바와 같이 환상 공간(78)을 통과하여 상측으로 방향 및 진행을 바꾸어야 한다. 이러한 유동 방향의 변경시에, 미립 물질(예컨대, 어떤 반응 부산물, 촉매 물질 등)은 하측 튜브(76)의 폐쇄 하단부에 떨어지며 그곳에 모인다. 튜브(76)의 개방 상단부를 통과한 후에, 처리 가스의 유동은 다시 방향이 반대로 되며 재열챔버(79)를 통과하여 하측으로 흐른다. 이러한 하측 유동시에, 처리 가스는 반응 챔버내에 그것의 바로 외부에서 열을 도입되는 처리 연료로 전달한다. 재열 브의 하단부에서, 처리 가스는 플레이트(86)와 개질체 하우징(12)의 하부 사이에서 처리 연료 출구 플레넘(144)에 유입된다. 처리 가스는 도관을 통하여 플레늄(144)으로부터 처리 연료 출구(18)로 진행한다.Upon exiting the lower end of the tube 74, the process gas must change direction and travel upward through the annular space 78, as indicated by arrow D. In this change of flow direction, particulate matter (eg, some reaction byproducts, catalyst material, etc.) falls and collects in the closed lower end of the lower tube 76. After passing through the open top end of the tube 76, the flow of process gas is again reversed and flows down through the reheat chamber 79. In this lower flow, the process gas transfers heat to the process fuel which is introduced just outside of it in the reaction chamber. At the lower end of the reheat bar, process gas enters the process fuel outlet plenum 144 between the plate 86 and the bottom of the reformer housing 12. Process gas proceeds from plenium 144 to process fuel outlet 18 through conduits.

또한, 처리 연료 입구 플레늄을 규정하는 플레이트의 구조적 결합은 시스템의 전체적인 강도를 증가시키며 보다 얇고 가벼운 재료를 이용하도록 허용하며, 운반시에 손상의 가능성을 감소시키고, 이용시에 손상의 가능성을 줄인다. 강성 튜브 지지 구조는 튜브 지지 구조가 상승한 온도에서 자중 부하하에 편향할 때에 촉매 튜브의 상단부가 서로를 향하여 이동하는 경향이 감소하도록 요구된다. 과다한 편향은 촉매 튜브의 하단부에서 다양한 가스 유동내에 비균일함을 야기함으로써 촉매 튜브 온도의 불균형 분포에 이를 수 있다.In addition, the structural coupling of the plates defining the treated fuel inlet plenium increases the overall strength of the system and allows the use of thinner and lighter materials, reducing the likelihood of damage in transport and reducing the likelihood of damage in use. Rigid tube support structures are required to reduce the tendency of the upper ends of the catalyst tubes to move towards each other when the tube support structures deflect under self weight load at elevated temperatures. Excessive deflection can lead to an uneven distribution of catalyst tube temperature by causing non-uniformity in various gas flows at the bottom of the catalyst tube.

개질체 이용시에 다른 손상 영역은 촉매 재료의 분쇄를 포함한다. 촉매 튜브의 보다 강한 장착은 재생기 튜브에 대해서 이러한 이동을 감소시킬 수 있다. 이러한 이동은 개질체가 사용될 때에 진동에 의해서 또는 열 주기에 의해서 야기될 수도 있다. 먼저 이러한 상대 이동은 촉매의 운반을 허용하고, 상대 이동이 반대로 될 때 촉매의 분쇄에 의해 허용되며, 이 튜브는 그들의 이전 상대 위치를 재점유하도록 요구한다. 재생기의 절두원추형 중간부 및 상부는 촉매 펠릿 분쇄 또는 떨어짐을 보상하는 촉매의 예비량을 저장하고, 이와 같이 발생하여야 하며, 또한 장치의 작동시에 유동화에 대해서 촉매 베드의 상부를 안정화시킨다.Another area of damage in use of the reformer involves the grinding of the catalyst material. Stronger mounting of the catalyst tube can reduce this movement relative to the regenerator tube. This movement may be caused by vibrations or by thermal cycles when the modifier is used. This relative movement first permits the transport of the catalyst and is allowed by the comminution of the catalyst when the relative movement is reversed and the tube requires to reoccupy their previous relative position. The frustoconical middle and top of the regenerator store and reserve this amount of catalyst to compensate for catalyst pellet crushing or dropping and also stabilizes the top of the catalyst bed against fluidization during operation of the apparatus.

상술한 디자인은 직경이 4인치인 촉매 튜브를 이용하는 19개의 촉매 튜브 배열 개질체 조립을 초래한다. 직경이 4인치인 튜브에서는 분진을 포획하느데 이용되는 중공형 캐비티가 현저하게 감소된다. 중공형 캐비티를 사용하지 않은 용적이기 때문에 그것은 가능한 작게 제조되어야 한다. 또한 촉매 캐티비 환상내에서 열 성장의 양은 튜브 직경에 비례하기 때문에, 중심이 작으면 촉매 분산 효과를 감소시킨다. 촉매 튜브내에서 작동 온도를 일정하게 유지시키기 위해서, 버너의 캐비티내의 6각형 형상, 튜브 지지부의 강도 및 촉매 튜브상에서 복합재 버너 튜브 배열체가 제공된다.The above design results in the assembly of 19 catalyst tube array reformers using catalyst tubes 4 inches in diameter. In 4 inch diameter tubes, the hollow cavity used to trap dust is significantly reduced. Since the volume does not use a hollow cavity, it should be made as small as possible. In addition, since the amount of thermal growth in the catalyst catbyl annular is proportional to the tube diameter, a small center reduces the catalyst dispersion effect. In order to maintain a constant operating temperature in the catalyst tube, a composite burner tube arrangement is provided on the hexagonal shape in the cavity of the burner, the strength of the tube support and on the catalyst tube.

본 발명의 개시된 실시예의 다양한 변형 및 변화는 본 발명의 개념에서 벗어나지 않고 제조될 수 있기 때문에, 첨부된 청구범위에 의해 요구되는 바와 같이 본 발명을 제한하지 않게 될 것이다.As various modifications and variations of the disclosed embodiments of the invention can be made without departing from the spirit of the invention, they will not limit the invention as required by the appended claims.

Claims (8)

연료 셀 동력 장치에 사용하기에 적합한 수소 농후 처리 가스로 생 연료 가스를 전환하기 위한 탄화수소 연료 가스 개질체 조립체에 있어서,A hydrocarbon fuel gas reformer assembly for converting live fuel gas into a hydrogen rich process gas suitable for use in a fuel cell power plant, a) 단열 하우징과,a) an insulating housing, b) 상기 하우징에 배치된 복수개의 촉매 튜브와,b) a plurality of catalyst tubes disposed in the housing, c) 상기 각각의 촉매 튜브에 배치된 환상 촉매 베드와,c) a cyclic catalyst bed disposed in each said catalyst tube, d) 상기 촉매 베드의 반경방향 내측에 배치되며, 상기 각각의 촉매 튜브내에 있는 중앙 재열기 튜브 조립체를 포함하는 탄화수소 연료 가스 개질체 조립체.d) A hydrocarbon fuel gas reformer assembly disposed radially inward of the catalyst bed and comprising a central reheater tube assembly within each catalyst tube. 제 1 항에 있어서,The method of claim 1, 상기 각각의 재열기 튜브 조립체는 상기 촉매 튜브내에 과잉 촉매를 유지하도록 작동할 수 있는 내측으로 테이퍼진 절두원추형부를 구비하는 탄화수소 연료 가스 개질체 조립체.Wherein each reheater tube assembly has an inwardly tapered frustoconical portion operable to retain excess catalyst in the catalyst tube. 제 2 항에 있어서,The method of claim 2, 상기 테이퍼형 재열기 튜브 조립체는 천공판으로 덮혀 있어서 가스가 상기 촉매 베드로부터 상기 재열기 튜브 조립체로 유동할 수 있는 탄화수소 연료 가스개질체 조립체.The tapered reheater tube assembly is covered with a perforated plate such that gas can flow from the catalyst bed to the reheater tube assembly. 제 3 항에 있어서,The method of claim 3, wherein 상기 재열기 튜브 조립체는 촉매 압축중 개질체 성능의 저하를 방지하는 과잉 촉매를 갖는 탄화수소 연료 가스 개질체 조립체.Wherein said reheater tube assembly has an excess catalyst that prevents degradation of reformer performance during catalyst compression. 제 2 항에 있어서,The method of claim 2, 상기 테이퍼형 부분은 조립체의 작동중 촉매 베드의 유동화를 최소화하는 처리 가스 유동 채널을 제공하는 탄화수소 연료 가스 개질체 조립체.The tapered portion provides a hydrocarbon fuel gas reformer assembly that provides a process gas flow channel that minimizes fluidization of the catalyst bed during operation of the assembly. 제 1 항에 있어서,The method of claim 1, 상기 하우징은 상기 촉매 튜브로부터 처리 가스를 수납하기 위한 최하측 내미폴드를 구비하며, 상기 최하측 매니폴드는 상기 하우징의 저벽과, 상기 저벽으로부터 이격된 제 1 판으로 형성되며, 상기 제 1 판은 상기 하우징의 측벽에 접촉되고, 상기 재열기 튜브 조립체는 상기 제 1 판에 결합되어 상기 재열기 튜브 조립체의 중량은 상기 하우징의 측벽에 의해서 지탱되는 탄화수소 연료 가스 개질체 조립체.The housing has a bottom inner manifold for receiving a process gas from the catalyst tube, the bottom manifold being formed from a bottom wall of the housing and a first plate spaced from the bottom wall. And a reheater tube assembly coupled to the first plate such that the weight of the reheater tube assembly is carried by the sidewall of the housing. 제 6 항에 있어서,The method of claim 6, 상기 하우징은 상기 생 연료 가스를 수납하기 위한 제 1 매니폴드에 인접한 제 2 매니폴드를 구비하며, 상기 제 2 매니폴드는 상기 제 1 판에 의해서 형성되며 제 2 판은 제 1 판으로부터 이격되어 있으며, 상기 제 2 판은 상기 하우징의 측벽에 결합되며, 상기 촉매 튜브는 상기 제 1 및 제 2 판에 결합되어 상기 촉매 튜브와 상기 촉매 베드의 중량을 상기 하우징의 측벽에 의해서 지탱하는 탄화수소 연료 가스 개질체 조립체.The housing has a second manifold adjacent the first manifold for receiving the live fuel gas, the second manifold formed by the first plate and the second plate spaced apart from the first plate And the second plate is coupled to the side wall of the housing, and the catalyst tube is coupled to the first and second plates to support the weight of the catalyst tube and the catalyst bed by the side wall of the housing. Sieve assembly. 제 7 항에 있어서,The method of claim 7, wherein 상기 제 2 매니폴드는 상기 촉매 베드로 개방되는 탄화수소 연료 가스 개질체 조립체.And the second manifold is opened to the catalyst bed.
KR1020017005739A 1998-11-10 1999-11-10 Hydrocarbon fuel gas reformer assembly for a fuel cell power plant KR100563182B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/190,855 US6258330B1 (en) 1998-11-10 1998-11-10 Inhibition of carbon deposition on fuel gas steam reformer walls
US09/190,855 1998-11-10

Publications (2)

Publication Number Publication Date
KR20010110296A true KR20010110296A (en) 2001-12-12
KR100563182B1 KR100563182B1 (en) 2006-03-27

Family

ID=22703076

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020017005739A KR100563182B1 (en) 1998-11-10 1999-11-10 Hydrocarbon fuel gas reformer assembly for a fuel cell power plant
KR1020017005861A KR100599893B1 (en) 1998-11-10 1999-11-10 Inhibition of carbon deposition on fuel gas steam reformer walls

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020017005861A KR100599893B1 (en) 1998-11-10 1999-11-10 Inhibition of carbon deposition on fuel gas steam reformer walls

Country Status (10)

Country Link
US (1) US6258330B1 (en)
EP (2) EP1148939B1 (en)
JP (2) JP2002529895A (en)
KR (2) KR100563182B1 (en)
CN (2) CN1170623C (en)
AU (2) AU2843000A (en)
BR (2) BR9915221A (en)
DE (1) DE69941093D1 (en)
ID (1) ID29948A (en)
WO (2) WO2000029092A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020182132A1 (en) * 2000-10-04 2002-12-05 Lesieur Roger R. Fuel gas reformer assemblage
US6767376B1 (en) 2000-11-10 2004-07-27 Sofco-Efs Holdings, L.L.C. Selectively controllable modular auto-thermal reformer and method for same
US6759016B2 (en) 2000-11-30 2004-07-06 Ballard Power Systems Inc. Compact multiple tube steam reformer
US20020108308A1 (en) * 2001-02-13 2002-08-15 Grieve Malcolm James Temperature/reaction management system for fuel reformer systems
US7025903B2 (en) 2001-02-15 2006-04-11 Delphi Technologies, Inc. Reformer system process
CN1289642C (en) * 2001-10-03 2006-12-13 索尼公司 Method for recovering hydrogen from resin waste, process for producing hydrogen from resin waste, and apparatus for producing hydrogen from resin waste
AU2003208176B2 (en) * 2002-03-04 2008-12-11 Chaozhou Three-Circle (Group) Co., Ltd. Solid oxide fuel cell
AUPS087502A0 (en) * 2002-03-04 2002-03-28 Ceramic Fuel Cells Limited Solid oxide fuel cell
US20030188475A1 (en) * 2002-03-29 2003-10-09 Shabbir Ahmed Dynamic fuel processor with controlled declining temperatures
US20030223926A1 (en) * 2002-04-14 2003-12-04 Edlund David J. Steam reforming fuel processor, burner assembly, and methods of operating the same
EP1516663A3 (en) * 2002-04-14 2006-03-22 IdaTech, LLC. Steam reformer with burner
DE10313529A1 (en) * 2003-03-26 2004-10-14 Basf Ag Reactor for high temperature reactions and use
DE10313527A1 (en) * 2003-03-26 2004-10-14 Basf Ag Process for carrying out a high-temperature reaction, reactor for carrying out the process, process for scale-up a reactor and use
JP4998932B2 (en) * 2004-12-21 2012-08-15 三菱化工機株式会社 Methanol reformer
JP4799995B2 (en) * 2005-10-20 2011-10-26 東京瓦斯株式会社 Steam reformer
KR100993468B1 (en) * 2009-02-05 2010-11-09 삼성에스디아이 주식회사 Auto ignition type autothermal reformer and fuel cell system having the same
JP5423180B2 (en) * 2009-06-26 2014-02-19 パナソニック株式会社 Hydrogen generator
AT513931B1 (en) * 2013-02-04 2017-03-15 Avl List Gmbh Reformer unit for fuel cell system
ITMI20131564A1 (en) * 2013-09-23 2015-03-24 Rivoira S P A ENDOGAS GENERATION SYSTEM
KR101518204B1 (en) * 2015-01-30 2015-05-11 주식회사 한중엔시에스 Fuel cell reformer heater upright multi-channel merged
EP3429738A4 (en) 2016-04-12 2019-09-18 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
NL2017215B1 (en) * 2016-07-22 2018-01-30 Green Vision Holding Bv DEVICE FOR CONVERTING A FOOD GAS TO PRODUCT GAS
EP3296255A1 (en) * 2016-09-14 2018-03-21 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Reformer tube with structured catalyst and improved temperature control
CN109996760B (en) * 2016-10-25 2022-09-02 法国德西尼布 Catalyst tube for reforming
EP3648881B1 (en) 2017-07-31 2023-10-25 Ohio State Innovation Foundation Reactor system with unequal reactor assembly operating pressures
WO2020033500A1 (en) 2018-08-09 2020-02-13 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
EP3947356A4 (en) 2019-04-09 2023-01-25 Ohio State Innovation Foundation Alkene generation using metal sulfide particles
EP3772372A1 (en) 2019-08-05 2021-02-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for preventing fluidizazion in an upward-flow catalytic fixed bed reactor
CN112054227B (en) * 2020-09-15 2021-11-26 上海捷氢科技有限公司 Hydrogen utilization device and method for hydrogen fuel cell vehicle

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB472629A (en) * 1936-01-24 1937-09-24 Distillers Co Yeast Ltd Improvements in process and apparatus for carrying out exothermic reactions
JPS496824Y1 (en) * 1968-02-01 1974-02-18
US3760933A (en) * 1969-04-03 1973-09-25 Martin Marietta Corp Apparatus for rapidly coating surfaces with wet, particulate materials
DE2046324A1 (en) * 1970-09-19 1972-03-23 Berger, Heinz, 3470 Höxter Device for destroying the harmful components of the exhaust gases from internal combustion engines
US3791143A (en) * 1971-11-10 1974-02-12 Engelhard Min & Chem Process and apparatus
CA1095696A (en) * 1976-12-22 1981-02-17 Richard F. Buswell Catalytic reaction apparatus
FR2374946A1 (en) * 1976-12-22 1978-07-21 United Technologies Corp APPARATUS FOR CARRYING OUT ENDOTHERMAL CATALYTIC REACTIONS
JPS5469105A (en) * 1977-11-10 1979-06-02 Genhiru Rubuobuichi Sutoriaru Thermal decomposition of hydrocarbons
JPS55158170A (en) * 1979-05-25 1980-12-09 Ngk Spark Plug Co High speed cutting ceramic tool
JPS5684789A (en) * 1979-12-13 1981-07-10 Toyo Eng Corp High-temperature treatment of hydrocarbon-containing material
JPS5736784A (en) * 1980-08-16 1982-02-27 Mitsui Toatsu Chem Inc Method of effectively utilizing exhaust gas in fuel-cell power generation device, and system for that
JPS5827787A (en) * 1981-08-10 1983-02-18 Matsushita Electric Ind Co Ltd Control of carbon
JPS58156350A (en) * 1982-03-12 1983-09-17 Matsushita Electric Ind Co Ltd Apparatus for purifying exhaust gas
US4451578A (en) * 1982-04-26 1984-05-29 United Technologies Corporation Iron oxide catalyst for steam reforming
JPS6183602A (en) * 1984-09-29 1986-04-28 Toshiba Corp Reforming apparatus
JPS62132995A (en) * 1985-12-06 1987-06-16 Toyo Eng Corp Multi-layered heat-resistant material for high-temperature treatment of hydrocarbon
GB8629497D0 (en) * 1986-12-10 1987-01-21 British Petroleum Co Plc Apparatus
US4820314A (en) * 1987-02-11 1989-04-11 International Fuel Cells Corporation Fuel cell power plant reformer
US5070072A (en) * 1987-05-04 1991-12-03 Eastman Kodak Company Conductive articles and processes for their preparation
JPH01315332A (en) * 1988-06-14 1989-12-20 Mitsubishi Electric Corp Reaction device
JP2567055B2 (en) * 1988-08-31 1996-12-25 株式会社東芝 Fuel reformer
JP2818171B2 (en) * 1988-09-09 1998-10-30 東洋シーシーアイ株式会社 Catalyst for steam reforming reaction of hydrocarbon and method for producing the same
US4900712A (en) 1988-09-30 1990-02-13 Prototech Company Catalytic washcoat and method of preparation of the same
JPH02132764A (en) * 1988-11-14 1990-05-22 Hitachi Ltd Fused carbonate type fuel cell
JPH0431243Y2 (en) * 1989-03-02 1992-07-28
US5266281A (en) * 1989-09-16 1993-11-30 Xytel Technologies Partnership Catalytic reactor
EP0798363B1 (en) * 1991-03-08 2003-05-28 Chevron Phillips Chemical Company LP Low-sulphur reforming processes
US5805973A (en) * 1991-03-25 1998-09-08 General Electric Company Coated articles and method for the prevention of fuel thermal degradation deposits
JPH0593239A (en) * 1991-09-30 1993-04-16 Kubota Corp Tube for thermal cracking and reforming reaction for hydrocarbons
JPH05245379A (en) * 1992-03-03 1993-09-24 Tokyo Gas Co Ltd Cyclic gasification catalyst and production thereof
US5888292A (en) * 1992-04-27 1999-03-30 Stellar Materials Bonded aggregate composition and binders for the same
US5254318A (en) * 1992-07-20 1993-10-19 Stone & Webster Engineering Corporation Lined reformer tubes for high pressure reformer reactors
JPH06111838A (en) * 1992-09-30 1994-04-22 Toshiba Corp Reformer, reforming system, and fuel cell system
JP3322933B2 (en) * 1993-03-05 2002-09-09 株式会社東芝 Fuel reformer
JP3409894B2 (en) * 1993-11-17 2003-05-26 トヨタ自動車株式会社 Exhaust gas purification catalyst and exhaust gas purification method
GB9403198D0 (en) * 1994-02-19 1994-04-13 Rolls Royce Plc A solid oxide fuel cell stack
US5470360A (en) * 1994-03-10 1995-11-28 International Fuel Cells Corporation Fuel cell power plant reformer burner gas flow control system
JP3579155B2 (en) * 1995-01-18 2004-10-20 東芝セラミックス株式会社 Tools for firing
EP0728831B1 (en) * 1995-02-17 2000-07-12 Linde Aktiengesellschaft Process and apparatus for the cracking of hydrocarbons
US5846915A (en) * 1995-10-26 1998-12-08 Clearwater, Inc. Delayed breaking of gelled hydrocarbon fracturing fluid
US5733347A (en) * 1995-12-27 1998-03-31 International Fuel Cells Corp. Compact fuel gas reformer assemblage
JPH10306362A (en) * 1997-04-28 1998-11-17 Nippon Steel Hardfacing Co Ltd Member for hot dip metal bath in which composite sprayed coating excellent in corrosion resistance to hot dip metal and peeling resistance is formed

Also Published As

Publication number Publication date
WO2000029092A1 (en) 2000-05-25
ID29948A (en) 2001-10-25
BR9915190A (en) 2001-08-14
EP1148939B1 (en) 2009-07-08
JP2002529359A (en) 2002-09-10
CN1120214C (en) 2003-09-03
EP1148939A1 (en) 2001-10-31
CN1325319A (en) 2001-12-05
EP1140322A1 (en) 2001-10-10
KR100563182B1 (en) 2006-03-27
CN1170623C (en) 2004-10-13
EP1140322A4 (en) 2005-01-19
WO2000027518A1 (en) 2000-05-18
US6258330B1 (en) 2001-07-10
AU2148600A (en) 2000-05-29
KR100599893B1 (en) 2006-07-13
EP1148939A4 (en) 2005-01-19
EP1140322B1 (en) 2011-07-13
DE69941093D1 (en) 2009-08-20
CN1330570A (en) 2002-01-09
AU2843000A (en) 2000-06-05
JP2002529895A (en) 2002-09-10
KR20010089430A (en) 2001-10-06
BR9915221A (en) 2001-07-24

Similar Documents

Publication Publication Date Title
KR100563182B1 (en) Hydrocarbon fuel gas reformer assembly for a fuel cell power plant
US6296814B1 (en) Hydrocarbon fuel gas reformer assembly for a fuel cell power plant
US5470360A (en) Fuel cell power plant reformer burner gas flow control system
US8273314B2 (en) Internal combustion exchanger-reactor for fixed bed endothermic reaction
JPS62210047A (en) Apparatus for reaction
US5032365A (en) Reaction apparatus
KR20140001590U (en) Heat exchange reactor
EP0770269B1 (en) Fuel processing apparatus having a furnace for fuel cell power plant
US4740357A (en) Radiation shield for reformer apparatus
US3948610A (en) Catalyst beds for oxidizing ammonia to nitrogen oxides
JPH08208202A (en) Fuel reformer
JPH08301602A (en) Fuel reformer
JPS63126539A (en) Fuel reformer
US6667014B1 (en) Catalytic reactor and catalyst configuration designed to reduce catalyst slumping and crushing
JP4316975B2 (en) Reformer
US20130195736A1 (en) Heat exchanger reformer
GB2226775A (en) Catalytic reactor
JPH01290502A (en) Fluidized bed type reforming furnace
JPH11179191A (en) Catalyst modification type reaction furnace
JPH01168332A (en) Apparatus for reforming fuel
US20130195735A1 (en) Heat exchanger reformer with thermal expansion management
JP2600950B2 (en) Endothermic reactor
JPH0324583Y2 (en)
JPH0422830Y2 (en)
JPH03275501A (en) Fuel reformer

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110210

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee